The Complexity of Quantitative Information Flow in Recursive Programs

Rohit Chadha and Michael Ummels

July 2012

Research report LSV-2012-15
The Complexity of Quantitative Information Flow in Recursive Programs

Rohit Chadha1 and Michael Ummels2

1 LSV, ENS Cachan & CNRS & INRIA, Saclay
chadha@lsv.ens-cachan.fr
2 Technische Universität Dresden
ummels@tcs.inf.tu-dresden.de

Abstract. Information-theoretic measures based upon mutual information can be employed to quantify the information that an execution of a program reveals about its secret inputs. The information leakage bounding problem asks whether the information leaked by a program does not exceed a certain amount. We consider this problem for two scenarios: a) the outputs of the program are revealed, and b) the timing (measured in the number of execution steps) of the program is revealed. For both scenarios, we establish complexity results in the context of deterministic boolean programs, both for programs with and without recursion. In particular, we prove that for recursive programs the information leakage bounding problem is no harder than checking reachability.

1 Introduction

Ensuring that a program preserves confidentiality of its secret inputs is a fundamental problem in security. Typically, one desires that the execution of the program reveals absolutely no information about its secret inputs. This desired property is often modeled as non-interference \cite{16,27} — the low-security observations of the execution of a program should be independent of the high-security inputs. These observations could be explicit outputs of the program (e.g., the results of an election or whether a password is correct or not), or they could be implicitly extracted from its execution (such as timing information, cache size or power consumption).

In practice, however, non-interference is hard to achieve as it often clashes with functionality. An unanimous election, for example, reveals the votes of each voter. Consequently, alternative approaches that aim to quantify the amount of information leaked have been proposed in the literature \cite{13,17,23,29}. In these approaches, programs are viewed as transformers of random variables—they transform a random variable taking values from the set of inputs into a random variable taking values from the set of observations. The amount of information leaked by a program is then quantified by an information-theoretic measure, which measures the uncertainty of a random variable. More precisely, the amount of information leaked by the program is modeled as the difference between the...
initial uncertainty and the uncertainty remaining in the high-security input given the observations that have been made.

One measure for uncertainty that is often used in such analysis is derived from the seminal work of Shannon [28]. The information leaked by the program in this approach is defined to be the mutual information between high-level inputs and low-level observations. Given the importance of this problem, several automated approaches have been proposed to compute the information leaked by the program. The techniques employed by these approaches range from model-checking [3,22,8,9] and static analysis [10,11,12,3] to statistical analysis [22,7]. From a more theoretical viewpoint, the complexity of computing the amount of leakage was only considered recently [33,32,34,31]. More precisely, [32,34,31] consider the complexity of the information leakage bounding problem: given a program P, a distribution μ on the set of inputs, and a rational number q, check if the information leaked by the program (denoted by $\text{SE}_\mu(P)$) does not exceed q.

In [32,34], the program P is described in a simple non-recursive deterministic imperative language with boolean variables, assignments, conditionals and loops, and the inputs are assumed to be uniformly distributed. They show that the information leakage bounding problem is PP-hard for the loop-free fragment. For the whole language with loops, the problem is shown to be PSPACE-hard. However, no upper bounds are given in [32,34]. An EXPSPACE upper bound can be derived from the work of Černý et al. [31], where the information leakage bounding problem is shown to be PSPACE-complete under the assumption that the program is represented explicitly as a nondeterministic transition system and the input distribution is given explicitly. In our setting, an exponential blow-up occurs because the translation from a boolean program to a nondeterministic transition system is exponential.

Contributions Our first contribution is an upper bound for loop-free boolean programs when the number of output variables is logarithmic in the size of the program. We show that in this case the information leakage bounding problem for uniformly distributed inputs lies in the fourth level of the counting hierarchy (more precisely in P^{CH_3}). The whole counting hierarchy is contained in PSPACE. The main challenge in establishing the upper bound is that we have to solve inequations that involve logarithms (because of the definition of mutual information). In order to overcome this challenge, we resort to recent breakthroughs in arithmetic circuit complexity [2]. We then employ similar techniques to establish PSPACE-completeness for boolean programs with loops (but no recursion) under the same assumption that the number of output variables is logarithmic in the size of program. Hence, our upper bound is a substantial improvement over the previous EXPSPACE upper bound.

\footnote{Recall that PP is the class of decision problems decidable by a probabilistic polynomial-time Turing machine with acceptance probability $\geq 1/2$.}

\footnote{If one also allows low-level security input variables, their number must also be bounded.}
We subsequently turn our attention to boolean programs with recursion. We show that both the problem of checking non-interference as well as the information leakage bounding problem is \textsc{EXPTIME}-complete. For the upper bound, we observe that a recursive boolean program can be represented as an \textit{exponential-size} deterministic pushdown system [24,26] (the pushdown system is of size linear in the length of the program but exponential in the number of variables). We can then use the fact that control state reachability in pushdown systems is polynomial-time decidable [5] and thus compute the outputs of the program on any given input. A careful analysis of the expression computing information leakage then gives us the desired upper bound. We make no assumptions on the number of variables in this case, and hence this also gives an \textsc{EXPTIME} upper bound for general non-recursive programs, which is better than the \textsc{EXPSPACE} upper bound that can be derived from [31].

In the second part of this paper, we consider the case when the attacker can observe the timing behavior of an execution of a program. We abstract the timing behavior of the program by the “length” of the computation of the pushdown system corresponding to the program. One could alternatively use the number of procedure calls or the number of loop executions as an abstraction of timing, but our results would not change in that case. For non-recursive terminating programs, the execution time can easily be measured “inside the program” by a binary counter, so bounding the information leaked by timing is no harder than the problem of bounding the information leaked by observing the outputs. The same idea does not work for recursive programs because the running time of a recursive program could be doubly exponential. Nevertheless, we show that the problem of bounding the information leaked by the timing behavior of a recursive boolean program on uniformly distributed inputs is also \textsc{EXPTIME}-complete by showing that the execution time for recursive terminating programs can still be computed in exponential time.

\textbf{Related work} The complexity of quantitative information flow security for boolean programs was first tackled by Yasuoka and Terauchi [33], where the complexity of the information leakage comparison problem is studied: this problem asks which of two programs leaks more information. They also show that the problem of checking non-interference for loop-free programs is \textsc{coNP}-complete. The complexity of bounding information leakage was first studied by the same authors in [32], where the problem was shown to be \textsc{PP}-hard for loop-free non-recursive programs. In [34], the same authors prove that deciding non-interference for non-recursive programs \textit{with loops} is \textsc{PSPACE}-complete. However, none of these papers contains an upper bound for the problem of bounding Shannon-entropy based information leakage, not even for restricted programs. Thus, our results obtained by restricting the number of output variables are novel. Only for the related notions of \textit{min-entropy} and \textit{guessing entropy}, a \textsc{PSPACE} upper and lower bound for non-recursive programs was established in [34].

A more general setting has been considered by van der Meyden and Zhang [30] as well as Černý et al. [31], where programs are represented abstractly as non-
deterministic transition systems. In this setting, van der Meyden and Zhang established \(\text{PSPACE} \)-completeness for noninterference, and Černý et al. extended this result to the information-leakage bounding problem (wrt. Shannon entropy). However, as they assume an explicit-state description and the translation of a boolean program into an equivalent explicit-state description causes an exponential blowup, their results only give an \(\text{EXPSPACE} \)-upper bound for boolean programs (without recursion). None of these works consider recursive programs or the problem of bounding the information leakage caused by timing information. We establish \(\text{EXPTIME} \)-completeness for both problems, and also obtain better bounds for non-recursive programs.

Several timing attacks are known in literature. For example, [6] shows a practical timing attack against OpenSSL, which allows extraction of a private RSA key. The attack exploits the fact that the multiplication in OpenSSL is carried out by the Karatsuba routine [19], which is a recursive algorithm. Several approaches have been proposed in the literature to counteract timing leaks. Type systems, for example, are used to detect information leakage from timing [18], while [1,21,25,4] provide countermeasures to combat information leakage from timing. None of these works have considered complexity questions, though.

2 Preliminaries

All logarithms are to the base 2. As is standard, we assume that \(0 \log 0 = 0 \). We assume that the reader is familiar with probability distributions and random variables. We only consider discrete random variables. The cardinality of a set \(A \) is denoted by \(|A| \). Given a function \(f : A \rightarrow B \) and \(b \in B \), the set \(\{ a \in A \mid f(a) = b \} \) is denoted by \(f^{-1}(b) \). Finally, we denote by \(2^A \) the set of all (total) functions from \(A \) to the set \(\{ \top, \bot \} \).

