
Étienne André

Everything You Always Wanted to
Know About IMITATOR
(But Were Afraid to Ask)

Research Report LSV-09-20

July 2009

This is a research report published by Laboratoire Spécification et Vérification.

Everything You Always Wanted to Know
About Imitator (But Were Afraid to Ask)

Étienne André1

LSV, ENS de Cachan & CNRS, France

Abstract

We present here the user manual of Imitator, a tool for synthesizing constraints on timing bounds (seen
as parameters) in the framework of timed automata. Unlike classical synthesis methods, the tool Imitator
takes advantage of a given reference valuation of the parameters for which the system is known to behave
properly. The goal of Imitator is to generate a constraint such that, under any valuation satisfying this
constraint, the system is guaranteed to behave, in terms of alternating sequences of locations and actions,
as under the reference valuation. We give here the installation requirements and the launching commands
of Imitator, as well as the source code of a toy example.

1 Introduction

This document is the user manual of the tool Imitator [4] (Inverse Method for
Inferring Time AbstracT behaviOR), an implementation of the inverse method de-
scribed in [5]. This tool is being developed at LSV, ENS Cachan, France.

2 Imitator in a Nutshell

2.1 Context

Timed automata [1] are finite control automata equipped with clocks, which are
real-valued variables which increase uniformly. This model is useful for reasoning
about real-time systems, because one can specify quantitatively the interval of time
during which the transitions can occur, using timing bounds. However, the behavior
of a system is very sensitive to the values of these bounds, and it is rather difficult
to find their correct values. It is therefore interesting to reason parametrically, by
considering that these bounds are unknown constants, or parameters, and try to
synthesize a constraint (i.e., a conjunction of linear inequalities) on these parameters

★ This work is partially supported by the Agence Nationale de la Recherche, grant ANR-06-ARFU-005,
and by Institut Farman (ENS Cachan).
1 Email: andre@lsv.ens-cachan.fr

c⃝2009 Laboratoire Spécification et Vérification

mailto:andre@lsv.ens-cachan.fr
http://www.lsv.ens-cachan.fr/

É. André

which will guarantee a correct behavior of the system. Such automata are called
parametric timed automata (PTA) [2,9]. Those PTAs allow to model various kinds
of timed systems, e.g. communication protocols or asynchronous circuits.

The synthesis of constraints for PTAs has been mainly done by supposing given
a set of “bad states” (see, e.g., [6,7]). The goal is to find a set of parameters for
which the considered timed automaton does not reach any of these bad states. We
call such a method a bad-state oriented method. By contrast, Imitator is based
on a good-state oriented method.

2.2 Principle

The tool Imitator (Inverse Method for Inferring Time AbstracT behaviOR) im-
plements the algorithm InverseMethod , described in [5]. We assume given a system
modeled by a PTA !. We are not given a set of bad states, but an initial tuple !0
of values for the parameters, under which the system is known to behave properly.
When the parameters are instantiated with !0, the system is denoted by ![!0].
The algorithm InverseMethod generalizes this good behavior by computing a con-
straint "0 guaranteeing that, under any parameter valuation ! satisfying "0, the
system behaves in the same manner: the behaviors of the timed automata ![!] and
![!0] are (time-abstract) equivalent, i.e., the traces of execution viewed as alternat-
ing sequences of locations and actions are identical. This is written ![!] ≡TA ![!0].

As an immediate practical application, one can optimize the value of some pa-
rameters of the system, provided this value still satisfies the constraint generated by
Imitator. This is of particular interest in the framework of asynchronous circuits,
where it is useful to safely minimize some timing bounds of the system, without
changing the behavior of the system. For example, one can minimize some local
stabilization timings, without changing the global delay for writing an input signal
in a memory circuit.

The tool Imitator is available on its Web page 2 .

2.3 The Algorithm

Let us briefly recall here the main idea of the algorithm InverseMethod [5]. Given a
parametric timed automaton ! and a reference instantiation !0 of parameters, the
algorithm outputs a constraint "0 on the parameters such that:

(i) !0 ∣= "0,

(ii) ![!] ≡TA ![!0], for any ! ∣= "0.

