Coercion-Resistance and Receipt-Freeness in Electronic Voting

Stéphanie Delaune1,2, Steve Kremer2 and Mark Ryan3

1 LSV, ENS de Cachan, CNRS & INRIA, France

2 France Télécom R&D

3 School of Computer Science, University of Birmingham, UK
Electronic voting

Advantages:
- Convenient,
- Efficient facilities for tallying votes.

Drawbacks:
- Risk of large-scale and undetectable fraud,
- Such protocols are extremely error-prone.

"A 15-year-old in a garage could manufacture smart cards and sell them on the Internet that would allow for multiple votes"

Avi Rubin

Possible issue: formal methods
abstract analysis of the protocol against formally-stated properties
Electronic voting

Advantages:

- Convenient,
- Efficient facilities for tallying votes.

Drawbacks:

- Risk of large-scale and undetectable fraud,
- Such protocols are extremely error-prone.

"A 15-year-old in a garage could manufacture smart cards and sell them on the Internet that would allow for multiple votes"

Avi Rubin

Possible issue: formal methods
abstract analysis of the protocol against formally-stated properties
Expected properties

Privacy: the fact that a particular voted in a particular way is not revealed to anyone

![Vote for me](image)

Receipt-freeness: a voter cannot prove that she voted in a certain way (this is important to protect voters from coercion)

Coercion-resistance: same as receipt-freeness, but the coercer interacts with the voter during the protocol, e.g. by preparing messages
Summary

Observations:
- Definitions of security properties are often *insufficiently precise*
- No clear distinction between receipt-freeness and coercion-resistance

Goal:
Propose the first “formal methods” definitions of receipt-freeness and coercion-resistance

Results:
- Formalisation of receipt-freeness and coercion-resistance as some kind of observational equivalence in the applied pi-calculus,
- Coercion-Resistance \Rightarrow Receipt-Freeness \Rightarrow Privacy,
- Case study: protocol due to Lee *et al.* [Lee *et al.*, 03]
Summary

Observations:
- Definitions of security properties are often insufficiently precise
- No clear distinction between receipt-freeness and coercion-resistance

Goal:
Propose the first “formal methods” definitions of receipt-freeness and coercion-resistance

Results:
- Formalisation of receipt-freeness and coercion-resistance as some kind of observational equivalence in the applied pi-calculus,
- Coercion-Resistance ⇒ Receipt-Freeness ⇒ Privacy,
- Case study: protocol due to Lee et al. [Lee et al., 03]
Outline of the talk

1. Introduction
2. Applied π-calculus
3. Formalisation of Privacy and Receipt-Freeness
4. Formalisation of Coercion-Resistance
5. Conclusion and Future Works
Outline of the talk

1. Introduction

2. Applied π-calculus

3. Formalisation of Privacy and Receipt-Freeness

4. Formalisation of Coercion-Resistance

5. Conclusion and Future Works
Motivation for using the applied π-calculus

Applied pi-calculus: [Abadi & Fournet, 01]
basic programming language with constructs for concurrency and communication

- based on the π-calculus [Milner et al., 92]
- in some ways similar to the spi-calculus [Abadi & Gordon, 98]

Advantages:
- allows us to model less classical cryptographic primitives
- both reachability and equivalence-based specification of properties
- automated proofs using ProVerif tool [Blanchet]
- powerful proof techniques for hand proofs
- successfully used to analyze a variety of security protocols
Motivation for using the applied π-calculus

Applied pi-calculus: [Abadi & Fournet, 01]

basic programming language with constructs for concurrency and communication

- based on the π-calculus [Milner et al., 92]
- in some ways similar to the spi-calculus [Abadi & Gordon, 98]

Advantages:

- allows us to model less classical cryptographic primitives
- both reachability and equivalence-based specification of properties
- automated proofs using ProVerif tool [Blanchet]
- powerful proof techniques for hand proofs
- successfully used to analyze a variety of security protocols
The applied \(\pi \)-calculus on an example

Syntax:

- **Equational theory**: \(\text{dec}(\text{enc}(x, y), y) = x \)
- **Process**:

\[
P = \nu s, k. (\text{out}(c_1, \text{enc}(s, k)) \mid \text{in}(c_1, y). \text{out}(c_2, \text{dec}(y, k))).
\]

Semantics:

