
Étienne André,
Emmanuelle Encrenaz,

Laurent Fribourg

Synthesizing Parametric Constraints
on Various Case Studies

Using IMITATOR

Research Report LSV-09-13

June 2009

This is a research report published by Laboratoire Spécification et Vérification.

Synthesizing Parametric Constraints on
Various Case Studies Using IMITATOR

Étienne André, Laurent Fribourg1

LSV – ENS de Cachan & CNRS, France

Emmanuelle Encrenaz2

LIP6 – Université Pierre et Marie Curie & CNRS, France

Abstract

We present here applications of Imitator, a tool for synthesizing constraints on timing bounds (seen as
parameters) in the framework of timed automata. Unlike classical synthesis methods, we take advantage of
a given reference valuation of the parameters for which the system is known to behave properly. Our aim is
to generate a constraint such that, under any valuation satisfying this constraint, the system is guaranteed
to behave, in terms of alternating sequences of locations and actions, as under the reference valuation. This
is useful for safely relaxing some values of the reference valuation, and optimizing timing bounds of the
system. We have successfully applied our tool to various examples of asynchronous circuits and protocols,
which are detailed in this report.

Keywords: Parametric timed automata, optimization of timing delays, asynchronous circuits, protocols.

1 Introduction

Timed automata [1] are finite control automata equipped with clocks, which are
real-valued variables which increase uniformly. This model is useful for reasoning
about real-time systems, because one can specify quantitatively the interval of time
during which the transitions can occur, using timing bounds. However, the behavior
of a system is very sensitive to the values of these bounds, and it is rather difficult
to find their correct values. It is therefore interesting to reason parametrically, by
considering that these bounds are unknown constants, or parameters, and try to
synthesize a constraint (i.e., a conjunction of linear inequalities) on these parameters
which will guarantee a correct behavior of the system. Such automata are called
parametric timed automata (PTA) [2,14].

! This work is partially supported by the Agence Nationale de la Recherche, grant ANR-06-ARFU-005,
and by Institut Farman (ENS Cachan).
1 Email: {andre,fribourg}@lsv.ens-cachan.fr
2 Email: emmanuelle.encrenaz@lip6.fr

c©2009 Laboratoire Spécification et Vérification

mailto:emmanuelle.encrenaz@lip6.fr
http://www.lsv.ens-cachan.fr/
mailto:andre@lsv.ens-cachan.fr

André, Encrenaz and Fribourg

The synthesis of constraints for PTAs has been mainly done by supposing given
a set of “bad states” (see, e.g., [11,12]). The goal is to find a set of parameters for
which the considered timed automaton does not reach any of these bad states. We
call such a method a bad-state oriented method. By contrast, we present in this
paper a tool based on a good-state oriented method.

The tool Imitator [4], standing for Inverse Method for Inferring Time AbstracT
behaviOR, implements the algorithm InverseMethod, described in [5]. We assume
given a system modeled by a PTA A. Whereas bad-state oriented methods consider
a set of bad states, Imitator considers an initial tuple π0 of values for the param-
eters, under which the system is known to behave properly. When the parameters
are instantiated with π0, the system is denoted by A[π0]. Under certain conditions,
the algorithm InverseMethod generalizes this good behavior by computing a con-
straint K0 which guarantees that, under any parameter valuation π satisfying K0,
the system behaves in the same manner: the behaviors of the timed automata A[π]
and A[π0] are (time-abstract) equivalent, i.e., the traces of execution viewed as al-
ternating sequences of locations (or “control states”) and actions are identical. This
is written A[π] ≡TA A[π0]. More formally, the algorithm InverseMethod solves the
following inverse problem [5] for acyclic systems (i.e., with only finite traces) by
computing a constraint K0 such that:

(i) π0 |= K0,
(ii) A[π] ≡TA A[π0], for any π |= K0.

A trivial solution is K0 = {π0}. However, Imitator will always generate some-
thing more general than K0 = {π0}, under the form of a conjunction of inequalities
on the parameters (without any constant, apart from 0).

A practical application is to optimize (either decrease or increase) the value of
some element of π0, as long as it still satisfies K0. This is of particular interest
in the framework of digital circuits, in order to safely minimize some stabilization
timings (typically “setup” or “hold”). For example, one can minimize some local
stabilization timings, without changing the global delay for writing an input signal
in a memory circuit.

We shortly recall the algorithm InverseMethod and its implementation Imita-
tor in Sect. 2. We then present various case studies from the literature: two
circuits, i.e., a flip-flop circuit (Sect. 3), and an “And–Or” circuit (Sect. 4), and
four protocols, i.e., the root contention protocol (Sect. 5), the CSMA/CD proto-
col (Sect. 6), the bounded retransmission protocol (Sect. 7), and the conformance
protocol (Sect. 8). We then present two real case studies: a portion of the mem-
ory circuit SPSMALL designed by ST-Microelectronics (Sect. 9), and a distributed
control system (Sect. 10). We finally summarize the experiments in Sect. 11 and
give some final remarks in Sect. 12.

2 The Algorithm InverseMethod

We use in this section the same formalism as in [5].