The algorithm InverseMethod on which Imitator relies can be summarized
as follows. Starting with " := True, we iteratively compute a growing set of
reachable symbolic states. A symbolic state of the system is a couple (#, %), where
is a location of the PTA, and % a constraint on the parameters 3 . When a !0-
incompatible state (#, %) is encountered (i.e., when !0 ∕∣= %), " is refined as follows:
a !0-incompatible inequality & (i.e., such that !0 ∕∣= &) is selected within %, and ¬&

2 http://www.lsv.ens-cachan.fr/∼andre/IMITATOR
3 Strictly speaking, " is a constraint on the clock variables and the parameters, but the clock variables are
omitted here for the sake of simplicity. See [5] for more details.

2

http://www.lsv.ens-cachan.fr/~andre/IMITATOR

É. André

ALGORITHM InverseMethod(", #0)

Input " : PTA

#0 : Reference valuation of $

Output %0 : Constraint on the parameters

Variables i : Current iteration

& : Current set of reachable states (& =
S!

"=0 Post
"
"(#)({'0}))

% : Current constraint on the parameters

(:= 0 ; % := True ; & := {'0}
DO

DO UNTIL & is #0-compatible
Select a #0-incompatible state (), ") of &
Select an inequality + of (∃, : ") such that #0 ∣= ¬+
% := % ∧ ¬+ ; & :=

S!
"=0 Post

"
"(#)({'0})

OD
%% & #0-compatible

IF Post"(#)(&) = ∅
THEN RETURN %0 :=

T
($,&)∈'(∃, : ")

FI

(:= (+ 1

& := & ∪ Post"(#)(&) %% & =
S!

"=0 Post
"
"(#)({'0})

OD

Fig. 1. Algorithm InverseMethod

is added to ". The procedure is then started again with this new ", and so on,
until the whole set of reachable states (Post∗) is computed.

The algorithm InverseMethod is given in Fig. 1, where the clock variables have
been disregarded for the sake of simplicity. We denote by Post ("(%)(') the set of
symbolic states reachable from ' in exactly (steps of !("), and ∃) : % denotes
the elimination of clock variables in constraint %.

Note that there are two possible sources of nondeterminism in the algorithm:

∙ when one selects a !0-incompatible state (#, %) (i.e, !0 ∕∣= ∃) : %), and

∙ when one selects an inequality & among the conjunction of inequalities ∃) : %,
that is “responsible” for this !0-incompatibility (i.e., such that !0 ∕∣= & , hence
!0 ∣= ¬&).

2.4 General Structure

As described on Fig. 2, Imitator [4] takes as an input a PTA described in HyTech
syntax. The tool drives indeed the model checker HyTech [8] in a basic manner.
Imitator also takes as an input the reference valuation !0. The program outputs
a constraint "0 on the parameters such that:

(i) !0 ∣= "0,

(ii) ![!] ≡TA ![!0], for any ! ∣= "0.

Imitator is a program written in Python, that uses HyTech for the computa-
tion of the Post operation. The Python program contains about 1500 lines of code,
and it took about 4 man-months of work.

3

É. André

Imitator

PTA !
(HyTech file)

Reference
instantiation !0

Constraint "0 on
the parameters

Fig. 2. Imitator inputs and output

3 How to Use Imitator

3.1 Installation

Imitator is a program written in Python, and thus needs Python to be installed on
the machine the tool will be launched on. Imitator is guaranteed to work properly
with Python 2.4.4. However, as the program uses only very standard features, it
should also work with most older and newer versions.

Imitator calls the HyTech model checker, and thus needs HyTech 1.04f to
be installed. This version is the most recent one, and is available on the HyTech
Web page.

3.2 The HyTech Input File

Beside the classical syntax of HyTech, the input file must follow a certain number
of requirements, which are given below.

3.2.1 Variables

Any kind of variables (clocks, parameters, discrete, etc.) can be used. As in a
standard HyTech file, they must be declared in the header of the file.

3.2.2 Parametric Timed Automata

A network of (at least one) PTA must be declared. Although HyTech allows other
structures than PTAs, be aware that the behavior of Imitator for another kind of
systems as PTAs is unspecified.

