Sécurité des protocoles cryptographiques : aspects logiques et calculatoires

Mathieu Baudet

Laboratoire Spécification et Vérification
(INRIA Futurs, CNRS, ENS Cachan)

Soutenance de thèse – 16 jan. 2007
New technologies (Internet, Wifi, cell phones) allow cheap worldwide communications.

Many services now available on the Internet:
- shopping,
- online auction (eBay, ...),
- account management (bank, phone company, ...),
- e-administration (tax payment, ...),
- <your favorite e-Business here>

Unfortunately, Internet was not designed for security.
... hence big efforts required to secure websites
• The attacker can
 – eavesdrop messages,
 – delete some of them,
 – send fake ones.
Modeling insecure networks

- The attacker can
 - eavesdrop messages,
 - delete some of them,
 - send fake ones.

→ How to securely communicate anyway?

In brief:

attacker \approx \text{network}
Cryptographic protocols

... are concurrent programs

- which communicate with the network
- and use cryptography:

- **symmetric** encryption

 $\begin{align*}
 K \\
 M \rightarrow \text{Enc.} \rightarrow \{M\}_K \rightarrow \text{Dec.} \rightarrow M
 \end{align*}$

- **asymmetric** encryption

 $\begin{align*}
 pk = pub(sk) \\
 M \rightarrow \text{Enc.} \rightarrow \{M\}_{pk} \rightarrow \text{Dec.} \rightarrow M
 \end{align*}$

- **signatures**

 $\begin{align*}
 sk \\
 M \rightarrow \text{Sign} \rightarrow [M]_{sk} \rightarrow \text{Check} \rightarrow \text{ok}
 \end{align*}$

- ...

Unfortunately, designing secure protocols is not an easy task...
An example of logical attack

Denning-Sacco protocol:

0. $A \rightarrow B : A, \{ [k_{AB}]_{sk_A} \}_{pk_B}$
1. $B \rightarrow A : \{ secr_{AB} \}_{k_{AB}}$

Active attacker:

- **chooses** the interleaving of sessions,
- **controls** the network (may intercept, analyze, forge messages).
An example of logical attack

Denning-Sacco protocol:

0. $A \rightarrow B : A, \{ [k_{AB}]_{sk_A} \}_{pk_B}$
1. $B \rightarrow A : \{ secr_{AB} \}_{k_{AB}}$

An attack with 2 sessions:

0. $A \rightarrow I : A, \{ [k_{AI}]_{sk_A} \}_{pk_I}$
0’. $I(A) \rightarrow B : A, \{ [k_{AI}]_{sk_A} \}_{pk_B}$
1. $B \rightarrow I(A) : \{ secr_{AB} \}_{k_{AI}}$
Automatic analysis of protocols

- Based on symbolic (logical) models
 → introduced by Needham-Schroeder (1978) and Dolev-Yao (1983)

- Messages represented by terms of unbounded size

- Now highly automatized tools
 - bounded number of sessions (exact, typically co-NP)
 → constraint solving & symbolic model-checking
 - unbounded number of sessions (approximate)
 → tree automata, Horn clauses, typing systems...
Challenges in automatic verification

Not surprisingly, difficulties come from

• message abstraction, and
• the need for effective procedures.

We would like to handle

(1) more protocols
(2) more properties
(3) more attacks
Challenges in automatic verification (1)

Handling more protocols

- Free term algebras are OK for constructors & destructors, e.g. pairing, encryption (with integrity checking), signature.
- Other primitives require equational theories.
Challenges in automatic verification (1)

Handling more protocols

- Free term algebras are OK for constructors & destructors, e.g. pairing, encryption (with integrity checking), signature.

- Other primitives require equational theories. E.g.:
 - Exclusive OR: \((\text{Comon et al., Chevalier et al. in 2003})\)
 \[
 x \oplus y = y \oplus x \quad x \oplus x = 0 \\
 (x \oplus y) \oplus z = x \oplus (y \oplus z) \\
 x \oplus 0 = x
 \]
 - Surjective encryption (ciphers):
 \[
 \text{dec(}\text{enc(x, y), y)} = x \quad \text{enc(}\text{dec(x, y), y)} = x
 \]
 (Delaune-Jacquemard, among other primitives, in 2004)
Handling more security properties

- Most of existing results concern trace properties, e.g. simple secrecy and authentication.