- **Operational semantics** \(\rightarrow \): closed by structural equivalence (\(\equiv \)) and application of evaluation contexts such that

\[
\text{Comm} \quad \text{out}(a, x). P \mid \text{in}(a, x). Q \rightarrow P \mid Q
\]

\[
\text{Then} \quad \text{if } M = M \text{ then } P \text{ else } Q \rightarrow P
\]

\[
\text{Else} \quad \text{if } M = N \text{ then } P \text{ else } Q \rightarrow Q \quad (M \neq N)
\]

Example: \(P \rightarrow \nu s, k. \text{out}(c_2, s) \)

- **Labeled operational semantics** \(\xrightarrow{\alpha} \)
The applied π-calculus on an example

Syntax:
- Equational theory: $\text{dec}(\text{enc}(x, y), y) = x$
- Process:

 $$P = \nu s, k. (\text{out}(c_1, \text{enc}(s, k)) \mid \text{in}(c_1, y). \text{out}(c_2, \text{dec}(y, k))).$$

Semantics:
- Operational semantics \rightarrow: closed by structural equivalence (\equiv) and application of evaluation contexts such that
 - Comm: $\text{out}(a, x). P \mid \text{in}(a, x). Q \rightarrow P \mid Q$
 - Then: if $M = M$ then P else $Q \rightarrow P$
 - Else: if $M = N$ then P else $Q \rightarrow Q$ ($M \neq N$)

 Example: $P \rightarrow \nu s, k. \text{out}(c_2, s)$
- Labeled operational semantics $\xrightarrow{\alpha}$
The applied π-calculus on an example

Syntax:

- **Equational theory**: $\text{dec}(\text{enc}(x, y), y) = x$
- **Process**:

 $$P = \nu s, k.(\text{out}(c_1, \text{enc}(s, k)) | \text{in}(c_1, y).\text{out}(c_2, \text{dec}(y, k))).$$

Semantics:

- **Operational semantics** \rightarrow: closed by structural equivalence (\equiv) and application of evaluation contexts such that

 Comm \hspace{1cm} $\text{out}(a, x).P | \text{in}(a, x).Q \rightarrow P | Q$

 Then \hspace{1cm} $\text{if } M = M \text{ then } P \text{ else } Q \rightarrow P$

 Else \hspace{1cm} $\text{if } M = N \text{ then } P \text{ else } Q \rightarrow Q \ (M \neq N)$

 Example: $P \rightarrow \nu s, k.\text{out}(c_2, s)$

- Labeled operational semantics \rightarrow^α
The applied π-calculus on an example

Syntax:

- **Equational theory:** $\text{dec}(\text{enc}(x, y), y) = x$
- **Process:**

$$P = \nu s, k. (\text{out}(c_1, \text{enc}(s, k)) | \text{in}(c_1, y).\text{out}(c_2, \text{dec}(y, k))).$$

Semantics:

- **Operational semantics \rightarrow:** closed by structural equivalence (\equiv) and application of evaluation contexts such that

 Comm $\quad \text{out}(a, x).P | \text{in}(a, x).Q \rightarrow P | Q$

 Then \quad if $M = M$ then P else $Q \rightarrow P$

 Else \quad if $M = N$ then P else $Q \rightarrow Q$ ($M \neq N$)

 Example: $P \to \nu s, k.\text{out}(c_2, s)$

- **Labeled operational semantics \rightarrow^α:**
Equivalences on processes

Observational equivalence (\equiv)

The largest symmetric relation R on processes such that $A \mathrel{R} B$ implies

1. if $A \Downarrow a$, then $B \Downarrow a$,
2. if $A \xrightarrow{*} A'$, then $B \xrightarrow{*} B'$ and $A' \mathrel{R} B'$ for some B',

Labeled bisimilarity (\equiv_ℓ)

The largest symmetric relation R on processes, such that $A \mathrel{R} B$ implies

1. $\phi(A) \equiv_s \phi(B)$,
2. if $A \xrightarrow{\alpha} A'$, then $B \xrightarrow{\alpha} B'$ and $A' \mathrel{R} B'$ for some B',
3. if $A \xrightarrow{\alpha} A'$, then $B \xrightarrow{\alpha} B'$ and $A' \mathrel{R} B'$ for some B'.

