
Laboratoire Spécification & Vérification

École Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex France

Synthesizing Parametric
Constraints on Various Case
Studies Using IMITATOR II

Étienne André

December 2010

Research report LSV-10-21

Synthesizing Parametric Constraints on Various

Case Studies Using Imitator II

Étienne André

Chapter 1

Introduction

Timed automata [1] are finite control automata equipped with clocks, which are
real-valued variables which increase uniformly. This model is useful for reasoning
about real-time systems with a dense representation of time, because one can
specify quantitatively the interval of time during which the transitions can occur,
using timing bounds. However, the behavior of a system is very sensitive to the
values of these bounds, and it is rather difficult to find their correct values. One
can check the correctness of the system for one particular timing value for each
timing bound (using model checkers such as, e.g., Uppaal [31]), but this does
not give any information for other values. Actually, testing the correctness of
the system for all the timing values, even in a bounded interval, would require
an infinite number of calls to the model checker, because those timing bounds
can have real (or rational) values.

It is therefore interesting to reason parametrically, by considering that these
bounds are unknown constants, or parameters, and try to synthesize a constraint
(i.e., a conjunction of linear inequalities) on these parameters which will guar-
antee a correct behavior of the system. Such automata are called parametric
timed automata (PTA) [2].

The Good Parameters Problem for Timed Automata. In order to find
correct values of the parameters, we are interested in solving the following good
parameters problem, as defined in [22] in the framework of linear hybrid au-
tomata: “Given a PTA A and a rectangular parameter domain V0, what is the
largest set of parameter values within V0 for which A is safe?”

The parameter design problem for timed automata (and more generally, for
linear hybrid automata) was formulated in [25], where a straightforward solution
is given, based on the generation of the whole parametric state space until a
fixpoint is reached. Unfortunately, in all but the most simple cases, this is is
prohibitively expensive due, in particular, to the brute exploration of the whole
parametric state space.

In [22], the authors propose an extension based on the counterexample guided
abstraction refinement (CEGAR, [18]). When finding a counterexample, the
system obtains constraints on the parameters that make the counterexample
infeasible. When all the counterexamples have been eliminated, the resulting
constraints describe a set of parameters for which the system is safe.

The tool Imitator II, presented in [8], is based on the inverse method [5],

1

which supposes given a “good valuation” π0 of the parameters that one wants
to generalize. More precisely, Imitator II synthesizes a constraint K0 on the
parameters that corresponds to an infinite dense set of valuations such that, for
all valuation π of parameters in this set, the behavior of the timed automaton
A is (time-abstract) equivalent to the behavior of A under π0, in the sense that
they have the same trace sets. This is useful to relax timing bounds, and gives
a criterion of robustness.

Moreover, Imitator II implements the behavioral cartography algorithm [6],
which synthesizes a constraint on the parameters (“tile”) by calling the inverse
method for each integer point located within a given rectangle V0. This algo-
rithm allows us to partition the parametric space into a subset of “good” tiles
(which correspond to “good behaviors”) and a subset of “bad” ones. Often in
practice, what is covered is not the bounded and integer subspace of the param-
eter rectangle, but two major extensions: first, not only the integer points but
a major part of the dense set of real-valued points of the rectangle is covered by
the tiles; second, the tiles are often unbounded w.r.t. several dimensions (hence
are infinite), and cover most of the parametric space beyond V0, thus giving a
solution to the good parameters problem.

Imitator II is a new version of Imitator [7], a prototype written in Python
implementing the inverse method, and calling the model checker HyTech [24].
Imitator II has been entirely rewritten and is a now standalone tool, making
use of the Apron library [27] and the Parma Polyhedra Library [11]. Com-
pared to Imitator, the computation timings of Imitator II have dramatically
decreased. Moreover, Imitator II offers new features, such as the implementa-
tion of the behavioral cartography algorithm, the generation of the trace sets of
the models, and a graphical output. This tool is being developed at LSV, ENS
Cachan, France. The tool can be downloaded on its Web page1, as well as a
bunch of case studies.

We present in this report a range of case studies.

1http://www.lsv.ens-cachan.fr/~andre/IMITATOR2/

2

Contents

1 Introduction 1

2 SR-Latch 5
2.1 Inverse Method . 6
2.2 Parametric Reachability Analysis 6
2.3 Behavioral Cartography Algorithm 7

3 Flip-flop Circuit 11
3.1 Description . 11
3.2 First environment . 11

3.2.1 Definition of the Good Behavior 12
3.2.2 Reference Valuation . 12
3.2.3 Parametric Reachability 13
3.2.4 Inverse Method . 14
3.2.5 Clarisó and Cortadella’s Constraints 14
3.2.6 Behavioral Cartography 15

3.3 Second Environment . 18

4 And–Or Circuit 22
4.1 Presentation . 22
4.2 Synthesis of Constraints . 23

4.2.1 Reference Valuation . 23
4.3 Inverse Method . 24

4.3.1 Reference Valuation . 24
4.3.2 Other Valuations . 24

5 Latch Circuit 25
5.1 Description . 25
5.2 Inverse Method . 26

6 SPSMALL Memory 27
6.1 Description . 27
6.2 A Short History . 30
6.3 Inverse Method . 31

6.3.1 Manually Abstracted Model 31
6.3.2 Automatically Generated Model 34
6.3.3 Larger Models . 36

6.4 Behavioral Cartography . 37

3

6.4.1 Manually Abstracted Model 37
6.4.2 Automatically Generated Model 39

7 CSMA/CD Protocol 43
7.1 Description . 43
7.2 Inverse Method . 44

7.2.1 First Valuation . 45
7.2.2 Second Valuation . 45

8 Root Contention Protocol 46
8.1 Presentation . 46
8.2 Inverse Method . 47
8.3 Cartography . 48
8.4 Partition According to Properties 49

9 Bounded Retransmission Protocol 53
9.1 Description . 53
9.2 Synthesis of Constraints . 54

10 IEEE 802.11 Wireless Local Area Network Protocol 56
10.1 Description . 56
10.2 Inverse Method . 56

10.2.1 First Valuation . 56
10.2.2 Second Valuation . 57
10.2.3 Bigger Valuations . 57

11 A Networked Automation System 58
11.1 Description of the Model . 58
11.2 Definition of a Zone of Good Behavior 59
11.3 Comparison with Other Methods 60

12 Summary of the Experiments 61
12.1 Inverse Method . 61
12.2 Behavioral Cartography . 62

4

Chapter 2

SR-Latch

We consider in this section a SR “NOR” latch, which is one of the most funda-
mental latches. S and R stand for set and reset. This latch (described in, e.g.,
[23]) is depicted in Figure 2.1 left. This circuit is made of two “NOR” gates.
There are two input signals R and S, and two output signals Q and Q. The
stored bit is present on the output Q.

Q

QR

S

S

R

t↓

Figure 2.1: SR latch (left) and environment (right)

The possible configurations of the latch are the following ones:

S R Q Q
0 0 latch latch
0 1 0 1
1 0 1 0
1 1 0 0

We consider an initial configuration with R = S = 1 and Q = Q = 0. As
depicted in Figure 2.1 right, the signal S first goes down. Then, the signal R
goes down after a time t↓.

We consider that the gate NOR1 (resp. NOR2) has a punctual parametric
delay δ1 (resp. δ2). Moreover, the parameter t↓ corresponds to the time duration
between the fall of S and the fall of R.

Each location of the PTA A modeling this SR-latch corresponds to a dif-
ferent configuration of the signals R, S, Q and Q. We give in Table 2.1 the
correspondence between the name of the location qi, for i = 0, . . . , 5, and the
value of the four signals (only the locations that are actually reachable from the
initial state using our environment are depicted).

We consider the following reference valuation π0 of the parameters:

δ1 = 2 δ2 = 2 t↓ = 1

5

Location S R Q Q

q0 1 1 0 0

q1 0 1 0 0

q2 0 0 0 0

q3 0 1 0 1

q4 0 0 0 1

q5 0 0 1 0

Table 2.1: Value of the signals for each of the locations of the SR-latch

Under π0, it can be shown (e.g., using Imitator II in reachability mode) that
the corresponding trace set is the one depicted in Figure 2.2.

q0 q1 q2 q4
S↓ R↓ Q

↑

Figure 2.2: Trace set for the SR latch under K0

Synthesis of Parameters. Our goal is to synthesize a set of parameters
guaranteeing the following good behavior: “the system always ends in a state
where Q = 1”. This behavior corresponds to trace sets such that, for any trace
of the trace set, the last location of the trace is such that Q = 1. From Table 2.1,
such locations are q3 or q4. One can see that the trace set of A[π0], which is
made of a single trace, satisfies this requirement, because the last location of
the trace is q4. As a consequence, A has a good behavior under π0.

2.1 Inverse Method

Let us now synthesize other parameter valuations corresponding to this behav-
ior, by applying the inverse method to A and π0. Imitator II synthesizes the
following constraint K0:

δ2 > t↓ ∧ t↓ + δ1 > δ2

From the correctness of the inverse method, the trace set corresponding to the
system under any π |= K0 is equal to the one given in Figure 2.2. It can be
shown that this constraint K0 is not maximal, i.e., there exist other parameter
valuations having the same good behavior. It will be the purpose of Section 2.3
to synthesize the maximal constraint.

2.2 Parametric Reachability Analysis

Considering this environment, the trace set of this system is given in Figure 2.3,
where the value of the signals corresponding to each location is given in Ta-
ble 2.1.

6

q0 q1 q2

q3

q4

q5

q4

S↓

R↓

Q
↑

Q
↑

Q↑

R↓

Figure 2.3: Parametric reachability analysis of the SR latch

2.3 Behavioral Cartography Algorithm

Using Imitator II, we now perform a behavioral cartography of this system.
We consider the following rectangle V0 for the parameters:

t↓ ∈ [0, 10]
δ1 ∈ [0, 10]
δ2 ∈ [0, 10]

We get the following six behavioral tiles. For each of those tiles, we will
give the corresponding trace set, where the value of the signals corresponding
to each location is given in Table 2.1 page 6.

Tile 1. This tile corresponds to the values of the parameters verifying the
following constraint:

t↓ = δ2 ∧ δ1 = 0

The trace set of this tile is given in Figure 2.4.

q0 q1 q2

q3

q4

q5

q4

S↓

R↓

Q
↑

Q
↑

Q↑

R↓

Figure 2.4: Trace set of tile 1 for the SR latch

Since t↓ = δ2, R↓ and Q
↑

will occur at the same time. Thus, the order of
those two events is unspecified, which explains the choice between going to q2
or q3. When in state q2, either Q↑ can occur (since δ1 = 0), in which case the

system is stable, or Q
↑

can occur, which also leads to stability.

Tile 2. This tile corresponds to the values of the parameters verifying the
following constraint:

t↓ = δ2 ∧ δ1 > 0

The trace set of this tile is given in Figure 2.5.

Since t↓ = δ2, R↓ and Q
↑

will occur at the same time. Thus, the order of
those two events is unspecified, which explains the choice between going to q2 or

7

q0 q1 q2

q3

q4

q4

S↓

R↓

Q
↑

Q
↑

R↓

Figure 2.5: Trace set of tile 2 for the SR latch

q3. When in state q2, Q↑ can not occur (since δ1 > 0), so Q
↑

occurs immediately
after R↓, which leads to stability.

Tile 3. This tile corresponds to the values of the parameters verifying the
following constraint:

δ2 > t↓ + δ1

The trace set of this tile is given in Figure 2.6.

q0 q1 q2 q5
S↓ R↓ Q↑

Figure 2.6: Trace set of tile 3 for the SR latch

In this case, since δ2 > t↓ + δ1, S↓ will occur before the gate Nor2 has the
time to change. For the same reason, Q↑ will change before Nor1 has the time
to change. With Q = 1, the system is now stable: Nor1 does not change.

Tile 4. This tile corresponds to the values of the parameters verifying the
following constraint:

t↓ + δ1 = δ2 ∧ δ2 ≥ δ1 ∧ δ1 > 0

The trace set of this tile is given in Figure 2.7.

q0 q1 q2

q4

q5
S↓ R↓

Q
↑

Q↑

Figure 2.7: Trace set of tile 4 for the SR latch

Since t↓+ δ1 = δ2, both Q↑ or Q
↑

can occur. Once one of them occured, the
system gets stable, and no other change occurs.

Tile 5. This tile corresponds to the values of the parameters verifying the
following constraint:

δ2 > t↓ ∧ t↓ + δ1 > δ2

Note that this constraint is equal to K0. The trace set of this tile is given
in Figure 2.8.

8

q0 q1 q2 q4
S↓ R↓ Q

↑

Figure 2.8: Trace set of tile 5 for the SR latch

Since δ2 > t↓, the gate Nor2 can not change before R↓ occurs. However,
since t↓ + δ1 > δ2, the gate Nor2 changes before Q↑ can occur, thus leading to

event Q
↑
.

Tile 6. This tile corresponds to the values of the parameters verifying the
following constraint:

t↓ > δ2

The trace set of this tile is given in Figure 2.9.

q0 q1 q3 q4
S↓ Q

↑
R↓

Figure 2.9: Trace set of tile 6 for the SR latch

Since t↓ > δ2, Q
↑

occurs before S↓. The system is then stable.

Cartography. We give in Figure 2.10 the cartography of the SR latch exam-
ple. For the sake of simplicity of representation, we consider only parameters δ1
and δ2. Therefore, we set t↓ = 1.

3

5

6

δ1

δ2 4

21

Figure 2.10: Behavioral cartography of the SR latch according to δ1 and δ2

9

The rectangle V0 is represented with dashed lines. Note that tile 1 corre-
sponds to a point, and tiles 2 and 4 correspond to lines. Note also that all
tiles (except tile 1) are unbounded. As a consequence, the cartography covers,
not only V0, but all the positive real-valued parametric space. Constraints syn-
thesized using our algorithm in order to guarantee a given behavior will thus
necessarily be maximal for this case study.

Verification of Properties. Recall that we aim at synthesizing the maximal
set of parameters guaranteeing the following behavior: “the system always ends
in a state where Q = 1”, i.e., each trace ends either in state q3 or in state q4. One
can easily infer from the six trace sets that tiles 2, 5 and 6 are good tiles, and
the other tiles are bad tiles. As a consequence, the maximal set of parameters
corresponding to all the good behaviors is the union of the constraints associated
to the three good tiles, i.e.:

t↓ = δ2 ∧ δ1 > 0
∨ δ2 > t↓ ∧ t↓ + δ1 > δ2
∨ t↓ > δ2

It can be shown that this constraint is actually equivalent to t↓ + δ1 > δ2.
Note that this constraint is maximal, because our cartography algorithm covers
the whole parametric space.