- Modeling indistinguishability properties require an observational equivalence in a language of processes.
Handling more security properties

- Most of existing results concern trace properties, e.g. simple secrecy and authentication.

- Modeling indistinguishability properties require an observational equivalence in a language of processes.

- The applied pi-calculus, proposed in 2001 by M. Abadi and C. Fournet, is such a language, also featuring equational theories.
 → First decidability result for the passive case (i.e. static equivalence) in 2004 by M. Abadi and V. Cortier.
Handling more attacks

- **Symbolic models** automatized but *a priori* restricted to logical attacks

- **Computational (cryptographic) models** deal with arbitrary (efficient) adversary but require *a priori* hand-made, complex reduction proofs

Ideally, symbolic tools should provide cryptographic proofs.
Handling more attacks

- **Symbolic models** automatized but *a priori* restricted to logical attacks

- **Computational (cryptographic) models** deal with arbitrary (efficient) adversary but require *a priori* hand-made, complex reduction proofs

Ideally, symbolic tools should provide cryptographic proofs.

→ First **computationally sound** symbolic models:

- **Data indistinguishability** for symmetric encryption in 2000 (Abadi and Rogaway)

- **Active case** started in 2003 with Backes, Pfitzmann and Waidner’s cryptographic library.
Contributions of this thesis

- (1-2) First **decidability result** for an equivalence of processes in presence of equational theories.

- (3) First results of **computational soundness** for static equivalence.

Both results apply to **dictionary attacks** and contribute to clarify the “right” symbolic definition for it.

- (1) more protocols
- (2) more properties
- (3) more attacks
Outline

1. Introduction
2. Symbolic analysis of protocols
3. Constraint solving
4. Computational justification for a passive adversary
5. Conclusion
Dictionary attacks (a.k.a. guessing attacks)

http://www.thc.org/thc-hydra/
Dictionary attacks (a.k.a. guessing attacks)

Definition (Lowe WITS’02)

Dictionary attacks =

- weak secret (password) → exhaustive search feasible
- off-line verification test → “is this the right value?”

where off-line = no interaction with the network

On-line tests do not *undermine* security, but off-line ones do.

→ c.f. Unix’s shadow passwords
Examples of dictionary attacks (1)

Handshake Protocol

<table>
<thead>
<tr>
<th>Step</th>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$A \rightarrow B : {n}{w{AB}}$</td>
<td>Aims to authenticate principal B from A’s viewpoint.</td>
</tr>
<tr>
<td>1</td>
<td>$B \rightarrow A : {n + 1}{w{AB}}$</td>
<td></td>
</tr>
</tbody>
</table>
Examples of dictionary attacks (1)

Handshake Protocol

0. \(A \rightarrow B : \{n\}_w^{AB} \) as \(m_1 \)
1. \(B \rightarrow A : \{n + 1\}_w^{AB} \) as \(m_2 \)

Aims to authenticate principal \(B \) from \(A \)'s viewpoint.

An off-line verif. test for shared password \(w_{AB} \):

\[\text{dec}(m_1, x) + 1 \equiv \text{dec}(m_2, x) \]

Note:

- this case only requires a passive attacker (eavesdropper)
- password-based encryption impl. by keyed permutations
Examples of dictionary attacks (2)

“Enhanced” Kerberos Protocol, Gong SAC’93

0. \(A \rightarrow S : \left\{ A, B, n_1, n_2, \{ t_A \}_{wAS} \right\}_{pks}^a \)

1. \(S \rightarrow A : \left\{ n_1, k \oplus n_2 \right\}_{wAS}, \left\{ A, k, t_S \right\}_{wBS} \)

2. \(A \rightarrow B : \left\{ A, k, t_S \right\}_{wBS} \)
Examples of dictionary attacks (2)

