
Laboratoire Spécification & Vérification
École Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex France

Imperfect Recall and Counter Games

Dietmar Berwanger, Łukasz Kaiser,
Simon Leßenich

September 2011

Research report LSV-11-20

Imperfect Recall and Counter Games?

Dietmar Berwanger1, Lukasz Kaiser2, and Simon Leßenich3

1 LSV, CNRS & ENS Cachan, France
2 LIAFA, CNRS & Université Paris Diderot – Paris 7, France

3 Mathematische Grundlagen der Informatik, RWTH Aachen, Germany

Abstract. We study a class of ω-regular games with imperfect informa-
tion and imperfect recall, for which we present an automata-based solu-
tion method. Furthermore, we show a reduction from a class of counter
parity games to games with this kind of imperfect recall. By combining
the two results, we obtain an elementary algorithm for solving counter
parity games, which leads to improved complexity bounds for model
checking quantitative variants of the µ-calculus.

1 Introduction

Games with ω-regular winning conditions are a fundamental model for program
verification and synthesis [13]. In this context, games with imperfect information
have been studied extensively [12,9,1,2]. These studies commonly assume perfect
recall, i.e., that players never forget their past observations and actions. We study
ω-regular games with a kind of imperfect information that violates perfect recall.
Our basic model, we call it the second-life game, is intended as a proof of concept
for addressing the issue of imperfect recall in infinite games.

At the outset, there is a game graph G with perfect information for two
players, Player 0 and Player 1. The second-life game arena consists of several
copies of this graph. Plays begin in the main instance of G, which we call first life,
and proceed as usual by moving a token along the edges of the graph. However,
when Player 1 is in turn to move, he may switch to a copy of G, a second life,
without informing Player 0. If a terminal position is reached in the first life, the
play simply ends. In contrast, if this happens in a second life, the play returns
to the first life, and Player 0 forgets the part of the history spent in the second
life. This part of the history is nevertheless relevant for the winning condition.

For a game graph G with n positions, the structure of the second-life game
consists of n+ 1 disjoint copies of G: one second-life copy (G, v) for any node v,
and the first life copy G. Imperfect information is induced by composing moves of
Player 1 in G with unobservable calls to second-life copies as follows: for a move
(u, v) of Player 1, we add a Call move (u, (v, v)) and Return moves ((w, v), v)
for each terminal node w of G. We postulate that Player 0 cannot distinguish
between the move (u, v) in the main component and the move (u, (v, v)) switching
to (G, v). The resulting uncertainty about whether the play continues in the first

? Work partially supported by the ESF Research Networking Programme GAMES.

or second life, after reaching u, is still subsumed under the usual notion of
imperfect information with perfect recall. However, in the event that a return
move occurs, our model requires Player 0 to forget the segment of history elapsed
since the last call occurred. Technically, the play history from u through the
second life (G, v) that returns via a move ((w, v), v) leads to the same information
set as the play moving from u directly to v in the first life.

We show that this class of games with imperfect recall admits finite-memory
strategies, and propose an effective, automata-based procedure for constructing
winning strategies in such games. Moreover, we provide an explicit and elemen-
tary bound on the size of memory required in second-life games.

In the second part of the paper, we present an algorithmic application of
second-life games to model checking. Specifically, we develop a new algorithm
for solving counter parity games. These are quantitative parity games with a set
of counters that are updated by affine transformation along the moves of a play.
When a play ends, these counters are used to determine the payoff, whereas on
infinite plays, a parity condition is applied. Counter parity games are a strict
generalization of counter-reset games, which were used in [6] to approximate
a quantitative logic over a class of hybrid systems. It was shown there that
counter-reset games are algorithmically solvable, but the presented procedure
was of non-elementary complexity. Our new algorithm for counter parity games
has elementary complexity and works for a strictly larger class than counter-
resets games.

Beyond generalizing counter-reset games, counter parity games offer a promis-
ing framework for model-checking quantitative logics. Counter reachability games
play an important role in model-checking weak cost-MSO [3] and weak MSO with
the unbounding quantifier [7]. Recently, the model-checking problem of a quan-
titative µ-calculus for structure rewriting systems has been reduced to solving
counter parity games [8].

2 Preliminaries

When referring to a sequence s, we write s[i] for the i-th element of s. We always
count from 0, i.e., s[0] is the first element of s. For a set I ⊆ N of indices, we
write s|I to denote the sub-sequence of s consisting only of the elements with
indices in I. We refer to a sequence of fixed finite length as a vector. For a vector
s, we write s>0 to denote the vector t with t[i] := 1 if s[i] > 0 and t[i] := 0
otherwise. Finally, we write [n] to denote the set {0, . . . , n− 1}.

2.1 Games and strategies

For a given set A of actions, an arena is a labeled graph G = (V, V0, V1, E) with
a set V of vertices partitioned into subsets V0 and V1 belonging to Player 0 and
Player 1, respectively, and a set E ⊆ V ×A×V of moves corresponding to edges
labeled with actions from A.

2

For a finite arena G = (V, V0, V1, E), we will often assume implicitly that the
moves in E are linearly ordered. This allows us to order the moves going out
from each vertex v as {v}×A×V ∩E = {(v, a0, w0), . . . , (v, ak−1, wk−1)}. Then,
we say that ai is the i-th action from v and write ai = acti(v); likewise, we say
that wi is the i-th successor from v and write wi = succi(v).

A sequence π ∈ (V A)∗V is a path through G, if π = v0a0v1 · · · anvn such that
(vi, ai, vi+1) ∈ E for each i ∈ [n].

An (unconstrained) strategy of Player i, starting from v0, is a function f that
assigns to each path π through G starting in v0 and ending at v ∈ Vi, an action
a and a successor w such that (v, a, w) ∈ E. We say that a path v0a0v1 · · · anvn
is consistent with a strategy f , if it assign to every prefix path v0a0v1 · · · al−1vl
with l < n the action al and the vertex vl+1. An winning condition is a set
W ∈ Aω of infinite sequences of actions. A strategy f is winning from an initial
position v0 ∈ V , if each play from v0 that is consistent with f belongs to W .

Given a vertex v0 ∈ V , we define the unfolding of G from v0 as the ranked
tree T (G, v0) of all finite paths π ∈ (V A)∗V rooted in v0 with the i-th successor
given by

Si = {(π, π acti(vn) succi(vn)) | π = v0a0v1a2 · · · anvn}.

In addition, every vertex π = v0a0v1 · · · vn in T (G, v0) is labeled by a special
predicate vn.

We represent a strategy f of Player i by a labeling of the unfolding T (G, v0)
with an additional predicate S as follows.

(1) For every π = v0a0 · · · vn with vn ∈ Vi, the vertex πf(π) is labeled with S
and all other successors of π are not labeled with S, and

(2) for every π = v0 · · · vn with vn ∈ V1−i, all successors are labeled with S.

As there is a one-to-one correspondence between strategies of Player i and la-
belings S that satisfy the above two properties, we use both representations
interchangeably.

