
J. Goubault−Larrecq, S. Lasota, D. Nowak and Yu Zhang

Complete Lax Logical Relations
for Cryptographic Lambda−Calculi

Research Report LSV−04−4, Feb. 2004

Ecole Normale Supérieure de Cachan
61, avenue du Président W ilson
94235 Cachan Cedex France

http://www.lsv.ens−cachan.fr/Publis/
Research Report LSV−04−4, Lab. Spécification et Vérification, CNRS & ENS de Cachan, France, Feb. 2004

Complete Lax Logical Relations for Cryptographic Lambda-Calculi∗

JeanGoubault-Larrecq1 Sławomir Lasota2 David Nowak1

Yu Zhang1†
1 LSV/CNRS UMR 8643 & INRIA Futurs projet SECSI & ENS Cachan

61, av. du Président Wilson, 94235 Cachan Cedex, France
{goubault,nowak,zhang}@lsv.ens-cachan.fr

2 Institute of Informatics, Warsaw University, ul. Banacha 2, 02-097 Warszawa, Poland
sl@mimuw.edu.pl

Abstract

Security properties are profitably expressed using no-
tions of contextual equivalence, and logical relations are
a powerful proof technique to establish contextual equiva-
lence in typed lambda calculi, see e.g. Sumii and Pierce’s
logical relation for a cryptographic lambda-calculus. We
clarify Sumii and Pierce’s approach, showing that the right
tool is prelogical relations, or lax logical relations in gen-
eral: relations should be lax at encryption types, notably.
To explore the difficult aspect of fresh name creation, we use
Moggi’s monadic lambda-calculus with constants for cryp-
tographic primitives, and Stark’s name creation monad. We
define logical relations which are lax at encryption and
function types but strict (non-lax) at various other types,
and show that they are sound and complete for contextual
equivalence at all types.

1. Introduction

There are nowadays many existing models forcrypto-
graphic protocol verification. The most well-known are per-
haps the Dolev-Yao model (after [9], see [7] for a survey)
and the spi-calculus of [1]. A lesser known model was intro-
duced by Sumii and Pierce [21], thecryptographic lambda-
calculus. This has certain advantages; notably, higher-order
behaviors are naturally taken into account, which is ignored
in other models (although, at the moment, higher order is
not perceived as a needed feature in cryptographic proto-

∗Partially supported by the RNTL project Prouvé, the ACI Sécurité In-
formatique Rossignol, the ACI jeunes chercheurs “Sécuritéinformatique,
protocoles cryptographiques et détection d’intrusions”,and the ACI Cryp-
tologie “PSI-Robuste”.

†PhD student under an MENRT grant on ACI Cryptologie funding,
École Doctorale Sciences Pratiques (Cachan).

cols). Better, second-order terms naturally encode asym-
metric encryption. It may also be appealing to consider that
proving security properties in the cryptographic lambda-
calculus can be achieved through the use of well-crafted
logical relations, a tool that has been used many times with
considerable success in theλ-calculus: see [13, Chapter 8],
for numerous examples. Sumii and Pierce [21] in particular
define three logical relations that can be used to establish
contextual equivalence, hence prove security properties,but
completeness remains open.

Our contributions are twofold: first, we clarify the im-
port of Sumii and Pierce as far as the behavior of logical
relations on encryption types is concerned, and simplify it
to the point that we reduce it to prelogical relations [11] and
more generally to lax logical relations [17]; while standard
recourses to the latter were usually required because of ar-
row types, here we require the logical relations to be lax at
encryption types. Second, we prove various completeness
results: two terms are contextually equivalent if and only if
they are related by some lax logical relation. This holds at
all types, not just first-order types as in previous works. An
added bonus of using lax logical relations is that they ex-
tend directly to more complex models of encryption, where
cryptographic primitives may obey algebraic laws. This is
touched upon briefly in Section 3.7.

Outline. We survey related work in Section 2. We focus
on the approach of Sumii and Pierce, in which they define
several rather complex logical relations as sound criteria
of contextual equivalence. We take a new look at this ap-
proach in Section 3, and gradually deconstruct their work
to the point where we show the power of prelogical rela-
tions in action. This is shown in the absence of fresh name
creation, for added clarity. We tackle the difficult issue of
names in Section 4, using Moggi’s elegant computational
λ-calculus framework with Stark’s name creation monad.

This requires passing from simple set-valued semantics to
presheaf-valued semantics, and from prelogical relationsto
lax logical relations [17]. Again, we prove soundness and
completeness of the latter with respect to contextual equiv-
alence. In Section 4, following insights developed in previ-
ous sections, we shall consider a computationalλ-calculus
with an open set of types and constants (i.e., you may add
the ones you wish); this handles cryptography, in particu-
lar.

2. Related Work

Logical relations have often been used to prove various
properties of typed lambda calculi. The list would be too
long here, see [13] for a sampler. We are interested here
in using logical relations or variants thereof as sound crite-
ria for establishingcontextual equivalenceof two programs.
This is instrumental in defining security properties. As no-
ticed in [1, 21], a datumM of type τ is secret in some
termt(M) of typeτ ′ if and only if no intruder can say any-
thing aboutM just by looking att(M), i.e., if and only if
t(M) ≈τ ′ t(M ′) for any twoM andM ′, where≈τ ′ de-
notes contextual equivalence at typeτ ′; or equivalently, if
and only ifλx · λy · t(x) ≈τ→τ→τ ′ λx · λy · t(y). We are
usingλ-calculus notions here, following [21], but the idea
of using contextual equivalence to define security proper-
ties was pioneered by Abadi and Gordon [1], where not just
secrecy, but also authentication, is investigated.

We shall define precisely what we mean by contextual
equivalence in a calculus without names (Section 3.2), then
with names (Section 4.3). Both notions are standard, the lat-
ter being inspired by [16], only adapted to Moggi’s compu-
tationalλ-calculus [15]. In [16] and some other places, this
kind of equivalence, which states that two values (or terms)
a anda′ are equivalent provided every context of typebool

must give identical results ona and ona′, is called obser-
vational equivalence. We stress that this should not be con-
fused with observational equivalence as it is defined for data
refinement [13], wheremodelsare related, notvaluesin the
same model as here. For completeness of the data refine-
ment kind, see [18].

The main point in passing from contextual equivalence to
logical relations is to avoid the universal quantification over
contexts in the former. But there are two kinds of technical
difficulties one must face in defining logical relations for
cryptographicλ-calculi. The first, and hardest one, isfresh
name creation. The second is dealing with encryption and
decryption. We shall see that the latter has an elegant solu-
tion in terms ofprelogicalrelations [11], which we believe
is both simpler and more general than Sumii and Pierce’s
proposal [21]; this is described in Section 3, although we
ignore fresh name creation there, for clarity.

Dealing with fresh name creation is harder. The work

of Sumii and Pierce [21] is inspired in this respect by Pitts
and Stark [16], who proposed aλ-calculus devoted to the
study of fresh name creation, thenu-calculus. They define
a so-called operational logical relation to establish observa-
tional equivalence of nu-calculus expressions. They prove
that this logical relation is complete up to first-order types.
However, the extension to richer calculi (e.g., [21]) must
be made on an ad hoc basis, probably because this oper-
ational logical relation is defined by syntactic means. We
shall rest solely on semantic notions. That our notions can
be extended at will is witnessed by the fact that we shall
consideropencalculi, in the sense that our calculi must in-
clude specific types and constants, but may contain any set
of additional types and constants, too.

Contextual equivalence is defined using universal quan-
tification over contexts, which is impractical. We were
tempted to say that the logical relations of [21] and [16]
did a poor job of dispensing with this, since they quantify
over so-called canonical forms of various types, which is
basically as complex. However, this would be unfair, since
we do even worse. Indeed, one of our points in this paper is
that completenessat all typescan be obtained by replacing
logical relations byprelogical[11] and evenlax logical re-
lations [17], and these are even harder to decide. We there-
fore examine on which types the lax logical relations we
need can be taken to be strict (i.e., non-lax, see later). One
nice point in our establishing completeness for lax logical
relations is that it gives a precise meaning to the notion of
public names, as used in the intuition behind the construc-
tions of [16] for example: see Section 4.3.

In [10], Goubault-Larrecq, Lasota and Nowak define
a Kripke logical relation for the dynamic name creation
monad, which is extended by Zhang and Nowak in [23] so
that it coincides with Pitts and Stark’s operational logical
relation up to first-order types. It rests on purely semantic
constituents, and dispenses with the detours through opera-
tional semantics that Pitts and Stark use. We continue this
work here, relying on the elegance of Moggi’s [15] compu-
tationalλ-calculus to describe side effects, and in particular
fresh name creation, using Stark’s insights [20].

Further comparisons will be made in the course of
this paper, especially with bisimulations for spi-calculus
[1, 5, 6]. This continues the observations pioneered in [10],
where notions of logical relations for various monads (non-
determinism, probabilistic non-determinism) were shown to
be proper extensions of known notions of bisimulations.
The precise relation with hedged and framed bisimulation
[6] remains to be stated precisely.

3. Deconstructing Sumii and Pierce, Without
Names

The starting point of this paper was the realization that
the rather complex family of logical relations proposed by
Sumii and Pierce [21] could be simplified in such a way
that it could be described as merelyoneway of building
logical relations that have all desired properties. It turned
out that the only property we really need to be able to deal
with encryption and decryption primitives is that the logical
relations should relate the encryption function with itself,
and the decryption function with itself. At this point, the
reader familiar withprelogical relations will realize that this
is exactly what prelogical relations are about, but let us not
advance so fast. For now, we are content with explaining
the above remark.

3.1. The Toy Cryptographicλ-Calculus

To show the idea in action, let us use a minimal exten-
sion of the simply-typedλ-calculus with encryption and de-
cryption, and let’s call it thetoy cryptographicλ-calculus.
We shall show how the idea works on this calculus, which
is just a fragment of Sumii and Pierce’s [21] cryptographic
λ-calculus. The main thing that is missing here is nonce
creation, i.e., fresh name creation. Dealing with nonces is
the difficult point, see Section 4.

So, for now, restrict the types to:

τ ::= b | τ1 → τ2 | key[τ] | bits[τ]

whereb ranges over a setΣ of so-calledbase types, e.g.,
integers, booleans, etc. Sumii and Pierce’s calculus in ad-
dition has cartesian product and coproduct types.key[τ] is
the type of (symmetric) keys that can be used to encrypt val-
ues of typeτ , bits[τ] is the type ofciphertextsobtained by
encrypting some value of typeτ—necessarily with a key of
typekey[τ]. There is no special type for nonces, which are
being thought as objects of typekey[τ] for someτ .