Straight-line programs and the counting hierarchy A (division-free) straight-line program is a finite list of instructions of the form \(x \leftarrow c \) or \(x \leftarrow y \odot z \), where \(c \in \{ 0, 1 \} \), \(\odot \in \{ +, -, \cdot \} \) and \(x, y, z \) are taken from a countable set of variables. Such a program is closed if all variables that appear on the right-hand side of an instruction also appear on the left-hand side of a preceding instruction. Hence, a closed straight-line program represents an integer, namely the value of the last variable that is assigned to. The problem \(\text{PosSLP} \) is to decide, given a closed straight-line program, whether the corresponding integer is \(> 0 \).

The counting hierarchy consists of the classes \(\text{CH}_i \) where \(\text{CH}_0 = \text{P} \) and \(\text{CH}_{i+1} = \text{PP}^{\text{CH}_i} \) for all \(i \in \mathbb{N} \). Allender et al. [2] recently showed that the Problem \(\text{PosSLP} \) belongs to the complexity class \(\text{P}^{\text{CH}_1} \) and thus to the fourth-level of the counting hierarchy. Since the counting hierarchy is contained in \(\text{PSPACE} \), we know in particular that \(\text{PosSLP} \) is decidable in polynomial space.

Pushdown Systems The operational semantics of recursive programs are given by pushdown systems. Formally a pushdown system (PDS) \(\mathcal{P} \) is a tuple
(Q, Γ, δ) where Q is a finite set of control states, Γ is a finite stack alphabet, and δ = δint ∪ δcll ∪ δrtn is a finite set of transitions s.t. δint ⊆ Q × Q, δcll ⊆ Q × Q × Γ, and δrtn ⊆ Q × Γ × Q.

For a PDS P, its semantics is defined as a labeled transition system (Labels, ConfP, →P). The set Labels of labels is {int, cll, rtn}. The set ConfP of configurations is Q × Γ+. The word w ∈ Γ+ in a configuration (q, w) models the contents of the stack; the empty word e denotes the empty stack. The transition relation →P is defined as follows: (q, w) →intP (q′, w) if (q, q′) ∈ δint; (q, w) →cllP (q′, wa) if (q, q′, a) ∈ δcll and (q, wa) →rtnP (q′, w) if (q, a, q′) ∈ δrtn.

We omit the subscript P if it is clear from the context. Since we consider only deterministic programs, we are mainly interested in deterministic PDS: P is deterministic if for each s in ConfP there is at most one λ ∈ Labels and at most one s′ ∈ ConfP with s →λP s′.

Given a configuration c = (q, w) of a PDS P, we say that state(c) = q, stack(c) = w and height(c) = |w|, the length of w. A computation of P is a sequence c0 →λ1 · · · →λm c m. A transition ci →cll c i+1 is a procedure call. Similarly, we define procedure returns and internal actions. We say that a procedure return cj →rtn c j+1 matches a procedure call c i →cll c i+1 iff i < j, height(c i+1) = height(c j) and height(c i+1) ≤ height(c k) for all i < k < j. Finally, we say that c →P c′ if there exists a computation c0 →λ1 · · · →λm c m of P with c0 = c and c m = c′, and we write c →P c′ for some m ∈ N. The following is proved in [5].

Theorem 1. There are polynomial-time algorithms that, given a PDS P, output the set \{(q, q′) | (q, e) →P (q′, e)\} and the set \{(q, q′) | ∃w ∈ Γ∗ (q, w) →P (q′, w)\}, respectively.

Programs We discuss the syntax of recursive boolean programs in detail in Appendix A. Here we just highlight the main features. The inputs of our programs are partitioned into two sets, one containing high-security variables and one containing low-security variables. Additionally, our programs may have some local variables as well as outputs. The outputs are assumed to be of low security. Note that high-security outputs, i.e., outputs that are not visible to an observer, can easily be modeled using local variables.

We only give an informal description of the semantics of programs, which is call-by-value. A recursive boolean program can be represented as a deterministic pushdown system [24,26] of exponential size (linear in the length of the program, but exponential in the number of variables). The states of the pushdown system keep track of the current statement and the values of all variables in the “current scope”; the pushdown stack keeps track of the procedure calls. Whenever a procedure is called, the pushdown system pushes the position of the call and the values of the variables onto the stack, transitions into the called procedure, and sets all variables that are local to this procedure to ⊥. Upon returning from the procedure call, the contents from the stack is popped and the variables are reset.
properly, i.e., the outputs of the returning procedure are set, and the variables that were local to the procedure are reset to their original values using the information from the stack. Since P is deterministic, the corresponding pushdown system is also deterministic.

The computation of the program P on high inputs \overline{h}_0 and low inputs \overline{l}_0 can now be defined as the computation of the pushdown system corresponding to P starting from the configuration with the empty stack and with the control state corresponding to the first statement of P, the input variables set to $\overline{h}_0, \overline{l}_0$, and the local and output variables set to \bot. The program P terminates on inputs $\overline{h}_0, \overline{l}_0$ if this computation reaches the configuration with the control state corresponding to the last statement of the program (in that case, the stack will be empty). If P terminates, we define the output of P to be the values of the output variables upon termination. Hence, P can be seen as a partial function $F_P: 2^{\overline{h}} \times 2^{\overline{l}} \rightarrow 2^{\overline{o}}$.

Henceforth, the program P is always assumed to be terminating. One could possibly model non-termination as an explicit observation; and our complexity results will not change in that case. This is because nontermination on an input can be decided for while programs in PSPACE and for recursive boolean programs in EXPTIME.

Quantifying information leakage Let X be a discrete random variable with values taken from a finite set X. If μ is the probability distribution of X, the Shannon entropy of μ, written $H_\mu(X)$, is defined as

$$H_\mu(X) = -\sum_{x \in X} \mu(X = x) \cdot \log \mu(X = x).$$

If X and Y are discrete random variables taking values from finite sets X and Y with joint probability distribution μ, the conditional entropy of X given Y, written $H_\mu(X \mid Y)$, is defined as

$$H_\mu(X \mid Y) = \sum_{y \in Y} \mu(Y = y) \cdot H_\mu(X \mid Y = y),$$

where

$$H_\mu(X \mid Y = y) = -\sum_{x \in X} \mu(X = x \mid Y = y) \cdot \log \mu(X = x \mid Y = y).$$

If X, Y and Z are discrete random variables taking values from finite sets X, Y and Z with joint probability distribution μ, then the joint conditional entropy of X, Y given Z, written $H_\mu(X, Y \mid Z)$ is the entropy of the random variable (X, Y) given Z. Similarly, the conditional entropy of X given Y and Z is the entropy of X given (Y, Z).

If X, Y and Z are discrete random variables taking values from finite sets X, Y and Z respectively with joint probability distribution μ, then the conditional mutual information of X and Y given Z, written $I_\mu(X; Y \mid Z)$, is defined as

$$I_\mu(X; Y \mid Z) = H_\mu(X \mid Z) - H_\mu(X \mid Y, Z).$$
We are interested in measuring the information leaked by a program. Following [13, 17, 23], we use conditional mutual information to quantify this information.

As described above, we can view programs as functions that take two kinds of inputs: a high-security (high) input from a finite set H and a low-security (low) input from a finite set L. Let \mathcal{H} and \mathcal{L} be random variables taking values from H and L, respectively, with joint distribution μ. Moreover, let O be a finite set and $F: H \times L \rightarrow O$ be a function. We extend μ to a joint probability distribution on \mathcal{H}, \mathcal{L} and O such that

$$
\mu(O = o \mid \mathcal{H} = h, \mathcal{L} = l) = \begin{cases}
1 & \text{if } F(h, l) = o \\
0 & \text{otherwise}
\end{cases}
$$

The information leaked by the function F is then

$$
\text{SE}_\mu(F) := I_{\mu}(\mathcal{H}; O \mid \mathcal{L}).
$$

We are mainly interested in the case where μ is the uniform distribution on $H \times L$, and we define $\text{SE}_U(F) := \text{SE}_\mu(F)$ in this case.

A function $F: H \times L \rightarrow O$ is non-interferent if $F(h, l) = F(h', l)$ for all $h, h' \in H$ and $l \in L$, and interferent otherwise. Note that a function $F: H \times L \rightarrow O$ is non-interferent iff $\text{SE}_U(F) = 0$ for all distributions μ.

