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Preface

The last decades have seen an immense amount of research on the algo-
rithmic content of game theory. On the one hand, a new subject called
algorithmic game theory has emerged that is concerned with the study of the
algorithmic theory of finite games with multiple players. On the other hand,
infinite and, in particular, stochastic two-player zero-sum games have become
an important tool for the verification of open systems, which interact with
their environment.

The aim of this work is to bring together algorithmic game theory with
the games that are used in verification by extending the algorithmic the-
ory of stochastic two-player zero-sum games to incorporate multiple play-
ers, whose objectives are not necessarily conflicting. In particular, this
work contains a comprehensive study of the complexity of the most promi-
nent solution concepts that are applicable in this setting, namely Nash and
subgame-perfect equilibria.

This book is the result of my doctoral studies at RWTH Aachen Univer-
sity. I am indebted to my primary supervisor Erich Grädel for giving me the
opportunity to pursue these studies, for introducing me to the scientific
community and for giving me advice just when I needed it. I am equally
grateful to my secondary supervisor Wolfgang Thomas for his constant
support and encouragement.

Marcin Jurdziński did not hesitate to act as an external reviewer for this
thesis. I thank him not only for his careful reading and numerous remarks,
but also for giving an inspiring talk on branching vector addition systems,
which indirectly led to the resolution of a problem that was left open in the
original version of this thesis.

A substantial part of this book is based on joint work with Dominik Wojt-
czak. I am indebted to him for our numerous illuminating discussions,
for his insights and ideas, and—last but not least—for hosting me in Edin-
burgh, Amsterdam and Oxford.
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Among the various other people who contributed to this work, I would
like to thank in particular Łukasz Kaiser for many enlightening discussions
and for discovering Proposition 3.18. Special thanks also go to Florian Horn
for many interesting discussions, to János Flesch for pointing out Proposi-
tion 3.13, and to Peter BroMiltersen for drawingmy attention to Corollary 4.4.
Moreover, I am grateful to Hugo Gimbert and Eilon Solan for answering my
questions and to Rohit Chadha, Tobias Ganzow, Jörg Olschewski and Edeline
Wong for their comments on preliminary drafts of this work.

Finally, I would like to thank Sam Ross-Gower for designing the cover of
this book, and Donald Knuth and Leslie Lamport for creating (LA)TEX.

Paris, November 2010
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1
Introduction

In this first chapter, we introduce games and equilibria, present the main
contributions of this work and discuss related work. Finally, the end of this
chapter contains an outline of the rest of this book.

1.1 Games and equilibria

Generally speaking, game theory is occupied with understanding the phe-
nomena that occur when rational entities interact. As a distinct field of
study, game theory came into being in 1944, when von Neumann & Mor-
genstern published their seminal monograph, although it can be traced
back to 1838 when Cournot published his work on duopolies; other early con-
tributors were Zermelo (1913) and Borel (1921). Since then, game theory has
found applications in fields as diverse as economics, sociology, biology, logic
and—last but not least—computer science.

Matrix games

According to von Neumann & Morgenstern, a game is described by a k-di-
mensional matrix that consists of the payoffs (one for each player) for each
possible combination of strategies. Consider, for example, the following situ-
ation (Osborne & Rubinstein 1994; Luce & Raiffa 1957). A couple wishes to
attend a concert of classical music. Their main goal is to go out together, but
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1 Introduction

Table 1.1. Bach or Stravinsky.

Bach Stravinsky

Bach 2,1 0,0
Stravinsky 0,0 1,2

one of them prefers Bach, whereas the other person prefers Stravinsky. The
payoffmatrix for this game would then look like the one shown in Table 1.1.

Von Neumann & Morgenstern dealt primarily with two-player games
that are completely antagonistic; what one player gains is the other player’s
loss. Formally, they require that for every pair of strategies, the payoffs of
the two players sum up to 0 (or to any other constant value); this is why such
games are called two-player zero-sum games.

The game of Bach or Stravinsky is obviously not zero-sum. What is a solu-
tion of such a game? Intuitively, there are two possible rational outcomes, in
which both persons attend together a concertwithmusic composed by either
Bach or Stravinsky. If they go to different concerts, then each of them has
an incentive to go to the respective other concert since their main concern
is to enjoy a concert together. In general, a profile of strategies, one for each
player, is a Nash equilibrium (Nash 1950) if no player can increase her payoff by
unilaterally switching to a different strategy. Hence, the game of Bach or
Stravinsky has two Nash equilibria: (Bach,Bach) and (Stravinsky,Stravinsky).

Note that a Nash equilibrium makes no statement on how the players
arrive at the equilibrium. Moreover, a serious problem with Nash equilibria
is that they are not orthogonal; if, for instance, one player arrives at the con-
clusion that (Bach,Bach) is the preferred equilibrium and therefore picks the
strategy Bach, while the other player picks Stravinsky because she thinks
that (Stravinsky,Stravinsky) is the preferred equilibrium, then the resulting
pair of strategies is not an equilibrium. Hence, in general, the players have
to coordinate their strategies in order to arrive at a Nash equilibrium.

Now consider a different situation, where two players have to choose
either Head or Tail; if the choices are the same, the first player has to pay 1 €
to the second player; if the choices differ, the second player has to pay 1 €
to the first player. The payoff matrix of this game is depicted in Table 1.2:
the rows of the matrix correspond to strategies of the first player. At first
glance, it seems that this game does not have a Nash equilibrium; if the
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1.1 Games and equilibria

Table 1.2. Matching pennies.

Head Tail

Head 1,−1 −1, 1
Tail −1, 1 1,−1

choices are the same, then the second player will change her strategy, and if
the choices differ, then the first player will change her strategy. However,
there is an equilibrium in a different kind of strategy; If both players randomise
their strategies and play Head or Tail with probability 1

2 each, then each
player receives an expected payoff of 1

2 against every strategy of the other
player, and we have a Nash equilibrium.

Formally, a mixed strategy is a probability distribution over the basic, so-
called pure, strategies, and a Nash equilibrium in mixed strategies is a profile of
mixed strategies such that no player can increase her expected payoff by
unilaterally switching to another (mixed) strategy; in fact, it is easy to see
that, in order to have a Nash equilibrium, it suffices that no player can gain
from switching to a different pure strategy. Nash’s theorem (1950) states that
every game with finitely many players and finitely many pure strategies
for each player has a Nash equilibrium in mixed strategies; for two-player
zero-sum games, the existence of an equilibrium inmixed strategies already
follows from the minimax theorem (von Neumann 1928).

Games in extensive form

Games in matrix form model one-shot events; both players choose their
strategies at once and independently of each other, and the game is over.
In practice, interaction occurs usually over time in a sequential fashion.
This aspect is taken into account by games in extensive form. Consider, for ex-
ample, the sequential version of matching pennies where the second player
makes her decision only after the first player has made hers and announced
it to the second player. Such a game is naturally represented by a tree such
as the one in Figure 1.1.

A pure strategy in a game in extensive form selects, for each node in the
tree that is labelled by the respective player, a possible action. If the tree
is finite, then there is only a finite number of such strategies, and Nash’s
theorem guarantees the existence of a Nash equilibrium inmixed strategies.

17
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1

2

1,−1

Head

−1,1

Tail

Head

2

−1,1

Head

1,−1

Tail

Tail

Figure 1.1. Matching pennies as a game in extensive form.

In fact, Kuhn (1950) showed that every finite game (of perfect information) in
extensive form has an equilibrium in pure strategies, which can be found
by a simple backwards induction. Intuitively, this result relies on the fact that
games in extensive form are turn-based: at every node of the tree there is a
unique player who makes a decision, whereas in a matrix game the players
make their decisions simultaneously. We will present several variants of
Kuhn’s theorem for stochastic games in Chapter 3.

In our example of matching pennies in extensive form, the second player
can always make her choice dependent on the first player’s choice; if the
first player selects Head, she will select Tail, and if the first player selects
Tail, she will select Head. If paired with any of the two pure strategies of the
first player, we have a Nash equilibrium in pure strategies.

For games in extensive form, it turned out that Nash equilibria may
lack credibility because players are able to change their strategy during the
course of the game.¹ Hence, researchers have come up with more restricted
solution concepts for games in extensive form. In particular, the notion
of a subgame-perfect equilibrium, introduced by Selten (1965), addresses this
deficiency and plays a central role in this work.

Stochastic games

Arguably, most—if not all—real-world systems are influenced by events of a
probabilistic nature. Shapley (1953) was the first to define a gamemodel that
incorporates probabilistic choices: Shapley games are played by a finite number
of players on a finite state space, and in each state, each player chooses
one of finitely many actions; the resulting profile of actions determines
a reward for each player and a probability distribution on successor states.

¹ We will see an example of such a game in Chapter 3.
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1.1 Games and equilibria

In principle, a stochastic game proceeds ad infinitum. The payoff that each
player receives is given by a function of the infinite stream of rewards for
this player: Shapley considered games where payoffs are discounted sums of
rewards; other popular payoff functions are the limit average of the rewards
or the total sum of the rewards (see Filar & Vrieze 1997).

A pure strategy in a stochastic game assigns an action to each possible
sequence of states visited so far, whereas a randomised strategy (the analogue
of a mixed strategy for stochastic games) assigns a probability distribution
on actions to each such sequence. Hence, every player has at her command
an, in general, infinite number of pure strategies, and Nash’s theorem is
not applicable. Nevertheless, in the case of discounted payoffs, there always
exists a Nash equilibrium in randomised strategies (Fink 1964). There is even
a Nash equilibrium where the strategies only depend on the current state
and not on the full history of visited states; we call such strategies stationary.
For games with limit-average payoffs, Nash equilibria do, in general, not
exist. However, Vielle (2000a,b) proved that every two-player stochastic
gamewith limit-average payoffs has an ε-equilibrium, i.e. a profile of strategies
where each player can gain at most ε from deviating, for all ε > 0. Whether
ε-equilibria exist in stochastic games with more than two players and limit-
average payoffs is an open question (Neyman & Sorin 2003).

Games in computer science

Games were first (implicitly) used as a tool to solve a theoretical problem in
computer science by Büchi & Landweber (1969), when they solved Church’s
problem (Church 1957, 1963). Church asked whether it is possible, given a
circuit or a logical formula that describes a binary relation on infinite se-
quences, to synthesise a circuit that computes for every input sequence an
output sequence such that the output is in relation to the input (whenever
such a circuit exists). Additionally, the output should be computed on the
fly, i.e. the ith letter of the output may only depend on the first i letters of
the input. This scenario can naturally be modelled by a two-player game,
where the players alternate in choosing letters from the two sequences.
What Büchi and Landweber essentially proved is that these games are deter-
mined, i.e. that either one of the two players has a winning strategy, and that
one can compute a winning strategy that can be realised by a finite-state
transducer.
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1 Introduction

The games that arise from Church’s problem are games in extensive form,
played on the (infinite) unravelling of a finite graph; each vertex carries the
information which player has to output a letter and which letter has been
output last. These graph games can also be used to solve Church’s problem
in the more general setting of a reactive system (plant) interacting with its
environment (Abadi et al. 1989; Pnueli & Rosner 1989; Ramadge & Wonham
1989). The task is to synthesise a controller for the system such that the
system behaves correctly for all possible behaviours of the environment (or to
detect that this is impossible). If one combines the possible behaviours of the
system and the environment into one game, such a controller corresponds
to a winning strategy for one player in this game.

Graph games also play an important role in the automated verification
of systems with respect to logical specifications, known as model checking
(Clarke et al. 1999; Baier & Katoen 2008). For instance, the question whether
a formula in Hennessy-Milner logic (Hennessy & Milner 1985) holds in a
finite transition system can be reduced to the question whether one player
has a winning strategy in a reachability game on a certain graph, which can
easily be constructed from the formula and the system.

For more complex logics such as themodal µ-calculus Lµ (Kozen 1983), the
games that arise from the model-checking problem have more complicated
winning conditions which refer to the set of vertices occurring infinitely
often in a play. These games are called parity games, and we will discuss them
in the next chapter. Let us onlymention at this point that the computational
complexity ofmodel checking Lµ hinges on the complexity of decidingwhich
player has a winning strategy in a parity game (see Grädel 2007), a problem
which is not known to be solvable in polynomial time.

There are many more areas of computer science where games have en-
tered the picture. For instance, the semantics of a computational model can
often be naturally defined as a game. This can not only be done for models
that are close in spirit to games such as alternating Turing machines (Chandra
et al. 1981), but also for certain functional programming languages such as
PCF, for which game-theoretic semantics provided the first fully abstract
model (Abramsky et al. 2000; Hyland & Ong 2000).

An emerging area of computer science whose subjects are games them-
selves is algorithmic game theory (Nisan et al. 2007), which is concerned with
the computational content of game theory. In particular, algorithmic game
theory has dealt with the computational complexity of finding equilibria.

20



1.2 The stochastic dining philosophers problem

Daskalakis et al. (2006, 2009) established that finding an ε-equilibrium of a
finite matrix game is complete for the class PPAD (a class of function prob-
lems situated between FP and FNP). Later, Chen & Deng (2006) strengthened
their result by establishing that computing a Nash equilibrium of a finite
two-player matrix game is also PPAD-complete.

The stochastic games we study in this work are closer to games in exten-
sive form than Shapley games. In particular, they differ from the classical
setting in two aspects: First, they are turn-based. Second, there are no im-
mediate rewards on transitions. Instead, every player has a certain objective,
which is a (Borel) set of desired plays. Intuitively, every player aims at gen-
erating a play that meets her objective. Hence, the payoff a player receives
from a single play is just 0 or 1 (depending on whether the play fulfils the
player’s objective or not). In the two-player zero-sum variant, these games
occur naturally when onewants to build a controller for a system interacting
with a probabilistic environment (Baier et al. 2004).

1.2 The stochastic dining philosophers problem

For the kind of stochastic games we study here, most research has con-
centrated on the two-player zero-sum case; see Chapter 2 for a survey of
results. To see why it is worthwhile to study games with multiple players in
computer science, let us look at an example, which is a variant of the dining
philosophers problem, originally introduced by Dijkstra (1971), to illustrate the
difficulties of synchronisation in concurrent systems.

In the dining philosophers problem, there are n + 1 philosophers (n ≥ 1)
sitting at a round table with a bowl of rice in the middle. Between any
two philosophers who sit next to each other lies a chopstick, which can
be accessed by both of them. Since the table is round, there are as many
chopsticks as there are philosophers; see Figure 1.2. To eat from the bowl,
a philosopher needs to acquire both of the chopsticks he has access to. Hence,
if one philosopher eats, then his two neighbours cannot eat at the same
time. The life of a philosopher is rather simple and consists of thinking and
eating: To survive, a philosopher needs to think and eat again and again.
The task is to design a protocol that allows all of the philosophers to survive.

There are many solutions to the dining philosophers problem. For ex-
ample, the philosophers could proceed in rounds: in each round, only one
philosopher eats and all others think (see below).

21



1 Introduction

Figure 1.2. Dining philosophers.

Now, let us make the problem a little harder by removing one of the
n+1 chopsticks uniformly at randomat the beginning of the game. Obviously,
this makes it impossible for two philosophers to survive (since they only
have access to one chopstick). More precisely, with probability 2/(n + 1) a
philosopher will have access to only one chopstick and die.

What is a good protocol in such a situation? Clearly, wewant each philoso-
pher to survive with high probability (i.e. with probability 1−2/(n+ 1)). More-
over, it is natural to require that a philosopher who does not survive if he
follows the protocol should not be able to survive by sabotaging the protocol
(possibly inflicting harm on the other philosophers). This property is ensured
if the proposed protocol forms a Nash equilibrium; being perfectly rational,
no philosopher has an incentive to deviate from such a protocol.

Let us model the stochastic dining philosophers problem by a stochastic
game. A state of the game comprises the state of each philosopher and the
state of each chopstick; a philosopher may either think, eat, wait for the
chopstick on his left (right) side, or wait to return the chopstick on his left
(right) side, and a chopstick may either be missing, available, or occupied
by the philosopher on its left (right) side. Since our model is turn-based,
we also assume that there is a variable turn, whose value determines which
philosopher may execute an action; after the action has been performed,
the variable is reset randomly.

The complete game can be represented as the synchronous composition
of processes P0 , . . . , Pn , C0 , . . . , Cn , S: process Pi models the ith philosopher,
process Ci models the ith chopstick, and process Smodels the scheduler, which
controls the turn variable and removes one chopstick uniformly at randomat
the beginning of the game. These processes and the actions they can execute
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1.2 The stochastic dining philosophers problem

Pi :

Think

WaitR WaitL

Eat

RetL RetR

idlei

req
i ,i req

i ,i+1reli ,i
reli ,i+1

idlei idlei
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i ,i+1 req

i ,i
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reli ,i+1 reli ,i

reli ,i reli ,i+1

Ci :

Avail

Miss

OccL OccR

losei
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i−1,i req

i ,i

reli−1,i
reli ,i

S:

⋮

turn=0

⋮

turn=n

lose0

losen

τ

τ

idle0 , req0,∗ , rel0,∗

idlen , req
n ,∗ , reln ,∗

Figure 1.3. Processes for the stochastic dining philosophers problem.

are depicted in Figure 1.3 (arithmetical operations ought to be understood as
modulo n+1). Diamond shaped vertices stand for states where a probabilistic
choice is taken; with probability 1/(n+1) each, one of the outgoing transitions
is selected, and the corresponding action is taken. Note that the actions req

i , j

and reli , j are shared by the processes Pi , C j and S, whereas the action idlei

is only shared by Pi and S, and the action losei is only shared by Ci and S;
the symbol τ denotes an internal action.

For n = 1, a part of the complete game is depicted in Figure 1.4; the part
of the game that is entered when the action lose0 is taken is symmetric
and not shown. In the figure, the vertex labelled (wr, or, t,m, 0) represents,
for instance, the state where the first philosopher waits for the chopstick on
his right (i.e. he has acquired the chopstick on his left), the first chopstick
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⋯

t, a, t,m, 0 t, a, t,m, 1

wr, or, t,m, 0 wr, or, t,m, 1 t, ol, wl,m, 0 t, ol, wl,m, 1

lose0

lose1

idle0 idle1

req0,0 req1,0

idle0 idle1 idle0 idle1

rel0,0 rel1,0

Figure 1.4. The stochastic dining philosophers game with two philosophers.

is occupied by the philosopher on its right (i.e. by the first philosopher),
the second philosopher thinks, the second chopstick is missing (since the
action lose1 has been executed), and the first philosopher may execute an
action. Note that no state where a philosopher eats is reachable from the
initial state (which is not surprising given that a philosopher needs two
chopsticks to eat). Hence, there does not exist a protocol where a philosopher
survives with non-zero probability.

For n > 1, the stochastic dining philosophers game has several equilibria:
in some of them, each philosopher survives with probability 0; in others,
the probability of survival is non-zero. For instance, consider the greedy
(albeit foolish) strategy where a philosopher first tries to acquire the left
chopstick and subsequently the right chopstick; once a philosopher has
acquired both chopsticks, he continues eating forever. In particular, a chop-
stick that has been acquired once is never released. Clearly, every philosopher
survives with probability 0 if all philosophers adhere to this strategy. Yet,
this profile of strategies constitutes a Nash equilibrium; if one philosopher
changes his strategy and returns his two chopsticks to resume thinking,
with positive probability one of his neighbours (adhering to the greedy strat-
egy) picks up one of these chopsticks and never hands it back. Hence, the
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1.3 Contributions

probability that the philosopher who has changed his strategy can go from
thinking to eating and back at least k times tends to 0.

Now consider the strategy where a philosopher only acquires a chopstick
if both chopsticks adjacent to him are present and no other philosopher is
holding a chopstick; once a philosopher has eaten, he puts both chopsticks
back on the table, so that he can resume thinking (the order in which chop-
sticks are put up and down is arbitrary). With probability 1, a philosopher
who is not missing a chopstick will survive if all philosophers adhere to this
strategy. On the other hand, if a philosopher is missing one of his chopsticks,
he will starve and die. Hence, since the probability of missing a chopstick
is 2/(n + 1), each philosopher survives with probability 1 − 2/(n + 1)with this
profile of strategies. Moreover, we have a Nash equilibrium since there is no
way for a philosopher who is missing a chopstick to survive.

Clearly, the latter equilibrium is preferable to the former because the
probability of survival is greater. Moreover, the equilibrium strategies have
the attractive property that the chosen action only depends on the current
state of the game; we call such strategies positional. In Chapter 4, we will
see that deciding the existence of an equilibrium in positional strategies is
NP-complete.

1.3 Contributions

The first step in analysing a mathematical concept is to prove its existence.
For Nash equilibria in stochastic games, existence was proven by Chatterjee
et al. (2004b). However, their proof contains an inaccuracy, whichwe address
in this work. By contrast, subgame-perfect equilibria do, in general, not
exist in stochastic games. Nevertheless, we show that they do exist in the
special case of deterministic games with Borel objectives.

From a computer science point of view, the mere existence of an object is
not sufficient; we also want to compute it. We observe that, for games with
parity objectives, we can verify in polynomial time whether a given strategy
profile is a Nash or subgame-perfect equilibrium. This puts the problem of
computing a Nash equilibrium of a stochastic game with parity objectives
into the class FNP of function problems for which a possible solution can be
verified in polynomial time. In particular, there exists a polynomial-space
algorithm to compute an arbitrary Nash equilibrium of a stochastic games
with parity objectives.
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1 Introduction

With the stochastic dining philosophers example in mind, we argue that
it makes sense to measure the computational complexity of equilibria not
only in terms of how hard is it to compute an arbitrary equilibrium (as is
done in algorithmic game theory), but also of how hard it is to compute
an equilibrium with a certain payoff. More precisely, we permit the plac-
ing of a lower and an upper threshold on the payoff of each player. The
corresponding decision problem is:

Given a game with k players and payoff thresholds x, y ∈ [0, 1]k , decide
whether the game has an equilibrium whose payoff lies in-between
x and y.

Depending on whether we ask for a Nash or a subgame-perfect equilibrium,
we already obtain two different decision problems. It turns out that it also
makes a difference in what types of strategies the equilibrium is realised.
In this work, we consider six types of strategies: positional strategies, sta-
tionary strategies (which can be randomised), pure finite-state strategies,
randomised finite-state-strategies (both of which may depend on some fi-
nite information about the sequences of states seen so far), arbitrary pure
strategies and arbitrary randomised strategies (both of which may depend
on the full sequence of states seen so far).

We show that the complexity of the decision problem is highly dependent
on the types of strategies that one allows for the equilibrium: The problem
is typically decidable if we look for equilibria in positional or stationary
strategies, but it becomes undecidable if we allow arbitrary (pure) strategies
or (pure) finite-state strategies. In fact, we prove that it is not possible to
decide the existence of an equilibrium where a designated player wins with
probability 1 for these types of strategies (for all other players there is no
constraint on the payoff).

In order to perform a more refined complexity analysis, we need to re-
strict the types of objectives; we show that for the typical objectives used
as acceptance conditions for automata on infinite words, deciding whether
there exists a pure stationary equilibrium whose payoff lies in-between
x and y is NP-complete, whereas we can only give a Pspace upper bound for
the general stationary case. However, we prove that the latter problem is at
least as hard as the infamous square root sum problem, a problem about exact
numerical computations, which is not known to lie inside the polynomial
hierarchy. Hence, our Pspace upper bound seems hard to improve.
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In fact, all the lower bounds we have mentioned so far hold for stochastic
games with a very restricted type of objectives, namely simple reachability ob-
jectives. In particular, this type of objectives is subsumed by all the objectives
that play a role in verification. Moreover, the payoff function defined by
simple reachability objectives is a special case of the limit-average payoff
function with binary rewards on transitions; hence, our lower bounds also
hold for stochastic games with limit-average payoffs.

Although it is, in general, not possible to decide the existence of an equi-
librium with a certain payoff, we prove decidability for several fragments
of the original decision problem: first, we show that the problem becomes
decidable when one looks for an equilibrium where each player either wins
or loses with probability 1; second, we prove decidability for the restriction
where one requires all but one player to win with probability 1. Additionally,
for the payoff of the remaining player, we can specify a lower threshold.
Finally, we show that the problem is decidable for deterministic games if
we restrict ourselves to binary thresholds.

For all of the fragments we study, we classify the complexity of the prob-
lem with respect to the type of objectives. In many cases, it turns out that
their complexity is comparable to the complexity of solving two-player zero-
sum stochastic games with the same type of objectives. In other cases,
the problems become harder; for instance, deciding whether in a determin-
istic game with co-Büchi objectives there exists a Nash equilibrium that
is winning for the first player is NP-complete, whereas the corresponding
decision problem for two-player zero-sum games is solvable in polynomial
time. In addition, we show that for all of the fragments we consider it does
not make a difference whether one considers randomised or pure strategies;
in fact, in most cases, pure finite-state strategies are sufficient.

