Robustness in real-time systems

Nicolas Markey

LSV, CNRS & ENS Cachan, France

SIES’11 – June 15, 2011
Verification of (real-time) computerized systems

system:

property:

Always safe

model-checking algorithm

yes/no
Verification of (real-time) computerized systems

system:

property:

Always safe

model-checking algorithm

t ≤ 5

yes/no
Timed automata (AD90)

A timed automaton is made of

- a transition system,
Timed automata

Timed automata (AD90)

A **timed automaton** is made of
- a transition system,
- a set of clocks,

Example

\[
\begin{align*}
x &= 1 \\
y &= 0 \\
x &\leq 2, \quad x := 0 \\
y &\geq 2, \quad y := 0 \\
x &= 0 \quad \land \quad y &\geq 2
\end{align*}
\]
Timed automata

Timed automata (AD90)

A **timed automaton** is made of

- a transition system,
- a set of clocks,
- a labelling of transitions with timing informations.

Example

\[
\begin{align*}
 x &\leq 2, \; x := 0 \\
 y &\geq 2, \; y := 0 \\
 x &\leq 0 \land y \geq 2
\end{align*}
\]
Timed automata

Timed automata (AD90)

A timed automaton is made of
- a transition system,
- a set of clocks,
- a labelling of transitions with timing informations.

Example

\[
\begin{align*}
 x &= 1 \\
 y &= 0 \\
 x \leq 2, & x := 0 \\
 y \geq 2, & y := 0 \\
 x = 0 \land & y \geq 2 \\
\end{align*}
\]
Timed automata

Timed automata (AD90)

A timed automaton is made of
- a transition system,
- a set of clocks,
- a labelling of transitions with timing informations.

Example

\[x = 1 \rightarrow y := 0 \]
\[x \leq 2, \ x := 0 \]
\[y \geq 2, \ y := 0 \]
\[x = 0 \land y \geq 2 \]

\(x \)
\(y \)
\(0 \)
\(1 \)
\(2 \)
Timed automata

Timed automata (AD90)

A timed automaton is made of
- a transition system,
- a set of clocks,
- a labelling of transitions with timing informations.

Example

\[
\begin{align*}
 x &= 1 \\
 y &= 0 \\
 y &\leq 2, \quad x := 0 \\
 y &\geq 2, \quad y := 0 \\
 x &= 0 \land \\
 y &\geq 2
\end{align*}
\]
A **timed automaton** is made of
- a transition system,
- a set of clocks,
- a labelling of transitions with timing informations.

Example

- $x = 1$, $y := 0$
- $x \leq 2$, $x := 0$
- $y \geq 2$, $y := 0$
- $x = 0 \land y \geq 2$
Timed automata

Timed automata (AD90)

A timed automaton is made of
- a transition system,
- a set of clocks,
- a labelling of transitions with timing informations.

Example

\[
\begin{align*}
x &= 1 \quad & y &= 0 \\
x &\leq 2, \ x := 0 \quad & y &\geq 2, \ y := 0 \\
x &= 0 \land y \geq 2
\end{align*}
\]
Timed automata

Timed automata (AD90)

A timed automaton is made of

- a transition system,
- a set of clocks,
- a labelling of transitions with timing informations.

Example

\begin{align*}
x &= 1 \\
y &= 0
\end{align*}

\begin{align*}
x &\leq 2, \quad x := 0 \\
y &\geq 2, \quad y := 0
\end{align*}

\begin{align*}
x &= 0 \land y \geq 2
\end{align*}
Timed automata

Timed automata (AD90)

A timed automaton is made of

- a transition system,
- a set of clocks,
- a labelling of transitions with timing informations.

Example

A timed automaton with transitions:

- $x = 1
ightarrow y := 0$
- $x \leq 2, x := 0$
- $y \geq 2, y := 0$
- $x = 0 \land y \geq 2$

Graphical representation of the automaton with variable x and y. The diagram shows the automaton's states and transitions.
Timed automata

Timed automata (AD90)

A timed automaton is made of
- a transition system,
- a set of clocks,
- a labelling of transitions with timing informations.

Example

\[
\begin{align*}
&x = 1, \ y := 0 \\
\implies &x \leq 2, \ x := 0 \\
\implies &y \geq 2, \ y := 0 \\
\implies &x = 0 \land y \geq 2
\end{align*}
\]
Timed automata (AD90)

A timed automaton is made of:
- a transition system,
- a set of clocks,
- a labelling of transitions with timing informations.

