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This document is a merge of livrables D4.2 ”Experiments of Prototype Tools
on Cases Studies” and D4.3 ”Comparison of obtained results and Conclusion” in
the initial proposition. It concludes the VALMEM project by applying the set of
tools developed during the project to (some of) the case studies defined initially.
The obtained results are discussed and compared with standard methodologies
outcomes. In the initial proposition, these two documents were separated since
we planned to apply our flow to several case studies (SPSMALL memory, SPREG
memory, including self-timed logics). At the end of the project, we were able to
apply it to the SPSMALL memory, but the particular mechanisms of SPREG
have not been introduced into the preliminary stages of our flow. Hence we found
preferable to merge the two documents into a unique one.

This document is structured as follows: the first part recalls our method-
ological flow. Parts 2 to 6 describe the application of this flow to SPSMALL
memory. The architecture and specificities of SPSMALL are recalled in section
2; abstraction and timing extraction are applied in section 3; formal analysis
performed by timed-model checking and parametric timed model-checking are
reported into sections 4 and 5. Encountered and remaining difficulties are com-
mented in section 6. Comparisons and conclusions are drawn in section 7.

1 Analysis Flow of full custom memory proposed in the
VALMEM project

The Functional and Timing analysis problem we concentrate on can be expressed
in the following way.
Given :

– a full-custom memory circuit described at transistor level, for a given tech-
nology,

– a specification provided by the manufacturer, describing (1) the conditions to
be met by the environment (called nominal conditions), (2) the guaranteed
performances of the memory (namely the access timings) assuming these
nominal conditions are met.



Determine :

– the correctness of the access timings given in the specification,
– the extremal stability periods of environment signals still guarantying the

functionality and the access timings of the memory.

1.1 Analysis

Our analysis flow is composed of three major steps which are depicted in Fig. 1:

– Functional Abstraction and Temporal Extraction : the transistor
netlist is functionally abstracted and once the functional blocks (either ele-
mentary gates or combination of several gates) have been identified, the delay
propagation inside each block is computed through electrical simulation.

– Modeling as a product of timed automata : each functional block is
modeled as a timed automaton propagating – after an appropriate delay–
edges on output signals whenever edges occur on input signals. Internal delays
are fixed according to the values computed in the previous step, while delays
referring to environment signals are left unbound (they act as parameters).

– Model-checking : The timing analysis is based on the traversal of the
state-space of the product of timed automata; the good behaviors of the
systems are characterized as a set of states to reach in a unavoidable man-
ner. Two kinds of analysis are performed : one may verify that, under the
nominal conditions given in the specification, the access timing (also given
by the specification) are met [1]; this is done by classical model-checking
techniques provided in tool Uppaal [2] or Kronos [3], however, the size
of the description is much bigger than in the case of [1]. Alternatively, one
may compute a constraint binding delay parameters, ensuring a good be-
havior (e.g. the preservation of the critical path) [4]: a guided (parametric)
state-space traversal of the product of timed automata is performed and
constraints binding parameters, ensuring the convergence into these “good
regions of states” are generated on the fly. This is performed through an
original algorithm making use of tool IMITATOR-2 [5].

To automate this flow, several prototype tools have been developed during
the project:

– MYGALE : functional abstraction from transistor netlist to untimed VHDL
– TIMEX : script for timing extraction
– VHDL2TA : generation of product of timed automata from untimed VHDL

plus STG of each functional block
– IMITATOR-2 : extraction of linear constraints of timed parameters, ensuring

correct functioning of the system.

2 Architecture of SPSMALL

The SPSMALL is a SRAM compiler. Indeed, the designers are not developing
one memory by customer but several memory compilers in order to address
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Fig. 1. Analysis flow.

the various needs of each customer. The SPSMALL is a key generator in ST
offer: it is answering to the designer need for small and robust memory with a
competitive area and performances.

2.1 Global overview

SPSMALL generates single port memories: Only one read or one write can be
performed during a cycle. A write cycle is performed when WEN (write enable
active low) is equal to zero and a read when this signal is set at high. Moreover,
these memories are synchronous: the clock signal is called CK. Two others com-
mand signals are available: CSN is used to enable the block when it is set at low,
and OEN which puts the output of the memory at ’z’ state when it is set high.
The data are provided through the vector D, and the address is defined with the
vector A. The architecture of this SRAM is divided into 3 main pieces (cf. Fig.
2, namely the Input Saver, the Memory Array and the Output Manager:
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Fig. 2. Global Architecture of SPSMALL Memory.

2.2 Input saver

The input saver is saving the control and the data signals. In addition, it is
generating internal clock signals to enable the read/write process in the memory
array. The data is also provided to the output manager for a potential direct
copy to the output. This feature could be very useful for silicon testing with
ATPG.

2.3 Memory array

The memory array block is embedding the banks of the memory. This memory
family does not use sense-amplifier. As a consequence, real ’one’ and real ’zero’
is generated at the output of this block during the read cycle.

2.4 Output manager

The output manager is a kind of big multiplexor. If the output enable (OEN)
is disabled (OEN at high), the output stay at high impedance state called also
’z’ state. Else, if the memory is in read cycle, the data saved inside the memory
array is copied at the output of the memory (cf. Fig. 3). If the memory is in
write cycle, the input data are saved inside the SRAM and copied to the output
Q (cf. Fig. 4).
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Fig. 3. Architecture and data transfers during a read cycle.

2.5 Design strategies

Strategy used in digital flow .
In a full digital and synchronous flow, the functions are spread on several

clock cycles. Indeed, each operation is computed and saved on a rising edge
sensitive register called flip flop. The operations are based on pure standard-
cells based functions called logic cone. When a function is computed, the data is
saved in the next flip-flop and reused during the next cycle to compute the next
function. Each flip flop are driven by the same clock signal.

As a consequence, if the time to compute the function is kept, the final value
saved on the next flip-flop is independent to the various delays of each standard-
cell. Thus, the timing closure and the functional verification can be performed
independently. In this case, the formal methods can be used without timing to
verify the functionality. The only reference to the timing is the clock cycles spent
during the verification.