"Enhanced" Kerberos Protocol, Gong SAC’93

<table>
<thead>
<tr>
<th>Step</th>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>$A \rightarrow S$:</td>
<td>${A, B, n_1, n_2, {t_A}{w{AS}}}_{pks}$ as m_1</td>
</tr>
<tr>
<td>1.</td>
<td>$S \rightarrow A$:</td>
<td>${n_1, k \oplus n_2}{w{AS}}, {A, k, t_S}{w{BS}}$ as m_2</td>
</tr>
<tr>
<td>2.</td>
<td>$A \rightarrow B$:</td>
<td>${A, k, t_S}{w{BS}}$</td>
</tr>
</tbody>
</table>

Off-line test for w_{AS}: $\pi_1(\text{dec}(\pi_1(m_2), x)) = ? \pi_1(\text{dec}(\pi_1(m'_2), x))$

Off-line test for w_{BS}: $\pi_1(\text{dec}(\pi_2(m_2), y)) = ? A$
Modeling dictionary attacks

- Which data are weak? → given by the protocol
- Verification test?
 → distinguishes between two scenarios: wrong / right guess
- The general definition from Corin et al. [WISP’04] and Blanchet et al. [LICS’05] uses the observational equivalence of the applied pi-calculus.
- We proved that a stricter equivalence based on bi-processes suffices to characterize guessing attacks.
Symbolic analysis by example

Handshake Protocol

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A → B</td>
<td>({n}{k{AB}})</td>
</tr>
<tr>
<td>1</td>
<td>B → A</td>
<td>({n+1}{k{AB}})</td>
</tr>
</tbody>
</table>

Is the following trace a **feasible** one?

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A → I(B)</td>
<td>({n}{k{AB}})</td>
</tr>
<tr>
<td>1</td>
<td>I(B) → A</td>
<td>({n+1}{k{AB}})</td>
</tr>
</tbody>
</table>

If yes → **attack** on authentication
Symbolic analysis by example

<table>
<thead>
<tr>
<th>Step</th>
<th>Rule</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>$A \rightarrow I(B)$:</td>
<td>${n}{k{AB}}$</td>
</tr>
<tr>
<td>1.</td>
<td>$I(B) \rightarrow A$:</td>
<td>${n+1}{k{AB}}$</td>
</tr>
</tbody>
</table>

→ I’s computation X_1 must satisfy the constraints:

$$\exists x_1, \quad X_1[\{n\}_{k_{AB}}] = ? x_1 \quad \text{and} \quad \text{dec}(x_1, k_{AB}) = ? n + 1$$

without I’s “knowing” n nor k_{AB}.
Symbolic analysis by example

0. \(A \rightarrow I(B) : \{ n \}^{k_{AB}} \)
1. \(I(B) \rightarrow A : \{ n + 1 \}^{k_{AB}} \)

\(I \)'s computation \(X_1 \) must satisfy the constraints:

\[\exists x_1, \quad X_1[\{ n \}^{k_{AB}}] = \overline{?} x_1 \quad \text{and} \quad \text{dec}(x_1, k_{AB}) = \overline{?}_E n + 1 \]

where \(n, k_{AB} \) cannot occur in \(X_1 \).

Equations interpreted modulo the theory \(E \) of ciphers:

\[
\text{dec}(\{x\}_y, y) = x \quad \{ \text{dec}(x, y) \}_y = x
\]

The previous constraint system is unsatisfiable (i.e. has no solutions) \(\Rightarrow \) this interleaving infeasible \(\Rightarrow \) no attack.
More generally, a finite number of sessions entails a finite number of interleavings, thus of constraint systems to verify.

Trace properties correspond to (un)satisfiability problems on constraint systems.

This works for any equational theory — as long as we can solve the constraint systems...