Example

\[
\begin{align*}
&x=1, y:=0 \\
&x \leq 2, x:=0 \\
&y \geq 2, y:=0 \\
&x=0 \land y \geq 2
\end{align*}
\]
Timed automata

Timed automata (AD90)

A timed automaton is made of

- a transition system,
- a set of clocks,
- a labelling of transitions with timing informations.

Example

\[
\begin{align*}
 x &= 1 \\
 y &= 0 \\
 x &\leq 2, \ x := 0 \\
 y &\geq 2, \ y := 0 \\
 x &\leq 0 \land y \geq 2
\end{align*}
\]
Timed automata

Timed automata (AD90)

A timed automaton is made of
- a transition system,
- a set of clocks,
- a labelling of transitions with timing informations.

Example

- $x = 1 \implies y := 0$
- $x \leq 2$, $x := 0$
- $y \geq 2$, $y := 0$
- $x = 0 \land y \geq 2$

\[x \leq 2, \quad x := 0 \]
\[y \geq 2, \quad y := 0 \]
Timed automata

Timed automata (AD90)

A timed automaton is made of

- a transition system,
- a set of clocks,
- a labelling of transitions with timing informations.

Example

\[
\begin{align*}
x &= 1 & x \leq 2, & x := 0 \\
y &:= 0 & y \geq 2, & y := 0 \\
x &= 0 \land y \geq 2
\end{align*}
\]
Region automata

Example

Theorem (AD90)

Reachability (and $!$-regular properties) in timed automata can be checked in exponential time (and are PSPACE-complete).
Theorem (AD90)

Reachability (and \(\omega \)-regular properties) in timed automata can be checked in exponential time (and are PSPACE-complete).
Analysing timed automata in practice

- symbolic algorithms (using zones)
- efficient implementations (Uppaal, Kronos, ...)

![Diagram of timed automata analysis](image-url)
Outline of the presentation

1. Introduction – Timed automata
2. Robustness issues in timed automata
3. Several approaches
 - Tube semantics
 - Probabilistic semantics
 - Sampled semantics
4. Enlarged semantics
 - A different approach
 - Checking robustness against enlargement
 - Making timed automata robust
5. Conclusions and perspectives
Outline of the presentation

1. Introduction – Timed automata

2. Robustness issues in timed automata

3. Several approaches
 - Tube semantics
 - Probabilistic semantics
 - Sampled semantics

4. Enlarged semantics
 - A different approach
 - Checking robustness against enlargement
 - Making timed automata robust

5. Conclusions and perspectives
Robustness issues in timed automata

Zeno behaviours

$x < 1 \land y < 1$

$x := 0$

$y = 1$
Robustness issues in timed automata

Zeno behaviours

\[x < 1 \land y < 1 \]
\[x := 0 \]
\[y = 1 \]

Theorem (AD90)

Checking \(\omega \)-regular properties under non-Zenoness requirement can be done in exponential time.
Robustness issues in timed automata

Convergence phenomena (CHR02)

\[x \leq 1 \]
\[y := 0 \]
\[y = 1 \]
\[z := 0 \]
\[z > 0 \]

Diagram:

- Start state: \(x \leq 1 \)
- Transition: \(x := 0 \) to \(x \leq 1 \)
- Transition: \(y := 0 \) to \(y = 1 \)
- Transition: \(z := 0 \) to \(z > 0 \)

Graph:

- Axes: \(x \) and \(y \)
- Points: \((0, 0) \), \((1, 1) \)
Robustness issues in timed automata

Convergence phenomena (CHR02)

Diagram:

- Initial state: $x \leq 1$
- Transition: $x = 1$
- Next state: $y := 0$
- Transition: $y = 1$
- Next state: $z := 0$
- Final state: $x \leq 1$

Graph:

- Axes: x and y
- Origin: $(0, 0)$
- Points: $(1, 1)$
- Line: $y = x$
Robustness issues in timed automata