That the universe of values is split in so many types is, by
the way, a flaw in this model. In particular, this model may
concealtype confusion attacks, where a value of some type
τ is expected, but a value of some other typeτ ′ is received.
Sumii and Pierce claim that such attacks can be prevented
by standard dynamic type checking. We return to this point
in Section 3.7, and show how type confusion attacks can be
modeled at no cost.

The terms of the toy cryptographicλ-calculus are given
by the grammar:

t, u, v, ... ::= x | λx · t | tu | {t}u

| let {x}t = u in v1 else v2

wherex ranges over a countable set of variables,{t}u de-
notes the ciphertext obtained by encryptingtwith keyu (t is

then called theplaintext), andlet {x}t = u in v1 else v2
is meant to evaluateu, attempt to decrypt it using keyt, then
proceed to evaluatev1 with plaintext stored inx if decryp-
tion succeeded, or evaluatev2 if decryption failed. Defini-
tions of free and bound variables andα-renaming are stan-
dard, hence omitted;x is bound inλx · t, with scopet, and
x is bound inlet {x}t = u in v1 else v2, with scopev1.

Typing is as one would expect, see Figure 1.Judgments
are of the formΓ ⊢ t : τ , whereΓ is acontext, i.e., a finite
mapping from variables to types. IfΓ mapsx1 to τ1, . . . ,
xn to τn, we write itx1 : τ1, . . . , xn : τn. Γ,∆ denotes the
union of the contextsΓ and∆, provided their domains do
not intersect.

A simple denotational semantics for the typed toy cryp-
tographic calculus is as follows. LetJ_K be any func-
tion mapping typesτ to sets so thatJτ1 → τ2K is the set
Jτ1K → Jτ2K of all functions fromJτ1K to Jτ2K, for all
typesτ1 andτ2. Let JbK be arbitrary for every base type
b, Jkey[τ]K be arbitrary. For everyV ∈ JτK,K ∈ Jkey[τ]K,
write E(V,K) the pair(V,K), to suggest that this really
denotes the encryption ofV with keyK. (That ciphertexts
are just modeled as pairs is exactly as in modern versions of
the Dolev-Yao model [9], or in the spi-calculus [1].) Then,
let Jbits[τ]K be the set of all pairsE(V,K), V ∈ JτK,
K ∈ Jkey[τ]K.

For any setA, letA⊥ be the disjoint sum ofA with {⊥},
where⊥ is an element outsideA, and letι be the canonical
injection ofA intoA⊥. While we have definedE(V,K) as
the pair(V,K), we define the inverse decryption function
from Jbits[τ]K × Jkey[τ]K to JτK⊥ by letting D(V ′,K ′)
be ι(V) if V ′ is of the form(V,K) with K = K ′, and⊥
otherwise.

We then describe the valueJtK ρ of the termt in the envi-
ronmentρ by structural induction ont, see Figure 2. More
formally, for any contextΓ, aΓ-environmentρ is a map such
that, for everyx : τ in Γ, ρ(x) is an element ofJτK. Write
ρ[x := V] the environment mappingx to V and every other
variabley to ρ(y). Write [x := V] the environment map-
ping justx to V . Then, given any typing derivationπ of the
judgmentΓ ⊢ t : τ , given anyΓ-environmentρ, we define
JπK ρ in JτK by structural induction onπ. As is standard,
we allow ourselves to writeΓ ⊢ t : τ or even justt in place
of π here, since typing derivations are (almost) isomorphic
to the termst themselves. We write(V ∈ A 7→ f(V))
the (set-theoretic) function mappingV in A to f(V) to dis-
tinguish it from the (syntactic)λ-abstractionλx · f(x). In
JΓ ⊢ tu : τ2K ρ, we assume that the premises of the last rule
of the implicit typing derivation areΓ ⊢ t : τ1 → τ2 and
Γ ⊢ u : τ1.

(V ar)
Γ, x : τ ⊢ x : τ

Γ, x : τ1 ⊢ t : τ2

(Lam)
Γ ⊢ λx · t : τ1 → τ2

Γ ⊢ t : τ1 → τ2 Γ ⊢ u : τ1

(App)
Γ ⊢ tu : τ2

Γ ⊢ t : τ Γ ⊢ u : key[τ]
(Enc)

Γ ⊢ {t}u : bits[τ]

Γ ⊢ t : key[τ] Γ ⊢ u : bits[τ]
Γ, x : τ ⊢ v1 : τ ′ Γ ⊢ v2 : τ ′

(Dec)
Γ ⊢ let {x}t = u in v1 else v2 : τ

′

Figure 1. Typing the toy cryptographic λ-calculus

JΓ, x : τ ⊢ x : τK ρ = ρ(x)

JΓ ⊢ λx · t : τ1 → τ2K ρ = (V ∈ Jτ1K 7→ JΓ, x : τ1 ⊢ t : τ2K ρ[x := V])

JΓ ⊢ tu : τ2K ρ = JΓ ⊢ t : τ1 → τ2K ρ(JΓ ⊢ u : τ1K ρ)
JΓ ⊢ {t}u : bits[τ]K ρ = E(JΓ ⊢ t : τK ρ, JΓ ⊢ u : key[τ]K)

Jlet {x}t = u in v1 else v2K ρ =

{

Jv1K ρ[x := V1] if V = ι(V1)
Jv2K ρ if V = ⊥

whereV = D(JuKρ, JtK ρ)

Figure 2. A simple denotational semantics for the toy crypto graphic λ-calculus

3.2. Contextual Equivalence

Now fix a subsetObs of Σ, of so-calledobservation
types. Typically, Obs will contain just the typebool of
Booleans, one of the base types. We say that two terms
u andv such that⊢ u : τ and⊢ v : τ are derivable, for
the same typeτ , arecontextually equivalent, and we write
u ≈τ v, in the set-theoretic model above if and only if,
whatever the termC such thatx : τ ⊢ C : o is derivable
(o ∈ Obs), JCK [x := JuK] = JCK [x := JvK]. Intuitively, this
(essentially standard) notion captures the fact that we would
like to consideru andv as equivalent provided, whatever
the question we ask about them, the answer is the same for
u andv. Asking a question aboutt means executingt in a
context (a.k.a., an operating system)C with typebool, i.e.,
runningC whenx takes the value oft and testing whether
the result is true or false. If the answer differs fort = u

and fort = v in the contextC, then there is an observable
difference betweenu andv. Taking other observation types
thanbool is certainly possible, but we usually do not want
function, key and bits types to be observation types.

3.3. What Are Logical Relations for Encryption?

In theλ-calculus setting, a (binary)logical relation is a
family (Rτ)τ type of binary relationsRτ , one for each type
τ , onJτK, such that:

(Log) for everyf, f ′ ∈ Jτ1 → τ2K, f Rτ1→τ2 f
′ if and

only if for everya Rτ1 a
′, f(a) Rτ2 f

′(a′).

Here we writea R a′ to say thata anda′ are related by the
binary relationR. In other words, logical relations relate
exactly those functions that map related arguments to re-
lated results. This is the standard definition of logical rela-
tions in theλ-calculus [13]. Note that there is no constraint
on base types. In the typedλ-calculus, i.e., without encryp-
tion and decryption, the condition above forces(Rτ)τ type

to be uniquely determined, by induction on types, from
the relationsRb, b ∈ Σ. More importantly, it entails the
so-calledbasic lemma. To state it, first say that twoΓ-
environmentsρ, ρ′ are related by the logical relation, in
notationρ RΓ ρ′, if and only if ρ(x) Rτ ρ

′(x) for every
x : τ in Γ. The basic lemma states that ifΓ ⊢ t0 : τ is
derivable, andρ, ρ′ are two relatedΓ-environments, then
Jt0K ρ Rτ Jt0K ρ′. This is a simple induction on (the typing
derivation of)t0.

We are interested in the basic lemma because, as ob-
served e.g. in [21], this implies that for any logical relation
that coincides with equality on observation types, any two
terms with logically related values are contextually equiv-
alent. More precisely, assume thatRo is equality onJoK
for everyo ∈ Obs. Then, if ⊢ u : τ and⊢ v : τ are
derivable, andu Rτ v, thenu ≈τ v. Indeed, by the basic
lemma, for everyC such thatx : τ ⊢ C : o is derivable
(o ∈ Obs), thenJCK [x := JuK] Ro JCK [x := JvK], i.e.,
JCK [x := JuK] = JCK [x := JvK] sinceRo is equality.

In the toy cryptographicλ-calculus, we have left the def-
inition of Rkey[τ] andRbits[τ] open. Here are conditions
under which the basic lemma holds in the toy cryptographic
λ-calculus. For any typeτ , let Rτ option be the binary re-
lation on JτK⊥ defined byV Rτ option V ′ if and only if

V = V ′ = ⊥, orV = ι(V1), V ′ = ι(V ′
1) for someV1, V ′

1 ,
andV1 Rτ V

′
1 .

Lemma 1 Assume that:
1. for every V Rτ V ′ and K Rkey[τ] K ′,
E(V,K) Rbits[τ] E(V ′,K ′);
2. for every V Rbits[τ] V ′ and K Rkey[τ] K ′,
D(V,K) Rτ option D(V ′,K ′).
Then the basic lemma holds: ifΓ ⊢ t0 : τ is deriv-
able, and ρ, ρ′ are two relatedΓ-environments, then
Jt0K ρ Rτ Jt0K ρ′.

Proof. By structural induction ont0. The cases of vari-
ables,λ-abstractions and applications are standard [13].
The case of encryptions{t}u is by item 1. Whent0 =
let {x}t = u in v1 else v2, by induction hypothesis we
haveJuK ρ Rbits[τ] JuK ρ′ andJtK ρ Rkey[τ] JtK ρ′, so, let-
ting V = D(JuK ρ, JtK ρ) andV ′ = D(JuKρ′, JtK ρ′), then
V Rτ option V ′ by 2. Therefore, eitherV = V ′ = ⊥,
so Jt0K ρ = Jv2K ρ = Jv2K ρ′ (by induction hypothesis)
= Jt0K ρ′; or V = ι(V1), V ′ = ι(V ′

1), and Jt0K ρ =
Jv1K ρ[x := V1] = Jv1K ρ′[x := V ′

1] (by induction hypothe-
sis)= Jt0K ρ′. ✷

Before we proceed, let us remark that we have never used
anyproperty ofE orD in the proof of this lemma. The prop-
erty thatD(E(V,K),K) = ι(V) is only needed to show
thatlet {x}t = {u}t in v1 else v2 andv1[x := u] have
the same semantics, which we do not care about here. The
property thatE(V,K) is the pair(V,K), or thatE is even
injective, is just never needed. This means that Lemma 1
also holds if we use encryption primitives that obey alge-
braic laws: we shall use this observation in Section 3.7.