Most of the results presented in Chapter 4 and some of the results pre-
sented in Chapter 5 were obtained in collaboration with Dominik Wojt-
czak. Preliminary expositions of most of the results presented in this work
were published in the proceedings of various conferences and workshops
(Ummels 2008; Grädel & Ummels 2008; Ummels & Wojtczak 2009a, 2009b).

1.4 Related work

In algorithmic game theory, the predominant question has been the com-
plexity of computing equilibria as a function problem. The decision version,
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where one asks whether there exists an equilibrium with certain proper-
ties, has attracted considerably less interest. Surely, one reason for this lack
of interest is that it was realised early on that such problems are usually
NP-hard for finite matrix games (Gilboa & Zemel 1989). In particular, decid-
ing whether in a two-player matrix game there exists a Nash equilibrium
where the first player’s payoff is greater than a given threshold is NP-hard
(Conitzer & Sandholm 2003), even if the payoff matrix is binary (Codenotti &
Štefankovič 2005). Neither of these results implies one of our results since
our games are turn-based.

A more restricted model of stochastic games, where questions like ours
have been studied, are Markov decision processes (MDPs) with multiple ob-
jectives. These games can be considered as stochastic games where only
one player can influence the outcome of the game. For MDPs with multi-
ple ω-regular objectives, Etessami et al. (2008) showed that questions like
the one we ask are decidable. Their proof relies on the fact that, for MDPs
with multiple simple reachability objectives, stationary strategies suffice to
achieve a payoff that is higher than a given threshold. Unfortunately, this
property does not extend to our model: we give an example of a stochastic
game with simple reachability objectives where every Nash equilibrium
in which the first player wins with probability 1 requires infinite memory
(see Proposition 4.12).

1.5 Outline

In Chapter 2, we define the game model that underlies this work and survey
results on two-player zero-sum stochastic games.

Chapter 3 contains our results on the existence of Nash and subgame-
perfect equilibria in stochastic games. In that chapter, we also analyse the
complexity of computing an (arbitrary) equilibrium and introduce the vari-
ous decision problems associated with Nash and subgame-perfect equilibria
in different types of strategies.

In Chapter 4, we present our results on the complexity of Nash and
subgame-perfect equilibria: Sections 4.1 and 4.2 deal with equilibria in posi-
tional and stationary strategies respectively, for which we prove decidability
results. Finally, Sections 4.3 and 4.4 are concerned with equilibria in arbi-
trary (pure or randomised) strategies and finite-state strategies respectively,
for which we prove undecidability.
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1.5 Outline

In Chapter 5, we look at several fragments of the original decision prob-
lem for Nash equilibria and prove their decidability. Section 5.1 covers the
fragment where one restricts to equilibria in which each player either wins
or loses almost surely; Section 5.2 deals with the special case where all but
one player is required to win with probability 1, and Section 5.3 contains our
results on deterministic games.

Finally, in Chapter 6, we list some open problems and point out possible
extensions to this work.

For readers who do not have the necessary background on probability or
complexity theory, Appendix A provides a brief introduction to the relevant
concepts. Additionally, Appendix B surveys results on Markov chains and
Markov decision processes that are essential for this work.
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2
Stochastic Games

In this chapter, we introduce stochastic games formally, and we briefly
summarise the main results on two-player zero-sum stochastic games. To-
wards the end of this chapter, we discuss the central open problems on the
computational complexity of these games.

Notation

We denote by M = {0, 1, . . .} the set of all natural numbers (including 0), by e
the set of all real numbers, and by [0, 1] the set of all x ∈ e such that 0 ≤ x ≤ 1.
Given a set A, we denote by P(A) its power set, and by D(A) the set of all
(discrete) probability distributions over A, i.e. functions p∶ A → [0, 1] such that
p(a) = 0 for all but countably many a ∈ A and ∑a∈A p(a) = 1. Moreover, we de-
note by A∗ and Aω the set of all finite, respectively infinite, sequences over A;
the empty sequence is denoted by ε, and we set A+ ∶= A∗ / {ε}. The length of
a finite sequence x is denoted by ∣x∣, and we write x ≺ y (x ⪯ y) if x is a proper
(non-proper) prefix of y. Finally, given an infinite sequence α = α(0)α(1) . . . ,
we denote by α∣k = α(0) . . . α(k − 1) its prefix of length k ∈ M and by Inf(α) the
set of elements occurring infinitely often in α.

2.1 Arenas and objectives

Let us start by giving a formal definition of the game model that underlies
this work. The games we are interested in are played by multiple players
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taken from a finite set Π of players; we usually refer to them as player 0,
player 1, player 2, and so on.

The arena of the game is basically a directed, coloured graph. Intuitively,
the players take turns to form an infinite path through the arena, a play. Ad-
ditionally, there is an element of chance involved: at some vertices, it is not a
player who decides how to proceed but nature, who chooses a successor vertex
according to a probability distribution. To model this scenario, we partition
the set V of vertices into sets Vi of vertices controlled by player i ∈ Π and a set
of stochastic vertices, and we extend the edge relation to a transition relation
that takes probabilities into account. Formally, an arena for a game with
players in Π consists of:

• a nonempty, countable set V of vertices or states,

• for each player i a set Vi ⊆ V of vertices controlled by player i,

• a transition relation ∆ ⊆ V × ([0, 1] ∪ {�}) × V, and
• a colouring function χ∶V → C into a set C of colours.

We make the assumption that every vertex is controlled by at most one
player: Vi ∩ V j = ∅ if i ≠ j; vertices that are not controlled by any player
are called stochastic. Moreover, we require that � appears in a transition
(v, p,w) ∈ ∆ if and only if v is a controlled vertex, and that transition prob-
abilities are unique: if v is a stochastic vertex and w is an arbitrary vertex,
then there exists precisely one p ∈ [0, 1] such that (v, p,w) ∈ ∆; we denote this
probability by ∆(w ∣ v). For computational purposes, we assume that these
probabilities are rational numbers. Naturally, for each stochastic vertex v
the probabilities on outgoing transitions must sum up to 1: ∑w∈V ∆(w ∣ v) = 1.
Finally, for v ∈ V, let

v∆ ∶= {w ∈ V ∶ there exists 0 ≠ p ∈ [0, 1] ∪ {�} such that (v, p,w) ∈ ∆}

be the set of possible successor vertices; for technical reasons, we assume
that for each controlled vertex v ∈ ⋃i∈Π Vi the set v∆ is finite and nonempty.

The description of a game is completed by specifying an objective for each
player. On an abstract level, these are just arbitrary sets of infinite sequences
of colours, i.e. subsets of Cω . Since we want to assign a probability to them,
we assume that objectives are Borel sets (see Appendix A), if not stated oth-
erwise. Since objectives specify which plays are winning for a player, they
are also called winning conditions.
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2.1 Arenas and objectives

In general, we identify an objective Win ⊆ Cω over colours with the cor-
responding objective χ−1(Win) ∶= {π ∈ Vω ∶ χ(π) ∈ Win} ⊆ Vω over vertices
(which is also Borel since χ, as a mapping Vω → Cω , is continuous). In fact,
for the mathematical treatment of stochastic games, it is perfectly safe to
assume that C = V and that χ is the identity function. The reason that we
allow objectives to refer to a colouring of the vertices is that the number of
colours can be much smaller than the number of vertices, and it is possible
that an objective can be represented more succinctly as an objective over
colours rather than as an objective over vertices.

If Π is a finite set of players, (V , (Vi)i∈Π , ∆, χ) is an arena and (Wini)i∈Π is a
collection of objectives, we call the tuple G = (Π, V , (Vi)i∈Π , ∆, χ, (Wini)i∈Π) a
stochastic multiplayer game (SMG). An SMG is finite if its arena is finite.

A play of G is an infinite path through the arena of G, i.e. an infinite
sequence π = π(0)π(1) . . . of vertices such that π(k + 1) ∈ π(k)∆ for each k ∈ M.
Finite prefixes of plays are called histories. We say that a play π of G is won by
player i if the corresponding sequence of colours fulfils player i’s objective,
i.e. χ(π) ∈Wini; the payoff of a play π is the vector x ∈ {0, 1}Π defined by xi = 1
if and only if χ(π) ∈Wini .

Often, it is convenient to designate an initial vertex v0 ∈ V; we denote the
pair (G , v0) an initialised SMG. A play or a history of an initialised SMG (G , v0)
is just a play, respectively a history, of G that starts in v0. In the following,
we will refer to both SMGs and initialised SMGs as SMGs; it should always
be clear from the context whether the game is initialised or not.

The SMGmodel may be generalised to allow for concurrent behaviour.
In this case, each player has at her commandanumber of actions, one ofwhich
she has to pick whenever the play has arrived at a vertex. The joint profile
of actions, chosen by the players simultaneously, determines a probability
distribution on successor vertices. The resulting model, named concurrent
games by de Alfaro et al. (2007), is closer to the original model by Shapley
(1953), but lacks many of the attractive properties of our model.

Although they are devoid of concurrency, SMGs provide a versatile model
and generalise various other stochastic models, each of them the subject of
intensive research. First, there areMarkov chains, the basic model for stochas-
tic processes, inwhich no control is possible. These are SMGswhere the set Π
of players is empty and (consequently) there are only stochastic vertices.

If we extend Markov chains by a single controller, we arrive at the model
of aMarkov decision process (MDP), a model introduced by Bellman (1957) and
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heavily used in operations research. Formally, an MDP is an SMG with only
one player (and only one objective).

Finally, in a (perfect-information) stochastic two-player zero-sum game (S2G),
there are only two players, player 0 and player 1, who have opposing objec-
tives: one player wants to fulfil her objective, while the other one wants to
prevent her from doing so. Hence, one player’s objective is the complement
of the other player’s objective. Due to their competitive nature, these games
are also known as competitive Markov decision processes(see Filar & Vrieze 1997).

The SMGmodel also incorporates several non-stochastic models. In par-
ticular, we call an SMG deterministic if it contains no stochastic vertices. In the
two-player zero-sum setting, the resulting model has found applications in
logic and controller synthesis (see Section 1.1).

Types of objectives

We have introduced objectives as abstract sets of infinite sequences. In order
to be amenable for algorithmic solutions, we need to restrict to a class of
objectives representable by finite objects. The objectives we consider for this
purpose are standard in logic and verification (see Grädel et al. 2002); for all
of them, we require that the set C of colours the objective refers to is finite.

• A reachability objective is given by a set F ⊆ C of good colours, and the objective
requires that a good colour is seen at least once. The corresponding subset
of Cω is Reach(F) ∶= {α ∈ Cω ∶ α(k) ∈ F for some k ∈ M}.

• A safety objective is also given by a set F ⊆ C of good colours, but this time
the objective requires that only good colours are seen. The corresponding
subset of Cω is Safe(F) ∶= {α ∈ Cω ∶ α(k) ∈ F for all k ∈ M}.

• A Büchi objective is again given by a set F ⊆ C of good colours, but it requires
that a good colour is seen infinitely often. The corresponding subset of Cω

is Büchi(F) ∶= {α ∈ Cω ∶ Inf(α) ∩ F ≠ ∅}.
• A co-Büchi objective is also given by a set F ⊆ C of good colours; this time, the
objective requires that from some point onwards only good colours are seen.
The corresponding subset of Cω is coBüchi(F) = {α ∈ Cω ∶ Inf(α) ⊆ F}.

• A parity objective is given by a priority function Ω∶C → {0, . . . , d}, where d ∈ M,
which assigns to each colour a certain priority. The objective requires that
the least priority that occurs infinitely often is even. The corresponding
subset of Cω is Parity(Ω) = {α ∈ Cω ∶min(Inf(Ω(α))) is even}.
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2.1 Arenas and objectives

• A Streett objective is given by a set Ω of Streett pairs (F, G), where F, G ⊆ C.
The objective requires that, for each of the pairs, if a colour on the
left-hand side is seen infinitely often, then so is a colour on the right-
hand side of this pair. The corresponding subset of Cω is Streett(Ω) =
{α ∈ Cω ∶ Inf(α) ∩ F = ∅ or Inf(α) ∩ G ≠ ∅ for all (F, G) ∈ Ω}.

• A Rabin objective is given by a set Ω of Rabin pairs (F, G), where F, G ⊆ C. The
objective requires that for some pair a colour on the left-hand side is seen
infinitely often while all colours on the right-hand side of this pair are
seen only finitely often. The corresponding subset of Cω is Rabin(Ω) =
{α ∈ Cω ∶ Inf(α) ∩ F ≠ ∅ and Inf(α) ∩ G = ∅ for some (F, G) ∈ Ω}

• AMuller objective is given by a familyF of accepting sets F ⊆ C, and it requires
that the set of colours seen infinitely often equals one of these accepting
sets. The corresponding subset of Cω is Muller(F) = {α ∈ Cω ∶ Inf(α) ∈ F}.

Parity, Streett, Rabin and Muller objectives are of particular relevance
because they provide a standard form for arbitrary ω-regular objectives;
any game with arbitrary ω-regular objectives can be reduced to one with
parity, Streett, Rabin or Muller objectives (over a larger arena) by taking the
product of its original arena with a suitable deterministic word automaton
for each player’s objective (see Thomas 1990).

In this work, for reasons that will become clear later, we are particularly
attracted to objectives that are invariant under adding and removing finite
prefixes; we call such objectives prefix-independent. More formally, an objective
is prefix-independent if for each α ∈ Cω and x ∈ C∗ the sequence α satisfies
the objective if and only if the sequence x ⋅ α does. Note that, if Win ⊆ Cω is a
prefix-independent objective over colours, then the corresponding objective
χ−1(Win) over vertices is also prefix-independent.

Of the objectives listed above, only reachability and safety objectives
are, in general, not prefix-independent. However, many of our results (in
particular, many of the lower bounds we prove) apply to games with a prefix-
independent form of reachability, which we call simple reachability. For such
an objective, we assume that each vertex is coloured by itself, i.e. C = V, and
χ is the identity mapping. The simple reachability objective for a set F ⊆ V
coincides with the reachability objective for F, but we require that each
v ∈ F is a terminal vertex: v∆ = {v}. For any such set F, there exists k ∈ M with
π(k) ∈ F if and only if Inf(π)∩F ≠ ∅ (or equivalently, Inf(π) ⊆ F). Hence, simple
reachability objectives are prefix-independent.
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Simple reachability
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Streett Rabin
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Figure 2.1. A hierarchy of prefix-independent objectives.

For S2Gs, the distinction between reachability and simple reachability is
not important: every S2G with a reachability objective can easily be trans-
formed into an equivalent S2Gwith a simple reachability objective. For SMGs,
we believe that any such transformation requires exponential time: Decid-
ing whether in a deterministic game with simple reachability objectives
there exists a play that fulfils each of the objectives can be done in poly-
nomial time, whereas the same problem is NP-complete for deterministic
games with standard reachability objectives (see Ummels 2005).

The resulting hierarchy of objectives is depicted in Figure 2.1. As explained
above, a simple reachability objective can be considered as a (co-)Büchi objec-
tive. Moreover, a (co-)Büchi objective can be translated to a parity objective
with only two priorities, and any parity objective can be translated to both a
Streett and a Rabin objective; in fact, the intersection (union) of any two par-
ity objectives can be represented as a Streett (Rabin) objective. Moreover, any
Streett or Rabin objective can be represented as a Muller objective; however,
the translation from a set of Streett/Rabin pairs to an equivalent family of
accepting sets is, in general, exponential. Finally, the complement of a Büchi
(Streett) objective can be represented as a co-Büchi (Rabin) objective, and vice
versa, parity and Muller objectives are closed under complementation. In
fact, an objective can be represented as both a Streett and a Rabin objective
if and only if it can be represented as a parity objective (Zielonka 1998).

To denote the class of SMGs (S2Gs)with a certain type of objectives, wepre-
fix the name SMG (S2G)with the name(s) of the objective; for instance, we use
the term Streett-Rabin SMG to denote SMGs where each player has a Streett or
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a Rabin objective. For S2Gs, we adopt the convention to name the objective
of player 0 first; hence, in a Streett-Rabin S2G player 0 has a Streett objec-
tive, while player 1 has a Rabin objective. Inspired by Condon (1992), we will
refer to SMGs with simple reachability objectives and S2Gs with a (simple)
reachability objective for player 0 as simple stochastic multiplayer games (SSMGs)
and simple stochastic two-player zero-sum games (SS2Gs), respectively.

2.2 Strategies and strategy profiles

Randomised and pure strategies

The notion of a strategy lies at the heart of game theory. Formally, a (ran-
domised) strategy of player i in an SMG G is a mapping σ∶V∗Vi → D(V) as-
signing to each possible sequence xv ∈ V∗Vi of vertices ending in a ver-
tex controlled by player i a (discrete) probability distribution over V such
that σ(xv)(w) > 0 only if (v, �,w) ∈ ∆. Instead of σ(xv)(w), we usually write
σ(w ∣ xv). We say that a play π of G is compatible with a strategy σ of player i
if σ(π(k + 1) ∣ π(0) . . . π(k)) > 0 for all k ∈ M with π(k) ∈ Vi . Similarly, a his-
tory x = v0 . . . vn is compatible with σ if σ(vk+1 ∣ v0 . . . vk) > 0 for all 0 ≤ k < n.

A (randomised) strategy profile of G is a tuple σ = (σi)i∈Π where σi is a strategy
of player i in G. We say that a play or a history of G is compatible with a
strategy profile σ if it is compatible with each σi . Given a strategy profile
σ = (σ j) j∈Π and a strategy τ of player i, we denote by (σ−i , τ) the strategy profile
resulting from σ by replacing σi with τ.

A strategy σ of player i is called pure or deterministic if for each xv ∈ V∗Vi

there exists w ∈ v∆ with σ(w ∣ xv) = 1; note that a pure strategy of player i
can be identified with a function σ∶V∗Vi → V. A strategy profile σ = (σi)i∈Π is
called pure (or deterministic) if each σi is pure.

The probability measure induced by a strategy profile

Given a game G and a strategy profile σ = (σi)i∈Π of G, the conditional probability
of w ∈ V given xv ∈ V∗V is the number σi(w ∣ xv) if v ∈ Vi and the unique
p ∈ [0, 1] such that (v, p,w) ∈ ∆ if v is a stochastic vertex; let us denote this
probability by σ(w ∣ xv). Given an initial vertex v0 ∈ V, the probabilities
σ(w ∣ xv) give rise to a probability measure: The probability of a basic cylinder
set v0 . . . vk ⋅ Vω is the product of σ(v j ∣ v0 . . . v j−1) for j = 1, . . . , k; cylinder sets
that start in a different vertex than v0 have probability 0. This definition
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Figure 2.2. An example of a two-player SSMG.

induces a probability measure on the algebra of cylinder sets, which—by
Carathéodory’s extension theorem (Theorem A.5)—can be extended to a
probability measure on the Borel σ-algebra over Vω; we denote the extended
measure by Prσ

v0 . Finally, by viewing the colouring function χ∶V → C as a
continuous function Vω → Cω , we obtain a probability measure on the Borel
σ-algebra over Cω; we abuse notation and denote this measure also by Prσ

v0 .
For a strategy profile σ, we are mainly interested in the probabilities

pi ∶= Prσ

v0 (Wini) of winning. We call pi the (expected) payoff of σ for player i
(from v0) and the vector (pi)i∈Π the (expected) payoff of σ (from v0). Note that,
if σ is a pure strategy profile of a deterministic game, then its payoff is just
the payoff of the unique play π of (G , v0) that is compatible with each σi .
Finally, we say that a history xv of (G , v0) is consistentwith σ if Prσ

v0 (xv ⋅V
ω) > 0,

i.e. if the basic cylinder induced by this history has positive probability. Note
that each history that is consistent with σ is also compatible with σ.

Example 2.1. Let G be the SSMG depicted in Figure 2.2 according to the fol-
lowing conventions, to which we adhere throughout this work: Vertices
controlled by players are drawn as circles, where the player who controls
a vertex is given by the label next to it. Stochastic vertices are drawn as
diamonds, and transition probabilities are given by labels on edges (the
default being 1

2 ). If there is a designated initial vertex, it is marked by a
dangling incoming edge. Finally, terminal vertices are generally depicted by
their associated payoff vector. As syntactic sugar, we allow arbitrary vectors
of rational probabilities as payoffs; this does not increase the power of the
model since such a payoff vector can easily be realised by an SSMG consisting
exclusively of stochastic and terminal vertices.

Now consider the strategy profile σ defined by σ(v1 ∣ xv0) = σ(v1 ∣ xv2) = 1
for each x ∈ V∗. Starting from the initial vertex v0 of G, the payoff of this
strategy profile is ( 12 ,

1
2 ) because the probability of reaching the terminal

vertex that has this payoff equals 1.
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In order to apply known results about Markov chains, we can also view
the stochastic process induced by a strategy profile σ as a countable Markov
chain Gσ , defined as follows: The set of states of Gσ is the set V+ of all
nonempty sequences of vertices in G. The only transitions from a state xv,
where x ∈ V∗ and v ∈ V, are to states of the form xvw, where w ∈ V, and such
a transition occurs with probability p > 0 if and only if either v is stochastic
and (v, p,w) ∈ ∆, or v ∈ Vi and σi(w ∣ xv) = p. Finally, the colouring χ of ver-
tices is extended to a colouring of states by setting χ(xv) = χ(v) for all x ∈ V∗,
v ∈ V. With this definition, we can recover the payoff of σ for player i as the
probability of the event χ−1(Wini) in (Gσ , v0).

For each player i, the Markov decision process Gσ−i is defined just as Gσ ,
but states xv ∈ V∗Vi are controlled by player i (the unique player in Gσ−i ), and
there is a transition from such a state to any state of the form xvw, where
w ∈ V, such that (v, �,w) ∈ ∆; player i’s objective is the same as in G.

Strategies with memory

A memory structure for a game G with vertices in V is a tripleM = (M, δ,m0),
where M is a set of memory states, δ∶M × V → M is the update function, and
m0 ∈ M is the initial memory. A (randomised) strategy with memoryM of player i is a
function σ∶M×Vi → D(V) such that σ(m, v)(w) > 0 only if w ∈ vE. The strategy
σ is a pure strategy with memory M if additionally the following property holds:
for all m ∈ M and v ∈ V there exists w ∈ V such that σ(m, v)(w) = 1. Hence,
a pure strategy with memoryM can be described by a function σ∶M× Vi → V.
Finally, a (pure) strategy profile with memory M is a tuple σ = (σi)i∈Π such that
each σi is a (pure) strategy with memoryM of player i.

A (pure) strategy σ with memoryM of player i defines a (pure) strategy
of player i in the usual sense as follows: Let δ∗(x) be the memory state after
x ∈ V∗, defined inductively by δ∗(ε) = m0 and δ∗(xv) = δ(δ∗(x), v) for x ∈ V∗

and v ∈ V. If v ∈ Vi , then the distribution (successor vertex) chosen by the
strategy σ for the sequence xv is σ(δ∗(x), v). Vice versa, every strategy (profile)
of G can be viewed as a strategy (profile) with memoryM ∶= (V∗ , ⋅, ε).

A finite-state strategy (profile) is a strategy (profile) with memoryM for a
finite memory structureM. Note that a strategy profile is finite-state if and
only if each of its strategies is finite-state. If ∣M∣ = 1, we call a strategy (profile)
with memoryM stationary. Moreover, we call a strategy (profile) that is both
pure and stationary a positional strategy (profile). A stationary strategy of
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Table 2.1. Types of strategies in stochastic games.

Pure Randomised

Stationary Vi → V Vi → D(V)
With memoryM M × Vi → V M × Vi → D(V)
General V∗Vi → V V∗Vi → D(V)

player i can be described by a function σ∶Vi → D(V), and a positional strategy
by a function σ∶Vi → V.

If σ = (σi)i∈Π is a strategy profile with memoryM, we modify the Markov
chain Gσ by taking M × V as its domain. The transition relation is defined
as follows: there is a transition from (m, v) to (n,w)with probability p > 0 if
and only if δ(m, v) = n and either v is a stochastic vertex of G and (v, p,w) ∈ ∆
or v ∈ Vi and σi(m, v)(w) = p. Finally, a state (m, v) is coloured with the same
colour as the vertex v in G. Analogously, we modify the Markov decision pro-
cess Gσ−i by using M × V as its domain: vertices (m, v) ∈ M × Vi are controlled
by player i, and there is a transition from such a vertex (m, v) to (n,w) ∈ M×V
if and only if n = δ(m, v) and (v, �,w) ∈ ∆. Note that the arenas of both Gσ

and Gσ−i are finite if the memoryM and the original arena of G are finite.
All the types of strategies we consider in this work and their representa-

tions are summarised in Table 2.1.