If one now considers another property, we will get a different partition be-
tween good and bad tiles, and thus a different constraint. For example, if one
wants to synthesize parameter valuations such that “the system always ends in
a state where Q = 0” (i.e., each trace ends in state q5), only tile 3 is a good tile,
leading to the maximal constraint δ2 > t↓ + δ1.

Comparison with other methods. Due to the simplicity of this example,
it is possible to apply the method introduced in [25], consisting in computing
the whole set of reachable states, and then intersect it with the bad states. We
first consider the property “the system always ends in a state where Q = 1”.
We introduce one more PTA in parallel with the others, which plays the role
of an observer. This PTA goes into a “good” location when synchronizing

with action Q
↑
, and into a “bad” location when synchronizing with action Q↑.

Using the HyTech model checker, we can compute the whole set of reachable
states, project the constraint onto the parameters, and intersect with “the bad”
locations, i.e., keep only the states where the observer is in the bad location.
The constraint on the parameters associated to the bad states is t↓ + δ1 ≤ δ2.
Thus, by negating it, one finds back the constraint found by our algorithm, i.e.,
t↓ + δ1 > δ2.

Similarly for the second property (i.e., “the system always ends in a state
where Q = 0”), we slightly modify the observer (i.e., swap the good and the
bad location), and this method also allows to synthesize the same constraint as
our algorithm.

10

Chapter 3

Flip-flop Circuit

3.1 Description

Consider an asynchronous “D flip-flop” circuit described in [17] and depicted in
Figure 3.1. It is composed of 4 gates (G1, G2, G3 and G4) interconnected in
a cyclic way, and an environment involving two input signals D and CK . The
global output signal is Q.

Each gate Gi has a delay in the parametric interval [δ−i , δ
+
i], with δ−i ≤ δ+i .

There are 4 other parameters (viz., THI , TLO , TSetup , and THold) used to model
the environment. The output signal of a gate Gi is named gi (note that g4 = Q).
The rising (resp. falling) edge of signal D is denoted by D↑ (resp. D↓) and
similarly for signals CK , Q, g1, . . . , g4.

Each gate is modeled by a PTA, as well as the environment. We consider
a bi-bounded inertial model for gates (see [13, 32]), where any change of the
input may lead to a change of the output (after some delay). The (network of)
PTAs A modeling the system results from the composition of those 5 PTAs.
Each location of A corresponds to a different value of the signals D, CK , g1,
g2, g3 and g4 (recall that g4 = Q).

3.2 First environment

We first consider an environment where initially D = CK = Q = 0 and g1 =
g2 = g3 = 1, with the following ordered sequence of actions for inputs D and

Figure 3.1: Flip-flop circuit

11

D

CK

Q

TSetup THold

TLO

THI

TCK→Q

Figure 3.2: Environment for the flip-flop circuit with D = 1

CK : D↑, CK ↑, D↓, CK ↓, as depicted in Figure 3.2. Therefore, we have the
implicit constraint TSetup ≤ TLO ∧ THold ≤ THI .

The initial location q0 corresponds to the initial levels of the signals according
to the environment. The initial constraint K0 corresponds to:

TSetup ≤ TLO ∧ THold ≤ THI ∧
∧

i=1,..,4

δ−i ≤ δ+i

3.2.1 Definition of the Good Behavior

We consider that the flip-flop circuit has a good behavior if every trace contains
both Q↑ and CK ↓, and Q↑ occurs before CK ↓.

We are interested in synthesizing a constraint on the parameters of the sys-
tem preventing any bad behavior, i.e., ensuring that the system will always
behave well.

For the sake of simplicity (to bound the number of different traces), we
consider from now that the time in the model stops after the event CK ↓, since
it is sufficient to consider the system up to CK ↓ to study its correctness.

3.2.2 Reference Valuation

We consider the following valuation π0 of the parameters:
THI = 24 TLO = 15 TSetup = 10 THold = 17
δ−1 = 7 δ+1 = 7 δ−2 = 5 δ+2 = 6
δ−3 = 8 δ+3 = 10 δ−4 = 3 δ+4 = 7

Let us study the behavior of the flip-flop circuit under π0. The trace set
of A[π0] is depicted in Figure 3.3, where the meaning of each location in terms of
signals is given in Table 3.1. Recall that we do not depict each trace separately,
but depict the trace set under the form of a tree or a graph. However, this
graph structure is only used for the sake of simplicity of representation of the
possible traces, and does not contain any information on the possible branching
behavior of the system.

Each of the two traces depicted in this trace set contains both Q↑ and CK ↓,
and Q↑ occurs before CK ↓. As a consequence, this trace set is a good trace set
according to the property we want to verify.

We are now interested in studying the evolution of the behavior of the system
if one changes some of the values of the parameters. More precisely, we are

12

q0 q1 q2 q3 q5 q7

q6

q9

q9

q10

q10

D↑ G↓1 CK↑ G↓3 D↓

Q↑

Q↑

D↓

CK↓

CK↓

Figure 3.3: Trace set of the flip-flop circuit under π0

Location D CK g1 g2 g3 g4
q0 0 0 1 1 1 0

q1 1 0 1 1 1 0

q2 1 0 0 1 1 0

q3 1 1 0 1 1 0

q4 0 1 0 1 1 0

q5 1 1 0 1 0 0

q6 1 1 0 1 0 1

q7 0 1 0 1 0 0

q8 0 0 0 1 0 0

q9 0 1 0 1 0 1

q10 0 0 0 1 0 1

Table 3.1: Locations of the flip-flop circuit

interested in identifying parameter valuations for which the system has exactly
the same (good) behavior, i.e., exactly the same trace set.

3.2.3 Parametric Reachability

We first use a reachability method in order to infer good values for parameters δ+3
and δ+3 . As a consequence, we instantiate the other parameters of the system,
and use the following method:

1. Compute the whole parametric trace set;

2. Look for the bad states (i.e., belonging to trace violating the property of
correctness);

3. Perform the disjunction of the constraints on the parameters associated
to those bad states.

The parametric trace set is given in Figure 3.4. It is easy to see that states
10, 12, 16 and 18 are bad states, since they belong to traces where Q↓ does not
occur before CK ↓.

The constraint on the parameters associated to states 12 and 16 is the fol-
lowing one:

δ+4 ≥ 7 ∧ δ+3 ≥ 8 ∧ δ+3 + δ+4 ≥ 24

The constraint on the parameters associated to states 10 and 18 is the following
one:

δ+4 ≥ 3 ∧ δ+3 ≥ 17 ∧ δ+3 + δ+4 ≥ 24

Since the zone δ+3 ≤ 7 or δ+4 ≤ 3 correspond to an undefined behavior according
to the model, one can thus infer that the constraint corresponding to a good

13

q0 q1 q2 q3 q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

q14

q15

q16

q17

q18

q19

D↑ G↓1 CK↑

D↓

G↓3

G↓3

CK↓

D↓

Q↑

CK↓

Q↑

CK↓

Q↑

D↓

Q↑

CK↓

Q↑

CK↓

CK↓

Figure 3.4: Parametric reachability analysis of the flip-flop circuit

behavior is:
δ+3 ≥ 7 ∧ δ+4 ≥ 3 ∧ δ+3 + δ+4 ≤ 24

Note that this computation has been presented for only two parameters (viz.,
δ+3 and δ+4) for the sake of simplicity, but is also possible for all parameters. The
computation, although quite long, terminates in practice using the reachability
mode of Imitator II.

3.2.4 Inverse Method

Using our program Imitator II applied to the PTA A modeling the system
and the reference valuation π0, the following constraint K0 is computed after 9
iterations in 0.122 second (11 reachable states with 10 transitions):

δ+3 + δ+4 ≥ THold ∧ δ−1 > 0
∧ THold ≥ δ−3 + δ−4 ∧ THold > δ+3
∧ THI > δ+3 + δ+4 ∧ TSetup > δ+1

3.2.5 Clarisó and Cortadella’s Constraints

In [17], a constraint Z is synthesized in order to prevent bad system behav-
iors. The bad state is defined as the case where CK ↓ occurs before Q↑. This
constraint Z is the following:

TCK→Q ≤ δ+2 + δ+3 + δ+4 ∧ TSetup > δ+1 + δ+2 − δ−2
∧ THold > δ+2 + δ+3 ∧ THI > δ+2 + δ+3 + δ+4
∧ THI > THold ∧ TLO > TSetup

∧ δ−1 > δ+2

Projection onto TSetup and THold :

TSetup > 8 ∧ THold > 16
∧ THold < 24 ∧ TSetup < 15

Projection onto δ+3 and δ+4 :

δ+3 < 11 ∧ δ+3 + δ+4 < 18

14

3.2.6 Behavioral Cartography

We are interested in studying the correctness of the circuit according to param-
eters δ+3 and δ+4 . Using the behavioral cartography algorithm, we compute the
following cartography of the flip-flop circuit according to δ+3 and δ+4 .

In the following, when giving constraints on all the parameters, we will omit
the following “trivial inequalities” for the sake of clarity:

δ−1 ≤ δ+1 ∧ δ−2 ≤ δ+2
∧ δ−3 ≤ δ+3 ∧ δ−4 ≤ δ+4
∧ δ−1 ≥ 0 ∧ δ−2 ≥ 0
∧ δ−3 ≥ 0 ∧ δ−4 ≥ 0
∧ TSetup ≤ TLO ∧ THold ≤ THI

Tile 1. This tile corresponds to the values of the parameters verifying the
following constraint:

δ−1 > 0 ∧ TSetup > δ+1
∧ THold > δ+3 + δ+4

After instantiation of all parameters except δ+3 and δ+4 :

δ+3 + δ+4 < 17 ∧ δ+3 ≥ 8 ∧ δ+4 ≥ 3

The trace set of this tile is given below:

q0 q1 q2 q3 q5 q9 q14 q19
D↑ G↓1 CK↑ G↓3 Q↑ D↓ CK↓

Tile 2. This tile corresponds to the values of the parameters verifying the
following constraint:

δ+3 + δ+4 ≥ THold ∧ δ−1 > 0
∧ THold ≥ δ−3 + δ−4 ∧ THold > δ+3
∧ THI > δ+3 + δ+4 ∧ TSetup > δ+1

Note that this constraint is the same as K0, which makes sense since π0
models this constraint.

After instantiation of all parameters except δ+3 and δ+4 :

δ+3 + δ+4 < 24 ∧ δ+3 < 17
∧ δ+3 ≥ 8 ∧ δ+4 ≥ 3
∧ δ+3 + δ+4 ≥ 17

The trace set of this tile is given below:

q0 q1 q2 q3 q5 q8

q9

q13

q14

q15

q19

D↑ G↓1 CK↑ G↓3 D↓

Q↑

Q↑

D↓

CK↓

CK↓

Tile 3. This tile corresponds to the values of the parameters verifying the
following constraint:

δ+3 ≥ THold ∧ THold ≥ δ−3 + δ−4
∧ TSetup > δ+1 ∧ THI > δ+3 + δ+4

After instantiation of all parameters except δ+3 and δ+4 :

15

δ+3 + δ+4 < 24 ∧ δ+3 ≥ 17 ∧ δ+4 ≥ 3

The trace set of this tile is given below:

q0 q1 q2 q3

q4

q5

q7

q8

q9

q11

q13

q14

q15

q17

q19

D↑ G↓1 CK↑

D↓

G↓3

G↓3

D↓

Q↑

Q↑

Q↑

D↓

CK↓

CK↓

CK↓

Tile 4. This tile corresponds to the values of the parameters verifying the
following constraint:

δ+3 + δ+4 ≥ THI ∧ δ−1 > 0
∧ THold ≥ δ−3 + δ−4 ∧ δ−3 > 0
∧ THI > δ+4 + THold ∧ THI > δ+3
∧ TSetup > δ+1

After instantiation of all parameters except δ+3 and δ+4 :

δ+3 + δ+4 ≥ 24 ∧ δ+3 < 24
∧ δ+4 ≥ 3 ∧ δ+4 < 7

The trace set of this tile is given below:

q0 q1 q2 q3 q4

q5

q7

q8

q9

q10

q11

q13

q14

q15

q17

q18

q19

D↑ G↓1 CK↑

D↓

G↓3

G↓3

D↓

Q↑

CK↓

Q↑

Q↑

D↓

Q↑

CK↓

CK↓

CK↓

Tile 5. This tile corresponds to the values of the parameters verifying the
following constraint:

THold ≥ δ−3 + δ−4 ∧ δ−1 > 0
∧ THI > δ+4 + THold ∧ δ−3 > 0
∧ TSetup > δ+1 ∧ δ+3 ≥ THI

After instantiation of all parameters except δ+3 and δ+4 :

δ+3 ≥ 24 ∧ δ+4 ≥ 3 ∧ δ+4 < 7

The trace set of this tile is given below:

16

q0 q1 q2 q3 q4

q5

q6

q7

q8

q9

q10

q11

q13

q14

q15

q17

q18

q19

D↑ G↓1 CK↑

D↓

G↓3

G↓3

CK↓

D↓

Q↑

CK↓

Q↑

Q↑

D↓

Q↑

CK↓

CK↓

CK↓

Tile 6. This tile corresponds to the values of the parameters verifying the
following constraint:

δ+4 + THold ≥ THI ∧ δ−1 > 0
∧ THI ≥ δ−4 + THold ∧ δ−3 > 0
∧ THold ≥ δ−3 + δ−4 ∧ δ+3 ≥ THold

∧ TSetup > δ+1 ∧ THI > δ+3

After instantiation of all parameters except δ+3 and δ+4 :

δ+3 ≥ 17 ∧ δ+3 < 24 ∧ δ+4 ≥ 7

The trace set of this tile is given below:

q0 q1 q2 q3 q4

q5

q7

q8

q9

q10

q11

q12

q13

q14

q15

q16

q17

q18

q19

D↑ G↓1 CK↑

D↓

G↓3

G↓3

D↓

Q↑

CK↓

Q↑

CK↓

Q↑

D↓

Q↑

CK↓

Q↑

CK↓

CK↓

Tile 7. This tile corresponds to the values of the parameters verifying the
following constraint:

δ+4 + THold ≥ THI ∧ δ−1 > 0
∧ THI ≥ δ−4 + THold ∧ δ−3 > 0
∧ THold ≥ δ−3 + δ−4 ∧ TSetup > δ+1
∧ δ+3 ≥ THI

After instantiation of all parameters except δ+3 and δ+4 :

δ+3 ≥ 24 ∧ δ+4 ≥ 7

The trace set of this tile is given below:

17

q0 q1 q2 q3 q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

q14

q15

q16

q17

q18

q19

D↑ G↓1 CK↑

D↓

G↓3

G↓3

CK↓

D↓

Q↑

CK↓

Q↑

CK↓

Q↑

D↓

Q↑

CK↓

Q↑

CK↓

CK↓

Note that this trace set corresponds to the whole set of reachable states,
computed using the parametric reachability analysis (Figure 3.4).

