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Abstract cols). Better, second-order terms naturally encode asym-
metric encryption. It may also be appealing to consider that
Security properties are profitably expressed using no- proving security properties in the cryptographic lambda-
tions of contextual equivalence, and logical relations are calculus can be achieved through the use of well-crafted
a powerful proof technigue to establish contextual equiva- logical relations a tool that has been used many times with
lence in typed lambda calculi, see e.g. Sumii and Pierce’s considerable success in thecalculus: see [13, Chapter 8],
logical relation for a cryptographic lambda-calculus. We for numerous examples. Sumii and Pierce [21] in particular
clarify Sumii and Pierce’s approach, showing that the right define three logical relations that can be used to establish
tool is prelogical relations, or lax logical relations in ge contextual equivalence, hence prove security propeltigs,
eral: relations should be lax at encryption types, notably. completeness remains open.
To explore the difficult aspect of fresh name creation, we use  Our contributions are twofold: first, we clarify the im-
Moggi's monadic lambda-calculus with constants for cryp- port of Sumii and Pierce as far as the behavior of logical
tographic primitives, and Stark’s name creation monad. We relations on encryption types is concerned, and simplify it
define logical relations which are lax at encryption and to the point that we reduce it to prelogical relations [114 an
function types but strict (non-lax) at various other types, more generally to lax logical relations [17]; while stardiar
and show that they are sound and complete for contextualrecourses to the latter were usually required because of ar-
equivalence at all types. row types, here we require the logical relations to be lax at
encryption types Second, we prove various completeness
results: two terms are contextually equivalent if and ofly i
they are related by some lax logical relation. This holds at
all types, not just first-order types as in previous works. An
added bonus of using lax logical relations is that they ex-
There are nowadays many existing modelsdoypto-  tend directly to more complex models of encryption, where
graphic protocol verification. The mostwell-known are per- cryptographic primitives may obey algebraic laws. This is
haps the Dolev-Yao model (after [9], see [7] for a survey) touched upon briefly in Section 3.7.
and the spi-calculus of [1]. A lesser known model was intro-
duced by Sumii and Pierce [21], tkeyptographic lambda- . . )
calculus This has certain advantages; notably, higher-order Outiine. We survey related work in Section 2. We focus
behaviors are naturally taken into account, which is igdore O the approach of Sumii and Pierce, in which they define

in other models (although, at the moment, higher order is several rather complex logical relations as sound criteria

not perceived as a needed feature in cryptographic proto_of contextual equivalence. We take a new look at this ap-

proach in Section 3, and gradually deconstruct their work
*Partially supported by the RNTL project Prouvé, the ACI Siééun- to the point where we show the power of prelogical rela-
formatique Rossignol, the ACI jeunes chercheurs “Sécimiérmatique, tions in action. This is shown in the absence of fresh name

protocoles cryptographiques et détection d'intrusioasit] the ACI Cryp- - . . .
tologie “PSI-Robuste”. creation, for added clarity. We tackle the difficult issue of

PhD student under an MENRT grant on ACI Cryptologie funding, Names in Section 4, USi.ng Moggi's elegant CompUtational
Ecole Doctorale Sciences Pratiques (Cachan). A-calculus framework with Stark’s name creation monad.

1. Introduction




This requires passing from simple set-valued semantics toof Sumii and Pierce [21] is inspired in this respect by Pitts
presheaf-valued semantics, and from prelogical relations and Stark [16], who proposed)acalculus devoted to the

lax logical relations [17]. Again, we prove soundness and study of fresh name creation, the-calculus They define
completeness of the latter with respect to contextual equiv a so-called operational logical relation to establish okese
alence. In Section 4, following insights developed in previ tional equivalence of nu-calculus expressions. They prove
ous sections, we shall consider a computationrehlculus that this logical relation is complete up to first-order tgpe
with an open set of types and constants (i.e., you may addHowever, the extension to richer calculi (e.g., [21]) must
the ones you wish); this handles cryptography, in particu- be made on an ad hoc basis, probably because this oper-

lar. ational logical relation is defined by syntactic means. We
shall rest solely on semantic notions. That our notions can
2. Related Work be extended at will is withessed by the fact that we shall

consideropencalculi, in the sense that our calculi must in-
clude specific types and constants, but may contain any set

Logical relations have often been used to prove various ¢ - ditional types and constants, too.

properties of typed lambda calculi. The list would be too
long here, see [13] for a sampler. We are interested here

in using logical relations or variants thereof as sounderit Contextual equivalence is defined using universal quan-
ria for establishingontextual equivalenagf two programs. ification over contexts, which is impractical. We were
This i§ instrumental in defining securit.y proper'Fies. As no- tempted to say that the logical relations of [21] and [16]
ticed in [1, 21], a datum\/ of type 7 is secretin some  qiq a poor job of dispensing with this, since they quantify
term¢ (M) of typer” if and only if no intruder can say any-  gyer so-called canonical forms of various types, which is
thing about)/ just by looking att(1/), i.e., if and only if  pasically as complex. However, this would be unfair, since
t(M) = t(M') for any two M and M', where~.. de-  \ye do even worse. Indeed, one of our points in this paper is
notes cor)textual equivalence at tyge or equivalently, if that completenesat all typescan be obtained by replacing
and only if Az - Ay - t(z) 77 Az - Ay - £(y). We are  |ogical relations byprelogical[11] and everiax logical re-
using A-calculus notions here, following [21], but the idea |4tons [17], and these are even harder to decide. We there-
of using contextual equivalence to define security proper-¢sre examine on which types the lax logical relations we
ties was pioneered by Abadi and Gordon [1], where not just neeq can be taken to be strict (i.e., non-lax, see later). One
secrecy, but also authentication, is investigated. nice point in our establishing completeness for lax logical
We shall define precisely what we mean by contextual yg|ations is that it gives a precise meaning to the notion of

equivalence in a calculus without names (Section 3.2), the”public names, as used in the intuition behind the construc-
with names (Section 4.3). Both notions are standard, the lat tjons of [16] for example: see Section 4.3.

ter being inspired by [16], only adapted to Moggi’s compu-
tationalA\-calculus [15]. In [16] and some other places, this
kind of equivalence, which states that two values (orterms)  |n [10], Goubault-Larrecq, Lasota and Nowak define
a anda’ are equivalent provided every context of type1 a Kripke logical relation for the dynamic name creation
must give identical results omand ond/, is called obser-  monad, which is extended by Zhang and Nowak in [23] so
vational equivalence. We stress that this should not be conthat it coincides with Pitts and Stark’s operational logica
fused with observational equivalence as it is defined fa dat relation up to first-order types. It rests on purely semantic
refinement [13], wherenodelsare related, notaluesinthe  constituents, and dispenses with the detours through opera
same model as here. For completeness of the data refinetional semantics that Pitts and Stark use. We continue this
ment kind, see [18]. work here, relying on the elegance of Moggi's [15] compu-
The main pointin passing from contextual equivalence to tational\-calculus to describe side effects, and in particular
logical relations is to avoid the universal quantificatimen fresh name creation, using Stark’s insights [20].
contexts in the former. But there are two kinds of technical
difficulties one must face in defining logical relations for
cryptographici-calculi. The first, and hardest one fissh Further comparisons will be made in the course of
name creation The second is dealing with encryption and this paper, especially with bisimulations for spi-calaulu
decryption. We shall see that the latter has an elegant solu{1, 5, 6]. This continues the observations pioneered in,[10]
tion in terms ofprelogicalrelations [11], which we believe  where notions of logical relations for various monads (non-
is both simpler and more general than Sumii and Pierce’sdeterminism, probabilistic non-determinism) were shoan t
proposal [21]; this is described in Section 3, although we be proper extensions of known notions of bisimulations.
ignore fresh name creation there, for clarity. The precise relation with hedged and framed bisimulation
Dealing with fresh name creation is harder. The work [6] remains to be stated precisely.