Sometimes, we have only high inputs, i.e., F is a function from H to O. In that case, the information leaked by the function F is just $\text{SE}_U(F) = I_{\mu}(\mathcal{H}; O)$. The following lemma (proved in Appendix B) allows us to trade low inputs for high inputs and outputs.

Lemma 2. Let H, L, O be finite sets, $F: H \times L \rightarrow O$, and let \mathcal{H} and \mathcal{L} be random variables taking values in H and L with joint probability distribution μ. Consider the function $G: (H \times L) \rightarrow (O \times L)$ defined by $G(h, l) = (F(h, l), l)$. Then $\text{SE}_\mu(G) = \text{SE}_\mu(F) + H_{\mu}(\mathcal{L})$.

The following theorem is proved in [3, 20].

Theorem 3. Let H and O be finite sets, and let $F: H \rightarrow O$ be a function. Then

$$
\text{SE}_U(F) = \log |H| - \frac{1}{|H|} \sum_{o \in O} |F^{-1}(o)| \log |F^{-1}(o)|.
$$

The information leakage bounding problem As discussed above, a program P with high input variables \bar{h}, low input variables \bar{l} and output variables \bar{o} can be seen as a function $F_P: 2^{\bar{h}} \times 2^{\bar{l}} \rightarrow 2^{\bar{o}}$. Now, the information leakage bounding problem asks, given a program P and a rational number $q \geq 0$, whether the information leaked by F_P does not exceed q, i.e. whether $\text{SE}_U(F_P) \leq q$. In the rest of the paper, we will identify P with the function F_P.
3 Complexity of information leakage

Loop-free programs We start by discussing our results for loop-free programs. Given numbers \(a_1, \ldots, a_k \in \mathbb{N}\), we define \(\sigma(a_1, \ldots, a_k) = \sum_{i=1}^{k} a_i \log a_i\). Note that if \(F : H \to O\) is a function, and \(a_1, \ldots, a_k\) is a permutation of \(\{|F^{-1}(o)| \mid o \in O\}\), then \(\text{SE}_0(F) = \log|H| - \sigma(a_1, \ldots, a_k)/|H|\), according to Theorem 3.

Lemma 4. Given \(a_1, \ldots, a_k \in \mathbb{N}\) and \(q \in \mathbb{Q}\), deciding whether \(\sigma(a_1, \ldots, a_k) < q\) reduces to PosSLP in polynomial time.

Proof. In order to prove the lemma, we show that, given \(a_1, \ldots, a_k, q\), one can construct a (division-free) straight-line program \(S\) in polynomial time such that \(\sigma(a_1, \ldots, a_k) < q\) iff \(S \in \text{PosSLP}\). Since \(\sigma(a_1, \ldots, a_k)\) is always nonnegative, we can assume that \(q > 0\). Let \(q = r/s\), where both \(r, s \in \mathbb{N}\setminus\{0\}\). Hence, \(\sigma(a_1, \ldots, a_k) < q\) iff \(s \cdot \sigma(a_1, \ldots, a_k) < r\). Using the fact that \(\log a + \log b = \log ab\) and \(a \log b = \log b^a\), we have

\[
s \cdot \sigma(a_1, \ldots, a_k) = \log \prod_{i=1}^{k} a_i^{a_i^s}.
\]

Applying an exponentiation on both sides, we get that

\[
\sigma(a_1 \ldots, a_k) < q \iff \prod_{i=1}^{k} a_i^{a_i^s} < 2^r \iff 0 < 2^r - \prod_{i=1}^{k} a_i^{a_i^s}.
\]

Now, using repeated squaring, we can easily write a straight-line program of size \(O(\log r + \log s + \sum_{i=1}^{k} \log a_i)\) representing the number on the right-hand side, which establishes our reduction.

We can now show that the information leakage bounding problem for loop-free programs lies inside the counting hierarchy, provided the number of possible low inputs and outputs is only logarithmic in the number of high inputs.

Theorem 5. Given a loop-free program \(P\) with \(|\bar{o}| + |\bar{l}| = O(\log |\bar{h}|)\) and a rational number \(q\), deciding whether \(\text{SE}_U(P) \leq q\) can be done in \(\mathbf{P}^{\mathbf{CH}_3}\).

Proof. First, observe that if \(P\) has \(k\) low input variables and \(\mathcal{L}\) is the distribution induced by \(U\) on low inputs, then \(H_U(\mathcal{L}) = k\). Using this observation and Lemma 2, it suffices to consider the case when \(P\) has only high inputs. Moreover, since \(\mathbf{P}^{\mathbf{CH}_3}\) is closed under complementation, it suffices to show that we can decide whether \(\text{SE}_U(P) > q\) in \(\mathbf{P}^{\mathbf{CH}_3}\).

Let \(|\bar{h}| = m\) and denote by \(H\) and \(O\) the set of possible inputs and outputs, respectively. Note that \(|H| = 2^m\) and \(|O| = O(m^d)\) for some \(d \in \mathbb{N}\) (since \(|\bar{o}| = O(\log m)|\)). Let \(O = \{\bar{o}_1, \ldots, \bar{o}_k\}\) and for each \(i = 1, \ldots, k\) set \(a_i = |P^{-1}(\bar{o}_i)|\). Now, by Theorem 3, we have

\[
\text{SE}_U(P) = m - 2^{-m} \cdot \sigma(a_1, \ldots, a_k)
\]
and therefore

\[\text{SE}_U(P) > q \iff \sigma(a_1, \ldots, a_k) < 2^m(m - q) \]

Note that all the numbers \(a_i \) as well as \(2^m(m - q) \) are of size polynomial in the size of \(P \) and the size of \(q \). Hence, given \(a_1, \ldots, a_k \), we can apply Lemma 4 and compute (in polynomial time) a straight-line program \(S \) such that \(S \in \text{PosSLP} \) iff \(\text{SE}_U(P) > q \).

Since PosSLP is in \(\text{P}^{CH_3} \) [2], we are done if we can show that the numbers \(a_1, \ldots, a_k \) can be computed by a polynomial-time algorithm with an oracle for \(CH_3 \). In fact, we show that these numbers can be computed in \(\#P \); since \(\#P \subseteq \text{P}^{PP} \), this will conclude the proof. Given an output \(\bar{o}_i \in O \), the \textit{weakest precondition semantics} gives us a Boolean formula \(\varphi_i(h) \), which can be computed in polynomial time [15], such that an assignment \(\alpha \in 2^h \) satisfies \(\varphi_i \) iff \(P(\alpha) = \bar{o}_i \). Hence, \(a_i = |\{ \alpha \mid \alpha \models \varphi_i \}| \). Since the problem of computing the number of satisfying assignments for a given Boolean formula is in \(\#P \), we are done.

While programs Non-interference for while programs is shown to be \(\text{PSPACE} \)-complete in [34]. Indeed, it can be shown to be \(\text{PSPACE} \)-hard even for programs that have only one high input variable, no low input variables, and one output variable. We show that the upper bound extends to the information leakage bounding problem, provided the number of possible low inputs and outputs is only logarithmic in the number of high inputs.

Theorem 6. Given a while program \(P \) with \(|\bar{o}| + |\bar{l}| = O(\log |\bar{h}|) \) and a rational number \(q \), deciding whether \(\text{SE}_U(P) \leq q \) is \(\text{PSPACE} \)-complete.

Proof. We prove \(\text{PSPACE} \) hardness for the special case of one high input, no low inputs, and one output in Appendix C. The proof for containment in \(\text{PSPACE} \) is almost identical to the proof of Theorem 5. The only difference is that we cannot transform a while program into an equivalent Boolean formula in polynomial time (or reachability for Boolean programs would be in \(\text{NP} \)). Instead, we just “run” the given program \(P \) on every possible input in order to compute the numbers \(a_i = |P^{-1}(\bar{o}_i)| \), which can be done in polynomial space. Since the counting hierarchy is contained in \(\text{PSPACE} \), this gives a polynomial-space algorithm.

Recursive Programs Deciding non-interference becomes \(\text{EXPTIME} \)-hard if we allow procedure calls (see Appendix D), i.e., at least as hard as deciding reachability for recursive programs.

Theorem 7. Deciding non-interference for recursive programs with one high input, no low inputs, and one output is \(\text{EXPTIME} \)-hard.