S. Delaune (LSV, ENS Cachan)
Electronic Voting
9 / 21
Equivalences on processes

Observational equivalence (\approx)
The largest symmetric relation \mathcal{R} on processes such that $A \mathcal{R} B$ implies
1. if $A \Downarrow a$, then $B \Downarrow a$,
2. if $A \rightarrow^* A'$, then $B \rightarrow^* B'$ and $A' \mathcal{R} B'$ for some B',

Labeled bisimilarity (\approx_ℓ)
The largest symmetric relation \mathcal{R} on processes, such that $A \mathcal{R} B$ implies
1. $\phi(A) \approx_s \phi(B)$,
2. if $A \rightarrow A'$, then $B \rightarrow^* B'$ and $A' \mathcal{R} B'$ for some B',
3. if $A \xrightarrow{\alpha} A'$, then $B \rightarrow^* \xrightarrow{\alpha} \rightarrow^* B'$ and $A' \mathcal{R} B'$ for some B'.
Voting protocols in the applied π-calculus

Definition (Voting process)

$$VP \equiv \nu \tilde{n}.(V\sigma_1 | \cdots | V\sigma_n | A_1 | \cdots | A_m)$$

- $V\sigma_i$: voter process and $\nu \in dom(\sigma_i)$ refers to the value of his vote
- A_j: election authority
- \tilde{n}: channel names

The outcome of the vote is made public, i.e. there exists B such that

$$VP \xrightarrow{\alpha} B$$

with $\phi(B) \equiv \phi | \{^v\sigma_1/x_1, \ldots, ^v\sigma_n/x_n\}$ for some ϕ.

$\leftarrow S$ is a context which is as VP but has a hole instead of two of the $V\sigma_i$.
Outline of the talk

1. Introduction
2. Applied π-calculus
3. Formalisation of Privacy and Receipt-Freeness
4. Formalisation of Coercion-Resistance
5. Conclusion and Future Works
Formalisation of privacy

Classically modeled as observational equivalences between two slightly different processes P_1 and P_2, but

- changing the identity does not work, as identities are revealed
- changing the vote does not work, as the votes are revealed at the end

Solution: [Kremer & Ryan, 05]

\leftrightarrow consider 2 honest voters and swap their votes

A voting protocol respects privacy if

$$S[V_A^{\{a/v\}} \mid V_B^{\{b/v\}}] \approx S[V_A^{\{b/v\}} \mid V_B^{\{a/v\}}].$$
Formalisation of privacy

Classically modeled as observational equivalences between two slightly different processes P_1 and P_2, but

- changing the identity does not work, as identities are revealed
- changing the vote does not work, as the votes are revealed at the end

Solution: [Kremer & Ryan, 05]

← consider 2 honest voters and swap their votes

A voting protocol respects privacy if

$$S[V_A^{a/v} | V_B^{b/v}] \approx S[V_A^{b/v} | V_B^{a/v}].$$
Leaking secrets to the coercer

To model receipt-freeness we need to specify that a coerced voter cooperates with the coercer by leaking secrets on a channel ch

We denote by V^{ch} the process built from the process V as follows:

- $0^{ch} \equiv 0$,
- $(P \parallel Q)^{ch} \equiv P^{ch} \parallel Q^{ch}$,
- $(\nu n.P)^{ch} \equiv \nu n.\text{out}(ch, n).P^{ch}$,
- $(\text{in}(u, x).P)^{ch} \equiv \text{in}(u, x).\text{out}(ch, x).P^{ch}$,
- $(\text{out}(u, M).P)^{ch} \equiv \text{out}(u, M).P^{ch}$,
- \ldots

We denote by $V \setminus \text{out}(ch, \cdot) \equiv \nu ch.(V \parallel \text{in}(ch, x))$.
Receipt-freeness

Definition (Receipt-freeness)

A voting protocol is receipt-free if there exists a process V', satisfying

- $V'_{\text{out}(\text{chc}, \cdot)} \approx V_A\{a / v\}$,
- $S[V_A\{c / v\}^{\text{chc}} \mid V_B\{a / v\}] \approx S[V' \mid V_B\{c / v\}]$.

Intuitively, there exists a process V' which

- does vote a,
- leaks (possibly fake) secrets to the coancer,
- and makes the coancer believe he voted c
Some results

Let VP be a voting protocol. We have formally shown that:

VP is receipt-free \implies VP respects privacy.