Convergence phenomena (CHR02)
Robustness issues in timed automata

Convergence phenomena (CHR02)

\[
x \leq 1
\]

\[
x = 1
\]

\[
x := 0
\]

\[
y := 0
\]

\[
y = 1
\]

\[
 y := 0
\]

\[
z := 0
\]

\[
z > 0
\]

\[
x \leq 1
\]

\[
x \leq 1
\]

\[
x \leq 1
\]

\[
y\]

\[
0 1
\]

\[
x
\]

\[
1
\]
Robustness issues in timed automata

Convergence phenomena (CHR02)

\[x \leq 1 \]
\[x := 0 \]
\[y := 0 \]
\[y = 1 \]
\[z := 0 \]
\[z > 0 \]
\[x = 1 \]
\[x \leq 1 \]
\[x \leq 1 \]
Robustness issues in timed automata

Convergence phenomena (CHR02)

Graphical representation of the system:
- Initial state: \(x \leq 1 \)
- Transition: \(x = 1 \) leads to \(y := 0 \)
- Transition: \(y = 1 \) leads to \(z := 0 \)
- Final state: \(x \leq 1 \)

Graph showing the relationship between \(x \) and \(y \):
Robustness issues in timed automata

Convergence phenomena (CHR02)

$\begin{align*}
 &x \leq 1 \\
 &x := 0 & y := 0 & z := 0 & y = 1 & x \leq 1 \\
 &y := 0 & z > 0 & x = 1 & x := 0 & x \leq 1
\end{align*}$
Robustness issues in timed automata

Convergence phenomena (CHR02)

$\begin{align*}
x &\leq 1 \\
x &= 1 & x &\leq 1 \\
x &:= 0 & x &\leq 1 & y &= 0 \\
y &= 1 & y &:= 0 \\
z &:= 0 & z &> 0 & x &\leq 1 \\
z &= 1 & z &:= 0 & x &\leq 1 \\
y &:= 0 \\
y &= 1 \\
0 &\leq x & x &\leq 1 & 1 &\leq y & y &\leq 1 & 1 &\leq z & z &\leq 1
\end{align*}$
Robustness issues in timed automata

Convergence phenomena (CHR02)

\[x \leq 1 \quad x := 0 \quad x \leq 1 \quad y := 0 \quad y = 1 \quad z := 0 \quad z > 0 \]

\[y := 0 \quad y = 1 \quad z := 0 \quad z > 0 \]

\[x \leq 1 \quad x := 0 \quad x \leq 1 \quad y := 0 \quad y = 1 \quad z := 0 \quad z > 0 \]

\[0 \quad 1 \quad 1 \]

\[x \quad y \]
Robustness issues in timed automata

Theorem (KLL + 97)

When \(P_1 \) and \(P_2 \) run in parallel (sharing variable \(r \)), the state where both of them are in is not reachable. But this property is lost when \(x_{id} > 2 \) is replaced with \(x_{id} \geq 2 \).
Robustness issues in timed automata

Strict timing constraints

\[P_{id} \]

\[r := 0 \]
\[x_{id} := 0 \quad \text{if} \quad x_{id} \leq 2 \]
\[r := id \]
\[x_{id} := 0 \]
\[x_{id} > 2 \]

Theorem (KLL+97)

When \(P_1 \) and \(P_2 \) run in parallel (sharing variable \(r \)), the state where both of them are in \(\square \) is not reachable.
Robustness issues in timed automata

Strict timing constraints

P_{id}

\[\begin{align*}
 x_{id} &:= 0 \\
 x_{id} &:= 0 \\
 x_{id} &:= 0 \\
 r &= 0 \\
 r &= 0 \\
 r &= 0 \\
 r &= 0 \\
 x_{id} &> 2
\end{align*} \]

Theorem (KLL$^+$97)

When P_1 and P_2 run in parallel (sharing variable r), the state where both of them are in is not reachable.

But this property is lost when $x_{id} > 2$ is replaced with $x_{id} \geq 2$.
Robustness issues in timed automata

Imprecision on clock values (ACS10)
Robustness issues in timed automata

Imprecision on clock values (ACS10)

2 t.u.

frame 0 frame 1 frame 2 frame 3 frame 4 frame 5

encod. 0 encod. 1 encod. 2 encod. 3 encod. 4

2 + ε
Outline of the presentation

1. Introduction – Timed automata

2. Robustness issues in timed automata

3. Several approaches
 - Tube semantics
 - Probabilistic semantics
 - Sampled semantics

4. Enlarged semantics
 - A different approach
 - Checking robustness against enlargement
 - Making timed automata robust

5. Conclusions and perspectives
Several solutions have been proposed...

Tube semantics (GHJ97)

- discards behaviours that have too strict constraints;
- only consider traces whose neighbouring traces are accepted;
- safety is decidable.
Several solutions have been proposed...