We say that a strategy f of Player 0 uses memory M if there exists a
m0 ∈ M , a function update : M × V → M and a function fM : M × V →
V such that f(v0v1 . . . vn) = fM (update∗(v0v1 . . . vn,m0), vn), where update∗

is defined inductively by update∗(ε,m) = m and update∗(v0v1 . . . vk+1,m) =
update(update∗(v0v1 . . . vk,m), vk+1). The size of the memory is |M | and a
finite-memory strategy is one that uses a finite memory M .

2.2 Alternating tree automata

We assume that the reader is familiar with automata on ω-words and on infinite
trees. Here, we only recall the notion of alternating tree automata [11].

To define the transitions of alternating automata over trees with arbitrary
branching, we consider, for a given set of states Q and a set of directions D, the
set B+(D×Q) of all positive Boolean formulas over D×Q. That is, B+(D×Q)
is the set of formulas built using propositions from D×Q, the connectives ∧ and

3

∨, and the constants true and false; note that negation is not allowed. A subset
X ⊆ D×Q satisfies a formula ϕ ∈ B+(D×Q) if ϕ is satisfied by the assignment
that sets all elements of X to true and all elements of (D ×Q) \X to false.

Fix a finite ranked alphabet Σ and denote the arity of a symbol f ∈ Σ by
ar(f). An alternating automaton A over Σ is a tuple (Q, δ, q0,F), where Q is
the set of states, q0 is the initial state, F ⊆ Qω is the acceptance condition, and
δ assigns a positive Boolean formula over possible successors and states to each
state and symbol:

δ : q, f → ϕ ∈ B+ ([ar(f)]×Q) .

Note that δ respects the arities, i.e., for a symbol f the only possible directions
in the formula are 0, . . . , ar(f)− 1.

Intuitively, a correct run of A on a tree T is a tree labeled with T ×Q where
the successors of each node form a satisfying set for the Boolean condition related
to the state in this node and to the corresponding letter in T . More precisely,
the root of a run is labeled with (r, q0), where r is the root of T . The first
component π′ of the label (π′, q′) of a successor of a vertex with label (π, q)
must correspond to a child of π in the sense that (π, π′) ∈ Si for some i, and
the second component q′ must be such that (i, q′) ∈ δ(q, a) for the label a of
π in T . A run is correct, if for every vertex (π, q) the successors induce a set
E = {(i0, qi0), · · · , (il−1, qil−1

)} that satisfies δ(q, a). A run is accepting, if all
infinite paths in the run are accepting and all finite paths leading to a terminal
vertex end with the label true.

For two alternating tree automata A0 and A1, we write A0 ∩ A1 for the
intersection automaton, which accepts all trees T that are accepted by both A0

and A1. The intersection automaton is constructed as follows: as a state space
Q∩ := {q0} ·∪ Q0 ·∪ Q1 we use disjoint copies of the state spaces of A0 and
A1 and a new initial state q0. On Q0 and Q1 the transitions δ∩ are defined as
in the original automata. For every symbol a, we set the initial transition to
δ∩(q0, a) := δ0(q00 , a)∧δ1(q10 , a), where qi0 is the initial state of Ai. Clearly, a tree
T is accepted by A0 ∩ A1 if it is accepted by both A0 and A1. Notice that the
intersection automaton is of size |Q0|+ |Q1|+ 1.

The complement automaton A of an alternating tree automaton A is the
automaton obtained by exchanging ∧ and ∨, true and false in the transition
relation, and by negating the acceptance condition. Thus, A is of the same size
as A.

We will often use parity acceptance conditions. A parity condition is given
by a priority coloring Ω : Q→ [d] for some d ∈ N. It induces an acceptance set
F ⊆ Qω in the following way: a word α ∈ Qω belongs to F , if the minimal color
seen infinitely often in Ω(α) is even.

2.3 Tree automata for unfoldings and strategies

Lemma 1. Given an arena G and an initial vertex v0, there exists an alternating
tree automaton AG,v0 of size |V | which accepts a tree T (G, v0) if, and only if,
the vertex labeling is correct, in the sense that π = v0a1 · · · vn is labeled with vn.

4

Proof. Let AG,v0 = (Q, δ, qv0ε,F = Qω) be the automaton with Q = {qv | v ∈
V } and

δ(qv, v′) =

{∧
i(i, q

succi(v)) if v = v′,

false otherwise,

where (v, acti(v), succi(v)) ∈ E is the i-th edge from v. Then a tree is accepted
if false never occurs, i.e., if a run exists. By construction, this ensures that the
labeling is correct. ut

Lemma 2. Given an arena G and an initial vertex v0, there exists an alternating
tree automaton AS of size |V |+3 that accepts a tree T (G, v0) iff the vertex labeling
is correct and it encodes a strategy of Player 0.

Proof. We construct an automaton A′ = (Q′, δ′, q′0,F = Qω) that checks the
constraint on S, i.e., that every v ∈ V0 has only one S-labeled successor, and
every v ∈ V1 has only S-labeled ones, and then take the intersection automaton
with AG,v0 . Towards this, let Q′ = {qS , q¬S}, and define δ′ as follows:

δ′(qS , vS) =

{∨
i

(
(i, qS) ∧

∧
j 6=i(j, q¬S)

)
if v ∈ V0∧

i(i, qS) if v ∈ V1
δ′(qS , v) = δ′(q¬S , vS) = false

δ′(q¬S,v) = δ(qS , vS)

By construction, A′ accepts if, and only if, the S-labeling encodes a strategy of
Player 0. Thus, AS := A′ ∩ AG,v0 . ut

Lemma 3. For an arena G with an initial vertex v0, let W be a regular winning
condition, and let A = (Q, δ, q0, Ω) be a deterministic parity automaton that
recognizes the complement W . Then, there exists an alternating tree automaton
A1 of size |Q|+ |V |+ 4 that recognizes all trees T (G, v0) labeled with a strategy
of Player 0 against which Player 1 can win on G.

Proof. Notice that A accepts exactly the sequences of actions that are winning
for Player 1. We construct an alternating tree automaton A′, which updates and
maintains the states of the word automaton along paths in the tree and imme-
diately rejects when reaching a state that is not labeled with S. This automaton
will then be intersected with those for the strategy and the vertex labeling. We
define A′ = (Q, δ′, q0, Ω) with the same state space and priority coloring as A
and with transitions:

δ′(q, vS) =
∧
i

(i, δ(q, acti(v))),

δ′(q, v) = false.