2

André, Encrenaz and Fribourg

ALGORITHM InverseMethod(A, π0)

Input A : PTA

π0 : Reference valuation of P

Output K0 : Constraint on the parameters

Variables i : Current iteration

S : Current set of reachable states (S =
Si

j=0 Postj
A(K)({s0}))

K : Current constraint on the parameters

i := 0 ; K := True ; S := {s0}
DO

DO UNTIL S is π0-compatible
Select a π0-incompatible state (q, C) of S
Select an inequality J of (∃X : C) such that π0 |= ¬J

K := K ∧ ¬J ; S :=
Si

j=0 Postj
A(K)({s0})

OD
%% S π0-compatible

IF PostA(K)(S) = ∅
THEN RETURN K0 :=

T
(q,C)∈S(∃X : C)

FI

i := i + 1

S := S ∪ PostA(K)(S) %% S =
Si

j=0 Postj
A(K)({s0})

OD

Fig. 1. Algorithm InverseMethod

2.1 Description

The algorithm InverseMethod on which Imitator relies can be summarized as
follows. Starting with K := True, we iteratively compute a growing set of reach-
able symbolic states. A symbolic state of the system is a couple (q, C), where q
is a location of the PTA, and C a constraint on the parameters 3 . When a π0-
incompatible state (q, C) is encountered (i.e., when π0 "|= C), K is refined as follows:
a π0-incompatible inequality J (i.e., such that π0 "|= J) is selected within C, and ¬J
is added to K. The procedure is then started again with this new K, and so on,
until the whole set of reachable states (Post∗) is computed.

The algorithm InverseMethod is given in Fig. 1, where the clock variables have
been disregarded for the sake of simplicity. We denote by Post i

A(K)(S) the set of
symbolic states reachable from S in exactly i steps of A(K), and ∃X : C denotes
the elimination of clock variables in constraint C.

Note that there are two possible sources of nondeterminism in the algorithm:
• when one selects a π0-incompatible state (q, C) (i.e, π0 "|= ∃X : C), and
• when one selects an inequality J among the conjunction of inequalities ∃X : C,

that is “responsible” for this π0-incompatibility (i.e., such that π0 "|= J , hence
π0 |= ¬J).

2.2 Implementation

Our algorithm InverseMethod has been implemented under the form of a program
named Imitator [4] (standing for Inverse Method for Inferring Time AbstracT

3 Strictly speaking, C is a constraint on the clock variables and the parameters, but the clock variables are
omitted here for the sake of simplicity. See [5] for more details.

3

André, Encrenaz and Fribourg

Imitator

PTA A
(HyTech file)

Reference
valuation π0

Constraint K0 on
the parameters

Fig. 2. Imitator inputs and output

Fig. 3. Flip-flop circuit

behaviOR). As depicted on Fig. 2, Imitator takes as inputs a PTA described in
HyTech syntax, and a reference valuation π0. The aim of the program is to output
a constraint K0 on the parameters solving the inverse problem. This program,
containing about 1500 lines of code, is written in Python and calls parametric model
checker HyTech [13] in order to compute the Post operation. The selection of a
π0-compatible state and a π0-incompatible inequality J is done in a random manner.

Our tool Imitator was experimented in the framework of French ANR project
Valmem, for synthesizing timing constraints on memory circuits designed by ST-
Microelectronics. It successfully treated in 78 minutes a portion of the asynchronous
circuit SPSMALL [8] containing 9 gates, modeled by 10 PTA using 10 clocks and
22 parameters. We also successfully applied Imitator to various case studies to
infer constraints on parameters. One reason for which it behaves well in practice is
that the procedure quickly reduces the number of reachable states, by drastically
restraining the current constraint K.

All experiments were conduced on an Intel Quad Core 3GHz with 3.2Gb. The
source code of all the examples is available on Imitator’s webpage 4 .

3 Flip-flop Circuit

3.1 Description

We consider here an asynchronous “D flip-flop” circuit described in [10] and depicted
on Fig. 3. It is composed of 4 gates (G1, G2, G3 and G4) interconnected in a cyclic
way, and an environment involving two input signals D and CK . The global output
signal is Q. Each gate Gi has a delay in the parametric interval [δ−i , δ+

i], with
δ−i ≤ δ+

i . There are 4 other parameters (viz., THI , TLO , Tsetup , and Thold) used to
model the environment. The output signal of a gate Gi is named gi (note that

4 http://www.lsv.ens-cachan.fr/∼andre/IMITATOR/

4

http://www.lsv.ens-cachan.fr/~andre/IMITATOR/

André, Encrenaz and Fribourg

n00 n01

n10 n11

x4 ≤ δ+
4

g↑3

x4 ≥ δ−4
Q↑

g↑3
x4 := 0

g↓3
x4 := 0

x4 ≤ δ+
4

g↓3

x4 ≥ δ−4
Q↓

Fig. 4. Parametric Timed Automaton modeling gate G4

Q = g4). The rising (resp. falling) edge of signal D is denoted by D↑ (resp. D↓)
and similarly for signals CK , Q, g1, . . . , g4.

We consider an environment starting from D = CK = Q = 0 and g1 = g2 =
g3 = 1, with the following ordered sequence of actions for inputs D and CK : D↑,
CK ↑, D↓, CK ↓, as depicted on Fig. 3. Therefore, we have the implicit constraint
Tsetup ≤ TLO ∧ Thold ≤ THI .

Each gate is modeled by a PTA, as well as the environment. We consider an
inertial model for gates, where any change of the input may lead to a change of
the output (after some delay). The PTA A modeling the system results from the
composition 5 of those 5 PTA. As for an example, we give on Fig. 4 the PTA
modeling the gate G4 (which is actually a “Not” gate). This PTA contains four
locations n00, n01, n10, n11, where nij stands for a state of the gate where the input
g3 is equal to i and the output Q is equal to j. This PTA contains one clock x4 and,
as explained before, contains two parameters δ−4 and δ+

4 representing the interval
of time between a change of the input and the change of the output.