Full custom flow .
In a full custom flow design, like the SRAM studied in the VALMEM pro-

gram, this flow cannot be applied. Indeed, in order to save time, the memory
registers are replaced by latches (saving the data at logic one or logic zero). It
implies that the different functions are not independent: The strategy used on
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Fig. 4. Architecture and data transfers during a write cycle.

full digital flow cannot be applied. Therefore, the formal methods must involve
the timing/delay of functions in addition to the clock cycle. To address this huge
challenge, an abstraction tool has been built to bring the right level of abstrac-
tion in order to enable the usage of formal engine with timed automaton. The
main constrains are: ” No logic loop: the latches must be detected ” No in-out
pins: just in pins and out pins

The main idea is to compute the delay of each function on one side and map
each boundaries of timing in each function. In this strategy, the timing analysis
is performed on one side, and the functional abstraction independently on the
other side. Unfortunately, we prove during this project that this strategy cannot
be used in all cases.

Indeed, if the memory point used in the 6T SRAM is studied, we conclude
that there is no read and no write ports, but 2 differentials in/out (Bit Line True
and Bit Line False) ports.

The abstraction is then generated with: ” One input port, based on the logic
controlling WLi+1 and the data for the write cycle. ” The output is modeling
the read cycle.

The timing of each function cannot be mapped directly to the functional
model, because it depends to the type of the cycle checked. As a consequence,
when a read cycle is performed, the timing constraints will not be the same
as when a write is performed. To conclude the timing computation cannot be
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Fig. 5. Two-phases functioning of the memory.

independent to the functional abstraction and cannot be plugged directly: some
loop and inter-actions between functional abstraction and timing computations
are mandatory.

3 Functional and Timing Abstraction

Functional and timing abstractions aim at filling the gap between the description
issued from the designers and the description accepted by the formal verification
tool based on timed automata.

The functional abstraction builds a network of Boolean functions from the
transistor level description. The resulted network is then processed by the tim-
ing abstraction which characterizes the propagation delays through the Boolean
functions.

3.1 Functional Abstraction

The functional abstraction is the first step in the process of abstracting a circuit
described as a network of transistors into a timed-RTL (Register Transfer Level)
description.

In the framework of Valmem project, the circuit represents the so called
critical cut of an embedded memory. The critical cut has the same topology
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Fig. 6. Use of the same transistors in different modes.

as the real memory except that the memory array contains only those memory
points that participate to the critical path of the circuit.

A preliminary step consists in obtaining a netlist of transistors, capacitors
and resistors from the physical layout of the circuit. This is accomplished by a
layout extraction tool.

Then, the function abstraction provides a gate level description from this
transistor level description. This task may be achieved by using two different
approaches.

The first approach is based on pattern matching technique. The structure of
each gate that may be found in the circuit is described as an interconnection of
transistors. These descriptions constitute a collection of patterns. In this collec-
tion, the structure of each gate, in terms of transistors, may be seen as a graph.
The abstraction process tends to identify, inside the circuit, the structures that
are similar to the structure of a gate of the collection. In other terms, considering
the circuit as a graph, this first technique consists in matching the graph of a
gate with a sub-graph of the circuit. When the matching succeeds, the sub-graph
is replaced by its abstracted view, i.e. the Boolean expression of the gate.

An alternative approach relies on a formal method. It aims at identifying the
function implemented by a group of transistors. The signals connected to the
transistors’ grid are considered. These signals should be the output of a gate.
Starting from such a signal, the abstraction process traces all the paths that
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connect the signal to Vdd or to Vss. Each path is a series of channel connected
transistors and is called a branch. The collection of branches represents the
structure of a potential gate.

Fig. 7. Functional abstraction of a regular gate using formal method

The Boolean expression of the gate is then obtained from the conditions that
makes the branches being conducting. For each gate, two Boolean expressions
may be considered. Fup is the condition that makes the signal being connected
to Vdd. Fdown is the condition that makes the signal being connected to Vss.
As long as Fup and Fdown are complementary the gate is a dual gate and its
Boolean function is Fup. However, the structure of some gates may be non dual.
This happen when Fup and Fdown are not complementary requiring a deeper
analysis to identify the exact Boolean function of the gate.

In practice, a functional abstraction tool combines both techniques. Tradi-
tionally, regular gates are recognized by the formal approach. The analysis of
non regular and complex gates such as precharged signals, memory points or
analogue devices is harder and seems to be unreachable by the formal approach.
Thus, these parts are abstracted by pattern matching.

Nevertheless, proceeding to the functional abstraction in such a way is far
to be consistent. Most of the time, the part of the circuit that includes reg-
ular structures is build using standard cell library. Complex and non regular
structures are implemented using a full custom design approach.

Therefore, considering the designers’ point of view, the functional abstraction
of regular gates should be achieved by the pattern matching since the standard
cell library provides the structure of the gates used to build the circuit. On the
contrary, the part of the circuit designed using the full custom approach should
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Fig. 8. Functional abstraction of a conflictual gate using the formal approach

be abstracted through the formal approach since the scheme of the gates is not
available. Yet, traditional functional abstraction tools work on the opposite way.

In the framework of this project, the challenge was to extend the application
of formal abstraction methods to complex and non regular structures to avoid
an overhead of work for the designers. An other advantage of this approach is
that the resulted abstracted network represents the circuit as an interconnection
of CCCs (Channel Connected Components). Each CCC is electrically isolated
from the other CCCs and can be characterized separately from the timing point
of view.

The main obstacle to this extension is the analysis of conflictual gates. At
first glance, the Fup and Fdown of complex gates are not complementary. A
conflict condition arises when both Fup and Fdown may be activated for a given
combination of the inputs. Then, the problem is to prove, by exploring the gate’s
environment that, due to the spatial correlation of signals, the conflict conditions
cannot be realized. The solution resides in an efficient algorithm able to identify
the spatial correlation of signals inside the circuit.