There is a kind of converse to Lemma 1. As-
sume that we have an additional type formerτ option,
with constructorsSOME : τ → τ option and
NONE : τ option. Assume their semantics is given
by Jτ optionK = JτK⊥, JSOME tK = ι(JtK), JNONEK =
⊥. Finally, assume thatRτ option is defined as above.
Then we may define an encryption primitiveenc = λv ·
λk · {v}k and a decryption primitive in the toy crypto-
graphic lambda-calculus bydec = λv · λk · let {x}k =
v in SOME x else NONE. If the basic lemma holds,
then we must haveJencK Rτ→key[τ]→bits[τ] JencK and
JdecK Rbits[τ]→key[τ]→τ option JdecK. These are just con-
ditions 1. and 2.

Call cryptographic logical relation any logical relation
for which the basic lemma holds. Conditions 1. and 2. can
therefore be rephrased as the following motto:

A cryptographic logical relation should relate encryption
with itself, and decryption with itself.

3.4. Existence of Logical Relations for Encryption

How can webuild a cryptographic logical relation in-
ductively on types? We first need to address the question of
existenceof logical relations satisfying the basic lemma.

Let us fix a typeτ , and assume that we have already
constructedRτ andRkey[τ]. Let R⊥

bits[τ] be the small-
est relation onJbits[τ]K satisfying condition 1., i.e., such
that E(V,K) R⊥

bits[τ] E(V ′,K) for all V Rτ V ′ and

K Rkey[τ] K ′. Let R⊤
bits[τ] be the largest relation on

Jbits[τ]K satisfying condition 2., i.e., such that whenever
V R⊤

bits[τ] V
′, thenD(V,K) Rτ option D(V ′,K ′) for ev-

eryK Rkey[τ] K
′. These two relations clearly exist. Con-

ditions 1. and 2. state that we should chooseRbits[τ] so that
R⊥

bits[τ] ⊆ Rbits[τ] ⊆ R⊤
bits[τ]. This exists if and only if

R⊥
bits[τ] ⊆ R⊤

bits[τ].

In turn,R⊥
bits[τ] ⊆ R⊤

bits[τ] is equivalent to: for every
V Rτ V ′ andK Rkey[τ] K

′, for everyK1 Rkey[τ] K
′
1,

D(E(V,K),K1) Rτ option D(E(V ′,K ′),K ′
1) (∗). Let

thereforeV Rτ V
′, and fixK Rkey[τ] K

′. By choosing
K1 = K, (∗) becomesι(V) Rτ option D(E(V ′,K ′),K ′

1),
which is equivalent toK ′ = K ′

1 andV Rτ V
′. Similarly

by choosingK ′ = K ′
1, we getK = K1 andV Rτ V

′. In
other words, as soon asRτ is not empty,Rkey[τ] must be
a partial bijectionon Jkey[τ]K, i.e., the graph of a bijection
between two subsets ofJkey[τ]K.

Proposition 2 LetR0
b be given binary relations onJbK for

every base typeb. Let R0
key[τ] be any partial bijection on

Jkey[τ]K for every typeτ . There exists a cryptographic log-
ical relation (Rτ)τ type such thatRb = R0

b for every base
typeb, and such thatRkey[τ] = R0

key[τ] for every typeτ .
We may defineRbits[τ], for any typeτ , as any relation such
thatR⊥

bits[τ] ⊆ Rbits[τ] ⊆ R⊤
bits[τ].

Proof. Build the logical relation by induction on types.
When buildingRbits[τ], we need to check thatR⊥

bits[τ] ⊆

R⊤
bits[τ]. LetV Rτ V

′, K Rkey[τ] K
′, andK1 Rkey[τ] K

′
1

be arbitrary, and let us check(∗) (see discussion above).
If K = K1 thenK ′ = K ′

1 sinceRkey[τ] is a partial bi-
jection, soD(E(V,K),K1) = ι(V) Rτ option ι(V ′) =
D(E(V ′,K ′),K ′

1), hence(∗) holds. Similarly, ifK ′ = K ′
1

thenK = K1, so (∗) holds again. Finally, ifK 6= K1

andK ′ 6= K ′
1, D(E(V,K),K1) = ⊥ Rτ option ⊥ =

D(E(V ′,K ′),K ′
1), hence again(∗) holds. ✷

Proposition 2 shows that cryptographic logical relations
exist that coincide with given relations on base types. But
contrarily to logical relations in theλ-calculus, they are
far from being uniquely determined: we have considerable
freedom as to the choice of the relations at key and bits
types.

To defineRkey[τ], notably, we may use the intuition that
some keys are observable by an intruder, and some others
are not. Lettingfrτ be the set of observable keys, define
Rkey[τ] as relating the keyK with itself providedK ∈ frτ ,
and not relating any non-observable key with any key. This
is clearly a partial bijection, in fact one that coincides with
the identity on the subsetfrτ of Jkey[τ]K. This is a popular
choice:frτ is what Abadi and Gordon [2] call aframe, up
to the fact that frames are defined there as sets of names, not
of keys.

To defineRbits[τ], we may choose any relation sand-
wiched betweenR⊥

bits[τ] andR⊤
bits[τ]. Let us make these

two more explicit.
For everyV0, V

′
0 ∈ Jbits[τ]K, V0 R⊥

bits[τ] V
′
0 if and

only if V0 is of the form E(V,K), V ′
0 is of the form

E(V ′,K ′), V Rτ V
′ andK Rkey[τ] K

′, i.e.,K = K ′ ∈

frτ . In other words,V0 andV ′
0 are related byR⊥

bits[τ] if
and only if they are encryptions of related plaintexts by a
unique key that the intruder may observe.

On the other hand,V0 R⊤
bits[τ] V

′
0 if and only if V0 =

E(V,K) andV ′
0 = E(V ′,K ′) with eitherV Rτ V ′ and

K = K ′ ∈ frτ , orK,K ′ 6∈ frτ (whateverV , V ′).
So, Rbits[τ] is completely characterized by the datum

of frτ , plus a functionψτ mapping pairs of keysK, K ′

in Jkey[τ]K \ frτ to a binary relationψτ (K,K ′) on JτK:
if Rbits[τ] is given, then letψτ (K,K ′) be defined as re-
lating V with V ′ if and onlyE(V,K) Rbits[τ] E(V ′,K ′);
on the other hand, givenψτ , the relationRbits[τ] that re-
latesE(V,K) with E(V ′,K ′) if and only if V Rτ V

′ and
K = K ′ ∈ frτ , orK,K ′ 6∈ frτ andV ψτ (K,K

′) V ′, is
such thatR⊥

bits[τ] ⊆ Rbits[τ] ⊆ R⊤
bits[τ].

Given parametersfr andψ, we then get the following
definition of auniquecryptographic logical relation by in-
duction on types, so that it coincides with given relations on
base types:

Proposition 3 Letfrτ be some subset ofJkey[τ]K, for each
typeτ , andψτ be any function from(Jkey[τ]K\frτ)2 to the
setP(JτK × JτK) of binary relations onJτK.

For any familyR0
b of binary relations onJbK, b a base

type, let(Rfr,ψ
τ)τ type be the family of relations defined by:

• Rfr,ψ
b = R0

b for each base typeb;
• for everyf, f ′ ∈ Jτ1 → τ2K, f Rfr,ψ

τ1→τ2
f ′ if and only if

for everya Rfr,ψ
τ1

a′, f(a) Rfr,ψ
τ2

f ′(a′);

• for everyK,K ′ ∈ Jkey[τ]K, K Rfr,ψ

key[τ] K
′ if and only if

K = K ′ ∈ frτ ;
• for everyV, V ′ ∈ JτK, for everyK,K ′ ∈ Jkey[τ]K,
E(V,K) Rfr,ψ

bits[τ] E(V ′,K ′) if and only ifV Rfr,ψ
τ V ′ and

K = K ′ ∈ frτ , orK,K ′ 6∈ frτ andV ψτ (K,K
′) V ′.

Then, whatever the choices offrτ andψτ , (Rfr,ψ
τ)τ type is

a cryptographic logical relation.

Clearly, Proposition 3 generalizes to the case wherefrτ and

ψτ are not givena priori, but are defined using the relations
Rfr,ψ
τ ′ for (not necessarily strict) subtypesτ ′ of τ . That is,

when not justRfr,ψ
τ but alsofrτ andψτ are defined by

mutual induction on types.
Ignoring the treatment of fresh names and the fact that

their semantics is operational and ours is denotational,
Sumii and Pierce [21, Section 6.3] use a unique function
ϕ, instead of a family of functionsψτ , in defining their log-
ical relation at bits types. This is inessential. They also
define their logical relation on terms, while we define ours
on their semantics. While we writeV0 Rfr,ψ

τ V ′
0 , they

use the notationϕ ⊢val V0 ∼ V ′
0 : τ . They do not use a

framefrτ . Again ignoring fresh names, they defineϕ ⊢val

K ∼ K ′ : key[τ] by K = K ′ and (K,K ′′) 6∈ dom ϕ,
(K ′′,K ′) 6∈ dom ϕ for anyK ′′ ∈ Jkey[τ]K, so that they get
the same definition for key typeskey[τ] as in Proposition 3,
providedfrτ is defined as{K ∈ Jkey[τ]K |(K,K ′′) 6∈
dom ϕ and(K ′′,K) 6∈ dom ϕ for anyK ′′ ∈ Jkey[τ]K}.
Their definition of the logical relation at bits types (again,
ignoring names) isϕ ⊢val E(V,K) ∼ E(V ′,K ′) : bits[τ]
if and only if (K,K ′) 6∈ dom ϕ and V Rfr,ψ

τ V ′, or
(K,K ′) ∈ dom ϕ andV ψ(K,K ′) V ′. This is exactly
the definition we had in Proposition 3 if we takeϕ = ψ,
provided the complement ofdom ϕ is exactlyfr2τ . Con-
versely, givenϕ we may defineψτ on (key[τ] \ frτ)2 by:
ψτ (K,K

′) = ϕ(K,K ′) if (K,K ′) ∈ dom ϕ, otherwise
ψτ (K,K

′) = Rfr,ψ
τ . (Note thatdom ϕ ⊆ (key[τ] \

frτ)
2.) Then our definition ofRfr,ψ

bits[τ] coincides with their
definition—provided fresh names are ignored in their def-
inition, and provided we restrict ourselves to logical rela-
tions on key types that are restriction of the equality relation
instead of being more general partial bijections.

It is interesting, too, to relate the definition ofRfr,ψ
τ to

selected parts of the notion of framed bisimulation [2]. We
have already mentioned that the notion of frame originated
in this paper, although frames related names and not keys.
Slightly adapting [2] again, call atheory(on typebits[τ])
any finite binary relationthτ on Jbits[τ]K. By finite, we
mean that it should be finite as a set of pairs of values. A
frame-theory pair(frτ , thτ) is consistentif and only if thτ
is a partial bijection, andE(V,K) thτ E(V ′,K ′) implies
K 6∈ frτ andK ′ 6∈ frτ . Any consistent frame-theory pair
determines aψτ function byV ψτ (K,K

′) V ′ if and only if
E(V,K) thτ E(V ′,K ′). It follows that frame-theory pairs,
as explained here, are special cases of pairs of a framefrτ
and a functionψτ .