3.2 Clarisó and Cortadella’s Constraints

In [10], a constraint Z is generated in order to prevent bad system behaviors. The
bad state is defined as the case where CK ↓ occurs before Q↑. This constraint Z is
the following:

Tsetup > δ+
1 + δ+

2 − δ−2 ∧ Thold > δ+
2 + δ+

3

∧ THI > δ+
2 + δ+

3 + δ+
4 ∧ THI > Thold

∧ TLO > Tsetup ∧ δ−1 > δ+
2

3.3 First Instantiation Point

We first consider the following instantiation π0 of the parameters, which was chosen
so that π0 |= Z:

THI = 24 TLO = 15 Tsetup = 10 Thold = 17

δ−1 = 7 δ+
1 = 7 δ−2 = 5 δ+

2 = 6

δ−3 = 8 δ+
3 = 10 δ−4 = 3 δ+

4 = 7

5 It can be shown that the standard parallel composition of several PTAs is a PTA.

5

André, Encrenaz and Fribourg

q0 q1 q2 q3 q4

q5

q6

q7 q8
D↑ g↓1 CK ↑ g↓3

Q↑

D↓

D↓

Q↑

CK ↓

Fig. 5. Traces of the flip-flop circuit under π0

Location D CK g1 g2 g3 Q

q0 0 0 1 1 1 0

q1 1 0 1 1 1 0

q2 1 0 0 1 1 0

q3 1 1 0 1 1 0

q4 1 1 0 1 0 0

q5 1 1 0 1 0 1

q6 0 1 0 1 0 0

q7 0 1 0 1 0 1

q8 0 0 0 1 0 1

Fig. 6. Locations of the flip-flop circuit

For the given environment and the instantiation π0, the set of traces of the system
is depicted on Fig. 5 under the form of an oriented graph, where qi, 0 ≤ i ≤ 8, are
locations of A. The value of the signals of the system for each location qi is given
on Fig. 6. We are now interested in finding other instantiations of the parameters
yielding the same set of traces. We will therefore infer a constraint K0 such that,
for any instantiation π |= K0, the set of traces under π is the same as under π0.

Let us apply our program Imitator to the PTA modeling the flip-flop circuit
and to the instantiation π0 of the parameters. The program generates the following
constraint K0

6 :
Tsetup < TLO ∧ δ+

3 + δ+
4 < THI

∧ δ+
1 < Tsetup ∧ Thold ≤ δ+

3 + δ+
4

∧ δ−3 + δ−4 ≤ Thold ∧ δ+
3 < Thold

∧ δ−1 > 0

Besides, by construction on the environment (signals D, CK and Q), recall that
we have the implicit additional constraint: THI ≥ Thold .

One can check that, for any instantiation π such that π |= K0, the set of traces
under π coincides with the set of traces under π0 depicted on Fig. 5.

Note that, as we have π0 |= Z, the set of traces under π0 (and by construction
under K0) also prevents bad system behaviors. It is easy to check that our constraint
K0 is uncomparable with Z, i.e., we can find instantiations satisfying K0 and not
Z, and vice versa. This suggests to extend K0 by applying InverseMethod to a new
instantiation π1 such that π1 |= Z and π1 "|= K0.

6 It can be surprising that neither δ−2 nor δ+
2 appear in K0. This constraint actually prevents G2 from

any change, as g1 and CK are never both set to 1 for the considered environment; therefore, the delay of
G2 does not have any incidence on the system.

6

André, Encrenaz and Fribourg

q0 q1 q2 q3 q4

q5

q7 q8
D↑ g↓1 CK ↑ g↓3

Q↑
D↓

CK ↓

Fig. 7. Traces of the flip-flop circuit under π1

3.4 Second Instantiation Point

We now aim at widening the constraint K0 found from the instantiation π0. Recall
that π0 satisfies the constraint Z. Since Z "⊆ K0, there exists a different instantiation
of the parameters satisfying constraint Z, and not K0. For example, consider the
instantiation π1 defined as follows (the differences with π0 are in bold):

THI = 23 TLO = 15 Tsetup = 10 Thold = 17

δ−1 = 7 δ+
1 = 7 δ−2 = 5 δ+

2 = 6

δ−3 = 8 δ+
3 = 10 δ−4 = 3 δ+

4 = 5

The set of traces of the system under π1 is depicted on Fig. 7, under the form
of an oriented graph (actually reduced to a single path). The value of the signals of
the system for each location qi is given on Fig. 6. Note that this graph is a subgraph
of the set of traces of the system under π0 (Fig. 5).

Applied to the PTA modeling the flip-flop circuit, our program generates the
following constraint K1:

δ−1 > 0 ∧ Tsetup < TLO

∧ Thold ≤ THI ∧ δ+
3 + δ+

4 < Thold

∧ δ+
1 < Tsetup

It is easy to see now that Z ! K0∪K1. In other terms, our union of constraints
K0 ∪K1 represents a strictly bigger set of parameter valuations than Z. Note that,
although Z ! K0 ∪K1, the sets of time-abstract behaviors under Z and K0 ∪K1

are the same (K0 ∪ K1 does not add any trace to Z). Note also that, under our
environment, the system under the constraint Z of [10] yields the same set of traces
as under π0 (depicted on Fig. 5).

