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Abstract. Well-Structured Transitions Systems (WSTS) constitute a
generic class of infinite-state systems for which several properties like
coverability remain decidable. The family of coverability languages that
they generate is an appropriate criterium for measuring their expressive-
ness. Here we establish that Petri Data nets (PDNs) and Timed Petri
nets (TdPNs), two powerful classes of WSTS are equivalent w.r.t this
criterium.

1 Introduction

WSTS. Infinite-state systems appear in a lot of models and applications: stack
automata, counter systems, Petri nets or VASSs, reset/transfer Petri nets, fifo
(lossy) channel systems, parameterized systems. Among these infinite-state sys-
tems, a part of them, called Well-Structured Transition Systems (WSTS) [6]
enjoys two nice properties: there is a well quasi-ordering (wqo) on the set of
states and the transition relation is monotone with respect to this wqo.

The theory of WSTS has been successfully applied for the verification of
safety properties of numerous infinite-state models like Lossy Channel Systems,
extensions of Petri Nets like reset/transfer and Affine Well Nets [7], or broadcast
protocols. Most of the positive results are based on the decidability of the cov-
erability problem (whether an upward closed set of states is reachable from the
initial state) for WSTS, under natural effectiveness hypotheses. The reachability
problem, on the contrary, is undecidable even for the class of Petri nets extended
with reset or transfer transitions.

Expressiveness. Well Structured Languages were introduced as a measure of

the expressiveness of subclasses of WSTS. More precisely, the language of an
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instance of a model is defined as the class of finite words accepted by it, with
coverability as accepting condition, that is, generated by traces that reach a state
which is bigger than a given final state. Convincing arguments show that the
class of coverability languages is the right one. For instance, though reachability
languages are more precise than coverability languages, the class of reachability
languages is RE for almost all Petri Nets extensions containing Reset Petri Nets
or Transfer Petri Nets.

Contribution. We show here that Petri Data Nets [2] and Timed Petri Nets [3]
are equivalent.

Related work. Coverability languages have been used to discriminate the ex-
pressive power of several WSTS, like Lossy Channel Systems or several mono-
tonic extensions of Petri Nets. In [8] several pumping lemmas are proved to
discriminate between extensions of Petri Nets. In [1, 2] the expressive power of
Petri Nets is proved to be strictly below that of Affine Well Nets, and Affine
Well Nets are proved to be strictly less expressive than Lossy Channel Systems.
Similar results are obtained in [11], though some significant problems are left
open, like the distinction between �-Petri Nets [10] and Data Nets [9].

Outline. The rest of the paper is organized as follows. In section 2 we introduce
wqos, WSTS and their languages. Section 3 presents the definition of PDNs and
TdPNs. Finally we prove the equivalence of and PDNs and TdPNs in section 4.

2 Preliminaries and WSTS

Well Quasi Orders. (X,≤X) is a quasi-order (qo) if ≤X is a reflexive and
transitive binary relation on X. A partial order (po) is an antisymmetric qo.
The downward closure of a subset A ⊆ X is defined as ↓A = {x ∈ X ∣ ∃x′ ∈
A, x ≤ x′}. A subset A is downward closed iff ↓A = A. A qo (X,≤X) is a well
quasi-order (wqo) if for every infinite sequence x0, x1, . . . ∈ X there are i and
j with i < j such that xi ≤ xj . Equivalently, a qo is a wqo when there are no
strictly decreasing (for inclusion) sequences of downward closed sets.

We will shorten (X,≤X) toX when the underlying order is obvious. Similarly,
≤ will be used instead of ≤X when X can be induced from the context.