3. Deconstructing Sumii and Pierce, Without  then called th@laintex), andlet {z}; = u in v; else vy
Names is meant to evaluate, attemptto decryptit using keythen
proceed to evaluate, with plaintext stored inc if decryp-
The starting point of this paper was the realization that tion succeeded, or evaluatg if decryption failed. Defini-
the rather complex family of logical relations proposed by tions of free and bound variables anerenaming are stan-
Sumii and Pierce [21] could be simplified in such a way dard, hence omitted; is bound in\z - ¢, with scopet, and
that it could be described as meraipeway of building @ is boundinlet {z}; = u in v else vy, With scopev;.
logical relations that have all desired properties. It &urn
out that the only property we really need to be able to deal ~ Typing is as one would expect, see Figurelddgments
with encryption and decryption primitives is that the laic ~ are of the fornT" - ¢ : 7, wherel" is acontexti.e., a finite
relations should relate the encryption function with itsel mapping from variables to types. If mapsz; to 7, ...,
and the decryption function with itself. At this point, the z, to7,, we write itzy : 71,...,2, : 7,. I', A denotes the
reader familiar witlprelogical relations will realize thatthis  union of the context§' and A, provided their domains do
is exactly what prelogical relations are about, but let us no not intersect.
advance so fast. For now, we are content with explaining

the above remark. A simple denotational semantics for the typed toy cryp-
_ tographic calculus is as follows. Ldt] be any func-
3.1. The Toy Cryptographic A-Calculus tion mapping types to sets so thafr; — 7] is the set

[1] — [r2] of all functions from[r;] to [2], for all

To show the idea in action, let us use a minimal exten- typesm; andr,. Let [b] be arbitrary for every base type
sion of the simply-typed-calculus with encryption and de-  p, [xey[r]] be arbitrary. For every” € [r], K € [key[r]],
cryption, and let's call it theoy cryptographich-calculus  write E(V, K) the pair(V, K), to suggest that this really
We shall show how the idea works on this calculus, which denotes the encryption &f with key K. (That ciphertexts
is just a fragment of Sumii and Pierce’s [21] cryptographic are just modeled as pairs is exactly as in modern versions of
A-calculus. The main thing that is missing here is nonce the Dolev-Yao model [9], or in the spi-calculus [1].) Then,
creation, i.e., fresh name creation. Dealing with nonces is|et [oits[r]] be the set of all pairE(V,K), V € [r],
the difficult point, see Section 4. K € [key[r]].

So, for now, restrict the types to:

Tu=b|7 — 7 |key[r] | bits[r] Forany set4, let A, be the disjoint sum ofl with { L },
where_L is an element outsidd, and let. be the canonical
whereb ranges over a sef of so-calledbase typese.g., injection of A into A, . While we have define(V, K) as

integers, booleans, etc. Sumii and Pierce’s calculus in ad-the pair(V, K), we define the inverse decryption function
dition has cartesian product and coproduct types[7] is from [bits[r]] x [key[7]] to [r], by letting D(V’, K')
the type of (symmetric) keys that can be used to encryptval-pe (V) if V' is of the form(V, K) with K = K’, and L
ues of typer, bits[r] is the type otiphertextobtained by  otherwise.
encrypting some value of type—necessarily with a key of
typekey[r]. There is no special type for nonces, which are  \ye then describe the val(je]  of the term in the envi-
being thought as objects of typey|r] for somer. _ ronmentp by structural induction on, see Figure 2. More
That the universe of values is splitin so many types is, by formally, for any context’, al'-environmenp is a map such
the way, a flaw in this model. In particular, this model may ot for everyr : 7in T, p(z) is an element ofr]. Write
cqnceatype confusion attacksvhere a value pf some type plz := V] the environment mappingto V and every other
T is expected, but a value of some other typés received. variabley to p(y). Write [z := V] the environment map-
Sumii and Pierce claim that such attacks can be preventecb“,u;]justm to V. Then, given any typing derivationof the

py stan_dard dynamic type checking. We rfaturn to this pOintjudgmentF - ¢ : 7, given anyl-environmentp, we define
in Section 3.7, and show how type confusion attacks can be[[ﬁﬂ p in [r] by structural induction omr. As is standard,

modeled at no cost. _ we allow ourselves to writ€ - ¢ : 7 or even just in place
The terms of the toy cryptographiecalculus are given ¢ - here since typing derivations are (almost) isomorphic
by the grammar: to the termst themselves. We writ¢V ¢ A — f(V))
tu,v, ... == x| Ax-t|tu] {t} the (set-theoretic) function mappiigin A to f(V) to dis-
tinguish it from the (syntactic)-abstractiomz - f(z). In
[T F tu : 7] p, we assume that the premises of the last rule
wherez ranges over a countable set of variablgg,, de- of the implicit typing derivation ar& + ¢t : m; — 7 and
notes the ciphertext obtained by encryptingth keyw (¢ is 'Fu:m.

| let {z}: = u in vy else vy



v De:mbHt:m 't — 7 I'Fu:m
romr—e) (Lam) (App)
LTELT X -t:m — 7 F-tu:m

ThHt:7 T u: key[r] Tk t:key[7] ,F#u:bits[z‘]
Enc) De:r7hov 7 ko7

I+ {t}u : bits[7]

Figure 1. Typing the toy cryptographic

[C,x:rtha:7]p =
[CEXe-t:1 — =]p
[CHtu:m]p =

[T F {t},:bits[r]]p =

p(z)

[let {z}; = u in vy else va] p [s] p

Figure 2. A simple denotational semantics for the toy crypto

3.2. Contextual Equivalence

Now fix a subsetObs of ¥, of so-calledobservation
types Typically, Obs will contain just the typebool of

(Dec)

I'klet {z}: = uin v else vy : 7!

A-calculus

(Veln]—[Dz:mbt:m]px:=V])
[THt:m — ] p([lCFw:m]p)
E([CFt:7]p, [T F u:key[r]])

{ [01] plz := VA]

if V=111)

V= L whereV = D([u] p, [t] p)

graphic \-calculus

Here we writea R o’ to say that: anda’ are related by the
binary relationR. In other words, logical relations relate
exactly those functions that map related arguments to re-
lated results. This is the standard definition of logicah+el

Booleans, one of the base types. We say that two termdions in theA-calculus [13]. Note that there is no constraint

u andv such that- « : 7 and+ v : 7 are derivable, for
the same type, arecontextually equivalentand we write

u ~, v, in the set-theoretic model above if and only if,
whatever the ternd such thatz : 7 - C : o is derivable
(0 € Obs), [C] [z := [u]] = [C] [z := [v]]. Intuitively, this
(essentially standard) notion captures the fact that wedvou
like to consideru andv as equivalent provided, whatever

the question we ask about them, the answer is the same fot’ °

u andv. Asking a question abodtmeans executingin a
context (a.k.a., an operating systefith typebool, i.e.,
runningC whenzx takes the value of and testing whether
the result is true or false. If the answer differs foe= «
and fort = v in the contexC, then there is an observable
difference between andv. Taking other observation types
thanbool is certainly possible, but we usually do not want
function, key and bits types to be observation types.

3.3. What Are Logical Relations for Encryption?

In the A-calculus setting, a (binarydgical relationis a
family (R-), . of binary relationsk ;, one for each type
7, on[r], such that:

(Log) for everyf, f' € [11 — 1], f Rr—r, [/ ifand
only if foreverya R, o, f(a) R., f'(a’).

on base types. In the typedcalculus, i.e., without encryp-
tion and decryption, the condition above for¢&s. ) .

to be uniquely determined, by induction on types, from
the relationsRy, b € ¥. More importantly, it entails the
so-calledbasic lemma To state it, first say that twd'-
environmentsp, p’ arerelated by the logical relation, in
notationp Rr o/, if and only if p(z) R, p'(z) for every
7 in I'. The basic lemma states thatlif- ¢y : 7 is
derivable, andp, p’ are two related'-environments, then
[to] p R+ [to] p’. This is a simple induction on (the typing
derivation of)¢.

We are interested in the basic lemma because, as ob-
served e.g. in [21], this implies that for any logical rebati
that coincides with equality on observation types, any two
terms with logically related values are contextually egquiv
alent. More precisely, assume tHat, is equality on[o]
for everyo € Obs. Then, ifk v : 7 and- v : 7 are
derivable, and: R, v, thenu =, v. Indeed, by the basic
lemma, for evenC such thatz : 7 - C : o is derivable
(o € Obs), then[C] [z := [u]] Ro [C] [z := [v]], i.e.,

[C] [z := [u]] = [C] [« := [v]] sinceR, is equality.

In the toy cryptographig-calculus, we have left the def-
inition of Ryey(r) andRyies[-) OPEN. Here are conditions
under which the basic lemma holds in the toy cryptographic
A-calculus. For any type, let R, opeion b€ the binary re-
lation on 7], defined byV R; oprion V' if and only if



V=V'=1,0rV=1V), V' =) for someVy, V7,
andVy R, V.

Lemma 1 Assume that:

1. for every V. R, V' and K TRy K,
E(K K) Rbits[r] E(V/vK/)'

2. for everyV Ryiwsir) Vo and K Rueyr) K,
D(V,K) R+ option D(V', K').

Then the basic lemma holds: If ~ ¢, : 7 is deriv-

able, andp, p’ are two relatedI"-environments, then
[tol p R~ [to] p'.