Tube semantics (GHJ97)
- discards behaviours that have too strict constraints;
- only consider traces whose neighbouring traces are accepted;
- safety is decidable.

Probabilistic semantics (BBBBB07)
- defines a measure on traces;
- discards *unlikely* behaviours;
- safety is decidable.
Several solutions have been proposed...

Sampled semantics (HMP92, AKY10)

- actions are taken only at integer multiples of τ;
- conceptually simpler to handle, but checking safety still takes exponential time;

Samplability

A timed automaton A is samplable if there exists $\tau > 0$ s.t. A exhibits similar (untimed) behaviours under the classical semantics as under the τ-sampled semantics.

Theorem (AKY10)

Samplability is decidable.
Several solutions have been proposed...

Sampled semantics (HMP92,AKY10)

- actions are taken only at integer multiples of τ;
- conceptually simpler to handle, but checking safety still takes exponential time;

Samplability

A timed automaton A is samplable if there exists $\tau > 0$ s.t. A exhibits similar (untimed) behaviours under the classical semantics as under the τ-sampled semantics.
Several solutions have been proposed...

Sampled semantics (HMP92,AKY10)

- actions are taken only at integer multiples of τ;
- conceptually simpler to handle, but checking safety still takes exponential time;

Samplability

A timed automaton \mathcal{A} is **samplable** if there exists $\tau > 0$ s.t. \mathcal{A} exhibits similar (untimed) behaviours under the classical semantics as under the τ-sampled semantics.

Theorem (AKY10)

Samplability is decidable.
Outline of the presentation

1. Introduction – Timed automata
2. Robustness issues in timed automata
3. Several approaches
 - Tube semantics
 - Probabilistic semantics
 - Sampled semantics
4. Enlarged semantics
 - A different approach
 - Checking robustness against enlargement
 - Making timed automata robust
5. Conclusions and perspectives
A different solution...

Enlarged semantics (Pur98)

- clocks evolve at rate in $[1 - \varepsilon, 1 + \varepsilon]$ instead of exactly 1;
- clock constraints $x \in [a, b]$ replaced with $x \in [a - \delta, b + \delta]$;
- contrary to the other approaches, this semantics adds extra behaviours, considering that the classical semantics is too precise.

Robustness

A timed automaton A is robust if there exist $\delta > 0$ and/or $\varepsilon > 0$ s.t. A exhibits similar (untimed) behaviours under the classical semantics as under the enlarged semantics.

Theorem (Pur98, DDMR04, BMR06, San11)
Robustness is decidable.
A different solution...

Enlarged semantics (Pur98)

- clocks evolve at rate in \([1 - \epsilon, 1 + \epsilon]\) instead of exactly 1;
- clock constraints \(x \in [a, b]\) replaced with \(x \in [a - \delta, b + \delta]\);
- contrary to the other approaches, this semantics adds extra behaviours, considering that the classical semantics is too precise.

Robustness

A timed automaton \(\mathcal{A}\) is **robust** if there exist \(\epsilon > 0\) and/or \(\delta > 0\) s.t. \(\mathcal{A}\) exhibits similar (untimed) behaviours under the classical semantics as under the enlarged semantics.
A different solution...

Enlarged semantics (Pur98)

- clocks evolve at rate in \([1 - \epsilon, 1 + \epsilon]\) instead of exactly 1;
- clock constraints \(x \in [a, b]\) replaced with \(x \in [a - \delta, b + \delta]\);
- contrary to the other approaches, this semantics adds extra behaviours, considering that the classical semantics is too precise.

Robustness

A timed automaton \(\mathcal{A}\) is robust if there exist \(\epsilon > 0\) and/or \(\delta > 0\) s.t. \(\mathcal{A}\) exhibits similar (untimed) behaviours under the classical semantics as under the enlarged semantics.

Theorem (Pur98,DDMR04,BMR06,San11)

Robustness is decidable.
What happens under the (guard-)enlarged semantics?

Example

\[
\begin{align*}
\text{y} & \geq 2, \quad \text{y} := 0 \\
x & = 0 \wedge \text{y} \geq 2
\end{align*}
\]
What happens under the (guard-)enlarged semantics?

Example

\[x = 1 \]

\[y := 0 \]

\[x \leq 2, \ x := 0 \]

\[y := 0, \ y \geq 2 \]

\[x = 0 \land y \geq 2 \]
What happens under the (guard-)enlarged semantics?