Case study: Lee et al. protocol

We have proved receipt-freeness by

- exhibiting V'
- showing that $V' \setminus out(chc,\cdot) \approx V_A \{a/v\}$
- showing that $S[V_A \{c/v\}^{chc} \mid V_B \{a/v\}] \approx S[V' \mid V_B \{c/v\}]$
Outline of the talk

1. Introduction
2. Applied π-calculus
3. Formalisation of Privacy and Receipt-Freeness
4. Formalisation of Coercion-Resistance
5. Conclusion and Future Works
Interacting with the coercer

To model coercion-resistance, we need to model interaction between the coercer and the voter:

1. secrets are leaked to the coercer on a channel c_1, and
2. outputs are prepared by the coercer and given to the voter via c_2.

We denote by V^{c_1,c_2} the process built from V as follows:

- $0^{c_1,c_2} \equiv 0$,
- $(P \mid Q)^{c_1,c_2} \equiv P^{c_1,c_2} \mid Q^{c_1,c_2}$,
- $(\nu n. P)^{c_1,c_2} \equiv \nu n. \text{out}(c_1, n). P^{c_1,c_2}$,
- $(\text{in}(u, x). P)^{c_1,c_2} \equiv \text{in}(u, x). \text{out}(c_1, x). P^{c_1,c_2}$,
- $(\text{out}(u, M). P)^{c_1,c_2} \equiv \text{in}(c_2, x). \text{out}(u, x). P^{c_1,c_2}$ (x is a fresh variable),
- ...
Coercion-resistance (1)

First approximation:

\(VP \) is coercion-resistant if there exists a process \(V' \) such that

\[
S[V_A\{c/v\}^{c_1,c_2} \mid V_B\{a/v\}] \approx S[V' \mid V_B\{c/v\}].
\]

Problem:

- the coercer could oblige \(V_A\{c/v\}^{c_1,c_2} \) to vote \(c' \neq c \),
- the process \(V_B\{c/v\} \) would not counterbalance the outcome

Solution:

\(\rightarrow \) a new relation we have called adaptive simulation (A \(\preceq_a \) B)
Coercion-resistance (1)

First approximation:
VP is coercion-resistant if there exists a process V' such that

$$S[V_A\{c/v\}^{c_1,c_2} | V_B\{a/v\}] \approx S[V' | V_B\{c/v\}] .$$

Problem:
- the coercer could oblige $V_A\{c/v\}^{c_1,c_2}$ to vote $c' \neq c$,
- the process $V_B\{c/v\}$ would not counterbalance the outcome

Solution:
\leftrightarrow a new relation we have called adaptive simulation ($A \preceq_a B$)
Coercion-resistance (2)

Definition (Coercion-resistance)

A voting protocol is coercion-resistant if there exists a process \(V' \) and an evaluation context \(C \) satisfying

\[
\begin{align*}
S[V_A\{c/v\}^{c_1,c_2} \mid V_B\{a/v\}] & \preceq_a S[V' \mid V_B\{x/v\}], \\
\nu_{c_1,c_2}.C[V_A\{c/v\}^{c_1,c_2}] & \approx V_A\{c/v\}^{chc}, \\
\nu_{c_1,c_2}.C[V']^{out(chc,:)} & \approx V_A\{a/v\},
\end{align*}
\]

where \(x \) is a fresh free variable.

Intuitively,

- \(V_B\{x/v\} \) can adapt his vote and counter-balance the outcome,
- we require that when we apply a context \(C \) (the coercer requesting \(V_A\{c/v\}^{c_1,c_2} \) to vote \(c \)) the process \(V' \) in the same context \(C \) votes \(a \).
Some results

Let VP be a voting protocol. We have formally shown that:

$$VP \text{ is coercion-resistant} \iff VP \text{ respects receipt-free}.$$

\iff reflects the intuition but the proof is technical

Case study: Lee et al. protocol

Coercion-resistance depends on implementation details:

- encryption with integrity check
 \iff fault attack: the protocol is not coercion-resistant

- encryption without integrity check
 \iff the protocol is coercion-resistant
Conclusion and Future Works

Conclusion:
- first formal definitions of receipt-freeness and coercion-resistance
- Coercion-Resistance \Rightarrow Receipt-Freeness \Rightarrow Privacy,
- a case study giving interesting insights

Future Works:
- decision procedure for observational equivalence for processes without replication
- other properties based on not being able to prove
- individual/universal verifiability
Conclusion and Future Works

Conclusion:
- first **formal definitions** of receipt-freeness and coercion-resistance
- Coercion-Resistance \Rightarrow Receipt-Freeness \Rightarrow Privacy,
- a case study giving interesting insights

Future Works:
- decision **procedure** for observational equivalence for processes without replication
- other **properties** based on *not being able to prove*
- individual/universal verifiability