We notice that, whatever the algorithm randomly chooses at each iteration for
the inequality ¬J , the constraint finally computed always remains equivalently the
same. Hence, for this particular example, the behavior of Imitator seems to be
confluent (see final remarks in Sect. 12).

4 And–Or Circuit

This example deals with an “And–Or” circuit described in [9] and depicted on
Fig. 8. It is composed of 2 gates (one “And” gate and one “Or” gate) which are
interconnected in a cyclic way, and the environment which corresponds to 2 input
signals a and b, with cyclic alternating rising edges and falling edges. Each rising
(resp. falling) edge of signal a, is denoted by a↑ (resp. a↓), and similarly for b, t, x.
The delay between the rising and the falling edge of a↑ (resp. a↓) and a↓ (resp. a↑)
is in [δ−

a↑
, δ+

a↑
] (resp. [δ−

a↓
, δ+

a↓
]), and similarly for b. The traversal of the gate “Or”

gate takes also a delay in [δ−Or, δ
+
Or], and likewise for the “And” gate.

Both gates are modeled by a PTA, as well as the environment. We consider an
inertial model for gates, where any change of the input may lead to a change of

7

André, Encrenaz and Fribourg

x

t

a b

Fig. 8. And–Or Component

q0 q1 q2 q3 q4 q5 q6 q7
b↓ x↓ a↓ t↓ b↑ a↑ t↑

x↑

Fig. 9. Traces of the And–Or circuit under π0

the output (after some delay). The PTA A modeling the system results from the
composition of those 3 PTA. There are 12 timing parameters.

A bad state expresses the fact that the rising edge of output signal x occurs
before the rising edge of a within the same cycle. We set the parameters to the
following values, ensuring that the bad state is not reachable:

δ−
a↑

= 13 δ+
a↑

= 14 δ−
a↓

= 16 δ+
a↓

= 18

δ−
b↑

= 7 δ+
b↑

= 8 δ−
b↓

= 19 δ+
b↓

= 20

δ−And = 3 δ+
And = 4 δ−Or = 1 δ+

Or = 2

We consider an environment starting at location q0 with a = b = x = t = 1,
and the following repeated cycle of alternating rising and falling edges of a and b:
b↓, a↓, b↑, a↑. For the given environment and the instantiation π0, the set of traces
of the system is depicted on Fig. 9 under the form of an oriented graph, where
qi, 0 ≤ i ≤ 7, are locations of A. The value of the signals of the system for each
location qi is given on Fig. 10. We can check that, in this graph, the bad state is
not reached, i.e., the rising edges and falling edges of a, b, x alternate properly.

Using our program Imitator applied to the PTA A modeling the system and
the reference instantiation π0, the following constraint is computed:

0 < δ−
a↓

∧ 0 < δ−And

∧ 0 < δ−Or ∧ δ+
And + δ+

b↑
< δ−

a↑

∧ δ+
a↑

+ δ+
Or < δ−

b↓
+ δ−

b↑
∧ δ−

b↓
+ δ−

b↑
≤ δ+

a↑
+ δ+

a↓

∧ δ+
Or + δ+

And < δ−
b↑

Under any instantiation of the parameters π |= K0, the set of traces under π
is guaranteed to be identical to the set of traces under π0 given on Fig. 9 and,
therefore, does not reach any bad state. As in the case of the flip-flop example,
we notice that, whatever the algorithm randomly chooses at each iteration for the
inequality ¬J , the constraint finally computed always remains equivalently the same
(see final remarks in Sect. 12). In [9], the generated constraint is not given.

8

André, Encrenaz and Fribourg

Location a b t x

q0 1 1 1 1

q1 1 0 1 1

q2 1 0 1 0

q3 0 0 1 0

q4 0 0 0 0

q5 0 1 0 0

q6 1 1 0 0

q7 1 1 1 0

q8 1 1 1 1

Fig. 10. Locations of the And–Or circuit

5 Root Contention Protocol

We now aim at generating sufficient constraint for a good behavior of the Root Con-
tention Protocol, to elect a leader in the Firewire protocol. As described in [18],
the IEEE 1394-1995 standard for a high performance serial bus specifies a bus that
supports isochronous and asynchronous data transfers, peer-to-peer, among up to
64 devices. Also, the bus is hot-plug-and-play, which makes it suitable for intercon-
necting digital multimedia and consumer electronics.

The model we here study is the same as in [18]. It is made of two nodes, two
wires, and a safety observer. Two values for delay are considered in [18]: 30ns or
360 ns.

5.1 First Case: delay = 30

We consider the following instantiation π30 of the parameters:

rc fast max = 85 rc fast min = 76 delay = 30

rc slow max = 167 rc slow min = 159

Using Imitator, we get the following constraint K30:
rc fast max + 2delay < rc slow min

∧ 2delay < rc fast min

5.2 Second Case: delay = 360

We consider the following instantiation π360 of the parameters:

rc fast max = 85 rc fast min = 76 delay = 360

rc slow max = 167 rc slow min = 159

Using Imitator, we get the following constraint K360:
rc fast min > 0

∧ 2rc slow min ≤ delay

∧ rc fast max < rc slow min

6 CSMA/CD

Carrier Sense Multiple Access With Collision Detection (CSMA/CD) is a network
control protocol in which a carrier sensing scheme is used, and a transmitting data
station that detects another signal while transmitting a frame, stops transmitting

9

André, Encrenaz and Fribourg

that frame, transmits a jam signal, and then waits for a random time interval
before trying to send that frame again. Methods for collision detection are media
dependent, but on an electrical bus such as Ethernet, collisions can be detected by
comparing transmitted data with received data. If they differ, another transmitter
is overlaying the first transmitter’s signal (a collision), and transmission terminates
immediately. A jam signal is sent which will cause all transmitters to back off
by random intervals, reducing the probability of a collision when the first retry is
attempted.