Residual games and strategies

Given an SMG G and a sequence x ∈ V∗ (which is usually a history), the residual
game G[x] has the same arena as G but different objectives: if the objective
of player i in G is Wini ⊆ Cω , then her objective in G[x] is given by the set
χ(x)−1Wini ∶= {α ∈ Cω ∶ χ(x) ⋅ α ∈Wini}. In particular, if all objectives in G are
prefix-independent, then G[x] = G.

If player i plays according to a strategy σ in G, then the natural choice
for her strategy in G[x] is the residual strategy σ[x], defined by σ[x](yv) = σ(xyv).
If σ = (σi)i∈Π is a strategy profile, then the residual strategy profile σ[x] is just
the profile of the residual strategies σi[x]. The following lemma, taken from
(Zielonka 2004), shows how to compute probabilities with respect to a resid-
ual strategy profile.

Lemma 2.2. Let σ be any strategy profile of G, and let xv ∈ V∗V be a history
of G. If X ⊆ Vω is a Borel set, then Prσ

v0 (X ∩ xv ⋅ V
ω) = Prσ

v0 (xv ⋅ V
ω) ⋅ Prσ[x]

v (x−1X).
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2.3 Subarenas and end components

Algorithms for stochastic games often employ a divide-and-conquer approach
and compute a solution for a complex game from the solution of several
smaller games. These smaller games are usually obtained from the original
game by restricting it to a subarena. Formally, given an SMG G, a set U ⊆ V is
a subarena if:

• U ≠ ∅,
• v∆ ∩ U ≠ ∅ for each v ∈ U, and
• v∆ ⊆ U for each stochastic vertex v ∈ U.

Clearly, if U is a subarena, then the restriction of G to vertices in U is again
an SMG, which we denote by G ↾ U. Formally,

G ↾ U ∶= (Π,U, (Vi ∩ U)i∈Π , ∆ ∩ (U × ([0, 1] ∪ {�}) × U), χU , (Wini)i∈Π),

where χU ∶U → C∶ u ↦ χ(u) is the restriction of the colouring function to U.

Of particular interest are the strongly connected subarenas of a game
because they can arise as the sets Inf(π) of vertices visited infinitely often
in a play; we call these sets end components. Formally, ∅ ≠ U ⊆ V is an end
component if U is a subarena and every vertex w ∈ U is reachable from every
other vertex v ∈ U (i.e. there exists a sequence v = v1 , v2 , . . . , vn = w, n ≥ 1, such
that vi+1 ∈ vi∆ for each 0 < i < n). An end component U is maximal in a set
S ⊆ V if there is no end component U′ such that U ⊊ U′ ⊆ S. For any finite
subset S ⊆ V, the set of all end components maximal in S can be computed
in quadratic time (see Appendix B for the algorithm).

The theory of end components has been developed by de Alfaro (1997, 1998)
and Courcoubetis & Yannakakis (1995, 1998). The central fact about end com-
ponents in finite SMGs is that, under any strategy profile, the set of vertices
visited infinitely often is almost surely an end component (cf. Lemma B.11).

Lemma 2.3. Let G be a finite SMG, and let σ be a strategy profile of G. Then
Prσ

v({π ∈ Vω ∶ Inf(π) is an end component}) = 1 for each vertex v ∈ V.

Moreover, for any end component U, we can construct a stationary strat-
egy profile, or alternatively a pure finite-state strategy profile, that, when
started in U, guarantees almost surely to visit all (and only) vertices in U
infinitely often (cf. Lemma B.12).
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Lemma 2.4. Let G be a finite SMG, and let U be an end component of G.
There exists both a stationary and a pure finite-state strategy profile σ of G
such that Prσ

v({π ∈ Vω ∶ Inf(π) = U}) = 1 for every vertex v ∈ U.

Given an SMG G with objectives representable as Muller objectives
Fi ⊆ P(C), we say that an end component U is winning for player i if χ(U) ∈ Fi;
the payoff of U is the vector x ∈ {0, 1}Π , defined by xi = 1 if U is winning for
player i.

2.4 Values, determinacy and optimal strategies

The notions of the value and an optimal strategy are central for the theory of
two-player zero-sum games. However, they can also be applied to SMGs.

Given a strategy τ of player i in G and a vertex v ∈ V, the value of τ from v
is the number valτ(v) ∶= inf σ Prσ−i ,τ

v (Wini), where σ ranges over all strategy
profiles of G. Moreover, the value of G for player i from v is the supremum
of these values: valGi (v) ∶= sup

τ
valτ(v), where τ ranges over all strategies

of player i in G. Intuitively, valGi (v) is the maximal payoff that player i can
ensure when the game starts from v.

Given an initial vertex v0 ∈ V, a strategy τ of player i in G is called (almost-
surely) winning if valτ(v0) = 1. More generally, τ is called optimal if valτ(v0) =
valGi (v0). For ε > 0, it is called ε-optimal if valτ(v0) ≥ valGi (v0) − ε. A globally
(ε-)optimal strategy is a strategy that is (ε-)optimal for every possible initial
vertex v0 ∈ V. Note that optimal strategies do not need to exist since the
supremum in the definition of valGi is not necessarily attained; in this case,
only ε-optimal strategies do exist. However, if for every possible initial vertex
there exists an (ε-)optimal strategy, then there also exists a globally (ε-)
optimal strategy.

Before we state the most important result on stochastic two-player zero-
sum games, we define two other notions of optimality, which will be useful
for proving the existence of certain equilibria in thenext chapter: We say that
a strategy τ of player i in (G , v0) is residually optimal if the residual strategy τ[x]
is optimal in the residual game (G[x], v) for every history xv of (G , v0). More
generally, τ is strongly optimal if τ[x] is optimal in (G[x], v) for every history xv
of (G , v0) that is compatible with τ. Note that a positional strategy profile
that is globally optimal is also residually optimal. Apart from being relevant
for the existence of equilibria, strongly and residually optimal strategies
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have been considered as best-effort strategies in two-player zero-sum games
(Faella 2009).

Determining values and finding optimal strategies in SMGs actually re-
duces to performing the same tasks in S2Gs. Formally, given an SMG G,
define for each player i the coalition game Gi to be the same game as G but with
only two players: player i acting as player 0 and the coalition player Π / {i}
acting as player 1. The coalition controls all vertices that in G are controlled
by some player j ≠ i, and its objective is the complement of player i’s objective
in G. Clearly, Gi is an S2G, and valGi (v) = valGi (v) for every vertex v. Moreover,
any (residually, strongly, ε-) optimal strategy for player i in (Gi , v0) is (resid-
ually, strongly, ε-) optimal in (G , v0), and vice versa. Hence, when we study
values and optimal strategies, we can restrict our investigation to S2Gs.

A celebrated theorem due to Martin (1998) and Maitra & Sudderth (1998)
(see also Maitra & Sudderth 2003) states that S2Gs with Borel objectives are
determined: valG0 = 1 − valG1 (where the equality holds pointwise).¹ The number
valG(v) ∶= valG0 (v) is consequently called the value of G from v. In fact, an in-
spection of the proof shows that—for the kind of games we study in this
work—both players do not only have randomised ε-optimal strategies but
also have pure ε-optimal strategies.

Theorem 2.5 (Martin; Maitra & Sudderth). Every S2G with Borel objectives
is determined; for all ε > 0, both players have ε-optimal pure strategies.

For finite S2Gs with prefix-independent objectives, we can show a
stronger result than Theorem 2.5: in these games, both players not only
have ε-optimal pure strategies, but optimal ones (Gimbert & Horn 2010).
In fact, their proof reveals not only the existence of optimal strategies but
the existence of residually optimal strategies; for an alternative proof of the
following theorem, see Section 2.6.

Theorem 2.6 (Gimbert & Horn). There exist residually optimal pure strate-
gies in every finite S2G with prefix-independent objectives.

As witnessed by the following two examples, Theorem 2.6 fails if either
the objective is not prefix-independent or the arena is not finite, even if
there is only one player.

¹ Martin proved the theorem originally for Blackwell games; Maitra & Sudderth adapted his proof
to stochastic games.
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v0 v1 v2

Figure 2.3. An MDP with no optimal strategy.
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Figure 2.4. Another MDP with no optimal strategy.

Example 2.7. Consider theMDP G depicted in Figure 2.3 where player 0wins
if the number of visits to vertex v0 is finite but strictly greater than the num-
ber of visits to vertex v1. We claim that (G , v0) does not admit an optimal
strategy. First, for each n ∈ M, consider the pure strategy σn ofmoving from v0
to v1 after completing precisely n loops around v0 . Clearly, Prσn

v0 (Win) = 1−1/2n ,
and therefore valG(v0) = 1. However, no strategy τ achieves this value: If
τ(v0 ∣ (v0)n+1) = 1 for all n ∈ M, then obviously Prτ

v0 (Win) = 0; otherwise,
consider the least n ∈ M such that p ∶= Prτ

v0 (v1 ∣ (v0)n+1) > 0; we have
Prτ

v0 (Win) ≤ 1 − p/2n < 1.

Example 2.8. Consider the MDP G depicted in Figure 2.4; every play that
visits each vertex vi is losing. Again, we claim that (G , v0) does not admit an
optimal strategy. First, for each n ∈ M, consider the positional strategy σn of
“leaving the game” at vertex vn . Clearly, Prσn

v0 (Win) = 1 − 1/2n+1, and therefore
valG(v0) = 1. But again, no strategy τ achieves this value: If τ(vn+1 ∣ v0 . . . vn) = 1
for all n ∈ M, then Prτ

v0 (Win) = 0; otherwise, consider the least n ∈ M such
that p ∶= Prτ

v0 (vn+1 ∣ v0 . . . vn) > 0; then Prτ

v0 (Win) ≤ 1 − p/2n+1 < 1.

For deterministic two-player zero-sum games with Borel objectives, ev-
ery value is either 0 or 1, and every ε-optimal strategy is already optimal.
In particular, from every vertex either one of the two players has a winning
strategy. This follows easily from Theorem 2.5 because any pure strategy
profile of a deterministic game gives payoff 0 or 1 to each player. The deter-
minacy of deterministic two-player zero-sumgameswas proven earlier than
the corresponding result for stochastic games, also by Martin (1975, 1985).
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In fact, the proof of Theorem 2.5 relies on the determinacy of deterministic
two-player zero-sum games.

Theorem 2.9 (Martin). Every deterministic two-player zero-sumgamewith
Borel objectives is determined. From each vertex, either player 0 or player 1
has a pure winning strategy.

In fact, in every deterministic two-player zero-sum game with Borel
objectives there exists a residually optimal pure strategy for each player, i.e.
a profile (σ, τ) of pure strategies such that, for each history xv of the game,
either σ[x] or τ[x] is winning in the corresponding residual game with initial
vertex v.

Corollary 2.10. There exist residually optimal pure strategies in any deter-
ministic two-player zero-sum game with Borel objectives.

Proof. Let (G , v0) be a deterministic two-player zero-sum game with a Borel
objective Win ⊆ Vω for player 0. Since the class of Borel sets is closed under
complementation, it suffices to show that player 0 has a residually optimal
pure strategy. With Win, each of the sets x−1Win, x ∈ V∗, is Borel. Hence,
by Theorem 2.9, for each history xv of (G , v0), we can fix a pure strategy σx

of player 0 that is optimal in the residual game (G[x], v); note that we can
assume that σx is independent of v. We have to combine these strategies in
an appropriate way to a residually optimal strategy σ. (Let us point out that
the trivial combination, namely σ(xv) ∶= σx(v), does not work, in general.)

We say that a decomposition x = x1 ⋅ x2 is goodwith respect to vertex v if
σx1 [x2] is winning in (G[x], v). If the strategy σx is winning in (G[x], v), then
the decomposition x = x ⋅ε is goodwith respect to v; so, a good decomposition
exists in this case. For each history xv, if σx is winning in (G[x], v), we choose
the good (with respect to vertex v) decomposition x = x1 ⋅ x2 with minimal x1 ,
and set σ(xv) ∶= σx1 (x2v); otherwise, we set σ(xv) ∶= σx(v).

To show that σ is residually optimal, it suffices to show that, for each
history xv of (G , v0), the strategy σ[x] is winning in (G[x], v) whenever the
strategy σx is. Hence, assume that σx is winning in (G[x], v), and let π be a
play starting in π(0) = v that is compatible with σ[x]. We need to show that
π ∈ x−1Win.

We claim that for each k ∈ M there exists a decomposition of the form
x ⋅ π∣k = x1 ⋅ (x2 ⋅ π∣k) that is good with respect to π(k). For k = 0, this
is obviously true. For k > 0, assume that there exists a decomposition

45



2 Stochastic Games

x⋅π∣k−1 = x1 ⋅ (x2 ⋅ π∣k−1) that is goodwith respect to π(k−1), and consider the one
where x1 is minimal. Then π(k) = σ(x ⋅π∣k) = σx1 (x2 ⋅π∣k), and x ⋅π∣k = x1 ⋅ (x2 ⋅π∣k)
is a good decomposition with respect to π(k).

Now, consider the sequence x01 , x
1
1 , . . . of prefixes of the decompositions

x ⋅π∣k = xk1 ⋅ (xk2 ⋅π∣k) that are good with respect to π(k) andwhere xk1 is minimal.
We have x01 ⪰ x11 ⪰ . . . because for each k > 0 the decomposition x ⋅ πk =
xk−11 ⋅ (xk−12 ⋅ πk) is also good with respect to π(k). Since ≺ is well-founded,
there must exist k ∈ M such that xk1 = xl1 and xk2 = xl2 for each l ≥ k. But then
the play π(k)π(k + 1) . . . is compatible with σx

k

1 [xk2 ⋅ π∣k], which is winning in
(G[x ⋅ π∣k], π(k)). Hence, π(k)π(k + 1) . . . ∈ (x ⋅ π∣k)−1Win and π ∈ x−1Win. □

For deterministic games, the payoff of a strategy profile is well-defined
even if the game has non-Borel objectives. Does Theorem 2.9 hold for such
games as well? Unfortunately, the answer is negative: Gale & Stewart (1953)
gave an example of a deterministic two-player zero-sum game with a non-
Borel objective where none of the two players has a pure winning strategy.

For finite S2Gs with ω-regular objectives, more attractive strategies than
arbitrary pure strategies suffice for optimality. In particular, in any finite
Rabin-Streett S2G there exists a globally optimal positional strategy for
player 0 (Klarlund 1994; Chatterjee et al. 2005).

Theorem 2.11 (Klarlund; Chatterjee et al.). In any finite Rabin-Streett S2G,
player 0 has a globally optimal positional strategy.

It follows from Theorem 2.11 that the values of a finite Rabin-Streett S2G
are rational of polynomial bit complexity in the size of the arena: Given a
positional strategy profile σ of G, the finite MDP Gσ−1 is not larger than the
game G. Moreover, if σ0 is globally optimal, then for every vertex v the value
of G from v and the value of Gσ−1 from v sum up to 1. But the values of a
Streett MDP form the optimal solution of a linear programme of polynomial
size (see Appendix B) and are therefore rational of polynomial bit complexity.

Of course, it also follows from Theorem 2.11 that finite parity S2Gs are
positionally determined: both players have globally optimal positional strate-
gies. This result was first proven for deterministic parity games (even for
games with an infinite arena) independently by Emerson & Jutla (1991) and
Mostowski (1991). For SS2Gs, the existence of optimal positional strategies
follows from a result of Liggett & Lippman (1969). Independently, McIver &
Morgan (2002), Chatterjee et al. (2004a) and Zielonka (2004) extended these
results to parity S2Gs.
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Corollary 2.12. In any finite parity S2G, both players have globally optimal
positional strategies.

Since every finite S2G with ω-regular objectives can be reduced to one
with parity objectives, we can conclude from Corollary 2.12 that both play-
ers have residually optimal pure finite-state strategies in finite S2Gs with
arbitrary ω-regular objectives.

Corollary 2.13. In any finite S2Gwith ω-regular objectives, both players have
residually optimal pure finite-state strategies.

Corollary 2.13 generalises the well-known theorem by Büchi & Landweber
(1969) that both players have optimal pure finite-state strategies in every
deterministic two-player zero-sum game with ω-regular objectives.

2.5 Algorithmic problems

Throughout this section, we only consider finite two-player zero-sumgames.
The main computational problems for these games are computing the value
and optimal strategies for one or both players. Instead of computing the
value exactly, we can ask whether the value is greater than some given
rational probability p, a problemwhich we call the quantitative decision problem:

Given a S2G G, a vertex v and a rational number p ∈ [0, 1], decide
whether valG(v) ≥ p.

Inmany cases, it suffices to knowwhether the value is 1, i.e. whether player 0
has a strategy to win the game almost surely (asymptotically, at least). We
call the resulting decision problem the qualitative decision problem.

Clearly, if we can solve the quantitative decision problem, we can approxi-
mate the values valG(v) up to any desired precision by using binary search. In
fact, for parity S2Gs it turns out that it suffices to solve the decision problems,
since the other problems (computing the values and optimal strategies) are
polynomial-time equivalent to the quantitative decision problem.

Proposition 2.14. Either none or all of the following problems are solvable
in polynomial time:

1. the quantitative decision problem for parity S2Gs,
2. computing the values valG(v) of a parity S2G,
3. computing globally optimal positional strategies in a parity S2G.
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Proof. (1.⇒ 2.) Assume that we have a polynomial-time algorithm for the
quantitative decision problem. Since the values of a finite parity S2G are
always rational of bit complexity polynomial in the size of the game, binary
search for the value valG(v) terminates after polynomially many steps with
the exact value of valG(v).

(2.⇒ 3.) Assume that there exists a polynomial-time algorithm for com-
puting the values. Then, given a parity S2G G, we can find a globally optimal
strategy for player 0 by the following procedure: In the case that every ver-
tex controlled by player 0 has only one outgoing transition, we are done.
Otherwise, let v ∈ V0 be a vertex with ∣v∆∣ > 1. Since there exists an optimal
positional strategy, there must exist a transition (v, �,w) ∈ ∆ such that the
values of the game do not change when all other transitions (v, �,w′) are
removed. Using the polynomial time algorithm for computing the values,
we can find such a transition. Now, we can iterate the procedure on the
(smaller) game that is obtained from G by removing all other transitions
that originate in v.

(3.⇒ 1.) Assume that there exists a polynomial-time algorithm for com-
puting globally optimal positional strategies. To determine valG(v), we can
then compute a pair (σ, τ) of such strategies, one for each player, and con-
struct the Markov chain G(σ ,τ). The value valG(v) equals the probability of
reaching from v a bottom SCC of G(σ ,τ) in which the least priority is even.
By solving a system of linear equations, we can easily compute this proba-
bility and check whether it is greater than p (see Appendix B). □

For a Markov decision process whose objective can be represented as
a Muller objective, we can compute the values by an analysis of its end
components: For a given initial vertex v, the value of the MDP from v is the
maximal probability of reaching a winning end component from v. Once all
vertices that reside in winning end components have been identified, these
probabilities can be computed in polynomial time via linear programming.

For MDPs with Rabin or Muller objectives, it is easy to see that the union
of all winning end components can be computed in polynomial time (see
de Alfaro 1997); for MDPs with Streett objectives, Chatterjee et al. (2005)
gave a polynomial-time algorithm for computing this set. Hence, for MDPs
with any of these objectives, the quantitative decision problem is solvable in
polynomial time.
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Theorem 2.15 (de Alfaro; Chatterjee et al.). The quantitative decision prob-
lem is in P for Streett, Rabin or Muller MDPs.

It follows fromTheorems 2.11 and 2.15 that the quantitative decision prob-
lem for Rabin-Streett S2Gs is in NP: To decide whether valG(v) ≥ p, it suffices
to guess a positional strategy for player 0 and to check whether in the result-
ing Streett MDP the value from v is ≥ p. By determinacy, this result implies
that the quantitative decision problem is in coNP for Streett-Rabin S2Gs,
and in NP ∩ coNP for parity S2Gs.

Corollary 2.16. The quantitative decision problem for S2Gs is

• in NP for Rabin-Streett S2Gs,
• in coNP for Streett-Rabin S2Gs, and
• in NP ∩ coNP for parity S2Gs.

A corresponding NP-hardness result for deterministic Rabin-Streett S2Gs
has been established by Emerson & Jutla (1999). In particular, this hardness
result also holds for the qualitative decision problem. Moreover, by determi-
nacy, this result can be turned into a coNP-hardness result for (deterministic)
Streett-Rabin S2Gs.

For S2Gs with Muller objectives, Chatterjee (2007) showed that the
quantitative decision problem falls into Pspace; for deterministic games,
a polynomial-space algorithm had been given earlier by McNaughton (1993).
A matching lower bound for deterministic games with Muller objectives
was provided by Hunter & Dawar (2005).

Theorem 2.17 (Chatterjee). The quantitative decision problem is in Pspace
for Muller S2Gs.

Theorem 2.18 (Hunter & Dawar). The qualitative decision problem for de-
terministic Muller S2Gs is Pspace-hard.

Theorem 2.18 does not hold if the Muller objectives are given by a family
of subsets of vertices: Horn (2008a,b) showed that the qualitative decision
problem for explicit Muller S2Gs is in P, and that the quantitative problem is
in NP ∩ coNP.

Another class of S2Gs for which the qualitative decision problem is in P is,
for each d ∈ M, the class Parity[d] of all parity S2Gs whose priority function
refers to at most d priorities (de Alfaro & Henzinger 2000). In particular,
the qualitative decision problem for SS2Gs as well as (co-)Büchi S2Gs is in P.
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Table 2.2. The complexity of deciding the value in S2Gs.

Qualitative Quantitative

SS2Gs P-complete NP ∩ coNP
Parity[d] P-complete NP ∩ coNP
Parity UP ∩ coUP NP ∩ coNP
Rabin-Streett NP-complete NP-complete
Streett-Rabin coNP-complete coNP-complete
Muller Pspace-complete Pspace-complete

For general parity S2Gs, however, the qualitative decision problem is only
known to lie in UP ∩ coUP (Jurdziński 1998; Chatterjee et al. 2003).

Theorem 2.19 (Jurdziński; Chatterjee et al.). The qualitative decision prob-
lem is in UP ∩ coUP for parity S2Gs.

Theorem 2.20 (de Alfaro & Henzinger). For each d ∈ M, the qualitative deci-
sion problem is in P for parity S2Gs with at most d priorities.

Table 2.2 summarises the results about the complexity of the quantitative
and the qualitative decision problem for S2Gs. P-hardness (via Logspace-
reductions) for all these problems follows from the fact that and-or graph
reachability is P-complete (Immerman 1981).

The results summarised in Table 2.2 leave open the possibility that at
least one of the following problems is decidable in polynomial time:

1. the qualitative decision problem for parity S2Gs,
2. the quantitative decision problem for SS2Gs,
3. the quantitative decision problem for parity S2Gs.

Note that, given that all of them are contained in both NP and coNP, it is
unlikely that one of them is NP-hard or coNP-hard; such a result would
imply that NP = coNP, and the polynomial hierarchy would collapse.

For the first problem, Chatterjee et al. (2003) gave a polynomial-time
reduction from the qualitative decision problem for stochastic two-player
zero-sum parity games. Hence, solving the qualitative decision problem for
parity S2Gs is not harder than deciding which of the two players has a win-
ning strategy in a deterministic (two-player zero-sum) parity game. Whether
the latter problem is decidable in polynomial time is a long-standing open
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problem. Several years after Emerson & Jutla (1991) put the problem into
NP ∩ coNP, Jurdziński (1998) improved this bound slightly to UP ∩ coUP.
Together with Paterson and Zwick (2008), he also gave an algorithm that
decides the winner in subexponential time; a randomised subexponential
algorithm had been given earlier by Björklund et al. (2003).

Another line of research has identified structural subclasses of graphs
on which deterministic parity games can be solved efficiently: In particular,
deterministic parity games can be solved in polynomial time on graphs of
bounded tree width (Obdržálek 2003), bounded entanglement (Berwanger &
Grädel 2005), bounded DAG width (Berwanger et al. 2006; Obdržálek 2006),
bounded Kelly width (Hunter & Kreutzer 2007), and bounded clique width
(Obdržálek 2007). However, Friedmann (2009) recently showed that the
most promising candidate for a polynomial-time algorithm for the general
case so far, the discrete strategy improvement algorithm due to Vöge & Jurdziński
(2000), requires exponential time in the worst case.

Regarding the second problem, only some progress towards a polynomial-
time algorithm has been made since Condon (1992) proved membership in
NP ∩ coNP; for instance, Björklund & Vorobyov (2005) gave a randomised
subexponential algorithm for solving SS2Gs, and Gimbert & Horn (2009)
showed that the quantitative decision problem for SS2Gs is fixed-parameter
tractable with respect to the number of stochastic vertices as the parameter.