Example

\[
\begin{align*}
 x &\in [1-\delta, 1+\delta] \\
 y &:= 0 \\
 x &\leq 2+\delta, \ x:=0 \\
 y &\geq 2-\delta, \ y:=0 \\
 x &\leq \delta \land y \geq 2-\delta
\end{align*}
\]
What happens under the (guard-)enlarged semantics?

Example

\[x \in [1-\delta, 1+\delta] \]
\[y := 0 \]
\[x \leq 2+\delta, \ x := 0 \]
\[y \geq 2-\delta, \ y := 0 \]
\[x \leq \delta \land y \geq 2-\delta \]
What happens under the (guard-)enlarged semantics?

Example

\[x \in [1-\delta, 1+\delta] \]
\[y := 0 \]
\[x \leq 2+\delta, \ x:=0 \]
\[y \geq 2-\delta, \ y:=0 \]
\[x \leq \delta \land y \geq 2-\delta \]
What happens under the (guard-)enlarged semantics?

Example

\[x \in [1-\delta, 1+\delta], \ y := 0\]

\[x \leq 2+\delta, \ x := 0\]

\[x \leq \delta \land y \geq 2-\delta\]

\[y \geq 2-\delta, \ y := 0\]
What happens under the (guard-)enlarged semantics?

Example

\[
\begin{align*}
 x &\in [1-\delta, 1+\delta] \quad y := 0 \\
 x \leq 2+\delta, \quad x := 0 &\quad y \geq 2-\delta, \quad y := 0 \\
 x \leq \delta &\land y \geq 2-\delta
\end{align*}
\]
What happens under the (guard-)enlarged semantics?

Example

\[x \in [1-\delta, 1+\delta] \]
\[y := 0 \]

\[x \leq 2+\delta, \ x := 0 \]
\[y \geq 2-\delta, \ y := 0 \]

\[x \leq \delta \land y \geq 2-\delta \]
What happens under the (guard-)enlarged semantics?

Example

\[x \in [1-\delta, 1+\delta] \]
\[y := 0 \]

\[x \leq 2 + \delta, \ x := 0 \]
\[y \geq 2 - \delta, \ y := 0 \]

\[x \leq \delta \land y \geq 2 - \delta \]
What happens under the (guard-)enlarged semantics?

Example

\[x \in [1-\delta, 1+\delta] \]
\[y := 0 \]

\[x \leq 2+\delta, \ x := 0 \]
\[y \geq 2-\delta, \ y := 0 \]
What happens under the (guard-)enlarged semantics?

Example

\[x \in [1-\delta, 1+\delta] \]
\[y := 0 \]

\[x \leq 2+\delta, \ x := 0 \]

\[x \leq \delta \land y \geq 2-\delta \]

\[y \geq 2-\delta, \ y := 0 \]
What happens under the (guard-)enlarged semantics?

Example

\[x \in [1-\delta, 1+\delta] \]
\[y := 0 \]

\[x \leq 2 + \delta, \ x := 0 \]

\[y \geq 2 - \delta, \ y := 0 \]

\[x \leq \delta \land y \geq 2 - \delta \]
What happens under the (guard-)enlarged semantics?

Example

\[
x \in [1-\delta, 1+\delta] \\
y := 0
\]

\[
x \leq 2+\delta, \ x := 0
\]

\[
y \geq 2-\delta, \ y := 0
\]
What happens under the (guard-)enlarged semantics?

Example

\[x \in [1-\delta, 1+\delta] \]

\[y := 0 \]

\[x \leq 2+\delta, \ x := 0 \]

\[y \geq 2-\delta, \ y := 0 \]
Safety checking under the enlarged semantics

Extended region automaton

For any location ℓ and any two regions r and r', if

1. $\overline{r} \cap \overline{r'} \neq \emptyset$ and
2. (ℓ, r') belongs to an SCC of $\mathcal{R}(A)$,

then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$.
Safety checking under the enlarged semantics

Extended region automaton

For any location ℓ and any two regions r and r', if
- $\overline{r} \cap \overline{r}' \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(A)$,

then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$.

\[
\begin{array}{c}
| y |
\hline
| 3 |
| 2 |
| 1 |
| 0 |
\end{array}
\]
\[
\begin{array}{c}
| x |
\hline
| 0 |
| 1 |
| 2 |
| 3 |
\end{array}
\]
Safety checking under the enlarged semantics