An other problem comes from structures presenting a circular dependency.
A circular dependency is detected when the input of a potential gate depends
through a series of other gates on its own output. Most of the time, a circular
dependency denotes the presence of a memory point. In such a situation, the
extraction of the gate’s Boolean function needing the exploration of its environ-
ment will eventually require the knowledge of Boolean function of the gate. The
solution resides in a formal resolution of the circular dependencies represented
as a system of Boolean equations.

To overcome these difficulties, we have developed two original algorithms. A
first technique, based on graph coloration, aims at the identification of sources
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Fig. 9. Spsmall : a column of bits and the circular dependencies of the gates

11



of correlation inside the circuits. The second algorithm targets the resolution of
systems of Boolean equations and relies of the calculation of Boolean derivatives.

The two methods extend the scope of formal functional abstraction to a new
class of complex and non regular gates. As a consequence, the full abstraction
of Spsmall has been made reachable using the formal approach.

Even if the formal abstraction method proposed within the framework of this
project is general and does not rely on the specific structures of Spsmall’s gates,
it is not yet able to cover the abstraction of all classes of memories. For instance,
the formal abstraction of self timed memories requires another type of analysis
namely, the identification of timing correlation between signals.

3.2 Timing Abstraction

The problem of extracting timing information such as propagation delays is a
classic issue in timing verification. In our proposed approach, the description
abstracted from the transistor level is analyzed to obtain the local timing char-
acteristics of each abstracted gate.

The timing abstraction involves a timing model and a timing characterization
method.

The timing model defines defines how the behavior of a gate is seen form
the timing point of view. The paradigm of State Transition Graph (STG) can
be used as a general model of the timing behavior. The concept is similar to [?]
where a State Transition Graph for Power Estimation is presented. Here, each
gate is abstracted as a set of states (graph vertices). The transition between
two states (a graph’s edge) that exhibits a modification of the gate’s output
state may be characterized from the timing point of view. For our concerns, the
timing characteristics are reduced to the propagation delays from an input to
the output.

Various kind of STGs with different level of complexity and accuracy can be
considered.

The simplest STG model is the general inverter model. The STG of each
gate has only two states regardless of the number of its inputs. Each state repre-
sents an electrical level of the gate’s output. The transition from one state to the
other is characterized by the propagation delay to the rising or the falling edge
of the output. Obviously, the input that produces the transition of the output
does not appear in this model and the propagation delay should summarize all
the different situations that may result to a rising or a falling transition of the
output. This can be done by attributing to a graph edge the maximal, the mini-
mal or the average delay of the different transitions or an interval of propagation
delay.

The input-output STG, represents an N-input gate as a set of N indepen-
dent graphs. Each graph describes the timing behavior of the output regarding
the transition of a given input. This model incorporates the knowledge of the
source of transition and offers a higher accuracy. Even though, the configuration
of the other inputs during the transition is ignored. The lack of this information
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may introduce some error in the global timing verification step due to the func-
tional correlation of signals inside the circuit. Figure 10 illustrates this situation.
Assuming that the worst configuration for the transition of A to D is B=1 and
C=0, the correlation between C and E inhibits this configuration. As a result,
the overall propagation delay from A to F will be overestimated.

Fig. 10. Example of signal correlation

A more complex STG overcomes this inconvenient. In this model, each state
represents a configuration of inputs. The transition between two states that
produces a change on the output is characterized. In counter part, the complexity
grows as 2N for an N-input gate.

In practice, the timing model and the number of propagation delays have a
direct impact on the complexity of the timed automata. Hence, to reduce the
expansion of these automata, we consider an intermediate STG where a state
is coded as a configuration of inputs, but where multiple input transitions are
excluded. Then, a functional analysis of signal correlations is applied to remove
from the STG those transitions that may not be produced in the circuit.

Regardless of the type of STG, a method should be defined to compute the
timing characteristics associated with each edge. Obviously, an accurate evalua-
tion of the propagation delays requires the knowledge of the gate’s structure in
terms of transistors. The wire that connects two gates has also a significant effect
on the delay. These two informations should be preserved through the functional
abstraction process. Two types of evaluation methods may be considered.

A first approach consists in setting up a direct expression of the propagation
delay. This expression is derived from the resolution of the set of differential
equations that denote the charge or the discharge of the gate’s output through
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a specific path to Vdd or to Vss. Although this approach seems very attractive
in terms of evaluation time, it shows a poor accuracy. In fact, the formal reso-
lution of the differential equations implies a drastic simplification of the gate’s
structure, of the wire’s description as well as of the transistor’s model.

In the framework of Valmem project an alternative approach is used. It re-
lies on the classic electrical simulation. The propagation delays can be extracted
from a SPICE simulation of the gate as a stand alone circuit. The results tend
to exhibit a high accuracy and the simulation time remains reasonable. Never-
theless, slight differences can be observed compared to the delays extracted from
a simulation of the whole circuit. The differences result from a combinaison of 3
factors.

– The transition slope of the gate’s input is of the mere importance. It should
be as close as possible to the output slope of the gate connected to the input.

– The absence of the gate connected to the output make some coupling capac-
itance being neglected.

– The absence of the power grid and the IR-drop phenomena tends the to
underestimate the delays.

Considering the narrowness of the timing marigin within the specifications
of Spsmall, the application of the above approaches to this case presents at least
two difficulties.

Fig. 11. Example of timing correlation producing multiple input transitions

First, the environment of some abstracted gates in the circuit is such that
several inputs may switch in the same time. However, to reduce the complexity of
timed automata, the type of STG upon which the timing abstraction is build does
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not consider multiple input transitions. Figure 11, extracted from the abstracted
view of Spsmall, shows an example of such situation.

The second problem resides in the characterization of precharged signals. For
a precharged signal, the rising edge of the output can only be produced by a
transition of the clock signal. Simetrically, the falling transition of the output
may only be produced during the evaluation phase of the clock, on the transition
of another input signal. Therefore, the spatial correlation analysis implemented
in the timing abstraction is not enough to eliminate the non functional input
configurations from the STG. To address this problem, a more powerfull repre-
sentation of precharged signals is required. This representation should likely be
based on finite state machine formalism.