Now, set A1 = A′ ∩AS . A tree is accepted if, and only if, there exists a play
consistent with S that is won by Player 1. ut

5

3 Second-life games

In this section, we define the class of second-life games described in the in-
troduction. Let G = (V, V0, V1, E) be an arena with actions over A, and let
T = {t ∈ V : tE = ∅} denote the set of terminal vertices in G. The second-life
game S(G,W) is a game with the set of actions

A‖ := A ∪ {Return} ∪ {Call(a) | a ∈ A}.

and over the arena (V ∪ (V × V), V ′0 , V
′
1 , E

′), with

V ′0 := V0 ∪ {(u, v) | u ∈ V0} ∪ {(t, v) | t ∈ T, v ∈ V }, and V ′1 := V ′ \ V ′0 ;

E′ := E ∪ {((u, v), a, (u′, v)) | (u, a, v) ∈ E}
∪ {(u,Call(a), (v, v)) | u ∈ V1, (u, a, v) ∈ E} (CALL)

∪ {((t, v),Return, v) | t ∈ T} (RETURN).

Winning conditions for second-life games have the form W ⊆ Aω‖ .
Before explaining how second-life games are played, let us introduce the no-

tion of a a Call-Return sequence, that is, a sequence of the form

u · Call(a) · (v, v) · a1 · (v1, v) · · · (t, v) · Return · v.

Moves. Player 0 has the same moves as in the arena G from vertices in V0,
regardless of which component G or (G, v) the game is in. In contrast, at
vertices in the main copy G, Player 1 can decide to either take a move
within the copy, or choose a Call move to a copy, for any successor.

Plays. A play α is a, possibly infinite, alternating sequence of vertices and edges,
α = v0a0v1a1v2 · · · , such that always (vi, ai, vi+1) ∈ E′. A finite play always
ends in some vertex v, and is won by Player 0. An infinite play is won by
Player 0 if, and only if, its action sequence belongs to W .

Information. Player 0 is not informed about whether the current vertex is in
the main copy or in some other component. Furthermore, after any Call-
Return sequence, Player 0 will forget everything in between. Thus, for any
finite path π starting at a vertex v in the main copy, we define the path π̂
obtained by replacing every Call-Return sequence u · Call(a) · · ·Return · v by
u ·a ·v, then replacing the remaining last Call(a) by a (if such last call exists),
and finally projecting every occurring (u, v) to u.

Strategies. Strategies of Player 1 are not restricted in any way. Strategies of
Player 0 are functions f : (V ′A‖)

∗V ′0 → A×V , such that, for any π ending in
a vertex of Player 0, f(π) = f(π̂), i.e., they respect the imperfect information
constraint described above. A play α = v0a0v1a1v2 · · · is consistent with a
strategy f of Player 0 if, for each vi ∈ V0, the next (ai, vi+1) = f(v0a0 · · · vi),
and f is winning for Player 0 if all plays consistent with f are won by Player 0.

For every play α, note that α̂ is a play solely in the main copy. As W is
given over A‖, the desired behavior of Player 0 in some component (G, v) might

6

be different from that in the first life. Nonetheless, Player 0 has no information
about whether he is moving in one of the components or in the main copy, and
immediately after noticing that the play continues after a terminal (which means
it must have been in a second-life component), forgets this, and everything that
happened in the component.

Accordingly, any strategy of Player 0 can be viewed as a strategy over the
vertex set V with actions A, i.e., as a strategy of Player 0 for the arena G. Our
main result regarding second-life games is that finite-memory strategies for the
arena G suffice for Player 0 in the second-life game over G.

Theorem 4 (Finite-memory winning strategies in second-life games).
Let G be an arena and W a regular winning condition. If Player 0 has a winning
strategy in the second-life game S(G,W), then he also has a finite-memory one.

The proof of this theorem consists of several steps. As we already mentioned,
strategies of Player 0 for S(G,W) can be viewed as strategies for the arena G,
and vice-versa. We represent such strategies by labelings of trees.

For a deterministic parity automaton A over A‖, a (q1, c, q2)-Return is a run
of A, starting in state q1, ending in a state q such that δ(q,Return) = q2, on
which the minimal occurring priority (in the run and of q2) is c.

Lemma 5. Let A be a deterministic parity automaton over A‖, with two desig-
nated states q1, q2, and let c be a priority. Then, there exists an alternating tree
automaton AC(q1, q2, c) of size 2 · |QA| which accepts a tree T (G, v) labeled with
a strategy S of Player 0 if there exists a path consistent with S from the root to
a terminal that corresponds to a (q1, c, q2)-Return of A.

Proof. Notice that we do not require AC(q1, c, q2) to check that S is indeed a
strategy or that the V -labeling is correct (still, the automaton rejects if a non-
S-vertex is seen). Thus, we only have to check that a run of A exists on which
c is seen and no smaller priority is, and which starts in q1 and ends so that a
Return-action would result in q2.

As a state space we use two disjoint copies of Q, and we denote elements
from one by q, and the ones of the other by qc. The idea is to store in the states
whether c has already been seen (qc) or not (q). By definition, if Ω(q2) < c,
the automaton always rejects. If Ω(q2) = c, the automaton directly goes to
the qc-states in the first transition, otherwise the transitions are defined as in
Figure 1.

As the automaton should only accept if a terminal is seen, we assign the
priority 1 to all states. The initial state of the automaton is q1.

By construction, an accepting run describes a path in the tree on which state
labels correspond to the induced run of A. A run can only be accepting if a
transition to true occurs, thus only if a terminal is reached from where a Return
leads to q2, and the lowest priority of the (q1, c, q2)-Return is c (or Ω(q2) = c). ut

Lemma 6. For an arena G with an initial vertex v0, let W be a regular winning
condition and let A be a deterministic parity automaton recognizing W . Then,

7

δC(q, v) = false

δC(q, vS) =


false if Ω(q) < c

true if Ω(q) = c, δ(q,Return) = q2, v terminal∨
i(i, δ(q, acti(v))c) if Ω(q) = c and not the above∨
i(i, δ(q, acti(v))) if Ω(q) > c

δC(qc, v) = false

δC(qc, vS) =


false if Ω(q) < c

true if δ(q,Return) = q2 and v is a terminal∨
i(i, δ(q, acti(v))c) if Ω(q) ≥ c

Fig. 1. Transitions for AC .

there exists an alternating tree automaton B of size O(|A|4) that accepts a tree
T (G, v0) labeled with a strategy of Player 0 if, and only if, Player 1 can win in
S(G,W) against the strategy.

Proof. For every q1, q2 ∈ QA and every c ∈ ΩA(QA), let AC(q1, c, q2) be
the automaton from Lemma 5. The automaton B will only call the automata
AC(q1, c, q2), i.e., use them as black-boxes, so we do not describe them below.

The state space of B contains disjoint copies of the state spaces of the
AC(q1, c, q2), and, furthermore, the set of main states, which consists of triples

(q ∈ QA , q ∈ QA ∪ {⊥} , c ∈ ΩA(QA)).

The size of the state space is thus

|QB| =
(
(|QA|2 + |QA|) · |ΩA(QA)|

)
+
(
2 · |QA|3 · |ΩA(QA)|

)
= O(|A|4). (1)

Intuitively, B inspects all plays consistent with S in S(G,W) and models Call-
Return sequences in such a way that, at V1-vertices, a play can either continue
without a Call (i.e., as in G), or a Call occurs. In the latter case, the state q2
reached after the Return is guessed, and so is the minimal priority on the Call-
Return sequence. Such a guess has to be provable – it is checked via AC , and the
game continues from q2. An accepting run of B thus describes a play in S(G,W),
where the Call-Return sequences are given by the sub-runs of AC-automata, and
the main states describe the main part of the play.