As a corollary, we get that the information leakage bounding problem for recursive programs is also \(\text{EXPTIME} \)-hard, even when the number of inputs and outputs is restricted. We now show that the information leakage bounding
Theorem 8. The information leakage bounding problem is \textsc{EXPTIME}-complete for recursive programs.

Proof. \textsc{EXPTIME}-hardness follows from Theorem 7. For the upper bound, as in the proof of Theorem 5, we can assume that P has m high inputs, no low inputs and n outputs, and that $0 \leq q < m$. Let H be the set of possible inputs to P and $O = \{\bar{a}_1, \ldots, \bar{a}_k\}$ the set of possible outputs. Hence, $|H| = 2^m$ and $k = |O| \leq 2^n$. As shown in the proof of Theorem 5, we have $\text{SE}_U(P) \leq q$ iff $\sigma(a_1, \ldots, a_k) \geq 2^m(m - q)$, where $a_i := |P^{-1}(\bar{a}_i)|$. Let $2^m(m - q) = r/s$, where $r, s \in \mathbb{N}$ (such numbers can be computed easily from P and q). Now, as in the proof of Lemma 4, we have

$$\text{SE}_U(P) \leq q \iff \log \prod_{i=1}^{k} a_i^{a_i} \geq r.$$

Note that we have no restriction on the number of outputs. Hence, unlike in the proof of Theorem 5, we cannot appeal to Lemma 4. However, observe that $\sum_{i=1}^{k} a_i = 2^m$. Hence, by replacing the powers by products, we can write $p := \prod_{i=1}^{k} a_i^{a_i}$ as a product of $2^m \cdot s$ natural numbers each of (binary) size at most m. The product of $2^m \cdot s$ natural numbers each of size at most m can be computed in $2^{O(m \log s)}$ time and is of size $2^{O(m \log s)}$. Now note that $\log p \geq r$ iff the integral part of the left-hand side is $\geq r$ (since the right-hand side is an integer), but the integral part of $\log p$ is just the length of the binary representation of p, which we have just computed.

To establish the \textsc{EXPTIME} upper bound, it remains to be shown that the numbers $a_i = |P^{-1}(\bar{a}_i)|$ can be computed in exponential time. This can be done by first computing the pushdown system corresponding to P, which is of size exponential in the size of P, and then invoking Theorem 1 to compute the set $\{(\bar{h}_0, F(\bar{h}_0)) \mid \bar{h}_0 \text{ is a high input}\}$.

Remark 9. The algorithm in the proof of Theorem 8 runs in time polynomial in the length of the program and exponential in the number of variables.

4 Information leakage from timing behavior

Let us now consider the question of estimating the information leaked by a program by its “timing behavior”. We shall use the “number of steps” taken by a program as an abstraction of its timing behavior. Given a program P, with high input variables h and low input variables l, let $\text{Steps}_P : 2^h \times 2^l \rightarrow \mathbb{N}$ be the function such that $\text{Steps}_P(\bar{h}_0, \bar{l}_0)$ is the number of steps in the computation of $P(\bar{h}_0, \bar{l}_0)$. More precisely, this number is the number of steps in the corresponding computation of the pushdown system realizing the program P.

...
Definition 10. A program P is timing non-interferent if the function Steps_P is non-interferent. Furthermore, if μ is the distribution on inputs to P, then $\text{SE}_\mu(\text{Steps}_P)$ is the information leaked by the timing behavior of P.

Remark 11. Instead of using the number of computation steps, we could alternately have used the number of procedure calls or the number of executions of while statements as an abstraction of the timing behavior. The same complexity bounds would apply in this case.

While programs A terminating while program takes at most $\ell \cdot 2^n$ steps, where ℓ is the number of statements in the program and n is the total number of variables of the program (input, output and local). Hence, the running time of the program can be represented as a natural number whose (binary) size is polynomial in the size of program. Thus, we can easily modify the upper bound proof for deciding non-interference in while programs to the case of deciding timing non-interference in while programs. The lower bound proof for deciding non-interference in while programs can also be easily modified to give a lower bound on timing non-interference of while programs (see Appendix E for the proof).

Lemma 12. Deciding timing non-interference for while programs with one high input, no low inputs and no outputs is PSPACE-hard. Deciding whether a while program is timing non-interferent can be done in PSPACE.

Recursive programs As in the case of while programs, the lower bound for deciding timing non-interference for recursive programs is a modification of the proof for Theorem 7.

Lemma 13. Deciding timing non-interference for recursive programs with one high input, no low inputs and no outputs is EXPTIME-hard.

The upper bound proofs for bounding information leakage are more involved. The presence of recursion (i.e., the stack) implies that the length of the computation is no longer bounded by $\ell \cdot 2^n$ as in the case of while programs. Indeed, the length of a computation can be as high as doubly exponential, and the upper bound proof will depend on the ability to compute the length of a computation in exponential time. (Note that the length of a computation can be represented as an exponential-size number). In order to demonstrate this fact, we will establish some facts about deterministic pushdown systems.

Given a deterministic PDS P, we say that a computation $c_0 \xrightarrow{\lambda_1} c_1 \cdots \xrightarrow{\lambda_m} c_m$ of P is terminating if there is no transition out of c_m. A state $q \in Q$ is a good state if there exists a terminating computation $c_0 \xrightarrow{\lambda_1} c_1 \cdots \xrightarrow{\lambda_m} c_m$ with $c_0 = (q, \varepsilon)$. We first establish that the stack height is bounded in every computation of P starting from a good state (see Appendix F for the proof).

Lemma 14. Let $P = (Q, \Gamma, \delta)$ be a deterministic PDS and $q \in Q$ a good state. If c is a configuration such that $(q, \varepsilon) \xrightarrow{P} c$, then $\text{height}(c) \leq |Q|$.
Since the stack size is bounded, we get that the length of a computation from a good state must also be bounded (see Appendix G for the proof).

Corollary 15. Let $P = (Q, \Gamma, \delta)$ be a deterministic PDS and $q \in Q$ a good state. If there exists a configuration c with $(q, \varepsilon) \xrightarrow{m} P c$, then $m \leq |Q| \cdot |\Gamma|^{|Q|+1}$.

We now show that, even though the length of a computation of a deterministic pushdown system can be exponential, the length of the computation from a configuration (q, ε) to (q', ε) can be computed in polynomial time. This is proved by modifying the “summaries construction” algorithm used to decide reachability in pushdown systems [5]. We recall salient points of this algorithm before we prove the desired theorem.

The “summaries construction” algorithm proceeds iteratively, building an edge-labeled graph on the states of a pushdown system P. At each step of the algorithm, edges are added and the algorithm terminates when a fixed point is reached. The set of labels on the edges is $\Gamma \cup \{\varepsilon\}$. Intuitively, the edge $q \xrightarrow{a} q'$ means that there is a valid computation $(q, \varepsilon) \Rightarrow (q', a)$ of P. The initial graph is constructed from the internal actions and the stack push transitions. New edges are constructed by taking the “transitive closure” of these edges with the stack pop transitions. For example, if $q \xrightarrow{a} q'$ is an edge in the graph and $(q', a, q'') \in \delta_{\text{int}}$ then a new edge $q \xrightarrow{\varepsilon} q''$ is added to the graph. We modify this algorithm by maintaining the execution time on the labels as well.

Theorem 16. There is a polynomial-time algorithm that, given a PDS $P = (Q, \Gamma, \delta)$ and a set $Q_0 \subseteq Q$ of good states, outputs the set $\{(q, q', m) \mid q \in Q_0 \text{ and } (q, \varepsilon) \xrightarrow{m} P (q', \varepsilon)\}$.

Proof. The algorithm constructs an edge-labeled directed graph G iteratively. The set of nodes of G is $\text{Reach}(Q_0) = \{q \mid \exists q_0 \in Q_0 \exists w \in \Gamma^* (q_0, \varepsilon) \Rightarrow (q, w)\}$. Note that this set can be constructed in polynomial time thanks to Theorem 1. The set of labels on the edges of G is $\mathbb{N} \times (\Gamma \cup \{\varepsilon\})$. The graph G is constructed by computing a sequence of graphs G_0, G_1, \ldots such that the set of edges of G_i is a subset of the set of edges of G_{i+1}. The iteration terminates when $G_i = G_{i+1}$, in which case $G = G_i$. Initially, the set of edges in G_0 is

$$\{(q \xrightarrow{(1, \varepsilon)} q_1) \mid (q, q_1) \in \delta_{\text{int}}\} \cup \{(q \xrightarrow{(1, a)} q_1) \mid (q, q_1, a) \in \delta_{\text{cll}}\}.$$

Assume now that G_i has been constructed. Then G_{i+1} is constructed as follows:

- for each pair of edges $q \xrightarrow{(m_1, c)} q_1$ and $q_1 \xrightarrow{(m_2, a)} q_2$ in G_i, we add the edge $q \xrightarrow{(m_1+m_2, c)} q_2$;
- for each pair of edges $q \xrightarrow{(m_1, a)} q_1$ and $q_1 \xrightarrow{(m_2, c)} q_2$ and in G_i, we add the edge $q \xrightarrow{(m_1+m_2, c)} q_2$;
- for each $a \in \Gamma$, each edge $q \xrightarrow{(m, a)} q_1$ in G_i, and each transition $(q_1, a, q_2) \in \delta_{\text{int}}$, we add the edge $q \xrightarrow{(m+1, a)} q_2$.