Tile 8. This tile corresponds to the values of the parameters verifying the
following constraint:

δ+3 + δ+4 ≥ THI ∧ δ−1 > 0
∧ THold ≥ δ−3 + δ−4 ∧ δ−3 > 0
∧ TSetup > δ+1 ∧ THold > δ+3

After instantiation of all parameters except δ+3 and δ+4 :

δ+3 + δ+4 ≤ 24 ∧ δ+3 ≥ 8 ∧ δ+3 < 17

The trace set of this tile is given below:

q0 q1 q2 q3 q5 q8

q9

q12

q13

q14

q15

q16

q19

D↑ G↓1 CK↑ G↓3 D↓

Q↑

CK↓

Q↑

D↓

Q↑

CK↓

CK↓

Cartography. The cartography is depicted in Figure 3.5.
According to the nature of the trace sets, we can easily partition the tiles

into good and bad tiles. Tiles 1 to 3 are good tiles, and tiles 4 to 8 are bad tiles.
After partition into good and bad tiles, we can infer the constraint on δ+3

and δ+4 corresponding to all the good behaviors:

δ+3 + δ+4 ≤ 24 ∧ δ+3 ≥ 8 ∧ δ+4 ≥ 3

3.3 Second Environment

We now consider a variant of this case study, using the same model, as depicted
in Figure 3.1 page 11, the same timing parameters, and the new environment
depicted in Figure 3.6.

This new environment starts from D = g2 = Q = 1 and CK = g1 = g3 = 0,
with the following ordered sequence of actions for inputs D and CK : D↓, CK ↑,

18

1 2 3 4 5

6 78

δ+
3

δ+
4

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

Figure 3.5: Behavioral cartography of the flip-flop according to δ+3 and δ+4

D

CK

Q

TSetup THold

TLO

THI

TCK→Q

Figure 3.6: Environment for the flip-flop circuit with D = 0

D↑, CK ↓. Therefore, we have the implicit constraint TSetup ≤ TLO ∧ THold ≤
THI .

The initial location q0 corresponds to the initial levels of the signals according
to the environment. The initial constraint K0 corresponds to:

TSetup ≤ TLO ∧ THold ≤ THI ∧
∧

i=1,..,4

δ−i ≤ δ+i

As in [17], we now consider that the circuit has a good behavior if every trace
contains both Q↓ and CK ↓, and Q↓ occurs before CK ↓. We are interested in
identifying parameter valuations for THold and δ+2 for which the system has such
a good behavior. As a consequence, we perform a behavioral cartography of the
system according to parameters THold and δ+2 . We consider the following V0:

THold ∈ [0, 50] and δ+2 ∈ [5, 40].

The other parameters are instantiated as follows (note that this reference valu-
ation is not the same as in the previous section):

19

THI = 40 TLO = 20 TSetup = 19 δ−1 = 18 δ+1 = 18
δ−2 = 5 δ−3 = 8 δ+3 = 10 δ−4 = 3 δ+4 = 7

The cartography is computed automatically by Imitator II. We then par-
tition the tiles into good and bad. This partition is depicted under a graphical
form in Figure 3.7, where the light red (resp. dark blue) zones correspond to
the bad (resp. good) values of the parameters.

δ+2

THold

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50

Figure 3.7: Behavioral cartography of the flip-flop for parameters THold and δ+2

First note that all outer zones are infinite: as a consequence, the cartography
covers the whole1 dense real-valued set of parameters outside V0. However, there
are two holes within V0, i.e., zones not covered by any tile. The full coverage
can be achieved using two different methods:

1. by calling manually the inverse method on one (non-integer) point within
each of the two holes, or

2. by performing again the cartography using a tighter grid than integers
(actually calling the inverse method on rational points multiple of 1/3 is
enough in this case).

Both methods allow us to get similarly the full coverage of the parametric space
within V0. We do not redraw here the cartography again. The hole in the bad
zone turns out to correspond to a bad behavior; similarly, the hole in the good
zone turns out to correspond to a good behavior.

As a consequence, one is now able to infer the following constraint corre-
sponding to the set of parameters for which the flip-flop circuit behaves well:

5 ≤ δ+2 ≤ 18 ∧ 0 ≤ THold ≤ 40
∨ 18 ≤ δ+2 ≤ 23 ∧ δ+2 − 18 ≤ THold ≤ 18

1Apart from the irrelevant zone originating from the model (δ+2 < 5).

20

This constraint corresponds to the maximal constraint solving the good parame-
ters problem for parameters THold and δ+2 for this case study, because the whole
parameter domain has been covered by the tiles. Also note that this constraint
is not under convex form.

21

Chapter 4

And–Or Circuit

4.1 Presentation

This example deals with an “AND–OR” circuit described in [16] and depicted
in Figure 4.1 (left). It is composed of 2 gates (one “AND” gate and one “OR”
gate) which are interconnected in a cyclic way. The environment, depicted
in Figure 4.1 (right), corresponds to 2 input signals a and b, with cyclic alter-
nating rising edges and falling edges.

x

t

a b

a

b

[δ−
a↑ , δ

+
a↑] [δ−

a↓ , δ
+
a↓]

[δ−
b↑ , δ

+
b↑] [δ−

b↓ , δ
+
b↓]

Figure 4.1: AND–OR circuit (left) and its environment (right)

Each rising (resp. falling) edge of signal a, is denoted by a↑ (resp. a↓),
and similarly for b, t, x. The delay between the rising edge a↑ and the falling
edge a↓ (resp. between a↓ and a↑) of signal a is in [δ−

a↑ , δ
+
a↑] (resp. [δ−

a↓ , δ
+
a↓]),

and similarly1 for b. The traversal of the gate “OR” gate takes also a delay in
[δ−Or, δ

+
Or], and likewise for the “AND” gate. Those 12 timing parameters are

bound by the following implicit constraint:

δ−And ≤ δ+And ∧ δ−Or ≤ δ+Or ∧ δ−
a↓ ≤ δ+

a↓

∧ δ−
a↑ ≤ δ+

a↑ ∧ δ−
b↓ ≤ δ+

b↓ ∧ δ−
b↑ ≤ δ+

b↑

Each of the 2 gates is modeled by a PTA, as well as the environment. We
consider an inertial model for gates, where any change of the input may lead
to a change of the output (after some delay). The PTA A modeling the system
results from the composition of those 3 PTAs.

1Note however that the interval [δ−
b↑ ; δ+

b↑] has a slightly different meaning, because it corre-
sponds to the interval of delays between the rise of a and the fall of b, as shown in Figure 4.1
(right). This choice allows an easier modeling, and a more frequent termination of the analysis.

22

q0 q1 q2 q3 q4

q5q6q7q0q1q2q3q4

b↓ x↓ a↓ t↓

b↑

a↑t↑x↑b↓x↓a↓t↓

b↑

Figure 4.2: Trace of the AND–OR circuit under π0

Location a b t x

q0 1 1 1 1

q1 1 0 1 1

q2 1 0 1 0

q3 0 0 1 0

q4 0 0 0 0

q5 0 1 0 0

q6 1 1 0 0

q7 1 1 1 0

Table 4.1: Locations of the AND–OR circuit

A bad state expresses the fact that the rising edge of output signal x occurs
before the rising edge of a within the same cycle. We set the parameters to the
following values, ensuring that the bad state is not reachable:

δ−
a↑ = 13 δ+

a↑ = 14 δ−
a↓ = 16 δ+

a↓ = 18
δ−
b↑ = 7 δ+

b↑ = 8 δ−
b↓ = 19 δ+

b↓ = 20
δ−And = 3 δ+And = 4 δ−Or = 1 δ+Or = 2

We consider an environment starting at location q0 with a = b = x = t = 1,
and the following repeated cycle of alternating rising and falling edges of a and
b: b↓, a↓, b↑, a↑. For the given environment and the valuation π0, the set of
traces of the system is depicted in Figure 4.2 under the form of an oriented
graph, where qi, 0 ≤ i ≤ 7, are locations of A. The value of the signals of the
system for each location qi is given in Table 4.1. We can check that, in this
graph, the bad state is not reached, i.e., the rising edges and falling edges of a,
b, x alternate properly.

4.2 Synthesis of Constraints

4.2.1 Reference Valuation

Using Imitator II applied to the PTA A modeling the system and the reference
instantiation π0, the following constraint K0 is computed after 14 iterations:

δ−
b↓ + δ−

b↑ > δ+Or + δ+
a↑ ∧ δ−

b↑ > δ+And + δ+Or

∧ δ+
a↓ + δ+

a↑ ≥ δ−
b↓ + δ−

b↑ ∧ δ−
a↑ > δ+And + δ+

b↑

23

Under any instantiation of the parameters π |= K0, the set of traces under
π is guaranteed to be identical to the set of traces under π0 given in Figure 4.2
and, therefore, does not reach any bad state. In [16], the synthesized constraint
is not given.

This constraint gives a criterion of robustness for this system by guaranteeing
that, for values of the parameters around the reference valuation, the system will
still behave well. It is in particular interesting to note that several parameters
do not appear in the constraint synthesized (and are actually only bound by the
implicit constraint given earlier). This is the case of parameters δ−

a↓ , δ
+
b↓ , δ

−
And

and δ−Or . This means that, for the considered environment, the value of these
parameters has no influence on the behavior of the system.

4.3 Inverse Method

4.3.1 Reference Valuation

Using our program Imitator II applied to the PTA A modeling the system
and the reference valuation π0, the following constraint is computed after 14
iterations in 0.15 second (13 reachable states with 13 transitions):

δ−
b↓ + δ−

b↑ > δ+Or + δ+
a↑ ∧ δ−

b↑ > δ+And + δ+Or

∧ δ+
a↓ + δ+

a↑ ≥ δ−
b↓ + δ−

b↑ ∧ δ−
a↑ > δ+And + δ+

b↑

Under any valuation of the parameters π |= K0, the set of traces under π is
guaranteed to be identical to the set of traces under π0 given in Figure 4.2 and,
therefore, does not reach any bad state. We notice that, whatever the algo-
rithm randomly chooses at each iteration for the inequality ¬J , the constraint
finally computed always remains equivalently the same. In [16], the constraint
synthesized is not given.

4.3.2 Other Valuations

Note that a reachability analysis loops when applied to the following reference
valuation (differences with π0 are depicted in bold):

δ−
a↑ = 13 δ+

a↑ = 14 δ−
a↓ = 16 δ+

a↓ = 18
δ−
b↑ = 2 δ+

b↑ = 3 δ−
b↓ = 19 δ+

b↓ = 20
δ−And = 3 δ+And = 4 δ−Or = 1 δ+Or = 2

24

Chapter 5

Latch Circuit

5.1 Description

We consider in this section a latch circuit studied in the case of ANR project
VALMEM. This circuit, depicted in Figure 5.1, contains 5 elements: 2 “NOT”
gates (viz., Not1 and Not2), one “XOR” gate (viz., element Xor), one “NAND”
gate (viz., element And), as well as one “latch” element (viz., element Latch).

QD

CK

Not1 Not2

Xor
A n d

Latch

Figure 5.1: A latch circuit

Each of the four gates has a constant delay for a change of an input leading
to a rising edge in the output, and another constant delay for a change of an
input leading to a falling edge of the input. For example, when the input of
the gate Not1 is equal to 0 and raises, then the output will change after delay
δNot1↑ . If the input is equal to 1 and falls, the delay before the output changes
is δNot1↓ , and similarly for the other 3 gates. The latch has a single constant
delay δLatch↑ corresponding to the time needed between a change of its inputs
and the raise of Q. There are 4 other parameters (viz., THI , TLO , TSetup , and
THold) used to model the environment. The rising (resp. falling) edge of signal
D is denoted by D↑ (resp. D↓), and similarly for signals CK and Q.

We consider an environment starting from D = CK = Q = 0, with the
following ordered sequence of actions for inputs D and CK : D↑, CK ↑, D↓,
CK ↓, as depicted in Figure 5.2. Therefore, we have the implicit constraint
TSetup ≤ TLO ∧ THold ≤ THI .

Each gate is modeled by a PTA, as well as the environment. The PTA A
modeling the system results from the composition of those 6 PTAs.

The following valuation π0 of the 13 parameters (in ps) was extracted from
the circuit description by simulation computed in the VALMEM project:

25

CK

D

Q

TLO THI

TSetup THold

TCK→Q

Figure 5.2: Environment for the latch circuit

THI = 1000 TLO = 1000 THold = 350 TSetup = 1
δNot1↑ = 219 δNot1↓ = 147 δNot2↑ = 155 δNot2↓ = 163
δXor↑ = 147 δXor↓ = 416 δAnd↑ = 80 δAnd↓ = 155
δLatch↑ = 240

A bad state corresponds to the fact that the output signal Q has not changed
before the end of the cycle of signal CK . Under this valuation, we can show
that the system does not reach any bad state.

5.2 Inverse Method

Applying Imitator II to the PTA version of this model and the reference valu-
ation π0, the following constraint K0 is synthesized after 12 iterations in 0.345
second (18 reachable states with 17 transitions):

∧ δXor↓ + δNot2↑ + δNot1↓ > THold

∧ δLatch↑ + δAnd↑ > δNot2↑ + δNot1↓

∧ δNot1↓ > δAnd↑

∧ THold > δLatch↑ + δAnd↑

∧ TLO ≥ TSetup

∧ THI ≥ δAnd↓ + δXor↓ + δNot2↑ + δNot1↓

Under this constraint, the system has the same behavior as under the refer-
ence valuation, and therefore guarantees a good behavior of the system. Suppose
now that we are interested in minimizing the THold value, provided the system
keeps its good behavior. Such a minimization has the following practical inter-
est: since THold corresponds to the duration during which the input signal D
should be stable before the rise of the clock, minimizing this value allows to
integer this portion of circuit in a faster environment. By instantiating all the
parameters in K0 with their value in π0, except THold , we get the following
constraint:

320 < THold < 718

So we can minimize the value of THold to 321, and we guarantee that the system
will have exactly the same behavior as before.