These difficulties combined to the small margin of the Spsmall’s specifications
make the timing characterization, resulted from the abstraction, not fit within
the specified margin.

4 Transformation into Timed Automata and Analysis of
the Instanciated Timed Model

VHDL2TA Tool performs the automatic translation into a network of timed
automata from a functional description given in VHDL and a set of timing
delays associated with each functional block of the VHDL description. In the
Timed Automata model, the set of timings of each blocks are abstracted into
two delay intervals, one corresponding to the propagation of a rising edge on
the output of the block, and one corresponding to the propagation of a falling
edge. The output format is either compatible with model checkers UPPAAL or
HyTech, or with the timing constraint synthesis tool IMITATOR-2. The timed
model and the translation principles have been described in [6].

4.1 Translation in Timed Automata

The VHDL file describes the functionality of the SPSMALL 3 × 2 memory,
automatically abstracted by LIP6 . The VHDL description contains

– 62 concurrent assignments, representing combinatorial blocks and
– 30 processes, representing either latchs, memory points and output buffers.

Associated with each block (either combinatorial or sequential), an external
file describes the set of propagation for all configurations.

Tool VHDL2TA generates a network of timed automata, instantiates the
timing parameters with the bounds of delay intervals computed from the timing
files, and adds an environment automaton mimicking the scenarii to be evalu-
ated. The UPPAAL representation of the memory is composed of :

– 92 timed automata for logical gates and latches, plus 24 automata with
urgent transitions evaluating complex boolean guards, plus 1 automaton for
the environment.
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– 93 clocks, (92 + 24) boolean variables, (92× 4) delay parameters.

The generation produces 18087 lines of code for the UPPAAL description and
is generated within 1 mn.

4.2 Analysis by Model-Checking with UPPAAL

Timed properties have been evaluated on the Instantiated Timed Automata
model through the use of model checker UPPAAL. Here we present a particular
environment corresponding to a common use of the memory (cf. Fig. 12). Is is
composed of a read operation at address 0, followed by a write operation at
address 1. As SPSMALL is a write-through memory, the data written is present
at the output after delay tCK→Q, producing a rising edge of output signal Q 0.
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Fig. 12. Environment for the verification of SPSMALL Memory.

We consider the delay given in the specification to determine the instants of
occurrence of edges for signals of the environment:

– Clock shape : thi 36 tlo 74;
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– D rising edge : d 0 : 112 up; (this means tDsetup = 108)

– WEN rising and falling edges : wen : 62 up, 172 down; (this means tWEN
setup =

48)
– Address rising edge : a 0 : 162 up; (this means tAsetup = 58).

The maximal response time of the memory is given by the specification : taaw
= 56. (Timings of the specification have been established by STMicroelectronics
designers by electrical simulations).

With UPPAAL, we proved the following TCTL property:
AG((t ≥ 0 ∧ t < 253) =⇒ q 0 = 0) ∧ (t > 304 =⇒ q 0 = 1))

The property is successfully evaluated in 10 mn and requieres 100 MB of
memory. The satisfaction of this property implies that tCK→Q ∈ [33, 84]. This
interval encompasses the response time given by the specification, however it is
too large: the timed automata model built is a too coarse approximation of the
memory.

This is mainly due to the range of delay intervals of four identified signals :
b 0, b 1, b0 and b1. For these signals, the interval range obtained by the electrical
simulation of the logical block disconnected from its environment is too wide.
We have to restrict the delay intervals by eliminating input configurations that
will never occur during the functioning of the memory.

The reduction is performed in two steps :

– an automated one which eliminates input configurations that are not com-
patible with the VHDL description.

– a manual one which restricts the input configurations to exactly those in use
for each operation (either read or write).

The application of these reductions and its impact on the range of delay
intervals is given in Table 1.

signal name initial delays automatic reduction manual reduction

b0 δ↓ = [0, 38],δ↑ = [1, 39] δ↓ = [5, 38],δ↑ = [1, 37] δ↓ = [17, 19],δ↑ = [1, 37]

b1 δ↓ = [0, 8],δ↑ = [0, 39] δ↓ = [0, 8],δ↑ = [0, 39] δ↓ = [17, 19],δ↑ = [0, 39]

b 0 δ↓ = [0, 39],δ↑ = [1, 39] δ↓ = [5, 39],δ↑ = [1, 37] δ↓ = [17, 19],δ↑ = [1, 37]

b 1 δ↓ = [0, 39],δ↑ = [1, 39] δ↓ = [5, 39],δ↑ = [1, 37] δ↓ = [17, 19],δ↑ = [1, 37]

Tableau 1. Reduction of delay intervals of signals b 0, b 1, b0 and b1.

With the automatic reduction of delay intervals, we were able to prove that
tCK→Q ∈ [38, 78]. Applying the manual reduction further, we were able to prove
that tCK→Q ∈ [50, 58]. In both cases, the property is verified within 10 mn. The
model is still too coarse to perform a timing analysis as accurate as the electrical
simulation does.
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One can evaluate the performances of UPPAAL to compute optimal setup
timings for the model of the memory, still guaranteing a response time bound in
[50, 58]. This is performed by changing the environment, and bounding the occur-
rence’s instants of edges of input signals D, WEN and A to an interval instead of a
punctual value. Precisely, the new environment stipulates that tDsetup ∈ [81, 108],

tWEN
setup = [32, 48] and tAsetup = [33, 58]. With this new environment, we were able

to prove that the response-time property is bound by [50, 58]. The proof took
25mn and 800 MB of memory.

5 Parametric Analysis

We synthesize here constraints guaranteeing the proper behavior of the memory,
first by using the inverse method [7], then using the behavioral cartography [8].