3.2.3 Initial region and !0
An initial region named init reg must be defined. As in a standard HyTech file,
it must contain all the useful information concerning the initial state of the system
(initial location, values of clocks and other variables, etc.). In the case where the
initial location should have another name, it is possible to change it in the top of
the source code of Imitator, where it is defined in the global constant INIT REG.

The reference valuation !0 definition must be given somewhere in this region
init reg, with the following requirements:

∙ This reference valuation must start with the tag ---START PI0---;

∙ One definition of parameter must be given per line;

∙ The definition must be given using the standard HyTech syntax for affectations
in a region definition (& [param] = [value]);

4

É. André

∙ All those definitions must 4 be commented (i.e., preceded by the HyTech com-
ment mark --), so that Imitator uses those values, but not HyTech, which is
used by Imitator in a fully parametric way;

∙ The reference valuation definition must end with the tag ---END PI0---.

Imitator allows a little freedom within this syntax, but you are strongly adviced
to strictly respect the given syntax.

An example of input file for Imitator corresponding to the example of Section 4
is given in Appendix A.

3.2.4 Analysis commands

An region named post reg must be defined for the computation of the Post op-
eration. In the case where this region should have another name, it is possible to
change it in the top of the source code of Imitator, where it is defined in the global
constant POST REG.

This region can be defined in any way, since it will be modified by Imitator,
and can thus contain any definition. For example, it can be defined in the following
standard way:

post reg := reach forward from init reg endreach;

Finally, the following code must be inserted at the end of the input file.

prints "---START LOG---";

print(hide non_parameters in post_reg endhide);

prints "---END LOG---";

The two prints commands allow Imitator to parse the HyTech log file in
order to find the resulting set of computed states. You can customize the non

parameters command, but be aware that every variable which is not given a value
in the reference valuation definition in the init reg region must be hidden at that
point, including all clocks. In particular, if for any reason you use other parameters
than those defined in !0, they should be hidden here.

Provided the requirements described in this section are fullfiled, the input file
can contain anything else than what is described here. However, you are strongly
adviced to remove any other analysis command, since everything which is defined
in the input file will be executed at every Post computation, and can thus make
this computation very slow – or even not terminate.

3.2.5 Summary of requirements

A quick reminder of the requirements for the input file:

(i) Definition of !0 between two tags in the input reg region;

(ii) Definition of the computation region post reg;

(iii) Sequence of commands to print the result, in between two tags.

4 It is actually possible to leave some values uncommented, but those “parameters” will be considered by
Imitator not as parameters, but as valued constants, and will thus not appear in the final constraint %0.

5

É. André

An example of input file for Imitator corresponding to the example of Section 4
is given in Appendix A.

3.3 Calling Imitator

Given an input HyTech file named hytech file.hy, the following command calls
Imitator:

python IMITATOR.py hytech file

The HyTech file name must be given with no extension .hy.

Note that, in the current version of Imitator, the Python program IMITATOR.py

should be in the same directory as the HyTech file Imitator is applied to.

3.3.1 Options

The options available for Imitator are explained in the following.

--debug=[debug mode] (default: --debug=no)

Give some debugging information, that may also be useful to have more details
on the way Imitator works. The available values for debug mode are given in the
following:

result only Give only the resulting constraint

no Give little information (number of steps, computation time)

low Give little additional debugging information

medium Give quite a lot of debugging information

high Give much debugging information

total Give really too much information

-h or --help

Display the launch syntax described above, and the options detailed in this
section.

--keeplog

Keep the directory containing the temporary files (copy of the original HyTech
file, HyTech log files, and a text file containing the resulting constraints). By
default, all those files are removed at the end of the computation. The original
HyTech file to which Imitator is applied remains, of course, unmodified. See also
the --log dir option below.

--log dir=[dir name] (default: log dir = [hytech file])

This option allows to customize the directory where the temporary files will be
created. This is of interest when launching two different processes of Imitator
applied to the same input file, which will create a conflict if both processes work on
the same directory. The directory dir name may exist; if not, it will be created.