3.5. A More Uniform Toy Cryptographic λ-
Calculus, and Prelogical Relations

Reflecting on the developments above, we see that it
would be much natural to use, instead of the toy cryp-
tographicλ-calculus, a simply-typedλ-calculus with two

constantsenc anddec, with respective semantics given by
E andD. While we are at it, it is clear from the way we
defineR0

key[τ] in Proposition 3 that the typekey[τ] behaves
more like a base type than a type constructed from smaller
types. It is therefore relevant to change the algebra of types
to something like:

τ ::= b | τ1 → τ2 | bits[τ] | key | τ option | . . .

whereb ranges overΣ, Σ now contains a collection ofkey
typeskey1, . . . , keyn (wlog., we shall use just one, which
we write key), and theτ option type is used to give a
typing todec : bits[τ] → key → τ option; enc is as-
sumed to have typeτ → key → bits[τ]. The final ellipsis
is meant to indicate that there may be other type formers
(products, etc.): we do not wish to be too specific here.

The language we get is just the simply-typedλ-calculus
with constants. . . up to the fact that we need option types
τ option. The constants to consider here are at leastdec,
enc, SOME : τ → τ option, NONE : τ option, and
case : τ option→ (τ → τ ′) → τ ′ → τ ′. (Thecase con-
stant implements the elimination principle forτ option;
we write case s of SOME x ⇒ t | NONE ⇒ t′ instead
of case s(λx · t)t′, and leave the semantics ofcase as an
exercise to the reader.)

The fact that the constantsdec, enc, are required to have
their denotations,D andE, related to themselves is reminis-
cent ofprelogical relations[11]. These can be defined in
a variety of ways. Following [11, Definition 3.1, Proposi-
tion 3.3], aprelogical relationis any family(Rτ)τ type of
relations (between two values ofJτK in our case) such that:
1. for every f, f ′ ∈ Jτ1 → τ2K, if f Rτ1→τ2 f ′ and
a Rτ1 a

′ thenf(a) Rτ2 f
′(a′);

2. K Rτ1→τ2→τ1 K, whereK is the function mapping
x ∈ Jτ1K, y ∈ Jτ2K to x;
3. S R(τ1→τ2→τ3)→(τ1→τ2)→τ1→τ3 S, where S is the
function mappingx ∈ Jτ1 → τ2 → τ3K, y ∈ Jτ1 → τ2K,
z ∈ Jτ1K to x(z)(y(z));
4. and for every constanta : τ , JaK ǫ Rτ JaK ǫ.
whereJaK denotesJaK ρ for any environmentρ. Condi-
tion 1. is just one half of(Log). The basic lemma for prel-
ogical relations [11, Lemma 4.1] is stronger than for logical
relations: prelogical relations areexactlythose families of
relations indexed by types such that the basic lemma holds.

Note that the use of prelogical relations also requires us
to relate the semantics ofSOME with itself, that ofNONE
with itself, and that ofcase with itself.

Then, we may observe that prelogical relations are not
just sound for contextual equivalence, they arecomplete, at
all types, even higher-order. Recall that a valuea ∈ JτK
is definableif and only if there exists a (necessarily closed)
term t such that⊢ t : τ is derivable, anda = JtK ǫ, where
ǫ is the empty environment. Note that it is fair to letObs

be{bool}, wherebool is a base type with two constants

true : bool andfalse : bool, such thatJtrueK ǫ = ⊤,
JfalseK ǫ = ⊥, andJboolK is B = {⊤,⊥}; then, every
element ofB is definable.

Theorem 4 (Completeness)Assume that observation
types have no junk, in the sense that every value ofJoK
(o ∈ Obs) is definable.

Then prelogical relations are complete for contextual
equivalence in theλ-calculus, in the strong sense that
there is a prelogical relation(Rτ)τ type that coincides with
equality on observation typeso ∈ Obs such that, for ev-
ery closed termsu, u′ of typeτ , u ≈τ u′ if and only if
JuK Rτ Ju′K.

Proof. DefineRτ on JτK by a Rτ a
′ if and only if a and

a′ are definable anda ≈τ a′.
First, ≈o coincides with equality onJoK, for everyo ∈

Obs. Indeed, ifa = a′ then clearlya ≈o a′. Conversely, if
a ≈o a′ thenJCK [x := a] = JCK [x := a′] for every context
of observation type, in particular forC = x; soa = a′.

Since observation types have no junk,Ro is also the
equality relation onJoK, for everyo ∈ Obs.

Next, we claim that(Rτ)τ type is a prelogical relation.
First, check condition1. Assumef Rτ1→τ2 f

′, i.e.,f and
f ′ are definable (say by closed termst andt′ respectively)
and for everyCfun such thatz : τ1 → τ2 ⊢ Cfun : o is
derivable (o ∈ Obs), JCfunK [z := f] = JCfunK [z := f ′].
Let a Rτ1 a′, i.e., a anda′ are definable (say by closed
termsu andu′ respectively) and for everyCarg such that
y : τ1 ⊢ Carg : o is derivable (o ∈ Obs), JCargK [y := a] =
JCargK [y := a′].

We have to show thatf(a) Rτ2 f ′(a′). Let C be any
term such thatx : τ2 ⊢ C : o, for anyo ∈ Obs. Thenf(a)
andf ′(a′) are definable (bytu andt′u′ respectively), and,
lettingz andz′ be fresh variables:

JCK [x := f(a)]

= JC[x := zu]K [z := f] (sincea = JuK)
= JC[x := zu]K [z := f ′] (sincef Rτ1→τ2 f

′)

= JCK [x := f ′(a)]

= JC[x := t′z′]K [z′ := a] (sincef ′ = Jt′K)
= JC[x := t′z′]K [z′ := a′] (sincea Rτ1 a

′)

= JCK [x := f ′(a′)]

Now check4. For every constantc : τ , JcK ǫRτ JcK ǫ; this
is obvious, since clearlyJtK ǫRτ JtK ǫ for every closed term
t of typeτ . Similarly,K Rτ1→τ2→τ1 K (taket = λx·λy ·x),
andS is related to itself (taket = λx · λy · λz · xz(yz)),
establishing2. and3.

Finally, by definition JuK Rτ JuK′ just means that
JuK ≈τ Ju′K, i.e., u ≈τ u′, sinceJuK and Ju′K are obvi-
ously definable. ✷

The argument before Proposition 3 applies here without
further ado: every prelogical relation must be a partial bijec-
tion at thekey type, and conversely, any prelogical relation
that is the equality onfr ⊆ JkeyK at thekey type satisfies
the basic lemma, hence can be used to establish contextual
equivalence. Specializing the prelogical relation(Rτ)τ type

of Theorem 4, we get thatRkey is exactly equality on the set
fr = {JtK ǫ| ⊢ t : key} of definable keys.

Similarly, we may define the binary relationψτ (K,K ′),
for every K,K ′ ∈ JkeyK \ fr, (i.e., i.e., for all
non-definable keys) byV ψτ (K,K

′) V ′ if and
only if E(V,K)Rbits[τ]E(V ′,K ′), i.e., if and only if
E(V,K) andE(V ′,K ′) are definable at typebits[τ], and
E(V,K)Rbits[τ]E(V ′,K ′).

From this, we infer immediately the following combi-
nation of the analogue of Proposition 3 (soundness) with
Theorem 4 (completeness):

Proposition 5 Assume that observation types have no junk.
There is a prelogical relation(Rfr,ψ

τ)τ type, parameter-
ized byfr andψ, which is:
• strict at the key type: i.e., for everyK,K ′ ∈ JkeyK,
K Rfr,ψ

key K ′ if and only ifK = K ′ ∈ fr;
• strict at bits[τ] types: i.e., for everyV, V ′ ∈ JτK, for
everyK,K ′ ∈ JkeyK, E(V,K) Rfr,ψ

bits[τ] E(V ′,K ′) if and

only if V Rfr,ψ
τ V ′ andK = K ′ ∈ fr, orK,K ′ 6∈ fr and

V ψτ (K,K
′) V ′;

• which coincides with equality on observation types;
• and such that, for somefr andψ, for every closed terms
t, t′ of typeτ , JtK ǫ ≈τ Jt′K ǫ if and only ifJtK ǫ Rfr,ψ

τ Jt′K ǫ.

The idea of beingstrict at some typeτ is, in all cases,
that the (pre)logical relation at typeτ should be defined
uniquely as a function of the (pre)logical relations at all
immediate subterms ofτ . Analogously, we say that a pre-
logical relation(Rfr,ψ

τ)τ type is strict at τ1 → τ2 if and
only if f Rfr,ψ

τ1→τ2
f ′ is equivalent to: for alla Rfr,ψ

τ1
a′,

f(a) Rfr,ψ
τ2

f ′(a′)—i.e., if it is a (cryptographic) logical
relation in the sense of Section 3.3.

Following the same idea, we say that(Rτ)τ type is strict

at τ option if and only if a Rfr,ψ
τ option a′ is equivalent

to: either a = a′ = ⊥, or a = ι(a1), a′ = ι(a′1),
and a1 Rfr,ψ

τ a′1. The prelogical relation of Proposi-
tion 5 is then strict at option types, too, provided there is
a closed term of typeτ or JτK has no junk. Indeed, if
a Rfr,ψ

τ option a′ then, first, we cannot havea = ⊥ but
a′ = ι(a′1) (or conversely), since otherwise the context
C = case x of SOME z ⇒ true | NONE ⇒ false

would differentiatea from a′. So a = a′ = ⊥, or
a = ι(a1), a′ = ι(a′1); in the latter case, sincea ≈τ a′,
for every contextC such thatx : τ option ⊢ C : o

(o ∈ Obs), JCK [x := a] = JCK [x := a′]. If JoK is
empty, then vacuouslyJC′K [x := a1] = JC′K [x := a′1]

for every C′ such thatx : τ ⊢ C′ : o. Otherwise,
since o has no junk, lett0 be any closed term of type
o. JCK [x := a] = JCK [x := a′] holds in particular for
C = case x of SOME z ⇒ C′[x := z] | NONE ⇒ t0,
whereC′ is arbitrary such thatx : τ ⊢ C′ : o: by an easy
computation, we obtainJC′K [x := a1] = JC′K [x := a′1],
and sinceC′ is arbitrarya1 ≈τ a′1. We now claim thata1

is definable. If there is a closed termt1 of type τ , then
a1 is definable ascase t of SOME z ⇒ z | NONE ⇒ t1
(wherea = JtK ǫ). Otherwise, ifτ has no junk, thenJτK =,
so Jτ optionK = {⊥}, soa cannot be of the formι(a1).
In any casea1 is definable. Similarly,a′1 is definable. So
a1 Rfr,ψ

τ a′1.
While the point in prelogical relations in [11] is mainly

of being not strict at arrow types, the point of Section 3 is
to argue that it is meaningful either not to be strict either at
bits[τ] types, as in Section 3.3 (in the sense thatRbits[τ]

was not determined uniquely fromRτ), or equivalently to
be strict atbits[τ], given parametersfr andτ . We believe
that just saying that we do not require strictness atbits[τ],
thus omitting thefr andτ parameters, leads to some sim-
plification.