For the third problem, Andersson & Miltersen (2009) recently established
a polynomial-time Turing reduction to the second. Hence, there exists a
polynomial-time algorithm for 2. if and only if there exists one for 3. In partic-
ular, a polynomial-time algorithm for 2. would also give a polynomial-time
algorithm for 1. However, to the best of our knowledge, it is plausible that
the qualitative decision problem for parity S2Gs is in Pwhile the quantitative
decision problem for SS2Gs is not.

2.6 Existence of residually optimal strategies

The goal of this section is to prove the existence of residually optimal pure
strategies in finite S2Gs with prefix-independent objectives (Theorem 2.6).
Although they did not state this explicitly, Gimbert & Horn (2010) actually
proved this (stronger) result in their proof for the existence of optimal strate-
gies in these games. We present an alternative proof of Theorem 2.6, which
uses a concept introduced by Chatterjee et al. (2005). Our starting points are
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the following two propositions, proved in (Gimbert & Horn 2010) using the
notion of reset strategies.

Proposition 2.21. Let G be a finite S2G with prefix-independent objectives.
If valG(v) = 1, then player 0 has a winning strategy in (G , v).

Proposition 2.22. Let G be a finite S2G with prefix-independent objectives.
If valG(v) > 0 for some vertex v, then valG(v) = 1 for some vertex v.

In order to apply Proposition 2.21, we partition the state space into regions
of states with equal value and show that a residually optimal strategy can
be obtained from a winning strategy in each of these regions. Formally, a
value class of G is a maximal subset U of V such that valG is constant on U, i.e.
U = {v ∈ V ∶ valG(v) = r} ≠ ∅ for some r ∈ [0, 1]. We call a value class U positive
if valG(U) > 0. If both players play optimally, a value class can only be left
through a stochastic vertex; we denote by Bnd(U) the set of all stochastic
vertices v ∈ U with v∆ ⊈ U. Note that, since the value of a stochastic vertex
is a weighted average of the values at its successors, every vertex in Bnd(U)
must have both a successor with a higher value and one with a lower value.

Due to the possibility that Bnd(U) ≠ ∅, a value class U is, in general, not
a subarena. However, the value classes of G are subarenas of the game G
that is derived from G by turning every vertex v ∈ V such that v ∈ Bnd(U)
for a value class U of G into a terminal vertex that is winning for player 0.
Moreover, all vertices in the subgame G ↾ U have value 1 if U is a positive
value class.

Lemma 2.23. Let G be a finite S2G with prefix-independent objectives, and
let U be a positive value class of G. Then valG↾U(U) = 1.

Proof. Let Win ⊆ Vω be the objective of player 0, let U = {v ∈ V ∶ valG(v) = r} for
r > 0, and denote by s the highest value of a vertex v ∉ U that is a successor
of a vertex u ∈ U ∩ V1, i.e. v ∈ u∆; if no such vertex exists, we set s ∶= 0.
Since U is a positive value class, we have s < r. By Proposition 2.22, we only
need to show that there is no vertex u ∈ U with valG↾U(u) = 0. Towards a
contradiction, assume there is such a vertex u. Then, by Proposition 2.21,
player 1 would have a strategy τ such that Prσ ,τ

u (Vω /Win∪Reach(Bnd(U))) = 1
for all strategies σ of player 0 in G ↾ U. Now, let 0 < ε < r − s and fix a globally
ε-optimal strategy τε of player 1 in G. We devise a new strategy τ∗ of player 1
in G as follows: as long as the play stays in U, τ∗ behaves like τ; as soon as

52



2.6 Existence of residually optimal strategies

the play leaves U, τ∗ starts to behave like τε . Formally, we set τ∗(xv) = τ(xv)
for histories xv that stay in U and τ∗(xvy) = τε(vy) for histories of the form
xvy ∈ V∗ ⋅ V ⋅ V∗ with x ∈ U∗ and v ∈ V / U.

We claim that sup
σ
Prσ ,τ∗

u (Win) ≤ s + ε and therefore valG(u) < r, a contra-
diction to valG(u) = r. Let σ be a strategy of player 0 in G. By the definition
of τ∗, we have Prσ ,τ∗

u (Win ∩ Uω) = 0 and Prσ ,τ∗
u (U∗ ⋅ v ⋅ Vω) > 0 only if v ∈ U or

v ∈ u∆ for some u ∈ U ∩ V1. Hence,

Prσ ,τ∗
u (Win)

= Prσ ,τ∗
u (Win ∩ Uω) + ∑

xv∈U
∗
(V/U)

Prσ ,τ∗
u (Win ∩ xv ⋅ Vω)

= ∑
xv∈U

∗
(V/U)

Prσ ,τ∗
u (xv ⋅ Vω) ⋅ Prσ[x],τ∗[x]

v (Win)

= ∑
xv∈U

∗
(V/U)

Prσ ,τ∗
u (xv ⋅ Vω) ⋅ Prσ[x],τε

v (Win)

≤ ∑
xv∈U

∗
(V/U)

Prσ ,τ∗
u (xv ⋅ Vω) ⋅ (valG(v) + ε)

≤ ∑
xv∈U

∗
(V/U)

Prσ ,τ∗
u (xv ⋅ Vω) ⋅ (s + ε)

≤ s + ε .

Since σ was chosen arbitrarily, we get that sup
σ
Prσ ,τ∗

u (Win) ≤ s + ε. □

By Lemma 2.23 and Proposition 2.21, player 0 has a winning strategy
in G ↾ U if U is a positive value class of G. To prove Theorem 2.6, we show
that we can compose these strategies to a residually optimal strategy in G.

Proof (of Theorem 2.6). Let Win ⊆ Vω be the objective of player 0. It suffices
to prove that player 0 has a residually optimal strategy; the claim for player 1
follows from exchanging the players’ roles. Let U1 , . . . ,Uk be an enumeration
of the positive value classes of G such that valG(Ui) < val

G(U j) for i < j, and
let U0 be the set of all vertices with value 0. For each i = 1, . . . , k, let σi be a
winning strategy in the game G ↾ Ui , and let σ0 be an arbitrary strategy of
player 0 in G ↾ U0 . Define a strategy σ of player 0 in G by setting σ(xv) = σi(yv)
if v ∈ Ui and y is the longest suffix of x that is contained in Ui . In order to
prove that σ is residually optimal, let xv be a history of (G , v0), and let τ be a
strategy of player 1 in G. We claim that

Prσ[x],τ
v (Win ∪ coBüchi(U0)) = 1 . (2.1)
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It follows from Lemma 2.23 and the definition of Bnd(Ui) that

1. Prσ[x],τ
v (Vω /Win ∩ Büchi(Ui / Bnd(Ui)) / Büchi(Bnd(Ui))) = 0, and

2. Prσ[x],τ
v (Büchi(Bnd(Ui)) / Büchi(⋃ j>i U j)) = 0

for all i = 1, . . . , k. Using these two facts, we can establish (2.1) by proving that
the complementary event Vω /Win∩Büchi(V /U0) occurs with probability 0:

Prσ[x],τ
v (Vω /Win ∩ Büchi(V / U0))

=
k

∑
i=1
Prσ[x],τ

v (Vω /Win ∩ Büchi(Ui) / Büchi(⋃ j>i U j))

=
k

∑
i=1
Prσ[x],τ

v (Vω /Win ∩ Büchi(Ui / Bnd(Ui)) / Büchi(Bnd(Ui) ∪ ⋃ j>i U j))

+
k

∑
i=1
Prσ[x],τ

v (Vω /Win ∩ Büchi(Bnd(Ui)) / Büchi(⋃ j>i U j))

≤
k

∑
i=1
Prσ[x],τ

v (Vω /Win ∩ Büchi(Ui / Bnd(Ui)) / Büchi(Bnd(Ui)))

+
k

∑
i=1
Prσ[x],τ

v (Büchi(Bnd(Ui)) / Büchi(⋃ j>i U j))

= 0 .

It remains to be shown that σ[x] is optimal in (G , v). Consider the random
variables Θn ∶Vω → V, n ∈ M, defined by Θn(π) = π(n). The expectation of valG(Θn)
under the probability measure Prσ[x],τ

v is

f (n) ∶= ∑
w∈V

Prσ[x],τ
v (Θn = w) ⋅ valG(w) .

It is easy to see that, by the definition of σ, we have f (n) ≤ f (n + 1) for
all n ∈ M. Hence, f ∗ ∶= limn f (n) exists, and we have f (n) ≤ f ∗ for all
n ∈ M. Moreover, since f (n) ≤ 1 − Prσ[x],τ

v (Θn ∈ U0) for all n ∈ M, we have
f ∗ = limsup

n
f (n) ≤ 1 − lim inf n Prσ[x],τ

v (Θn ∈ U0) ≤ 1 − Prσ[x],τ
v (coBüchi(U0)).

By (2.1), we have Prσ[x],τ
v (Win) ≥ 1 − Prσ[x],τ

v (coBüchi(U0)) and therefore
valG(v) = f (0) ≤ f ∗ ≤ Prσ[x],τ

v (Win). Since τ was chosen arbitrarily, we get
that valσ[x](v) ≥ valG(v). □
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3
Equilibria

In this chapter, we introduce the equilibrium concepts that we consider in
this work, i.e. Nash and subgame-perfect equilibria, and prove their exis-
tence for (subclasses of ) stochastic games. Towards the end of this chapter,
we turn to computational questions and introduce the decision problems
that will occupy us for the rest of this work.

3.1 Definitions and basic properties

To capture rational behaviour of (selfish) players, JohnNash (1950) introduced
the notion of, what is now called, a Nash equilibrium. Formally, given a
strategy profile σ of a game (G , v0), we call a strategy τ of player i in G a best
response to σ if τ maximises the expected payoff of player i: Prσ−i ,τ

′

v0 (Wini) ≤
Prσ−i ,τ

v0 (Wini) for all strategies τ′ of player i. A strategy profile σ = (σi)i∈Π is a
Nash equilibrium if each σi is a best response to σ.

In a Nash equilibrium, no player can improve her payoff by unilater-
ally switching to a different strategy. In fact, to have a Nash equilibrium,
it suffices that no player can gain from switching to a pure strategy.

Proposition 3.1. A strategy profile σ of a game (G , v0) is a Nash equilibrium
if and only if, for each player i and for each pure strategy τ of player i in G,
Prσ−i ,τ

v0 (Wini) ≤ Prσ

v0 (Wini).
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Proof. Clearly, if σ is a Nash equilibrium, then Prσ−i ,τ
v0 (Wini) ≤ Prσ

v0 (Wini) for
each pure strategy τ of player i in G. Now, assume that σ is not a Nash equi-
librium. Hence, p ∶= sup

τ
Prσ−i ,τ

v0 (Wini) = Prσ

v0 (Wini) + ε for some player i and
some ε > 0. Consider the Markov decision process Gσ−i . Clearly, the value
of Gσ−i from v0 equals p. By Theorem 2.5, there exists an ε/2-optimal pure
strategy τ in (Gσ−i , v0). Since the arena of Gσ−i is a forest, we can assume
that τ is a positional strategy, which can be viewed as a pure strategy in G.
We have Prσ−i ,τ

v0 (Wini) ≥ p − ε/2 > p − ε = Prσ

v0 (Wini). □

For two-player zero-sum games, a Nash equilibrium is nothing other
than a pair of optimal strategies.

Proposition 3.2. Let (G , v0) be a S2G. A strategy profile (σ, τ) of (G , v0) is a
Nash equilibrium if and only if both σ and τ are optimal. In particular, every
Nash equilibrium of (G , v0) has payoff (valG(v0), 1 − val

G(v0)).

Proof. (⇒) Assume that both σ and τ are optimal, but that (σ, τ) is not a Nash
equilibrium. Hence, one of the players, say player 1, can improve her payoff
by playing another strategy τ′. Hence, valG(v0) = Prσ ,τ

v0 (Win0) > Prσ ,τ′
v0 (Win0).

However, since σ is optimal, valG(v0) ≤ Prσ ,τ′
v0 (Win0), a contradiction. The rea-

soning in the case that player 0 can improve is analogous.
(⇐) Let (σ, τ) be a Nash equilibrium of (G , v0), and let us first assume

that σ is not optimal, i.e. valσ(v0) < val
G(v0). By the definition of valG, there

exists another strategy σ′ of player 0 such that valσ(v0) < val
σ
′

(v0) ≤ val
G(v0).

Moreover, since (σ, τ) is a Nash equilibrium,

Prσ ,τ
v0 (Win0) ≤ val

σ(v0) < val
σ
′

(v0) = inf τ′ Prσ
′ ,τ′
v0 (Win0) ≤ Prσ

′ ,τ
v0 (Win0) .

Thus, player 0 can improve her payoff by playing σ′ instead of σ, a contradic-
tion to the fact that (σ, τ) is a Nash equilibrium. The argumentation in the
case that τ is not optimal is analogous. □

In general, a Nash equilibrium can give a player a higher payoff than her
value. However, the payoff a player receives in a Nash equilibrium can never
be lower than her value, and this is true for every history that is consistent
with the equilibrium.

Lemma 3.3. Let (G , v0) be an SMG with objectives Wini ⊆ Vω . If σ is a Nash
equilibrium of (G , v0), then Prσ

v0 (Wini ∣ xv ⋅ Vω) ≥ val
G[x]
i

(v) for each player i
and every history xv that is consistent with σ.
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Proof. Assume there exists a history xv of (G , v0) such that Prσ

v0 (xv ⋅ V
ω) > 0,

but p ∶= Prσ

v0 (Wini ∣ xv ⋅Vω) < val
G[x]
i

(v). By the definition of valG[x]
i
, there exists

a strategy τ of player i inG[x] such that valτ(v) > p. We define a new strategy σ′

for player i in G as follows: σ′ is defined as σi for histories that do not begin
with xv. For histories of the form xvy, however, we set σ′(xvy) = τ(vy). Clearly,
we have Prσ−i ,σ

′

v0 (xv ⋅ Vω) = Prσ(xv ⋅ Vω). Moreover, we claim that

Prσ−i ,σ
′

v0 (X / xv ⋅ Vω) = Prσ

v0 (X / xv ⋅ Vω) (3.1)

for every Borel set X ⊆ Vω . Eq. (3.1) is obviously true if X is a cylinder set.
To prove (3.1) for all Borel sets, by the monotone class theorem (Theorem A.1),
it suffices to prove that whenever we are given Borel sets X0 , X1 , ⋅ ⋅ ⋅ ⊆ Vω

with X0 ⊆ X1 ⊆ ⋯ or X0 ⊇ X1 ⊇ ⋯ such that each Xn fulfils (3.1), then the set
limn Xn ∶= ⋃n∈M Xn or limn Xn ∶= ⋂n∈M Xn , respectively, also fulfils (3.1). Hence,
assume that X0 ⊆ X1 ⊆ ⋯ or X0 ⊇ X1 ⊇ ⋯ and that each Xn fulfils (3.1). Clearly,
(limn Xn) / xv ⋅ Vω = limn (Xn / xv ⋅ Vω). Moreover, since probability measures
are continuous from below and above,

Prσ−i ,σ
′

v0 (limn(Xn / xv ⋅ Vω))

= limn Prσ−i ,σ
′

v0 (Xn / xv ⋅ Vω)

= limn Prσ

v0 (Xn / xv ⋅ Vω)

= Prσ

v0 (limn (Xn / xv ⋅ Vω)) ,

which proves that (3.1) also holds for limn Xn . Using Lemma 2.2, we can
conclude that

Prσ−i ,σ
′

v0 (Wini)

= Prσ−i ,σ
′

v0 (Wini / xv ⋅ Vω) + Prσ−i ,σ
′

v0 (Wini ∩ xv ⋅ Vω)

= Prσ

v0 (Wini / xv ⋅ Vω) + Prσ[x]−i ,σ
′
[x]

v (x−1Wini) ⋅ Prσ−i ,σ
′

v0 (xv ⋅ Vω)

= Prσ

v0 (Wini / xv ⋅ Vω) + Prσ[x]−i ,τ
v (x−1Wini) ⋅ Prσ

v0 (xv ⋅ V
ω)

≥ Prσ

v0 (Wini / xv ⋅ Vω) + val
τ(v) ⋅ Prσ

v0 (xv ⋅ V
ω)

> Prσ

v0 (Wini / xv ⋅ Vω) + p ⋅ Prσ

v0 (xv ⋅ V
ω)

= Prσ

v0 (Wini / xv ⋅ Vω) + Prσ

v0 (Wini ∩ xv ⋅ Vω)

= Prσ

v0 (Wini) .
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v0

0

v1

1

(1, 1)

(0, 0) (0, 0)

Figure 3.1. A two-player reachability game with an irrational Nash equilibrium.

Hence, player i can improver her payoff by switching to σ′, a contradiction to
σ being a Nash equilibrium. □

As demonstrated by the following example, some Nash equilibria lack
rationality in games that progress over time—such as the games we study
in this work.

Example 3.4. Consider the deterministic two-player reachability game
(G , v0) depicted in Figure 3.1. Intuitively, the only rational outcome of this
game should be the play leading to the terminal vertex with payoff (1, 1).
However, there are two Nash equilibria in this game:

• both players move “right” and win;
• both players move “down” and lose.

Clearly, the first strategy profile is a Nash equilibrium. For the second profile,
note that player 1 cannot get a better payoff by changing her strategy since
v1 is never reached from v0 if player 0 moves down.

The justification for the second Nash equilibrium in Example 3.5 is that
player 1 threatens tomove down if the game reaches v1 . However, this threat
is not credible: if the game reaches v1, then the only rational choice for
player 1 is to move right because this is the only way for her to win. An equi-
librium concept that can eliminate such threats was introduced by Selten
(1965). Formally, a strategy profile σ of a game (G , v0) is a subgame-perfect equi-
librium if σ[x] is a Nash equilibrium of the residual game (G[x], v) for every
history xv of (G , v0).

In a subgame-perfect equilibrium, every strategy is not only a best re-
sponse after the initial history but after every possible history of the game
(including histories that are not consistent with the equilibrium profile).

Example 3.5. Consider the same game as in Example 3.4. The Nash equilib-
rium where both players move down is not a subgame-perfect equilibrium
because moving down is not a best response after the history v0v1.
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Recall that for two-player zero-sum games, Nash equilibria correspond
to pairs of optimal strategy (Proposition 3.2). Similarly, subgame-perfect
equilibria correspond to residually optimal strategies.

Proposition 3.6. Let (G , v0) be a two-player zero-sum game. A strategy pro-
file (σ, τ) of (G , v0) is a subgame-perfect equilibrium if and only if both σ and τ
are residually optimal.

Proof. Similar to the proof of Proposition 3.2. □

3.2 Existence of Nash equilibria

It follows from Theorem 2.6 and Proposition 3.2 that every finite two-player
zero-sum stochastic game with prefix-independent objectives has a Nash
equilibrium in pure strategies. The question arises whether this is still true
if the two-player zero-sum assumption is relaxed.

By Lemma 3.3, a strategy profile σ can only be a Nash equilibrium if
Prσ

v0 (Wini ∣ xv ⋅ Vω) ≥ valGi (v) for each player i and for each history xv con-
sistent with σ. The next lemma shows that, conversely, we can turn every
strategy profile that fulfils this property into a Nash equilibrium. The proof
uses so-called threat (or trigger) strategies, which are added on top of the given
strategy profile: each player threatens to change her behaviour when one
of the other players deviates from the prescribed strategy profile. Before
being applied to stochastic games, this concept had proven fruitful in the
related area of repeated games (see Osborne & Rubinstein 1994, Chapter 8, and
Aumann 1981).

Lemma 3.7. Let (G , v0) be a finite SMG with prefix-independent objectives
Wini ⊆ Vω . If σ is a pure strategy profile such that Prσ

v0 (Wini ∣ xv ⋅Vω) ≥ val
G
i (v)

for each player i and for each history xv of (G , v0) that is consistent with σ,
then (G , v0) has a pure Nash equilibrium σ∗ with Prσ

v0 = Prσ
∗

v0 .

Proof. By Theorem 2.6, for each player i we can fix a globally optimal pure
strategy τi of the coalition Π / {i} in the coalition game Gi; denote by τ j ,i the
corresponding pure strategy of player j in G. To simplify notation, we also
define τi ,i to be an arbitrary pure strategy of player i in G. Player i’s equilib-
rium strategy σ∗

i
is defined as follows: For histories xv that are compatible

with σ, we set σ∗
i
(xv) = σi(xv). If xv is not compatible with σ, then decompose x

into x = x1 ⋅ x2, where x1 is the longest prefix of x that is compatible with σ,
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and let j be the player who has deviated, i.e. x1 ends in V j (if x1 is empty, then
j can be chosen arbitrarily); we set σ∗(xv) = τi , j(x2v). Intuitively, σ∗

i
behaves

like σi as long as no other player j deviates from playing σ j , in which case
σ∗
i

starts to behave like τi , j .

Note that Prσ
∗

v0 = Prσ

v0 . We claim that σ∗ is additionally a Nash equilibrium
of (G , v0). Let i ∈ Π, and let ρ be a pure strategy of player i in G; by Proposi-
tion 3.1, it suffices to show that Pr

σ
∗
−i
,ρ

v0 (Wini) ≤ Prσ
∗

v0 (Wini).
Let us call a history xv ∈ V∗Vi a deviation history if xv is compatible with both

σ and (σ−i , ρ), but σi(xv) ≠ ρ(xv); we denote the set of all deviation histories
consistent with σ by D. Clearly, Prσ

v0 (xv ⋅ V
ω) = Prσ

∗

v0 (xv ⋅ V
ω) = Pr

σ
∗
−i
,ρ

v0 (xv ⋅ Vω)
for all xv ∈ D.

Claim. Pr
σ
∗
−i
,ρ

v0 (X / D ⋅ Vω) = Prσ

v0 (X / D ⋅ Vω) for every Borel set X ⊆ Vω .

Proof. The proof of this claim uses the monotone class theorem and resem-
bles the proof of the corresponding claim in the proof of Lemma 3.3.

Claim. Pr
σ
∗
−i
,ρ

v0 (Wini ∣ xv ⋅ Vω) ≤ val
G
i (v) for every xv ∈ D.

Proof. By the definition of the strategies τ j ,i , we have that Pr
(τ j ,i ) j≠i ,ρ
v (Wini) ≤

valGi (v) for every vertex v ∈ V and every strategy ρ of player i. Moreover, if xv is a
deviation history, then for each player j the residual strategy σ∗

j
[xv] is equal

to τ j ,i on histories that start in w ∶= ρ(xv). Hence, by Lemma 2.2, and since
Wini is prefix-independent,

Pr
σ
∗
−i
,ρ

v0 (Wini ∣ xv ⋅ Vω)

= Pr
σ
∗
−i
,ρ

v0 (Wini ∣ xvw ⋅ Vω)

= Pr
σ
∗
−i
,ρ

v0 (Wini ∩ xvw ⋅ Vω) / Pr
σ
∗
−i
,ρ

v0 (xvw ⋅ Vω)

= Pr
σ
∗
−i
[xv],ρ[xv]

w (Wini)

= Pr
(τ j ,i ) j≠i ,ρ[xv]
w (Wini)

≤ valGi (w)

≤ valGi (v) .

Using the previous two claims, we prove that Pr
σ
∗
−i
,ρ

v0 (Wini) ≤ Prσ
∗

v0 (Wini)
as follows:
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Pr
σ
∗
−i
,ρ

v0 (Wini)

= Pr
σ
∗
−i
,ρ

v0 (Wini / D ⋅ Vω) + ∑
xv∈D

Pr
σ
∗
−i
,ρ

v0 (Wini ∩ xv ⋅ Vω)

= Prσ

v0 (Wini / D ⋅ Vω) + ∑
xv∈D

Pr
σ
∗
−i
,ρ

v0 (Wini ∣ xv ⋅ Vω) ⋅ Pr
σ
∗
−i
,ρ

v0 (xv ⋅ Vω)

= Prσ

v0 (Wini / D ⋅ Vω) + ∑
xv∈D

Pr
σ
∗
−i
,ρ

v0 (Wini ∣ xv ⋅ Vω) ⋅ Prσ

v0 (xv ⋅ V
ω)

≤ Prσ

v0 (Wini / D ⋅ Vω) + ∑
xv∈D

valGi (v) ⋅ Prσ

v0 (xv ⋅ V
ω)

≤ Prσ

v0 (Wini / D ⋅ Vω) + ∑
xv∈D

Prσ

v0 (Wini ∣ xv ⋅ Vω) ⋅ Prσ

v0 (xv ⋅ V
ω)

= Prσ

v0 (Wini / D ⋅ Vω) + ∑
xv∈D

Prσ

v0 (Wini ∩ xv ⋅ Vω)

= Prσ

v0 (Wini)

= Prσ
∗

v0 (Wini) . □

A variant of Lemma 3.7 handles gameswith prefix-independent ω-regular
objectives and finite-state strategies.