26

Chapter 6

SPSMALL Memory

We consider in this section the SPSMALL memory, which is a memory cir-
cuit sold by ST-Microelectronics. This memory has been first studied in the
MEDEA+BLUEBERRIES (T126) European project involving ST-Microelectronics
and the LSV laboratory (École Normale Supérieure de Cachan). It was then
studied in the ANR VALMEM project involving, besides ST-Microelectronics
and LSV, the LIP 6 laboratory (Université Pierre et Marie Curie).

6.1 Description

The SPSMALL memory actually corresponds to a class of small memories with
a maximum total capacity of 64 kbits. Each instance of the memory is built by
a parametrized compiler, where the number of words and the size of the words
are parameters1. The number of words is ranking from 3 to 512 words, and
the number of bits from 2 to 256 bits. We consider throughout this section the
smallest memory consisting in 3 words of 2 bits (or abstractions of it), which
leads to a netlist of 305 transistors.

The SPSMALL is manually built directly at the transistor level. Indeed, in
order to be able to optimize the memory array part of the circuit, one must tune
it manually. Moreover, the control logic and the decoder logic uses hand-made
cells, and these complex structures cannot be automatically generated.

Our Approach. Before describing the memory and the model considered in
this section, we first give the methodology used in the VALMEM project.

As depicted in Figure 6.1, a description of the memory under the form of a
transistor netlist is given by ST-Microelectronics. Then, a functional abstrac-
tion generates a description of the memory in the functional description lan-
guage VHDL, using automatic techniques developed by LIP 6 [35]. At the same
time, timings are extracted under the form of traversal delays of the elements.
The next step is the translation by LIP 6 of the VHDL code into a network
of (instantiated) timed automata, using the tool Vhdl2Ta [12] developed in

1This notion of parameter is not anyhow linked to the timing parameters (set P) mentioned
throughout this document. We will study this memory for a given instance of these words
and size parameters, and the parameters that we will consider correspond to internal timing
delays, as for the other case studies.

27

Transistor netlist

Functional abstraction + Timing extraction

VHDL – RTL description Timings

Modeling

Parametric Timed Automata

Synthesis of constraints

Figure 6.1: Methodology of the VALMEM project

the framework of the VALMEM project. Finally, using a parametric version
of those timed automata, and the reference instantiation of the parameters, we
synthesize using Imitator II constraints guaranteeing a good behavior for the
memory. Although we will mostly focus on this latter task in this section, we
recall various information on the global process for the sake of comprehension.

Level of Modeling. We borrow part of the following description to [10, 14].
A memory circuit aims at storing data at some addressed locations, and is
associated with two operations: write and read. A memory can be modeled
at different levels of complexity, e.g., in an increasing order: at the functional
block level, at the “latch” level, at the gate level, or at the transistor level.
For the SPSMALL memory, the model can thus be implemented using 3 main
components at the block level (see [10]), a few dozens of components at the
latch level, about one hundred components at the gate level, or 305 components
at the transistor level. There is a tradeoff in finding the appropriate level of
modeling. The lower the level of modeling is, the more faithful to the reality
the model is, but the more difficult the verification process is. In [14] and
in this section, we choose to represent the memory at the latch level. The
advantage is to limit the number of components at a reasonable size, and to
have a “schematics” describing the architecture of the memory at this level,
which closely corresponds to the VHDL code automatically produced.

In order to better illustrate the complexity of this memory, we give in Fig-
ure 6.2 a graphical representation of the memory at the transistor level.

Inputs and Outputs. The SPSMALL memory circuit has several input ports
and one output port. The signals driven by input ports are:

• CK , the signal of the periodic clock;

28

Figure 6.2: Transistor representation of the SPSMALL memory

• D, the n-bit width signal representing the data to be stored;

• A, the log2(m)-bit width signal representing the address of an internal
memory location;

• WEN , the 1-bit width signal representing either a write or a read opera-
tion.

The signal driven by the output port is Q (of n-bit width). The data are
stored in a memory array composed of m×n memory points. A memory location
is a collection of n memory points. The write operation (WEN = 0 when CK
is rising) writes the value of D in the internal memory location selected by A,
and propagates D on output port Q. Such a memory is called a write-through
memory. The read operation (WEN = 1 when CK is rising) outputs on port Q
a copy of the data stored in the memory location selected by A.

Timing Parameters. We consider here the write operation. The environ-
ment for this operation is depicted in Figure 6.3.

The duration of the clock cycle is parameterized by THI (duration of the
high edge) and TLO (duration of the low edge). We study this operation for
two clock cycles. The parameter tWEN

setup corresponds to the time during which
the WEN signal should be stable before the beginning of the second clock cycle,
i.e., the second rise of CK . Similarly, the parameter tDsetup corresponds to the
time during which the D signal should be stable before the beginning of the
second clock cycle. Finally, the parameter TCK→Q corresponds to the maximal
time between the beginning of the second clock cycle and the rise of the output
signalQ. Besides these 5 parameters, the SPSMALL memory is characterized by
other parameters corresponding to the traversal delays of the gates and latches
of the circuit.

Each of those parameters is given a valuation. Parameter valuations corre-
sponding to the environment (viz., THI , TLO , tWEN

setup , tDsetup) are taken from the
datasheet of the memory given by ST-Microelectronics. Parameter valuations

29

CK

WEN

D

Q

THI TLO

tWEN
setup

tDsetup TCK→Q

Figure 6.3: Environment for the write operation of SPSMALL

corresponding to internal delays are synthesized as follows. In the BLUEBER-
RIES project, they were manually computed by electrical simulation for a single
configuration of the environment. In the VALMEM project, there are automat-
ically retrieved using the transistor netlist (see Figure 6.1 page 28): from all
possible inputs and outputs for a given component, only two values are kept,
namely the lower and the upper bounds of the traversal time taken on all the
possible configurations. Although this gives suitable results for the gates, the
bounds are sometimes far from each other for memory points, thus weakening
the precision of the verification. Those internal delays depend on the size of
the transistors and on the technology used. This is the value of those internal
delays which induces the possible values of the environment parameters.

Actually, this memory circuit has two different implementations for the same
architecture. In other words, for the same schematics of gates and latches, there
are two different sets of valuations of the parameters (i.e., environment parame-
ters and traversal delays). The first implementation (SP1) corresponds to a fast
component with a high power consumption, whereas the second implementation
(SP2) corresponds to a slower component with a lower power consumption.

6.2 A Short History

The SPSMALL memory was first studied in [10], where the authors verify this
memory component modeled by timed automata, using the real-time model
checkers HyTech and Uppaal. In particular, the authors take into account
the electrical propagation delays through gates and along wires. The authors
propose an abstraction of the memory sufficiently small to be (manually) de-
scribed in the model-checker Uppaal. Then they verify that, for some internal
timings given by ST-Microelectronics, the read and write access timings are
correct. Moreover, they verify that those access timings (viz., TCK→Q for the
write operation) are optimal by showing that the memory model has correct
behaviors with those timings, whereas incorrect behaviors occur when choosing
smaller timings. This is done by manually decreasing those timings, and check-
ing that the behavior remains correct. Note that the authors consider here only
integer timings, and do not investigate what is happening between two integer
values.

30

The SPSMALL memory was then studied in [15], where the authors propose
a high-level formalism, called Abstract Functional and Timing Graph (AFTG),
for describing the memory. This formalism allows in particular to combine
logical functionality and timing. After translation of the AFTG into the form
a timed automaton, the authors are able to compute the response times of the
modeled memory, and check their consistency with the values specified in the
datasheet. The authors then go one step further by showing not only that
the access timings are correct, but they also give the optimal input setup and
hold timings such that the access timings remain correct. This is done by
manually decreasing those input timings, and check that the access timings
remain correct. Note that the authors also consider here only integer timings,
and do not investigate what is happening between two integer values.

In [14], the authors then manually synthesize constraints on the setup and
internal timings seen as parameters guaranteeing that the response times to a
write command or a read command lie between certain bounds. Those con-
straints, derived using the SP1 implementation of the memory, can be immedi-
ately applied to other instances of the parameters to verify the behavior of other
versions of the memory, such as SP2. Contrarily to the first two approaches,
this work allows to consider dense (i.e., real) values for the timings, and give a
criterion of robustness to the timings of the memory.

Our aim is to automatically derive constraints on the internal timings seen as
parameters, such that the memory behaves well. We study in the forthcoming
sections several abstractions of the SPSMALL memory.

6.3 Inverse Method

6.3.1 Manually Abstracted Model

Description. We consider here a model manually abstracted, close to the
model considered in [15]. We recall the model considered in [15] in Figure 6.4
under the form of an AFTG. This model was abstracted in order to consider that
only one bit is stored. As a consequence, D becomes a 1-bit signal. Furthermore,
we consider only the portion of the circuit relevant to the write operation.

Figure 6.4: Abstract model of the SPSMALL memory (write operation)

Although the model we consider here is close to the model considered in [15],
a major difference with the model of [15] though is that delays are not only asso-

31

ciated to latches and wires anymore, but to latches, wires and gates, depending
on the components. This model has been designed partially automatically from
the VHDL code, using abstractions. This VHDL source code (available in [37])
was itself manually written.

This model, depicted in Figure 6.5, results in 9 components. Components
delayD and delayWEN are delays (i.e., the logical functionality is the identity),
components NOT 1, NOT 2 and NOT 3 are “NOT” gates, WEL is an “OR” gate,
and components delayWEN , latchD and net27 are latches. A further difference
with the model considered in [15] is that several components have been grouped
together in order to avoid the state-space explosion problem2. For example,
several delays associated to wires have been incorporated into the previous el-
ements: this is the case, e.g., of component wire5 from Figure 6.4, the delay
of which has been incorporated into the element latchD, resulting in only one
component (latchD) in our model depicted in Figure 6.5.

delayD

NOT1

NOT2

NOT3

delayWEN

latchD

net45

WEL
net27

D

CK

WEN

Q

Figure 6.5: PTAs modeling the write operation of SPSMALL

Each of the components depicted in Figure 6.5 (wires, gates, latches) is mod-
eled using a PTA. The translation of the gates into PTAs has been performed
automatically using a preliminary version of Vhdl2Ta. The other components
were manually written, and so was the composition of all components together.
The environment is also modeled using a PTA. This results in a model contain-
ing 10 automata, 10 clocks and 26 parameters corresponding to the traversal
delays of the components and the environment. Contrary to [15], the PTAs
modeling the gates are actually complete, in the sense that all possible config-
urations and transitions are modeled, not only the configurations that will be
met for a precise environment, as it was the case in [15]. This is in particular
due to the automatic generation of the PTAs.

Implementation SP1. We give below the set of parameter valuations (say, π1)
coming from the implementation SP1 and adapted to this first model (timings
are given in tens of pico-seconds).

2This model was actually first designed to be analyzed using HyTech, which can hardly
accept more than 10 components modeled by PTAs in parallel. However, analyzing this model
using Imitator II is performed easily in a couple of seconds.

32

d up q 0 = 21 d dn q 0 = 20 d up net27 = 0
d dn net27 = 0 d up d inta = 22 d dn d inta = 45
d up wela = 0 d dn wela = 22 d up net45a = 5

d dn net45a = 4 d up net13a = 19 d dn net13a = 13
d up net45 = 21 d dn net45 = 22 d up d int = 14
d dn d int = 18 d up en latchd = 28 d dn en latchd = 32

d up en latchwen = 5 d dn en latchwen = 4 d up wen h = 11
d dn wen h = 8 d up d h = 95 d dn d h = 66

THI = 45 TLO = 65 tDsetup = 108
tWEN
setup = 48

Constraint. Applying Imitator II to this model and the reference valua-
tion π1 (corresponding to the SP1 implementation), one synthesizes the follow-
ing constraint K1 after 32 iterations (31 reachable states with 30 transitions):

THI + d up net13a > d dn net13a + d dn wela + d up net27 + d up q 0
∧ TLO > d up en latchd + d up d int + d up d inta

∧ tDsetup + d dn en latchd > d up d h + d up d int + d up d inta

∧ tWEN
setup + d up d h > tDsetup + d dn wen h + d dn net45 + d dn net45a + d up wela

∧ TLO + d dn wen h > tWEN
setup + d up net13a + d up wela

∧ THI > d dn net13a + d dn wela

∧ TLO > tWEN
setup + d up en latchwen

∧ tDsetup > d up d h

∧ tDsetup ≥ TLO

∧ TLO + THI ≥ tDsetup

∧ d dn en latchwen ≥ 0
∧ d up en latchwen ≥ 0

∧ tWEN
setup + d up en latchd > TLO + d dn wen h

∧ d dn net13a > d dn en latchwen

∧ tWEN
setup + d up net13a > TLO

∧ d up en latchwen + d up net45 + d up net45a > d up en latchd
∧ d dn net13a + d dn wela > d dn en latchd
∧ d up wela ≥ 0

∧ tDsetup + d up en latchd + d dn d int + d dn d inta > TLO + d up d h
∧ d up en latchd + d up d int + d up d inta > d up en latchwen + d dn net45 + d dn net45a

∧ d up d h + d up d int + d up d inta > tDsetup + d dn net13a
∧ d dn net13a + d dn wela + d up net27 + d up q 0 > THI + d up en latchwen

Interpretation. The main advantage of the constraint synthesized by Imi-
tator II is that it allows to show the link between the internal timing delays
and the external values of the environment. Indeed, the timing parameters cor-
responding to the environment are constrained by the internal traversal delays
of the gates, wires and latches. Despite the complex form of the constraint
synthesized, it is possible to give an interpretation for some of the inequalities.

First of all, some inequalities are actually synthesized because of the environ-
ment that we consider. Inequalities such as tDsetup ≥ TLO or TLO + THI ≥ tDsetup

come from the way we modeled the environment, and are bound by the model
more than the system.

Moreover, other inequalities can be interpreted as a guarantee on the order
of the events. Recall that our inverse method guarantees the same trace sets
and, as a consequence, the same ordering of events. For example, the inequality
tWEN
setup + d up en latchd > TLO + d dn wen h implies that the (timed) path

through wire delayWEN is greater than the path through gate NOT 3. In other
words, the upper input of latch net45 must change before its left input.