More formally, let us first say that, as before, the automaton B will reject as
soon as a non-S-labeled vertex is reached: δB(p, v) = false for all p ∈ QB. As we
copy the automata AC , the transition function on the respective states are as in
the original automata.

For vertices v ∈ V0, the automaton moves to the S-labeled successor and
updates the first entry of the triple according to A:

δB((q,⊥, c), vS) =
∨
i

(i, (δA(q, acti(v)),⊥, c)).

8

For vertices v ∈ V1, the automaton can choose any successor and proceed as
for V0, but, to model Call-Return sequences, it can also be claimed that such a se-
quence with minimal priority c ending in state q2 after the return and consistent
with the strategy exists:

δB((q,⊥, c), vS) =
∨
i

(i, (δA(q, acti(v)),⊥, c))

∨
∨
i

∨
q2,c′

(i, (δA(q,Call(acti(v))), q2, c
′)).

If the second entry of the state triple is not ⊥, the transition function is the
same for all v ∈ V (as we define it using the two different transitions above):

δ((q, q2, c), vS) = δB((q2,⊥, c), vS) ∧ δA
C(q,c,q2)(q, vS).

For the priority coloring, we set ΩB((q, q2, c)) = c, ΩB(q,⊥, c)) = ΩA(c) and
otherwise copy the coloring of the respective AC(q1, c, q2).

Claim. B accepts a tree T (G, v0) labeled with a strategy S0 of Player 0 if, and
only if, Player 1 wins the game S(G,W) from v0 against the strategy S0.

(⇒) Let ρ be an accepting run of B. Player 1 follows, in the play in S(G,W), the
run of the automaton and, whenever a transition with a state q2 as second
entry occurs, plays the corresponding Call-Return sequence (given by the sub-
run of AC). Afterwards, he continues as in the main part of the run. For the
resulting play, it follows, as q2 is colored with the smallest priority appearing
in the Call-Return sequence, that the minimal priority seen infinitely often
corresponds to the minimal priority seen infinitely often in the accepting run
(and thus in A, as there are only finitely many priorities), and therefore the
play is won by Player 1.

(⇐) Let S1 be a strategy of Player 1 with which he wins against S0 in S(G,W),
and let α(S0, S1) be the corresponding unique consistent play from v0. Then
α(S0, S1) induces an accepting run of B on T (G, v0) labeled with S0 by the
following construction. At positions in V0, choose the transition that follows
the strategy S0. At positions in V1, if the play continues, by S1, with an action
a ∈ A, take the appropriate transition in the automaton. If a Call occurs,
take the Call action in which the state after the next return is correctly
guessed, and so is the minimal priority of the part in between. Then verify
this claim via AC and continue the run as described above from after the
next Return in α(S0, S1). By definition of B, it follows that all paths in the
run are accepting, thus B accepts the S0-labeled tree T (G, v0). ut

3.1 Proof of Theorem 4

We use the above lemmas to show that Player 0 has a finite-memory winning
strategy (if he has one at all) by building a nondeterministic parity tree automa-
ton accepting the winning strategies of Player 0. We then use properties of such

9

automata to conclude that finite-memory winning strategies exist if the language
of the automaton is non-empty. One can also prove this in an alternative way,
using MSO compatibility of graph unfoldings, see Appendix A.

Proof (Theorem 4). Let B∗ = B ∩ AS be an alternating tree automaton. By
definition of B and AS , B∗ accepts exactly those strategy-labeled trees T (G, v0)
that describe winning strategies of Player 0 in S(G,W). Recall that |B| = O(|A|4)
by (1), where A is the deterministic parity automaton recognizing W , and thus
B∗ is of size O(|A|4+ |V |+3). By [11], since the Rabin pairs of a parity condition
form a chain, B∗ can be turned into a nondeterministic parity tree automaton
A∗ of size 2O(|B∗|2 log |B∗|).

The automaton A∗ checks that a given strategy labeling corresponds to a
winning strategy of Player 0. However, as the automaton is nondeterministic,
one can also construct a nondeterministic automaton A†, of size O(|A∗|) that
guesses the labeling S and simulates A∗ on the guess, i.e., verifies that the guess
corresponds to a winning strategy.

Consider the product of A† with the arena G. This results in a parity game
in which the existential player has a winning strategy if he can guess a labeling
S on the unraveling of G, i.e., a labeling S of T (G, v0) that corresponds to a
winning strategy. Since parity games are positionally determined [4,10], there
is a positional winning strategy in this parity game if there is one at all. This
positional strategy of Player 0 on the product of A† and G describes a strategy
on G that uses memory A† of size

|A†| = 2O(|B∗|2 log |B∗|) = 2O(|A|8 log |A|+|V |2 log |V |) = 2O(|A|9+|V |3). (2)

ut

4 Counter parity games

In this section, we use second-life games and the existence of finite-memory
winning strategies to solve counter parity games. These are quantitative parity
games [5] with a finite set of counters that are updated along edges by affine
transformations, and which are used to determine the payoff of finite plays.
Counter parity games are a strict generalization of the counter-reset games used
in [6] to approximate a quantitative logic over a class of hybrid systems. Further-
more, model-checking games of other quantitative logics for structure rewriting
systems can be reduced to counter parity games [8].

To define counter parity games, let us fix a natural number k, and let Fk be
the set of k-dimensional affine functions f : Nk → Nk with f(c) = A · c+B, for
natural matrices A,B. A counter parity game G = (V, Vmax, Vmin, E,Ω, λ) with
k counters is played by two players, Maximizer and Minimizer, on a directed
graph (V,E). The vertex set is partitioned into vertices Vmax of Maximizer and
vertices Vmin of Minimizer. Vertices are colored by the priority function Ω : V →
{0, · · · , d−1}, edges are labeled with affine functions, i.e., E ⊆ V ×Fk×V , and
terminal vertices are labeled by λ : V → {+,−} × {0, · · · , k − 1}.

10

The k counters are represented by a vector c ∈ Nk of k natural numbers. We
write ci for the i-th component of c, i.e., the i-th counter. At the beginning of
a play, all counters are 0, thus c = 0k. Throughout a play, counters are updated
according to the edge labels, i.e., if the current value of the counter vector is c
and an edge (u, f, v) is taken, then the new value is f(c). As usual, Maximizer
moves at positions Vmax, while Minimizer moves at Vmin.

Counter parity games are games of perfect information, thus, in contrast
to second-life games, there is no constraint on the strategies. The objective of
Maximizer is to maximize the payoff, while Minimizer’s goal is to minimize it.
For finite plays π, the payoff p(π) is determined by λ in the terminal vertex t:
it is s ci if λ(t) = (s, i) and the current vector is c. For infinite plays, the payoff
is −∞ if the minimal priority that has been seen infinitely often is odd, and ∞
otherwise.