6.1 First model

We first study the model of this protocol described in [16]. This models contains
two senders and a bus, modeled by three Parametric Timed Automata. We consider
three parameters: σ is the time for a signal to propagate between the two farthest
station, and λ is the time to send a message. We set those two parameters to typical
values given in [16], as follows:

λ = 780 c = 52 σ = 26

We then get the following constraint:
0 < σ

∧ c < λ

∧ 2σ ≤ c

6.2 Prism model

We now consider the model of this protocol described in [15]. We consider three
parameters: λ, σ and slot . The following parameters are taken from the IEEE
standard 802.3 for 10 Mbps Ethernet. It constitutes the reference valuation for the
following three parameters:

λ = 808 slot = 52 σ = 26

We then get the following constraint:
σ < slot

∧ λ < 16slot

∧ 15slot < λ

7 Bounded Retransmission Protocol

We here study a simplified version of the Bounded Retransmission Protocol de-
scribed and modeled by timed automata in [17].

The instantiation π0 of the parameters of the system is as follows:

MAX = 2 N = 2 TD = 1

T1 = 3 TR = 16 SYNC = 17

We then get the following constraint:
0 < TD ∧ N = 2

∧ MAX = 2 ∧ TR ≤ SYNC + TD

∧ 2TD < T1 ∧ TR < 5T1 + 2TD

∧ 4T1 + 3TD ≤ TR ∧ 5T1 < TR + TD

10

André, Encrenaz and Fribourg

Fig. 11. A latch circuit studied in the case of ANR project Valmem

8 ABR Conformance Protocol

The ABR conformance protocol is a real-time program developed at France Telecom,
that control dataflow rates on ATM networks. A crucial part of this protocol is the
dynamical computation of the expected rate of data cell emission. We consider here
the model of the corresponding program described in [6].

Note that the version of the parametric timed automata considered there is an
extension of standard PTA, allowing to reset clocks to a non-null value, and called
Updatable Timed Automata [7]. Thus, we notice that Imitator is here successfully
applied to another class of systems than PTA.

We choose the following instantiation π of the three parameters of the system:

a = 3 b = 7 t = 20

Using Imitator, we get the following constraint K0:
0 < a

∧ 2a ≤ b

∧ 2b ≤ t

9 Valmem Project

The examples described in this section have been studied in the case of French
ANR project Valmem. This project aims at synthesizing timing constraints of
memory circuits designed by chips manufacturer ST-Microelectronics with methods
developed by research teams from LSV and LIP6.

9.1 Latch Circuit

This circuit, depicted on Fig. 11, contains 4 gates and one “latch”. A bad state
corresponds to the fact that the value output signal Q has not changed before the
end of the cycle of signal CK .

The system contains 13 parameters. The following instantiation π0 of these pa-
rameters (in ps) were extracted from the circuit description by simulation computed
in project Valmem:

THI = 1000 TLO = 1000 THold = 350 TSetup = 0

δNot1↑ = 219 δNot1↓ = 147 δNot2↑ = 155 δNot2↓ = 163

δXor↑ = 147 δXor↓ = 416 δAnd↑ = 80 δAnd↓ = 155

δLatch↑ = 240

Under this instantiation, the system does not reach the bad state. Using our
program Imitator, the following constraint K0 is computed in 20 seconds:

11

André, Encrenaz and Fribourg

0 < δAnd↓

∧ δXor↑ = δNot1↓

∧ δLatch↑ + δAnd↑ < THold

∧ TSetup < TLO

∧ δAnd↑ < δXor↑

∧ THold < δXor↓ + δNot2↑ + δXor↑

∧ δXor↑ + δNot2↑ < δLatch↑ + δAnd↑

∧ δXor↑ + δXor↓ + δAnd↓ + δNot2↑ ≤ THI

Under this constraint, the system has the same behavior as under the instanti-
ation, and therefore guarantees a good behavior of the system. Moreover, we are
interested in minimizing the THold value, provided the system keeps its good behav-
ior. By instantiating all the parameters in K0 with their value in π0, except THold ,
we get the following constraint:

320 < THold < 718

So we can minimize the value of THold to 321, and we guarantee that the system
will have exactly the same behavior as before.

9.2 SPSMALL Memory

We studied a portion of the SPSMALL memory designed and sold by ST-Microelectronics.
This memory is described in [8].