If X and Y are wqos, their cartesian product, denoted X ×Y is well ordered
by (x, y) ≤X×Y (x′, y′) ⇐⇒ x ≤X x′ ∧ y ≤Y y′. Their disjoint union, denoted
X ⊎ Y is well ordered by :

z ≤X⊎Y z′ ⇐⇒
{
z, z′ ∈ X
z ≤X z′

or

{
z, z′ ∈ Y
z ≤Y z′

A po (X,≤) is total (also called linear) if for any x, x′ ∈ X we have either
x ≤ x′ or x′ ≤ x. If (Xi,≤i) are total po for i ∈ ℕ we can define the (irreflexive)
total order <lex in

∪
k X1 × . . .×Xk by (x1, . . . , xp) <lex (x′

1, . . . , x
′
q) iff there is

i ∈ {1, . . . ,min(p, q)} such that xj = x′
j for j < i and xi <i x

′
i or (x1, . . . , xp) =



(x′
1, . . . , x

′
p) and q > p. Then ≤lex given by x ≤lex x′ iff x = x′ or x <lex x′ is a

total order.

Functions. Given a partial function (shortly: function) f : X 7→ Y , the domain
of f is defined by dom(f) = {x ∈ X ∣ ∃y ∈ Y, f(x) = y} and its range by
range(f) = {y ∈ B ∣ ∃x ∈ A, f(x) = y}. A function f is total if dom(f) = A.
Total functions are called mappings. A function f is injective if for all x, x′,
f(x) = f(x′) =⇒ x = x′ and surjective if range(f) = Y . Finally, if X and Y are
quasi-ordered (shortly: ordered), f is monotonic if x ≤X y =⇒ f(x) ≤Y f(y).
It is an order embedding (shortly: embedding) if '(x) ≤Y '(x′) ⇐⇒ x ≤X x′. A
bijective order embedding is called an order isomorphism (shortly: isomorphism).

Multisets. Given an arbitrary setX, we denote byX⊕ the set of finite multisets
of X, that is, the set of mappings m : X → ℕ with a finite support sup(m) =
{x ∈ X ∣ m(x) ∕= 0}. We use the set-like notation {∣...∣} for multisets when
convenient, with {∣xn∣} describing the multiset containing x n times. If X is a
wqo then so is X⊕ ordered by ≤⊕ defined by {∣x1, . . . , xn∣} ≤⊕ {∣x′

1, . . . , x
′
m∣} if

there is an injection ℎ : {1, . . . , n} → {1, . . . ,m} such that xi ≤ x′
ℎ(i) for each

i ∈ {1, . . . , n}.
Words. Given an arbitrary set X, any u = x1 ⋅ ⋅ ⋅xn with n ≥ 0 and xi ∈ X,
for all i, is a finite word on X. We denote by X∗ the set of finite words on
X. If n = 0 then u is the empty word, which is denoted by �. A language L
on X is a subset of X∗. Given L and L′ two languages on X∗, we define the
language LL′ = {uv ∣ u ∈ L, v ∈ L′}. If X is a wqo then so is X∗ ordered by
≤X∗ which is defined as follows: x1 . . . xn ≤X∗ x′

1 . . . x
′
m if there is a strictly

increasing mapping ℎ : {1, . . . , n} → {1, . . . ,m} such that xi ≤ x′
ℎ(i) for each

i ∈ {1, . . . , n}.
WSTS. A Labelled Transition System is a tuple S = ⟨X,�,→⟩ where X is
the set of states, � is the labelling alphabet and →⊆ X × (� ∪ {�})×X is the
transition relation.

We write x
a−→ x′ to say that (x, a, x′) ∈→. This relation is extended for

u ∈ �∗ by x
u−→ x′ ⇐⇒ x

a1−→ x1...xk−1
ak−→ x′ and u = a1a2 ⋅ ⋅ ⋅ ak (note that

some ai’s can be equal to �). A Well Structured Transition System (shortly a
WSTS) is a tuple S = (X,�,→,≤), where (X,�,→) is a labelled transition
system, and ≤ is a wqo on X, satisfying the following monotonicity condition:
for all x1, x2, x

′
1 ∈ X,u ∈ �∗, x1 ≤ x′

1, x1
u−→ x2 implies the existence of x′

2 ∈ X

such that x′
1

u−→ x′
2 and x2 ≤ x′

2. For a classX of wqos, we will denote byWSTSX

the class of WSTS with state space in X, or just WSTSX for WSTS{X}.