3.6. Completeness on First-Order Terms

The prelogical relation(Rfr,ψ
τ)τ type of Proposition 5

is strict at bits, key, and most option types, but not at
arrow types. If it were strict at all types, then, given
fr, ψ, there would be a canonical way to decide whether
JtK ǫ Rfr,ψ

τ Jt′K ǫ: apply the definition ofRfr,ψ
τ , recursing

on typesτ . We show that we may require the prelogical
relation to be strict at arrow types, provided we restrict our-
selves to first-order terms.

Instead of defining first-order types syntactically, we pre-
fer a more semantical definition. Say thatτ is junklessif and
only if JτK contains no junk. This includesbool, bits[τ]
andτ option types providedτ is junkless; products and
sums of junkless types if we decide to include products and
sums; but not arrow types in general, and not thekey type
(which may contain junk, namely all those keys not in the
framefr of Proposition 5).Zero-ordertypes are those types
τ0 which are junkless and not arrow types, and such that
any subexpression ofτ0 is also zero-order. These include at
least all types generated by the grammar:

τ0 ::= bool | bits[τ0] | τ0 option

First-order types are defined inductively askey, orτ0
1 → τ2

whereτ1 is zero-order andτ2 is first-order. A closed term is
first-order if and only if its type is first-order.

Proposition 6 For every closed first-order termst, t′ of
typeτ0, JtK ǫ ≈τ0 Jt′K ǫ if and only if JtK ǫ R′

τ′

fr,ψ Jt′K ǫ,

for somelogical relation (R′fr,ψ
τ)τ type that is strict at ar-

row, key, bits[τ] and τ option (τ junkless) types and
coincides with equality at observation types.

Proof. The if direction is clear. Conversely, let
(R′fr,ψ

τ)τ type be the unique logical relation (i.e., strict at
all types) that coincides with(Rfr,ψ

τ)τ type at base types.
These relations coincide in particular at zero-order types,
because(Rfr,ψ

τ)τ type is strict at all zero-order types (see
Proposition 6). They also coincide at thekey type, because
key is a base type. Finally, we claim that they coincide at
all first-order types on definable values. This is by induction
on first-order typesτ0

1 → τ2.
On the one hand, ifJtK ǫ R′fr,ψ

τ0

1
→τ2

Jt′K ǫ then

JtK ǫ ≈τ0

1
→τ2

Jt′K ǫ sinceR′ is sound for contextual equiva-
lence (this is the basic lemma), soJtK ǫ Rτ0

1
→τ2 Jt′K ǫ since

R is complete on definable values.
On the other hand, ifJtK ǫRfr,ψ

τ0

1
→τ2

Jt′K ǫ, let a anda′ be

arbitrary values such thata R′fr,ψ

τ0

1

a′. Sinceτ0
1 is zero-

order, hence junkless,a anda′ are definable. By induction
hypothesis, it follows thata Rfr,ψ

τ0

1

a′. SinceR is prelog-

ical, JtK ǫ(a) Rfr,ψ
τ2

Jt′K ǫ(a′), so by induction hypothesis
again,JtK ǫ(a) Rfr,ψ

τ2
Jt′K ǫ(a′). Sincea anda′ are arbi-

trary such thata R′fr,ψ

τ0

1

a′, by (Log) JtK ǫ R′fr,ψ

τ0

1
→τ2

Jt′K ǫ.
✷

3.7. Extensions

We have already said that using a typebits[τ] for ci-
phertexts, distinct from the typeτ of plaintexts, could lead
to miss type confusion attacks: by typing, the intruder can-
not submit an object of typeτ where one of typebits[τ] is
expected.

The obvious fix is to change the algebra of types so that
both plaintexts and ciphertexts are of some universal mes-
sage typemsg, and requireenc to be of typemsg → key →
msg, dec to be of typemsg → key → msg option. It is
in fact easier todefinemsg as an inductive type with con-
structorsb : bits[msg] → msg (coercing ciphertexts to
messages) and, say,p : msg → msg → msg, nil : msg,
raw : int → msg, k : key → msg (with obvious mean-
ings).

This simply amounts to considering that theλ-calculus
of Section 3.5 contains the constants above, plus a recursor

msg_rec : ((key → τ → τ) → τ)

→ (τ → τ → τ) → τ

→ τ → (int → τ) → (key → τ)

→ msg → τ

so that, lettingF bemsg_rec b p n i q, the equations of
Figure 3 obtain.

And the theory of Section 3.5 goes through. There are
several variants here. We may split keys into symmetric,
public and private keys to handle asymmetric encryption.
We may also allow general terms of typemsg as encryption
keys: this is useful in actual protocols, as in the SSL hand-
shake [22], where keys are computed from other messages.
We let the interested reader do the necessary adaptations in
each case.

Another extension is the handling of algebraic laws.
E.g., in RSA encoding [19], encryptionE is implemented
as modular exponentiation, which obeys various associa-
tivity, commutativity and distributivity laws. To give an
example that remains in the framework of symmetric en-
cryption, DES [8] obeys the property thatnot E(V,K) =
E(not V, not K), wherenot is bitwise logical not. We
may also try to be even more realistic and consider thatmsg

is a finite type (e.g.,1024-bit integers). In this case, there
is no injective pairing function fromJτK × JτK to JτK. This
breaks Proposition 5, which relies on the fact thatE(V,K)
really behaves as the pair(V,K). Nonetheless, prelogical
relations are still sound and complete for this semantics (or
for any semantics whatsoever), i.e., Theorem 4 still holds.
This opens the way to notions of (pre)logical relations that
are sound and complete for more complex models of en-
cryption.

4. Adding Name Creation, and Lax Logical Re-
lations

No decent calculus for cryptographic protocols can dis-
pense with fresh name creation. This is most easily done by
following Stark [20], who defined a categorical semantics
for a calculus with fresh name creation based on Moggi’s
monadicλ-calculus [15]. We just take his language, adding
all needed constants as in Section 3.5.

4.1. The Moggi-Stark Calculus

The Moggi-Stark calculusis obtained by adding a new
type formerT (themonad), to the types of theλ-calculus of
Section 3.5, so thatTτ is a type as soon asτ is:

τ ::= b | τ1 → τ2 | bits[τ] | key|τ option | Tτ | . . .

(We continue to leave the definition of our calculi open,
as shown with the ellipsis. . ., to facilitate the addition of
new types and constants, if needed.) Following Stark, we
also require the existence of a new base typeννν ∈ Σ of
names. (This will take the place of the typekey of keys,
which we shall equate with names.) Theλ-calculus of Sec-
tion 3.5 is enriched with constructsval t andlet x ⇐
t in u (not to be confused with thelet construct of Sec-
tion 3.1), with typing rules as given in Figure 4, and two

JF (b m)K ρ = Jb(λk · λx · case D m k of SOMEm′ ⇒ Fm′ | NONE ⇒ x)K ρ
JF (p m1m2)K ρ = Jp(Fm1)(Fm2)K ρ

JF (nil)K ρ = n JF (raw z)K ρ = i(z) JF (k k)K ρ = q(k)

Figure 3. Recursor equations

Γ ⊢ t : τ
(val)

Γ ⊢ val t : Tτ

Γ ⊢ t : Tτ Γ, x : τ ⊢ u : Tτ ′

(let)
Γ ⊢ let x⇐ t in u : Tτ ′

Figure 4. Additional typing rules for the monadic λ-calculus

constantsnew : Tννν (fresh name creation) and
.
=: ννν → ννν →

bool (equality of names).

In Stark’s semantics (notations are ours here), given any
finite sets (of names),JtK sρ is the value oft in environment
ρ assuming that all previously created names are ins. This
allows one to describe the creation of fresh names as return-
ing any name outsides. This is most elegantly described by
letting the values of terms be taken in the presheaf category
SetSetSetI [20], whereI is the category whose objects are finite

sets and whose morphismss
i
→s′ are injections. Given any

typeτ , JτK s is intuitively the set of all values of typeτ in a
world where all created names are ins. SinceJτK is a func-

tor, for every injections
i
→s′ there is a conversionJτK i that

sends any valuea of JτK s to one inJτK s′, intuitively by
renaming the names ina usingi. By extension, ifΓ is any
contextx1 : τ1, . . . , xn : τn, let JΓK beJτ1K × . . . × JτnK,
using the products inSetSetSetI—i.e., products at each worlds.
Then, as usual in categorical semantics [12], given any term
t such thatΓ ⊢ t : τ is derivable,JtK is a morphism from
JΓK to JτK. This means thatJtK is a natural transformation
from JΓK to JτK, in particular that, for every finite sets, JtK s
maps anyΓ, s-environmentρ (a map sending eachxi such
thatxi : τi is in Γ to some element ofJτiK s) to some value
JtK sρ in JτK s; and all this is natural ins, i.e., compatible
with renaming of names.

Interestingly,Tτ , the type of computations that result
in a value of typeτ , possibly creating fresh names dur-
ing the course of computation, is defined semantically by
JTτK = TTT JτK, where(TTT ,ηηη,µµµ, ttt) is the strong monad de-
fined as:
• TTTA = colims′ A(_ + s′) : I → SetSetSet. On objects, this is
given byTTTAs = colims′ A(s + s′), i.e.,TTTAs is the set of
all equivalence classes of pairs(s′, a) with s′ a finite set and
a ∈ A(s + s′), modulo the smallest equivalence relation≡
such that(s′, a) ≡ (s′′, A(ids + j)a) for every morphism

s′
j

−→s′′ in I. Intuitively, given a set ofnamess, elements
ofTTTAs are formal expressions(νs′)a where all names ins′

are bound and every name free ina is in s + s′—modulo
the fact that(νs′, s′′)a ≡ (νs′)a for any additional set of
new namess′′ not free ina. We shall in fact write(νs′)a
the equivalence class of(s′, a), to aid intuition. (This was
written [s′, a] in [10, 23].)