Proof. By structural induction ortg. The cases of vari-
ables, A-abstractions and applications are standard [13].
The case of encryptiong},, is by item 1. Whent,
let {z}; = u in v; else vy, by induction hypothesis we
haVE[[u]] P Rbits[r] [[u]] p/ and [[tﬂ P Rkey[r] [[tﬂ p/' so, let-
ting V. = D([u] p, [t] p) and V' = D([u] ¢/, [t] ¢'), then
V' Rr option V' by 2. Therefore, eitheV = V' = 1,
so [to] p [v2] p [v2] ¢’ (by induction hypothesis)
= [to] p'; or V.= u(V1), V! = «(V{), and[to] p =
[v1] plx == V4] = [v1] p'[x := V] (by induction hypothe-
sis)= [to] ¢’ O

3.4. Existence of Logical Relations for Encryption

How can webuild a cryptographic logical relation in-
ductively on types? We first need to address the question of
existencef logical relations satisfying the basic lemma.

Let us fix a typer, and assume that we have already
constructedR . and Ryey(-. Let Ry, (4 be the small-
est relation orfbits[r]] satisfying condition 1., i.e., such
that E(V, K) Ry, E(V/,K) foral V. R, V' and
K Ryeyr) K'. Let RbTitS[T] be the largest relation on
[bits[r]] satisfying condition 2., i.e., such that whenever
1% RbTits[T] V’, thenD(V, K) R+ option D(V', K') for ev-
ery K Ruyeyir) K'. These two relations clearly exist. Con-
ditions 1. and 2. state that we should cho@sg; ) so that

Reiesir] © Roitsr] S Rygee)- TS exists if and only if
Ré_its[T] < ,R’k—)rits[T]'
In tUrn, Rseeir) © Ruseslr) 1S €Quivalent to: for every

V Ry V' and K Ryey;) K', for every Ky Ryeyr) K1,
D(E(V,K), K1) Rroption D(E(V',K’),K}) (x). Let
thereforeV R, V', and fix K Ry.y;;) K'. By choosing
K, = K, (x) becomes (V) R+ option D(E(V', K'), K1),
which is equivalent td’ = K] andV R, V’. Similarly
by choosingK’ = K1, we getK = K; andV R, V'. In

Before we proceed, let us remark that we have never usegyiner words. as soon &, is NOt eMptyRyey(,] Must be
’ 1 ey|T

anyproperty ofE or D in the proof of this lemma. The prop-
erty thatD(E(V, K), K) = «(V) is only needed to show
thatlet {z}; = {u}: in vy else vp andvy[z := u| have

apartial bijectionon [xey[7]], i.e., the graph of a bijection
between two subsets fey[7]].

the same semantics, which we do not care about here. Th
property thate(V, K) is the pair(V, K), or thatE is even
injective, is just never needed. This means that Lemma 1

%roposition 2 LetRY be given binary relations ofip] for

every base typé. Let Rgeym be any partial bijection on

also holds if we use encryption primitives that obey alge- [keyl

braic laws: we shall use this observation in Section 3.7.

There is a kind of converse to Lemma 1. As-
sume that we have an additional type formefption,
with constructorsSOME T — T option and
NONE : 7 option. Assume their semantics is given
by [7 option] = [r],, [SOME¢] = «([t]), [NONE] =
L. Finally, assume thaR, .ption iS defined as above.
Then we may define an encryption primitivec = Av -

Ak - {v}, and a decryption primitive in the toy crypto-
graphic lambda-calculus bjec = Av - Ak - let {x}x =

v in SOME z else NONE. If the basic lemma holds,
then we must hav@enc] R:_xey[r]—bits[-] [enc] and
[dec] Reyits[r]—key[r]—+ option [dec]. These are just con-
ditions 1. and 2.

Call cryptographic logical relation any logical relation
for which the basic lemma holds. Conditions 1. and 2. can
therefore be rephrased as the following motto:

A cryptographic logical relation should relate encryption
with itself, and decryption with itself.

7]] for every typer. There exists a cryptographic log-
ical relation (R,), .. such thatR, = R} for every base

typeb, and such thaRyey (-] = Ry, for every typer.
We may defin®,;.s[), for any typer, as any relation such
thatRblits[T] < RbitS[T] < R‘Iits[r]'
Proof. Build the logical relation by induction on types.
When buildingRy;.s[-), We need to check thatbﬁtsm C
RbTits[T]. LetV R, V', K Ryeylr] K', andK1 Ryeyr) K1
be arbitrary, and let us check) (see discussion above).
If K = K; thenK’' = K] sinceRyey[7 iS a partial bi-
jection, soD(E(V, K), K1) = (V) Rs option t(V')
D(E(V', K'), K1), hence(x) holds. Similarly, if K’ = K}
then K = Kj, so () holds again. Finally, ifK # K;
and K’ # Ki{, D(E(V,K),K1) = L Rroption L =
D(E(V', K'), K1), hence agailf«) holds. O
Proposition 2 shows that cryptographic logical relations
exist that coincide with given relations on base types. But
contrarily to logical relations in the--calculus, they are
far from being uniquely determined: we have considerable
freedom as to the choice of the relations at key and bits

types.



To defineRy.y(-), Notably, we may use the intuition that wT are not givera priori, but are defined using the relations
some keys are observable by an intruder, and some other@ ¥ for (not necessarily strict) subtypesof 7. That is,
are not. Lettingfr, be the set of observable keys, define When not justR/™¥ but alsofr, and, are defined by

Rxey[-] @S relating the keys with itself providedk™ € fr;,

and not relating any non-observable key with any key. This

is clearly a partial bijection, in fact one that coincideghwi
the identity on the subsgt-, of [key[r]]. This is a popular
choice: fr, is what Abadi and Gordon [2] call fame up

to the fact that frames are defined there as sets of names, natal relation at bits types. This is inessential.

of keys.

To defineRblts[T] we may choose any relation sand-
wiched bet\NeeI‘Rblt (7] andR; esr]- Let us make these
two more explicit.

For everyVy, Vg € [bits[r]], Vo Ry, Vi if and
only if V; is of the form E(V, K), V0 is of the form
E(V',K'),V R, V' andK Ryeyr) K', i, K = K' €
fr-. In other wordsV, andVy are related byR.;, ; if
and only if they are encryptions of related plaintexts by a
unigue key that the intruder may observe.

On the other handy, R. me Vy ifand only if Vo =
E(V,K)andVj = E(V',K') W|th eitherV R, V' and
K=K'e€ fr,,orK,K' & fr, (whatevel/, V’).

S0, Ruits[r) is completely characterized by the datum
of fr,, plus a functiony), mapping pairs of keys, K’
in [key[7]] \ fr- to a binary relation), (K, K') on [7]:
if Ryiss[r) i given, then let), (K, K') be defined as re-
lating V' with V" if and only E(V, K) Ry;+s-) E(V', K');
on the other hand, given,, the relationRy;.(, that re-
latesE(V, K') with E(V’, K”) if and only if V' R, V' and
K=K € fr,or K,K' ¢ fr. andV ¢, (K,K') V', is
such thaﬂ?’blts 7] < RbltS[T] < Rblts

Given parametergr andy, we then get the following
definition of auniquecryptographic logical relation by in-
duction on types, so that it coincides with given relations o
base types:

Proposition 3 Let fr, be some subset fifey[r]], for each
typer, andiy, be any function fronf[key[r]] \ f7-)? to the
setP([7] x [r]) of binary relations or{r].

For any familyRY of binary relations on[b], b a base
type, let(RL™) type be the family of relations defined by:

e R]"Y = R for each base typk:

o for everyf7 fl € [[Tl - TQH! f qu-lri{}‘m
for everya RI™V o/, f(a) RIMY f'(a));
o for everyK, K’ € [key[7]], K Rf””; K'if and only if
K=K'e fry

o for everyV,V’ € [r], for everyK,K' € [key[7]],
E(V,K) R{:Y. E(V',K') if and only ifV R{™ V' and
K=K'e€ fr,or K,K' ¢ fr, andV ¢, (K,K') V'
Then, whatever the choices pf, andv,, (RI™%)
a cryptographic logical relation.

f! if and only if

T type 1S

Clearly, Proposition 3 generalizes to the case whtereand

mutual induction on types.

Ignoring the treatment of fresh names and the fact that
their semantics is operational and ours is denotational,
Sumii and Pierce [21, Section 6.3] use a unigue function
¢, instead of a family of functiong., in defining their log-
They also
define their logical relation on terms, while we define ours
on their semantics. While we write, RI"™Y V{, they
use the notatiop F Vj ~ Vg = 7. They do not use a
frame fr.. Again ignoring fresh names, they defipe-"2!