A counter parity game G is determined, if the supremum of the payoffs Max-
imizer can achieve and the infimum of the payoffs that the Minimizer cannot
avoid coincide, that is,

sup
f∈Σmax

inf
g∈Σmin

p(αf,g(v)) = inf
g∈Σmin

sup
f∈Σmax

p(αf,g(v)) =: valG(v),

where Σmax (Σmin) is the set of strategies of Maximizer (Minimizer), while
αf,g(v) is the unique play consistent with f and g.

As counter parity games are a special case of quantitative parity games on
infinite arenas (we can encode counter values in the vertices and adjust the
edges accordingly), and it was shown in [5] that quantitative parity games are
determined on arenas of arbitrary size, we obtain the following corollary.

Corollary 7. Every counter parity game G is determined: the value valG(v)
exists, for each vertex v.

However, from this results it does not follow that the value of counter parity
game can actually be computed. This is what we will prove in the next section.

5 Solving counter parity games

In this section, we presents an algorithm for solving counter parity games.

Theorem 8. For any finite counter parity game G with initial vertex v, the
value valG(v) can be computed in 6EXPTIME. When the number of counters is
fixed, the value can be computed in 4EXPTIME.

We present the proof in three steps. In the first step, we describe an ab-
straction, where we introduce marks for update functions. This later allow us
to gather important information about how counters change after applying a
sequence of updates. In fact, we solve counter parity games not only for linear
counter update functions, but for arbitrary ones which allow to be marked.

In the second step, we construct, with the help of the introduced marks,
a second-life game with a regular winning condition which allows us to check

11

whether the value of the game is ∞ or bounded by a computable constant. This
will be done in both the positive and negative direction, i.e., for ∞ and −∞,
and it will provide us either with the precise value of the game, or with a lower
and an upper bound.

In case the second step only provides bounds for the value, we reduce the
problem of finding the precise value to the solution of a finite game without
counters. This is done in the third step.

5.1 Counter updates and their marks

Let us fix a dimension k of the counter vector c = 〈c0, · · · , ck−1〉 ∈ Nk. We
consider counter update functions f : Nk → Nk which allow to be marked in the
following way.

A mark is a function m : {0, 1}k × [k] → {⊥} ·∪ [k] ·∪ P([k]). A function
f : Nk → Nk has mark m if the following holds for all c ∈ Nk, i ∈ [k].

(i) If m(c>0, i) = ⊥ then f(c)[i] = 0.

(ii) If m(c>0, i) = j ∈ [k] then f(c)[i] = cj .

(iii) If m(c>0, i) = D ∈ P([k]) and D 6= ∅ then f(c)[i] > maxj∈D cj .

(iv) If m(c>0, i) = ∅ then f(d)[i] = C > 0 is constant for all d with d>0 = c>0.

(v) f(c)[i] depends only on the counters from m(c>0, i) = D,
i.e., there exists a function f ′i such that f(c)[i] = f ′i(c|D).

Note that (iv) could be seen as special case of (v), but we distinguish whether
the constant is 0, as in (i), or not. Intuitively, a mark determines, depending on
which counters are 0 and which are not, whether the result will be 0, always
stay equal to another counter, or increase over some other. In particular, if
m(d, i) = D then, after applying the counter update function, the counter i
will be strictly bigger than each of the counters from D. To capture the set of
counters which ci will be greater or equal to after update, we write

m≥(d, i) =


∅ if m(d, i) = ⊥,
{l} if m(d, i) = l ∈ [k],

D if m(d, i) = D ∈ P([k]).

Additionally, we write m>0(c>0) for the vector d>0 if d results from the applica-
tion of a function f with mark m to the vector c. Observe that f(c)[i] = 0 if, and
only if, m(c>0, i) = ⊥ or m(c>0, i) = l and cl = 0, and thus m>0(c>0) = f(c)>0

is computable from c>0 and m.

Example 9. Consider two counters c0, c1 and the update function f assigning
c0 +c1 to c0 and 2 ·c0 to c1. This function has the following mark m: m(0, 0, i) =
⊥, m(0, 1, 0) = 1 as c0 + c1 = c1 if c0 = 0, and m(1, 0, 0) = 0 analogously;
m(0, 1, 1) = ⊥ as 2 · 0 = 0, but m(1, 0, 1) = m(1, 1, 1) = {0} as 2 · c0 > c0 for
c0 > 0. Finally, m(1, 1, 0) = {0, 1} as c0 exceeds both counters in this case.

12

Note that not all functions allow to be marked. For example, if we updated c1
to c0 ·c1 above, we would not be able to assign a mark. In particular, m(1, 1, i) is
not definable, because, whether the counter increases or stays unchanged depends
on whether ci > 1 and not just on whether ci > 0. The methods we present
generalize to more involved markings, but we do not introduce them here as we
are interested in one particular class of functions, for which the above marks
suffice.

Lemma 10. Let f : Nk → Nk be an affine function, i.e., there exist aij , b
i ∈ N

such that f(c)[i] =
∑
j a

i
j · cj + bi for all c ∈ Nk. Then there exists a mark mf

for the function f .

Proof. To compute mf (d, i), let D = {n | dn = 1 and ain > 0}. Observe that,
for all c with c>0 = d, it holds f(c)[i] =

∑
j∈D a

i
jcj + bi. Thus, when we set

mf (d, i) =


⊥ if D = ∅ and bi = 0,

l if D = {l} and bi = 0 and ail = 1,

D in all other cases,

then conditions (i)-(v) follow. ut

One important property of marks is that, when functions are composed, their
marks can be composed as well.

Lemma 11. Let f1 and f2 be counter update functions with marks m1 and m2.
Then, a mark m = m1 ◦m2 for f(c) = f2(f1(c)) can be computed.

Proof. Recall that f1(c)>0 = m>0
1 (c>0) is computable from c>0 and m1. Con-

sider the following cases.

(1) m2(f1(c)>0, i) = ⊥. In this case m(c>0, i) = ⊥.
(2) m2(f1(c)>0, i) = l, i.e., f2(f1(c))[i] = f1(c)[l]. Then m(c>0, i) = m1(c>0, l).

(3) m2(f1(c)>0, i) = D. In this case m(c>0, i) =
⋃
j∈Dm

≥
1 (c>0, j). ut

Let us denote by M the set of all marks, which is finite by definition. For

a fixed number k, by definition, |M| ≤
(
2k + k + 1

)2k+log k

= 22
O(k)

. Moreover,
by the above lemma, ◦ induces a computable finite semigroup structure on M.
It follows that languages of sequences of marks with definable properties are
regular. For example, the language of all sequences m0m1 . . .mn ∈ M∗ such
that m = m1 ◦ · · · ◦mn satisfies, for a fixed C, i and d, that C ⊆ m≥(d, i) or
m(d, i) ∩ C 6= ∅, is regular. This means that, for a fixed set of counters C and
starting information about which counter is 0, we can determine in a regular
fashion whether ci at the end will be at least as big as some counter from C.