33

Optimization. By replacing withinK1 every parameter except tDsetup and tWEN
setup

by its valuation as defined in π1, one gets the following constraint on tDsetup

and tWEN
setup :

46 < tWEN
setup < 54 ∧ 99 < tDsetup ≤ 110 ∧ tDsetup < tWEN

setup + 61

It is then interesting to minimize those setup timings. Indeed, if one minimizes
the setup duration of the input signals without changing the overall behavior
of the system, then this means that the memory can be inserted in a faster
environment where the input signals change faster. One can thus minimize tDsetup

and tWEN
setup according to K1 as follows:

tWEN
setup = 47 ∧ tDsetup = 100

By comparison with the original parameter valuation π1 (viz., tDsetup = 108

and tWEN
setup = 48), this results in a decreasing of the setup timing of signal D

(resp. WEN) of 7.4 % (resp. 2.1 %).
In [15], the authors compute a minimum value of 95 for tDsetup , and a mini-

mum value of 29 for tWEN
setup . As a consequence, our values may still be improved.

Improving those values for this model will be the purpose of Section 6.4.

6.3.2 Automatically Generated Model

This second version of the SPSMALL memory is a more complete model of the
memory, representing not only the portion of the memory corresponding to the
write operation, but the complete architecture. As in the previous section, this
model was abstracted in order to consider that only one bit is stored. As a
consequence, D becomes a 1-bit signal. We give in Figure 6.6 the schematics
from [15] depicting the wires, gates and latches under the form of an Abstract
Functional and Timing Graph, and corresponding to the complete architecture
of SPSMALL.

��
��
��
��

�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

pass

enable

wel

net13

16/15

passa

net13c

net13b
enable

net39

em

emaenable

d_inth

extenable

gate15

Ah

wenh

Dh

11/8
WEN

CK

A

D

95/66

2

5

8

11

13

16

22

10

net45

28 net45a

26 net13e

welb

net27 net27a

4.3/3.2

7

0/21.5

14/11

27

20.6/19.7

net13a

5.2/5.2

17

d_int

d_inta

net13f

row

rowa

23
net13d

15/12

22/45
5/4

gate17

5/2

4

3

20

19

18
23/30

Q

14/18 8.6/8.6

21/22

31/31

15 21

6

1

24 25

0/0

0/0

29
40/29

wela

6/6

9

14

12

or

nor

or

0/0

23/23

0/0

Figure 6.6: Abstract model of the SPSMALL memory

A further major difference with the manual model described in the previous
section is that the PTAs are here fully automatically generated. Recall that, in
the previous section, the PTAs were written in a partially manual way, and the

34

model was then simplified by grouping together several automata. Here, we first
manually wrote the VHDL code corresponding to the different elements of the
memory (which is much quicker and less error-prone than describing the PTAs),
and then automatically synthesized the PTAs using the tool Vhdl2Ta [12].
This leads to more parameters, including a slightly richer environment, involving
explicitly signal A, characterized by its setup value, viz., tAsetup . This technique
results in a model containing 28 automata, 28 clocks, 32 discrete variables and 62
parameters.

We give below the reference valuation π′1 of the full set of parameter corre-
sponding to this model:

delta0 reg mux output = 0 delta1 reg mux output = 0
∧ delta0 passa = 6 delta1 passa = 6
∧ delta0 reg mem point = 9 delta1 reg mem point = 9
∧ delta0 rowa = 23 delta1 rowa = 23
∧ delta0 d int h = 6 delta1 d int h = 6
∧ delta0 d inta = 45 delta1 d inta = 22
∧ delta0 ema = 0 delta1 ema = 0
∧ delta0 row = 0 delta1 row = 0
∧ delta0 welb = 0 delta1 welb = 0
∧ delta0 wela = 22 delta1 wela = 0
∧ delta0 net45a = 4 delta1 net45a = 5
∧ delta0 net13f = 31 delta1 net13f = 45
∧ delta0 net13e = 2 delta1 net13e = 5
∧ delta0 net13d = 2 delta1 net13d = 5
∧ delta0 net13a = 13 delta1 net13a = 19
∧ delta0 reg latch a = 31 delta1 reg latch a = 31
∧ delta0 reg latchwen = 22 delta1 reg latchwen = 21
∧ delta0 reg latchd = 18 delta1 reg latchd = 14
∧ delta0 en latchd = 32 delta1 en latchd = 28
∧ delta0 en latcha = 14 delta1 en latcha = 20
∧ delta0 en latchwen = 4 delta1 en latchwen = 5
∧ delta0 a h = 15 delta1 a h = 16
∧ delta0 wen h = 8 delta1 wen h = 11
∧ delta0 d h = 66 delta1 d h = 95
∧ delta0 q 0 = 20 delta1 q 0 = 21
∧ THI = 45 TLO = 65
∧ tDsetup = 108 tAsetup = 58
∧ tWEN

setup = 48

We now give below the set of parameter valuations corresponding to the
three input timings we are interested in optimize (timings are given in tens of
pico-seconds):

tDsetup = 108 tWEN
setup = 48 tAsetup = 58

Applying Imitator II to this model and this reference valuation π′1, one
synthesizes the following constraint:

THI + delta1 net13a > delta1 reg mux output+ delta0 wela+ delta0 net13a+ delta1 q 0
∧ THI > delta1 reg mux output+ delta0 wela+ delta0 net13a
∧ delta0 en latchd > delta1 ema+ delta0 row + delta0 net13f

35

∧ delta1 reg latchwen+ delta1 en latchd > delta1 row + delta1 net13f
∧ tWEN

setup + delta1 d h > tDsetup + delta0 net45a+ delta0 reg latchwen+ delta0 wen h

∧ delta1 d int h+ delta1 reg latchd+ delta1 d h > tDsetup + delta0 en latchwen

∧ delta1 d inta+ delta1 reg latchd+ delta1 d h > tDsetup + delta0 en latcha
∧ delta0 en latcha > delta0 welb+ delta0 net13a
∧ delta1 en latcha > delta1 welb+ delta1 net13a
∧ TLO > delta1 net45a+ delta1 reg latchwen+ delta1 en latchd
∧ delta1 reg latchd+ delta1 d h > tDsetup
∧ delta1 net13f > delta1 en latchd
∧ tWEN

setup + delta1 net13a > TLO

∧ TLO + delta0 en latchwen > delta1 rowa+ delta1 net13f
∧ delta1 net13e ≥ 0
∧ tWEN

setup + delta1 en latchd > TLO + delta0 wen h
∧ delta1 net45a ≥ 0
∧ delta0 net45a ≥ 0
∧ delta1 welb ≥ 0
∧ delta0 wela+ delta0 net13a > delta0 en latchd
∧ delta0 welb ≥ 0
∧ delta1 row ≥ 0
∧ delta1 reg mux output+ delta0 wela+ delta0 net13a+ delta1 q 0 > THI + delta1 net13e
∧ delta0 row ≥ 0
∧ delta1 ema ≥ 0
∧ delta1 reg mux output ≥ 0
∧ TLO + delta0 reg latchwen+ delta0 wen h > tWEN

setup + delta1 row + delta1 net13f

∧ tAsetup + delta0 wen h > tWEN
setup + delta1 a h

∧ tAsetup > delta1 reg latch a+ delta1 a h

∧ tAsetup + delta0 rowa+ delta0 net13f > THI + TLO

∧ TLO + delta1 a h > tAsetup + delta1 en latcha

∧ tDsetup + delta1 reg latch a+ delta1 a h > tAsetup + delta1 d h

∧ tDsetup + delta0 net13a > delta1 d int h+ delta1 reg latchd+ delta1 d h

∧ tDsetup + delta0 net13f > delta1 d inta+ delta1 reg latchd+ delta1 d h

∧ TLO > tAsetup + delta1 net13e

∧ tDsetup + delta1 rowa+ delta1 net13f > THI + 2 ∗ TLO

∧ THI + TLO > tWEN
setup + delta0 rowa+ delta0 net13f

∧ THI + TLO > delta1 reg latchd+ delta1 d h
∧ delta0 ema = 0
∧ delta1 welb = delta1 wela
∧ THI + TLO = tDsetup + delta0 net13e

∧ THI + TLO = tDsetup + delta0 net13d
∧ delta1 net13e = delta1 net13d
∧ delta1 net13e = delta1 en latchwen
∧ TLO + delta1 wen h = tWEN

setup + delta1 en latchd

We project below this constraint onto tAsetup , tDsetup and tWEN
setup .

tDsetup = 108 ∧ tWEN
setup = 48 ∧ 56 < tAsetup < 60

This constraint is an “interesting” (though unfortunate) example of con-
straint for which the output parameter domain is (almost) reduced to a single
point. Thus, it is not possible to optimize values of tDsetup and tWEN

setup according to
this constraint. Nevertheless, the cartography algorithm introduced in [6] will
allow us to overcome this shortcoming, and synthesize a dense set of parameters
allowing us to minimize those input timing parameters (see Section 6.4).

6.3.3 Larger Models

Two other versions of the SPSMALL memory have been considered. The first
one is actually the full SPSMALL memory with 1 memory point of 2 bits. The
model described as a network of PTAs has been automatically generated from
the VHDL code using Vhdl2Ta. The VHDL code itself was also automati-
cally generated from the transistor netlist given by ST-Microelectronics. This

36

chain of analysis has been performed in the framework of the VALMEM project
(see Figure 6.1 page 28). Unfortunately, because of the high size of this model
(101 automata, 101 clocks, 200 parameters, 130 discrete variables, which result
in more than 6000 lines of code described in the Imitator II syntax), Imita-
tor II does not succeed to synthesize a constraint after several hours.

The second version corresponds to a larger version of the SPSMALL memory,
with 3 memory points of 2 bits. Due to the even larger size of this model (more
than 130 automata), Imitator II does not succeed to synthesize a constraint
either.

Improving Imitator II so that it can synthesize constraints for such large
systems is the subject of future work. It is also interesting to note that non-
parametric analyses of these two models have been successfully performed using
the Uppaal model checker [31], allowing to verify several properties.

6.4 Behavioral Cartography

We will consider here two versions of the memory: the manually abstracted
model (described and analyzed using the inverse method in Section 6.3.1), and
the automatically generated model (described and analyzed in Section 6.3.2).

6.4.1 Manually Abstracted Model

We first consider here the model manually abstracted, described in Section 6.3.1.
We are interested in minimizing the values of the setup timing parameters, viz.,
tDsetup and tWEN

setup , so that they still verify the following good property mentioned
in [15]: “the response time of the memory must be smaller than 56” (recall
that units are given in tens of ps). This response time corresponds to the
value TCK→Q depicted in Figure 6.3 page 30, and represents the time between
the second rise of input signal CK and the rise of the output signal Q. Note
that this good property does not strictly speaking correspond to a property on
traces. As a consequence, we make use of an observer (as in [10] and [15]), i.e.,
an additional PTA which waits for the rise of Q and, depending on the time
of this action, goes into a good location or into a bad location. Locations are
observable within traces, thus this property is now a property on traces.

We perform a behavioral cartography of the SPSMALL memory, for the
following V0:

tDsetup ∈ [65; 110] ∧ tWEN
setup ∈ [0; 66].

The other parameters are instantiated like in π1. We give in Figure 6.7 the
cartography of the SPSMALL memory, as automatically output by Imitator II.
The dashed rectangle corresponds to V0. The red zone above tWEN

setup is infinite,
and corresponds to a bad behavior.

Recall that each different colored zone corresponds to a different behavior3.
Note that the cartography actually contains a few holes, i.e., zones (depicted in
white) covered by no tile. We manually “filled” those zones by calling again the
inverse method on one point in each zone, which allowed us to cover the whole
rectangle V0.

3Recall that this cartography has been automatically output by Imitator II which can only
represent a few colors (due to the use of an external plot tool). As a consequence, different
zones depicted using the same color do not necessarily have the same trace set.

37

Figure 6.7: Cartography of the SPSMALL memory

We then partition the tiles into good and bad. This partition is depicted
under a graphical form in Figure 6.8, where the light red (resp. dark blue) zone
corresponds to the bad (resp. good) values of the parameters. After partition-
ing the tiles into good and bad, one is able to infer the following constraint
corresponding to the set of parameters for which the memory circuit behaves
well:

99 < tDsetup ≤ 110 ∧ 30 < tWEN
setup ≤ 65

This constraint corresponds to the maximal constraint solving the good parame-
ters problem for the SPSMALL memory within V0, because the whole rectangle
has been covered by the tiles.

tDsetup

tWEN
setup

50 60 70 80 90 100 110 120

00

10

20

30

40

50

60

70

80

Figure 6.8: Cartography of the SPSMALL memory (after partition)

Due to the way we modeled the system (in particular the environment),
values such that tDsetup < 65 or tDsetup > 110 do not correspond to any proper
behavior. As a consequence, the constraint synthesized corresponds to the max-
imal constraint for the whole parameter space of this model.

38

One can thus minimize tDsetup and tWEN
setup according to the cartography as

follows:
tDsetup = 100 ∧ tWEN

setup = 31

By comparison with the original datasheet π1 (viz., tDsetup = 108 and tWEN
setup =

48), this results in a decreasing of the setup timing of signal D of 7.4 %, and a
decreasing of the setup timing of signal WEN of 35.4 %.

Comparison with Other Methods. In [15], the authors synthesize a min-
imum for these setup timings, by iteratively decreasing the setup timings until
the system does not behave well anymore, i.e., until the response time is not
guaranteed anymore. When compared to our approach, the approach of [15] has
the following limitation: they test only the integer points, and do not have any
guarantee for the dense set of parameters between two integer points. In [15], a
minimum value of 95 is given for tDsetup . However, our approach indicates that
the value of 95 corresponds to a bad behavior, and therefore shows a discrep-
ancy between our respective models. A minimum value of 29 is given for tWEN

setup ,
which is slightly smaller as ours. Again, this indicates a discrepancy between
our respective models.

6.4.2 Automatically Generated Model

We now consider the model automatically generated, described in Section 6.3.2.
As in the previous section, we are interested in minimizing the values of the
setup timing parameters, viz., tDsetup and tWEN

setup , so that they still verify the
following good property mentioned in [15]: “the response time of the memory
must be smaller than 56” (recall that units are given in dozens of ps). Again,
we make use of an observer in order to transform this property into a property
on traces.

We perform a behavioral cartography of the SPSMALL memory, for the
following V0:

tDsetup ∈ [89; 98] ∧ tWEN
setup ∈ [25; 34].