K ~ K' : key[r] by K = K’ and(K,K") ¢ dom ¢,
(K",K") ¢ dom ¢ forany K" € [key|[r]], so that they get
the same definition for key typésy[r] asin Proposition 3,
provided fr, is defined as{K € [key[r]] |(K,K") ¢

dom pand(K",K) ¢ dom ¢ foranyK" € [[key[ 13-
Their definition of the logical relation at bits types (again
ignoring names) i F* E(V, K) ~ E(V', K') : bits[7]

if and only if (K, K') ¢ dom ¢ andV RI™¥ V', or
(K,K') € dom ¢ andV (K, K') V'. This is exactly
the definition we had in Proposition 3 if we take= ),
provided the complement afom ¢ is exactly fr2. Con-
versely, givenp we may define). on (key|7] \ fr,)? by
(K, K') = o(K,K') if (K,K’) € dom ¢, otherwise
(K, K') = R{™¥. (Note thatdom ¢ C (key[r] \
fr-)2.) Then our definition oR{ftf[T] coincides with their
definition—provided fresh names are ignored in their def-
inition, and provided we restrict ourselves to logical rela
tions on key types that are restriction of the equality refat
instead of being more general partial bijections.

It is interesting, too, to relate the definition & ™ to
selected parts of the notion of framed bisimulation [2]. We
have already mentioned that the notion of frame originated
in this paper, although frames related names and not keys.
Slightly adapting [2] again, call tneory(on typebits|r])
any finite binary relationti, on [bits[r]]. By finite, we
mean that it should be finite as a set of pairs of values. A
frame-theory paif fr,, th,) is consistentf and only if th.
is a partial bijection, an&(V, K) th, E(V’, K') implies
K ¢ fr. andK’ ¢ fr,. Any consistent frame-theory pair
determines @&, function byV ¢ (K, K') V' if and only if
E(V,K) th, E(V', K'). It follows that frame-theory pairs,
as explained here, are special cases of pairs of a ffame
and a functiony.,..

3.5. A More Uniform Toy Cryptographic -
Calculus, and Prelogical Relations

Reflecting on the developments above, we see that it
would be much natural to use, instead of the toy cryp-
tographic\-calculus, a simply-typed-calculus with two



constantenc anddec, with respective semantics given by
E andD. While we are at it, it is clear from the way we
defineRy, ., in Proposition 3 that the typieey (7] behaves

true : bool andfalse : bool, such thafftrue]e = T,
[false]e = L, and[bool] is B = {T, L}; then, every
element ofB is definable.

more like a base type than a type constructed from smaller

types. Itis therefore relevant to change the algebra ofstype
to something like:

Tu=b|m — 7| bits|r] | key | T option] ...

whereb ranges ovek, ¥ now contains a collection dfey
typeskey,, ..., key, (wlog., we shall use just one, which
we write key), and ther option type is used to give a
typing todec : bits[r] — key — 7 option; enc is as-
sumed to have type — key — bits[r]. The final ellipsis

is meant to indicate that there may be other type formers
(products, etc.): we do not wish to be too specific here.

The language we get is just the simply-typedalculus
with constants... up to the fact that we need option types
7 option. The constants to consider here are at laast
enc, SOME : 7 — 7 option, NONE : 7 option, and
case: 7 option — (7 — 7') —» 7/ — 7’. (Thecase con-
stant implements the elimination principle feroption;
we write case s of SOME z = ¢ | NONE = ¢’ instead
of case s(Az - t)¢/, and leave the semantics edse as an
exercise to the reader.)

The fact that the constandgc, enc, are required to have
their denotationd) andE, related to themselves is reminis-
cent of prelogical relations[11]. These can be defined in
a variety of ways. Following [11, Definition 3.1, Proposi-
tion 3.3], aprelogical relationis any family(R.)_, . of
relations (between two values pf] in our case) such that:

1. foreveryf, f € [n—mw] if f Rryor, f and
aR- o thenf(a) R, f'(a');

2. K R;—r—r K, whereK is the function mapping
z € [n],y € [r] tox;

3. S R(TlHTQQTS)H(HQQ)%TIHT?’ S, whereS is the
function mappingr € [r1 — ™ — 73], ¥y € [ — 72,

2 € [n] tox(2)(y(2));

4. and for every constant: 7, [a] € R, [a] €.

where[a] denotes[a] p for any environmenp. Condi-
tion 1. is just one half ofLog). The basic lemma for prel-
ogical relations [11, Lemma 4.1] is stronger than for logica
relations: prelogical relations aexactlythose families of
relations indexed by types such that the basic lemma holds

Note that the use of prelogical relations also requires us
to relate the semantics 6OME with itself, that of NONE
with itself, and that otase with itself.

Then, we may observe that prelogical relations are not
just sound for contextual equivalence, they emenplete at
all types, even higher-order. Recall that a value [r]
is definablef and only if there exists a (necessarily closed)
termt such that- ¢ : 7 is derivable, and: = [t] ¢, where
e is the empty environment. Note that it is fair to @bs
be {bool}, wherebool is a base type with two constants

Theorem 4 (Completeness)Assume that observation
types have no junk, in the sense that every valugopf
(o € Obs) is definable.

Then prelogical relations are complete for contextual
equivalence in the\-calculus, in the strong sense that
there is a prelogical relatiotR ;) . ;. .. that coincides with
equality on observation types € Obs such that, for ev-
ery closed terms:, v’ of typer, u =, «' if and only if
[u] R+ [u'].

Proof. DefineR, on[r] by a R, o’ if and only if a and
a’ are definable and ~. a'.

First, ~, coincides with equality orfo], for everyo €
Obs. Indeed, ifa = o’ then clearlya =, a’. Conversely, if
a =, o' then[C] [x := a] = [C] [z := d'] for every context
of observation type, in particular fér = x; soa = o'.

Since observation types have no jurik, is also the
equality relation orfo], for everyo € Obs.

Next, we claim tha{R. ) . .. is a prelogical relation.
First, check conditiol. Assumef R., .., f',i.e., f and
f’ are definable (say by closed termandt’ respectively)
and for everyCy,,, suchthatz : 7 — 7 = Cfyp : 0iS
derivable ¢ € Obs), [Cun] [z := f] = [Ctun] [z == [f'].
Leta R, d,i.e.,aanda’ are definable (say by closed
termsu andw’ respectively) and for everg,,, such that
y: 71 F Carg : 0is derivable § € Obs), [Corg] [y := a]
[Cargl [y := a].

We have to show thaf(a) R,, f'(a’). LetC be any
term such that : 7, - C : o, for anyo € Obs. Thenf(a)
andf’(a’) are definable (byu andt¢’u’ respectively), and,
letting z andz’ be fresh variables:

[C] [z := f(a)]
= [Clx:=zu]][z:= f] (sincea = [u])
= [Clz:=zu]] [z:= f'] (sincef R, —r f')
= [Cllz:= f(a)]
= [Clz:=¢Z]][' :=a] (sincef’ =[t])
[Clx :=t'2]] [z :=d'] (sincea R, a')
= [C][z:= f'(a")]

Now checl4. For every constarnt: 7, [c] eR; [c] €; this
is obvious, since clearlft] R, [t] € for every closed term
t of typer. Similarly, K R, —.r,—-, K (taket = Az-\y-x),
ands is related to itself (takeé = Az - \y - Az - 22(y2)),
establishin@. and3.

Finally, by definition [u] R, [u]" just means that
[u] ~; [u'], i.e.,u ~; o, since[u] and[u'] are obvi-
ously definable. ]



The argument before Proposition 3 applies here withoutfor every C’ such thatx

further ado: every prelogical relation must be a partiadij
tion at thekey type, and conversely, any prelogical relation
that is the equality orfr C [key] at thekey type satisfies

the basic lemma, hence can be used to establish contextuathereC’ is arbitrary such that : 7 - C’

equivalence. Specializing the prelogical relati@y ) _ type
of Theorem 4, we get th&,.y is exactly equality on the set
fr={[t] e| F t : key} of definable keys.

Similarly, we may define the binary relatian (K, K'),
for every K, K' € [key] \ fr, (i.e. ie. for all
non-definable keys) byV ¢.(K,K’) V' if and
only if E(V,K)RpiesE(V',K'), ie., if and only if
E(V,K) andE(V’, K') are definable at typeits|r], and
E(‘/7 K)Rbits[T]E(V/vK/)'

From this, we infer immediately the following combi-

: 7 B C' : o. Otherwise,
since o has no junk, letty be any closed term of type
o. [C][z := a] = [C][x := d'] holds in particular for
C = case x of SOME z = C'[x := z] | NONE = ¢,
: 0! by an easy
computation, we obtaifiC’] [z := a1] = [C'] [z = df],
and since’’ is arbitrarya; ~, a}. We now claim that;
is definable. If there is a closed terin of type 7, then
ay is definable azase ¢ of SOME z = z | NONE = ¢;
(wherea = [t] €). Otherwise, ifr has no junk, thefr] =,
so [t option] = {1}, soa cannot be of the form(a,).
In any cases; is definable. Similarlya is definable. So
ar RIMY df.