Once G has been constructed, the algorithm outputs the set

$$\{(q, q, 0) \mid q \in Q_0\} \cup \{(q, q', m) \mid q \in Q_0 \text{ and } q \xrightarrow{(m, \varepsilon)} q' \text{ is an edge of } G\}.$$

We have to show:

1. The algorithm terminates in polynomial time.
2. The output equals $\{(q, q', m) \mid q \in Q_0 \text{ and } (q, \varepsilon) \xrightarrow{m} (q', \varepsilon)\}$.

This is shown in the Appendix.

Theorem 17. The problem of deciding whether the information leaked by the timing behavior of a recursive program P does not exceed q is in EXPTIME.

Proof. As in the case of the proof of Theorem 8, we can assume that P has no low inputs. We can construct the pushdown system corresponding to P and, using Theorem 16, compute the set $R = \{(\hat{h}_0, \text{Steps}_P(\hat{h}_0)) \mid \hat{h}_0 \text{ is a high input}\}$. Now we can partition the set of inputs according to the equivalence relation \equiv defined by $\hat{h}_1 \equiv \hat{h}_2$ iff $\text{Steps}_P(\hat{h}_1) = \text{Steps}_P(\hat{h}_2)$. Let a_1, \ldots, a_k be the partition sizes of \equiv. Note that these partition sizes can be computed in time polynomial in the size of the set R, i.e. exponential in the size of P. If m is the number of input variables, then $\sum_{i=1}^{k} a_i = 2^m$ and $\text{SEU}(\text{Steps}_P) \leq q$ iff $\sigma(a_1, \ldots, a_k) \geq 2^m(m - q)$. (Recall that $\sigma(a_1, \ldots, a_k) = \sum_{i=1}^{k} a_i \log a_i$.) The latter can now be decided in exponential time as in the proof of Theorem 8.

5 Conclusions and future work

We have considered the problems of checking non-interference and of bounding information leakage in (deterministic) recursive boolean programs with uniformly distributed inputs, proving both problems to be EXPTIME-complete. This implies an EXPTIME upper bound for non-recursive programs, which improves the previously known upper bounds. For the special case when the number of outputs and low inputs is logarithmic in the size of the program, we have established a tight PSPACE upper bound for non-recursive programs.

We have also considered the problem of checking non-interference and of bounding information leakage in recursive boolean programs when the attacker observes the number of execution steps of the program (and not the explicit outputs). Once again, our problems turn out to be EXPTIME-complete in this setting. The proof of the upper bound is interesting from a practical standpoint as we have shown that existing algorithms used for analyzing safety properties in recursive programs can be used for computing information leakage. In fact, we are currently working on a BDD-based symbolic algorithm for computing information leakage in recursive programs.

We have used measures based on Shannon’s entropy and mutual information. Nevertheless, our techniques are useful for computing information leakage with respect to other measures. For example, if we use min-entropy to define mutual
information [29,14], the problem of bounding information leakage (from explicit outputs or from timing behavior) for programs with uniformly distributed high inputs is again EXPTIME-complete for recursive programs (see Appendix I). We believe that the techniques used in this paper will also be useful for other scenarios, such as the case when we are interested in only the amount of information leaked about certain selected bits of the input.

In addition to extending the results to other scenarios as described above, one particular open problem is to close the gap between the lower bound (PSPACE) and the upper bound (EXPTIME) for non-recursive programs with no restrictions on the number of inputs and outputs. Another interesting direction for future research is to extend our results to programs with probabilistic choices.

References

A Syntax of programs

In order to define the syntax of boolean programs, we assume that we have a countable set \(\text{Vars} \) of variables which can take boolean values \(\top \) (true) and \(\bot \) (false). Furthermore, we assume a countable set \(\text{Procs} \) of procedure names and two functions \(\text{InAr} : \text{Procs} \to \mathbb{N} \) and \(\text{OutAr} : \text{Procs} \to \mathbb{N} \). Intuitively, \(\text{InAr}(p) \) denotes the number of inputs and \(\text{OutAr}(p) \) the number of outputs for the procedure \(p \).

The set \(\text{Exps} \) of boolean expressions is generated by the following BNF grammar (\(x \in \text{Vars} \)):

\[
\varphi ::= \top | \bot | x | \neg \varphi | (\varphi \lor \varphi) | (\varphi \land \varphi).
\]

As usual, we omit parentheses if they are clear from the context.

A program can manipulate its variables using statements. The set of statements, \(\text{Stmts} \), is defined by the following BNF grammar (\(x \in \text{Vars} \), \(\varphi \in \text{Exps} \), \(p \in \text{Procs} \), \(\bar{x} \in \text{Exps}^{\text{InAr}(p)} \), \(\bar{\bar{x}} \in \text{Vars}^{\text{OutAr}(p)} \)):

\[
s ::= \text{skip} \quad \text{(Skip)}
| x \leftarrow \varphi \quad \text{(Assignment)}
| p(\bar{\psi}; \bar{x}) \quad \text{(Procedure call)}
| \text{if } \varphi \text{ then } s \text{ else } s \text{ end} \quad \text{(Conditional)}
| \text{while } \varphi \text{ do } s \text{ end} \quad \text{(Iteration)}
| s; s \quad \text{(Sequential composition)}
\]

As usual, we define \(\text{if } \varphi \text{ then } s \text{ end} \) as an abbreviation for \(\text{if } \varphi \text{ then } s \text{ else skip end} \), and we allow ourselves to introduce line-breaks and omit semicolons to increase readability. Moreover, we will make use of syntactic sugar such as \(\bar{x} \leftarrow \psi \) (assignment of one expression to several variables) and \(\bar{x} \leftarrow \bar{\psi} \) (assignment of a vector of expressions to a vector of variables of the same length).

For a statement \(s \), we denote the set of variables occurring in \(s \) by \(\text{FVars}(s) \), and the set of procedure names occurring in \(s \) by \(\text{ProcNames}(s) \). Finally, given a statement \(s \) and variables \(x, y \in \text{Vars} \), we write \(s[x \leftarrow y] \) for the statement that results from \(s \) by replacing every occurrence of \(x \) by \(y \) (so \(\text{FVars}(s[x \leftarrow y]) = (\text{FVars}(s) \setminus \{x\}) \cup \{y\}) \).

Each procedure should correspond to a procedure definition. A definition for \(p \in \text{Procs} \) is of the form

\[
\text{proc } p(\bar{x}; \bar{\bar{y}}) \text{ local } \bar{z}; s \text{ end}
\]

where \(\bar{x} \) and \(\bar{\bar{y}} \) are vectors of variables of length \(\text{InAr}(p) \) and \(\text{OutAr}(p) \), respectively, \(\bar{z} \) is an arbitrary vector of variables, and \(s \) is a statement. Given this definition, we denote the set \(\text{FVars}(s) \setminus (\bar{x} \cup \bar{\bar{y}} \cup \bar{z}) \) by \(\text{FVars}(p) \) and the set \(\text{ProcNames}(s) \) by \(\text{ProcNames}(p) \).

Assume now that we have \(m \) distinct procedure names \(p_1, \ldots, p_m \). A program with procedures \(p_1, \ldots, p_m \) is of the form

\[
\text{high } \bar{h}; \text{ low } \bar{l}; \text{ out } \bar{o}; \text{ local } \bar{z}; s
\]
where s is a statement and $\tilde{h}, \tilde{l}, \tilde{o}, \tilde{z}$ are vectors of variables such that

- $\text{FVars}(s) \subseteq \tilde{h} \cup \tilde{l} \cup \tilde{o} \cup \tilde{z}$,
- $\text{FVars}(p_i) \subseteq \tilde{h} \cup \tilde{l} \cup \tilde{o} \cup \tilde{z}$ for all $i = 1, \ldots, m$,
- $\text{ProcNames}(s) \subseteq \{p_1, \ldots, p_m\}$, and
- $\text{ProcNames}(p_i) \subseteq \{p_1, \ldots, p_m\}$ for all $i = 1, \ldots, m$.