Due to the complexity of this model, note that the rectangle V0 is not as large
as for the manual model. We give in Figure 6.9 the cartography of the SPS-
MALL memory, as automatically output by Imitator II. The dashed rectangle
corresponds to V0.

Recall that each different colored zone corresponds to a different behavior.
This cartography, though interesting, contains many holes, i.e., zones (depicted
in white) covered by no tile.

We then chose to launch again the analysis using a tighter grid, viz., by
calling the inverse method on points multiple of 1/3 instead of integer points.
This corresponds to the algorithm BC ′ sketched in [6]. The reason for the
choice of 1/3 is that, with such a step, one is sure to cover any tile delimited by
integer points. This is not the case of a step of 1 (or even 1/2), because tiles
delimited by integer points may exclude those integer points in the case of strict
inequalities.

This second cartography of the SPSMALL, with step 1/3, is given in Fig-
ure 6.10. This cartography is this time successful in the sense that the whole
bounded parameter domain V0 is covered by the tiles. Furthermore, a significant
part of the parametric space outside V0 is also covered.

39

Figure 6.9: Cartography of the SPSMALL memory (generated model)

Figure 6.10: Cartography of the SPSMALL memory (full coverage)

We then partition the tiles into good and bad. This partition is depicted
under a graphical form in Figure 6.11, where the light red (resp. dark blue)
zone corresponds to the bad (resp. good) values of the parameters. From this
partition, one is able to infer the following constraint corresponding to the set
of parameters within V0 for which the memory circuit behaves well:

96 ≤ tDsetup ≤ 98 ∧ 29 ≤ tWEN
setup ≤ 34

This constraint corresponds to the maximal constraint solving the good parame-
ters problem for the SPSMALL memory within V0, because the whole rectangle
has been covered by the tiles. Also note that the cartography gives further
information outside V0.

One can thus minimize tDsetup and tWEN
setup according to the cartography as

follows:
tDsetup = 96 ∧ tWEN

setup = 29

40

tDsetup

tWEN
setup

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

23

24

25

26

27

28

29

30

31

32

33

34

35

Figure 6.11: Cartography of the generated model of the SPSMALL memory
(after partition)

By comparison with the original valuation for tDsetup and tWEN
setup (viz., tDsetup = 108

and tWEN
setup = 48), this results in a decreasing of the setup timing of signal D

of 11.1 %, and a decreasing of the setup timing of signal WEN of 39.6 %. Such an
important decreasing of some of the values of the environment show the interest
of the cartography algorithm for the optimization of timing parameters.

Comparison with Other Methods. Recall that, in [15], the authors also
synthesize a minimum for these setup timings, by iteratively decreasing the setup
timings until the system does not behave well anymore. In [15], a minimum
value of 95 is given for tDsetup . However, our approach indicates that the value
of 95 corresponds to a bad behavior, and therefore shows a slight discrepancy
between our respective models. Also observe that the authors of [15] find a
minimum value of 29 for tWEN

setup , which is exactly the same as ours. This shows
the interest of our method, which computes a constraint allowing to retrieve fully
automatically the (manually computed) results from [15], with the advantages
that we considered the full model of the memory (not only the write operation),
that we give relations between the parameters (under the form of a constraint),
and above all that we now give conditions of correctness on the dense space of
parameters.

Due to the high size of this model (viz., an NPTA composed of 28 PTA
containing 28 clocks, 32 discrete variables and 62 parameters) and to the prac-
tical interest of the constraint output, this case study can be considered as an
extremely interesting application of Imitator II.

Remark 6.1 In [15], values corresponding to simulation are given. Simulation
is a technique based on an exact virtual version of the memory. It is usu-
ally extremely costly to perform (and is suitable for only one environment) but
its results can be considered as exact for this particular case. For this case
study, a simulation has been performed using the entire system (i.e., without
cutting away some parts of the memory), for some (punctual) values of the

41

input timings. For this environment and those values of the parameters, ac-
cording to [15], the minimum possible value computed by simulation for tWEN

setup

is 36, and the minimum possible value for tDsetup is 95. For tDsetup, this means
that the value we compute is suitable, because it is greater than the minimum
possible value. Moreover, it is almost the optimal value, since our method allows
to minimize tDsetup to 96, whereas the minimum value is 95. For tWEN

setup , how-
ever, our value is strictly smaller than the value computed using the simulation,
which represents a minimum. This indicates that (at least) one delay assigned
to a gate of our model (which has been automatically computed in the framework
of the VALMEM project) is too approximative. Note that this limitation is of
course not due to the methods developed here, but to the way the PTAs and the
reference valuation were automatically generated, which is completely beyond the
scope of this work.

42

Chapter 7

CSMA/CD Protocol

7.1 Description

Consider the CSMA/CD protocol, as studied in the context of probabilistic
timed automata in [30]. We consider the case when there are two stations 1
and 2 trying to send data at the same time. The overall model is given by
the parallel composition of three probabilistic timed automata representing the
medium and two stations trying to send data.

INIT
true

TRANSMIT
true

COLLIDE
y ≤ δ

send1

y := 0

send2

y := 0

end1

end2

y ≤ δ
send1

y := 0

y ≤ δ
send2

y := 0

y ≥ δ
busy1

y ≥ δ
busy2

cd

Figure 7.1: CSMA/CD Medium

The probabilistic timed automaton representing the medium is given in Fig-
ure 7.1. The medium is initially ready to accept data from any station (event
send1 or send2). Once a station, say 1, starts sending its data there is an inter-
val of time (at most δ), representing the time it takes for a signal to propagate
between the stations. In this interval the medium can accept data from station 2
(resulting in a collision). After this interval, if station 2 tries to send data it
will get the busy signal (busy2). When a collision occurs, there is a delay (again
at most δ) before the stations realize there has been a collision, after which the
medium will become free (event cd). If the stations do not collide, then when
station 1 finishes sending its data (event end1) the medium becomes idle.

The probabilistic timed automaton representing a station i (i = 1, 2) is given
in Figure 7.2. Station i starts by sending its data. If there is no collision, then,

43

after λ time units, the station finishes sending its data (event end i). On the
other hand, if there is a collision (event cd), the station attempts to retransmit
the packet, where the scheduling of the retransmission is determined by a trun-
cated binary exponential backoff process. The delay before retransmitting is an
integer number of time slots (each of length slot). The number of slots that sta-
tion i waits after the nth transmission failure is chosen as a uniformly distributed
random integer in the range: 0, 1, 2, . . . , 2bci+1 − 1, where bci = min(n, bcmax),
and bcmax is a fixed upper bound for bci (initially: bci = n = 0). This random
choice is depicted in Figure 7.2 by the assignment backoff i := RAND(bci)∗slot .
Once this time has elapsed, if the medium appears free the station resends the
data (event send i), while if the medium is sensed busy (event busy i) the station
repeats this process.

We consider in the following that bcmax is a constant equal to 1, and that δ,
λ and slot are parameters. The reference valuation for these parameters, taken
from the IEEE standard 802.3 for 10 Mbps Ethernet, is: δ = 26µ s, λ = 808µ s,
and slot = 2δ = 52µ s.

The method for inferring a constraint K0 on the parameters, which is satis-
fied by the reference valuation and in which the behavior of the model remains
the same, consists in transforming the system into a non-probabilistic parametric
timed automaton. We replace the random choice backoff i := RAND(bci)∗ slot
with a non-deterministic choice, i.e., a set of 2bci+1 transitions associated with
assignments of the form backoff i := j ∗ slot , for j = 0, 1, 2, . . . , 2bci+1 − 1.

In the case where bcmax = 1, the application of the inverse method to
the non-probabilistic parametric timed automaton infers for K0 the following
constraint: (0 < δ < slot) ∧ (15slot < λ < 16slot).

In particular, the minimum and maximum probabilities for a message sent
by a station to be transmitted (i.e., to reach the location DONE) after having
collided exactly k times with another message (action cd) are the same under
the reference valuation and another parameter valuation satisfying K0. This
has two practical implications. Firstly, in order to compute the aforementioned
minimum and maximum probabilities for δ = 26, λ = 808, slot = 52, it suffices
to compute the minimum and maximum probabilities for δ = 1, λ = 31, slot = 2
(because both valuations satisfy the constraint (0 < δ < slot) ∧ (15slot <
λ < 16slot) synthesized by the inverse method). Note that the valuation
δ = 26, λ = 808, slot = 52 results in a model with 5240 states using the discrete-
time semantics construction, whereas the valuation δ = 1, λ = 31, slot = 2
results in a model with 282 states. The second practical implication concerns
the case in which the system designer wishes to understand the behavior of
the system, in terms of minimum and maximum probabilities, for a number of
parameter valuations. The approach of obtaining such information by chang-
ing manually the timing parameters and repeating model-checking analysis is
potentially time consuming. Instead, the application of the inverse method
shows that the minimum and maximum probabilities remain invariant for all
parameter valuations satisfying the constraint K0.

7.2 Inverse Method

We now synthesize constraints for various reference valuations.

44

TRANSMIT
xi ≤ λ

INIT
true

DONE
true

WAIT
xi ≤ backoff i

COLLIDE
xi = 0

sendi

xi := 0
xi = λ
endi

cd
xi := 0

bci := min(bci + 1, bcmax)

xi = backoff i
sendi

xi := 0

xi = backoff i
busyi
xi := 0

bci := min(bci + 1, bcmax)

backoff i := RAND(bci) ∗ slot

Figure 7.2: CSMA/CD Station i

7.2.1 First Valuation

We consider the following reference valuation π0 taken from the IEEE standard
802.3 for 10 Mbps Ethernet:

λ = 808µ s slot = 52µ s δ = 26µ s.

The following constraint is synthesized after 19 iterations in 1.01 seconds
(219 reachable states with 342 transitions):

16 ∗ slot > λ ∧ slot > σ ∧ σ > 0 ∧ λ > 15 ∗ slot

7.2.2 Second Valuation

We consider the following valuation (Prism):
λ = 96 σ = 3 slot = 6

The following constraint is synthesized after 21 iterations in 1.17 seconds
(247 reachable states with 384 transitions):

16 ∗ slot = λ ∧ σ > 0 ∧ λ > 16 ∗ σ

45

Chapter 8

Root Contention Protocol

8.1 Presentation

This case study concerns the Root Contention Protocol of the IEEE 1394
(“FireWire”) High Performance Serial Bus, considered in the parametric frame-
work in [19, 26], and in the probabilistic framework in [29]. As described in [26],
this protocol is part of a leader election protocol in the physical layer of the
IEEE 1394 standard, which is used to break symmetry between two nodes con-
tending to be the root of a tree, spanned in the network technology. The protocol
consists in first drawing a random number (0 or 1), then waiting for some time
according to the result drawn, followed by the sending of a message to the con-
tending neighbor. This is repeated by both nodes until one of them receives a
message before sending one, at which point the root is appointed.

We consider the following five timing parameters:

• f min (resp. f max) gives the lower (resp. upper) bound to the waiting
time of a node that has drawn 1;

• s min (resp. s max) gives the lower (resp. upper) bound to the waiting
time of a node that has drawn 0;

• delay indicates the maximum delay of signals sent between the two con-
tending nodes.

Those timing parameters are bound by the following implicit constraint:

f min ≤ f max ∧ s min ≤ s max
The model we consider is a nonprobabilistic version of the probabilistic given

in [29, 33], where the probabilistic distributions have been replaced with non-
determinism. We give in Figure 8.1 the PTA model of node i, and in Figure 8.2
the PTA model of wire i. We make use in Figure 8.1 of the notion of urgent
locations: the semantics is that the time cannot pass inside these locations, and
one must take a transition immediately after entering it. This is only syntactic
sugar which is equivalent to the use of one more clock that is reset when entering
the location, and that must be equal to 0 when leaving the location through
any transition. Moreover, in both Figure 8.1 and Figure 8.2, we exceptionally
integrate the invariant in the location, for the sake of readability. As usual, a
location without any invariant is considered to have an invariant equal to true.

46

ROOT CONT
urgent

ROOT IDLE
urgent

REC REQ FAST
xi ≤ f max

A ROOT
urgent

REC IDLE FAST
xi ≤ f max

SNT REC

REC REQ SLOW
xi ≤ s max

REC IDLE SLOW
xi ≤ s max

ROOT
A CHILD
urgent

CHILD

rec idle i

snd idle i
xi := 0

snd idle i
xi := 0

rec req i snd idle i
xi := 0

snd idle i
xi := 0

rec idle i

xi ≥ f min
snd ack i

root i

rec req i

xi ≥ f min
snd req i

rec ack i

rec req i

rec idle i

xi ≥ s min
snd ack i

rec req i

xi ≥ s min
snd req i

child i

Figure 8.1: PTA modeling node i in the Root Contention Protocol

8.2 Inverse Method

We synthesize here constraints for various reference valuations.

IEEE Reference Valuation. We first aim at synthesizing a constraint for
the following reference valuation π0, which corresponds to the IEEE standard
with wire length near to the maximum possible according to [26] (timings are
given in ns):

f min = 760 f max = 850 delay = 360
s min = 1590 s max = 1670

By applying Imitator II to this model and the reference valuation π0, we
synthesize the following constraint K0:

s min > 2 ∗ delay + f max ∧ delay ≥ 0 ∧ f min > 2 ∗ delay

Observe that this constraint is exactly the same as the one synthesized in [26].
This constraint is also very similar to the one synthesized in [19]; the only
difference is that our constraint is larger, because we do not constraint delay to
be strictly positive.

We give in Figure 8.3 the trace set of the protocol under any π |= K0, as
automatically output by Imitator II.

The main interest brought by the synthesis of this constraint is that it gives
a criterion of robustness to the system. Similarly, it shows that this protocol is
also correct for values of the parameters other than the ones given by the IEEE
reference.

Further Valuations. We also get the same constraint for the following ref-
erence valuation:

f min = 76, f max = 85, s min = 159, s max = 167, and delay = 36.
And also for:
f min = 76, f max = 85, s min = 159, s max = 167, and delay = 30.

47

EMPTY
REC ACK IDLE

x ≤ delay
REC IDLE ACK

x ≤ delay
REC REQ
y ≤ delay

REC ACK
y ≤ delay

REC REQ ACK
x ≤ delay

REC ACK REQ
x ≤ delay

REC IDLE
y ≤ delay

REC IDLE REQ
x ≤ delay

REC REQ IDLE
x ≤ delay

snd ack i
x, y := 0

snd idle i

snd req i
x, y := 0

rec ack j

snd idle i

rec idle j

snd ack i

rec req j

snd idle i
y := 0

snd ack i

snd req i

snd idle i
y := 0

snd req i
y := 0

rec ack j

snd ack i

rec req j

snd req i

rec ack j

snd idle i

snd ack i
y := 0

snd req i
y := 0

rec idle j

snd req i

rec idle j

snd idle i

rec req j

Figure 8.2: PTA modeling wire i in the Root Contention Protocol

And also for:
f min = 76, f max = 85, s min = 159, s max = 167, and delay = 3.