→ Can we do the same for equivalence properties?
Intruder constraint systems

Each interleaving is mapped to a system $\Sigma(X_1 \ldots X_n)$:

$$\exists x_1 \ldots x_m, \begin{cases}
X_1[t_1 \ldots t_{a_1}] = ? x_1 \quad u_1 =? _E u'_1 \\
\quad \cdots \cdots \cdots \cdots \\
X_m[t_1 \ldots t_{a_m}] = ? x_m \quad u_n =? _E u'_n
\end{cases}$$

with several “cryptographic” regularity conditions:

- “The attacker’s knowledge t_1, \ldots, t_{a_i} increases.”
- “Messages t_j depend only on previous attacker outputs x_i.”
Standard Intruder constraint systems

Each **interleaving** is mapped to a system $\Sigma(X_1 \ldots X_n, X, Y)$:

$$
\exists x_1 \ldots x_m, x, y, \begin{cases}
X_1[t_1 \ldots t_{a_1}] = ? x_1 & u_1 = ? E u'_1 \\
\vdots & \vdots \\
X_m[t_1 \ldots t_{a_m}] = ? x_m & u_n = ? E u'_n \\
X[t_1 \ldots t_{a_m}] = ? x & x = ? E y \\
Y[t_1 \ldots t_{a_m}] = ? y
\end{cases}
$$

Let X, Y, x, y be fresh variables.

\rightarrow the extra equation models an **off-line test** of the intruder.
Security against off-line dictionary attacks

Let s_0 and s_1 model the right and the wrong value of the weak secret.

For each interleaving, let $\Sigma_i(X_1 \ldots X_n, X, Y)$ be

$$
\exists \tilde{x}_n, x, y, \quad \begin{cases}
X_1[t_1 \ldots t_{a_1}] = ? \quad x_1 \quad u_1 = ? \quad u_1' \\
\ldots \\
X_m[t_1 \ldots t_{a_m}] = ? \quad x_m \quad u_n = ? \quad u_n' \\
X[t_1 \ldots t_{a_m}, s_i] = ? \quad x \quad x = ? \quad y \\
Y[t_1 \ldots t_{a_m}, s_i] = ? \quad y
\end{cases}
$$
Let s_0 and s_1 model the right and the wrong value of the weak secret.

For each interleaving, we must check that the two augmented systems Σ_i have the same sets of solutions.

\[\rightarrow \text{Equivalence between two second-order } E\text{-unification problems.} \]
Convergent subterm theories

\(E \) is convergent subterm iff it is generated by a convergent rewriting system \(\mathcal{R} \) such that for every rule \(l \rightarrow r \) in \(\mathcal{R} \), either

1. \(r \) is a subterm of \(l \), or
2. \(r \) is an \(\mathcal{R} \)-reduced term (say a constant).

Examples:

- Encryption(s)
 \(\text{pdec(penc(} x, \text{ pub(} y), z)\text{, y) = x} \)

- Signature(s)
 \(\text{check(sig(} x, y, z)\text{, pub(} y)\text{)) = ok} \)
 \(\text{(no equation)} \)

- Hash function
- Idempotency
 \(\text{f(} f(x)\text{)} = f(x) \)

- Involution
 \(\text{i(} i(x)\text{)} = x \)

- . . .
Our problem boils down to generalizing previous work of S. Delaune and F. Jacquemard [CCS’04] and M. Abadi and V. Cortier [ICALP’04].
Contributed solving procedure

- Based on a set of transformation rules on extended constraint systems.
- Variables instanciated “on demand”.
- Solves equality constraints by narrowing.
- Main task is to compute (generating) sets of deducible terms and visible equations to handle the 2nd-order part.
How to represent sets of solutions?

Example: (passive case and syntactic equality)

\[X[k, h(0, k)] =? u \]

where \(k \) is a secret and \(u \) is any ground term.

- Deducible terms are built (here simply) upon: \(k, h(0, k) \).
- Let us label \(k \) as \(w_1 \) and \(h(0, k) \) as \(w_2 \).
- Visible equations are generated by \(\Psi = \{ h(0, w_1) = w_2 \} \).

Fact

Let \(\theta_0 \) be any solution:
\[
(X\theta)\{w_1 \mapsto k, \; w_2 \mapsto h(0, k)\} =? u.
\]

The set of all solutions is

\[\{\theta \mid \theta =_{\Psi} \theta_0\} \]
Main theorem

Theorem (Baudet [CCS'05])

For every convergent subterm theory E, the satisfiability of intruder constraint systems is NP-decidable. So is the non-equivalence of standard intruder constraint systems.
Corollary

For a bounded number of sessions, the security of protocols modeled by a convergent subterm theory E, with respect to

- trace properties (simple secrecy, authentication) and
- off-line dictionary attacks,

is co-NP-decidable.