On morphismss1
i

−→s2, TTTAi maps(νs′)a to (νs′)A(i +
ids′)a.
• For any morphismf : A → B in SetSetSetI , TTTfs : TTTAs →
TTTBs is defined byTTTfs((νs′)a) = (νs′)(f(s+ s′)a). This
is compatible with≡ becausef is natural.
• ηηηAs : As → TTTAs is defined byηηηAsa = (ν∅)a.
• µµµAs : TTT 2

As → TTTAs is defined byµµµAs((νs′)(νs′′)a) =
(νs′ + s′′)a.
• tttA,Bs : As × TTTBs → TTT (A × B)s is defined by
tttA,Bs(a, (νs

′)b) = (νs′)(A(inlss′)a, b)) where inlss′ :
s→ s+ s′ is the canonical injection.
The semantics oflet andval is standard [15]. Making it
explicit on this particular monad, we obtain:

Jval tK sρ = (ν∅) JtK sρ
Jlet x⇐ t in uK sρ = (νs′ + s′′)b

where JtK sρ = (νs′)a, we assume thatΓ ⊢ t :
Tτ and Γ, x : τ ⊢ u : Tτ ′, and whereJuK (s +
s′)((JΓK (inlss′)ρ)[x := a]) = (νs′′)b. (Concretely, ifΓ
is x1 : τ1, . . . , xn : τn, ρ = [x1 := a1, . . . , xn := an]
whereai ∈ JτiK s for everyi, thenJΓK (inlss′)ρ is [x1 :=
Jτ1K (inlss′)a1, . . . , xn := JτnK (inlss′)an].)

The semantics of base typesb ∈ Σ, exceptννν, is given by
constant functors:JbK s is a fixed set, independent ofs; e.g.,
JboolK s = B. The semantics ofννν is JνννK s = s, JνννK i = i;
i.e., the names that exist ats are just the elements ofs. Since
SetSetSetI is a presheaf category, it is a topos, hence cartesian-
closed [12]. This provides a semantics forλ-abstraction,
variables and applications.

Finally, the semantics ofnew : Tννν is given by
JnewK sρ = (ν{n})n, wheren is any element not ins,
andJ .=K is defined as the only morphism inSetSetSetI such that

J .= xyK s[x := a, y := b] is true if a = b, andfalse
otherwise.

4.2. Lax Logical Relations for Monads

Given that terms now take values in some category
(SetSetSetI), not inSetSetSet as in Section 3, the proper generaliza-
tion of prelogical relations is given bylax logical relations
[17]. We introduce this notion as gently as possible.

Let Σ be the set of base types, seen as a trivial cate-
gory. The simply-typedλ-calculus gives rise to thefree
CCCλλλ(Σ) overΣ as follows: the objects ofλλλ(Σ) are typing
contextsΓ, a morphism fromΓ to ∆ = y1 : τ1, . . . , yn : τn
is a substitution[y1 := t1, . . . , yn := tn], whereΓ ⊢ ti : τi
(1 ≤ i ≤ n), moduloβη-conversion. (In particular,Γ-
environments are exactly morphisms from the terminal ob-
ject, the empty contextǫ, to Γ.) Composition is substitu-
tion. Being the free CCC means that, for any CCCCCC, for
any functorJ_K0 from Σ to CCC (i.e., for any functionJ_K0
mapping each base type inΣ to some object inCCC), there is
a unique representationJ_K1 of CCCs fromλ(Σ) toCCC such
that the following diagram commutes:

Σ
⊆

//

J_K
0

!!C
CC

C
CC

C
CC

λλλ(Σ)

J_K
1

��

CCC

(1)

A representation of CCCs is any functor that preserves
products and exponentials. WhenCCC is SetSetSet, this describes
all at once all the constructionsJτK1 (denotation of types
τ) andJtK1 (denotations of typedλ-termst) as used in Sec-
tion 3.

Let SubsconeCCCC be thesubsconecategory, defined as fol-
lows. AssumeC is another CCC, such thatC has pullbacks.
Let |_| be a functor fromCCC to C that preserves finite prod-
ucts. ThenSubsconeCCCC is the category whose objects are

triples 〈S,m,A〉, wherem is a mono S �

�

// |A| in C,

and whose morphisms from〈S,m,A〉 to 〈S′,m′, A′〉 are
pairs of morphisms〈u, v〉 (u in C, fromS toS′, andv inCCC,
from A to A′), making the obvious square commute. Not-
ing thatSubsconeCCCC is again a CCC (Mitchell and Scedrov
[14] make this remark whenC isSetSetSet, and|_| is the global
section functorCCC(1, _)), the following purely diagrammatic
argument obtains. Assume we are given a functor fromΣ to
SubsconeCCCC , i.e., a collectionRo of objects inSubsconeCCCC ,
one for each base typeo. Then there is a unique representa-
tionR of CCCs fromλλλ(Σ) such that the following diagram

commutes:

Σ
⊆

//

(Ro)o∈Σ

��

λλλ(Σ)

R
yyttttttttt

SubsconeCCCC

(2)

Now the crux of the argument is the following: the forgetful
functorU : SubsconeCCCC → CCC mapping the object〈S,m,A〉
to A and the morphism〈u, v〉 to v is also a representation
of CCCs. It follows thatU ◦ R is a representation of CCCs
again, fromλλλ(Σ) toCCC. If U ◦ (Ro)o∈Σ = J_K0, then by the
uniqueness property ofJ_K1, we must haveU ◦ R = J_K1.
As observed in [14], and extended to CCCs in [3], when
C = SetSetSet, CCC is the product of two CCCsAAA andBBB, and|_|
is the functorAAA(1, _) ×BBB(1, _), (R(τ))τ type behaves like
a logical relation. It is really a logical relation, as we have
defined it earlier, when bothAAA andBBB areSetSetSet. (In this case,
an objectR(τ) is of the form〈S,m,A〉, whereS, up to
isomorphism, is just a subset ofA, andA is the cartesian
product of the set of values of typeτ with itself.) In caseAAA
andBBB are the same presheaf categorySetSetSetI , (R(τ))τ type is
a Kripke logical relation with base categoryI.

While the object part of functorR, (R(τ))τ type, yields
logical relations (or extensions), the morphism part maps
each morphism inλλλ(Σ), namely a typed termt moduloβη,
of typeτ , to a morphism in the subscone, i.e., a pair〈u, v〉.
The fact thatU ◦ R = J_K1 states thatv is just the pair of
the semantics oft inAAA and the semantics oft inBBB, and the
fact that〈u, v〉 is a morphism (saying that a certain square
commutes) states that these two semantics are related by
R(τ): this establishes the basic lemma.

The important property to makeR satisfy the basic
lemma is just the identityU ◦ R = J_K1, i.e., the follow-
ing commuting diagram:

λλλ(Σ)

R

yyttttttttt

J_K
1

��

SubsconeCCCC U
// CCC

(3)

Logical relations are the case whereR is a representation of
CCCs, in which case, as we have seen, this diagram neces-
sarily commutes.Lax logical relations are product preserv-
ing functorsR such that Diagram (3) commutes [17, Sec-
tion 6]. The difference if that, with lax logical relations,we
do not requireR to be representations of CCCs, just product
preserving functors. We say thatR is strict at arrow types
if and only if R preserves exponentials, too.

Defining lax logical relations for Moggi’s monadic meta-
language follows the same pattern. (We might use the for-
malization of algebraic theories of [17, Section 7], but it
seems clearer to describe the construction explicitly.) The

monadicλ-calculus gives rise to thefree let-CCCCompCompComp(Σ)
over Σ, where a let-CCC is a CCC with a strong monad.
We then get Diagram (1) again, only withλλλ(Σ) replaced by
CompCompComp(Σ), CCC is a let-CCC, andJ_K1 is a representation of
let-CCCs, i.e., a functor that preserves products, exponen-
tials, and the monad (functor, unit, multiplication, strength).

While we then neededSubsconeCCCC to be a CCC to es-
tablish Diagram (2), we now need it to be a let-CCC. This
can be established by following the general construction of
[10]. In general, we need to consider not the subscone con-
sidered above, rather the subscone relative to a mono fac-
torization system(E ,M). In a presheaf category such as
SetSetSetI , the only reasonable mono factorization system hasE
be the class of all epis (i.e., morphismse such thates is
surjective at all worldss), andM be the class of all monos
(i.e., morphismsm such thatms is injective at all worlds
s). The construction of [10] also requires|_| to be part of
a strong monad morphim(|_|, σ) from the strong monad
(TTT ,ηηη,µµµ, ttt) to some strong monad(T,�,�, t) onC (σ was
called a strong distributivity law in [10], but this led to some
confusion with the notion of distributivity laws for mon-
ads [4]; while the latter are rare, strong monad morphisms
abound). The construction of [10] then provides one with a
strong monad onSubsconeCCCC , such thatU is a representa-
tion of let-CCCs.

4.3. Contextual Equivalence

Defining contextual equivalence in a calculus with
names is a bit tricky. First, we have to consider contexts
C of typeTo (o ∈ Obs), not of typeo. Intuitively, contexts
should be allowed to do some computations; were they of
typeo, they could only return values. In particular, note that
contextsC such thatx : Tτ ⊢ C : o, meant to observe com-
putations at typeτ (i.e., values of typeTτ), cannot observe
anything. This is because the(let) typing rule (Figure 4)
only allows one to use computations to build other compu-
tations, never values.

Another tricky aspect is that we cannot take contextsC
that only depend on one variablex : τ as before. We must
indeed assume thatC can also depend on an arbitrary set
of public names. Given namesn1, . . . , nk, the only way
C can be made to depend on them is to assume thatC has
k free variablesz1, . . . , zk of typeννν, which are mapped to
n1, . . . , nk. (It is more standard [16, 1] to consider expres-
sions built on separate sets of variables and names, thus in-
troducing the semantic notion of names in the syntax. It
is more natural here to consider that there are variableszi
mapped, in a one-to-one way, to namesni.) Let s1 be any
set of names containingn1, . . . , nk, letw1 be{z1, . . . , zk},

andw1
i1→s1 the injection mapping eachni to zi, 1 ≤ i ≤ k.

Writew1 := i1(w1) for z1 := n1, . . . , zk := nk, andw1 : ννν
for z1 : ννν, . . . , zk : ννν. We shall then consider contexts

C such thatw1 : ννν, x : τ ⊢ C : To is derivable, and
evaluateJCK s1[x := a,w1 := i1(w1)] and compare it with
JCK s1[x := a′, w1 := i1(w1)] to decide whethera anda′

are contextually equivalent. This represents the fact thatC
is evaluated in a world where all names ins1 have been cre-
ated, and whereC has access to all (public) names ini(w1).

This definition is not yet correct, as this would requirea
anda′ to be inJτK s1, but they are inJτK s for some pos-
sibly different sets of names created during the evaluation
of a anda′. This is repaired by considering some coercion

JτK k1, wheres
k1→s1 is any injection.