Finally, a while program is a program with no procedures, and a while program is loop-free if it contains no while statement.

\section{Proof of Lemma 2}

We recall the famous chain rule of entropy.

Proposition 18. If \mathcal{X}, \mathcal{Y} and \mathcal{Z} are discrete random variables taking values from finite sets X, Y and Z with joint probability distribution μ, then

$$H_\mu(\mathcal{X}, \mathcal{Y} \mid \mathcal{Z}) = H_\mu(\mathcal{X} \mid \mathcal{Z}) + H_\mu(\mathcal{Y} \mid \mathcal{X}, \mathcal{Z}).$$

We proceed with the proof. We have that

$$\text{SE}_\mu(G) = I_\mu(\mathcal{H}'; \mathcal{O}') = H_\mu(\mathcal{H}') - H_\mu(\mathcal{H}' \mid \mathcal{O}').$$

Since $\mathcal{H}' = \mathcal{H} \times \mathcal{L}$, we have by the chain rule

$$H_\mu(\mathcal{H}') = H_\mu(\mathcal{H}, \mathcal{L}) = H_\mu(\mathcal{L}) + H_\mu(\mathcal{H} \mid \mathcal{L})$$

Thus, we get that

$$\text{SE}_\mu(G) = I_\mu(\mathcal{H}'; \mathcal{O}') = H_\mu(\mathcal{L}) + H_\mu(\mathcal{H} \mid \mathcal{L}) - H_\mu(\mathcal{H}' \mid \mathcal{O}').$$

Now,

$$\text{SE}_\mu(F) = I_\mu(\mathcal{H}; \mathcal{O} \mid \mathcal{L}) = H_\mu(\mathcal{H} \mid \mathcal{L}) - H_\mu(\mathcal{H} \mid \mathcal{O}, \mathcal{L}).$$

Hence, we will be done if we can show that

$$H_\mu(\mathcal{H} \mid \mathcal{O}, \mathcal{L}) = H_\mu(\mathcal{H}' \mid \mathcal{O}').$$

Now, by the chain rule for entropy, we have that

$$H_\mu(\mathcal{H}' \mid \mathcal{O}') = H_\mu(\mathcal{H}, \mathcal{L} \mid \mathcal{O}') = H_\mu(\mathcal{H} \mid \mathcal{O}') + H_\mu(\mathcal{L} \mid \mathcal{H}, \mathcal{O}').$$

The result follows from observing that $H_\mu(\mathcal{H} \mid \mathcal{O}') = H_\mu(\mathcal{H} \mid \mathcal{O}, \mathcal{L})$ (since $\mathcal{O}' = (\mathcal{O}, \mathcal{L})$) and that $H_\mu(\mathcal{L} \mid \mathcal{H}, \mathcal{O}') = 0$ (since \mathcal{L} is uniquely determined by \mathcal{H} and \mathcal{O}'). \square
C Lower bound for while programs

Proposition 19. Deciding non-interference for while programs with one high input, no low inputs, and one output is PSPACE-hard.

We reduce from the validity problem for quantified Boolean formulas. More precisely, we show how to construct (in polynomial time) from a quantified Boolean formula φ of the form

$$
\varphi = Q_d X_d \ldots Q_1 X_1 \psi(X_1, \ldots, X_d, X_{d+1}, \ldots, X_{d+n}),
$$

where each $Q_i \in \{\exists, \forall\}$ and ψ is quantifier-free, a while-program P with one high input h, n low inputs l_1, \ldots, l_n, 2d local variables $t_1, \ldots, t_d, z_1, \ldots, z_d$, and one output o such that φ is valid iff P is non-interferent. Since all free variables can be bound by universal quantifiers, the low inputs can be traded for local variables.

The main idea of the reduction is to “compute” the value of φ on l_1, \ldots, l_n. If φ evaluates to true then we output true; otherwise we “leak” h.

The body of P consists of one statement s, which we construct by induction on the number d of quantifiers in φ. If $d = 0$, then s is the following assignment:

$$
o \leftarrow h \lor \psi(l_1, \ldots, l_n).
$$

Now let $d > 0$, and assume that we have already constructed a statement s' for the formula φ' that results from φ by removing the outermost-quantifier $Q_d X_d$. (Note that φ' has $n+1$ free variables, namely X_d, \ldots, X_{d+n}.) Assume furthermore that $Q_d = \exists$ (the other case being analogous). Then we define s to be the following statement:

$$
t_d \leftarrow \bot;
z_d \leftarrow \bot;
\textbf{while } \neg t_d \textbf{ do}
\begin{align*}
s'[l_1 \leftarrow z_d][l_2 \leftarrow l_1] \ldots [l_{n+1} \leftarrow l_n]; & \quad \text{(* sets o *)} \\
t_d \leftarrow o \lor z_d; z_d \leftarrow \top
\end{align*}
\textbf{end}
$$

Note that the length of s is linear in the length of φ. By induction on d, it is easy to prove that P outputs $h \lor \varphi(l_1, \ldots, l_n)$. Hence, the output of P is constantly \top if φ is valid and agrees with h for at least one choice of the low inputs otherwise. It follows that P is non-interferent iff φ is valid.

D Proof of Theorem 7

We reduce from the word problem for alternating linearly bounded automata (ALBAs). More precisely, we show how to construct (in polynomial time) from an ALBA M over the alphabet Σ and a word $w \in \Sigma^*$ a recursive program P such
that \(P \) is non-interferent iff \(M \) accepts \(w \). The program \(P \) will “check” whether \(w \) is accepted by \(M \). If \(w \) is accepted, we output true; otherwise we “leak” \(h \).

Let \(M = (Q, \Sigma, Q_\exists, q_0, \Sigma, \Delta) \) be such a machine, where \(Q \) is the set of states, \(Q_\exists \subseteq Q \) is the set of existential states, \(q_0 \in Q \) is the initial state, and \(\Delta \subseteq Q \times \Sigma \times Q \times \Sigma \times \{−1, 1\} \) is the transition relation, and let \(w \in \Sigma^n \). Here, a configuration is accepting (rejecting) if the corresponding state is universal (existential) and there is no successor configuration. Without loss of generality, we can assume that all computation paths of \(M \) on \(w \) are finite. The program \(P \) has one high input \(h \), one output \(o \), and local variables \(x, y_{q,i}, y'_{q,i}, z_{i,a}, z'_{i,a}, \) and \(z_{i,a} \), where \(q \in Q, i \in \{0, \ldots, n - 1\} \) and \(a \in \Sigma \). Every configuration of \(M \) naturally corresponds to an instantiation of the variables \(y \) and \(z \):

\[
y_{q,i} = 1 \text{ iff the current state is } q \text{ and the head is at position } i,
\]

\[
z_{i,a} = 1 \text{ iff the symbol at the position } i \text{ is } a.
\]

At the heart of the program \(P \) lies the recursive procedure \(\text{Acc}(\bar{y}, \bar{z}; x) \):

Assuming that \(\bar{y}, \bar{z} \) encode a valid configuration \(c \) of \(M \), then \(\text{Acc}(\bar{y}, \bar{z}; x) \) returns with \(x \) set to 1 iff \(M \) accepts from \(c \). The procedure \(\text{Acc}(\bar{y}, \bar{z}; x) \) has local variables \(y'_{q,i} \) and \(z'_{i,a} \), where again \(q \in Q, i \in \{0, \ldots, n - 1\} \) and \(a \in \Sigma \). For each such triple \((q, i, a) \) with \(q \in Q_\exists \), the procedure \(\text{Acc}(\bar{y}, \bar{z}; x) \) contains the following pseudo statement (their order being irrelevant):

\[
\text{if } y_{q,i} \wedge z_{i,a} \text{ then}
\]

\[
x \leftarrow \perp
\]

\[
\text{for } (p, b, d) \text{ with } (q, a, p, b, d) \in \Delta \text{ and } 0 \leq i + d < n \text{ do}
\]

\[
\text{if } \neg x \text{ then}
\]

\[
y'_{p,i+d} \leftarrow \top; z'_{i,a} \leftarrow \perp; z'_{i,b} \leftarrow \top;
\]

\[
\text{Acc}(y', z'; x)
\]

\[\text{end} \]

\[\text{end} \]

Note that this pseudo statement can be expanded to an equivalent proper statement (without the \textbf{for} construct) of length \(O(|Q| \cdot |\Sigma|) \).