Coverability and Reachability Languages. Coverability (resp. reachability)
languages are defined as the set of finite sequences which arrive in a state x such
that x ≥ xf (resp. x = xf ) for xf a final state. Formally, given a quasi-ordered
labelled transition system S and two states x0 and xf , the coverability language

is L(S, x0, xf ) = {u ∈ �∗ ∣ x0
u→x, x ≥ xf} while the reachability language

is LR(S, x0, xf ) = {u ∈ �∗ ∣ x0
u→xf}. Convincing arguments show that the



class of coverability languages is the right one: though reachability languages
are more precise than coverability languages, the class of reachability languages
is the set of recursively enumerable languages for almost all Petri nets extensions
containing reset Petri nets or transfer Petri nets.

On the other hand, infinite coverability languages are not satisfactory either.
A sensible accepting condition in this case could be repeated coverability, that
is, the capacity of covering a given marking infinitely often, in the style of Büchi
automata. However, analogously to what happens with reachability, repeated
coverability is generally undecidable, which makes !-languages a bad candidate
to study the relative expressive power of WSTS. Moreover, infinite coverability
languages are less standard for the classification of WSTS. Finally, all trace
languages are coverability languages in taking the entire set of states as the final
upward closed set.

For two classes of WSTS, S1 and S2, we write S1 ⪯ S2 whenever for every
language L recognized by a system S1 ∈ S1, there exists another system S2 ∈ S2

and two states si, sf such that L(S2, si, sf ) = L. When S1 ⪯ S2 and S2 ⪯ S1,
one denotes the equivalence of classes by S1 ≃ S2.

3 Petri Nets extensions

Many extensions of Petri nets in which tokens carry data have been defined in
the literature, in order to gain expressive power for better modeling capabilities.
Data Nets (DN ) [9] are a monotonic extension of Petri nets in which tokens are
taken from a linearly ordered and dense domain, and transitions can perform
whole place operations like transfers, resets or broadcasts. Here we will work
with a subclass of DN , called Petri Data Net (PDN ), in which whole place
operations are not allowed, because DN ≃ PDN [2].

3.1 Petri Data Nets

We denote by 0 the null vector in any ℕk and for a word w = x1 ⋅ ⋅ ⋅xn we write
∣w∣ = n and w(i) = xi. � is a finite alphabet and �" denotes the alphabet
enlarged with the empty word ".

Definition 1 (Petri Data Nets). A PDN is a tuple N = (P, T, F,H, �) where:

– P is a finite set of places,
– T is a finite set of transitions,
– For all t ∈ T , Ft, Ht ∈

(
ℕ∣P ∣)∗ with ∣Ft∣ = ∣Ht∣,

– � : T → �" is a labelling function.

A marking s of N is a finite sequence of vectors in ℕ∣P ∣ ∖ 0. A sequence

s′ ∈
(
ℕ∣P ∣)∗ is a 0-extension of a marking s (or s is the 0-contraction of s′) if s

can be obtained by removing all the occurrences of 0 from s′.

Definition 2 (Firing rule of PDNs). Let N be a PDN and s, s′ be markings

of N . We write s
t−→ s′ for t ∈ T with ∣Ft∣ = ∣Ht∣ = n if:



– s is the 0-contraction of u0x1u1 ⋅ ⋅ ⋅un−1xnun

with ui ∈ (ℕ∣P ∣ ∖ 0)∗ and xi ∈ ℕ∣P ∣,
– xi ≥ Ft(i) and yi = (xi − Ft(i)) +Ht(i) for i ∈ {1, . . . , n},
– s′ is the 0-contraction of u0y1u1 ⋅ ⋅ ⋅un−1ynun