While the point in prelogical relations in [11] is mainly
of being not strict at arrow types, the point of Section 3 is

nation of the analogue of Proposition 3 (soundness) with to argue that it is meaningful either not to be strict eithter a

Theorem 4 (completeness):

Proposition 5 Assume that observation types have no junk.
There is a prelogical relatiofR/"¥ ) parameter-
ized byfr and, which is:

e strict at thekey type: i.e., for everyK, K’ € [key],

K R{Y K'ifandonly if K = K’ € fr;

e strict at bits[r] types: i.e., for every, V' € [r], for
everyK, K' € [key], E(V,K) RL[;% ) E(V',K') if and
onlyif V RI™¥ V' andK = K' € fr,or K, K’ ¢ fr and
Vi (K, K" V';

e which coincides with equality on observation types;

e and such that, for somgr and, for every closed terms
t, t’ oftyper, [t] € =, [t'] eifand only if[t] e RL™Y [t'] e.

T type’

The idea of beinggstrict at some typer is, in all cases,
that the (pre)logical relation at type should be defined
uniquely as a function of the (pre)logical relations at all
immediate subterms af. Analogously, we say that a pre-
logical relation(RI"™")_ type 1S Strict at 71— 7, if and
only if f RI™¥_ f"is equivalent to: for alb RI™Y o/,
f(a) RIMY f'(a')—i.e., if it is a (cryptographic) logical
relation in the sense of Section 3.3.

Following the same idea, we say th&- ), . is strict
Rfrﬂll

at7 option if and only if a R7'55i.n @ is equivalent
to: eithera = o = 1, ora = i(a1), d = u(a}),
anda; RI™¥ a}. The prelogical relation of Proposi-
tion 5 is then strict at option types, too, provided there is
a closed term of type or [r] has no junk. Indeed, if

a Rﬁ;;"mn a’ then, first, we cannot have = L but

a’ = u(a}) (or conversely), since otherwise the context
C = case x of SOME z = true | NONE = false
would differentiatea from a’. Soa = d 1, or

a = t(ay), a = (a}); in the latter case, since ~. o,

for every contextC such thatr : 7 option - C : o

(0 € Obs), [C][x :== a] = [Cllx = d']. If [0] is
empty, then vacuouslfC'] [z := a1] = [C'] [z := df]

bits(7] types, as in Section 3.3 (in the sense tRat.[,
was not determined uniquely frof.), or equivalently to
be strict abits[r], given parametergr andr. We believe
that just saying that we do not require strictnessiats|r],
thus omitting thefr andr parameters, leads to some sim-
plification.

3.6. Completeness on First-Order Terms

The prelogical relatiofR{™%) _ type Of Proposition 5
is strict at bits, key, and most option types, but not at
arrow types. |If it were strict at all types, then, given
fr, v, there would be a canonical way to decide whether
[t] e RLm¥ [t'] e: apply the definition ofRI™¥, recursing
on typesr. We show that we may require the prelogical
relation to be strict at arrow types, provided we restriat ou
selves to first-order terms.

Instead of defining first-order types syntactically, we pre-
fer amore semantical definition. Say thas junklessfand
only if 7] contains no junk. This includesol, bits|7]
andT option types providedr is junkless; products and
sums of junkless types if we decide to include products and
sums; but not arrow types in general, and notithe type
(which may contain junk, namely all those keys not in the
frame fr of Proposition 5) Zero-ordertypes are those types
7% which are junkless and not arrow types, and such that
any subexpression of is also zero-order. These include at
least all types generated by the grammar:

7_0

bool | bits[r’] | 7° option
First-ordertypes are defined inductively asy, or 7 — 7
wherer, is zero-order and is first-order. A closed term is
first-orderif and only if its type is first-order.

Proposition 6 For every closed first-order termg ¢’ of
typero, [t e ~-, ['] € if and only if [¢] e R. /™Y [¢]e,



for somelogical relation (R’f”")T type that is strict at ar-

row, key, bits[r] and 7 option (r junkless) types and
coincides with equality at observation types.

Proof. The if direction is clear. Conversely, let
(R'I7¥) wpe P€ the unique logical relation (i.e., strict at
all types) that coincides withR/™%)_ type at base types.
These relations coincide in particular at zero-order types
becausgR/"™") ... is strict at all zero-order types (see
Proposition 6). They also coincide at they type, because
key is a base type. Finally, we claim that they coincide at
all first-order types on definable values. This is by inductio
on first-order types? — 7.

On the one hand, if[t]e R’fﬁﬁz’w [t'] € then

1 2

[t] e ~0_., [t'] € sinceR’ is sound for contextual equiva-
lence (this is the basic lemma), §d ¢ R,o_,., [t'] e since
R is complete on definable values.
On the other hand, {ft] €R7;™  [#'] ¢, leta anda’ be
1

arbitrary values such that R’fﬁ“" a'. Sincer! is zero-

1
order, hence junkless,anda’ are definable. By induction
hypothesis, it follows that ng’”’ a’. SinceR is prelog-

1
ical, [t] e(a) RI™Y [t'] e(a’), so by induction hypothesis
again, [t] e(a) RI"Y [t']e(a’). Sincea anda’ are arbi-
trary such that R’f?“’ a’, by (Log) [t] e R/fﬁim [t'] e.
O
3.7. Extensions

We have already said that using a tyjpits[r] for ci-
phertexts, distinct from the type of plaintexts, could lead

to miss type confusion attacks: by typing, the intruder can-

not submit an object of type where one of typeits|r] is
expected.

And the theory of Section 3.5 goes through. There are
several variants here. We may split keys into symmetric,
public and private keys to handle asymmetric encryption.
We may also allow general terms of typeg as encryption
keys: this is useful in actual protocols, as in the SSL hand-
shake [22], where keys are computed from other messages.
We let the interested reader do the necessary adaptations in
each case.

Another extension is the handling of algebraic laws.
E.g., in RSA encoding [19], encryptida is implemented
as modular exponentiation, which obeys various associa-
tivity, commutativity and distributivity laws. To give an
example that remains in the framework of symmetric en-
cryption, DES [8] obeys the property thait E(V, K) =
E(not V,not K), wherenot is bitwise logical not. We
may also try to be even more realistic and considenihgt
is a finite type (e.g.1024-bit integers). In this case, there
is no injective pairing function fronfir] x [r] to [7]. This
breaks Proposition 5, which relies on the fact B, K)
really behaves as the pdiV, K'). Nonetheless, prelogical
relations are still sound and complete for this semantics (o
for any semantics whatsoever), i.e., Theorem 4 still holds.
This opens the way to notions of (pre)logical relations that
are sound and complete for more complex models of en-
cryption.

4. Adding Name Creation, and Lax Logical Re-
lations

No decent calculus for cryptographic protocols can dis-
pense with fresh name creation. This is most easily done by
following Stark [20], who defined a categorical semantics
for a calculus with fresh name creation based on Moggi's
monadich-calculus [15]. We just take his language, adding

The obvious fix is to change the algebra of types so that 5| needed constants as in Section 3.5.
both plaintexts and ciphertexts are of some universal mes-

sage typensg, and requirenc to be of typensg — key —
msg, dec to be of typemsg — key — msg option. Itis
in fact easier talefinemsg as an inductive type with con-
structorsb : bits[msg] — msg (coercing ciphertexts to
messages) and, say,: msg — msg — msg, nil : msg,
raw : int — msg, k : key — msg (with obvious mean-
ings).

This simply amounts to considering that thecalculus

of Section 3.5 contains the constants above, plus a recursor

msg_rec (key =7 —7)—7T)
— (7‘—>7’—>7‘) — T
— 7 — (int — 7) — (key — 7)

— msg — T

so that, lettingF’ bemsg_rec b p n i ¢, the equations of
Figure 3 obtain.