The following instantiation of the parameters was automatically extracted from
the circuit description by simulation:

d up q 0 = 21 d dn q 0 = 20 d up net27 = 0

d dn net27 = 0 d up d inta = 22 d dn d inta = 45

d up wela = 0 d dn wela = 22 d up net45a = 5

d dn net45a = 4 d up net13a = 19 d dn net13a = 13

d up net45 = 21 d dn net45 = 22 d up d int = 14

d dn d int = 18 d up en latchd = 28 d dn en latchd = 32

d up en latchwen = 5 d dn en latchwen = 4 d up wen h = 11

d dn wen h = 8 d up d h = 95 d dn d h = 66

THI = 45 TLO = 65 Tsetupd = 108

Tsetupwen = 48

Under this instantiation, the system has a good behavior. We then get the
following constraint K0:

12

André, Encrenaz and Fribourg

∧ TLO < d dn d inta + d dn d int + d up en latchd

∧ d up en latchwen ≥ 0

∧ d up d inta + d up d int + d up d h < d dn en latchd + Tsetupd

∧ d dn wela + d dn net13a < THI

∧ d dn en latchd < d dn wela + d dn net13a

∧ d dn wen h + TLO < d up en latchd + Tsetupwen

∧ TLO < d up net13a + Tsetupwen

∧ d up wela ≥ 0

∧ d up wela + d up net13a + Tsetupwen < d dn wen h + TLO

∧ d up wela + d dn net45a + d dn net45 + d dn wen h + Tsetupd < d up d h + Tsetupwen

∧ d up q 0 + d up net27 + d dn wela + d dn net13a < d up net13a + THI

∧ d up en latchwen + Tsetupwen < TLO

∧ d up en latchwen + THI < d up q 0 + d up net27 + d dn wela + d dn net13a

∧ d up d h < Tsetupd

∧ d dn en latchwen ≥ 0

∧ d dn net13a + Tsetupd < d up d inta + d up d int + d up d h

∧ TLO ≤ Tsetupd

∧ d up en latchd < d dn net45a + d dn net45 + d up en latchwen

∧ d dn en latchwen < d dn net13a

∧ d dn wen h + TLO < d up net45a + d up net45 + d up en latchwen + Tsetupwen

∧ Tsetupd < THI + TLO

∧ d up d inta + d up d int + d up en latchd < TLO

∧ d dn net45a + d dn net45 + d up en latchwen < d up d inta + d up d int + d up en latchd

∧ d up net45a + d up net45 + d up en latchwen < TLO

Under this constraint, the system has the same behavior as under the instanti-
ation, and therefore guarantees a good behavior of the system. Moreover, we are
interested in minimizing the values of Tsetupwen and Tsetupd , provided the system
keeps its good behavior. By instantiating all the parameters in K0 with their value
in π0, except Tsetupwen and Tsetupd , we get the following constraint:

46 < Tsetupwen < 54

∧ 99 < Tsetupd < 110

∧ Tsetupd < Tsetupwen + 61

Which allows us to minimize Tsetupwen and Tsetupd to 47 and 100 respectively.
This corresponds for Tsetupd to an optimization of 7,4 %. And we guarantee that
the system will have exactly the same behavior as before.

10 SIMOP

SIMOP project is a joint work with LSV and LURPA, ENS de Cachan, aiming at
defining several good behavior zones for a distributed control system.

10.1 Description

We here consider a distributed control system. Focus is put on architectures where
logic controllers and remote input-output modules (RIOMs) communicate to carry
out automation functions. With the selected protocol, controllers are clients and
RIOMs are data servers. The main features of the physical components of these
architectures are:
• Controllers (Programmable Logical Controllers (PLCs) or industrial computers)

are modular. Within each controller, a calculus processor runs a program cycli-
cally, while a communication processor performs a periodic scanning of some RI-
OMs, termed I/O scanning. It matters to underline that the cycles of these two

13

André, Encrenaz and Fribourg

processors are asynchronous, data exchanges being made by means of a shared
memory.

• The network includes Ethernet switches and Ethernet links and is dedicated only
to communications between the PLCs and RIOMs; there is no other additional
traffic.

• Inputs and outputs from/to the plant are gathered in RIOMs which are directly
connected to the network. One RIOM may be shared by several PLCs.

Full description is available in [3].
Using our program Imitator and good functioning points, we can infer con-

straints starting from those points, and therefore define good functioning zones.

10.2 First Instantiation Point

10.2.1 Valuation of the parameters

PLCct = 300

COMct = 1000

COMct = 2071

PLCmtt = 100

RIOd = 70

COMd = 25

NETd = 10

10.2.2 Inequalities found
2COMct + RIOd < SIGmrt

7PLCct < COMd + 2COMct + NETd + RIOd

COMd + 2COMct + NETd < 7PLCct

3COMct < 10PLCct + NETd

2COMct + 2NETd + RIOd < 7PLCct

COMct < 3PLCct + COMd + NETd + RIOd

COMd + NETd < PLCmtt

10PLCct < 3COMct + NETd

3PLCct + 2NETd + RIOd < COMct

COMct < PLCmtt + 3PLCct + NETd

3PLCct + COMd + NETd < COMct

2NETd + RIOd < PLCmtt

2COMct < PLCmtt + 6PLCct + COMd + NETd + RIOd

10.3 Second Instantiation Point

10.3.1 Valuation of the parameters
PLCct = 600

COMct = 500

COMct = 2071

PLCmtt = 100

RIOd = 70

COMd = 25

NETd = 10

14

André, Encrenaz and Fribourg

10.3.2 Inequalities found
4COMct + RIOd < SIGmrt

PLCct < COMd + COMct + NETd + RIOd

0 < NETd

COMct + 2NETd + RIOd < PLCct

COMd + COMct + NETd < PLCct

PLCct < PLCmtt + COMct + NETd

2NETd + RIOd < PLCmtt

COMd + NETd < PLCmtt

4COMct < PLCmtt + 3PLCct + COMd + NETd + RIOd

3PLCct + COMd + 2NETd + RIOd < 4COMct

10.4 Third Instantiation Point

10.4.1 Valuation of the parameters
PLCct = 525

COMct = 436

COMct = 2071

PLCmtt = 100

RIOd = 70

COMd = 25

NETd = 10

10.4.2 Inequalities found (K3)
4COMct + RIOd < SIGmrt

∧ 4COMct < PLCmtt + 3PLCct + RIOd

∧ PLCmtt + 3PLCct + COMd + NETd ≤ 4COMct

∧ PLCct + NETd < PLCmtt + COMct

∧ PLCmtt ≤ COMd + NETd + RIOd

∧ PLCct < COMct + 2NETd + RIOd

∧ COMct + NETd + RIOd < PLCct

After instantiation of PLCmtt , RIOd , COMd , NETd , we get:

SIGmrt > 4COMct + 70

∧ 4COMct ≥ 3PLCct + 135

∧ PLCct > COMct + 80

∧ PLCct < COMct + 90

∧ 4COMct < 3PLCct + 170

10.5 Fourth Instantiation Point

10.5.1 Valuation of the parameters
PLCct = 525

COMct = 435

COMct = 2071

PLCmtt = 100

RIOd = 70

COMd = 25

NETd = 10

15

André, Encrenaz and Fribourg

Example # PTAs loc. per PTA |X| |P | # iter. |Post∗| |K0| CPU time

Flip-flop (π0) [10] 5 [4, 16] 5 12 8 11 7 2 s

And–Or [9] 3 [4, 8] 4 14 9 9 7 3 s

RCP (π30) [18] 5 [6, 11] 6 5 18 229 2 64 s

RCP (π360) [18] 5 [6, 11] 6 5 20 871 3 480 s

CSMA/CD [16,19] 3 [6, 7] 4 3 21 294 3 108 s

CSMA/CD [15] 3 [3, 8] 3 3 17 218 3 44 s

BRP [17] 6 [2, 6] 7 6 29 427 8 15min 23

ABR [6] 3 [2, 5] 1 3 18 456 3 16min 36

Latch 7 [2; 5] 7 15 11 18 8 20 s

SPSMALL [8] 10 [3, 8] 10 22 31 31 23 78min

SIMOP [3] 5 [5, 16] 8 7 51 956 9 419min

Fig. 12. Case studies using Imitator

10.5.2 Inequalities found (K4)
4COMct + RIOd < SIGmrt

∧ PLCct < COMd + COMct + NETd + RIOd

∧ 3PLCct + COMd + 2NETd + RIOd < 4COMct

∧ 4COMct < PLCmtt + 3PLCct + RIOd

∧ COMct + NETd + RIOd < PLCct

∧ PLCct < PLCmtt + COMct

∧ 2NETd + RIOd < PLCmtt

∧ COMd + COMct + NETd < PLCct

After instantiation of PLCmtt , RIOd , COMd , NETd , we get:

SIGmrt > 4COMct + 70

∧ 4COMct > 3PLCct + 115

∧ PLCct < COMct + 100

∧ PLCct > COMct + 80

∧ 4COMct < 3PLCct + 170

It is easy to verify that this constraint strictly includes K3.

11 Summary of the Experiments

We give on Fig. 12 the summary of our experiments. We give from left to right the
name of the example with a reference, the number of PTAs, the lower and upper
bounds on the number of locations per PTA, the number of clocks, the number
of parameters, the number of iterations of the algorithm, the number of states in
Post∗, the number of inequalities in K0 (after reduction), and the computation time
on an Intel Quad Core 3GHz with 3.2 Gb.

The instantiation π0 we use for each example is either an instance satisfying the
constraint Z generated by classical synthesis constraints when such a Z is available
(e.g., in the flip-flop, RCP, BRP examples), or corresponds to typical data given
with the case study (e.g., in the CSMA/CD, SIMOP, SPSMALL examples). In
the first case, the constraint generated by our method is often the same as Z,
but not always: for example, in the flip-flop example, the inferred constraint K0 is
different from the constraint Z originating from [10]. This suggests to combine both
information, in order to widen our constraint K0, as described in the incremental
method of [5]. In the second case, the constraint allows us to safely decrease (or
increase) some components of the typical data π0, as far as they still satisfy K0.

16

André, Encrenaz and Fribourg

q0 q1

x ≤ p1 ∧ x ≤ p2

x > p3

Fig. 13. PTA showing the non-confluence of Imitator

This is useful, for example in order to relax some requirements on the environment
of asynchronous circuits (see, e.g., [8]).

12 Final Remarks

Given a reference valuation π0, Imitator solves the inverse problem for systems
modeled by PTA with acyclic traces : it returns a constraint K0 on the parameters
guaranteeing that the sets of traces of A[π0] and A[π] are identical, for any valuation
π such that π |= K0. K0 prevents all the bad behaviors (e.g. deadlocks), since
it imitates the reference behavior of π0, while constraints generated by classical
methods may not prevent bad behaviors other than those specified by the bad
states.

Imitator is a complementary tool which can be used to improve constraints
of classical methods. Considering the flip-flop example of Sect. 3, Imitator first
generates a constraint K0 incomparable with constraint, say Z, of [10]. We can
run Imitator again with a reference valuation π1 ∈ Z \K0, which outputs K1, s.t.
K0 ∪K1 is strictly larger than Z.

Note that the computation time of several examples could be reduced, because
of the use of HyTech. Indeed, HyTech computes an a priori composition of the
automata, which is time-consuming in the case of several medium-sized automata.
Another tool using a library for computing operations on polyhedra is under project.