Considering that tokens carry data taken from a linearly ordered and dense
domain, a PDN can be graphically depicted as a Petri net where arcs are labelled
with bags of variables that are totally ordered. For instance, if P = {p1, p2} and
X < Y are the only variables that label arcs adjacent to a transition t, then ∣Ft∣ =
∣Ht∣ = 2, and if Ft(1) = (n1, n2) then firing t removes n1 tokens from p1 and n2

tokens from p2, carrying the datum dx to which X is instantiated. Analogously,
Ft(2) = (m1,m2) specifies the number of tokens that carry the datum dy (> dx)
to which Y is instantiated that have to be removed (and similary for Ht). The
corresponding labels would be n1X +m1Y (resp. n2X +m2Y ) on the arc from
p1 (resp. p2) to t. Let us remark that we can assume w.l.o.g. that the variables
are not totally ordered, since any transition that does not fulfill this requirement
could be duplicated in order to ensure it. For instance to simulate a transition
with two unordered variablesX and Y , we use three transitions: one withX < Y ,
one with Y > X and the last one where Y is substituted by X on the labels of
arcs surrounding the transition.

3.2 Timed Petri Nets

Fig. 1. A timed Petri net

The class of Timed Petri nets (TdPN ) [3] is a powerful formalism for the
modelling of timed systems. In a TdPN , tokens have an age. So the arcs of such
nets are labelled by bags of intervals as in figure 1. For instance, in order to fire
t, one needs to consume two tokens in p, one with age between 2 and 3 and the
other with age 0. Once the transition is fired, two tokens are produced in q where
the age of one token can (non deterministically) be chosen less than 3 and the
other greater or equal than 2. When time elapses, ages of tokens are uniformly
increased by this duration.

While TdPN is a class of WSTS over an uncountable wqo, the coverability
problem is decidable using a symbolic representation of “equivalent” states with
representations in a countable wqo. Moreover, when focusing on untimed cover-
ability languages, the class of TdPN can be compared to other classes of WSTS.
Since the symbolic wqo of TdPN is close to the one of PDN a natural issue is
the comparison of these classes.



We now formally define TdPN s. In the sequel, ℐ is the set of intervals with
bounds in ℕ ∪ {∞}.

Definition 3. A timed Petri net (TdPN for short) N is a tuple (P, T,Pre,Post, �)
where:

– P is a finite set of places,
– T is a finite set of transitions with P ∩ T = ∅,
– Pre, the backward incidence mapping, is a mapping from T to (ℐ⊕)P ,
– Post, the forward incidence mapping, is a mapping from T to (ℐ⊕)P ,
– � : T → �" is a labelling function.

Since (ℐ⊕)P is isomorphic to (P × ℐ)⊕, Pre(t) and Post(t) may also be con-
sidered as multisets. Given a place p and a transition t, if the multiset Pre(t)(p)
(resp. Post(t)(p)) is non null then it defines a pre-arc (resp. post-arc) of t con-
nected to p.

A configuration � of a TdPN is an item of (ℝ⊕
≥0)

P (or equivalently (P ×
ℝ≥0)

⊕). Intuitively, a configuration is a marking extended with age information
for the tokens. We will write (p, � ) for a token which is in place p and whose age is
� . A configuration is then a finite sum of such pairs. A token (p, � ) then belongs
to the configuration � whenever (p, � ) ≤ � (in terms of multisets). Given a
configuration � ∈ (P×ℝ≥0)

⊕ and a multiset f ∈ (P×ℐ)⊕, we say that � satisfies
f , and write � ∣= f , if and only if there exists a multiset x ∈ (P × ℝ≥0 × ℐ)⊕
verifying the following conditions.

⎧
⎨
⎩

�1,2(x) = �,
�1,3(x) = f,
∀(p, �, I) ∈ sup(x), � ∈ I.

(where �i,j denotes the projection on the ith and jth components of the tuples of
the bag)

We now describe the semantics of a TdPN as a transition system.