8.3 Cartography

We compute a cartography of the Root Contention Protocol using the following
rectangle V0:

s min ∈ [140, 200] s max ∈ [140, 200] delay ∈ [1, 50].

The two other parameters remain constant, i.e., f min = 76 and f max =
85. Note that, in order to reduce the number of points to be covered by the
algorithm, we divided by 10 the reference valuation π0 given above. This is
equivalent to calling the inverse method only on the integer points which are
multiples of 10 instead of on all integer points.

48

Figure 8.3: Trace set of the RCP output by Imitator II

Using Imitator II, we compute the cartography given in Figure 8.4. For
the sake of clarity, we project onto delay and s min. In each tile, the parameter
s max is only bound by the implicit constraint s min ≤ s max .

It is interesting to note that the zones are delimited by two sets of lines, all
centered on two different points. Those lines are depicted in Figure 8.5.

Tiles 1 and 6 are infinite towards dimension s min, and all tiles are infi-
nite towards dimension s max . Moreover, although all the integer valuations
within V0 are covered (from the algorithm), the real-valued part of V0 is not
fully covered, because there are some “holes” (real-valued zones without integer
valuations) in the lower right corner. An example of point which not covered
by the cartography is delay = 50, s min = 140.4 and s max = 141.

Note that the computation of the whole set of reachable states is not possible
in this example, because there exist traces of unbounded length (with incompa-
rable constraints). Also note that it would not be possible to compute all the
tiles outside V0, because it can be shown that there exists an infinite number of
tiles for this system.

8.4 Partition According to Properties

First property. We are first interested in computing the minimum probabil-
ity pr1 of satisfying the property that a leader is elected after three rounds or
less. Using Prism, we compute pr1 = 0.75 for tile 1, pr1 = 0.625 for tiles 2, 3
and 6, and pr1 = 0.5 for the other tiles.

Let us suppose that a tile is good when the probability pr1 ≥ 0.7, and bad
otherwise. In this case, the good subspace is only made of tile 1, depicted in

49

1

2

3

4

5

6

7

9

11

12
8

10
13

14

15

16
17

18

19

delay

s min

00 10 20 30 40 50 60 70 80 90 100

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

Figure 8.4: Behavioral cartography of the Root Contention Protocol according
to delay and s min

blue in Figure 8.6. Note that, in Figure 8.6, two tiles with the same color have
the same probability pr1.

Second property. We are now interested in computing the minimum proba-
bility pr2 of satisfying the property that a leader is elected after five rounds or
less. We do not need to compute the cartography again, but only the value of
pr2 for one valuation in each tile. We get pr2 = 0.936 for tile 1, pr2 = 0.789 for
tiles 2 and 3, pr2 = 0.664 for tile 6, and pr2 = 0.5 for the other tiles.

Let us suppose that a tile is good when the probability pr2 ≥ 0.7, and bad
otherwise. In this case, the good subspace is made of tiles 1, 2 and 3. (For the
sake of concision, we do not give the new coloring of the cartography given in
Figure 8.4.)

50

1

2

3

4

5

6

7

9

11

12
8

10
13

14

15

16
17

18

19

delay

s min

00 10 20 30 40 50 60 70 80 90 100

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

Figure 8.5: Behavioral cartography of the Root Contention Protocol according
to delay and s min (with lines)

51

1

2

3

4

5

6

7

9

11

12
8

10
13

14

15

16
17

18

19

delay

s min

00 10 20 30 40 50 60 70 80 90 100

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

Figure 8.6: Behavioral cartography of the Root Contention Protocol according
to delay and s min, colored according to P≤3

52

Chapter 9

Bounded Retransmission
Protocol

9.1 Description

We study here the Bounded Retransmission Protocol described and modeled
using timed automata in [20]. As said in [20], this protocol, used in one of
Philips’ products, is based on the well-known alternating bit protocol but is
restricted to a bounded number of retransmissions of a chunk, i.e., part of a
file. So, eventual delivery is not guaranteed and the protocol may abort the
file transfer. Timers are involved in order to detect the loss of chunks and the
abortion of transmission.

The protocol consists of a sender equipped with a timer, and a receiver
equipped with another timer, which exchange data via two unreliable (lossy)
channels.

The model considered here is a slightly simplified version of the model of [20].
In particular, a loop in the model of the sender has been discarded, implying
the fact that the sender tries to send only one file.

As in [20], we consider the following five timing parameters for the model.

• N stands for the number of chunks of a file;

• SYNC corresponds to the delay added after a failure in order to assure
that the sender does not start transmitting a new file before the receiver
has properly reacted to the failure;

• T1 corresponds to the time-out of the sender for initiating a retransmission
when the sender has not received an acknowledgment from the receiver;

• TR corresponds to the time-out of the receiver for indicating failure when
it has not received the last chunk of a file

• TD corresponds to the maximum delay in communication channels.

We consider the following valuation π0 of the parameters of the system:

MAX = 2 N = 2 TD = 1
T1 = 3 TR = 16 SYNC = 17

53

We consider a slightly simplified model of the protocol, where the system
stops when one file has been successfully sent.

9.2 Synthesis of Constraints

Using Imitator II applied to the PTA A modeling the system and the reference
valuation π0, the following constraint K0 is computed:

N = 2 ∧ MAX = 2
∧ TR + TD > 5 ∗ T1 ∧ TR ≥ 3 ∗ TD + 4 ∗ T1
∧ 2 ∗ TD + 5 ∗ T1 > TR ∧ SYNC + TD ≥ TR
∧ T1 > 2 ∗ TD

The corresponding trace set, automatically synthesized by Imitator II, is
given in Figure 9.1. As for the Root Contention Protocol, the main interest
brought by the synthesis of this constraint is that it gives a criterion of robust-
ness to the system. Similarly, it shows that this protocol is also correct for values
of the parameters other than the ones given by the reference valuation π0.

Figure 9.1: Trace set of the BRP automatically output by Imitator II

Comparison with other methods. In [20], the authors synthesize the fol-
lowing (non-linear) constraints guaranteeing that (1) premature time-outs are
not possible, and (2) sender and receiver resynchronize after an abort.

Z : T1 > 2 ∗ TD ∧ SYNC ≥ TR ≥ 2 ∗MAX ∗ T1 + 3 ∗ TD

Note that, since π0 |= Z, our constraint K0 also guarantees that the assumptions
of [20] are satisfied. It can be shown that our constraint K0 is incomparable
with this constraint Z.

The analysis of the complete model of the protocol (as described in [20]) has
also been considered in [36] using the variant IM⊆ implemented in Imitator II.
The following constraint K⊆ is computed using the same reference valuation π0:

54

N = 2 ∧ MAX = 2
∧ TR + TD ≥ 5 ∗ T1 ∧ TR ≥ 3 ∗ TD + 4 ∗ T1
∧ 2 ∗ TD + 5 ∗ T1 ≥ TR ∧ T1 ≥ 2 ∗ TD
∧ SYNC + T1 ≥ TR + TD

It can be shown that this constraint K⊆ is incomparable both with our
constraint K0, and with the constraint Z of [20].

55

Chapter 10

IEEE 802.11 Wireless Local
Area Network Protocol

10.1 Description

We also applied our inverse method algorithm to the IEEE 802.11 Wireless
Local Area Network Protocol.

In order to apply the inverse method, we have to use for this chapter the
first version of Imitator [7], and not Imitator II. Indeed, the new version
Imitator II does not allow the use of urgent actions (or “as soon as possible”
actions), i.e., actions that the system must take as soon as the guards of the
different transitions synchronizing on this action are all verified. On the con-
trary, Imitator is based on HyTech, which allows the use of such actions. The
implementation of this feature to Imitator II is the subject of future work.

We consider here a model with a maximal exponential backoff of BOFF = 1,
whereas the model given in [33, 28] considers that BOFF = 6. The inverse
method and its implementations Imitator and Imitator II are in general not
much sensitive to the size of the constants of the model. However, for this
particular protocol, the waiting time before a retransmission is modeled by a
nondeterministic choice between 2BOFF transitions leading to 2BOFF different
loops. Each of those loops can be repeated up to 2BOFF ∗ASLOTTIME times,
thus leading to a dramatic explosion of the number of states. This, together with
the fact that Imitator is by far less efficient than Imitator II (see comparison
in Table 12.1 page 61), explains the much higher computation time (7 hours
instead of a few seconds for the two other case studies) of K0. For bigger values
of BOFF , Imitator does not succeed to synthesize a constraint.

We also consider a maximal number of collisions of MAXCOL = 3.

10.2 Inverse Method

10.2.1 First Valuation

We first consider the following valuation π0 of the parameters, which is the
original (non rescaled) valuation from the IEEE standard and considered in [33,

56

28]1 (timings are given in µ s):
ACK = 205 ASLOTTIME = 50 BOFF = 1 DIFS = 128

MAXCOL = 3 SIFS = 28 TTMIN = 224 TTMAX = 15717
VULN = 48

Taking a parametric timed automaton version of the model and the pa-
rameter valuation π0 as input, the tool Imitator computes the following con-
straint K0 after 78 iterations and 30134 seconds (790 reachable states):

SIFS + ACK < 6ASLOTTIME ∧ 0 < VULN
∧ DIFS < 3ASLOTTIME ∧ 0 < SIFS
∧ 2ASLOTTIME < DIFS ∧ 0 < ACK
∧ VULN < ASLOTTIME ∧ SIFS < DIFS
∧ 5ASLOTTIME < VULN + DIFS + TTMIN ∧ TTMIN ≤ TTMAX
∧ 6ASLOTTIME = ACKTO

10.2.2 Second Valuation

We consider the following rescaled valuation π1 of the parameters given in [33,
28]. These parameters were obtained by rescaling the original timings from the
IEEE 802.11 standard by 50µ s; because not all timing values are multiples of
50µ s, it was then necessary to round some constants either up or down. Note
also that, in [28], BOFF = 6 and TTMAX = 315.

ACK = 4 ASLOTTIME = 1 BOFF = 1 DIFS = 3
MAXCOL = 3 SIFS = 1 TTMIN = 4 TTMAX = 7

VULN = 1
Taking a parametric timed automaton version of the model and the pa-

rameter valuation π0 as input, the tool Imitator computes the following con-
straint K0 after 78 iterations and 67584 seconds (1572 reachable states):

6ASLOTTIME = ACKTO ∧ 0 < SIFS
∧ 3ASLOTTIME = DIFS ∧ SIFS < 3ASLOTTIME
∧ ASLOTTIME = VULN ∧ 0 < ASLOTTIME
∧ ASLOTTIME < TTMIN ∧ 0 < ACK
∧ SIFS + ACK < 6ASLOTTIME ∧ TTMIN ≤ TTMAX

10.2.3 Bigger Valuations

For BOFF = 1 and MAXCOL = 4, the inverse method does not terminate (out
of memory).

1Note however that, in [28], BOFF = 6.

57

Chapter 11

A Networked Automation
System

In this section, we consider a Networked Automation System studied in the
framework of the SIMOP project of Institut Farman (Fédération de Recherche
CNRS, FR3311). This project is a joint work between two laboratories of École
Normale Supérieure de Cachan, namely LSV and LURPA. The goal of this
project was to define several good behavior zones for a distributed control sys-
tem, using different techniques of timed verification.

11.1 Description of the Model

We are here interested in Networked Automation Systems (NAS). NAS with
Ethernet-based fieldbuses (instead of traditional fieldbuses) are more and more
often used in the industry, even for critical systems such as chemical or power
plants. To ensure the reliability of such systems, not only the functionalities
but also the timing performances must be validated.

switched
ethernet-based

network
Controllers

Remote
Inputs
outputs

Controlled
plant

input

output

Figure 11.1: Example of Networked Automation Systems (NAS)

The main features of the physical components of these architectures is de-
scribed in Figure 11.1 (see, e.g., [34, 21]):

58

• Programmable Logical Controllers (PLCs) are modular. Within each con-
troller, a calculus processor runs a program cyclically, while a communica-
tion processor performs a periodic scanning of some Remote Input-Output
Modules (RIOMs), termed I/O scanning. It matters to underline that the
cycles of these two processors are asynchronous, data exchanges being
made by means of a shared memory.

• The network includes Ethernet switches and Ethernet links and is dedi-
cated only to communications between the PLCs and RIOMs; there is no
other additional traffic.

• Inputs and outputs from/to the plant are gathered in RIOMs which are
directly connected to the network. One RIOM may be shared by several
PLCs.

In the following we will use a simple example of NAS, which includes an
item of each component: one controller, one Ethernet switch, one RIOM and no
particular behavior for the plant. Only one input signal is considered, producing
a causal output signal after processing into the controller. Moreover, it will be
assumed that there is no frame loss, which is a quite reasonable assumption for
this kind of switched industrial Ethernet solution in the concerned operation
conditions.

The full description of the model is available in [3].
In the design and the development process of NAS, engineers have to se-

lect and setup components that involves delay parameters. When setting the
parameters, the engineer must preserve the expected performance of the NAS,
i.e., the response time between the input signal and the output signal. This re-
sponse time should remain below a maximum limit to get an assessed NAS. The
assessment of a NAS is difficult because, for each valuation of the parameters
and each input signal, the response time may be different.

The aim of the SIMOP project [3] is to propose an approach able to assist
engineers to design, setup and/or reconfigure Networked Automation Systems,
by synthesizing values for the parameters of the NAS guaranteeing a correct
response time.

11.2 Definition of a Zone of Good Behavior

The system is modeled by a PTA A containing 7 parameters COMct , COMd ,
NETd , PLCct , COMct , RIOd , SIGmrt , corresponding to various timing delays
of the system (see the description of the model in [3]). We consider the following
reference valuation π0 of the parameters

PLCct = 600 COMct = 500 SIGmrt = 2071 PLCmtt = 100
RIOd = 70 COMd = 25 NETd = 10

It can be shown (e.g., using the model checker Uppaal [31] for timed au-
tomata) that the system under π0 behaves well (this notion of good behavior
corresponds here to the response time of the system being under a given value).
The goal of the SIMOP project is to find other valuations of the parameters
with a good behavior.