4.1. The Moggi-Stark Calculus

The Moggi-Stark calculuss obtained by adding a new
type formerI" (themonad, to the types of tha-calculus of
Section 3.5, so thal'r is a type as soon asis:

=  b| 7 — 7 |bits[r] | key|r option|T7]| ...
(We continue to leave the definition of our calculi open,
as shown with the ellipsis. ., to facilitate the addition of
new types and constants, if needed.) Following Stark, we
also require the existence of a new base type ¥ of
names (This will take the place of the typeey of keys,
which we shall equate with names.) Thesalculus of Sec-
tion 3.5 is enriched with constructal ¢ andlet x <

t in u (not to be confused with theet construct of Sec-
tion 3.1), with typing rules as given in Figure 4, and two



[Flom)]p = [b(M\k-Ax-case D m kof SOMEm’' = Fm' | NONE = z)] p
[Flemim2)]lp = [p(Fmi)(Fmz)]p
[Fmil)]p = n  [Frav2)lp = i(z)  [FEB]p = qlk)
Figure 3. Recursor equations
-t:r Ht:Tr T,o:r7ku:T7
—(val) (let)
I'tvalt:Tr I'Fletx <tinu:T7
Figure 4. Additional typing rules for the monadic A-calculus

constantsiew : Tw (fresh name creation) and: v — v —
bool (equality of names).

are bound and every name freedris in s + s’—modulo
the fact that(vs’, s”)a = (vs')a for any additional set of

. . . " H H H /
In Stark’s semantics (notations are ours here), given anyn€W names” not free ina. We shall in fact write(vs’)a

finite sets (of names)|t] sp is the value of in environment
p assuming that all previously created names are.iifhis

the equivalence class ¢, a), to aid intuition. (This was
written [s', a] in [10, 23].)

allows one to describe the creation of fresh names as returnOn morphismss; ——so, T Ai maps(vs')a to (vs')A(i +
ing any name outside This is most elegantly described by id/)a.

letting the values of terms be taken in the presheaf categorye For any morphisny : A — B in Set?, Tfs : TAs —
Set” [20], whereT is the category whose objects are finite T Bs is defined by fs((vs')a) = (vs')(f(s + s')a). This

sets and whose morphismé#s’ are injections. Given any
typer, [7] s is intuitively the set of all values of typein a
world where all created names aresinSince[r] is a func-

tor, for every injectiors—s’ there is a conversiofr] i that
sends any value of [7] s to one in[r] ¢/, intuitively by
renaming the names imusingi. By extension, ifl" is any
contextry : T1,...,&, : Tp, l€t[T] be[r] x ... X [m],
using the products iSet”—i.e., products at each world

Then, as usual in categorical semantics [12], given any term

t such thafl’ - ¢ : 7 is derivable,[t] is a morphism from
[T] to [r]. This means thaft] is a natural transformation
from [I'] to [7], in particular that, for every finite set [t] s
maps anyl', s-environmenp (a map sending each such
thatz; : 7; isin T to some element dfr;] s) to some value
[t] sp in [7] s; and all this is natural i3, i.e., compatible
with renaming of names.

is compatible with= because is natural.

enys: As — T As is defined by 4sa = (v)a.

o pas: T?As — T As is defined by s((vs') (vs" )a) =
(vs' + §")a.

etaps : As x TBs — T(A x B)s is defined by
taps(a, (vs)b) = (vs')(A(inlss')a,b)) whereinlss’ :
s — s+ &' is the canonical injection.

The semantics ofet andval is standard [15]. Making it
explicit on this particular monad, we obtain:

(v0) [t] sp
(vs' +5")b

[valt]sp =
[letz <tinu]sp =

where [t]sp = (vs')a, we assume thal' + ¢

TrandT,z : 7 + u : T7/, and where[u] (s +
sH(T] (inlss")p)[x = a]) = (vs")b. (Concretely, ifl’
ST : T,y Ty @ Thy p = [T1 = A1, .., Ty 1= Qy)

Interestingly, 7', the type of computations that result \yhereq; e [r] s for everyi, then[I'] (inlss')p is [z :=

in a value of typer, possibly creating fresh names dur-
ing the course of computation, is defined semantically by

[Tr] = T [r], where(T,n,u,t) is the strong monad de-
fined as:

e TA = colimy A(_+ ') : T — Set. On objects, this is

given byT' As = colimy A(s + '), i.e., T As is the set of

all equivalence classes of pairs, a) with s’ a finite set and

a € A(s + s’), modulo the smallest equivalence relatian

such that(s’,a) = (s”, A(ids + j)a) for every morphism

s'—25¢” in Z. Intuitively, given a set ohamess, elements

of T' As are formal expressiorn(®s’)a where all names i’

[m1] (inlss")ay, ..., 2y =[] (inlss")a,].)

The semantics of base types 3, except, is given by
constant functorgfb] s is a fixed set, independent gfe.g.,
[bool] s = B. The semantics af is [v] s = s, [v]i = i;
i.e., the names that existaére just the elements ef Since
Set” is a presheaf category, it is a topos, hence cartesian-
closed [12]. This provides a semantics fomabstraction,
variables and applications.

Finally, the semantics ohew Tv is given by
[new] sp = (v{n})n, wheren is any element not irs,
and[=] is defined as the only morphism fet? such that



[= zy] sz := a,y := b] is true if a = b, andfalse commutes:

otherwise. c
T — =A%) )
4.2. Lax Logical Relations for Monads (R”@l /

c
Subsconeg

Given that terms now take values in some category Now the crux of the argument is the foIIowmg the forgetful
(SetT), not in Set as in Section 3, the proper generaliza- functorl : Subsconeg — C mapping the objects, m, A)

tion of prelogical relations is given bgx logical relations ~ to A and the morphisngu, v) to v is also a representation

[17]. We introduce this notion as gently as possible. of CCCs. It follows thaly o R is a representation of CCCs
. again, from\(3) to C. If U o (R,)oex = [_],, then by the
Let ¥ be the set of base types, seen as a trivial cate—uniqueness property df ], we must havé/ o R = [ ,.

gory. The simply—typedk—calculus' gives rise to thﬁee As observed in [14], and extended to CCCs in [3], when
CCCA(X) overx as'follows: the objects of(X) are typing C — Set, C is the product of two CCC4 andB, and|_|
."O”texﬁztatmorphff front’to & ST VT s the functord(1, ) x B(1, ), (R(7)), ,,,,, behaves fike

is a substitutionlyy := t1,..., yn := tn], Wherel' ¢, : 7 a logical relation. It is really a logical relation, as we bav

( S i< ), moduloﬂn-conver-smn. (In partmulaﬂ“— defined it earlier, when botA andB areSet. (In this case,
environments are exactly morphisms from the terminal ob- an objectR(r) is of the form (S, m, A), wheres, up to

ject, the empty context, to I.) Composition is substitu- isomorphism, is just a subset df, and A is the cartesian

tion. Being the free CCC means that, for any CCCfor L
any functor]_],, from % to C (i.e., for any function ], product of the set of values of typewith itself.) In cased

T X

mapping each base typeihto some object irC), there is andB are thg same preshgaf categBey”, (1(r)). type 1S
. tati f CCCs from\(3) 10 C h a Kripke logical relation with base categcfy

a unique representatignf, o s fromA(2) to €' suc While the object part of functoR, (R(7)). ., Yields

that the following diagram commutes: logical relations (or extensions), the morphism part maps

each morphismi(X), namely a typed termimodulofn,

c of typer, to a morphism in the subscone, i.e., a dairv).
Z () (1) Thefactthat/ o R = [_], states that is just the pair of
lul the semantics afin A and the semantics ofin B, and the
Lo fact that(u, v) is a morphism (saying that a certain square
C commutes) states that these two semantics are related by

R(7): this establishes the basic lemma.

The important property to mak®& satisfy the basic
lemma is just the identity/ o R = [_],, i.e., the follow-
ing commuting diagram:

A representation of CCCs is any functor that preserves
products and exponentials. Whéhis Set, this describes
all at once all the constructiorjs], (denotation of types

7) and[t], (denotations of typed-termst) as used in Sec- AT) 3)
tion 3.
R
Let Subscone§ be thesubsconeategory, defined as fol- / l“—”l

lows. AssumeL is another CCC, such th&thas pullbacks.
Let|_| be a functor fronC to C that preserves finite prod-

S C I I . . . .
ucts. ThenSubsconeg is the category whose objects are | ,icq| rejations are the case wheRds a representation of

c
; -
Subsconeg c

triples (S, m, A), wherem is a mono S [A[ in C, CCCs, in which case, as we have seen, this diagram neces-
and whose morphisms frogt, m, A) to (S’,m’, A’) are sarily commutesLax logical relations are product preserv-
pairs of morphismsu, v) (v in C, fromS'to S’, andv in C, ing functorsR such that Diagram (3) commutes [17, Sec-

from A to A’), making the obvious square commute. Not- tion 6]. The difference if that, with lax logical relationsg

ing thatSubsconeg is again a CCC (Mitchell and Scedrov do notrequiréR to be representations of CCCs, just product
[14] make this remark whe@ is Set, and|_| is the global preserving functors. We say thRtis strict at arrow types
section functo€(1,_)), the following purely diagrammatic  if and only if R preserves exponentials, too.

argument obtains. Assume we are given a functor ffota Defining lax logical relations for Moggi's monadic meta-
Subsconeg, i.e., a collectiorR,, of objects inSubsconeg, language follows the same pattern. (We might use the for-
one for each base type Then there is a unique representa- malization of algebraic theories of [17, Section 7], but it
tion R of CCCs from\(X) such that the following diagram seems clearer to describe the construction explicitly.g Th



monadici-calculus gives rise to tHese let-CCQComp(X)
over Y, where a let-CCC is a CCC with a strong monad.
We then get Diagram (1) again, only wilX) replaced by
Comp(X), C'is a let-CCC, and_], is a representation of
let-CCCs, i.e., a functor that preserves products, exponen
tials, and the monad (functor, unit, multiplication, sgém).
While we then needeBubsconeg; to be a CCC to es-
tablish Diagram (2), we now need it to be a let-CCC. This
can be established by following the general construction of