6

É. André

--norandom

Choose deterministically the !0-incompatible inequality. In other words, at a
given step, under this option, Imitator will negate the first !0-incompatible in-
equality which is encountered. By default, the tool computes the set of all !0-
incompatible inequalities, and chooses one randomly, which is a (very little) more
time-consuming.

--timed

Print the current computation time on screen for every action which is performed
(new step, selection of a !0-incompatible inequality, etc.). By default, only the
global computation time is given at the end of computation (except under the
option --debug=result only).

-v or --version

Print version information.

3.3.2 Examples of calls

python IMITATOR.py flipflop

Call Imitator with the default options. The original HyTech file full name is
flipflop.hy, and Imitator will create a temporary directory flipflop/ in which
several temporary files will be created. At the end of the computation, this directory
will be removed.

python IMITATOR.py BRP --norandom --debug=result only

The original HyTech file is BRP.hy. Only the final constraint will be printed
on screen.

python IMITATOR.py spsmall --log dir=experiments --keeplog

The original HyTech file is spsmall.hy, and Imitator will create a directory
experiments/ in which several temporary files will be created. At the end of the
computation, both this directory and all the temporary files will be kept.

3.4 The Resulting Constraint

The resulting constraint "0 is printed on the standard output.

To keep a trace of it, use option --keeplog. In that case, you can find it in a
text file in the temporary directory (see option --log dir).

4 A Toy Example

Let us consider the parametric timed automaton (PTA) given in Fig. 3. This PTA
contains two clocks *1 and *2, three parameters +1, +2 and +3, and three locations
#0, #1 and #2. The initial location #0 has invariant *1 ≤ +1. The transition from #0
to #1, labelled ,, has guard *2 ≥ +2, and resets *1. The transition from #0 to #2,
labelled -, has guard *1 ≥ +3, and does not reset any clock.

7

É. André

)0

)1

)2

-1 ≤ .1

-2 ≥ .2
/

-1 := 0

-1 ≥ .3
0

Fig. 3. A toy parametric timed automaton

Let us assume that #2 corresponds to a “bad location”. Classical methods, using
this information, will generate the constraint . : +1 < +3, which guarantees that
the location is not reachable. Suppose now that we are given the following “good”
instantiation of the parameters !0 : +1 = 4∧ +2 = 2∧ +3 = 6, under which the PTA
is assumed to have a “good” behavior. Then our tool Imitator will generate the
constraint "0 : +2 > 0∧ +1 < +3 ∧ +2 ≤ +1. For all instantiation ! of the parameters
satisfying "0, our method guarantees that the PTA behaves in the same manner as
under !0. We are thus ensured that the behavior of the PTA is correct. Note that
"0 is strictly smaller than .. On the one hand, this may be viewed as a limitation
of our method. On the other hand, this may indicate that there are incorrect
behaviors other than those corresponding to the reachability of #2. For example,
there are some parameter instantiations satisfying ., under which a deadlock of the
PTA occurs at the initial location #0. In contrast, our inverse method guarantees
that such a deadlock is impossible under any instance satisfying "0 (because the
deadlock does not occur under !0). The HyTech input file of this example is given
in Appendix A.

Further Examples

The description of a range of case studies from the literature studied with Imi-
tator, as well as real case studies, is available in [3]. Both the source code and the
result of those examples are available on Imitator Web page.

5 Imitator Strikes Back

A more sophisticated version of Imitator is under project. It will make use of a
library for computing operations on polyhedra, allowing us to get better computa-
tion times. Indeed, HyTech performs a costly static composition of the different
timed automata of the system, which can be very time-consuming in the case of
several medium-sized automata.

Acknowledgments

Laurent Fribourg and Emmanuelle Encrenaz have been great contributors of
Imitator, on a theoretical point of view, and to find applications both from the
literature and real case studies. Jeremy Sproston and Farn Wang provided examples
to be compared with other tools.

8

É. André

References

[1] R. Alur and D. L. Dill. A theory of timed automata. TCS, 126(2):183–235, 1994.

[2] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning. In STOC ’93, pages
592–601, New York, USA, 1993. ACM.