A similar statement appears in \(\text{Acc}(\bar{y}, \bar{z}; x) \) for each \(q \in Q \setminus Q_\exists, i \in \{0, \ldots, n - 1\} \) and \(a \in \Sigma \): we just replace each assignment \(x \leftarrow \perp \) by \(x \leftarrow \top \) and each expression \(\neg x \) by \(x \).

Now the program \(P \) just initializes the variables \(\bar{y} \) and \(\bar{z} \) to the initial configuration of \(M \) on \(w \), calls \(\text{Acc}(\bar{y}, \bar{z}; x) \), and outputs \(h \lor x \). Hence, \(P \) is non-interferent iff \(M \) accepts \(w \).

\[\square\]

E Proof of Lemma 12

For the lower bound proof, we proceed as in Proposition 19 except that we make the following changes.

1. The variable \(o \) is taken to be a local variable.
2. In the construction of s, the base case is modified: when $d = 0$, we set s to

$$o \leftarrow \psi(l_1, \ldots, l_n).$$

3. It is now easy to see that at the end of execution of s, o will be true iff the QBF formula φ is true. Now we add the following statement after the statement s in the constructed program:

$$\text{if } ((\neg o) \wedge h) \text{ then } o \leftarrow \bot; \text{ else } o \leftarrow \bot \text{ end.}$$

It is easy to see that the program is timing non-interferent iff φ is true.

For, the upper bound proof, since the class PSPACE is closed under complementation, it suffices to show that the problem of deciding whether a while program P is interferent is in PSPACE. Since PSPACE equals NPSPACE, it suffices to give a non-deterministic algorithm that runs in polynomial space and decides whether a while program is timing interferent.

Recall that a while program P with high input variables \bar{h} and low input variables \bar{l} is timing interferent if there exists a low input $l_0 \in 2^d$ and high inputs $h_1, h_2 \in 2^h$ such that $\text{Steps}_P(h_1, l_0) \neq \text{Steps}_P(h_2, l_0)$. Note that since the number of steps taken by a program is bounded by $\ell \cdot 2^n$ (with ℓ as the number of lines of the program and n the number of variables), the numbers $\text{Steps}_P(h_1, l_0)$ and $\text{Steps}_P(h_2, l_0)$ can be maintained by polynomially long binary numbers.

The NPSPACE algorithm A for deciding whether P is timing interferent first guesses a low input l_0 and a high input h_1 and “runs” the program P on input (h_1, l_0). Since P has no recursion, the algorithm A running the program P on (h_1, l_0) only has to remember the “current statement” and the “current values” of the program variables. A also keeps track of the number of steps taken. Once the end of the program P is reached, the algorithm A remembers the output $\text{Steps}_P(h_1, l_0)$. The algorithm now guesses another high input $h_2 \neq h_1$ and computes $\text{Steps}_P(h_2, l_0)$. After $\text{Steps}_P(h_2, l_0)$ has been computed, A accepts if $\text{Steps}_P(h_1, l_0) \neq \text{Steps}_P(h_2, l_0).$

\section{Proof of Lemma 14}

As P is deterministic, for each $k \in \mathbb{N}$ there is at most one configuration c' such that $c \xrightarrow{k} c'$. We will prove the lemma by contradiction. Assume that there is a computation

$$(q, \varepsilon) \xrightarrow{\lambda_1} (q_1, w_1) \cdots \xrightarrow{\lambda_m} (q_m, w_m)$$

with $|w_m| > |Q|$. Let $w_m = a_1 \cdots a_n$ where $a_i \in \Gamma$ for each $1 \leq i \leq n$. Note that $n > |Q|$.

Now, since the bottom of the stack is a_1 there must exist a unique $1 \leq i_1 \leq m$ such that a_1 is pushed onto the stack at time i_1 and never popped afterwards, i.e.,

$$w_{i_1} = \varepsilon, w_{i_1+1} = a_1 \text{ and } \forall j > i_1 \exists u_j \in \Gamma^* w_j = a_1 u_j.$$
Now, since \(a_2 \) is the second element from the bottom of the stack, there must be a unique \(i_1 < i_2 \leq n \) such that

\[
\begin{align*}
w_{i_2} &= a_1, w_{i_2+1} = a_1a_2 \quad \text{and} \quad \forall j > i_2 \exists u_j \in \Gamma^* w_j = a_1a_2u_j.
\end{align*}
\]

From the fact that the bottom element of the stack at instants \(i_1 + 1 \) and \(i_2 \) (i.e. \(w_{i_1+1} \) and \(w_{i_2} \)) is \(a_1 \) and since \(a_1 \) is never popped between time \(i_1 + 1 \) and time \(i_2 \), it follows that

\[
(q_{i_1+1}, \varepsilon) \xrightarrow{i_2-i_1-1} (q_{i_2}, \varepsilon)
\]

and therefore

\[
(q_{i_1}, \varepsilon) \xrightarrow{i_2-i_1} (q_{i_2+1}, a_1).
\]

Proceeding in this fashion, we find \(i_1 < \ldots < i_n \) such that for each \(1 \leq k \leq n \)

\[
\begin{align*}
w_{i_k} &= a_1 \cdots a_{k-1},
w_{i_{k+1}} &= a_1 \cdots a_k, \\
\forall j > i_k \exists u_j \in \Gamma^* w_j &= a_1 \cdots a_ku_j, \quad \text{and} \\
\forall r > k \quad (q_k, \varepsilon) &\Rightarrow (q_r, a_ka_{k+1} \cdots a_{r-1}).
\end{align*}
\]

Now, since \(|w| = n > |Q| + 1 \), there exists \(1 \leq k, r \leq n \) s.t. \(k < r \) and \(q_{i_k} = q_i \). From the fact that \((q_k, \varepsilon) \Rightarrow (q_r, a_ka_{k+1} \cdots a_{r-1}) \), we get that

\[
(q_k, \varepsilon) \Rightarrow (q_r, a_ka_{k+1} \cdots a_{r-1}) \Rightarrow (q_i, (a_ka_{k+1} \cdots a_{r-1})^2)
\]

by repeating the “same” computation from \(q_i \). By induction, we can show that for each \(\ell \in \mathbb{N} \)

\[
(q_{i_k}, \varepsilon) \Rightarrow (q_i, (a_ka_{k+1} \cdots a_{r-1})^\ell).
\]

Since \((q, \varepsilon) \Rightarrow (q_i, a_1 \cdots a_{k-1}) \), we get that for each \(\ell \in \mathbb{N} \)

\[
(q, \varepsilon) \Rightarrow (q_i, a_1 \cdots a_{k-1}(a_ka_{k+1} \cdots a_{r-1})^\ell).
\]

Hence, there is a non-terminating computation starting from \((q, \varepsilon) \), which contradicts the fact that \(q \) is a good state.

\[\square\]

G Proof of Corollary 15

By Lemma 14, any configuration in a computation starting from \((q, \varepsilon) \) has stack size \(\leq |Q| \). Now, observe that the number of different stack contents of size \(\leq |Q| \) is \(\sum_{0 \leq i \leq |Q|} |\Gamma|^i < |\Gamma|^{|Q|+1} \). Hence, the total number of distinct configurations in a computation starting from \((q, \varepsilon) \) is bounded from above by \(|Q| \cdot |\Gamma|^{|Q|+1} \). The result now follows from observing that the same configuration cannot repeat in a computation starting from \((q, \varepsilon) \) since \(q \) is a good state.

\[\square\]
We complete the proof of Theorem 16. We have to show that the algorithm in the proof of Theorem 16

1. terminates in polynomial time,
2. its output equals \((q, q', m) | q \in Q_0 \) and \((q, \varepsilon) \overset{m}{\Rightarrow} (q', \varepsilon)\).

Claim. For each \(i \in \mathbb{N}\) and \(a \in \Gamma \cup \{\varepsilon\}\), if \(q \overset{(m,a)}{\Rightarrow} q'\) is an edge in \(G_i\), then \((q, \varepsilon) \overset{m}{\Rightarrow} (q', a)\).