As mentioned above, we use these marks as a level of abstraction. Accord-
ingly, we extend counter parity games by marks in the following way.

Let G be a counter parity game with k counters. The marked counter parity
game Gm = (Vm, V

′
max, V

′
min, Em, Ωm, λm) is a game with k counters defined as:

13

– Vm := V × {0, 1}k (storing which counters are greater than 0).
– V ′max = {(v, c>0) ∈ Vm | v ∈ Vmax}, V ′min = Vm \ V ′max.
– Em ⊆ Vm × (F ×M)× Vm stores the marks and updates the c>0-vectors:

Em := {((u, c>0), (f,mf), (v,m>0
f (c>0))) | (u, f, v) ∈ E, c>0 ∈ {0, 1}k}.

– Ωm(v, c>0) = Ω(v) and λm(v, c>0) = λ(v).

5.2 The unboundedness game

In the next step, we take a marked counter parity game and check whether its
value is unbounded, i.e., ∞, or not. To do this, we transform the marked game
into a second-life game, where Minimizer takes the role of Player 0.

From the definition of the value of a counter parity game, there are two ways
for the value to be ∞: Maximizer could have a winning strategy with respect
to the parity condition, or he could have a sequence f0, f1, · · · of strategies
which ensure arbitrarily high payoffs. Via the reduction to second-life games,
we combine this sequence of strategies for the latter case into a single strategy.
Intuitively, Maximizer will get the option to decide to try to reach a terminal
position to “save” a payoff, and then continue increasing the counters. If, in
such a game, Maximizer has a strategy to save higher and higher payoffs, or
to win via the parity condition, this corresponds to a value of ∞. We exploit
that marks form a finite semigroup to show that this can be formulated as a
regular objective. Intuitively, the reason why we consider second-life games with
imperfect information and recall for Minimizer is that we need to avoid that
Minimizer learns about whether Maximizer attempts to win by parity or by
reaching arbitrarily high payoffs. If Minimizer had this information, he could
adapt his strategy and neglect the other way of ensuring payoff ∞.

Let Gm be a marked counter parity game with arena G and terminal ver-
tices T . The unboundedness game Gu is the second-life game S(Gm,W) using
V0 := Vmin and V1 := Vmax and with the winning condition W described below.

Recall that, if we remove all Call-Return sequences from a path in Gu, we
obtain a path in Gm that we call the main part. Due to better readability, we
describe the winning condition in terms of both edge- and vertex-labels (func-
tions/marks and priorities, respectively). Technically, this can be avoided by
adding an appropriately colored vertex to each edge.

We describe the winning condition for Maximizer, i.e., Player 1, which is
sufficient since regular languages are closed under complementation. Maximizer
wins a play α if, and only if, the main copy is visited infinitely often, no terminal
vertex inside the main copy is seen, and

– the main part satisfies the parity condition of Gm, or
– there exists a counter d such that, from some point onwards, counter d is

increased in the main part, then a Call is taken and a Return from a terminal
where a payoff greater than d would be obtained in the original counter
game, and after the Return this is repeated, ad infinitum.

14

By properties of marks, finite sequences of marks after which a counter d
has been increased form a regular language d↗. Also, finite sequences starting
with a Call and ending with a Return from a vertex with λ = c such that, for
the sequence of marks in between, counter c is, at the end, greater than d at the
beginning, form a regular language c>d. Thus, the later part of W is the union
of the main part satisfying the parity condition and the play being of the form
(V ′A‖)

∗ · (d↗ ·c>d)ω. This is ω-regular.
Let us calculate the size of the automaton for the above condition. To check

the language d↗, |M| states suffice for a deterministic finite word automaton
(using composition on the marks), and the same holds for c>d. Checking d↗ ·c>d
can thus be done with O(|M|) many states by a non-deterministic automaton.
By considering Büchi acceptance with the same accepting states, we get a Büchi
automaton for the language (d↗ ·c>d)ω with O(|M|) states. If we add a new
initial state and take a copy of the automaton for (d↗ ·c>d)ω for every d < k,
we build a nondeterministic Büchi automaton of size O(k · |M|) which accepts
a play if it is won via some counter. (It waits in the initial state until the actual
d is correctly guessed and then moves to the respective copy.) For the parity
part, we need an automaton of size |Ω(V)| < |V |. Taking the union of the two,
we get a non-deterministic parity automaton of size O(|V | + k|M |) and index
|V |. After determinization, the deterministic parity automaton for W has size

2O(|V |(|V |+k|M|) log(|V |+k|M |)) = 2O((|V |+k|M|)3).
Combining this with Equation 2 from the proof of Theorem 4, we get that

if Minimizer has a winning strategy for the unboundedness game, then also one
with memory of size

K0 := 2
O
((

2O((|V |+k|M|)3)
)9

+|V |3
)

= 22
O((|V |+k|M|)3)

. (3)

What remains to be shown is the connection between the value of G and
the existence of a winning strategy of Minimizer in Gu. We will use Ramsey’s
theorem for a finite path π in Gu or G played consistently with a strategy using
memory of size ≤ K0. We write π as a sequence of vertices and memory states
with edges labeled by the corresponding marks:

π = (v0, q0)
m0−→ (v1, q1)

m1−→ (v2, q2) · · · mn−2−→ (vn−1, qn−1),

where each vi is a vertex and each qi is a memory state (and qi+1 = update(qi, vi)
according to the strategy). The path π induces a complete edge-colored undi-
rected graph over [n], where an edge i, j is colored by (m, vi, qi, vj , qj), where m
is the composition of the marks mi ◦mi+1 ◦ · · · ◦mj−1. Let l be the number of
such colors for Gu and memory size K0:

l = |M| · |Vu|2 ·K2
0 = |M| ·K2

0 · (|Vm| · |Vm|)2 = |M| ·K2
0 · (|V | · 2k)4.

As K0 is already doubly exponential, it dominates this product and thus l is
also doubly exponential. We write R = R(3, 3, · · · , 3︸ ︷︷ ︸

l times

) for the Ramsey-number

for 3-cliques with l colors. As R ≤ 3l! [14], we get that R = 22
2
O((|V |+k|M|)3)

.

15

Before we state the proposition about the connection between winning strate-
gies and values, we list some properties of idempotent marks, i.e., of marks m

such that m = m ◦m. We write i ∈= m(c>0, j) if i ∈ m(c>0, j) or i = m(c>0, j).

Lemma 12. Let m be an idempotent mark. Then, for all initial values c, and

all i < k: if i 6∈= m(c>0, i), then i will not appear in any m(c>0, j).

Proof. Assume that i does appear in some m(c>0, j). As ci does not depend on
ci in one application of m, after a second one, i will not appear in m(c>0, j),
which contradicts m being idempotent. ut

In the following, we show that if Minimizer has a finite-memory winning
strategy for Gu, then the value of G is bounded from above. Otherwise, it is ∞.