Adding disequality tests is harmless as far as trace properties are concerned.

We prove the whole biprocess-based equivalence decidable → useful for strong secrecy.
Constraint systems for pure eavesdropper

An execution of the protocol corresponds to a system $\Sigma(X, Y)$:

$$\exists x, y, \left\{ \begin{array}{c} X[t_1 \ldots t_{am}] =? x \\ Y[t_1 \ldots t_{am}] =? y \end{array} \right. \text{ and } x =?= E y$$

where for all $1 \leq j \leq a_i$, $\text{var}(t_j) = \emptyset$.

Notation

We call $[t_1 \ldots t_{am}]$ a frame. A (more) standard notation is:

$$\varphi = \nu k_1 \ldots k_p \cdot \{ x_1 = t_1, \ldots, x_{am} = t_{am} \}$$

where $k_1 \ldots k_p$ are the private constants ("names", modeling secret values) in $t_1 \ldots t_{am}$.
Static Equivalence

Definition (static equivalence)

\[\varphi_1 \approx_E \varphi_2 \text{ if for every valid test } M =_E^? N, \]

\[M\varphi_1 =_E N\varphi_1 \text{ iff } M\varphi_2 =_E N\varphi_2 \]

Two frames \(\varphi \) and \(\varphi' \) correspond to equivalent intruder constraint systems iff they are statically equivalent.

Example:

\[\nu n. \{ x = \{ n \}_{c_0}, y = \{ n+1 \}_{c_0} \} \not\approx_E \nu n. \{ x = \{ n \}_{c_1}, y = \{ n+1 \}_{c_1} \} \]

because of \(\text{dec}(x, c_0) + 1 =_E^? \text{dec}(y, c_0) \).
Computational soundness of static equivalence

- Does it correspond to cryptographic indistinguishability?

- In \((Baudet, Cortier, Kremer [ICALP’05])\), we studied
 - a general soundness criterion,
 - deterministic surjective encryption, and
 - the case of pure exclusive Or.

- What about other kind of encryptions? passwords?
Concrete implementation

- Complexity parameter η
- Assume an (efficient) implementation for each function symbol, and random generators for names.
- Terms t mapped to (distributions over) bit-strings $[t]_\eta$
- We may restrict terms to well-sorted ones

Definition (indistinguishability)

$[\varphi_1] \approx [\varphi_2]$ if $\text{Adv}^{\text{IND}}(A, [\varphi_1]_\eta, [\varphi_2]_\eta)(\eta) =$

$$\mathbb{P} [\phi_1 \leftarrow [\varphi_1]_\eta; A(\eta, \phi_1) = 1] - \mathbb{P} [\phi_2 \leftarrow [\varphi_2]_\eta; A(\eta, \phi_2) = 1]$$

is a negligible function of η.
Sorts, symbols and equational theory of interest

<table>
<thead>
<tr>
<th>τ</th>
<th>[::=]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SKey$</td>
<td>symmetric keys</td>
</tr>
<tr>
<td>$EKey$</td>
<td>(public) encryption keys</td>
</tr>
<tr>
<td>$DKey$</td>
<td>(private) decryption keys</td>
</tr>
<tr>
<td>$Data$</td>
<td>passwords and other data</td>
</tr>
<tr>
<td>$Coins$</td>
<td>coins for encryption</td>
</tr>
<tr>
<td>$Pair[\tau_1, \tau_2]$</td>
<td>pairs of messages</td>
</tr>
<tr>
<td>$SCipher[\tau]$</td>
<td>symmetric encryptions</td>
</tr>
<tr>
<td>$ACipher[\tau]$</td>
<td>asymmetric encryptions</td>
</tr>
</tbody>
</table>
Sorts, symbols and equational theory of interest