Extended region automaton

For any location ℓ and any two regions r and r', if

1. $\overline{r} \cap \overline{r'} \neq \emptyset$ and
2. (ℓ, r') belongs to an SCC of $\mathcal{R}(A)$,

then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$.
Safety checking under the enlarged semantics

Extended region automaton

For any location ℓ and any two regions r and r', if
- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(A)$,
then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$.
Safety checking under the enlarged semantics

Extended region automaton

For any location ℓ and any two regions r and r', if
- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(A)$,
then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$.
Safety checking under the enlarged semantics

Extended region automaton

For any location ℓ and any two regions r and r', if

- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(A)$,

then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$.

Diagram:

The diagram illustrates a region with coordinates x and y, ranging from 0 to 3. The region is divided into three sections, each shaded with a different color. The transition γ is shown as an arrow moving from one shaded section to another.
For any location ℓ and any two regions r and r', if

- $\overline{r} \cap \overline{r'} \neq \emptyset$ and
- (ℓ, r') belongs to an SCC of $\mathcal{R}(A)$,

then we add a transition $(\ell, r) \xrightarrow{\gamma} (\ell, r')$.
Safety checking under the enlarged semantics

Example
Safety checking under the enlarged semantics

Lemma

The set of reachable regions in the *extended region automaton* is exactly

\[\bigcap_{\delta > 0} \text{Reach}(A_{\delta}). \]

(under some technical restrictions)
Safety checking under the enlarged semantics

Lemma

The set of reachable regions in the extended region automaton is exactly

\[\bigcap_{\delta > 0} \text{Reach}(A_{\delta}). \]

(under some technical restrictions)

Lemma

For any timed automata \(A \) and for any region \(B \),

\[\bigcap_{\delta > 0} \text{Reach}_\delta(A) \cap B = \emptyset \quad \text{iff} \quad \exists \delta > 0. \text{Reach}_\delta(A) \cap B = \emptyset. \]
Safety checking under the enlarged semantics

Lemma
The set of reachable regions in the extended region automaton is exactly

$$\bigcap_{\delta > 0} \text{Reach}(A_{\delta}).$$

(under some technical restrictions)

Lemma
For any timed automata A and for any region B,

$$\bigcap_{\delta > 0} \text{Reach}_{\delta}(A) \cap B = \emptyset \iff \exists \delta > 0. \text{Reach}_{\delta}(A) \cap B = \emptyset.$$

Theorem
Robust safety in timed automata is decidable in exponential time (and is PSPACE-complete).
Making timed automata robust
Example

This automaton is not robust:

\[
\begin{align*}
 x &= 1 \\
 y &= 0 \\
 x \leq 2, & x := 0 \\
 y \geq 2, & y := 0 \\
 x = 0 \land y \geq 2
\end{align*}
\]

But this one is:

\[
\begin{align*}
 x &= 1 \\
 y &= 0 \\
 x \leq 2, & x := 0 \\
 y \geq 2, & y := 0 \\
 x = 0 \land y \geq 2
\end{align*}
\]

Robustness is a syntactic criterion.
Making timed automata robust

Example

This automaton is not robust:

\[
\begin{align*}
\text{x=1} & \quad \text{y:=0} \\
\text{x\leq 2, x:=0} & \quad \text{x=0 \land y\geq 2} \\
\text{y\geq 2, y:=0} & \\
\end{align*}
\]

But this one is:

\[
\begin{align*}
\text{x=1} & \quad \text{y:=0} \\
\text{x\leq 2 \land y\leq 1, x:=0} & \quad \text{x=0 \land y\geq 2} \\
\text{y\geq 2 \land x\geq 1, y:=0} & \\
\end{align*}
\]

Robustness is a syntactic criterion.
Making timed automata robust

Example

This automaton is not robust:

\[
\begin{align*}
&x = 1 \\
&y = 0 \\
&x \leq 2, x := 0 \\
&y \geq 2, y := 0
\end{align*}
\]

But this one is:

\[
\begin{align*}
&x = 1 \\
&y = 0 \\
&x \leq 2 \land y \leq 1, x := 0 \\
&y \geq 2 \land x \geq 1, y := 0
\end{align*}
\]