Non-Confluence of Algorithm InverseMethod
It can be shown that InverseMethod is (in general) non-confluent, i.e., several

applications of InverseMethod to the same instance π0 may lead to a different K0.
Consider the PTA depicted on Fig. 13. This PTA contains 2 locations q0 and q1, one
clock x, and 3 parameters p1, p2, p3. We consider the following reference valuation
π0 of the parameters:

p1 = 1 ∧ p2 = 1 ∧ p3 = 2

It is easy to see that an application of InverseMethod to this PTA and this instan-
tiation π0 will output a constraint K0 either equal to p1 ≤ p3, or equal to p2 ≤ p3,
depending on which ¬J is selected in the algorithm.

It follows from this remark about the non-confluence that the constraint K0

output by InverseMethod is not maximal, i.e., there may exist π "|= K0 such that
the traces of A[π0] and the traces of A[π] are identical. The maximal constraint is
actually probably not in conjunctive form in the general case: on the example of
Fig. 13, it is easy to see that the maximal constraint guaranteeing the same behavior
as under π0 is p1 ≤ p3 ∨ p2 ≤ p3, which is not in conjunctive form.

In practice, we observe on all the experiments detailed in this report a confluent
behavior of the algorithm: applications of InverseMethod to the same instance π0

17

André, Encrenaz and Fribourg

generally lead to the same constraint K0, whatever the random selections are. How-
ever, the constraint generated is not always maximal. It would be interesting to
evaluate how large is the constraint generated by InverseMethod.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. TCS, 126(2):183–235, 1994.

[2] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning. In STOC ’93, pages
592–601, New York, USA, 1993. ACM.

[3] S. Amari, É. André, T. Chatain, O. De Smet, B. Denis, E. Encrenaz, L. Fribourg, and S. Ruel. Timed
analysis of distributed control systems combining simulation and parametric model checking. Research
report, Laboratoire Spécification et Vérification, ENS Cachan, France, June 2009.

[4] Étienne André. Imitator: A tool for synthesizing constraints on timing bounds of timed automata. In
ICTAC’09, LNCS. Springer, August 2009. To appear.

[5] Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent Fribourg. An inverse method
for parametric timed automata. International Journal of Foundations of Computer Science, 2009. To
appear.

[6] B. Bérard and L. Fribourg. Automated verification of a parametric real-time program: The ABR
conformance protocol. In CAV’99, volume 1633 of LNCS, pages 96–107, Trento, Italy, 1999. Springer.

[7] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Updatable timed automata. Theoretical Computer
Science, 321(2-3):291–345, August 2004.

[8] R. Chevallier, E. Encrenaz, L. Fribourg, and W. Xu. Timed verification of the generic architecture of
a memory circuit using parametric timed automata. Formal Methods in System Design, 34(1):59–81,
February 2009.

[9] R. Clarisó and J. Cortadella. Verification of concurrent systems with parametric delays using octahedra.
In ACSD ’05. IEEE Computer Society, 2005.

[10] R. Clarisó and J. Cortadella. The octahedron abstract domain. Sci. Comput. Program., 64(1):115–139,
2007.

[11] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. In CAV ’00, pages 154–169. Springer-Verlag, 2000.

[12] G. Frehse, S.K. Jha, and B.H. Krogh. A counterexample-guided approach to parameter synthesis for
linear hybrid automata. In HSCC ’08, volume 4981 of LNCS, pages 187–200. Springer, 2008.

[13] T. A. Henzinger, P. Ho, and H. Wong-Toi. A user guide to HyTech. In TACAS, pages 41–71, 1995.

[14] T.S. Hune, J.M.T. Romijn, M.I.A. Stoelinga, and F.W. Vaandrager. Linear parametric model checking
of timed automata. Journal of Logic and Algebraic Programming, 2002.

[15] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model checking for probabilistic
timed automata. In FORMATS/FTRTFT, pages 293–308, 2004.

[16] X. Nicollin, J. Sifakis, and S. Yovine. Compiling real-time specifications into extended automata. IEEE
Trans. on Software Engineering, 18:794–804, 1992.

[17] P.R. D’Argenio, J.P. Katoen, T.C. Ruys, and G.J. Tretmans. The bounded retransmission protocol
must be on time! In TACAS ’97. Springer, 1997.

[18] D. Simons and M. Stoelinga. Mechanical verification of the IEEE 1394a Root Contention Protocol using
Uppaal2k. International Journal on Software Tools for Technology Transfer, 3(4):469–485, 2001.

[19] Farn Wang. Symbolic parametric safety analysis of linear hybrid systems with BDD-like data-structures.
IEEE Trans. Softw. Eng., 31(1):38–51, 2005.

18

	Introduction
	The Algorithm InverseMethod
	Description
	Implementation

	Flip-flop Circuit
	Description
	Clarisó and Cortadella's Constraints
	First Instantiation Point
	Second Instantiation Point

	And--Or Circuit
	Root Contention Protocol
	First Case: delay=30
	Second Case: delay=360

	CSMA/CD
	First model
	Prism model

	Bounded Retransmission Protocol
	ABR Conformance Protocol
	Valmem Project
	Latch Circuit
	SPSMALL Memory

	SIMOP
	Description
	First Instantiation Point
	Second Instantiation Point
	Third Instantiation Point
	Fourth Instantiation Point

	Summary of the Experiments
	Final Remarks
	References