\[
\begin{align*}
\text{enc}_\tau &: \tau \times \text{Data} \rightarrow \tau \\
\text{dec}_\tau &: \tau \times \text{Data} \rightarrow \tau \\
\text{penc}_\tau &: \tau \times \text{EKey} \times \text{Coins} \rightarrow \text{ACipher}[\tau] \\
\text{pdec}_\tau &: \text{ACipher}[\tau] \times \text{DKey} \rightarrow \tau \\
\text{pub} &: \text{DKey} \rightarrow \text{EKey} \\
\text{pdec_success}_\tau &: \text{ACipher}[\tau] \times \text{DKey} \rightarrow \text{Data} \\
\text{senc}_\tau &: \tau \times \text{SKey} \times \text{Coins} \rightarrow \text{SCipher}[\tau] \\
\text{sdec}_\tau &: \text{SCipher}[\tau] \times \text{SKey} \rightarrow \tau \\
\text{sdec_success}_\tau &: \text{SCipher}[\tau] \times \text{SKey} \rightarrow \text{Data} \\
\text{pair}_{\tau_1, \tau_2} &: \tau_1 \times \tau_2 \rightarrow \text{Pair}[\tau_1, \tau_2] \\
\text{fst}_{\tau_1, \tau_2}, \text{snd}_{\tau_1, \tau_2} &: \text{Pair}[\tau_1, \tau_2] \rightarrow \tau_2 \\
0, 1, w, c_0, c_1 \ldots &: \text{Data}
\end{align*}
\]
Sorts, symbols and **equational theory of interest**

\[
\begin{align*}
\text{dec}(\text{enc}(x, y), y) &= x \\
\text{enc}(\text{dec}(x, y), y) &= x \\
\text{pdec}(\text{penc}(x, \text{pub}(y), z), y) &= x \\
\text{pdec_success}(\text{penc}(x, \text{pub}(y), z), y) &= 1 \\
\text{sdec}(\text{senc}(x, y, z), y) &= x \\
\text{sdec_success}(\text{senc}(x, y, z), y) &= 1 \\
\text{fst}(\text{pair}(x, y)) &= x \\
\text{snd}(\text{pair}(x, y)) &= y \\
\text{pair}(\text{fst}(x), \text{snd}(x)) &= x
\end{align*}
\]

(sorts omitted)

(Note that this theory is subterm convergent.)
Computational soundness of \approx_E

A reduced frame φ is well-formed if

- it contains no destructors (dec, pdec, ...),
- encryption keys are either names k, of the form $\text{pub}(k)$, or constants of sort Data,
- coins are “fresh” names,
- φ has no key encryption cycles,
- for every subterm $\text{enc}(T, k)$, T contains neither constants w, c_0, \ldots nor subterms $\text{enc}(S, 0), \text{enc}(S, 1)$.

Theorem (Abadi, Baudet, Warinschi [FOSSACS’06])

*In any secure implementation, for every well-formed frames φ_1 and φ_2, $\varphi_1 \approx_E \varphi_2$ implies $[\varphi_1] \approx [\varphi_2]$.***
Application to dictionary attacks

Corollary

In any secure implementation, for every well-formed frame φ, $\varphi\{w \mapsto c_0\} \approx_E \varphi\{w \mapsto c_1\}$ implies that w is computationally hidden in φ: for every (effective) sequences κ_0 and κ_1,

$$\llbracket \varphi \rrbracket_{w \mapsto \kappa_0} \approx \llbracket \varphi \rrbracket_{w \mapsto \kappa_1}$$

Generalizes to multiple passwords.
Outline

1. Introduction
2. Symbolic analysis of protocols
3. Constraint solving
4. Computational justification for a passive adversary
5. Conclusion
Summary

- Symbolic analysis of **trace properties** and **off-line dictionary attacks** based on constraint solving. → More generally we studied an equivalence of processes based on bi-processes.

- The procedure works for protocols specified by any convergent subterm theory E (e.g. encryptions + pair + signatures + hash...).

- **Computational justification** in the case of data indistinguishability for several kinds of encryption.
Further work

• More equational theories (XOR, homomorphism, blind signatures...)