To sum up, say thata, a′ ∈ JτK s arecontextually equiv-
alent ats, and writea ≈sτ a

′, if and only if, for every finite

set of variablesw1, for every injectionsw1
i1→s1 ands

k1→s1,
for every termC such thatw1 : ννν, x : τ ⊢ C : To is deriv-
able (o ∈ Obs), JCK s1[x := JτK k1(a), w1 := i1(w1)] =
JCK s1[x := JτK k1(a

′), w1 := i1(w1)].
The notion we use here is inspired by [16, Definition 4],

although it may not look so at first sight. We may sim-
plify it a bit by noting that we lose no generality in con-
sidering thatC has access toall names ins1. Without
loss of generality, we equatew1 with s1, and notice that

a ≈sτ a′ if and only if, for every injections
k1→s1, for ev-

ery termC such thats1 : ννν, x : τ ⊢ C : To is derivable
(o ∈ Obs), JCK s1[x := JτK k1(a), s1 := s1] = JCK s1[x :=
JτK k1(a

′), s1 := s1]. (Remember we see thevariablesin
s1 as denoting thenamesin s1 here, equating names with
variables.)

The use of injections between finite sets leads us nat-
urally to switch fromSetSetSetI to the categorySetSetSetI

→

, where
I→, thearrow categoryof I, has as objects all morphisms

w
i
→s in I, and as morphisms fromw

i
→s tow′ i

′

→s′ all pairs
(j, k) of morphisms such that the following diagram com-
mutes:

w
i

//

j

��

s

k

��

w′

i′
// s′

(4)

This is in accordance with [23], where it is noticed that
SetSetSetI

→

is the right category to define a Kripke logical rela-
tion that coincides with Pitts and Stark’s on first-order types.

We shall consider here the equivalent category wherew

is restricted to be a finite set ofvariables(and continue to

call this categoryI→). Objectsw
i
→s are then setsw of

variables denoting those public names ins, together with
an injective denotation functioni.

So we shall work with lax logical relations in the sub-
scone categorySubsconeCCCC , whereCCC = SetSetSetI × SetSetSetI , C is
the presheaf categorySetSetSetI

→

, and|_| : CCC → C is the com-
posite of the binary product functor× : SetSetSetI × SetSetSetI →
SetSetSetI with the functorSetSetSetu : SetSetSetI → SetSetSetI

→

. Here

u : I→ → I is the obvious forgetful functor that maps

w
i
→s to s.
Say that a valuea ∈ JτK s is definable atw

i
→s if and

only if there is a termt such thatw : ννν ⊢ t : τ is derivable
anda = JtK s[w := i(w)].

The main point in our completeness argument to come
is, imitating Theorem 4, that there is a lax logical relation
built by considering the trace of≈sτ on definable elements.
More specifically:

Definition 1 Let w
i
→s be any object ofI→. The values

a, a′ ∈ JτK s are said to becontextually equivalent atw
i
→s,

written a ≈w
i
→s

τ a′, if and only if, for every morphism

(j1, k1) fromw
i
→s to any objectw1

i1→s1 in I→, for every
termC such thatw1 : ννν, x : τ ⊢ C : To (o ∈ Obs) is deriv-
able,JCK s1[x := JτK k1(a), w1 := i1(w1)] = JCK s1[x :=
JτK k1(a

′), w1 := i1(w1)].

Define the relationRw
i
→s

τ by: a Rw
i
→s

τ a′ if and only if

a anda′ are definable atw
i
→s anda ≈w

i
→s

τ a′.

In particular,a ≈sτ a′ if and only if a ≈∅→s
τ a′, where

∅ → s denotes the unique injection from∅ to s.

Note that for every valuea ∈ JτK s definable atw
i
→s,

JτK k(a) is also definable atw′ i
′

→s′, whenever there is a
morphism(j, k) from the former to the latter. Indeed, let
a = JtK s[w := i(w)]. Then

JτK k(a) = JτK k(JtK s[w := i(w)])

= JtK s′[w := JνννK k(i(w))]

(by naturality ofJtK)
= JtK s′[w := k(i(w))]

(becauseJνννK k = k by definition)

= JtK s′[w := i′(j(w))]

= Jt′jK s′[w := i′(j(w))]

(wheret′ = tj−1,

seeingj andj−1 as substitutions)

= Jt′K s′(JjK s′[w := i′(j(w))])

(becauseJ_K is functorial)

= Jt′K s′[j(w) := i′(j(w))]

= Jt′K s′[w′ := i′(w′)]

In particular, every valuea ∈ JτK s definable ats, i.e., de-

finable at∅ → s, is definable at everyw
i
→s.

Theorem 7 Lax logical relations are complete for contex-
tual equivalence in the Moggi-Stark calculus, in the strong
sense that there is a lax logical relationR such that, for ev-
ery termsu, u′ such thatw : ννν ⊢ u : τ andw : ννν ⊢ u′ : τ

are derivable,JuK s[w := i(w)] ≈w
i
→s

τ Ju′K s[w := i(w)] if

and only ifJuK s[w := i(w)] Rw
i
→s

τ Ju′K s[w := i(w)].

Proof. DefineRw
i
→s

τ as in Definition 1.

We first need to show thatRτ , mappingw
i
→s toRw

i
→s

τ ,
defines an object ofSetSetSetI

→

, i.e., a functor fromI→ toSetSetSet.
The action on morphisms(j, k) is given by our require-
ment thatU ◦ R = J_K1, whereR mapsτ to Rτ , and

JτK1 (w
i
→s) = JτK s×JτK s andJtK1 (w

i
→s) = JtK s×JtK s.

Expand the equationU ◦ R = J_K1: Rτ (j, k) must map
(a, a′) ∈ JτK s × JτK s to (JτK k(a), JτK k(a′)) ∈ JτK s′ ×
JτK s′. To check thatRτ is a functor, we must check that

if a Rw
i
→s

τ a′, thenJτK k(a) Rw′ i
′

→s′

τ JτK k(a′), for every
commutative square (4):

• First,a anda′ are definable atw
i
→s; by the remark be-

fore the theorem,JτK k(a) andJτK k(a′) are definable

atw′ i
′

→s′.

• Second,a ≈w
i
→s

τ a′. We must show that this implies

JτK k(a) ≈w
′ i

′

→s′

τ JτK k(a′) (⋆). (We shall use the(⋆)
property later again.) Let(j1, k1) be any morphism

fromw′ i
′

→s′ to some objectw1
i1→s1, andC be any term

such thatw1 : ννν, x : τ ⊢ C : To is derivable (o ∈ Obs).

JCK s1[x := JτK k1(JτK k(a)), w1 := i1(w1)]

= JCK s1[x := JτK (k1 ◦ k)(a), w1 := i1(w1)]

= JCK s1[x := JτK (k1 ◦ k)(a
′), w1 := i1(w1)]

(sincea ≈w
i
→s

τ a′, usingC

and the morphism(j1 ◦ j, k1 ◦ k))

= JCK s1[x := JτK k1(JτK k(a′)), w1 := i1(w1)]

Next, we need to show thatRτ is the object part
of a product-preserving functorR from CompCompComp(Σ) to
SubsconeCCCC such thatU ◦ R = J_K1. This means showing
that, for every typing contextΓ = x1 : τ1, . . . , xn : τn, for
every typeτ such thatΓ ⊢ t : τ is derivable, for every ob-

jectw
i
→s of SetSetSetI

→

, if ai Rw
i
→s

τ1
a′i for everyi, 1 ≤ i ≤ n,

then JtK s[x1 := a1, . . . , xn := an] Rw
i
→s

τ JtK s[x1 :=
a′1, . . . , xn := a′n]. Since ai and a′i are definable at

w
i
→s, write ai = JtiK s[w := i(w)] for someti such that

w : ννν ⊢ ti : τi, and similarlya′i = Jt′iK s[w := i(w)]. Then,

first, JtK s[x1 := a1, . . . , xn := an] is definable atw
i
→s,

by the termt[x1 := t1, . . . , xn := tn], and similarly for
JtK s[x1 := a′1, . . . , xn := a′n]. Second, for every mor-

phism(j1, k1) fromw
i
→s to w1

i1→s1, for everyC such that
w1 : ννν, x : τ ⊢ C : To is derivable, the derivation of Fig-
ure 5 obtains; here we notice that, sinceai anda′i are defin-

able atw
i
→s by ti andt′i, respectively, thenJτiK k1(ai) and

JτiK k1(a
′
i) are definable atw1

i1→s1 by tij
−1
1 , resp.t′ij

−1
1 .

So JtK s[x1 := a1, . . . , xn := an] Rw
i
→s

τ JtK s[x1 :=
a′1, . . . , xn := a′n].

JCK s1[x := JτK k1(JtK s[x1 := a1, . . . , xn := an]), w1 := i1(w1)]

= JCK s1[x := JtK s1[x1 := Jτ1K k1(a1), . . . , xn := JτnK k1(an)]), w1 := i1(w1)]

(sinceJtK is a natural transformation)

= JC[x := t]K s1[x1 := Jτ1K k1(a1), . . . , xn := JτnK k1(an), w1 := i1(w1)]

=
q
C[x := t][x1 := t1j

−1
1 , . . . , xn−1 := tn−1j

−1
1]

y
s1[xn := JτnK k1(an), w1 := i1(w1)]

=
q
C[x := t][x1 := t1j

−1
1 , . . . , xn−1 := tn−1j

−1
1]

y
s1[xn := JτnK k1(a

′
n), w1 := i1(w1)]

(sinceJτnK k1(an) ≈w1

i1
→s1

τn
JτnK k1(a

′
n), becausean ≈w

i
→s

τn
a′n, using(⋆))

=
q
C[x := t][x1 := t1j

−1
1 , . . . , xn−2 := tn−2j

−1
1 , xn := t′nj

−1
1]

y
s1

[xn−1 := Jτn−1K k1(an−1), w1 := i1(w1)]

=
q
C[x := t][x1 := t1j

−1
1 , . . . , xn−2 := tn−2j

−1
1 , xn := t′nj

−1
1]

y
s1

[xn−1 := Jτn−1K k1(a
′
n−1), w1 := i1(w1)]

(sinceJτn−1K k1(an−1) ≈w1

i1
→s1

τn−1
Jτn−1K k1(a

′
n−1), becausean−1 ≈w

i
→s

τn−1
a′n−1, using(⋆))

= . . .

=
q
C[x := t][x1 := t1j

−1
1 , . . . , xm−1 := tm−1j

−1
1 , xm+1 := t′m+1j

−1
1 , . . . , xn := t′nj

−1
1]

y
s1

[xm := JτmK k1(am), w1 := i1(w1)]

=
q
C[x := t][x1 := t1j

−1
1 , . . . , xm−1 := tm−1j

−1
1 , xm+1 := t′m+1j

−1
1 , . . . , xn := t′nj

−1
1]

y
s1

[xm := JτmK k1(a
′
m), w1 := i1(w1)]

(sinceJτmK k1(am) ≈w1

i1
→s1

τm
JτmK k1(a

′
m), becauseam ≈w

i
→s

τm
a′m, using(⋆))

= . . .