Robustness is a **syntactic** criterion.
Making timed automata robust

\(\varepsilon \)-bisimilarity

\(\sim \subseteq S \times S \) is an \(\varepsilon \)-bisimulation if

\[
\begin{align*}
s & \overset{a}{\longrightarrow} t \\
\varepsilon & \\
\sim & \\
s' &
\end{align*}
\]

action transitions
Making timed automata robust

ϵ-bisimilarity

$\sim \subseteq S \times S$ is an ϵ-bisimulation if

$\begin{align*}
s \xrightarrow{a} t \\
_ \quad _ \\
s' \xrightarrow{a} t'
\end{align*}$

action transitions
Making timed automata robust

\(\varepsilon \)-bisimilarity

\(\sim \subseteq S \times S \) is an \(\varepsilon \)-bisimulation if

\[
\begin{align*}
&\text{action transitions} & &\text{delay transitions} \\
\sim & \text{ implies } a \rightarrow t \sim a \rightarrow t' & &d \rightarrow t \sim \varepsilon \rightarrow t \\
\sim & \text{ implies } \varepsilon \rightarrow s \sim \varepsilon \rightarrow s' & &s \sim \varepsilon \rightarrow t \sim s'
\end{align*}
\]
Making timed automata robust

ε-bisimilarity

$\sim \subseteq S \times S$ is an ε-bisimulation if

\[s \xrightarrow{a} t \quad \sim \quad s' \xrightarrow{a} t' \]

\[\varepsilon \quad \sim \quad \varepsilon \]

\[s \xrightarrow{d} t \quad \sim \quad s' \xrightarrow{d'} t' \quad |d' - d| \leq \varepsilon \]

action transitions
delay transitions
Making timed automata robust

ε-bisimilarity

$\sim \subseteq S \times S$ is an ε-bisimulation if

\[
\begin{align*}
&s \xrightarrow{a} t \\
&s' \xrightarrow{a} t' \\
&\sim \\
&s \xrightarrow{\varepsilon} t \\
&s' \xrightarrow{\varepsilon} t' \\
&s \xrightarrow{d} t \\
&s' \xrightarrow{d'} t' \quad |d' - d| \leq \varepsilon
\end{align*}
\]

action transitions delay transitions

Quantitative notion of robustness

A timed automaton \mathcal{A} is ε-robust if there exists $\delta > 0$ s.t. \mathcal{A} and its δ-enlarged semantics \mathcal{A}_δ are ε-bisimilar.
Making timed automata robust

ϵ-bisimilarity

$\sim \subseteq S \times S$ is an ϵ-bisimulation if

- Action transitions:
 - $s \xrightarrow{a} t$
 - $s' \xrightarrow{a} t'$

- Delay transitions:
 - $s \xrightarrow{d} t$
 - $s' \xrightarrow{d'} t'$
 - $|d' - d| \leq \epsilon$

Theorem (BFL$^+$11)

Given a timed automaton \mathcal{A} and $\epsilon > 0$, we can build a timed automaton \mathcal{A}' s.t.

- \mathcal{A} and \mathcal{A}' are 0-bisimilar;
- \mathcal{A}' is ϵ-robust.
Outline of the presentation

1. Introduction – Timed automata
2. Robustness issues in timed automata
3. Several approaches
 - Tube semantics
 - Probabilistic semantics
 - Sampled semantics
4. Enlarged semantics
 - A different approach
 - Checking robustness against enlargement
 - Making timed automata robust
5. Conclusions and perspectives
Conclusions and perspectives

Robustness is an important issue in timed systems

- timed automata are governed by a mathematical semantics;
- this raises important robustness issues:
 - time-convergent behaviours;
 - strict timing constraints...
- several approaches:
 - ignoring isolated traces;
 - considering surrounding runs.

Perspectives

- develop the quantitative approach to robustness;
- probabilistic (as opposed to worst-case) enlargement;
- shrinking timed automata (to counteract enlargement);
- robust controller synthesis;
- robustness in priced timed automata (with energy constraints).
Conclusions and perspectives

Robustness is an important issue in timed systems
- timed automata are governed by a mathematical semantics;
- this raises important robustness issues:
 - time-convergent behaviours;
 - strict timing constraints...
- several approaches:
 - ignoring isolated traces;
 - considering surrounding runs.

Perspectives
- develop the quantitative approach to robustness;
- probabilistic (as opposed to worst-case) enlargement;
- shrinking timed automata (to counteract enlargement);
- robust controller synthesis;
- robustness in priced timed automata (with energy constraints).