Proof of Claim: The proof is by induction on \(i\). The claim is trivially true for \(i = 0\). Suppose that the result is true for \(i \leq j\). Now let us consider an edge \(q \overset{(m,a)}{\Rightarrow} q'\) that is in \(G_{j+1}\) but not in \(G_j\). Then one of the following three cases must hold:

1. There are edges \(q \overset{(m_1,\varepsilon)}{\Rightarrow} q_1\) and \(q_1 \overset{(m-m_1,a)}{\Rightarrow} q'\) in \(G_j\).
2. There are edges \(q \overset{(m_1,a)}{\Rightarrow} q_1\) and \(q_1 \overset{(m-m_1,\varepsilon)}{\Rightarrow} q'\) in \(G_j\).
3. \(a = \varepsilon\) and there is \(b \in \Gamma\) and an edge \(q \overset{(m-1,b)}{\Rightarrow} q_1\) in \(G_j\) and \((q_1, b, q') \in \delta_{\text{tn}}\).

In each of the above cases, the claim follows from the inductive hypothesis. □

Claim. For each \(i \in \mathbb{N}\) and \(a \in \Gamma \cup \{\varepsilon\}\), if \(q \overset{(m,a)}{\Rightarrow} q'\) is an edge in \(G_i\), then \(m \leq |Q| \cdot |\Gamma||Q^*+1|\).

Proof of Claim: Since \(q \in \text{Reach}(Q_0)\), there are \(q_0 \in Q_0\), \(r \in \mathbb{N}\) and \(w \in \Gamma^*\) such that \((q_0, \varepsilon) \overset{\tau}{\Rightarrow} (q_1, w)\). Also thanks to Claim H, we have that \((q, \varepsilon) \overset{m}{\Rightarrow} (q', a)\). We get that

\[(q_0, \varepsilon) \overset{r \cdot m}{\Rightarrow} (q, w) \overset{m}{\Rightarrow} (q', wa)\]

Now, the claim follows from Corollary 15 and the fact that \(q_0\) is a good state. □

Claim. For each \(i \in \mathbb{N}\), \(q \in \text{Reach}(Q_0)\) and \(a \in \Gamma \cup \{\varepsilon\}\), if \(q \overset{(m_1,a)}{\Rightarrow} q'\) and \(q \overset{(m_2,a)}{\Rightarrow} q'\) are edges in \(G_i\), then \(m_1 = m_2\).

Proof of Claim: Towards a contradiction, assume that \(m_2 \neq m_1\); without loss of generality, \(m_2 > m_1\). As in the proof of Claim H, there are \(q_0 \in Q_0\), \(r \in \mathbb{N}\) and \(w \in \Gamma^*\) such that

\[(q_0, \varepsilon) \overset{r \cdot m_1}{\Rightarrow} (q, w) \overset{m_1}{\Rightarrow} (q', w)\]

and

\[(q_0, \varepsilon) \overset{r \cdot m_2}{\Rightarrow} (q, w) \overset{m_2}{\Rightarrow} (q', wa)\]

Since \(P\) is deterministic, the \((r + m_1 + 1)\)-th configuration along the computation \((q_0, \varepsilon) \overset{r}{\Rightarrow} (q, w) \overset{m_1}{\Rightarrow} (q', w)\) must equal \((q', wa)\) as well. It is easy to see that this implies that there is no terminating computation starting from \((q_0, \varepsilon)\), contradicting the fact that \(q_0\) is a good state. □
Claim. The algorithm terminates in polynomial time.

Proof of Claim: Thanks to Claim H, there are at most $|Q|^2 \cdot (|\Gamma| + 1)$ edges in G. Hence, the algorithm terminates after a polynomial number of iterations. Now, the polynomial bound on the algorithm can be deduced from the fact that each iteration takes only polynomial time as the (binary) size of the numbers on the edges is polynomial (Claim H), and the sum of two numbers is computable in time polynomial in the size of the numbers.

It remains to be shown that the set $S := \{(q, q', m) \mid q \in Q_0$ and $(q, \varepsilon) \xrightarrow{m} (q', \varepsilon)\}$ is the output of the algorithm. Claim H already implies that the output set is a subset of S. Hence, we only have to exhibit the reverse inclusion. We will be done once we prove the following claim.

Claim. For all $a \in \Gamma \cup \{\varepsilon\}$, $m \in \mathbb{N}$ and $q_1, q_2 \in \text{Reach}(Q_0)$, if $(q_1, \varepsilon) \xrightarrow{m} (q_2, a)$, then $q_1 \xrightarrow{(m,a)} q_2$ is an edge in G.

Proof of Claim: The proof is by induction on the number of computation steps m. For $m = 1$, the claim is true by the construction of G_0. Assume now that the claim is true for all $m \leq m_0$ and consider a, q_1, q_2 such that $(q_1, \varepsilon) \xrightarrow{m_0+1} (q_2, a)$. Let us inspect the last step of this computation. There are three possible cases:

1. The last step is an internal action. Then there must exist $q' \in Q$ such that $(q_1, \varepsilon) \xrightarrow{m_0} (q', a)$ and $(q', q_2) \in \delta_{\text{int}}$. By the inductive hypothesis, we have that $q_1 \xrightarrow{(m_0,a)} q'$ is in G. Also, we have that $q' \xrightarrow{(1,\varepsilon)} q_2$ is an edge in G_0. The claim now follows from the construction of G.

2. The last step is a procedure call. Then this procedure call must be the same as a and there is a state q' such that $(q_1, \varepsilon) \xrightarrow{m_0} (q', \varepsilon)$ and $(q', q_2, a) \in \delta_{\text{cll}}$. The result follows again from the inductive hypothesis.

3. The last step is a procedure return. Let this be a procedure return of b. Then there must exist a state q' such that $(q_1, \varepsilon) \xrightarrow{m_0} (q', ab)$ and $(q', b, q_2) \in \delta_{\text{rtn}}$. Since $(q_1, \varepsilon) \xrightarrow{m_0} (q', ab)$, there must exist $m_1 < m_0$ and states \hat{q}, \hat{q} such that the following hold:

 (a) $(q_1, \varepsilon) \xrightarrow{m_1} (\hat{q}, a) \xrightarrow{\text{cll}} (\hat{q}, ab) \xrightarrow{m_0-m_1-1} (q', ab)$.

 (b) If w is the stack content at an intermediate configuration c in the computation $(\hat{q}, ab) \xrightarrow{m_0-m_1-1} (q', ab)$, then $w = au$ for some $u \in \Gamma^*$. By the inductive hypothesis, we have that $q \xrightarrow{(m_1,a)} \hat{q}$. Moreover, the above two conditions imply that $(\hat{q}, \varepsilon) \xrightarrow{m_0-m_1} (q', b)$ and thus $\hat{q} \xrightarrow{(m_0-m_1, b)} q'$ (by the inductive hypothesis). Since $(q', b, q_2) \in \delta_{\text{rtn}}$, we get that $\hat{q} \xrightarrow{(m_0-m_1+1, \varepsilon)} q_2$ and therefore $q \xrightarrow{(m_0+1,a)} q_2$, by the construction of G.

\[\square \]

I Complexity of computing min-entropy

Smith [29] has argued that information leaked by a program should be measured using min-entropy [14]. The min-entropy based information leakage is defined as follows.
Let X, Y be random variables on finite sets X and Y with joint distribution μ, the conditional vulnerability of X given Y is defined as

$$V_\mu(X \mid Y) = \sum_{y \in Y} \max_{x \in X} \mu(x, y).$$

Let H and L be random variables taking values in the finite sets H and L respectively with joint distribution μ. Given $F : H \times L \to O$, the min-entropy based information leakage of F is defined as follows:

$$\text{ME}_\mu(F) = \log \frac{V_\mu(H \mid O, L)}{V_\mu(H \mid L)}$$

It is shown in [29,32] if inputs are uniformly distributed then

$$\text{ME}_\mu(F) = \log \left(\frac{|O_L|}{|L|} \right)$$

where $O_L = \{(o, l) \mid \exists h \in H \ F(h, l) = o\}.$

As in the proof of Theorem 8, the problem of checking whether the min-entropy based measure of information leaked by a recursive program is $\leq q$ is EXPTIME. Similarly, the information leaked by the timing information is also in EXPTIME. The lower bound of EXPTIME follows immediately from the observation that a program is non-interferent iff the information leaked on uniformly distributed inputs is 0. The lower bound of EXPTIME follows immediately from the observation that a program is non-interferent iff the information leaked on uniformly distributed inputs is 0.