• More expressive observational equivalences: may-testing, barbed-congruence of the applied-pi calculus
 ⇒ on-going work by S. Delaune, S. Kremer and M. Ryan

• Computational justification in the active case?
Thanks!
Secure implementation: symmetric encryption

Let $\tau \in T_{senc}$, and $A = (A_1, A_2)$ be 2-stage adversary.

- $k \leftarrow R \mathcal{K}^s(\eta)$;
- A_1 is provided access to an oracle $\mathcal{E}^s(\cdot, k)$;
- then A_1 outputs a challenge message $m^* \in [\tau]_\eta$ together with some state information st;
- a bit $b \leftarrow R \{0, 1\}$ is selected at random; if $b = 0$, we let $c \leftarrow R \text{“SCipher”} \| \tau \| \mathcal{E}^s(m^*, k)$; otherwise, we let $c \leftarrow R [\text{SCipher}[\tau]]_\eta$;
- A_2 is given c and st, and outputs a bit b'.
- A is successful if $b' = b$.

$$\text{Adv}_{\Pi^s, A}^\tau(\eta) = \Pr[A \text{ is successful}] - \frac{1}{2}$$
Secure implementation: asymmetric encryption

Let \(\tau \in T_{\text{penc}} \), and \(A = (A_1, A_2) \) be 2-stage adversary.

- \((pk, sk) \xleftarrow{R} K^a(\eta)\);
- \(A_1\) is given \(pk\);
- then \(A_1\) outputs a challenge message \(m^* \in \llbracket \tau \rrbracket_\eta \) together with some state information \(st\);
- a bit \(b \xleftarrow{R} \{0, 1\} \) is selected at random; if \(b = 0 \), we let \(c \xleftarrow{R} \text{"ACipher" } \| \tau \| E^a(m^*, pk)\); otherwise, we let \(c \xleftarrow{R} \llbracket \text{ACipher}[\tau] \rrbracket_\eta\);
- \(A_2\) is given \(c\) and \(st\), and outputs a bit \(b'\).
- \(A\) is successful if \(b' = b\).

\[
\text{Adv}^\tau_{\Pi^a, A}(\eta) = \text{Pr}[A\text{ is successful}] - \frac{1}{2}
\]
Secure implementation: password encryption (1)

We require $T_{\text{enc}} \cap \{Pair[\tau_1, \tau_2]\} = \emptyset$. Let $\tau \in T_{\text{enc}}$, and $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$ be 2-stage adversary.

- $k \leftarrow R \mathcal{K}(\eta)$;
- \mathcal{A}_1 is provided access to an oracle $\mathcal{E}(\cdot, k)$;
- then \mathcal{A}_1 outputs a challenge message $m^* \in \llbracket \tau \rrbracket_\eta$ together with some state information st;
- a bit $b \leftarrow R \{0, 1\}$ is selected at random; if $b = 0$, we let $c \leftarrow R \mathcal{E}(m^*, k)$; otherwise, we let $c \leftarrow R \llbracket \tau \rrbracket_\eta$;
- \mathcal{A}_2 is given c and st, and outputs a bit b'.
- \mathcal{A} is successful if $b' = b$, and the challenge message m^* is different from all the messages m submitted by \mathcal{A} to the encryption oracle.

$$\text{Adv}^\tau_{\text{RoR}, \Pi, \mathcal{A}}(\eta) = \Pr[\text{\mathcal{A} is successful}] - \frac{1}{2}$$
Secure implementation: password encryption (2)

Let $\tau \in T_{enc}$, and $A = (A_1, A_2)$ be 2-stage adversary.

- A_1 outputs a key $k \in \{0, 1\}^{\alpha_1(\eta)}$ and some state information st;
- a bit $b \leftarrow \{0, 1\}$ is selected at random; if $b = 0$, we let $m \leftarrow \mathbb{R}^{[\tau]} \eta$ and $c = \mathcal{E}(m, k)$; otherwise, we let $c \leftarrow \mathbb{R}^{[\tau]} \eta$;
- A_2 is given c and st, and outputs a bit b'.
- A is successful if $b' = b$.

$$\text{Adv}^\tau_{pwd, \pi, A}(\eta) = \Pr[A \text{ is successful}] - \frac{1}{2}.$$