5.1 Inverse Method

We first apply here the inverse method algorithm IM described in [7] and im-
plemented in Imitator II [5] to two models of the SPSMALL memory.

Manually Abstracted Model

Description. We consider here a model manually abstracted, close to the model
considered in [9]. We recall the model considered in [9] in Figure 13 under the
form of an AFTG. This model was abstracted in order to consider that only
one bit is stored. As a consequence, D becomes a 1-bit signal. Furthermore, we
consider only the portion of the circuit relevant to the write operation.

Fig. 13. Abstract model of the SPSMALL memory (write operation)

Although the model we consider here is close to the model considered in [9],
a major difference with the model of [9] though is that delays are not only asso-
ciated to latches and wires anymore, but to latches, wires and gates, depending
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on the components. This model has been designed partially automatically from
the VHDL code, using abstractions. This VHDL source code (available in [10])
was itself manually written.

This model, depicted in Figure 14, results in 9 components. Components
delayD and delayWEN are delays (i.e., the logical functionality is the identity),
components NOT 1, NOT 2 and NOT 3 are “NOT” gates, WEL is an “OR” gate,
and components delayWEN , latchD and net27 are latches. A further difference
with the model considered in [9] is that several components have been grouped
together in order to avoid the state-space explosion problem1. For example, sev-
eral delays associated to wires have been incorporated into the previous elements:
this is the case, e.g., of component wire5 from Figure 13, the delay of which has
been incorporated into the element latchD, resulting in only one component
(latchD) in our model depicted in Figure 14.

delayD

NOT1

NOT2

NOT3

delayWEN

latchD

net45

WEL
net27

D

CK

WEN

Q

Fig. 14. PTAs modeling the write operation of SPSMALL

Each of the components depicted in Figure 14 (wires, gates, latches) is mod-
eled using a PTA. The translation of the gates into PTAs has been performed
automatically using a preliminary version of Vhdl2Ta. The other components
were manually written, and so was the composition of all components together.
The environment is also modeled using a PTA. This results in a model contain-
ing 10 automata, 10 clocks and 26 parameters corresponding to the traversal
delays of the components and the environment. Contrary to [9], the PTAs mod-
eling the gates are actually complete, in the sense that all possible configurations
and transitions are modeled, not only the configurations that will be met for a
precise environment, as it was the case in [9]. This is in particular due to the
automatic generation of the PTAs.

1 This model was actually first designed to be analyzed using HyTech, which can
hardly accept more than 10 components modeled by PTAs in parallel. However,
analyzing this model using Imitator II is performed easily in a couple of seconds.
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Implementation SP1. We give below the set of parameter valuations (say, π1)
coming from the implementation SP1 and adapted to this first model (timings
are given in tens of pico-seconds).

d up q 0 = 21 d dn q 0 = 20 d up net27 = 0

d dn net27 = 0 d up d inta = 22 d dn d inta = 45

d up wela = 0 d dn wela = 22 d up net45a = 5

d dn net45a = 4 d up net13a = 19 d dn net13a = 13

d up net45 = 21 d dn net45 = 22 d up d int = 14

d dn d int = 18 d up en latchd = 28 d dn en latchd = 32

d up en latchwen = 5 d dn en latchwen = 4 d up wen h = 11

d dn wen h = 8 d up d h = 95 d dn d h = 66

THI = 45 TLO = 65 tDsetup = 108

tWEN
setup = 48

Constraint synthesized by the inverse method. We apply the inverse method
algorithm IM described in [7] and implemented in Imitator II [5] to this model
and the reference valuation π1 (corresponding to the SP1 implementation). The
following constraint K1 is synthesized after 32 iterations (31 reachable states
with 30 transitions) in less than 2 seconds:

THI + d up net13a > d dn net13a + d dn wela + d up net27 + d up q 0

∧ TLO > d up en latchd + d up d int + d up d inta

∧ tDsetup + d dn en latchd > d up d h + d up d int + d up d inta

∧ tWEN
setup + d up d h > tDsetup + d dn wen h + d dn net45 + d dn net45a + d up wela

∧ TLO + d dn wen h > tWEN
setup + d up net13a + d up wela

∧ THI > d dn net13a + d dn wela

∧ TLO > tWEN
setup + d up en latchwen

∧ tDsetup > d up d h

∧ tDsetup ≥ TLO

∧ TLO + THI ≥ tDsetup
∧ d dn en latchwen ≥ 0

∧ d up en latchwen ≥ 0

∧ tWEN
setup + d up en latchd > TLO + d dn wen h

∧ d dn net13a > d dn en latchwen

∧ tWEN
setup + d up net13a > TLO

∧ d up en latchwen + d up net45 + d up net45a > d up en latchd

∧ d dn net13a + d dn wela > d dn en latchd

∧ d up wela ≥ 0

∧ tDsetup + d up en latchd + d dn d int + d dn d inta > TLO + d up d h

∧ d up en latchd + d up d int + d up d inta > d up en latchwen + d dn net45 + d dn net45a

∧ d up d h + d up d int + d up d inta > tDsetup + d dn net13a

∧ d dn net13a + d dn wela + d up net27 + d up q 0 > THI + d up en latchwen

Interpretation. The main advantage of the constraint synthesized by Imitator II
is that it allows to show the link between the internal timing delays and the
external values of the environment. Indeed, the timing parameters corresponding
to the environment are constrained by the internal traversal delays of the gates,
wires and latches. Despite the complex form of the constraint synthesized, it is
possible to give an interpretation for some of the inequalities.
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First of all, some inequalities are actually synthesized because of the environ-
ment that we consider. Inequalities such as tDsetup ≥ TLO or TLO + THI ≥ tDsetup
come from the way we modeled the environment, and are bound by the model
more than the system.

Moreover, other inequalities can be interpreted as a guarantee on the order
of the events. Recall that our inverse method guarantees the same trace sets
and, as a consequence, the same ordering of events. For example, the inequality
tWEN
setup + d up en latchd > TLO + d dn wen h implies that the (timed) path

through wire delayWEN is greater than the path through gate NOT 3. In other
words, the upper input of latch net45 must change before its left input.