Proposition 13. There exists a constant K, computable from G, such that if
Minimizer has a strategy ensuring a win from v in the main copy of G in Gu
then valG(v) < K. In the other case, valG(v) =∞.

Proof. Consider the set of paths of length greater than R for a memory of size
K0. Set K to the maximal counter value plus 1 occurring anywhere on any of
these paths when starting with initial counter values c = (a, a, · · · , a), where
a is the maximal number occurring in any update function’s matrices A or B.
A rough upper bound can be computed as follows: after one application of any
of the update functions, the maximal value is at most a · a · k (the sum of all
counters initialized with a, each weighted with a). After two steps, we get at
most k · a · k · a · a = k2a2+1. After R steps, we thus get K ≤ kRaR+1 + 1.

Assume first that Minimizer has a winning strategy ρ in Gu. Note that,
because of imperfect information and imperfect recall, ρ can also be viewed as
a strategy for G. Consider thus, towards a contradiction, a play α in G that is
consistent with ρ and that has a payoff ≥ K. Let further β be the corresponding
play in Gu in which Maximizer never takes a Call, i.e., which consists only of a
main part. We distinguish two cases: if α is infinite, then so is β. Because ρ is
a winning strategy for Minimizer in Gu, β – and thus α – violates the parity
condition. But then the payoff for α is −∞, a contradiction.

If α is finite, but has a payoff ≥ K, we first prove the following claim.

Claim. Every play consistent with ρ and with payoff ≥ K has a suffix (∗):

(v, q) (v, q)
λ = cxmid me

with mid idempotent, such that for some j with j ∈= mid ◦me(cx): j ∈ mid(j).

Proof. Let π be the shortest path with payoff ≥ K such that no suffix (∗) exists.
By choice of K, there exists at least one suffix

(v, q) (v, q) (v, q)
λ = cxmid mid me

16

as, by Ramsey’s theorem, there exist indices i0 < i1 < i2 such that the marks of
π[i0 · · · i1], π[i1 · · · i2] and π[i0 · · · i2] coincide. Fix the last such suffix in π. As (∗)
is not realized, for all j ∈= mid ◦me(cx) it holds that j 6∈ mid(j).

Let π′ be the path obtained from π by removing the second (v, q)−mid−(v, q)-
part, i.e.,

π′ =
(v, q) (v, q)

λ = cxmid me

We show that

(a) the payoff of π′ equals the payoff of π, i.e., is ≥ K, and
(b) no suffix (∗) exists in π′.

Together, (a) and (b) provide a contradiction to π being the shortest such path,
which proves the claim.

Proof of (a). Let j ∈= mid ◦me(cx). By choice of π, j 6∈ mid(j). Thus, j = mid(j)

or j 6∈= mid(i) for all i (by Lemma 12). If j 6∈= mid(i) for all i, then the value of

j is lost during mid. But then j 6∈= mid ◦me(cx), a contradiction. It follows that

j = mid(j) for all j ∈= mid ◦me(cx). But, as every counter cx depends on is left

untouched during mid, the value of π′ equals that of π.

Proof of (b). Assume that there exists a suffix in π′ for which (∗) holds, i.e.,

(v′, q′) (v′, q′)
λ = cx

m′id m′e

such that there exists some j ∈= m′id ◦m′e(cx) with j ∈ m′id(j). We show that this

leads to a contradiction. There are several different cases.

(1)
m′id m′e

mid
or

m′id m′e

mid

When reinserting the second (v, q) −mid − (v, q)-part, we can simply shift
the m′idm

′
e-part to the right, thus (∗) would hold in π.

(2)
m′id m′e

mid
or

m′id m′e

mid

As mid is idempotent, repeating it does not change m′id, or respectively m′e,
thus (∗) also holds in π.

(3)
m′id m′e

mid

m′id m′′e

mid mid

We have to show that m′id ◦m′e(cx) = m′id ◦m′′e (cx). If this holds, then (∗)
holds in π. But because mid ◦mid = mid, also m′id ◦m′e = m′id ◦m′′e .

By the above, it follows that π′ does not have a suffix for which (∗) holds. ut

17

By the above claim, it follows that α contains a cycle which can be repeated
arbitrarily many times by Maximizer. As repeating the cycle increases the payoff,
repeating the cycle, taking a Call towards the Return, then repeating the cycle
and taking the Call again, and so on, is a witness for a win of Maximizer in Gu.
Because of imperfect information and imperfect recall, this witness is consistent
with ρ, contradicting the assumption that ρ is a winning strategy of Minimizer.

Assume now that Minimizer does not have a winning strategy. This means
that, for any strategy ρ of Minimizer, there exists a consistent play α(ρ) won by
Maximizer. Note that Gu is not necessarily determined, but G is determined (cf.
Corollary 7). Thus, it suffices to show that, for any strategy ρ of Minimizer and
any natural number N ∈ N, Maximizer has a strategy to ensure a payoff > N
against ρ in G. Recall that strategies of Minimizer in G correspond to strategies
in Gu. Let thus ρ and N be given. Maximizer can play as follows: play as in
α(ρ) until the first Call occurs. Skip the Call-Return sequence. If α(ρ) is won via
the parity condition, do this infinitely often. Otherwise, wait until the winning
counter d has reached a value > N and a Call occurs. Take the Call and realize
the payoff as required. ut

5.3 Proof of Theorem 8

Notice that the construction of the unboundedness game also works in the dual
case, i.e., for Maximizer, in order to determine a lower bound on the value, or a
value of −∞, respectively.

Proof (Theorem 8). Given a game G, compute the marked game, and the cor-
responding unboundedness game for Minimizer. Determine whether the value is
∞, and compute an upper bound K+ otherwise. Dually, construct the unbound-
edness game for Maximizer and check for a value of −∞ or compute a lower
bound K−. Set K := max(|K+|, |K−|). Note that it follows from the above
proof that K ≤ kRaR+1 + 1. Then, the value of G satisfies −K < valG(v) < K.

As the only way for counters to decrease is to be overwritten by a constant
or a smaller counter, we can limit counter values to numbers ≤ K and store >
otherwise. This results in a quantitative parity game of size K · |V | and with
O(|V |) priorities. Such games can be solved in time O((K · |V |)|V |) [5]. Since R
is triply exponential in |V |+k|M| and |M| is doubly exponential in k, this gives
a 4EXPTIME solution for a fixed k and a general solution in 6EXPTIME. ut

6 Conclusion

Games with imperfect recall have been studied in mathematical game theory, but
raised little interest in computer science so far. We show that already the class
of second-life games, which exhibit a basic form of imperfect recall, can have in-
teresting algorithmic applications. The result that finite-memory strategies are
sufficient for winning second-life games allows to derive a bound for counter
parity games, and gives the first elementary algorithm for the model-checking

18

problem studied in [6]. This application opens up many new questions. First of
all, can other classes of ω-regular games with imperfect recall be solved algo-
rithmically? And can these be applied in other already studied problems? The
results above motivate further study of ω-regular games with imperfect recall.