=
q
C[x := t][x2 := t′2j

−1
1 , . . . , xn := t′nj

−1
1]

y
s1[x1 := Jτ1K k1(a

′
1), w1 := i1(w1)]

= JC[x := t]K s1[x1 := Jτ1K k1(a
′
1), . . . , xn := JτnK k1(a

′
n), w1 := i1(w1)]

= JCK s1[x := JtK s1[x1 := Jτ1K k1(a
′
1), . . . , xn := JτnK k1(a

′
n)]), w1 := i1(w1)]

= JCK s1[x := JτK k1(JtK s[x1 := a′1, . . . , xn := a′n]), w1 := i1(w1)]

Figure 5. Showing that JtK s[x1 := a1, . . . , xn := an] ≈
w

i
→s

τ JtK s[x1 := a′1, . . . , xn := a′n]

R is a lax logical relation sinceU ◦ R = J_K1 by con-
struction. ✷

The (non-lax) logical relation of [23] is defined onννν by:

n Rw
i
→s

ννν n′ if and only if n = n′ andn ∈ w (n = n′ ∈ w,
for short). This is exactly what the lax logical relation of
Definition 1 is defined as on theννν type:

Lemma 8 LetRw
i
→s

τ be the logical relation of Definition 1.

Thenn Rw
i
→s

ννν n′ if and only ifn = n′ ∈ i(w).

Proof. We first claim that(⋆ννν): the only valuesn

in JνννK s = s that are definable atw
i
→s are the names

in i(w). One first observes, by applying any morphism
j from s to s that is the identity oni(w), that the
only possible exceptionsn to (⋆ννν) must be fixpoints of
j: letting n = JtK s[w := i(w)], j(n) = JνννK j(n) =
JνννK j(JtK s[w := i(w)]) = JtK s[w := j(i(w))] (sinceJtK is
natural)= JtK s[w := i(w)] (sincej is the identity oni(w))
= n. Sincej is arbitrary such that it restricts to the identity
oni(w), (⋆ννν) can only fail whens consists ofi(w) plus just
the one extra namen. Let thens′ bes plus another namen′.

There is an obvious morphism(j, k) from w
i
→s to w

i
→s′,

and we have seen that in this caseJνννK k(n) = n is again

definable atw
i
→s′. But this is impossible, sinces′ contains

twonames outside ofi(w).

If n Rw
i
→s

ννν n′, then bothn andn′ are definable atw
i
→s,

so by(⋆ννν), n = i(z) for somez ∈ w, andn′ = i(z′) for

somez′ ∈ w. Sincen ≈w
i
→s

ννν n′, taking as contextC the
term val(z

.
= x) (so thatw : ννν, x : ννν ⊢ C : Tbool is

derivable), we obtainn = n′.
Conversely, ifn = n′ ∈ i(w), i.e., there is a variable

z ∈ w such thatn = n′ = i(z), then clearlyn Rw
i
→s

ννν n′. ✷

To finish this section, we observe:

Lemma 9 Assume that observation types have no junk, in
the sense that every value ofJoK s (o ∈ Obs) is definable at

s, for everys, equivalently at everyw
i
→s.

ThenRw
i
→s

o is equality onJoK s, andRw
i
→s

To is equality
on JToK s for any observation typeo.

Proof. ClearlyRw
i
→s

o contains equality. Conversely, let

a, a′ ∈ JoK s such thata Rw
i
→s

o a′. Take(j, k) the identity

functor fromw
i
→s to itself, C the contextval(c

.
= x) (so

thatw : ννν, x : o ⊢ C : Tbool is derivable), wherec is any
term such thatw : ννν ⊢ c : o is derivable, and expand the

definition of≈w
i
→s

o : a = JcK s[w := i(w)] if and only if
a′ = JcK s[w := i(w)]. Sinceo contains no junk, andc is
arbitrary,a = a′.

The argument is similar forRw
i
→s

To , taking let z ⇐
c in val (z

.
= x) for C instead. We just have to prove

thatTo has no junk. Remember that every observation type
is a base type, andJoK is a constant functor for any base
typeo exceptννν. So the elements ofJToK s are of the form
(νs′)b = (ν∅)b, whereb ∈ JoK (s+ s′) = JoK s. Given any
element(ν∅)b of JToK s, sinceo has no junk, we may write
b as the value of some termc, hence(ν∅)b is the value of
val c. ✷

We almost forgot to prove soundness! It is easy to see
that any lax logical relation that coincides with equality on
typesTo (o ∈ Obs) are sound for contextual equivalence.
Indeed, by the basic lemmaU ◦ R = J_K1, whenever

a Rw
i
→s

τ a′, then for anyC such thatw1 : ννν, x : τ ⊢ C : To
(o ∈ Obs) is derivable, for any morphism(j1, k1)

from w
i
→s to w1

i1→s1, JCK s1[w1 := i1(w1), x :=

JτK k1(a)] Rw1

i1
→s1

To JCK s1[w1 := i1(w1), x :=

JτK k1(a
′)]; soa ≈w

i
→s

τ a′.

4.4. Mixing Fresh Name Creation and Encryption

Let us get down to earth. What do we need now to get
lax logical relations that are sound and complete for contex-
tual equivalence when both fresh name creation and crypto-
graphic primitives are involved? The answer is: just lax
logical relations onSetSetSetI

→

, as used in Section 4.3. . . mak-
ing sure that they relate each constant to itself. We have in-
deed been careful in being sure that our calculi were open,
i.e. they can be extended to arbitrarily many new types and
constants. In particular, (this is as in Section 3.3 and 3.5,)
a lax logical relation onSetSetSetI

→

is sound for observational
equivalence in the presence of cryptographic primitives if
and only if each of the constantsenc, dec, SOME , NONE,
case is related to itself.

Then Theorem 7 shows that lax logical relations are
complete for the Moggi-Stark calculus, which uses a name
creation monad. We have in fact proved more, again be-
cause we have been particularly keen on leaving the set of
types and constants open: whatever new constants and types
you allow, lax logical relations will remain complete. The
only requirement is that the new constructs can be given a
semantics inSetSetSetI . In particular, takingenc, dec, SOME ,
NONE, case as new constants, we automatically get sound
and complete lax logical relations for name creationand
cryptographic primitives. As noticed in Section 3.7, this
can even be used for encryption primitives obeying alge-
braic laws, or even other encryption primitives, at no cost.

Acknowledgments

We would like to thank Michel Bidoit for having directed
them to the notion of prelogical relations in the first place.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The spi calculus. InProc. 4th ACM Conference
on Computer and Communications Security (CCS), pages
36–47, 1997.

[2] M. Abadi and A. D. Gordon. A bisimulation method for
cryptographic protocols. Nordic Journal of Computing,
5(4):267–303, 1998.

[3] M. Alimohamed. A characterization of lambda definability
in categorical models of implicit polymorphism.Theoretical
Computer Science, 146(1–2):5–23, July 1995.

[4] J. Beck. Distributive laws. InSeminar on Triples and Cat-
egorical Homology Theory, volume 80 ofLecture Notes in
Mathematics, pages 119–140. Springer, 1969.

[5] M. Boreale, R. de Nicola, and R. Pugliese. Proof techniques
for cryptographic processes. InProceedings of the Sympo-
sium on Logics in Computer Science (LICS), pages 157–166.
IEEE Computer Society Press, 1999.

[6] J. Borgström and U. Nestmann. On bisimulations for the
spi calculus. InProc. 9th Int. Conf. Algebraic Methodology
And Software Technology (AMAST), volume 2422 ofLecture
Notes in Computer Science, pages 287–303. Springer, Sept.
2002.

[7] H. Comon and V. Shmatikov. Is it possible to decide whether
a cryptographic protocol is secure or not?J. of Telecommu-
nications and Information Technology, 4:3–13, 2002.

[8] The data encryption standard. FIPS PUB 46.
[9] D. Dolev and A. C. Yao. On the security of public key

protocols. IEEE Transactions on Information Theory, IT-
29(2):198–208, Mar. 1983.

[10] J. Goubault-Larrecq, S. Lasota, and D. Nowak. Logical rela-
tions for monadic types. InProc. 16th Conference of the Eu-
ropean Association for Computer Science Logic (CSL), vol-
ume 2471 ofLecture Notes in Computer Science. Springer,
Sept. 2002.

[11] F. Honsell and D. Sannella. Pre-logical relations. InProc.
13rd Int. Workshop Computer Science Logic (CSL), volume
1683 ofLecture Notes in Computer Science, pages 546–561,
1999.

[12] J. Lambek and P. J. Scott.Introduction to Higher Order Cat-
egorical Logic, volume 7 ofCambridge Studies in Advanced
Mathematics. Cambridge University Press, 1986.

[13] J. C. Mitchell. Foundations for Programming Languages.
MIT Press, 1985.

[14] J. C. Mitchell and A. Scedrov. Notes on sconing and re-
lators. In 6th Int. Workshop on Computer Science Logic
(CSL), volume 702 ofLecture Notes in Computer Science,
pages 352–378. Springer, 1993.

[15] E. Moggi. Notions of computation and monads.Information
and Computation, 93:55–92, 1991.

[16] A. Pitts and I. Stark. Observable properties of higher order
functions that dynamically create local names, or: What’s
new? In Proc. Int. Conf. Mathematical Foundations of
Computer Science (MFCS), volume 711 ofLecture Notes
in Computer Science, pages 122–141. Springer, 1993.

[17] G. D. Plotkin, J. Power, D. Sannella, and R. D. Tennent. Lax
logical relations. InProc. 27th International Conference on
Automata, Languages and Programming (ICALP), volume

1853 ofLecture Notes in Computer Science, pages 85–102.
Springer, 2000.

[18] J. Power and E. Robinson. Logical relations, data abstrac-
tion, and structured fibrations. InProc. 2nd ACM SIG-
PLAN International Conference on Principles and Practice
of Declarative Programming (PPDP), pages 15–23. ACM
Press, 2000.

[19] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.

[20] I. Stark. Categorical models for local names.Lisp and Sym-
bolic Computation, 9(1):77–107, 1996.

[21] E. Sumii and B. C. Pierce. Logical relations for encryp-
tion. In 14th IEEE Computer Security Foundations Work-
shop (CSFW-14), pages 82–96. IEEE Computer Society
Press, 2001.

[22] S. A. Thomas. SSL & TLS Essentials: Securing the Web.
Wiley, 2000. ISBN 0471383546.

[23] Y. Zhang and D. Nowak. Logical relations for dynamic
name creation. InProc. 17th Int. Workshop Computer Sci-
ence Logic (CSL) and 8th Kurt Gödel Coll. (KGL), volume
2803 ofLecture Notes in Computer Science, pages 575–588.
Springer, Aug. 2003.