Optimization. By replacing within K1 every parameter except tDsetup and tWEN
setup

by its valuation as defined in π1, one gets the following constraint on tDsetup
and tWEN

setup :

46 < tWEN
setup < 54 ∧ 99 < tDsetup ≤ 110 ∧ tDsetup < tWEN

setup + 61

It is then interesting to minimize those setup timings. Indeed, if one minimizes
the setup duration of the input signals without changing the overall behavior
of the system, then this means that the memory can be inserted in a faster
environment where the input signals change faster. One can thus minimize tDsetup
and tWEN

setup according to K1 as follows:

tWEN
setup = 47 ∧ tDsetup = 100

By comparison with the original parameter valuation π1 (viz., tDsetup = 108

and tWEN
setup = 48), this results in a decreasing of the setup timing of signal D

(resp. WEN ) of 7.4 % (resp. 2.1 %).
In [9], the authors compute a minimum value of 95 for tDsetup , and a mini-

mum value of 29 for tWEN
setup . As a consequence, our values may still be improved.

Improving those values for this model will be the purpose of Section 5.2.

Automatically Generated Model This second version of the SPSMALL
memory is a more complete model of the memory, representing not only the
portion of the memory corresponding to the write operation, but the complete
architecture. As in the previous section, this model was abstracted in order
to consider that only one bit is stored. As a consequence, D becomes a 1-bit
signal. We give in Figure 15 the schematics from [9] depicting the wires, gates
and latches under the form of an Abstract Functional and Timing Graph, and
corresponding to the complete architecture of SPSMALL.

A further major difference with the manual model described in the previous
section is that the PTAs are here fully automatically generated. Recall that, in
the previous section, the PTAs were written in a partially manual way, and the
model was then simplified by grouping together several automata. Here, we first
manually wrote the VHDL code corresponding to the different elements of the
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Fig. 15. Abstract model of the SPSMALL memory

memory (which is much quicker and less error-prone than describing the PTAs),
and then automatically synthesized the PTAs using the tool Vhdl2Ta [11].
This leads to more parameters, including a slightly richer environment, involving
explicitly signal A, characterized by its setup value, viz., tAsetup . This technique
results in a model containing 28 automata, 28 clocks, 32 discrete variables and 62
parameters.

Due to the high number of parameters and the complexity of the model,
we do not give here the set of parameter valuations coming from the datasheet
of SP1 and adapted to this second model, but it can be found in [10, 12]. We
only give below the set of parameter valuations (say, π′1) corresponding to the
three input timings we are interested in optimize (timings are given in tens of
pico-seconds):

tDsetup = 108 tWEN
setup = 48 tAsetup = 58

Applying Imitator II to this model and this reference valuation π′1, one
synthesizes a constraint K ′1, projected below onto tAsetup , tDsetup and tWEN

setup . The
interested reader may refer to [12] for the complete valuation and the complete
constraint on the whole set of parameters.

tDsetup = 108 ∧ tWEN
setup = 48 ∧ 56 < tAsetup < 60

This constraint is an “interesting” (though unfortunate) example of con-
straint for which the output parameter domain is (almost) reduced to a single
point. Thus, it is not possible to optimize values of tDsetup and tWEN

setup according
to this constraint. Nevertheless, the cartography algorithm introduced in [8] will
allow us to overcome this shortcoming, and synthesize a dense set of parameters
allowing us to minimize those input timing parameters (see Section 5.2).

Larger Models Two other versions of the SPSMALL memory have been con-
sidered. The first one is actually the full SPSMALL memory with 1 memory point

22



of 2 bits. The model described as a network of PTAs has been automatically gen-
erated from the VHDL code using Vhdl2Ta. The VHDL code itself was also
automatically generated from the transistor netlist given by ST-Microelectronics.
This chain of analysis has been performed in the framework of the VALMEM
project. Unfortunately, because of the high size of this model (101 automata,
101 clocks, 200 parameters, 130 discrete variables, which result in more than
6000 lines of code described in the Imitator II syntax), Imitator II does not
succeed to synthesize a constraint after several hours.

The second version corresponds to a larger version of the SPSMALL memory,
with 3 memory points of 2 bits. Due to the even larger size of this model (more
than 130 automata), Imitator II does not succeed to synthesize a constraint
either.

Improving Imitator II so that it can synthesize constraints for such large
systems is the subject of future work. It is also interesting to note that non-
parametric analyses of these two models have been successfully performed using
the Uppaal model checker [13], allowing to verify several properties.

5.2 Behavioral Cartography

We apply here the behavioral cartography as described in [8] and implemented
in Imitator II [5].

We will consider here two versions of the memory: the manually abstracted
model, and the automatically generated model.

Manually Abstracted Model We first consider here the model manually
abstracted, described in Section 5.1. We are interested in minimizing the values
of the setup timing parameters, viz., tDsetup and tWEN

setup , so that they still verify the
following good property mentioned in [9]: “the response time of the memory must
be smaller than 56” (recall that units are given in tens of ps). This response time
corresponds to the value TCK→Q, and represents the time between the second
rise of input signal CK and the rise of the output signal Q. Note that this
good property does not strictly speaking correspond to a property on traces.
As a consequence, we make use of an observer (as in [14] and [9]), i.e., an
additional PTA which waits for the rise of Q and, depending on the time of this
action, goes into a good location or into a bad location. Locations are observable
within traces, thus this property is now a property on traces.

We perform a behavioral cartography of the SPSMALL memory, for the
following V0:

tDsetup ∈ [65; 110] ∧ tWEN
setup ∈ [0; 66].

The other parameters are instantiated like in π1. We give in Figure 16 the car-
tography of the SPSMALL memory, as automatically output by Imitator II [5].
The dashed rectangle corresponds to V0. The red zone above tWEN

setup is infinite,
and corresponds to a bad behavior.
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Fig. 16. Cartography of the SPSMALL memory

Recall that each different colored zone corresponds to a different behavior2.
Note that the cartography actually contains a few holes, i.e., zones (depicted in
white) covered by no tile. We manually “filled” those zones by calling again the
inverse method on one point in each zone, which allowed us to cover the whole
rectangle V0.