Using our program Imitator II applied to A and π0, we infer the following
constraint K0 defining a good functioning zone.

59

4 ∗ COMct ≥ NETd + COMd + 3 ∗ PLCct + PLCmtt
∧ 4 ∗ COMct ≥ RIOd + 2 ∗NETd + 3 ∗ PLCct + PLCmtt
∧ PLCct ≥ COMct + PLCmtt
∧ PLCct < RIOd + NETd + COMct + COMd
∧ SIGmrt > RIOd + 4 ∗ COMct
∧ NETd > 0
∧ PLCmtt > NETd + COMd
∧ PLCmtt > RIOd + 2 ∗NETd
∧ 4 ∗ COMct < RIOd + NETd + COMd + 3 ∗ PLCct + PLCmtt

Note that this constraint was synthesized using Imitator II with the “inclu-
sion” mode. This mode is the implementation of the variant IM⊆ of IM , which
allows to terminate earlier by modifying the fixpoint of the algorithm (see [9]).
This good behavior of the NAS is modeled by an observer which checks that the
response time is correct, and then goes into a good or a bad state, depending on
the response time. As a consequence, although this variant does not guarantee
the equality of trace sets, the system under any π |= K0 will not contain any
bad state because this variant preserves the non-reachability.

By applying Imitator II in the standard mode, the analysis does not ter-
minate, due to the explosion of the state space.

11.3 Comparison with Other Methods

In [3], we consider two different approaches: our inverse method, synthesizing
a constraint on the parameters, and a dichotomy method, testing (using the
Uppaal model checker) the correctness of a great number of integer points. The
dichotomy method synthesizes a cloud of “good” points, which is obviously much
bigger than the zone defined by our constraint K0 (see the graphical comparison
in [3]). However, this discrete approach suffers from several limitations. First,
only the discrete integer points are guaranteed to be correct, whereas our inverse
method synthesizes a dense zone for which the behavior is guaranteed to be
correct. This gives a criterion of robustness for the system, which is interesting
in practice, where the real values of the timing delays may not always be exactly
equal to the values specified by the designer. Second, only 3 dimensions (viz.,
COMct , PLCct and SIGmrt) have been considered in the discrete approach,
whereas our constraint K0 is given in 7 dimensions.

The final remarks of [3] suggests the idea to combine both approaches in
order to synthesize a much larger dense zone in 7 dimensions: by iterating the
inverse method on points synthesized by the dichotomy method, one gets a
set of constraints guaranteeing a good behavior. This is actually the idea of
the behavioral cartography developed in [6]. However, this idea has not been
experimented in the SIMOP project for two reasons. First, the cartography
algorithm did not exist at the time of the project. Second, the first version of
the tool Imitator used in the framework of this project needed almost 7 hours
to synthesize a constraint, and iterating it manually would have been highly
time-consuming. It would be interesting to investigate this idea again using the
new version Imitator II, implementing the cartography algorithm.

60

Chapter 12

Summary of the
Experiments

Experiments were conducted on an Intel Core2 Duo 2.4 GHz with 2 Gb.
All those case studies can be found on Imitator II’s Web page1.

12.1 Inverse Method

The results of the application of the inverse method to various case studies are
given in Table 12.1. We give from left to right the name of the example with
its appropriate reference, the number of PTAs composing the global system A,
the lower and upper bounds on the number of locations per PTA, the number
of clocks and parameters of A, the number of iterations of the algorithm, the
number of inequalities within K0, the number of states and transitions, the
computation time in seconds using Imitator, and the computation time in
seconds using Imitator II.

Example PTAs loc./PTA |X| |P | iter. |K0| states trans. Time1 Time2

SR-latch 3 [3, 8] 3 3 5 2 4 3 0.11 0.007

Flip-flop [17] 5 [4, 16] 5 12 9 6 11 10 1.6 0.122

AND–OR [16] 3 [4, 8] 4 12 14 4 13 13 1.81 0.15

Latch 7 [2, 5] 8 13 12 6 18 17 14.4 0.345

CSMA/CD [30] 3 [3, 8] 3 3 19 2 219 342 41 1.01

RCP [29] 5 [6, 11] 6 5 20 2 327 518 64 2.3

SPSMALL1 [14] 10 [3, 8] 10 26 32 23 31 30 4680 2.6

BRP [20] 6 [2, 6] 7 6 30 7 429 474 901 34

SIMOP [4] 5 [5, 16] 8 7 53 9 1108 1404 23455 67

SPSMALL2 [14] 28 [2, 11] 28 62 94 45 129 173 - 461

Table 12.1: Summary of experiments for the inverse method

The SPSMALL1 case study corresponds to the model manually written and
described in Section 6.3.1. The SPSMALL2 case study corresponds to the model
automatically generated and described in Section 6.3.2. Both computation times

1http://www.lsv.ens-cachan.fr/~andre/IMITATOR2/

61

refer to the first implementation of the memory (SP1, with the reference val-
uation π1). It is impossible to analyze the version automatically generated
(SPSMALL2) using the first version of Imitator because HyTech runs out of
memory when trying to statically compose the 28 automata in parallel.

When considering the cyclicity of the trace sets, note that, for the respective
reference valuation considered, the trace sets of the following case studies are
acyclic: SR-latch, flip-flop, latch, SPSMALL1, BRP and SPSMALL2. The other
trace sets (viz., AND–OR, CSMA/CD, RCP and SIMOP) are cyclic and thus
feature infinite behavior.

Note that the computation time using Imitator II has dramatically de-
creased compared to Imitator for all examples: the time has been divided
at least by 10, and up to 2000 for the SPSMALL1 memory. Explanations for
this high improvement are the rewriting of the tool using a library of convex
polyhedra instead of the call to HyTech, the on-the-fly composition of the
different PTAs, and the optimization of the algorithm described in [8].

12.2 Behavioral Cartography

The results of the application of the behavioral cartography algorithm to various
case studies are given in Table 12.2. We give from left to right the name of
the example with its appropriate reference, the number of PTAs composing
the global system A, the lower and upper bounds on the number of locations
per PTA, the number of clocks of A, the number of parameters varying in
the cartography, the number of integer points within V0, the number of tiles
computed, the average number per tile of states and transitions of the trace set,
and the computation time in seconds. Experiments were conducted on an Intel
Core2 Duo 2.4 GHz with 2 Gb.

Example PTAs loc./PTA |X| |P | |V0| tiles states trans. Time

SR-latch 3 [3, 8] 3 3 1331 6 5 4 0.3

Flip-flop [17] 5 [4, 16] 5 2 644 8 15 14 3

Latch circuit 7 [2, 5] 8 4 73062 5 21 20 96.3

AND–OR [16] 3 [4, 8] 4 6 75600 4 64 72 118

CSMA/CD [30] 3 [3, 8] 3 3 2000 140 349 545 269

SPSMALL1 [14] 10 [3, 8] 10 2 3149 259 60 61 1194

RCP [29] 5 [6, 11] 6 3 186050 19 5688 9312 7018

SPSMALL2 [14] 28 [2, 11] 28 3 784 213 145 196 31641

Table 12.2: Summary of experiments for the cartography algorithm

Recall that the SPSMALL1 case study corresponds to the model manually
written, and the SPSMALL2 case study corresponds to the model automatically
generated. For the SPSMALL2 case study, the statistics given correspond to the
cartography performed using a step of 1/3 and allowing us to cover the whole
parameter space within V0: as a consequence, the number of points within V0
correspond for this case study, not to the number of integer points, but of
rational points multiple of 1/3.

For all those examples, the cartography covers 100 % of the real-valued space
of V0, except for the Root Contention Protocol, where “only” 99,99 % of V0 is

62

covered. Moreover, a significant part of the real-valued space outside V0 is also
often covered.

Note that, in contrast to the inverse method (Section 12.1), no comparison
with the computation time of the first version of Imitator is possible, because
this first version did not feature the behavioral cartography algorithm.

63

Bibliography

[1] R. Alur and D. L. Dill. A theory of timed automata. TCS, 126(2):183–235,
1994.

[2] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning.
In STOC ’93, pages 592–601. ACM, 1993.

[3] S. Amari, É. André, T. Chatain, O. De Smet, B. Denis, E. Encrenaz,
L. Fribourg, and S. Ruel. Timed analysis of networked automation systems
combining simulation and parametric model checking. Research Report
LSV-09-14, Laboratoire Spécification et Vérification, ENS Cachan, France,
2009. SIMOP Research Report. 49 pages.

[4] É. André, T. Chatain, O. De Smet, L. Fribourg, and S. Ruel. Synthèse de
contraintes temporisées pour une architecture d’automatisation en réseau.
In Didier Lime and Olivier H. Roux, editors, MSR’09, volume 43 of Journal
Européen des Systèmes Automatisés, pages 1049–1064. Hermès, 2009.

[5] É. André, T. Chatain, E. Encrenaz, and L. Fribourg. An inverse method
for parametric timed automata. International Journal of Foundations of
Computer Science, 20(5):819–836, 2009.

[6] É. André and L. Fribourg. Behavioral cartography of timed automata. In
RP’10, volume 6227 of LNCS, pages 76–90. Springer, 2010.

[7] Étienne André. IMITATOR: A tool for synthesizing constraints on timing
bounds of timed automata. In Martin Leucker and Carroll Morgan, editors,
ICTAC’09, volume 5684 of LNCS, pages 336–342. Springer, 2009.

[8] Étienne André. IMITATOR II: A tool for solving the good parameters
problem in timed automata. In Yu-Fang Chen and Ahmed Rezine, editors,
INFINITY’10, volume 39 of Electronic Proceedings in Theoretical Com-
puter Science, pages 91–99, 2010.

[9] Étienne André. An Inverse Method for the Synthesis of Timing Param-
eters in Concurrent Systems. Ph.d. thesis, Laboratoire Spécification et
Vérification, ENS Cachan, France, December 2010.

[10] M. Baclet and R. Chevallier. Timed verification of the SPSMALL memory.
In Proceedings of the 1st International Conference on Memory Technology
and Design (ICMTD’05), pages 89–92, Giens, France, May 2005.

64

[11] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and veri-
fication of hardware and software systems. Science of Computer Program-
ming, 72(1–2):3–21, 2008.

[12] Abdelrezzak Bara. Vhdl2ta: A tool for automatic translation of vhdl pro-
grams plus timings into timed automata. Research report, LIP6, 2009.
ANR-VALMEM Technical Report.

[13] J. A. Brzozowski and C. J. Seger. Asynchronous Circuits. Springer-Verlag,
1995.

[14] R. Chevallier, E. Encrenaz, L. Fribourg, and W. Xu. Timed verification
of the generic architecture of a memory circuit using parametric timed
automata. Formal Methods in System Design, 34(1):59–81, 2009.

[15] R. Chevallier, E. Encrenaz-Tiphène, L. Fribourg, and W. Xu. Timing
analysis of an embedded memory: SPSMALL. WSEAS Transactions on
Circuits and Systems, 5(7):973–978, July 2006.

[16] R. Clarisó and J. Cortadella. Verification of concurrent systems with para-
metric delays using octahedra. In ACSD ’05. IEEE Computer Society,
2005.

[17] R. Clarisó and J. Cortadella. The octahedron abstract domain. Sci. Com-
put. Program., 64(1):115–139, 2007.

[18] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In CAV ’00, pages 154–169. Springer-Verlag,
2000.

[19] A. Collomb–Annichini and M. Sighireanu. Parameterized reachability anal-
ysis of the IEEE 1394 Root Contention Protocol using TReX. In RT-
TOOLS ’01, 2001.

[20] P.R. D’Argenio, J.P. Katoen, T.C. Ruys, and G.J. Tretmans. The bounded
retransmission protocol must be on time! In TACAS ’97. Springer, 1997.

[21] B. Denis, S. Ruel, J.-M. Faure, G. Marsal, and G. Frey. Measuring the
impact of vertical integration on response times in Ethernet fieldbuses. In
Proc. of ETFA’07, 2007.

[22] G. Frehse, S.K. Jha, and B.H. Krogh. A counterexample-guided approach
to parameter synthesis for linear hybrid automata. In HSCC ’08, volume
4981 of LNCS, pages 187–200. Springer, 2008.

[23] D. Harris and S. Harris. Digital Design and Computer Architecture. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[24] T. A. Henzinger, P. H. Ho, and H. Wong-Toi. Hytech: A model checker for
hybrid systems. Software Tools for Technology Transfer, 1:460–463, 1997.

[25] T. A. Henzinger and H. Wong-Toi. Using HyTech to synthesize control
parameters for a steam boiler. In Formal Methods for Industrial Applica-
tions: Specifying and Programming the Steam Boiler Control, LNCS 1165.
Springer-Verlag, 1996.

65

[26] T.S. Hune, J.M.T. Romijn, M.I.A. Stoelinga, and F.W. Vaandrager. Lin-
ear parametric model checking of timed automata. Journal of Logic and
Algebraic Programming, 2002.

[27] B. Jeannet and A. Miné. Apron: A library of numerical abstract domains
for static analysis. In CAV ’09, volume 5643 of LNCS, pages 661–667.
Springer, 2009.

[28] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model check-
ing of the IEEE 802.11 wireless local area network protocol. In Proc.
PAPM/PROBMIV’02, volume 2399 of LNCS, pages 169–187. Springer,
2002.

[29] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model check-
ing of deadline properties in the IEEE 1394 FireWire root contention pro-
tocol. Formal Aspects of Computing, 14(3):295–318, 2003.

[30] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model
checking for probabilistic timed automata. Information and Computation,
205(7):1027–1077, 2007.

[31] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International
Journal on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

[32] O. Maler and A. Pnueli. Timing analysis of asynchronous circuits using
timed automata. In CHARME ’95, pages 189–205. Springer-Verlag, 1995.

[33] Prism Web page. Prism web page.

[34] S. Ruel and J.-M. De Smet, O. Faure. Efficient representation for formal
verification of time performances of networked automation architectures.
In Proc. of 17th IFAC World Congress, pages 5119–5124, July 2008.

[35] P. Bazargan Sabet, P. Renault, and D. Le Dû. Prototype d’outil
d’abstraction fonctionnelle, 2009. VALMEM Project deliverable 2.4.

[36] Romain Soulat. Analysis of the bounded retransmission protocol using
IMITATOR II. 2010.

[37] Vhdl2Ta Web page. http://www.lsv.ens-cachan.fr/~encrenaz/

valmem/vhdl2hytech/.

66