C such thatwy v,z : 7 = C : To is derivable, and
evaluate]C] s1[z := a, w1 := 41 (w1 )] and compare it with
[C] s1[z := o', w1 :=i1(wy)] to decide whethet anda’
are contextually equivalent. This represents the fact@hat
is evaluated in a world where all namessinhave been cre-
ated, and wheré has access to all (public) namesa; ).
This definition is not yet correct, as this would require
anda’ to be in[r] s1, but they are in[r] s for some pos-
sibly different sets of names created during the evaluation

[10]. In general, we need to consider not the subscone con-of a anda’. This is repaired by considering some coercion
sidered above, rather the subscone relative to a mono fac{,] wheres™ s, is any injection.

torization system(€, M). In a presheaf category such as
Set?, the only reasonable mono factorization systeméhas
be the class of all epis (i.e., morphismsuch thates is
surjective at all worlds), and M be the class of all monos
(i.e., morphismsn such thatms is injective at all worlds

s). The construction of [10] also requiréd to be part of

a strong monad morphirf_|, o) from the strong monad
(T,n, p,t) to some strong monad, n, p,t) onC (o was
called a strong distributivity law in [10], but this led torse
confusion with the notion of distributivity laws for mon-
ads [4]; while the latter are rare, strong monad morphisms
abound). The construction of [10] then provides one with a
strong monad orSubsconeg, such thatU is a representa-
tion of let-CCCs.

4.3. Contextual Equivalence

Defining contextual equivalence in a calculus with
names is a bit tricky. First, we have to consider contexts
C of typeTo (o € Obs), not of typeo. Intuitively, contexts
should be allowed to do some computations; were they of
typeo, they could only return values. In particular, note that
context< such thatz : T7 + C : o, meant to observe com-
putations at type (i.e., values of typd'r), cannot observe
anything. This is because tiiget) typing rule (Figure 4)
only allows one to use computations to build other compu-
tations, never values.

Another tricky aspect is that we cannot take contéxts
that only depend on one variabte: T as before. We must
indeed assume that can also depend on an arbitrary set
of public names. Given names;, ..., ng, the only way
C can be made to depend on them is to assumeCmets
k free variables, . .., z;, of typev, which are mapped to
ni,...,nk. (Itis more standard [16, 1] to consider expres-

To sum up, say that a e [] s arecontextually equiv-
alent ats, and writea ~% «’, if and only if, for every finite

set of variablesvy, for every |nject|on3111—>sl ands—>sl,
for every termC such thatw; v,z : 7 = C : Tois deriv-
able o € Obs), [C] si[z := [r] k1(a),wr :=i1(w1)] =

[C] s1lz := [7] k1 (a'), w i1(wy)].

The notion we use here is inspired by [16, Definition 4],
although it may not look so at first sight. We may sim-
plify it a bit by noting that we lose no generality in con-
sidering thatC has access tall names ins;. Without
loss of generality, we equate; with s;, and notice that
a ~: o' if and only if, for every injectionsgsl, for ev-
ery termC such thats; = v,z : 7 = C : To is derivable
(0 € Obs), [C] s1[x := [7] k1(a),5T=351] = [C] s1]z :=
[7] k1(a’),s17=s1). (Remember we see thariablesin
s1 as denoting th@amesin s; here, equating names with
variables.)

The use of injections between finite sets leads us nat-
urally to switch fromSet” to the categonSet’ , where
I—’ thearrow categoryof Z, has as objects aII morphisms

w-sin Z, and as morphisms from-5sto w' 5’ all pairs
(4, k) of morphisms such that the following diagram com-
mutes:

S

S/

I

This is in accordance with [23], where it is noticed that
Set” " is the right category to define a Kripke logical rela-
tion that coincides with Pitts and Stark’s on first-ordergp
We shall consider here the equivalent category where
is restricted to be a finite set @friables(and continue to

(4)

%
k
/—>

sions bullt on separate sets of variables and names, thus ingg|| this categoryZ—). Objectsw--s are then setss of

troducing the semantic notion of names in the syntax. It
is more natural here to consider that there are variahles
mapped, in a one-to-one way, to namg9 Let s; be any
set of names containing;, . .., ng, letw; be{z,..., 2},
andw; s, the injection mapping eaah to z;, 1 < i < k.
Writew; := i1 (wy) forzq :=nq, ..., 2z, := ng, andwy : v

for 21 : v,...,z : v. We shall then consider contexts

variables denoting those public namessintogether with
an injective denotation function

So we shall work with lax logical relations in the sub-
scone categor§ubscones, whereC = Set” x Set”, C is
the presheaf categoSet” , and|_| : C — C is the com-
posite of the binary product functor : Set? x Set? —
Set” with the functorSet* : Set’ — Set’ . Here



Iﬂ — T is the obvious forgetful functor that maps

w510 5. _

Say that a value: € [] s is definable atw-s if and
only if there is a ternt such thatw=w + ¢ : 7 is derivable
anda = [t] sfw := i(w)].

The main point in our completeness argument to come

is, imitating Theorem 4, that there is a lax logical relation
built by considering the trace ef2 on definable elements.
More specifically:

Definition 1 Let w-s be any object of —. The values
a,a’ € [7] s are said to becontextually equivalent ab—s,

written a N;”LS a’, if and only if, for every morphism

(j1, k1) from w->s to any Objeth1—>sl in Z—, for every
termC such thatw; v,z : 7+ C : To (o € Obs) is deriv-
able, [C] si[z := [7] k1(a), w1 :=i1(w1)] = [C] s1]x
[7] kxa), wy o= da(wr)]. v

Define the relatiorR¥~* by: a R¥~* o’ if and only if

a anda’ are definable atv-s anda ~*~* o/,

In particular,a ~% « if and only if a ~?~* «/, where
() — s denotes the unique injection frofirto s.
Note that for every value € [r] s definable atv-s,

[7] k(a) is also definable atu’is’, whenever there is a
morphism(j, k) from the former to the latter. Indeed, let
a = [t] sjw :=i(w)]. Then
[7] (a) [7] B ([#] s[w := i(w)))
[t] s'fw == ] k(i(w))]
(by naturality off¢])
[t] 8'Tw = K(i(w))]
(becausdv] k = k by definition)
[t] '[w = " (§(w))]
[t'5] ' fw =i ( (w))]
(wheret’ = tj 71,
seeingj and; ~! as substitutions)
[¢]s' (171 8'Tw = # (G (w))])
(becausd_] is functorial)
[t']5'[j (w) =4 (j(w))]
[t'] ' [w =i (w)]
In particular, every value € [7] s definable ats, i.e., de-
finable at) — s, is definable at every-%s.

Theorem 7 Lax logical relations are complete for contex-
tual equivalence in the Moggi-Stark calculus, in the strong
sense that there is a lax logical relatidd such that, for ev-
ery termsy, v’ such thatw=v - u: Tandw:v kv’ : 7
are derivableJu] s[w := i(w)] ~*~* [u] s[w == i(w)] if
and only if[u] s[w := i(w)] RY™* [u'] s|w == i(w)).

Proof. DeflneR“HS as in Definition 1.

We first need to show tha ., mappingw—s to Rf*s,
defines an object et’ ', i.e., a functor fron — to Set.
The action on morphismé;j, k) is given by our require-
ment thatl o R = [_],, whereR mapst to R, and
I, (ws) = [r] sx[r] s and(t], (ws) = [t] sx[t] s.
Expand the equatioty o R = [_];: R-(j, k) must map
(a,a") € [r] s x [7] s to ([7] k(a), [7] k(a’)) € [r] s’ x
[r]s’. To check thafR, is a functor, we must check that
if @ RU™ o, then[r] k(a) RY =
commutative square (4):

[] k(a’), for every

e First,a anda’ are definable ab-s; by the remark be-
fore the theorem|r] k(a) and[7] k(a’) are definable

atw’ —>5

e Seconda zfﬁs a’. We must show that this implies
[7] k(a) == [7] k(a’) (x). (We shall use théx)
property Iater again.) Letj1, k1) be any morphism

from w5’ to some objeoiu1—>51, andC be any term
suchthatr; o,z : 7+ C : Tois derivable 6 € Obs).