Lemma 3.8. Let (G , v0) be a finite SMG with prefix-independent ω-regular
objectives Wini ⊆ Vω . If σ is a pure finite-state strategy profile such that
Prσ

v0 (Wini ∣ xv ⋅ Vω) ≥ val
G
i (v) for each player i and for each history xv consis-

tent with σ, then (G , v0) has a pure finite-state Nash equilibrium σ∗ with
Prσ

v0 = Prσ
∗

v0 .

Proof. The proof is analogous to the proof of Lemma 3.7. Since, by Corol-
lary 2.13, there exist optimal pure finite-state strategies in every finite SMG
with ω-regular objectives, the strategies τ j ,i defined there can be assumed
to be pure finite-state strategies. Consequently, the equilibrium profile σ∗

can be implemented using finite-state strategies as well. □

Using Lemma 3.7 and Theorem 2.6, we can easily prove the existence of
pure Nash equilibria in finite SMGs with prefix-independent objectives.

Theorem 3.9. There exists a pure Nash equilibrium in any finite SMG with
prefix-independent objectives.

Proof. Let (G , v0) be a finite SMG with prefix-independent objectives Wini ⊆
Vω . By Theorem 2.6, each player i has a strongly optimal strategy σi in G.
Let σ = (σi)i∈Π . For every history xv that is consistent with σ and each player i,
we have Prσ

v0 (Wini ∣ xv ⋅ Vω) = Prσ[x]

v (Wini) ≥ valGi (v). By Lemma 3.7, this
implies that (G , v0) has a pure Nash equilibrium. □

61



3 Equilibria

v0

0

(0, 0)

v1

1

(1, 0)

(1, 1)

Figure 3.2. A two-player game with a pair of optimal strategies that cannot be ex-
tended to a Nash equilibrium.

For finite SMGswith ω-regular objectives, we can even show the existence
of a pure finite-state equilibrium

Theorem 3.10. There exists a pure finite-state Nash equilibrium in any fi-
nite SMG with ω-regular objectives.

Proof. Since any SMG with ω-regular objectives can be reduced to one with
parity objectives, it suffices to consider parity SMGs. For these games,
the claim follows from Corollary 2.12 and Lemma 3.8 using the same ar-
gumentation as in the proof of Theorem 3.9. □

For deterministic games, one can prove the existence of a Nash equilib-
rium even if the game has an infinite arena and arbitrary Borel objectives.
We will prove an even stronger theorem, namely the existence of subgame-
perfect equilibria in these games, in the next section (Theorem 3.15).

Theorem 3.11. There exists a pure Nash equilibrium in any deterministic
game with Borel objectives.

Theorem 3.10, Theorem 3.11 and a variant of Theorem 3.9 appeared origi-
nally in (Chatterjee et al. 2004b). However, their proof contains an inaccuracy:
Essentially, they claim that any profile of optimal strategies can be extended
to a Nash equilibrium with the same payoff (by adding threat strategies
on top). This is, in general, not true, as the following example demonstrates.

Example 3.12. Consider the deterministic two-player game (G , v0) depicted
in Figure 3.2. Clearly, the value valG0 (v0) for player 0 from v0 is 1, and player 0’s
optimal strategy σ is to play from v0 to v1 . For player 1, the value from v0 is 0,
and both of her positional strategies are optimal (albeit not necessarily glob-
ally optimal). In particular, her strategy τ of playing from v1 to the terminal
vertex with payoff (1, 0) is optimal. The payoff of the strategy profile (σ, τ)
is (1, 0). However, there is no Nash equilibrium of (G , v0) with payoff (1, 0):
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Figure 3.3. An SSMG with no stationary Nash equilibrium.

In any Nash equilibrium of (G , v0), player 0 will move from v0 to v1 with
probability 1. To have a Nash equilibrium, player 1 must play from v1 to
the terminal vertex with payoff (1, 1)with probability 1; hence, every Nash
equilibrium of this game has payoff (1, 1).

Note that Theorem 3.10 only guarantees the existence of a pure finite-
state Nash equilibrium, even for games with objectives where each player
is guaranteed to have a positional optimal strategy. The question arises
whether we can also guarantee the existence of a positional Nash equilib-
rium in such games. Kuipers et al. (2009) proved that this is not the case.
In fact, they gave an example of a finite three-player SSMG that has no
stationary Nash equilibrium.¹

Proposition 3.13 (Kuipers et al.). There exists a finite SSMG that has no sta-
tionary Nash equilibrium.

Proof. Consider the three-player SSMG G depicted in Figure 3.3. We claim
that (G , v3) does not admit a stationary Nash equilibrium. Towards a con-
tradiction, assume that σ = (σ0 , σ1 , σ2) is a stationary Nash equilibrium, and
denote by pi ∶= σi(vi+1 mod 3 ∣ vi) the probability that player i does not “leave
the game”. Since the game is symmetric, we can assume without loss of
generality that p1 = min{p0 , p1 , p2}. Clearly, p1 < 1 since otherwise each player
would receive payoff 0 but could improve her payoff by leaving the game.
Now, since p1 ≤ p2, player 0’s only best response to σ is the strategy that
plays to v1 with probability 1; this gives player 1 a payoff at least 1

2 because
the probability of reaching the terminal vertex with payoff 1 is higher than

¹ A similar game has been described by Boros & Gurvich (2003).
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Figure 3.4. A two-player SSMG with no positional Nash equilibrium.

the probability of reaching the terminal vertex with payoff 0. Hence, p0 = 1.
Since p0 = 1, player 2’s only best response to σ is to leave the game with
probability 1. Hence, p2 = 0 and, due to the minimality of p1, also p1 = 0.
But then σ is not a Nash equilibrium because player 1 is better off by playing
to v2 with probability 1. □

The existence of stationary Nash equilibria in finite two-player SSMGs is
open. As the following proposition shows, the stronger statement that every
such game has a positional Nash equilibrium remains false.

Proposition 3.14. There exists a finite two-player SSMG that has no posi-
tional Nash equilibrium.

Proof. Consider the SSMG (G , v3) depicted in Figure 3.4. It is easy to see that
none of the four positional strategy profiles in this game constitutes a Nash
equilibrium. Note however that the stationary strategy profile (σ, τ) defined
by σ(v2 ∣ v0) = τ(v0 ∣ v1) = 2

3 is a Nash equilibrium of (G , v3).

For certain classes of deterministic SSMGs, such as games with only two
players, the existence of a positional Nash equilibrium was established by
Boros & Gurvich (2003), but the general case remains open. For deterministic
two-player parity games, we will prove the existence of positional equilibria
(even subgame-perfect ones) in the next section (Theorem 3.17).

3.3 Existence of subgame-perfect equilibria

Themain result presented in this section is the existence of subgame-perfect
equilibria in deterministic games with Borel objectives (Ummels 2005);
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in our presentation of the result, we followGrädel & Ummels (2008). The con-
struction is conceptually similar to the one used for proving the existence
of Nash equilibria, but more involved: in particular, we will employ a fixed-
point construction.

Theorem 3.15. There exists a pure subgame-perfect equilibrium in any de-
terministic game with Borel objectives.

Proof. Let (G , v0) be a deterministic game with Borel objectives Wini ⊆ Vω .
Without loss of generality, assume that the arena of G is a tree with v0 as its
root: this can be achieved by unravelling the arena from v0; the resulting
arena is bisimilar to the original one.

For each ordinal α, we define a set ∆α ⊆ ∆, beginning with ∆0 = ∆ and
∆γ = ⋂α<γ ∆α for limit ordinals γ. To define ∆α+1 from ∆α, consider for each
player i the two-player zero-sum game Gα

i
that results from the coalition

game Gi by restricting to transitions in ∆α. Denote by r0 , r1 , . . . the roots of Gα
i
,

i.e. the vertices that have no predecessor with respect to to the transition
relation ∆α, and let x0r0 , x1r0 , . . . be the unique histories of (G , v0) ending in
r0 , r1 , . . . (where r0 = v0 and x0 = ε). By Corollary 2.10, and since the arena
of Gα

i
is a forest, for every k = 0, 1, . . . there exist residually optimal positional

strategies σα ,k
i
and τα ,k

i
for player i and the coalition Π / {i}, respectively, in the

game (Gα
i
[xk], rk). Let σα

i
and τα

i
be the respective unions of these strategies,

i.e. σα
i
(v) = σα ,k

i
(v) and τα

i
(v) = τα ,k

i
(v) for the unique k ∈ M such that v lies in the

tree with root rk; the strategies σα
i
and τα

i
are residually optimal in (Gα

i
[xi], ri)

for each k ∈ M. The set ∆α+1 is obtained by removing all edges from ∆α that
are not taken by a winning strategy. Formally, if Xα

i
is the set of all v ∈ Vi

such that σα
i
is winning in (Gα[x], v), where xv is the unique history of (G , v0)

ending in v, then

∆α+1 = ∆α ∩ ⋂
i∈Π

{(u, v) ∈ ∆ ∶ u ∉ Xαi or v = σαi (u)} .

Obviously, the sequence (∆α)α∈On is non-increasing. Thus we can fix the
least ordinal ξ with ∆ξ = ∆ξ+1 and define σi ∶= σξ

i
and τi ∶= τξ

i
. Moreover,

for each player j ≠ i, let τ j ,i be the positional strategy of player j in G induced
by τi . Intuitively, player i’s equilibrium strategy σ∗

i
works as follows: Player i

plays σi as long as no other player deviates; whenever some player j ≠ i
deviates from her equilibrium strategy, player i switches to τi , j . Formally,
define δ(v) ∈ Π ∪ {�} for each v ∈ V by setting δ(v0) = � and
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δ(v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

� if δ(u) = � and v = σi(u),

δ(u) if i ≠ δ(u) ≠ � and v = τi ,δ(u)(u),

i otherwise,

for u ∈ Vi and v ∈ u∆. Then, for v ∈ Vi , we set σ∗
i
(v) = σi(v) if δ(v) ∈ {i, �} and

σ∗
i
(v) = τi ,δ(v)(v) otherwise.

It remains to be shown that σ∗ ∶= (σ∗
i
)i∈Π is a subgame-perfect equilibrium

of (G , v0). First note that σi is winning in (G ξ[x], v) if σα
i
is winning in (Gα

i
[x], v)

for some ordinal α because, if σα
i
is winning in (Gα[x], v), then every play

of (Gα+1[x], v) is compatible with σα
i
and therefore won by player i. Since

∆ξ ⊆ ∆α+1, this also holds for every play of (G ξ[x], v). Now, let v be any vertex
of G, and let xv be the unique history of (G , v0) ending in v. We claim that
σ∗ is a Nash equilibrium of (G[x], v): Let σ′ be a strategy of any player i in
G, and denote by π and π′ the unique plays of (G[x], v) compatible with σ∗

and (σ∗
−i
, σ′), respectively; we need to show that π ∈Wini[x] or π′ ∉Wini[x].

The claim is trivial if π = π′. Hence, assume that π ≠ π′ and fix the least
n ∈ M such that π(n + 1) ≠ π′(n + 1); clearly, π(n) ∈ Vi and σ′(π(n)) ≠ σ∗

i
(π(n)).

Without loss of generality, we can assume that n = 0 and thus π(n) = v.
We distinguish whether σi is winning in (G ξ[x], v) or not.

First, assume that σi is winning in (G ξ[x], v). By the definition of the
strategies σ∗

j
, the play π is a play of (G ξ[x], v). We claim that π is compatible

with σi , which implies that π ∈Wini[x]. Otherwise, fix the least k ∈ M such
that π(k) ∈ Vi and σi(π(k)) ≠ π(k+1). Since σi is winning in (G ξ[x], v), this strat-
egy is also winning in (G ξ[x ⋅ π∣k], π(k)). But then (π(k), π(k + 1)) ∈ ∆ξ / ∆ξ+1,
a contradiction to ∆ξ = ∆ξ+1.

Now, assume that σi is notwinning in (G ξ[x], v). By determinacy and since
σi and τi are residually optimal, τi is winning in (G ξ

i
[x], v). Since σ′(v) ≠ σ∗

i
(v),

player i has deviated; hence, π′ is compatible with τi . We claim that π′ is a play
of (G ξ

i
[x], v). Since τi is winning in (G ξ

i
[x], v), this implies that π′ ∉ Wini[x].

Otherwise, fix the least k ∈ M such that (π′(k), π′(k + 1)) ∉ ∆ξ and the ordinal α
such that (π′(k), π′(k+1)) ∈ ∆α /∆α+1 . Hence, σα

i
is winning in (Gα[x ⋅π′ ∣k], π′(k)),

which implies that σi is winning in (G ξ[x ⋅ π′ ∣k], π′(k)). Since π′ is compatible
with τi , this implies that τi is not winning in (G ξ

i
[x], v), a contradiction.

Similar to the situation for Nash equilibria in stochastic games, Theo-
rem 3.15 can be strengthened for finite games with ω-regular objectives.
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Theorem 3.16. There exists a pure finite-state subgame-perfect equilibrium
in any finite deterministic game with ω-regular objectives.

Proof. Again, it suffices to consider games with parity objectives. For such
games, the existence of globally optimal positional strategies allows us to
perform the construction used in the proof of Theorem 3.15 directly on the
arena of the game (regardless of whether it is a tree or not). It is easy to see
that the resulting subgame-perfect equilibrium σ∗ can be implemented as a
strategy profile with memory of size (∣Π∣ + 1) ⋅ ∣V ∣. □

Finally, for games with only two players and parity objectives, we can
prove the existence of a positional subgame-perfect equilibrium, even for
games with an infinite arena.

Theorem 3.17. There exists a positional subgame-perfect equilibrium in any
deterministic two-player parity game.

Proof. Let (G , v0) be a deterministic two-player (not necessarily zero-sum)
parity game. As pointed out in the proof of Theorem 3.16, the construction
used in the proof of Theorem 3.15 can be performed directly on the arena
of G. Moreover, since the games Gα

i
[x] are all deterministic two-player zero-

sum parity games, both strategies τ1,0 and τ0,1, as defined in the proof of
Theorem 3.15, can be assumed to be positional. It is easy to see that the
strategy profile (τ1,0 , τ0,1) is a subgame-perfect equilibrium of (G , v0). □

In contrast to the situation for Nash equilibria, Theorems 3.15 and 3.16
fail for stochastic games, as was demonstrated by Solan & Vieille (2003).

Proposition 3.18 (Solan & Vieille). There exists a finite two-player Büchi
SMG that has no subgame-perfect equilibrium.

Proof. Consider the SSMG (G , v0) depicted in Figure 3.5, where player 1 wins
additionally all plays that visit v0 infinitely often (a Büchi objective) or, equiv-
alently, all plays that do not end in a terminal vertex (a safety objective).
We claim that (G , v0) has no subgame-perfect equilibrium.

Towards a contradiction, assume that (σ, τ) is a subgame-perfect equilib-
rium of (G , v0), and let αk ∶= σ(v1 ∣ (v0v1)kv0) and ϐk ∶= τ(v0 ∣ (v0v1)k) for each
k ∈ M. Additionally, we define xk ∶= ∏∞

i=k αi and yk = ∏∞

i=k ϐi . We distinguish
whether xk > 1

2 for some k or not.
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Figure 3.5. A Büchi SMG with no subgame-perfect equilibrium.

First, assume that xk > 1
2 for some k (and consequently xi > 1

2 for each
i ≥ k). We claim that ϐi = 1 for each i > k. Otherwise, yk+1 < 1, and the expected
payoff for player 1 after history (v0v1)kv0 would be

≤ xkyk+1 + (1 − yk+1)/2

< xkyk+1 + xk(1 − yk+1)

= xk .

But with the strategy of playing to v0 with probability 1 all the time, player 1
would receive expected payoff xk .

Hence, ϐi = 1 for each i > k, and the expected payoff for player 0 after
history (v0v1)kv0 equals (1 − xk)/2 < 1

4 . But then, she could improve after this
history by leaving the game, which would give her payoff 1

2 , a contradiction.
Now assume that xk ≤ 1

2 for all k. Then there must exist infinitely many k
such that αk < 1; we claim that ϐk = 0 for any such k. Otherwise, the expected
payoff for player 1 after history (v0v1)k would be

≤ (1 − ϐk)/2 + αkϐk(xk+1yk+1 + (1 − yk+1)/2)

≤ (1 − ϐk)/2 + αkϐk(yk+1/2 + (1 − yk+1)/2)

= (1 − ϐk)/2 + αkϐk/2

< 1
2 .

However, by leaving the game, player 1 could get payoff 1
2 immediately.

Hence, we can fix k1 < k2 such that αk1 < 1, ϐk2 = 0 and αk = 1 for all
k1 < k < k2. The expected payoff for player 0 after history (v0v1)k1 v0 equals
(1 − αk1 )/2 + αk1 < 1. But then player 0 could improve by moving to v1 with
probability 1, in which case she receives payoff 1, again a contradiction. □

The existence of subgame-perfect equilibria in finite SSMGs remains
open. However, Flesch et al. (2010) proved the existence of subgame-perfect
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ε-equilibria in these games for all ε > 0. Moreover, they showed that subgame-
perfect equilibria do exist in deterministic SSMGswith arbitrarynonnegative
payoffs on terminal vertices.

3.4 Computing equilibria

The first computational problem coming to mind when one considers equi-
libria is computing an equilibrium for a given game. For this problem to be
meaningful, we need to make sure that both the possible inputs and the
possible outputs are representable by finite means. In order to ensure this,
we will restrict the inputs to finite SMGs with ω-regular objectives, and the
outputs to equilibria in pure finite-state strategies. Moreover, for the sake
of simplicity, we concentrate on parity SMGs.²

Computing Nash equilibria

For Nash equilibria, it is easy to see that the problem of computing an equi-
librium lies in the class FNP of function problems where a potential solution
can be verified in polynomial time.

Theorem 3.19. The problem of computing a pure finite-state Nash equilib-
rium (of polynomial size) in a finite parity SMG is in FNP.

Proof. To prove membership in FNP, we need to show that, given a fi-
nite parity SMG (G , v0) and a pure strategy profile σ with finite memory
M = (M, δ,m0), we can decide in polynomial time whether σ is a Nash
equilibrium of the game. This can be achieved as follows: First, for each
player i, we calculate the payoff zi of σ by computing the probability of the
event χ−1(Wini) in the Markov chain (Gσ , (v0 ,m0)). To check whether σ is a
Nash equilibrium, we additionally need to compute for each player i the
value ri of the MDP (Gσ−i , (v0 ,m0)). Clearly, σ is a Nash equilibrium if and only
if ri ≤ zi for each player i. Since we can compute the value of any MDP (and
thus any Markov chain) with parity objectives in polynomial time, all this
can be done in polynomial time. □

Arguably more interesting is the following theorem which essentially
states that we can reduce the problem of computing a Nash equilibrium to

² One problem with computing equilibria for games with more complex objectives is that
optimal strategies might be of exponential size (Dziembowski et al. 1997; Horn 2005).
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the problem of computing optimal strategies. For any class C of parity S2Gs,
let C∗ be the class of all parity SMGs G such that for each player i the coalition
game Gi is in C.

Theorem 3.20. Let C be any class of finite parity S2Gs. There exists a
polynomial-time Turing reduction from the problem of computing a Nash
equilibrium for games in C∗ to the problem of computing globally optimal
positional strategies for games in C.

Proof. We describe a deterministic polynomial-time algorithm for comput-
ing Nash equilibria for games in C∗ with access to an oracle for computing
globally optimal positional strategies for games in C. On input (G , v0), where
G ∈ C∗, the algorithm starts by requesting from the oracle, for each player i,
globally optimal positional strategies σi and τi for both players in the coalition
game Gi ∈ C. Then, the algorithm constructs a finite-state Nash equilibrium
of (G , v0) by combining the strategies σi and τi in the way it is done in the
proof of Lemma 3.7, which can be done in polynomial time. □

Since optimal strategies can be computed in polynomial time for de-
terministic two-player zero-sum parity games with a bounded number of
priorities, Theorem 3.20 implies that a Nash equilibrium of a deterministic
multiplayer parity game with a bounded number of priorities can be com-
puted in polynomial time. We will prove a stronger result below, namely
that we can even compute a subgame-perfect equilibrium of such a game
in polynomial time. Finally, it follows from Theorem 3.20 that computing
a finite-state Nash equilibrium in a parity SMG can be done in polynomial
time if and only if the quantitative decision problem for parity S2Gs and
related problems are decidable in polynomial time.

Corollary 3.21. Either none or all of the following problems are solvable in
polynomial time:

1. the quantitative decision problem for parity S2Gs,
2. computing the values of a parity S2G,
3. computing globally optimal positional strategies in a parity S2G,
4. computing a pure finite-state Nash equilibrium of a parity SMG,
5. computing a finite-state Nash equilibrium of a parity SMG.

Proof. The polynomial-time equivalence of 1., 2. and 3. is the subject of Propo-
sition 2.14. That 4. can be done in polynomial time if 3. can follows from
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Algorithm 3.1. Computing the set of consistent memory-vertex pairs.

Input: SMG G = (Π, V , (Vi)i∈Π , ∆, χ, (Wini)i∈Π), v0 ∈ V, memoryM = (M, δ,m0)
Output: {(m, v) ∈ M × V ∶ exists history xv of (G , v0)with δ∗(m0 , x) = m}

X ∶= {(m0 , v0)}
repeat
X′ ∶= X
X ∶= X ∪ {(n,w) ∈ M × V ∶ exists (m, v) ∈ X with δ(m, v) = n and w ∈ v∆}

until X = X′

output X

Theorem 3.20, and that 5. can be done in polynomial time if 4. can is trivial.
Finally, to compute valGi (v) for a parity S2G G, we can compute a finite-state
Nash equilibrium (σ, τ) of (G , v). It follows fromProposition 3.2 that the payoff
of (σ, τ) for player i equals valGi (v). This payoff can be computed in polynomial
time from (σ, τ) by analysing the generated Markov chain. Hence, 2. can be
done in polynomial time if 5. can. □

Computing subgame-perfect equilibria

For subgame-perfect equilibria, the problem of computing a pure finite-
state equilibrium of polynomial size in a parity SMG can again easily be put
into FNP. The restriction to polynomial size is important: we do not know
whether the existence of a pure finite-state subgame-perfect equilibrium in
a parity SMG implies the existence of one with polynomial size.

Theorem 3.22. The problem of computing a pure finite-state subgame-
perfect equilibrium of polynomial size in a finite parity SMG is in FNP.³

Proof. Weneed to show that, given afinite parity SMG (G , v0) and a pure strat-
egy profile σwith finitememoryM = (M, δ,m0), we can decide in polynomial
time whether σ is a subgame-perfect equilibrium of the game. Our algo-
rithm starts by computing the set C of consistent pairs of a memory state
and a vertex, i.e. the set of all pairs (m, v) ∈ M × V such that there exists a
history xv of (G , v0)with δ∗(m0 , x) = m. This can be achieved in polynomial
time (for any kind of SMG) by Algorithm 3.1.

³ More precisely, the problem of computing a pure finite-state subgame-perfect equilibrium of
size at most p(n) in a finite parity SMG of size n is in FNP for any polynomial p.
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After having computed the set C, the algorithm proceeds by computing
(in polynomial time) for each i ∈ Π and (m, v) ∈ C the probability zi(m, v) of
the event χ−1(Wini) in the Markov chain (Gσ , (m, v)) and the value ri(m, v) of
theMDP (Gσ−i , (m, v)). It is easy to see that σ is a subgame perfect equilibrium
of (G , v0) if and only if ri(m, v) ≤ zi(m, v) for each i ∈ Π and each (m, v) ∈ C. □

For deterministic games, we know how to construct a finite-state
subgame-perfect equilibrium (Theorem 3.16). It is easy to see that the equi-
librium can be computed in polynomial time if the computation of globally
optimal positional strategies can be done in polynomial time. For a class C
of parity S2Gs, the class C∗ is defined as above.

Theorem 3.23. Let C be any class of finite deterministic two-player zero-
sum parity games. There exists a polynomial-time Turing reduction from
the problem of computing a subgame-perfect equilibrium for games in C∗ to
the problem of computing globally optimal positional strategies for games
in C.