We then partition the tiles into good and bad. This partition is depicted
under a graphical form in Figure 17, where the light red (resp. dark blue) zone
corresponds to the bad (resp. good) values of the parameters. After partition-
ing the tiles into good and bad, one is able to infer the following constraint
corresponding to the set of parameters for which the memory circuit behaves
well:

99 < tDsetup ≤ 110 ∧ 30 < tWEN
setup ≤ 65

This constraint corresponds to the maximal constraint solving the good parame-
ters problem for the SPSMALL memory within V0, because the whole rectangle
has been covered by the tiles.

Due to the way we modeled the system (in particular the environment),
values such that tDsetup < 65 or tDsetup > 110 do not correspond to any proper be-
havior. As a consequence, the constraint synthesized corresponds to the maximal
constraint for the whole parameter space of this model.

One can thus minimize tDsetup and tWEN
setup according to the cartography as

follows:

tDsetup = 100 ∧ tWEN
setup = 31

2 Recall that this cartography has been automatically output by Imitator II which
can only represent a few colors (due to the use of an external plot tool). As a
consequence, different zones depicted using the same color do not necessarily have
the same trace set.
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Fig. 17. Cartography of the SPSMALL memory (after partition)

By comparison with the original datasheet π1 (viz., tDsetup = 108 and tWEN
setup = 48),

this results in a decreasing of the setup timing of signal D of 7.4 %, and a
decreasing of the setup timing of signal WEN of 35.4 %.

Comparison with Other Methods. In [9], the authors synthesize a minimum for
these setup timings, by iteratively decreasing the setup timings until the system
does not behave well anymore, i.e., until the response time is not guaranteed
anymore. When compared to our approach, the approach of [9] has the following
limitation: they test only the integer points, and do not have any guarantee for
the dense set of parameters between two integer points. In [9], a minimum value
of 95 is given for tDsetup . However, our approach indicates that the value of 95
corresponds to a bad behavior, and therefore shows a discrepancy between our
respective models. A minimum value of 29 is given for tWEN

setup , which is slightly
smaller as ours. Again, this indicates a discrepancy between our respective mod-
els.

Automatically Generated Model We now consider the model automatically
generated, described in Section 5.1. As in the previous section, we are interested
in minimizing the values of the setup timing parameters, viz., tDsetup and tWEN

setup , so
that they still verify the following good property mentioned in [9]: “the response
time of the memory must be smaller than 56” (recall that units are given in
dozens of ps). Again, we make use of an observer in order to transform this
property into a property on traces.

We perform a behavioral cartography of the SPSMALL memory, for the
following V0:

tDsetup ∈ [89; 98] ∧ tWEN
setup ∈ [25; 34].

Due to the complexity of this model, note that the rectangle V0 is not as large
as for the manual model. We give in Figure 18 the cartography of the SPS-
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MALL memory, as automatically output by Imitator II. The dashed rectangle
corresponds to V0.

Fig. 18. Cartography of the SPSMALL memory (generated model)

Recall that each different colored zone corresponds to a different behavior.
This cartography, though interesting, contains many holes, i.e., zones (depicted
in white) covered by no tile.

We then chose to launch again the analysis using a tighter grid, viz., by
calling the inverse method on points multiple of 1/3 instead of integer points.
This corresponds to the algorithm BC ′ sketched in [8]. The reason for the choice
of 1/3 is that, with such a step, one is sure to cover any tile delimited by integer
points. This is not the case of a step of 1 (or even 1/2), because tiles delimited by
integer points may exclude those integer points in the case of strict inequalities.

This second cartography of the SPSMALL, with step 1/3, is given in Fig-
ure 19. This cartography is this time successful in the sense that the whole
bounded parameter domain V0 is covered by the tiles. Furthermore, a significant
part of the parametric space outside V0 is also covered.

We then partition the tiles into good and bad. This partition is depicted
under a graphical form in Figure 20, where the light red (resp. dark blue) zone
corresponds to the bad (resp. good) values of the parameters. From this partition,
one is able to infer the following constraint corresponding to the set of parameters
within V0 for which the memory circuit behaves well:

96 ≤ tDsetup ≤ 98 ∧ 29 ≤ tWEN
setup ≤ 34

This constraint corresponds to the maximal constraint solving the good parame-
ters problem for the SPSMALL memory within V0, because the whole rectangle
has been covered by the tiles. Also note that the cartography gives further in-
formation outside V0.
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Fig. 19. Cartography of the SPSMALL memory (full coverage)
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Fig. 20. Cartography of the generated model of the SPSMALL memory (after partition)

One can thus minimize tDsetup and tWEN
setup according to the cartography as

follows:

tDsetup = 96 ∧ tWEN
setup = 29

By comparison with the original valuation for tDsetup and tWEN
setup (viz., tDsetup = 108

and tWEN
setup = 48), this results in a decreasing of the setup timing of signal D

of 11.1 %, and a decreasing of the setup timing of signal WEN of 39.6 %. Such
an important decreasing of some of the values of the environment show the
interest of the cartography algorithm for the optimization of timing parameters.
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Comparison with Other Methods. Recall that, in [9], the authors also synthesize
a minimum for these setup timings, by iteratively decreasing the setup timings
until the system does not behave well anymore. In [9], a minimum value of 95
is given for tDsetup . However, our approach indicates that the value of 95 corre-
sponds to a bad behavior, and therefore shows a slight discrepancy between our
respective models. Also observe that the authors of [9] find a minimum value
of 29 for tWEN

setup , which is exactly the same as ours. This shows the interest of our
method, which computes a constraint allowing to retrieve fully automatically
the (manually computed) results from [9], with the advantages that we consid-
ered the full model of the memory (not only the write operation), that we give
relations between the parameters (under the form of a constraint), and above
all that we now give conditions of correctness on the dense space of parameters.