Definition 4 (Semantics of a TdPN ). Let N = (P, T,Pre,Post, �) be an
TdPN . Its semantics is the transition system (Q,�",→) where Q = (ℝ⊕

≥0)
P

and the transition relation → is composed of delay and discrete transitions as
follows:

– For each d ∈ ℝ≥0, there is a delay transition �
d−→ � + d where the configu-

ration � + d is defined by (� + d)(p) = �(p) + d for every p ∈ P .
– Given a transition t ∈ T and two configurations �, �′ ∈ (P × ℝ≥0)

⊕, there

exists a discrete transition from � to �′ labelled by �(t), denoted by �
�(t)−−→ �′,

if and only if there exist two multisets ∙�, �∙ ∈ (P × ℝ≥0)
⊕ such that:

⎧
⎨
⎩

∙� ∣= Pre(t),
�∙ ∣= Post(t),
∙� ≤ �,
�′ = � − ∙� + �∙.



The intuition of the previous definition is as follows: ∙� is the multiset of tokens
which is removed from the configuration � when firing transition t, whereas �∙

is the multiset of tokens that are created by the transition firing. Moreover, the
ages of all these tokens need to satisfy the constraints specified by the various
arcs (conditions written using the ∣= operator defined above). Finally, the new
configuration is given by �′ computed as �′ = � − ∙� + �∙.

A path in the TdPNN is a sequence �0
d1−→ �′1

t1−→ �1
d2−→ �′2

t2−→ �2 . . .
in the above transition system, which alternates between delay and discrete
transitions. A timed transition sequence is a finite timed word over alphabet
T , the set of transitions of N . A firing sequence is a timed transition sequence

(t1, �1)(t2, �2) . . . such that �0
�1−→ �′1

t1−→ �1
�2−�1−−−−→ �′2

t2−→ �2 . . . is a path. If
(p, � ) ≤ � is a token of a configuration �, it is a dead token whenever for every
interval I labelling a pre-arc of p, � is strictly greater than I. It means that this
token cannot be used anymore by a pre–arc to fire a transition.

The untimed word which is read along a path �0
d1−→ �′1

t1−→ �1
d2−→ �′2

t2−→ �2 . . .
is the projection over � of the timed word i.e. �(t1)�(t2) . . . Timed Petri nets can
be considered as language acceptors, as formally defined by the next definition.
Observe that we require that initial and final configurations have rational values.

Definition 5 (Coverability Language accepted by a TdPN ).
Let N = (P, T,Pre,Post, �) be a TdPN and �i, �f be two configurations with
rational values. A finite path in N is accepting if it starts from �i and ends in
a configuration � ≥ �f . We note ℒ(N , �i, �f ) the set of finite untimed words
accepted by (N , �i, �f ) along finite paths.

The key observation is that w.r.t. the coverability language of a TdPN (as in
timed automata), it is sufficient to look for an abstraction of the configuration.
In the next definition, max denotes the smallest integer greater or equal than
the (finite) bounds of intervals of the net and the ages of tokens in �i, �f .

Definition 6 (Regions of TdPN s). A region ℛ for a tuple (N , �i, �f ) is a se-
quence a0a1 . . . ana∞ where n ∈ ℕ, for all 0 < i ≤ n, ai ∈ (P×{0, 1, . . . ,max−1})⊕,
a0 ∈ (P × {0, 1, . . . ,max})⊕, and a∞ ∈ (P × {∞})⊕ with size(ai) ∕= 0 if i ∕= 0.