[3] É. André, E. Encrenaz, and L. Fribourg. Synthesizing parametric constraints on various case studies
using Imitator. Research report, Laboratoire Spécification et Vérification, ENS Cachan, France, June
2009.

[4] Étienne André. Imitator: A tool for synthesizing constraints on timing bounds of timed automata. In
ICTAC’09, LNCS. Springer, August 2009. To appear.

[5] Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent Fribourg. An inverse method
for parametric timed automata. International Journal of Foundations of Computer Science, 2009. To
appear.

[6] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction refinement.
In CAV ’00, pages 154–169. Springer-Verlag, 2000.

[7] G. Frehse, S.K. Jha, and B.H. Krogh. A counterexample-guided approach to parameter synthesis for
linear hybrid automata. In HSCC ’08, volume 4981 of LNCS, pages 187–200. Springer, 2008.

[8] T. A. Henzinger, P. Ho, and H. Wong-Toi. A user guide to HyTech. In TACAS, pages 41–71, 1995.

[9] T.S. Hune, J.M.T. Romijn, M.I.A. Stoelinga, and F.W. Vaandrager. Linear parametric model checking
of timed automata. Journal of Logic and Algebraic Programming, 2002.

9

É. André

A HyTech Source Code of the Example

1 −−∗∗−−
2 −−∗∗−−
3 −− Toy Example f o r IMITATOR
4 −−
5 −− Modeling by Etienne ANDRE (LSV)
6 −− IMITATOR: http ://www. l s v . ens−cachan . f r /˜ andre/IMITATOR/
7 −−
8 −− Created : 29/11/2008
9 −− Last modi f i ed : 29/11/2008

10 −−∗∗−−
11 −−∗∗−−
12

13 var x1 , x2
14 : clock ;
15

16 p1 , p2 , p3
17 : parameter ;
18

19 −−∗∗−−
20 −−∗∗−−
21 −− AUTOMATON
22 −−∗∗−−
23 −−∗∗−−
24

25 −−∗∗−−
26 automaton toy
27 −−∗∗−−
28 synclabs : a , b ;
29 i n i t i a l l y Q0;
30

31 loc Q0: while x1 <= p1 wait {}
32 when x2 >= p2 sync a do {x1 ’ = 0} goto Q1;
33 when x1 >= p3 sync b do {} goto Q2;
34

35 loc Q1: while x1 >= 0 wait {}
36 when True do {} goto Q1;
37

38 loc Q2: while x1 >= 0 wait {}
39 when True do {} goto Q2;
40 end −− toy
41

42 −−∗∗−−
43 −−∗∗−−
44 −− ANALYSIS

10

É. André

45 −−∗∗−−
46 −−∗∗−−
47

48 var i n i t r e g , po s t r e g
49 : region ;
50

51 i n i t r e g :=
52 −−−−−−−−−−−−−−−−−−−−−−
53 −− I n i t i a l l o c a t i o n s
54 −−−−−−−−−−−−−−−−−−−−−−
55 loc [toy] = Q0
56

57 −−−−−−−−−−−−−−−−−−−−−−
58 −− Clocks
59 −−−−−−−−−−−−−−−−−−−−−−
60 & x1 = 0
61 & x2 = 0
62

63 −−−−−−−−−−−−−−−−−−−−−−
64 −−−START PI0−−−
65 −−−−−−−−−−−−−−−−−−−−−−
66 −− & p1 = 4
67 −− & p2 = 2
68 −− & p3 = 6
69 −−−−−−−−−−−−−−−−−−−−−−
70 −−−END PI0−−−
71 −−−−−−−−−−−−−−−−−−−−−−
72 ;
73

74 po s t r e g := reach forward from i n i t r e g endreach ;
75

76

77 prints ”−−−START LOG−−−” ;
78 print (hide non parameters in po s t r e g endhide) ;
79 prints ”−−−END LOG−−−” ;

11

	Introduction
	Imitator in a Nutshell
	Context
	Principle
	The Algorithm
	General Structure

	How to Use Imitator
	Installation
	The HyTech Input File
	Calling Imitator
	The Resulting Constraint

	A Toy Example
	Imitator Strikes Back
	References
	HyTech Source Code of the Example