Due to the high size of this model (viz., an NPTA composed of 28 PTA
containing 28 clocks, 32 discrete variables and 62 parameters) and to the prac-
tical interest of the constraint output, this case study can be considered as an
extremely interesting application of Imitator II.

Remarque 1. In [9], values corresponding to simulation are given. Simulation is a
technique based on an exact virtual version of the memory. It is usually extremely
costly to perform (and is suitable for only one environment) but its results can
be considered as exact for this particular case. For this case study, a simulation
has been performed using the entire system (i.e., without cutting away some
parts of the memory), for some (punctual) values of the input timings. For this
environment and those values of the parameters, according to [9], the minimum
possible value computed by simulation for tWEN

setup is 36, and the minimum possible

value for tDsetup is 95. For tDsetup , this means that the value we compute is suitable,
because it is greater than the minimum possible value. Moreover, it is almost
the optimal value, since our method allows to minimize tDsetup to 96, whereas

the minimum value is 95. For tWEN
setup , however, our value is strictly smaller than

the value computed using the simulation, which represents a minimum. This
indicates that (at least) one delay assigned to a gate of our model (which has
been automatically computed in the framework of the VALMEM project) is too
approximative.

6 Subsisting Problems

The previous experiment shows that two main problems remain in our method-
ological flow, in order to perform a fully automated formal post-validation of the
timing specification of the SPSMALL memory:

6.1 Accuracy of the formal model

The timed automata model obtained from the functional abstraction + timing
extraction steps is an abstraction of the spice model: it encompasses all the timed
behaviors the spice model may produce, but it also contains some extra behav-
iors. The property we verify have to be satisfied for all behaviors produced by
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the formal model, hence there may exist some behaviors in the formal model, not
existing in the spice model, that invalidate a too precise property. This explains
the dispersion of 5% of the response time we analyze, while the specification
allows a 1% dispersion.

These extra-behaviors are mainly due to two phenomena:

1. The collapse of sets of punctual delays for rising and falling edges into two
dense-time intervals. This corresponds to a basic choice of our methodol-
ogy, which addresses two important features. On the one hand, the delays
associated to each gate are extracted by electrical simulation for particular
conditions (external temperature, input slope). An important work has been
done to reduce the uncertainty induced by the input slope, but other varying
parameters remain. Hence the punctual delay given by TIMEX are known
with a 5% margin. This uncertainty is captured into the dense-time delay
interval model adopted in the formalism of timed automata. On the other
hand, the reduction of punctual delays into two timed intervals is adequate
for timed automata: in a time automaton representing a gate or a process,
one location is associated to each interval. A multiplication of delays would
induce wide automata, this model would have presented less behaviors than
the 2 interval model, but the former would not have been tractable by stan-
dard model-checking tools.

2. The consideration of non-functional input configurations during the timing
extraction (in case of pre-charged signals). The timing extraction is per-
formed considering each gate or functional block without considering the
environment in which it evolves. This disconnection has a small impact on
the timings being extracted for each input configuration, but it has a great
impact when one has to filter the input configurations and transitions that
have to be considered. Ideally, for a gate or a block, all input configurations
and for each configuration, all single transitions have to be considered. This
is what was applied to extract the timings of combinatorial blocks, leading
to two thin delay intervals (dispersion is less than 10% in each interval). For
sequential blocks however, the dispersion of delay in each interval is much
more important (up to 4000 %) and among all the configurations evaluated,
only a small fraction is significative. We had to reduce the timing intervals of
these components. Some reduction have been automated but others, based
on reasoning of pre-charged signals, needs to analyze the dynamics of signals
in order to filter some non-functional configurations.

6.2 Scale to industrial size circuits

The automatic analysis with timed model-checkers as UPPAAL is successful for
circuits of the size of SPSMALL (about 100 gates with rising and falling intervals
for each gate), but the analysis would fail for bigger circuits, or in case of less
constrained environments. The automatic extraction of timing constrains is ap-
plicable to small asynchronous circuits (up to 20 or 30 gates and 60 parameters),
but the extraction procedure is too expansive to be applied to bigger systems.
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6.3 Other limitations

Other limitations prevented us from applying our flow to memory SPREG, ini-
tially defined in the proposal of the project. These are mainly due to the partic-
ular self-timed logics this circuit contains, which is not taken into consideration
in the functional abstraction tool.

7 Comparison of our results with existing flows

The methodology we developed gives several types of results:

– an abstract functional view and related timed sets. These models can be
used to build a timed VHDL model and perform VHDL event-driven timed
simulation. In this case, environment and internals delays are punctual. The
VHDL model growths fast (as it contains all punctual delays), but the simula-
tion performed at logical level is quicker than the one performed at electrical
level.

– formal proof of timed properties for pre-defined scenarios including varying
delays. These proofs cannot be performed with the electrical simulator, which
evaluates one precise delay for each action, and cannot reason with delay
variation.

– extractions of linear constraints between timed parameters. These constraints
may be used to perform delay optimizations, but also to visualize the timing
domains of internal and environmental delays guaranteeing good behaviors
and to understand the relationship between delays. These aspects are not
achievable with electrical simulation tools.

These results are automatically obtained thanks to the the set of tools de-
veloped during the VALMEM project. This set of results types is interesting
since it gives the opportunity to the designer to have a better understanding
and confidence of its circuit during the different steps of its conception. How-
ever, the accuracy of the formal model is not as high as the spice model is, hence
the results we provided are not accurate enough to validate the datasheet of our
case study: our results are guaranteed within a margin of 5% while the datasheet
requires a lower margin (around 1%). The tools developed are not restricted to
the analysis of memory circuits and the rich results they provide can be of great
help in the development of complex systems combining concurrency and tim-
ing features. Successful examples of use of tools VHDL2TA and IMITATOR-2
can be found in [6] and [5] in the context of asynchronous gate-level circuits or
high-level concurrent and timed protocols.
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