We informally explain the semantics of a region. Given the multiset of tokens
defining a configuration, we obtain its associated region as follows. We put in
a∞ all the tokens whose ages are strictly greater than max and forget their ages.
We then put in a0 the tokens with integral ages and add the information about
their ages. Finally, we order the remaining tokens depending on the fractional
part of their ages in a1, . . . , an, forget their fractional part, and only store the
integral part of their ages. Hence n is the number of different positive fractional
values for ages of the remaining tokens. For instance, consider the multiset of
tokens (p, 1)+(p, 2.8)+(q, 0.8)+(q, 5.1)+(r, 1.5). Then, if the maximal constant
is 4, its region encoding will be a0a1a2a∞ where a0 = (p, 1) (because there is a
single token with integral age), a∞ = (q,∞) (because the age of token (q, 5.1) is
5.1, hence above the maximal constant), a1 = (r, 1) (among all fractional parts,



0.5 is the smallest one), and a2 = (p, 2) + (q, 0) (all tokens with fractional part
0.8).

Furthermore we can define an (infinite but countable) transition system over
regions that generate the untimed words of the net. Rather than giving a formal
cumbersome definition. We informally present it:

– We associate silent transitions with time elapsing. Since we can split the
time elapsing, we consider two kinds of such transitions.
1. Given a region a0a1 . . . ana∞, when a0 > 0 we first partition a0 = b0+c0

where b0 (resp. c0) is the multiset of tokens with age strictly less than max
(resp. equal to max). The new region is now the word 0b0a1 . . . an(a∞ +
c0). This transition corresponds to a small time elapsing that does not
let the ages of tokens of an to reach or overcome an integral value.

2. Given a region 0a1 . . . ana∞ when n > 0, the new region is now the word
b0a1 . . . an−1a∞ where the tokens of b0 are the tokens of an with their
fractional part cancelled and their integral part increased by one. This
transition corresponds to the time elapsing that lets the ages of tokens
of an reach an integral value.

– The information associated with the age of tokens in a region is sufficient
to know whether they belong to an interval labelling a pre-arc. So given a
region a0a1 . . . ana∞, in order to fire t:
1. We must constitute a word b0b1 . . . bnb∞ with bi ≤ ai for every i ∈

{0, . . . , n} ∪ ∞ such that for every place p there is a bijective mapping
from the intervals of the multiset Pre(p, t) to the tokens labelled by p in
b0, b1, . . . bn, b∞. The first step of the firing consists then to delete these
tokens leading to an intermediate region c0c1 . . . c∞ = (a0 − b0)(a1 −
b1) . . . (an − bn)(a∞ − b∞) where the the ci’s for 1 ≤ i ≤ n′such that
ci = 0 are then deleted.

2. Then for every place p and every interval of multiset Post(p, t), we choose
a token whose fractional part may be either null, either a non null existing
one or a new non null one, in this last case increasing n and choosing
any position in the fractional order. The choice must lead to an age
belonging the interval. These new tokens “added” to c0c1 . . . cnc∞ lead
to the region reached by this firing of t (as there are non deterministic
choices, several but finite firings of t are possible).

4 Equivalence between PDNs and TdPNs

Theorem 1. Let N be a PDN and mi,mf be two markings of N . Then there
exist N ′ a TdPNand two rational configurations �i, �f such that ℒ(N ′, �i, �f ) =
L(N ,mi,mf ).

Proof. Let us first describe the principles of the simulation. Places of N ′ will
contain two kinds of tokens: the tokens of age belonging to [0, 1] will be relevant
while the older tokens will be irrelevant. We define the relevant part of a marking
of N ′ as the marking where the irrelevant tokens have been deleted.



The simulation of a transition firing will last 1 time unit (t.u.). So the markings
of N ′ at instants 0, 1, . . . are the basis of the simulation.

Our simulation is lossy in the following sense. Assume there is a firing sequence
mi

�−→ m in N , then there is at least one perfect simulation �i
�−→ � in N ′ with

the same associated word. Furthermore all firing sequences of N ′ will be perfect
or lossy simulations. A lossy simulation is a sequence that leads to markings at
integer instants whose relevant parts are covered by the relevant part of markings
reached a perfect simulation with the same associated word.