Theorem 3.23 makes the entire machinery that has been developed for
solving (subclasses of ) deterministic two-player zero-sum parity games
available for the computation of subgame-perfect equilibria in deterministic
multiplayer parity games. For example, the deterministic subexponen-
tial algorithm for solving parity games due to Jurdziński et al. (2008) can
be adapted to compute a subgame-perfect equilibrium of a deterministic
multiplayer parity game. Moreover, we can compute a subgame-perfect
equilibrium in polynomial time for games whose arenas allow a polynomial-
time algorithm for solving parity games, such as the ones mentioned in
Section 2.5. In particular, we can compute a subgame-perfect equilibrium of
a game with a bounded number of priorities in polynomial time.

Corollary 3.24. For each d ∈ M, there exists a polynomial-time algorithm for
computing a subgame-perfect equilibrium of a finite deterministic multi-
player parity game with at most d priorities.

Finally, it follows from Theorem 3.23 that computing a Nash or subgame-
perfect equilibriumof a deterministicmultiplayer parity game is polynomial-
time equivalent to deciding the winner of a deterministic two-player zero-
sum parity game.

Corollary 3.25. Either none or all of the following problems are solvable in
polynomial time:
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1. deciding whether player 0 has a winning strategy in a deterministic
two-player zero-sum parity game,

2. computing globally optimal positional strategies in a deterministic two-
player zero-sum parity game,

3. computing a pure finite-state subgame-perfect equilibrium of a deter-
ministic parity multiplayer game,

4. computing a finite-state subgame-perfect equilibrium of a deterministic
parity multiplayer game,

5. computing a pure finite-state Nash equilibrium of a deterministic parity
multiplayer game,

6. computing a finite-state Nash equilibrium of a deterministic parity mul-
tiplayer game.

Proof. The polynomial-time equivalence of 1. and 2. is standard (see Propo-
sition 2.14). That 3. can be done in polynomial time if 2. can follows from
Theorem 3.23. That 4. and 5. can be done in polynomial time if 3. can and that
6. can be done in polynomial time if 4. or 5. can is obvious. Finally, it follows
from Proposition 3.2 that 1. can be done in polynomial time if 6. can. □

3.5 Decision problems

In applications, computing an arbitrary equilibrium is often not enough.
For instance, in the stochastic dining philosophers problem, introduced in
Section 1.2, we are after an equilibrium where each philosopher survives
with a high probability. In order to compute a “good” equilibrium, we permit
the placing of a constraint on the payoff of the equilibrium. More precisely,
for each player one may put both a lower and an upper threshold on her
payoff. For any solution concept, the corresponding decision problem can be
phrased as follows (the ordering ≤ is applied componentwise):

Given a finite SMG (G , v0) and x, y ∈ [0, 1]Π , decide whether there exists
a solution with payoff ≥ x and ≤ y.

To obtainmeaningful results, we assume that all transition probabilities inG
as well as the thresholds x and y are rational numbers (with numerator and
denominator given in binary) and that all objectives are ω-regular. For the
two solution concepts we study in this work, namely Nash and subgame-
perfect equilibria, we obtain the decision problems NE and SPE.
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Note that we have not put any restriction on the type of strategies that
realise the equilibrium. It is natural to restrict the search space to equi-
libria that are realised in pure, finite-state, pure finite-state, stationary, or
even positional strategies.For Nash equilibria, let us call the resulting deci-
sion problems PureNE, FinNE, PureFinNE, StatNE and PosNE, respectively;
for subgame-perfect equilibria, the corresponding problems are PureSPE,
FinSPE, PureFinSPE, StatSPE and PosSPE, respectively.

Often, we are not interested in the exact payoff of a solution, but only in
which players win or lose almost surely. For any of the aforementioned de-
cision problems, we obtain its qualitative fragment by requiring the thresholds
x and y to be binary:

Given a finite SMG (G , v0) and x, y ∈ {0, 1}Π , decide whether there exists
a solution with payoff ≥ x and ≤ y.

It will turn out that the difficulty of the general problems manifests itself in
this fragment: almost all of the lower bounds on the complexity of NE, SPE
and their relatives we are going to prove in Chapter 4 can be obtained by a
reduction to the qualitative fragment. In fact, in most cast cases, we show
hardness for the following problem:

Given afinite SMG (G , v0), decidewhether there exists a solutionwhere
player 0 wins almost surely.

We already know that there exist SSMGs that have a stationary Nash
equilibrium but no positional one. Hence, the problems StatNE and PosNE
are distinct. Another extension of PosNE is PureFinNE. In fact, these ex-
tensions are incomparable, even if we consider only SSMGs. This has to be
compared with the situation for SS2Gs, where all these problems coincide
because SS2Gs admit globally optimal positional strategies.

Proposition 3.26. There exists a finite SSMG with a stationary subgame-
perfect equilibrium where player 0 wins almost surely, but with no pure
Nash equilibrium where player 0 wins with positive probability.

Proof. Consider the three-player SSMG depicted in Figure 3.6. Clearly, the sta-
tionary strategy profile where from vertex v2 player 0 selects both outgoing
transitions with probability 1

2 each, player 1 plays from v0 to v1 and player 2
plays from v1 to v2 is a subgame-perfect equilibrium where player 0 wins al-
most surely. However, for any pure strategy profile where player 0 wins with
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v0

1

v1

2

v2

0

(1, 1, 0)

(1, 0, 1)

(0, 12 , 0) (0, 0, 12 )

Figure 3.6. An SSMG that has a stationary SPE where player 0 wins almost surely but
no pure NE where player 0 wins with positive probability.

positive probability, either player 1 or player 2 receives payoff 0 and could
improve her payoff by switching her strategy at v0 or v1, respectively. □

Proposition 3.27. There exists a finite SSMG with a pure finite-state sub-
game-perfect equilibrium, but with no stationary Nash equilibrium.

Proof. Consider the game (G , v3) given in the proof of Proposition 3.13 and
depicted in Figure 3.3. We have already shown that this game does not admit
a stationary Nash equilibrium. Now consider the pure strategy profile σ
where player i leaves the game after history xvi if and only if x is of even
length. We claim that σ is a subgame-perfect equilibrium of (G , v). By sym-
metry, we only need to show that player 1 cannot improve her payoff after
any history. Let xv be a history of (G , v3); without loss of generality, v = v1.
If x is even, then player 1 receives payoff 1

3 after history xv, but would receive
payoff 0 by staying in the game. On the other hand, if x is odd, then player 1
receives payoff 1 after history xv, which is the best she can get. □

The complete taxonomy of the decision problems related to Nash and
subgame-perfect equilibria is depicted in Figure 3.7. An edge from problem A
to problem Bmeans that A is a subset of B, i.e. all positive instances of A are
positive instances of B. Moreover, all inclusions are strict. This follows from
Example 3.4, Propositions 3.26 and 3.27 as well as from a result on finite-state
Nash equilibria (Proposition 4.12), which we will present in the next chapter.
Note however that an edge from A to B does, in general, not imply that one
problem is computationally harder than the other (in the sense that there is
a computable reduction between these problems). Hence, decidability has
to be studied separately for each of these problems.
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PosNE

PureFinNE

PureNE

StatNE

FinNE

NE

PosSPE

PureFinSPE

PureSPE

StatSPE

FinSPE

SPE

Figure 3.7. The different decision problems related to Nash and subgame-perfect
equilibria.
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4
Complexity of Equilibria

The aim of this chapter is to establish tight bounds on the complexity of the
decision problems we have introduced in Chapter 3: All upper bounds apply
to SMGs with Streett-Rabin or Muller objectives, while all lower bounds
apply to SSMGs. Throughout this chapter, all games are finite.

4.1 Positional equilibria

In this section, we analyse the complexity of the presumably simplest of the
decision problems introduced so far: PosNE and PosSPE. Not surprisingly,
both these problems are decidable; in fact, they are NP-complete for all types
of objectives we consider in this work. Let us start by proving membership
to NP; it suffices to consider Streett-Rabin and Muller SMGs.

Theorem 4.1. PosNE is in NP for Streett-Rabin SMGs and Muller SMGs.

Proof. The proof is similar to the proof of Theorem 3.19. To decide PosNE, on
input G , v0 , x, y we can guess a positional strategy profile σ, i.e. a mapping

⋃i∈Π Vi → V; then, we verify whether σ is a Nash equilibriumwith the desired
payoff. To do this, we first compute the payoff zi of σ for each player i by
computing the probability of the event Wini in the (finite) Markov chain
(Gσ , v0). Once each zi is computed, we can easily check whether xi ≤ zi ≤ yi .
To verify that σ is a Nash equilibrium, we additionally compute, for each
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4 Complexity of Equilibria

player i, the value ri of the (finite) MDP (Gσ−i , v0). Clearly, σ is a Nash equilib-
rium if and only if ri ≤ zi for each player i. Since we can compute the value
of any MDP (and thus any Markov chain) with one of the above objectives
in polynomial time (Theorem 2.15), all these checks can be carried out in
polynomial time. □

Theorem 4.2. PosSPE is in NP for Streett-Rabin SMGs and Muller SMGs.

Proof. The proof is virtually identical to the proof of Theorem 4.1. Since a
stationary strategy profile σ is a subgame-perfect equilibrium of a Muller
SMG (G , v0) if and only if σ is a Nash equilibriumof (G , v) for every vertex v ∈ V
reachable from v0, we only have to adapt the algorithm as follows: For each
player i, instead of computing only the payoff ri of σ in (G , v0) and the value zi
of the MDP (Gσ−i , v0), we compute for each v ∈ V the payoff riv of σ for player i
in (G , v) and the value riv of (Gσ−i , v). Finally, we compute (in polynomial time)
the set R of vertices that are reachable from v0 and check whether riv ≤ ziv for
each v ∈ R. Clearly, the resulting algorithm still runs in polynomial time. □

To establishNP-completeness, we still need to showNP-hardness. In fact,
the reduction we are going to present does not only work for PosNE and
PosSPE, but also for the problems StatNE and StatSPE, where we allow arbi-
trary stationary equilibria.

Theorem 4.3. PosNE, StatNE, PosSPE and StatSPE are NP-hard, even for
SSMGs with only two players (three players for the qualitative fragments).

Proof. The proof is by reduction from SAT. Let φ = C1∧⋅ ⋅ ⋅∧Cm , wherem ≥ 1, be
a formula in conjunctive normal form over propositional variables X1 , . . . , Xn;
without loss of generality, we assume each clause is nonempty. Our aim is
to construct a two-player SSMG (G , v0) such that the following statements
are equivalent:

1. φ is satisfiable;
2. (G , v0) has a positional subgame-perfect equilibrium with payoff (1, 12 );
3. (G , v0) has a stationary Nash equilibrium with payoff (1, 12 ).

Provided that the game can be constructed in polynomial time, these equiv-
alences establish all desired reductions. The game G is depicted in Figure 4.1.
The game proceeds from the initial vertex v0 to Xi or Xi with probability 1/2i+1

each, and to vertex φ with probability 1/2n+1; with the remaining probability
of 1/2n+1 the game proceeds to a terminal vertex with payoff (1, 0). From φ,
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Figure 4.1. Reducing SAT to PosNE, StatNE, PosSPE and StatSPE.
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the game proceeds to each vertex C j with probability 1/(m + 1); with the
remaining probability of 1/(m + 1), the game proceeds to a terminal vertex
with payoff (1, 1). From vertex C j (controlled by player 1), there is a tran-
sition to vertex Xi or Xi if and only if Xi respectively ¬Xi occurs inside the
clause C j . Obviously, the game G can be constructed from φ in polynomial
time. We conclude the proof by showing that 1.–3. are equivalent.

(1.⇒ 2.) Assume that α∶ {X1 , . . . , Xn} → {true, false} is a satisfying assign-
ment of φ. In the positional subgame-perfect equilibrium of (G , v0), player 0
moves from a literal L, i.e. L = Xi or L = Xi , to the neighbouring ⊺-labelled
vertex if and only if L is mapped to true by α, and player 1 moves from ver-
tex C j to a (fixed) literal L that is contained in C j and mapped to true by α
(which is possible since α is a satisfying assignment). At ⊺-labelled vertices,
player 1 never leaves the game. Obviously, player 0 wins almost surely in
this strategy profile. For player 1, the payoff is

1
2n+1 +

n

∑
i=1

1
2i+1

= 1
2n+1 +

1
2 (

n

∑
i=1

1
2i
) = 1

2n+1 +
1
2 (1 −

1
2n

) = 1
2 ,

where the first summand is the probability of going from the initial vertex
to φ, from where player 1 wins almost surely since from every clause vertex
she plays to a “true” literal. Obviously, changing her strategy at any ver-
tex cannot give her a better payoff. Therefore, we have a subgame-perfect
equilibrium.

(2.⇒ 3.) Trivial.

(3.⇒ 1.) Let σ = (σ0 , σ1) be a stationary Nash equilibrium of (G , v0) with
payoff (1, 12 ). Our first aim is to show that σ0 is actually a positional strat-
egy. Towards a contradiction, assume that there exists a literal L such that
σ0(L) assigns probability 0 < q < 1 to the neighbouring ⊺-labelled vertex.
Since player 0 wins almost surely, player 1 never leaves the game. Hence,
the expected payoff for player 1 from vertex L equals q. However, if she left
the game at the ⊺-labelled vertex, she would receive payoff 2q/(1 + q) > q.
Therefore, σ is not a Nash equilibrium, a contradiction.

Since σ0 is a positional strategy, we can define a pseudo assignment
α∶ {X1 ,¬X1 , . . . , Xn ,¬Xn} → {true, false} by setting α(L) = true if σ0 prescribes
to go from vertex L to the neighbouring ⊺-labelled vertex. Our next aim
is to show that α is actually an assignment: α(Xi) = true if and only if
α(¬Xi) = false. To see this, note that we can compute player 1’s expected
payoff as follows:
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1
2 = p

2n+1 +
n

∑
i=1

ai

2i+1
, ai =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if α(Xi) = α(¬Xi) = false,

1 if α(Xi) ≠ α(¬Xi),

2 if α(Xi) = α(¬Xi) = true,

where p is the expected payoff for player 1 from vertex φ. By the construction
of G, we have p > 0, and the equality only holds if p = 1 and ai = 1 for all
i = 1, . . . , n, which proves that α is an assignment.

Finally, we claim that α satisfies φ. If this were not the case, there would
exist a clause C such that player 1’s expected payoff from vertex C is 0 and
therefore p < 1. This is a contradiction to p = 1, as shown above.

To show that the qualitative fragments of PosNE and StatNE are also
NP-hard, it suffices to modify the game G as follows: First, we add one new
player, player 2, who wins at precisely those terminal vertices where player 1
loses. Second, we add two new vertices v1 and v2 . At v1 , player 1 has the choice
to leave the game; if she decides to stay inside the game, the play proceeds
to v2, where player 2 has the choice to leave the game; if she also decides to
stay inside the game, the play proceeds to vertex v0 from where the game
continues normally; if player 1 or player 2 decide to leave the game, then
each of them receives payoff 1

2 , but player 0 receives payoff 0. Let us denote
the modified game by G ′. It is straightforward to see that the following
statements are equivalent:

1. (G ′ , v1) has a stationary Nash equilibrium where player 0 wins almost
surely;

2. (G , v0) has a stationary Nash equilibrium with payoff (1, 12 );
3. φ is satisfiable;
4. (G , v0) has a positional subgame-perfect equilibrium with payoff (1, 12 );
5. (G ′ , v1) has a positional subgame-perfect equilibriumwhere player 0 wins
almost surely. □

Recall from Chapter 3 that not every SMG has a positional Nash equi-
librium (Proposition 3.14). Hence, it is also a nontrivial problem to decide
whether an SMG has a positional Nash equilibrium at all. It follows from
Theorem 4.1 that, e.g. for SMGs with Muller objectives, there exists a nonde-
terministic polynomial-time algorithm for deciding this problem. On the
other hand, this problem is NP-hard, even for three-player SSMGs.

Corollary 4.4. Deciding whether in a given three-player SSMG there exists
a positional Nash equilibrium is NP-hard.
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Proof. The proof is by reduction from the following problem, which we just
proved to be NP-hard: Given a three-player SSMG (G , v0), decide whether
(G , v0) has a positional equilibrium where player 0 wins almost surely. In
the following, let (G1 , v1) be a fixed three-player SSMG that does not have a
positional Nash equilibrium and where player 0 wins almost surely in every
strategy profile (such a game can be derived from Proposition 3.14 by adding
one more player). We need to show how to construct (in polynomial time)
from a given three-player SSMG (G , v0) a new three-player SSMG (G̃ , ṽ0) such
that (G , v) has a positional Nash equilibrium where player 0 wins almost
surely if and only if (G̃ , ṽ0) has a positional Nash equilibrium at all. The
game G̃ is the disjoint union of G and G1 combined with one new vertex ṽ0,
controlled by player 0. At ṽ0, player 0 can choose to move to v0 or to v1; in
either case, the remaining play stays inside G or G1, respectively. Obviously,
G̃ can be constructed from G in polynomial time. It remains to be shown that
(G , v0) has positional Nash equilibrium where player 0 wins almost surely if
and only if (G̃ , ṽ0) has a positional Nash equilibrium.

(⇒). Assume that (G , v0) has a positional Nash equilibriumwhere player 0
wins almost surely. This equilibrium can easily be extended to a positional
Nash equilibrium of (G̃ , ṽ0) by letting player 0move from ṽ0 to v0 (and choos-
ing an arbitrary positional strategy profile for G1).

(⇐) Assume that (G̃ , ṽ0) has a positional Nash equilibrium σ. We claim
that σ0(ṽ0) = v0 . Otherwise, σ would induce a positional Nash equilibrium of
(G1 , v1), a contradiction. Hence, σ0(ṽ0) = v0, and σ induces a positional Nash
equilibrium of (G , v0). We claim that player 0 wins almost surely in this
equilibrium. Otherwise, she could improve her payoff by playing from ṽ0
to v1 from where she wins with probability 1, a contradiction. □

4.2 Stationary equilibria

To prove the decidability of StatNE and StatSPE, we appeal to results estab-
lished for the existential theory of the reals, the set of all existential first-order
sentences (over the appropriate signature) that hold in the (ordered) field
R ∶= (e,+, ⋅, 0, 1, ≤). The best known upper bound for the complexity of
the associated decision problem is Pspace (Canny 1988), which leads to the
following theorem.

82



4.2 Stationary equilibria

Theorem 4.5. StatNE is in Pspace for SMGs with Streett-Rabin or Muller
objectives.

Proof. Since Pspace = NPspace, it suffices to provide a nondeterministic al-
gorithmwith polynomial space requirements for deciding StatNE. On input
G , v0 , x, y, where without loss of generality G is an SMG with Muller objec-
tives Fi ⊆ P(C), the algorithm starts by guessing the support S ⊆ V × V of a
stationary strategy profile σ of G, i.e. S = {(v,w) ∈ V × V ∶ σ(w ∣ v) > 0}. From
the set S alone, by standard graph algorithms, one can compute for each
player i the following sets in polynomial time:

1. the union Fi of all end components (i.e. bottom SCCs) of the Markov
chain Gσ that are winning for player i,

2. the set Ri of vertices v such that Prσ

v(Reach(Fi)) > 0,

3. the union Ti of all end components of the MDP Gσ−i that are winning for
player i.

After computing all these sets, the algorithm evaluates an existential
first-order sentence ψ, which can be computed in polynomial time from G, v0 ,
x, y, (Ri)i∈Π , (Fi)i∈Π and (Ti)i∈Π , over R and returns the answer to this query.

It remains to describe a suitable sentenceψ. Let α = (αvw)v ,w∈V , r = (riv)i∈Π,v∈V
and z = (ziv)i∈Π,v∈V be three sets of variables, and let V∗ = ⋃i∈Π Vi . The formula

φ(α) ∶= ⋀
v∈V∗

( ⋀
w∈v∆

αvw ≥ 0 ∧ ⋀
w∈V/v∆

αvw = 0 ∧ ∑
w∈v∆

αvw = 1) ∧

⋀
v∈V/V∗
w∈V

αvw = ∆(w ∣ v) ∧ ⋀
(v ,w)∈S

αvw > 0 ∧ ⋀
(v ,w)∉S

αvw = 0 ,

states that the mapping σ∶V → D(V), defined by σ(w ∣ v) = αvw , constitutes a
valid stationary strategy profile of G whose support is S. Provided that φ(α)
holds inR, the formula

ηi(α, z) ∶= ⋀
v∈F i

ziv = 1 ∧ ⋀
v∈V/R i

ziv = 0 ∧ ⋀
v∈V/F i

ziv = ∑
w∈v∆

αvw ⋅ ziw

states that ziv = Prσ

v(Wini) for each v ∈ V, where σ is defined as above. This
follows from a well-known result about Markov chains, namely that the
vector of the aforementioned probabilities is the unique solution of the given
system of equations (see Appendix B). Finally, the formula
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θi(α, r) ∶= ⋀
v∈V

riv ≥ 0 ∧ ⋀
v∈T i

riv = 1 ∧ ⋀
v∈V i

w∈v∆

riv ≥ riw ∧ ⋀
v∈V/V i

riv = ∑
w∈v∆

αvw ⋅ riw

states that r is a solution of the linear programme for computing the
maximal payoff that player i can achieve when playing against the strat-
egy profile σ−i (see Appendix B). In particular, the formula is fulfilled if
riv = sup

τ
Pr(σ−i ,τ)

v (Reach(Ti)) = sup
τ
Pr(σ−i ,τ)

v (Wini) (the latter equality follows
from Lemmas 2.3 and 2.4), and every other solution is greater than this one
(in each component).

The desired sentence ψ is the existential closure of the conjunction of φ
and, for each player i, the formulae ηi and θi combined with formulae stating
that player i cannot improve her payoff and that the expected payoff for
player i lies in between the given thresholds:

ψ ∶= ∃α ∃r ∃z (φ(α) ∧ ⋀
i∈Π

(ηi(α, z) ∧ θi(α, r) ∧ riv0 ≤ ziv0 ∧ xi ≤ z
i

v0 ≤ yi)) .

Clearly, ψ holds inR if and only if (G , v0) has a stationary Nash equilibrium
with payoff at least x and at most y whose support is S. Consequently, the
algorithm is correct. □

Theorem 4.6. StatSPE is in Pspace for SMGs with Streett-Rabin or Muller
objectives.

Proof. Again, the proof is virtually identical to the proof of Theorem 4.5.
As part of the preprocessing, we compute (in polynomial time) the set R
of vertices reachable from v0. Finally, instead of evaluating the sentence ψ,
we evaluate the following sentence:

ψ′ ∶= ∃α ∃r ∃z (φ(α) ∧ ⋀
i∈Π

(ηi(α, z) ∧ θi(α, r) ∧ ⋀
v∈R

riv ≤ ziv ∧ xi ≤ ziv0 ≤ yi)) .

Clearly, ψ′ holds inR if and only if there exists a stationary subgame-perfect
equilibrium of G with payoff at least x and at most y whose support is S. □

In the previous section, we showed that StatNE and StatSPE are NP-hard,
leaving a considerable gap to our upper bound of Pspace. Towards gaining a
better understanding of the problem, we relate StatNE and StatSPE to the
square root sum problem (SqrtSum) of deciding, given numbers d1 , . . . , dn , k ∈ M,
whether ∑n

i=1

√
di ≥ k.

Recently, Allender et al. (2009) showed that SqrtSumbelongs to the fourth
level of the counting hierarchy, which is a slight improvement over the previ-
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Figure 4.2. Reducing SqrtSum to StatNE and StatSPE.

ously known Pspace upper bound. However, it has been an open question
since the 1970s as to whether SqrtSum falls into the polynomial hierarchy
(Garey et al. 1976; Etessami & Yannakakis 2010). We identify a polynomial-
time reduction from SqrtSum to StatNE and StatSPE, even for four-player
SSMGs.¹ Hence, StatNE and StatSPE are at least as hard as SqrtSum, and
showing that StatNE or StatSPE resides inside the polynomial hierarchy
would imply a major breakthrough in understanding the complexity of
numerical computation.

Theorem 4.7. SqrtSum is polynomial-time reducible to both StatNE and
StatSPE, even for four-player SSMGs.

Before we state the reduction, let us first examine the game G(p), where
1
2 ≤ p < 1, which is depicted in Figure 4.2 (b).

Lemma 4.8. The maximal payoff player 3 receives in a stationary Nash or
subgame-perfect equilibrium of (G(p), s0) equals (

√
2 − 2p − p + 1)/(2p + 2).