References

1. A. Arnold and I. Walukiewicz. Nondeterministic controllers of nondeterministic
processes. In Logic and Automata, volume 2. Amsterdam University Press, 2007.

2. K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Algorithms for omega-
regular games of incomplete information. LMCS, 3(3:4), 2007.

3. T. Colcombet and C. Löding. Regular cost functions over finite trees. In Proc. of
LICS ’10, pages 70–79, 2010.

4. E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In Proc. of FOCS ’11, pages 368–377, 1991.

5. D. Fischer, E. Grädel, and L. Kaiser. Model checking games for the quantitative
µ-calculus. Theory Comput. Syst., 47(3):696–719, 2010.

6. D. Fischer and L. Kaiser. Model checking the quantitative µ-calculus on linear
hybrid systems. In Proc. of ICALP ’11 (2), volume 6756 of LNCS, pages 404–415.
Springer, 2011.

7. T. Ganzow and L. Kaiser. New algorithm for weak monadic second-order logic on
inductive structures. In Proc. of CSL ’10, volume 6247 of LNCS, pages 366–380.
Springer, 2010.

8. L. Kaiser and S. Leßenich. Counting µ-calculus on structured transition systems.
2012. Submitted.

9. O. Kupferman and M. Y. Vardi. Synthesizing distributed systems. In Proc. of
LICS ’01, pages 389–398. IEEE Computer Society Press, June 2001.

10. A. W. Mostowski. Games with forbidden positions. Technical Report 78, Instytut
Matematyki, Uniwersytet Gdański, Poland, 1991.

11. D. E. Muller and P. E. Schupp. Simulating alternating tree automata by non-
deterministic automata: New results and new proofs of the theorems of Rabin,
McNaughton and Safra. Theoretical Computer Science, 141(1–2):69–107, 1995.

12. J. H. Reif. The complexity of two-player games of incomplete information. Journal
of Computer and Systems Sciences, 29(2):274–301, 1984.

13. W. Thomas. Infinite games and verification. In Proc. of CAV ’02,, volume 2404
of LNCS, pages 58–64. Springer, 2002.

14. H. Wan. Upper bounds for Ramsey numbers R(3, 3,. . ., 3) and Schur numbers.
Journal of Graph Theory, 26(3):119–122, 1997.

19

A Alternative proof of Theorem 4

Theorem 4 (Finite-memory winning strategies in second-life games).
Let G be an arena and W a regular winning condition. If Player 0 has a winning
strategy in the second-life game S(G,W), then he also has a finite-memory one.

Proof. Notice that when considering the set of all possible plays in a game with
perfect information, strategies of one player correspond to labelings in the tree,
where every position of this player is labeled, and has a single labeled child
(unless it is a terminal). For games with imperfect information, this is more
involved, as not the tree of all plays, but the tree of all observations of plays
needs to be considered. For imperfect recall, we also have to add that subpaths
might be forgotten.

To obtain the right tree structure for strategies of Player 0 in S(G,W), con-
sider the tree t of all plays in G, that is, the unfolding of G from a given initial
vertex. To simplify arguments, we assume that there is a monadic relation Pv
for every vertex, with PGv = {v}. We extend t to a graph tu by adding edges:

(i) for every position π = v0 · · · vn with vn ∈ V1 in the tree, add an Call(a)-
labeled edge from π to every a-successor.

(ii) from every π = v0 · · · vn such that vn is a terminal vertex, add a Return-
labeled edge to every π′ < π such that π′ = · · · vk−1akvk with vk−1 ∈ V1.

Then, every strategy of Player 0 in S(G,W) that respects the imperfect informa-
tion and recall-constraint corresponds to a labeling representing a strategy in this
tree, and vice-versa (where strategies respect certain consistency constraints, see
below). Notice that, in tu, there are multiple edges connecting some vertices (im-
perfect information), and furthermore, the Return-edges are backward ones (im-
perfect recall), thus tu is not a tree anymore. However, tu is MSO-interpretable
in t, as (i) and (ii) above are expressed in MSO-definable terms.

Consider now the unfolding U(tu) of tu. In U(tu), both the multiple edge-
and the backward edge-problems are resolved, and U(tu) contains the tree of
all strategies in the perfect information variant of S(G,W). Again, strategies
are labelings of the trees. Because of the definition of the arena, strategies of
Player 1 are not arbitrary labelings of his vertices and successors, but have to
respect the Call and Return definitions: whenever a Call is marked, then the next
Returns (which will occur because all terminals belong to Player 1) have to be
ones to the target vertex of the Call. Furthermore, no Return can occur without
a previous Call. This is a regular constraint, as it is expressed in MSO-definable
terms. The set of labeled U(tu)-trees corresponding to unconstrained strategies
of Player 0 in the perfect information variant is regular, as Player 0 can play
neither Call nor Return actions. Thus, there exist MSO sentences ϕ0 and ϕ1, such
that a labeled U(tu)-tree satisfies ϕi iff the labeling corresponds to a strategy of
Player i (respecting the above constraints).

As the winning condition W is regular, there exists an MSO sentence ψ satis-
fied by exactly those labeled U(tu)-trees where the labeling encodes strategies of
both Player 0 and Player 1, i.e., the tree satisfies both ϕ0 and ϕ1, and the unique

20

play defined by the two strategies, i.e., the path following the labeled nodes, is
in the set W . Similarly, there exists a formula ψ0 accepting a tree iff the labeling
corresponds to an unconstrained winning strategy of Player 0 (using universal
quantification over ϕ0 in ψ). Thus, in the perfect information and recall variant,
the unconstrained winning strategies of Player 0 are regular.

By [15], every regular property over the unfolding has a regular pre-image.
Thus, there exists an MSO-formula ψ′0, which holds in a labeled graph tu, if, and
only if, the labeling in the unfolding encodes a winning strategy of Player 0. By
definition of tu, these labelings (and also all labelings which satisfy the pre-image
formula ϕ0) comply with the imperfect information and recall constraint, and
thus are valid strategies of Player 0 for S(G,W). From this follows that the set
of winning strategies of Player 0 is regular, and since tu is MSO interpretable in
t, there exists a regular labeled t-tree encoding a winning strategy of Player 0
for S(G,W). But then, Player 0 has a finite-memory winning strategy. ut

Note that, in the above proof, if Player 0 has a winning strategy in the perfect
information variant, the set of U(tu)-models of ψ0 is non-empty. However, this
does not mean that Player 0 also has a winning strategy in S(G,W), as the
pre-image of these models can still be empty.

Appendix References

15. B. Courcelle and I. Walukiewicz. Monadic second-order logic, graph converings
and unfoldings of transition systems. Ann. of Pure and Applied Logic, 92(1):35–
62, 1998.

21

	Imperfect Recall and Counter Games