For technical reasons, a place p of N will be simulated by two places p0, p1 of N ′.
Let mi

�−→ m be a firing sequence in N , with n current identities x1 < . . . < xn

in m and denote m by the word (
∑

p∈P �1
p ⋅ p) ⋅ ⋅ ⋅ (

∑
p∈P �n

p ⋅ p).
Let �i

�−→ � be some perfect simulation of � in N ′. There will be exactly n
fractional parts of ages of relevant tokens in �. Assume that the length of the
firing sequence � is even (resp. odd). Let us denote a0a1 . . . ana∞ be the region
associated with �. Then the word ai fulfills ai =

∑
p∈P �i

p ⋅ (p0, 0) (resp. ai =∑
p∈P �i

p ⋅ (p1, 0)). a0 will contain tokens of control places (to be detailed later)
and a∞ will equal to 0.

Let us describe the control places,

– time0, time1 are the places that schedule the operations. At an even (resp.
odd) instant place time0 (resp. time1) has a token with age 0. Then after
one t.u., a transition tt0 (resp. tt1) ending the simulation process is fired
getting this token and producing a token with age 0 in time1 (resp. time0).

– Place idle0 (resp. idle1) has a token only present at even (resp. odd) instants.
The consumption of this token by transition t0 (resp. t1) starts the simulation
process of transition t. When a simulation is started, a token (whose time is
irrelevant) is produced in place trans0 (resp. trans1). This token enables to
transfer relevant tokens that will not be used in the transition firing. When
such a token (say in place q0) has age 1 it is consumed by tr.q0 and a token
is produced in q1. At the end of the simulation the token has the same age
as the original one at the beginning of the simulation. Observe that some
tokens may be forgotten (case of a lossy simulation). These forgotten tokens
cannot be used in the sequel since their age become greater than 1.

– Let us recall that all variables occurring in a transition t of N are totally
ordered. Thus the transition simulation consumes and produces the tokens
required by variables, beginning by the greatest variable. Let us illustrate
this simulation in the example of figure 2. The token “with identity Z” in
place q which must be consumed will be the first one to reach age 1, so it is
deleted by transition simZ.t0. Then transition simY.t0 produces the token
“with identity Y ” in place s1. Finally, transition simX.t0 consumes the token
“with identity X” in place p0 and simultanously produces the token in place
r1. Observe that these transitions must let time elapse due to the interval
constraints. This avoids to use the same identity for X, Y and Z.

Let us now explain by an example (see figure 3) how to check coverability of
marking p(q + r) in N . At even (resp. odd) instants one consumes the token in



Fig. 2. Simulation of a transition at even instants



idle0 (resp. idle1) and proceeds to test the coverability. First one lets time elapse
until we obtain a token in q and r with age 1. Then after some time elapsing
we must obtain a token in p with age 1 and we conclude positively by covering
place success. The generalization is straightforward.

Fig. 3. Test of covering p(q + r) at even instants

Thus the final marking is defined by �f = 1 ⋅ (success, 0). Let us define �i.
Assume there are n identities in mi, then we choose n rational values in (0, 1)
and mark the places p0 with p ∈ P according to mi(p). Finally we add a token
with age 0 in idle0 and time0.

In order to prove the reverse implication, we recall that for any TdPNN there
is a TdPNN ′ with same language and such that the only interval occurring in
post-arcs is [0, 0] (theorem 4 of [5]). Furthermore since �i and �f have rational
values and we consider untimed languages, then by changing the time scale we
assume w.l.o.g. that �i and �f have integer values (less or equal than the max
value associated with regions).

Theorem 2. Let N be a TdPNof N and �i, �f be two integer configurations.
Then there exists N ′ a PDNand mi,mf two markings such that L(N ′,mi,mf ) =
ℒ(N , �i, �f ).

Proof. As in the previous proof, our simulation is a lossy simulation allowing
to “loose” tokens of net N in the simulating net N ′ as it does not change the
covering language. We first describe the principle of the simulation.