Proof. Note that a stationary strategy profile σ can only be a Nash equilib-
rium where player 3 receives payoff > 0 if player 1 plays from t1 to r1 with
probability 1 and player 2 plays from t2 to r2 with probability 1 (or if t2 is

¹ Some authors define SqrtSum using ≤ instead of ≥. With this definition, we would reduce
from the complement of SqrtSum instead.
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not reachable with σ, in which case player 3 receives payoff ≤ 1 − p) be-
cause otherwise player 0 would prefer to leave the game at v0. Moreover,
the maximum payoff for player 3 can only be attained when player 0 plays
with probability 1 from s0 to t1 because, if player 0 plays from s0 to t1 with
probability 0 < x < 1, then setting x to 1 yields a Nash equilibrium with a
better payoff for player 3. Hence, the only variable quantities are the prob-
abilities x1 and x2 that player 0 plays from s1 to t2 respectively from s2 to t1.
Given x1 and x2, we can compute the probabilities p1(x1 , x2) ∶= Prσ

t1 (Win1)
and p2(x1 , x2) ∶= Prσ

t2 (Win2) as follows: p1(x1 , x2) = p(1 − x1)/(1 − x1x2p2), and
p2(x1 , x2) = p(1 − x2)/(1 − x1x2p2). To have a Nash equilibrium, it must be the
case that p1(x1 , x2), p2(x1 , x2) ≥ 1

2 since otherwise player 1 or player 2 would
prefer to leave the game at t1 or t2, respectively, where they could obtain
payoff 1

2 immediately. Vice versa, if p1(x1 , x2), p2(x1 , x2) ≥ 1
2 then σ is a Nash

equilibrium with expected payoff (1 − p)/(1 − x1x2p2) ≥ 1 − p for player 3.

Hence, to determine the maximum payoff for player 3 in a stationary
Nash equilibrium, we have tomaximise (1−p)/(1−x1x2p2), the expected payoff
for player 3, under the constraints p1(x1 , x2), p2(x1 , x2) ≥ 1

2 and 0 ≤ x1 , x2 ≤ 1.
We claim that the maximum is reached only if x1 = x2: if e.g. x1 > x2 , then we
can achieve a higher payoff for player 3 by setting x′2 ∶= x1 , and the constraints
are still satisfied:

p(1 − x′2)
1 − x1x′2p2 =

p(1 − x1)
1 − x2

1 p2
≥

p(1 − x1)
1 − x1x2p2 ≥ 1

2 .

Thus, it suffices to maximise (1 − p)/(1 − x2p2) subject to p(1 − x)/(1 − x2p2) ≥ 1
2

and 0 ≤ x ≤ 1. Since 1
2 ≤ p < 1, this is equivalent tomaximising (1−p)/(1−x2p2)

subject to p2x2 − 2px + 2p − 1 ≥ 0 and 0 ≤ x ≤ 1. The roots of the former
polynomial are (1±

√
2 − 2p) / p, but (1+

√
2 − 2p) / p > 1 for 1

2 ≤ p < 1. Therefore,
any solution must be less than (or equal to) x0 ∶= (1 −

√
2 − 2p) / p. In fact, we

always have 0 ≤ x0 < 1 for p ∈ ( 12 , 1). Therefore, x0 is the optimal solution, and
the maximal payoff for player 3 does indeed equal

1 − p
1 − x2

0p2
= 1 − p
1 − (1 −

√
2 − 2p)2

=
√

2 − 2p − p + 1
2p + 2 . □

Proof (of Theorem 4.7). Given an instance (d1 , . . . , dn , k) of SqrtSum, where
without loss of generality n > 0, di > 0 for each i = 1, . . . , n and k ≤ d ∶= ∑n

i=1 di ,
we construct a four-player SSMG (G , v0) such that the following statements
are equivalent:
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1. ∑n

i=1

√
di ≥ k;

2. (G , v0) has a stationary subgame-perfect equilibriumwhere player 0 wins
almost surely;

3. (G , v0) has a stationary Nash equilibrium where player 0 wins almost
surely.

Define pi ∶= 1 − di/2d2 for i = 1, . . . , n. Note that 1
2 ≤ pi < 1 since 0 < di ≤ d ≤ d2.

For the reduction, we use n copies of the game G(p), where in the ith copy we
set p to pi . The complete game G is depicted in Figure 4.2 (a); it can obviously
be constructed in polynomial time.

By Lemma 4.8, the maximal payoff player 3 receives in a stationary Nash
or subgame-perfect equilibrium of (G(pi), s0) equals

√
2 − 2pi − pi + 1

2pi + 2 =
√
di/d − (1 − di/2d2) + 1

4 − di/d2 =
d
√
di + di/2

4d2 − di

.

Consequently, the maximal payoff player 3 receives in a stationary Nash
(subgame-perfect) equilibrium of (G , v1) equals

q ∶=
n

∑
i=1

4d2 − di

4d2n
⋅
d
√
di + di/2

4d2 − di

=
n

∑
i=1

√
di

4dn
+

n

∑
i=1

di

8d2n
=

n

∑
i=1

√
di

4dn
+ 1
8dn

.

To complete the proof, we need to establish the equivalence of 1.–3.
(1.⇒ 2.) Assume that ∑n

i=1

√
di ≥ k. Then q ≥ (2k + 1)/8dn, and any stationary

subgame-perfect equilibrium σ of (G , v1) with this payoff for player 3 can
be extended to a stationary subgame-perfect equilibrium of (G , v0)where
player 0 wins almost surely by setting σ(v1 ∣ v0) = 1.

(2.⇒ 3.) Trivial.
(3.⇒ 1.) Assume that (G , v0) has a stationary Nash equilibrium where

player 0 wins almost surely, but ∑n

i=1

√
di < k. Then q < (2k + 1)/8dn, and in

every stationary Nash equilibrium of (G , v0) player 3 leaves the game at v0,
which gives payoff 0 to player 0, a contradiction. □

In Chapter 3, we have seen that not every SSMG admits a stationary
Nash equilibrium (Proposition 3.13). As for positional equilibria, we can thus
ask whether a given game has a stationary Nash equilibrium at all. With
the same construction as in the proof of Corollary 4.4, we can infer from
Theorems 4.3 and 4.7 that this problem is both NP-hard and SqrtSum-hard,
even for four-player SSMGs.
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Corollary 4.9. Deciding whether in a given four-player SSMG there exists a
stationary Nash equilibrium is both NP-hard and SqrtSum-hard.

Remark. The positive results of Sections 4.1 and 4.2 can easily be extended to
equilibria in pure or randomised strategies with a memory of a fixed size
k ∈ M: a nondeterministic algorithm can guess a memoryM of size k and
then look for a positional, respectively stationary, equilibrium in the the
product of the original game G with the memoryM. Hence, for any fixed
k ∈ M, we can decide in Pspace (NP) the existence of a randomised (pure)
equilibrium of size k with payoff ≥ x and ≤ y.

4.3 Pure and randomised equilibria

In this section, we show that all of the following problems are undecid-
able: PureNE, PureSPE, NE and SPE. In fact, we prove that the qualitative
fragments of these problems are not recursively enumerable. The proof pro-
ceeds by a single reduction from an undecidable problem about deterministic
two-counter machines.

Let Γ ∶= {inc( j), dec( j), zero( j) ∶ j = 1, 2}. A two-counter machineM is of
the formM = (Q, q0 , δ), where

• Q is a finite set of states,
• q0 ∈ Q is the initial state, and
• δ ⊆ Q × Γ × Q is a transition relation.

For q ∈ Q let δ(q) ∶= {(γ, q′) ∈ Γ × Q ∶ (q, γ, q′) ∈ δ}. We callM deterministic if for
each q ∈ Q either δ(q) = ∅, or δ(q) = {(inc( j), q′)} for some j ∈ {1, 2} and q′ ∈ Q,
or δ(q) = {(zero( j), q1), (dec( j), q2)} for some j ∈ {1, 2} and q1 , q2 ∈ Q.

A configuration ofM is a triple C = (q, i1 , i2) ∈ Q × M × M, where q denotes
the current state and i j denotes the current value of counter j. A config-
uration C′ = (q, i′1 , i′2) is a successor of configuration C = (q, i1 , i2), denoted
by C ⊢ C′, if there exists a “matching” transition (q, γ, q′) ∈ δ. For exam-
ple, (q, i1 , i2) ⊢ (q′ , i1 + 1, i2) if and only if (q, inc(1), q′) ∈ δ. The instruction
zero( j) performs a zero test: (q, i1 , i2) ⊢ (q′ , i1 , i2) if and only if i1 = 0 and
(q, zero(1), q′) ∈ δ, or i2 = 0 and (q, zero(2), q′) ∈ δ.

A partial computation ofM is a finite or infinite sequence ρ = ρ(0)ρ(1) . . .
of configurations such that ρ(0) ⊢ ρ(1) ⊢ ⋯ and ρ(0) = (q0 , 0, 0) (the initial
configuration). A partial computation ofM is a computation ofM if it is infinite
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or ends in a configuration C for which there is no C′ with C ⊢ C′. Note that
each deterministic two-counter machine has a unique computation.

The halting problem is to decide, given a machineM, whether the compu-
tation ofM is finite. It is well-known that deterministic two-counter ma-
chines are Turing powerful, which makes the halting problem and its dual,
the non-halting problem, undecidable, even when restricted to deterministic
two-counter machines. In fact, the non-halting problem for deterministic
two-counter machines is not recursively enumerable.

Theorem 4.10. PureNE, PureSPE, NE and SPE are not recursively enumer-
able, even for 10-player SSMGs.

To prove Theorem4.10, we give a reduction from the non-halting problem
for deterministic two-counter machines. Our aim is thus to compute from
a machineM a 10-player SSMG (G , v0) such that the following statements
are equivalent:

1. the computation ofM is infinite;
2. (G , v0) has a pure subgame-perfect equilibrium in which player 0 wins
almost surely;

3. (G , v0) has a Nash equilibrium in which player 0 wins almost surely.

Without loss of generality, we assume that inM there is no zero test that is
followed by another zero test: if (zero( j), q′) ∈ δ(q), then ∣δ(q′)∣ ≤ 1.

The game G is played by players 0, 1 and eight other players At

j
and Bt

j
,

indexed by j ∈ {1, 2} and t ∈ {0, 1}. Intuitively, player 0 and player 1 build up
the computation ofM: player 0 updates the counters, and player 1 chooses
transitions. The other players make sure that player 0 updates the counters
correctly: If player 0 cheats or the computation halts, one of themwill prefer
to play a strategy that gives a bad payoff to player 0. More precisely, in every
step of the computation, the players A0

j
and A1

j
make sure that the value

of counter j is not too high, and the players B0
j
and B1

j
make sure that the

value of counter j is not too low. Hereby, they alternate: The first step of the
computation is monitored by the players A0

j
and B0

j
, the second step by the

players A1
j
and B1

j
, the third step again by the players A0

j
and B0

j
, and so on.

Let Γ′ ∶= Γ ∪ {init}. For each q ∈ Q, each γ ∈ Γ′, each j ∈ {1, 2} and each
t ∈ {0, 1}, the game G contains the gadgets St

γ ,q , I
t

q and C
t

γ , j , which are depicted
in Figure 4.3. For better readability, terminal vertices are depicted as squares;
the label indicates which players win. The initial vertex of G is v0 ∶= v0init,q0 .
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St

γ ,q :
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t

2

Bt

2

Ct

γ ,1

Ct

γ ,2

It

q

1
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2
3

1
6

5
6

1
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1
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1
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q for δ(q) = {(inc( j), q′)}:
1

S1−t

inc( j),q′
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q for δ(q) = {(zero( j), q1), (dec( j), q2)}:

1 S1−t

zero( j),q1

S1−t
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q for δ(q) = ∅:

Ct
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0

0, At

j
, A1−t

j

0, At

j
, B1−t

j

0, Bt

j
, B1−t

j

0, At

j
, B1−t

j

Ct

γ , j for γ = inc( j):

0

0, At

j
, A1−t

j

0, At

j
, A1−t

j

0, Bt

j
, A1−t

j

0, At

j
, B1−t

j

Ct

γ , j for γ = dec( j):

0

0, At

j
, B1−t

j

0, At

j
, A1−t

j

0, Bt

j
, B1−t

j

0, At

j
, B1−t

j

Ct

γ , j for γ ∈ {init, zero( j)}:

0, 1, At

j
, A1−t

j
0, 1, At

j
, B1−t

j

0, 1, Bt

j
, B1−t

j

Figure 4.3. Simulating a two-counter machine.
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Note that in the gadget St

γ ,q , each of the players At

j
and Bt

j
may quit the game,

which gives her a payoff of 1
3 or 1

6 , respectively, but payoff 0 to players 0 and 1.
It will turn out that player 1 will play a pure strategy in any Nash equilib-

riumof (G , v0)where player 0wins almost surely, except possibly for histories
that are not consistent with the equilibrium. Formally, we say that a strategy
profile σ of G is safe if for all histories xv consistent with σ and ending in a
vertex v ∈ It

q there exists w ∈ V with σ1(w ∣ xv) = 1.
For each safe strategy profile σ where player 0 wins almost surely, let

x0v0 ≺ x1v1 ≺ x2v2 ≺ ⋯ (where xi ∈ V∗, vi ∈ V and x0 = ε) be the unique
sequence containing all histories xv of (G , v0) that are consistent with σ and
end in a vertex v of the form v = vt

γ ,q . This sequence is infinite because player 0
wins almost surely. Additionally, let q0 , q1 , . . . be the corresponding sequence
of states and γ0 , γ1 , . . . be the corresponding sequence of instructions, i.e.
vn = v0γn ,qn

or vn = v1γn ,qn
for all n ∈ M. For each j ∈ {1, 2} and n ∈ M, we set:

an

j ∶= Prσ

v0 (player An mod 2
j wins ∣ xnvn ⋅ Vω) ;

bnj ∶= Prσ

v0 (player Bn mod 2
j wins ∣ xnvn ⋅ Vω) .

Note that at every terminal vertex of the counter gadgets Ct

γ , j and C
1−t

γ , j either
player At

j
or player Bt

j
wins. For each j, the conditional probability that, given

the history xnvn , we reach such a vertex is ∑k∈M 1/2k ⋅ 14 = 1
2 . Hence, an

j
= 1

2 − b
n

j

for all n ∈ M. We say that σ is stable if an

j
= 1

3 or, equivalently, bn
j
= 1

6 for each
j ∈ {1, 2} and for all n ∈ M.
Finally, for each j ∈ {1, 2} and n ∈ M, we define a number cn

j
∈ [0, 1] as

follows: After the history xnvn , with probability 1
4 the play enters the counter

gadget Cn mod 2
γn , j . The number cn

j
is defined as the probability of subsequently

reaching a grey-coloured vertex. Note that, by the construction of G, it holds
that cn

j
= 1 if γn = zero( j) or γn = init. In particular, c01 = c02 = 1.

Lemma 4.11. Let σ be a safe strategy profile in which player 0 wins almost
surely. Then σ is stable if and only if

cn+1j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 ⋅ c

n

j
if γn+1 = inc( j),

2 ⋅ cn
j

if γn+1 = dec( j),

cn
j
= 1 if γn+1 = zero( j),

cn
j

otherwise.

(4.1)

for each j ∈ {1, 2} and for all n ∈ M.
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To prove the lemma, consider a safe strategy profile σ of G in which
player 0 wins almost surely. For each j ∈ {1, 2} and n ∈ M, set

pn

j ∶= Prσ

v0 (player An mod 2
j wins ∣ xnvn ⋅ Vω / xn+2vn+2 ⋅ Vω) .

The following claim relates the numbers an

j
and pn

j
.

Claim. Let j ∈ {1, 2}. Then an

j
= 1

3 for all n ∈ M if and only if pn

j
= 1

4 for all n ∈ M.

Proof. (⇒) Assume that an

j
= 1

3 for all n ∈ M. We have an

j
= pn

j
+ 1

4 ⋅ a
n+2
j

and
therefore 1

3 = pn

j
+ 1

12 for all n ∈ M. Hence, pn

j
= 1

4 for all n ∈ M.
(⇐) Assume that pn

j
= 1

4 for all n ∈ M. Since an

j
= pn

j
+ 1

4 ⋅ a
n+2
j

for all n ∈ M, the
numbers an

j
must satisfy the following recurrence: an+2

j
= 4an

j
− 1. Since all

the numbers an

j
are probabilities, 0 ≤ an

j
≤ 1 for all n ∈ M. It is easy to see that

the only values for a0
j
and a1

j
such that 0 ≤ an

j
≤ 1 for all n ∈ M are a0

j
= a1

j
= 1

3 .
But this implies that an

j
= 1

3 for all n ∈ M. □

Proof (of Lemma 4.11). By the previous claim, we only need to show that
pn

j
= 1

4 if and only if (4.1) holds. Let j ∈ {1, 2}, n ∈ M and t = n mod 2. The
probability pn

j
can be expressed as the sum of the probability that the play

reaches a terminal vertex that is winning for player At

j
inside Ct

γn , j and the
probability that the play reaches such a vertex inside C1−t

γn+1 , j . The first proba-
bility does not depend on γn , but the second depends on γn+1 . Let us consider
the case γn+1 = inc( j). In this case, the aforementioned sum is equal to

1
4 ⋅ (1 −

1
4 ⋅ c

n

j ) +
1
8 ⋅ cn+1j = 1

4 −
1
16 ⋅ cnj +

1
8 ⋅ cn+1j .

Obviously, this sum is equal to 1
4 if and only if cn+1

j
= 1

2 ⋅ c
n

j
. For any other

value of γn+1, the argumentation is similar. □

To establish the reduction, weneed to show that the following statements
are equivalent:

1. the computation ofM is infinite;
2. (G , v0) has a pure subgame-perfect equilibrium in which player 0 wins
almost surely;

3. (G , v0) has a Nash equilibrium in which player 0 wins almost surely.

(1.⇒ 2.) Assume that the computation ρ = ρ(0)ρ(1) . . . ofM is infinite.
Player 0’s pure equilibrium strategy σ0 can be described as follows: for a his-
tory that ends at the unique vertex v controlled by player 0 in the gadget Ct

γ , j
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after visiting a vertex of the form vt

γ′ ,q or v1−t

γ′ ,q exactly n > 0 times and v exactly
k ≥ 0 times, player 0 plays to the grey-coloured successor vertex if k is greater
than or equal to the value of counter j in configuration ρ(n − 1); otherwise,
player 0 plays to the other successor vertex.

The only placewhere player 1 has a choice is the sole vertex in the gadget It

q

for δ(q) = {(zero( j), q1), (dec( j), q2)}. If the play arrives at such a vertex after
visiting a vertex of the form vt

γ ,q′ or v1−t

γ ,q′ exactly n > 0 times, then player 1’s
pure strategy σ1 prescribes to play to S1−t

zero( j),q1 if the value of counter j in
configuration ρ(n − 1) is zero and to S1−t

dec( j),q2
if the value of counter j in con-

figuration ρ(n − 1) is non-zero.
Any other player’s pure strategy is defined as follows: after a history end-

ing in St

γ ,q , the strategy prescribes to quit the game if and only if the history
is not compatible with ρ (i.e. if the corresponding sequence of instructions
does not match ρ).

Note that the resulting strategy profile σ is safe. Moreover, since player 0
and player 1 follow the computation ofM, a terminal vertex inside one of
the counter gadgets Ct

γ , j is reached with probability 1. Hence, player 0 wins
almost surely in σ. Finally, by the definition of σ, (4.1) holds, and we can
conclude from Lemma 4.11 that σ is stable.

We claim that σ is, in fact, a subgame-perfect equilibrium of (G , v0): It is
obvious that player 0 cannot improve her payoff, even for histories where
she receives payoff 0. If player 1 deviates, then we reach a history that is not
compatible with ρ. Hence, player A01 or A02 will quit the game, which ensures
that player 1 will receive payoff 0 after this history. Finally, since σ is stable,
none of the players At

j
or Bt

j
can improve her payoff after a history that is

consistent with σ. For all other histories, this follows immediately from the
definition of σ: for instance, if player A01 changes her strategy after such a
history and decides not to quit the game, then she will still receive payoff 1

3 ,
because player A02 will still quit the game.

(2.⇒ 3.) Trivial.
(3.⇒ 1.) Assume that σ is a Nash equilibrium of (G , v0) in which player 0

wins almost surely. In order to apply Lemma 4.11, we first prove that σ is
safe. Towards a contradiction, assume that there exists a history xv ending
in a vertex v ∈ It

q such that Prσ

v0 (xv ⋅ V
ω) > 0 and σ1(xv) assigns probability > 0

to two distinct successor vertices. Hence, δ(q) = {(zero( j), q1), (dec( j), q2)} for
some j ∈ {1, 2} and q1 , q2 ∈ Q. By our assumption that there are no consecutive
zero tests and since player 0 wins almost surely,
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Prσ

v0 (player 1 wins ∣ xv ⋅ v1−t

zero( j),q1 ⋅ V
ω) ≥ 1

4

but

Prσ

v0 (player 1 wins ∣ xv ⋅ v1−t

dec( j),q2 ⋅ V
ω) ≤ 1

6 .

Hence, player 1 could improve her payoff by playing to v1−t

zero( j),q1 with proba-
bility 1, a contradiction to σ being a Nash equilibrium.

To apply Lemma 4.11 and obtain (4.1), it remains to be shown that σ is
stable. In order to derive a contradiction, assume that there exists j ∈ {1, 2}
and n ∈ M such that either an

j
< 1

3 or an

j
> 1

3 (i.e. bn
j
< 1

6 ). In the former
case, player An mod 2

j
could improve her payoff by quitting the game after

history xnvn while in the latter case, player Bn mod 2
j

could improve her payoff
by quitting the game, again a contradiction to σ being a Nash equilibrium.

From c0
j
= 1 and (4.1), it follows that each cn

j
is of the form cn

j
= 1/2i where

i ∈ M. We denote by in
j

the unique number i such that cn
j
= 1/2i and set

ρ(n) = (qn , in1 , i
n

2) for each n ∈ M. We claim that ρ ∶= ρ(0)ρ(1) . . . is in fact the
computation ofM. In particular, this computation is infinite. It suffices to
verify the following two properties:

• ρ(0) = (q0 , 0, 0);
• ρ(n) ⊢ ρ(n + 1) for all n ∈ M.

The first property is immediate. To prove the second property, let ρ(n) =
(q, i1 , i2) and ρ(n + 1) = (q′ , i′1 , i

′
2). Hence, vn lies inside St

γ ,q , and vn+1 lies in-
side S1−t

γ′ ,q′ for suitable γ, γ′ and t = n mod 2. We only prove the claim for
δ(q) = {(zero(1), q1), (dec(1), q2)}; the other cases are similar. Note that, by
the construction of the gadget It

q , it must be the case that either q′ = q1 and
γ′ = zero(1), or q′ = q2 and γ′ = dec(1). By (4.1), if γ′ = zero(1), then i′1 = i1 = 0 and
i′2 = i2, and if γ′ = dec(1), then i′1 = i1 − 1 and i′2 = i2 . This implies ρ(n) ⊢ ρ(n + 1):
on the one hand, if i1 = 0, then i′1 ≠ i1 − 1, which implies γ′ ≠ dec(1) and thus
γ′ = zero(1), q′ = q1 and i′1 = i1 = 0; on the other hand, if i1 > 0, then γ′ ≠ zero(1)
and thus γ′ = dec(1), q′ = q2 and i′1 = i1 − 1. □

Remark. For the problems PureNE and PureSPE, we can strengthen The-
orem 4.10 slightly by showing undecidability already for 9-player SSMGs.
This can be achieved by merging player 0 and player 1 in the game described
in the proof of Theorem 4.10: if player 0 is a priori restricted to play a pure
strategy, she cannot cheat by playing to both St

zero( j),q1 and S
t

dec( j),q2
with

positive probability.
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The proof of Theorem 4.10 can also be viewed as a proof for the undecid-
ability of a problem about the logic PCTL (probabilistic computation tree logic),
introduced by Hansson & Jonsson (1994). PCTL is evaluated over labelled
Markov chains and replaces the universal and existential path quantifiers
of CTL by a family of probabilistic quantifiers P∼x , where ∼ is a comparison
operator and x ∈ [0, 1] is a rational probability. For example, the formula
P=1/2FQ holds in state v if (and only if ) the probability of reaching a state
labelled with Q from v equals 1

2 .

By employing a similar reduction to ours, Brázdil et al. (2006) proved the
undecidability of the following problem: given a labelled Markov decision
process (G , v0) and a PCTL formula φ, decide whether the controller has a
strategy σ such that the Markov chain (Gσ , v0) is a model of φ. We can prove
a stronger result, namely that there exists a fixed PCTL formula φ, which
only contains the operator P=xF and its dual P=xG, for which the problem is
undecidable. It suffices to add propositions A01 , A

1
1, A

0
2 , A

1
2, Q, Q1, Q2, T, Z0

and Z1 according to the following rules:

1. if v is a terminal vertex that is winning for player A ∈ {A01 , A11 , A02 , A12},
then label v with A;

2. if v ∈ It

q , then label v with Q;

3. if v = vt

γ ,q for γ ≠ zero( j), then label v with Q1; if v = vt

zero( j),q , then label v
with Q2;

4. if v is a terminal vertex that is winning for player 0, then label v with T;

5. if v = v0γ ,q , then label v with Z0; if v = v1γ ,q , then label v with Z1.