[Cs1[z =[] k1 ([7] k(a)), w = i1 (wn)]
[C] s1]z == [r] (k1 o k)(a), w1 = i1 (w1)]
[Clsi1[a == [7] (k1 0 k)(a"), w1 := i1 (w1)]
(sincea %$LS a’, usingC

and the morphisnij; o j, k1 o k))

[Cl s1la == [r] ka([r] k(a')), w = 41 (wy)]

Next, we need to show thak, is the object part
of a product-preserving functoR from Comp(X) to
Subsconeg such that/ o R = [_],. This means showing
that, for every typing context = x; : 71, ..., @, : T, fOr
every typer such thafl - ¢ : T is derivable, for every ob-

jectw--s of Set?”, if a; Rw—’s al, for everyi, 1 <i<n,

then [t] s[z1 == a1,...,2n = ay) R;"HS [t] s[z1 ==
ay, ..., oy ar]. Sincea; and a} are definable at

wss, write a; = [t;] s[w = i(w)] for somet; such that
wrv Ft; 7, and similarlya) = [t] s[w := i(w)]. Then,
first, [t] s[z1 := ai,..., 2, = a,] is definable atv->s,
by the termt[x1 = t1,...,&, = t,], and similarly for
[t] s[z1 :== ai,... JTn = a;L] Second, for every mor-
phism(j1, k1) from w-sto w1—>51, for everyC such that
wy v,z : 7 F C: Tois derivable, the derivation of Fig-
ure 5 obtains; here we notice that, singeanda; are defin-
able atw-5s by t; andt;, respectively therfjn]] k1 (a;) and
[7:] k1(a}) are definable at; s, by tljl , resp. ’51]1
So [[tﬂ [ 1 = A1,... an] 'R,;“_U%S [[tﬂ [ T

li o/
ay, ..., oy = al]

7x’l’b



[C] s1lz =[] k1 ([t] s[z1 := a1, ..., @ = an]), w1 := i1 (w1)]
= [Clsilz:=[t] s1lx1 =[] k1(ar), ..., 2n = [1n] k1(an)]), w1 := i1 (w1)]
(since[t] is a natural transformation)
[Clz = t]] s1]x1 := ] k1(a1), ..., Tn = [74] kl(an),M]
= [[C[m =tz = tljfl, R tn_ljfl]]] s1[zn = [n] k1(an), w1 := i1 (w1)]
= [[C[m =tz = tljl_l, R tn_ljfl]]] s1[rn = [ma] k1(al,), w i1

i1 (w1)]

1=
(since[r,,] k1(an) z;”nlgsl [7.] k1(al,), because,, z;”fs a’,, using(*))
= [[C[m =tz =0 T = o] L T = t;jfl]]] S1
[Tn—1 = [Tn-1] k1(an-1), w1 := i1 (w1)]
= [Cla :=t][z1 := tigr e T =t oy L = t;jfl]]] s1

[#n—1 = [Taal k1(ag,_q), w1 := i1 (w1)]

. 1 i .
(since[r, 1] ki(an—1) =¥ 7% [1n—1] k1(a),_,), because,, 1 =¥ % a;,_,, using(x))

[Clz == tllz1 :=tiii ", Tt =t 1d] Tt 2= 1 @ = g1 ] st
[T = [7m] kl@m),M]

= [[C[m =tz =t T = b 1] T = t’m+1j1_1, Ty = t’njl_l]]] S1
[T = [Tm] k1(al,), w1 = i1 (wy)]

(since[r,] k1(am) zijigsl [tm] k1 (al,), because,, szs a., using(*))

= [Clz =tz :=thiT ", .. 2 =t g1 Y]] silz1 == [m] k1(a}), wi == i1 (wy)]
= [Clz :=t]] si[z1 := [11] k1(d)), ..., @n = [mn] k1(al,), wr := i1 (w1)]

= [Cl]silz :==[t] si[z1 == [m] ki(a)), ..., @n = [Ta] k1 (al,)]), w1 := i1 (w1)]

= [C]silz := [7] k1 ([t] s[z1 := al,. .. @ i= al]), w1 =iy (w1)]

Figure 5. Showing that [t] s[z1 := a1, ..., @, = ay] miji’s [t] slx1 :=al, ..., xn = al]



R is a lax logical relation sinc& o R = [_], by con-
struction. O
The (non-lax) logical relation of [23] is defined orby:
n RY™* n/ifand only ifn = n’ andn € w (n = n’ € w,
for short). This is exactly what the lax logical relation of
Definition 1 is defined as on thetype:

Lemma 8 LetR;‘fLS be the logical relation of Definition 1.
Thenn R}fi’s n/ ifand only ifn = n’ € i(w).

Proof. We first claim that(x,): the only valuesn

in [v]s = s that are definable at—s are the names
in i(w). One first observes, by applying any morphism
j from s to s that is the identity oni(w), that the
only possible exceptions to (x,) must be fixpoints of
ji letting n = [t] s[lw = i(w), j(n) = ]j(n) =
[v]([t] sfw :=i(w)]) = [{] s[w := j(i(w))] (since[t] is
natural)= [t] s[w := i(w)] (sincej is the identity oni(w))

= n. Sincej is arbitrary such that it restricts to the identity
oni(w), (x,) can only fail whers consists of (w) plus just
the one extra name. Let thens’ bes plus another name’.

There is an obvious morphisty, k) from wts to wbs,
and we have seen that in this cdsd k(n) = n is again
definable atv—s’. But this is impossible, sinc€ contains
two names outside afw).

If n R¥=* n/, then bothn andn’ are definable ab—s,
s0 by (%), n = i(z) for somez € w, andn’ = i(z’) for

n/, taking as context the
v EC: Tboolis

somez’ € w. Sincen ~¥°
termval(z = z) (so thatw: 7w,z :
derivable), we obtain = n’'.

Conversely, ifn = n’ € i(w), i.e., there is a variable

z € wsuch thath = n’ = i(z), then clearlyn Rggs n/. O
To finish this section, we observe:

Lemma 9 Assume that observation types have no junk, in
the sense that every valuefef s (o € Obs) is definable at

s, for everys, equivalently at every—s.

ThenR“HS is equality on[o] s, andR“HS is equality
on[7To] s for any observation type.

Proof. CIearIij;”LS contains equality. Conversely, let
a,a’ € Jo] s such thata RY=sq/. Take(j, k) the identity
functor fromw->s to itself, C the contextral(c = z) (S0
thatw v,z : o+ C : Tbool is derivable), where is any
term such thatv: v F ¢ : o is derivable, and expand the
definition owa—’S. a = [c] sjw :=i(w)] if and only if
a = [ s[w := i(w) —z( )]. Sinceo contains no junk, and is
arbitrary,a = o’.

The argument is similar foR“HS takinglet z <
¢ in val (z =) for C instead. We just have to prove

thatTo has no junk. Remember that every observation type
is a base type, anfb] is a constant functor for any base
typeo exceptv. So the elements dfl'o] s are of the form
(vs")b = (vD)b, whereb € [o] (s + s') = [o] s. Given any
element(v0)b of [To] s, sinceo has no junk, we may write
b as the value of some term hence(v0)b is the value of
val c. D

We almost forgot to prove soundness! It is easy to see
that any lax logical relation that coincides with equality o
typesTo (o € Obs) are sound for contextual equivalence.
Indeed, by the basic lemm&E o R [L1,, whenever

a R7;”$‘S a’, then for anyC such thatvy =7,z : 7= C: To
(o € Obs) is derivable, for any morphismiji, k1)

from ws to wlgsl, [C] s1|wy := i1 (wn),x
[Flk(@] Ry [Clsifwr = ir(wi),@
[7] k1(a)]; soa ~¥=% a.

4.4. Mixing Fresh Name Creation and Encryption

Let us get down to earth. What do we need now to get
lax logical relations that are sound and complete for contex
tual equivalence when both fresh name creation and crypto-
graphic primitives are involved? The answer is: just lax
logical relations orSet” , as used in Section 4.3... mak-
ing sure that they relate each constant to itself. We have in-
deed been careful in being sure that our calculi were open,
i.e. they can be extended to arbitrarily many new types and
constants. In particular, (this is as in Section 3.3 and) 3.5,
a lax logical relation orSet”  is sound for observational
equivalence in the presence of cryptographic primitives if
and only if each of the constanésc, dec, SOME , NONE,
case is related to itself.

Then Theorem 7 shows that lax logical relations are
complete for the Moggi-Stark calculus, which uses a name
creation monad. We have in fact proved more, again be-
cause we have been particularly keen on leaving the set of
types and constants open: whatever new constants and types
you allow, lax logical relations will remain complete. The
only requirement is that the new constructs can be given a
semantics irSet”. In particular, takingenc, dec, SOME ,
NONE, case as new constants, we automatically get sound
and complete lax logical relations for name creatsord
cryptographic primitives. As noticed in Section 3.7, this
can even be used for encryption primitives obeying alge-
braic laws, or even other encryption primitives, at no cost.
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