After some initialization stage, places low, ℎigℎ and int always contain a single
token. In the sequel of proof we denote the identity contained in such a place by
the name of the place. Every non null fractional part of the current configuration
of N is represented by an identity x such that: low ≤ x ≤ ℎigℎ. The order of
such identities is the reverse order of the fractional part: for two identities of
fractional parts x < y the fractional part of x is greater than the fractional part
of y. For every simulation, low is just a lower bound of the identity with the



highest fractional part but if there is at least a token in N whose age and has a
non null fractional part then there is always a simulation for which low is equal
to this identity. Furthermore, identity int corresponds to tokens whose age (less
or equal than max) have a null fractional part.

During the simulation, int only decreases while low only increases, and as in the
initial marking we ensure that int < low, this inequation will always be fulfilled.
At any instant of the simulation, the identities that label tokens have identities
between int and ℎigℎ and only tokens which have identities between low and
ℎigℎ or equal to int are still relevant for the simulation.

Let max be the maximal constant as defined above for N , �i and �f . For every
place p of N , N ′ has the following places: p0, p1, . . . , pmax, p∞. Place pk contains
the tokens of N in p with age less or equal than max and integral part equal
to k. Place p∞ contains the tokens of N in p with age greater than max; this
place contains black tokens as the fractional part of the age is irrelevant for such
tokens in N are irrelevant.

During the simulation, place disc is either empty or contains a black token that
allows the simulation of discrete transitions of N . Let us first describe the simu-
lation of time elapsing as illustrated in figure 4. Transition el0 begins to perform
the simulation of a small elapse of time whose only effect (see above) is that
there is no more tokens (with age less or equal than max) with integral ages. It
increases ℎigℎ in order to assign this value to the tokens with the integral ages.
While time0 is marked, transition tfp,k with k < max “updates” tokens with
integer age in pk changing their identity to ℎigℎ. Transition tfp,max transfers
tokens with age max from pk to p∞. As said before, some tokens can be for-
gotten but they will not perturb the simulation since at the end of the transfer
int is decreased (transition el1). Then either we stop time elapsing simulation
(transition el2) or proceed (transition el3) to let an additional amount of time
that corresponds to let the tokens with greatest fractional part reach their next
integral value by changing their identity from low to int and moving tokens from
pk to pk+1. When low is different from the identity of tokens with greatest frac-
tional part, no transfer occur. At the end of a simulation, a new value is chosen
for low greater than the former value and less or equal than ℎigℎ (transition
el4). When this choice corresponds to the identity of the new greatest fractional
part the simulation is exact. Otherwise, the tokens whose fractional parts have
associated identities less than low are “lost”.

The simulation of a transition of N is straightforward. In order to simplify its
presentation, we can assume w.l.o.g. that pre-arcs are labelled by multisets of
intervals [0], ]0, 1[, [1], . . . , [max], ] max,∞[. This can be easily obtained by du-
plicating transitions (see for instance [5]). As said before, post-arcs are labelled
by a multiset over interval [0]. Rather than defining it formally we illustrate the
translation on figure 5. For instance, since the arc from p to t is labelled by ]2, 3[,
we are looking for a token in place p2 with identity between low and ℎigℎ. The
other cases are similar. Observe that since post-arcs are labelled by 0, there is
no new fractional part. This avoids to handle the undesirable case where a new



Fig. 4. Simulation of time elapsing

fractional part would be the greatest one, as it would require to decrease low
which is forbidden by our simulation.

Checking the coverability condition is performed by a transition stop that con-
sumes the token in disc and consumes tokens np,k tokens in place pk with iden-
tity int where np,k is the number of tokens of �f (p) with age k. This transition
produces a token with any identity in a place success. Thus mf = success.

The initial marking mi is defined by choosing two identities say id < id′ marking
place int with a id-token and places low and ℎigℎ with a id′-token. Place disc
is marked with a black token. Finally one marks places pk with mp,k id-tokens
where mp,k is the number of tokens in �i(p) with age k.

Combining theorems 1 and 2, we obtain the desired result.

Theorem 3. PDN ≃ TdPN
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