To obtain anMDP, wemake all non-stochastic vertices controlled by player 0.
Finally, the PCTL formula for which we prove undecidability is

P=1F T ∧ ⋀
t=0,1

P=1G (Zt → P=1/3F At

1 ∧ P=1/3F At

2) ∧ P=1G (Q → P=1FQ1 ∨ P=1FQ2) .

The first part of the formula states that player 0 wins almost surely, the
second part requires the strategy to be stable, and the last part of the formula
requires the strategy to be safe.

An immediate corollary to this result is that there exists a fixed formula of
stochastic game logic (Baier et al. 2007) for which the model-checking problem
(with respect to pure or randomised strategies) is undecidable.
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4.4 Finite-state equilibria

We can use the construction in the proof of Theorem 4.10 to show that Nash
and subgame-perfect equilibria may require infinite memory, even if we are
only interested in whether a player wins with probability 0 or 1.

Proposition 4.12. There exists an SSMG that has a pure subgame-perfect
equilibrium where player 0 wins almost surely but that has no finite-state
Nash equilibrium where player 0 wins with positive probability.

Proof. Consider the game (G , v0) constructed in the proof of Theorem 4.10
for the machineMwith the single transition (q0 , inc(1), q0). We modify this
game by adding a new initial vertex v1, which is controlled by a new player,
player 2, and from where she can either move to v0 or to a new terminal
vertex where she receives payoff 1 and every other player receives payoff 0.
Additionally, player 2 wins at every terminal vertex of the game G that is
winning for player 0. Let us denote the modified game by G ′.

Since the computation of M is infinite, the game (G , v0) has a pure
subgame-perfect equilibrium where player 0 wins almost surely. This equi-
librium induces a pure subgame-perfect equilibrium of (G ′ , v1)where both
player 0 and player 2 win almost surely.

Now assume that there exists a finite-state Nash equilibrium of (G ′ , v1)
where player 0 wins with positive probability. Such an equilibrium induces
a finite-state Nash equilibrium σ of (G , v0) where player 2, and thus also
player 0, wins almost surely: otherwise, player 2 would prefer to quit the
game. Using the same notation as in the proof of Theorem 4.10, it follows
from Lemma 4.11 that cn1 = 1/2n for each n ∈ M. But this is impossible if σ is a
finite-state strategy profile. □

Propositions 3.26 and 4.12 (together with Example 3.4) imply that the
decision problems NE, SPE, FinNE, FinSPE, PureNE, PureSPE, PureFinNE
and PureFinSPE are pairwise distinct. Another way to see that PureNE and
PureFinNE are distinct is to observe that PureFinNE is recursively enumer-
able: To decide whether an SSMG (G , v0) has a pure finite-state Nash equi-
librium with payoff ≥ x and ≤ y, one can just enumerate all possible pure
finite-state profiles σ and check for each of them whether it constitutes a
Nash equilibriumwith the desired properties by analysing the finite Markov
chain Gσ . Hence, to prove the undecidability of PureFinNE, we cannot reduce
from the non-halting problem. Instead, we give a reduction from the halting
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It
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Figure 4.4. Reducing from the halting problem.

problem (which is recursively enumerable itself ). The same reduction proves
the undecidability of PureFinSPE, FinNE and FinSPE.

Theorem 4.13. PureFinNE, PureFinSPE, FinNE and FinSPE are undecidable,
even for 14-player SSMGs.

Proof (Sketch). The construction is similar to the one for proving the unde-
cidability of NE. Given a two-counter machineM, we modify the SSMG G
constructed in the proof of Theorem 4.10 by adding another counter (to-
gether with four more players for checking whether the counter is updated
correctly) that has to be incremented in each step. Moreover, the gadget Iγ ,q
for δ(q) = ∅ is replaced by the gadget shown in Figure 4.4, and a new instruc-
tion halt is added, together with a suitable gadget Ct

halt, j , also depicted in
Figure 4.4. Let us denote the new game by G ′. Now, ifM does not halt, any
Nash equilibrium of (G ′ , v0) where player 0 wins with probability 1 needs
infinite memory: to win almost surely, player 0 must follow the compu-
tation ofM and increment the new counter at each step, which requires
infinite memory. On the other hand, ifM halts, there exists a pure finite-
state subgame-perfect equilibrium of (G ′ , v0) in which player 0 wins almost
surely. (The arguments for the existence of such an equilibrium are the
same as in the proof of Theorem 4.10; sinceM halts, the equilibrium can be
implemented with finite memory). □

Remark. With the same reasoning as for PureNE and PureSPE, we can elim-
inate one player in the reductions for PureFinNE and PureFinSPE. Hence,
these problems are already undecidable for 13-player SSMGs.
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4 Complexity of Equilibria

Table 4.1. The complexity of NE, SPE and their relatives.

Pure Randomised

Stationary NP-complete
Pspace
NP-hard +SqrtSum-hard

Finite-state undecidable (r.e.) undecidable
General undecidable (not r.e.) undecidable (not r.e.)

4.5 Summary of results

Table 4.1 summarises our findings on the complexity of NE, SPE and its
relatives. The rows of the table correspond to the restrictions of strategies
with respect to memory, whereas the columns of the table indicate whether
randomisation is allowed or not. The complexity bounds shownhold for both
Nash and subgame-perfect equilibria in SSMGs as well as SMGs with Streett,
Rabin or Muller objectives. Moreover, each lower bound holds already for
the qualitative fragment of the respective decision problem.
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5
Decidable Fragments

This chapter is devoted to proving decidability results for fragments of NE.
The first fragment, which we call the strictly qualitative fragment, arises from
NE by restricting the thresholds to be the same binary payoff (i.e. each entry
is either 0 or 1). For the second fragment, which we call the positive-one frag-
ment, we require that the upper threshold is trivial and the lower threshold
is of the form (p, 1, . . . , 1), where p ∈ [0, 1] is an arbitrary rational number.
Hence, the strictly qualitative fragment asks for an equilibriumwith a binary
payoff x, whereas the positive-one fragment asks for an equilibrium that
is almost surely winning for all but one player and that is winning for the
remaining player with probability ≥ p. Finally, we show that the qualitative
fragment of NE (and thereby PureNE) is decidable for deterministic games.
As in the previous chapter, all games in this chapter are finite.

5.1 The strictly qualitative fragment

In this section, we prove that the problem StrQualNE is decidable. Formally,
StrQualNE is the following decision problem:

Given a finite SMG (G , v0) and x ∈ {0, 1}Π , decide whether there exists
a Nash equilibrium of (G , v0)with payoff x.

To prove decidability, we first characterise the existence of a Nash equilib-
rium with a binary payoff in games with prefix-independent objectives.
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5 Decidable Fragments

Characterisation of existence

Given an SMG G and a player i, we denote by Wi the set of all vertices v ∈ V
such that valGi (v) > 0.

Proposition 5.1. Let (G , v0) be a finite SMG with prefix-independent objec-
tives Wini ⊆ Vω , and let x = (xi)i∈Π ∈ {0, 1}Π . Then the following statements
are equivalent:

1. (G , v0) has a Nash equilibrium with payoff x;
2. there exists a strategy profile σ of (G , v0)with payoff x such that
Prσ

v0 (Reach(Wi)) = 0 for each player i with xi = 0;
3. there exists a pure strategy profile σ of (G , v0)with payoff x such that
Prσ

v0 (Reach(Wi)) = 0 for each player i with xi = 0;
4. (G , v0) has a pure Nash equilibrium with payoff x.

If additionally all objectives are ω-regular, then each of the above statements
is equivalent to each of the following statements:

5. there exists a pure finite-state strategy profile σ of (G , v0)with payoff x
such that Prσ

v0 (Reach(Wi)) = 0 for each player i with xi = 0;
6. (G , v0) has a pure finite-state Nash equilibrium with payoff x.

Proof. (1.⇒ 2.) Let σ be a Nash equilibrium of (G , v0)with payoff x. We claim
that σ is already the strategy profile we are looking for: Prσ

v0 (Reach(Wi)) = 0
for each player i with xi = 0. Let i ∈ Π be a player with xi = 0. By Lemma 3.3
and since Wini is prefix-independent, we have 0 = Prσ

v0 (Wini ∣ xv ⋅ Vω) ≥
valGi (v) for all histories xv that are consistent with σ. Hence, v ∈ V /Wi for all
such histories xv, and Prσ

v0 (Reach(Wi)) = 0.
(2.⇒ 3.) Let σ be a strategy profile of (G , v0) with payoff x such that

Prσ

v0 (Reach(Wi)) = 0 for each player i with xi = 0. Consider the MDPM
that is obtained from G by removing all vertices v ∈ V such that v ∈ Wi for
some player i with xi = 0, merging all players into one, and imposing the
objective

Win = ⋂
i∈Π
x i=1

Wini ∩ ⋂
i∈Π
x i=0

Vω /Wini .

The MDPM is well-defined since its domain is a subarena of G. Moreover,
the value valM(v0) ofM equals 1 because the strategy profile σ induces a
strategy σ inM satisfying Prσ

v0 (Win) = 1. Since each of the objectives Wini is
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5.1 The strictly qualitative fragment

prefix-independent, so is the objective Win. Hence, by Theorem 2.6, (M, v0)
admits an optimal pure strategy τ. Since valM(v0) = 1, we have Prτ

v0 (Win) = 1,
and τ induces a pure strategy profile of G with the desired properties.

(3.⇒4.) Let σ be a pure strategy profile of (G , v0)with payoff x such that
Prσ

v0 (Reach(Wi)) = 0 for each player i with xi = 0. We show that the require-
ments of Lemma 3.7 are fulfilled: Prσ

v0 (Wini ∣ xv ⋅Vω) ≥ val
G
i (v) for each player i

and each history xv of (G , v0) that is consistent with σ. There are two cases:
If x1 = 1, then Prσ

v0 (Wini ∣ xv ⋅ Vω) = 1 for all histories xv consistent with σ,
and the inequality holds. Otherwise, xi = 0 and Prσ

v0 (Reach(Wi)) = 0. Hence,
valGi (v) = 0 for all histories xv consistent with σ, and the inequality holds
as well. Now, by Lemma 3.7, we can extend σ to a pure Nash equilibrium
with payoff x.

(4.⇒ 1.) Trivial.
Under the additional assumption that all objectives are ω-regular, the im-

plications (2.⇒ 5.) and (5.⇒6.) are proven analogously (using Lemma 3.8
instead of Lemma 3.7); the implication (6.⇒ 1.) is trivial. □

As an immediate consequence of Proposition 5.1, we can conclude that
pure finite-state strategies are as powerful as arbitrary randomised strate-
gies as far as the existence of a Nash equilibrium with a binary payoff in
SMGs with ω-regular objectives is concerned.

Corollary 5.2. Let (G , v0) be a finite SMG with ω-regular objectives, and let
x ∈ {0, 1}Π . There exists a Nash equilibrium of (G , v0)with payoff x if and only
if there exists a pure finite-state Nash equilibrium of (G , v0)with payoff x.

Proof. The claim follows from Proposition 5.1 and the fact that every SMG
with ω-regular objectives can be reduced to one with parity objectives. □

Computational Complexity

We can now describe an algorithm that decides StrQualNE for SMGs with
Muller objectives. The algorithm relies on the characterisation we gave in
Proposition 5.1, which allows us to reduce StrQualNE to a problem about a
certain MDP.

Formally, given a Muller SMG G = (Π, V , (Vi)i∈Π , ∆, χ, (Fi)i∈Π) and a binary
payoff x = (xi)i∈Π , we define the Markov decision process G(x) as follows: Let
Z ⊆ V be the set of all vertices v such that valGi (v) = 0 for each player i with
xi = 0; the set of vertices of G(x) is precisely the set Z, with the set of vertices
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5 Decidable Fragments

controlled by player 0 being Z0 ∶= ⋃i∈Π(Vi ∩ Z); if Z = ∅, we define G(x) to be
a trivial MDP with the empty set as its objective. The transition relation
of G(x) is the restriction of ∆ to transitions between Z-states. Note that the
transition relation of G(x) is well-defined since Z is a subarena of G. Finally,
the single objective in G(x) is Reach(T) where T ⊆ Z is the union of all end
components U ⊆ Z with payoff x.

Lemma 5.3. Let (G , v0) be a finiteMuller SMG, and let x ∈ {0, 1}Π . Then (G , v0)
has a Nash equilibrium with payoff x if and only if valG(x)(v0) = 1.

Proof. (⇒) Assume that (G , v0) has a Nash equilibrium with payoff x. By
Proposition 5.1, this implies that there exists a strategy profile σ of (G , v0)with
payoff x such that Prσ

v0 (Reach(V / Z)) = 0. We claim that Prσ

v0 (Reach(T)) = 1.
Otherwise, by Lemma 2.3, there would exist an end component U ⊆ Z such
that Prσ

v0 ({π ∈ Vω ∶ Inf(π) = U}) > 0, and U is either not winning for some
player i with xi = 1 or it is winning for some player i with xi = 0. But then
σ cannot have payoff x, a contradiction. Now, since Prσ

v0 (Reach(V /Z)) = 0, the
strategy profile σ induces a strategy σ in G(x) such that Prσ

v0 (X) = Prσ

v0 (X)
for every Borel set X ⊆ Zω . In particular, Prσ

v0 (Reach(T)) = 1 and hence
valG(x)(v0) = 1.

(⇐) Assume that valG(x)(v0) = 1 (in particular, v0 ∈ Z), and let σ be an opti-
mal strategy in (G(x), v0). From σ, using Lemma2.4, we candevise a strategy σ′

such that Prσ
′

v0 ({π ∈ Vω ∶ Inf(π) has payoff x}) = 1. Finally, σ′ can be extended
to a strategy profile σ of G with payoff x such that Prσ

v0 (Reach(V / Z)) = 0.
By Proposition 5.1, this implies that (G , v0) has a Nash equilibrium with
payoff x. □

Since the value of an MDP with reachability objectives can be computed
in polynomial time, the difficult part lies in computing the MDP G(x) from
G and x (i.e. its domain Z and the target set T). For Muller SMGs, polynomial
space suffices to achieve this. In fact, StrQualNE is Pspace-complete for
these games.

Theorem 5.4. StrQualNE is Pspace-complete for Muller SMGs.

Proof. Hardness follows from Theorem 2.18. To prove membership in Pspace,
we describe a polynomial-space algorithm for deciding StrQualNE onMuller
SMGs: On input G , v0 , x, the algorithm starts by computing for each player i
with xi = 0 the set of vertices v such that valGi (v) = 0, which can be done
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in polynomial space by Theorem 2.17. The intersection of these sets is the
domain Z of the Markov decision process G(x). If v0 is not contained in this
intersection, the algorithm immediately rejects. Otherwise, the algorithm
determines the union T of all end components with payoff x contained in Z
by enumerating all subsets of Z one after another and checking which ones
are end components with payoff x. Finally, the algorithm computes (in poly-
nomial time) the value valG(x)(v0) of theMDP G(x) and accepts if the value is 1.
In all other cases, the algorithm rejects. The correctness of the algorithm
follows immediately from Lemma 5.3. □

For games with Streett objectives, StrQualNE becomes NP-complete; we
start by proving the upper bound.

Theorem 5.5. StrQualNE is in NP for Streett SMGs.

Proof. We describe a nondeterministic polynomial-time algorithm for solv-
ing StrQualNE: On input G , v0 , x, the algorithm starts by guessing a sub-
arena Z′ ⊆ V and for each player i with xi = 0 a positional strategy τi of the
coalition Π / {i} in the coalition game Gi . In the next step, the algorithm
checks (in polynomial time) whether valτ i (v) = 1 for each vertex v ∈ Z′ and
eachplayer iwith xi = 0. If not, the algorithmrejects immediately. Otherwise,
the algorithm proceeds by guessing (at most) n ∶= ∣V ∣ subsets U1 , . . . ,Un ⊆ Z′

and checks whether they are end components with payoff x (which can
be done in polynomial time). If yes, the algorithm sets T′ ∶= ⋃n

j=1 U j and
computes (in polynomial time) the value valG(x)(v0) of the MDP G(x)with Z′

substituted for Z and T′ substituted for T. If this value equals 1, the algorithm
accepts; otherwise, it rejects.

It remains to be shown that the algorithm is correct: On the one hand,
if (G , v0) has a Nash equilibriumwith payoff x, then the run of the algorithm
where it guesses Z′ = Z, globally optimal positional strategies τi (which exist
by Theorem 2.11) and end components Ui such that T′ = T will be accept-
ing since then, by Lemma 5.3, valG(x)(v0) = 1. On the other hand, in any
accepting run of the algorithm we have Z′ ⊆ Z and T′ ⊆ T, and the computed
value cannot be higher than valG(x)(v0); hence, val

G(x)(v0) = 1, and Lemma 5.3
guarantees the existence of a Nash equilibrium with payoff x. □

The matching lower bound does not only hold for StrQualNE, but also
for the analogous problem for subgame-perfect equilibria, which we de-
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Figure 5.1. Reducing SAT to StrQualNE for games with Streett objectives.

note by StrQualSPE. Moreover, both these problems are NP-hard even for
deterministic two-player Streett games.

Theorem 5.6. StrQualNE and StrQualSPE are NP-hard for deterministic
two-player Streett games.

Proof. The proof is accomplished by a variant of the proof for NP-hardness
of the qualitative decision problem for deterministic two-player zero-sum
Rabin-Streett games (Emerson & Jutla 1999) and by a reduction from SAT.
Given a Boolean formula φ = C1 ∧ ⋅ ⋅ ⋅ ∧ Cm in conjunctive normal form, where
without loss of generality each clause is nonempty, we construct a deter-
ministic two-player Streett game G as follows: For each clause C the game G
has a vertex C, which is controlled by player 0, and for each literal L occurring
in φ there is a vertex L, which is controlled by player 1. There are edges from
a clause to each literal that occurs in this clause, and from a literal to each
clause occurring in φ. The structure of the game is depicted in Figure 5.1.
Player 0’s objective is given by the single Streett pair (∅, V), i.e. shewins every
play of the game, whereas player 1’s objective consists of all Streett pairs of
the form ({X}, {¬X}) or ({¬X}, {X}), i.e. she wins if, for each variable X, either
X and ¬X are both visited infinitely often or neither of them is.

Clearly, G can be constructed from φ in polynomial time. We claim that
the following statements are equivalent:

1. φ is satisfiable;

2. (G , C1) has a subgame-perfect equilibrium with payoff (1, 0);
3. (G , C1) has a Nash equilibrium with payoff (1, 0).
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5.1 The strictly qualitative fragment

(1.⇒ 2.) Assume that φ is satisfiable, and consider the following positional
strategy σ0 of player 0: whenever the play reaches a clause, then σ0 plays to
a literal that is mapped to true by the satisfying assignment. This strategy
ensures that, for each variable X and after any initial history, at most one of
the literals X or ¬X is visited infinitely often. Hence, (σ0 , σ1) is a subgame-
perfect equilibrium of (G , C1)with payoff (1, 0) for every strategy σ1 of player 1.

(2.⇒ 3.) Trivial.
(3.⇒ 1.) Let (σ0 , σ1) be a Nash equilibrium of (G , C1)with payoff (1, 0), and

assume that φ is not satisfiable. Consider the coalition game (G1 , C1), a Rabin-
Streett game. We claim that player 1 does have a winning strategy in this
game, which she could use to improve her payoff in (G , C1), a contradiction
to (σ0 , σ1) being a Nash equilibrium. By determinacy, we only need to show
that player 0 does not have a winning strategy. Let τ be an optimal positional
strategy of player 0 (which exists by Theorem 2.11); if player 0 has a winning
strategy, then τ must be winning as well. Since φ is unsatisfiable, theremust
exist a variable X and clauses C and C′ such that τ(C) = X and τ(C′) = ¬X.
But player 1 can counter this strategy by playing from X to C′ and from any
other literal to C. Hence, τ is not a winning strategy. □

For games with Rabin objectives, the situation is more delicate. One
might think that, because of the duality of Rabin and Streett objectives,
StrQualNE is in coNP for SMGs with Rabin objectives.¹ However, as we will
see later, this is rather unlikely, and we can only show that the problem
lies in the class PNP[log] of problems solvable by a deterministic polynomial-
time algorithm that may perform a logarithmic number of queries to an
NP oracle (see Appendix A). In fact, the same upper bound holds for games
with a Streett or a Rabin objective for each player.

Theorem 5.7. StrQualNE is in PNP[log] for Streett-Rabin SMGs.

Proof. Let us describe a polynomial-time algorithm performing a logarith-
mic number of queries to an NP oracle for the problem. On input G , v0 , x,
the algorithm starts by determining for each vertex v and each Rabin player i
with xi = 0 whether valGi (v) = 0. Naively implemented, this requires a super-
logarithmic number of queries to the oracle. To reduce the number of queries,
we use a neat trick, due to Hemachandra (1989). Let us denote by R and S
the set of players i ∈ Π with xi = 0 that have a Rabin and a Streett objective,

¹ In fact, Ummels & Wojtczak (2009b) claimed that the problem is in coNP.
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respectively. Instead of looping through all pairs of a vertex and a player,
we begin by determining the number r of all pairs (v, i) such that i ∈ R and
valGi (v) = 0. It is not difficult to see that this number can be computed using
binary search by performing only a logarithmic number of queries to an NP
oracle, which we can use for deciding whether valGi (v) > 0 (Corollary 2.16).
Then we perform one more query; we ask whether for each player i ∈ R ∪ S
there exists a set Zi ⊆ V as well as sets U1 , . . . ,U∣V ∣ ⊆ V and positional strate-
gies (σi)i∈R and (τi)i∈S , where σi is a strategy of player i and τi is a strategy of
the coalition Π / {i} in the coalition game Gi , with the following properties:

1. Z ∶= ⋂i∈R∪S Zi is a subarena of G and ∑i∈R ∣Zi ∣ = r;
2. valσ i (v) > 0 for each player i ∈ R and each v ∈ V / Zi;
3. valτ i (v) = 1 for each player i ∈ S and each v ∈ Zi;
4. each U j is an end component of G ↾ Z with payoff x;
5. the value of the MDP that is obtained from G by restricting to vertices

inside Z and imposing the objective Reach(⋃{U1 , . . . ,U∣V ∣}) equals 1.

This query can be decided by an NP oracle by guessing suitable sets and
strategies and verifying 1.–5. in polynomial time. If the answer to the query
is yes, the algorithm accepts, otherwise it rejects.

Obviously, the algorithm runs in polynomial time. To see that the al-
gorithm is correct, first note that for each player i ∈ R the set Zi equals the
set of all v ∈ V such that valGi (v) = 0. Otherwise, there would exist a vertex
v ∈ Zi such that valGi (v) > 0. But then the number of pairs (v, i)with i ∈ R and
valGi (v) = 0 would be strictly less than r, a contradiction. Now, the correct-
ness of the algorithm follows with the same reasoning as in the proof of
Theorem 5.5. □

Remark. For a bounded number of players, StrQualNE is in coNP for SMGs
with Rabin objectives.

Regarding lower bounds for StrQualNE in SMGs with Rabin objectives,
we start by proving that the problem is coNP-hard, even for deterministic
two-player games. Moreover, the same lower bound holds for StrQualSPE,
the corresponding problem for subgame-perfect equilibria. In particular,
unless NP = coNP, both StrQualNE and StrQualSPE are not in NP for SMGs
with Rabin objectives.

Theorem 5.8. StrQualNE and StrQualSPE are coNP-hard for deterministic
two-player Rabin games.
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Proof. The proof is similar to the proof of Theorem 5.6 and is accomplished by
a reduction from the unsatisfiability problem for Boolean formulae in con-
junctive normal form. Given a Boolean formula φ = C1∧⋅ ⋅ ⋅∧Cm in conjunctive
normal form, where without loss of generality each clause is nonempty, we
construct a deterministic two-player Rabin game G as follows. The arena
of G is the same as in the proof of Theorem 5.6, depicted in Figure 5.1. How-
ever, this time player 1 wins every play of the game, and player 0’s objective
consists of all Rabin pairs of the form ({X}, {¬X}) or ({¬X}, {X}).

Clearly, G can be constructed from φ in polynomial time. We claim that
the following statements are equivalent:

1. φ is unsatisfiable;
2. (G , C1) has a subgame-perfect equilibrium with payoff (0, 1);
3. (G , C1) has a Nash equilibrium with payoff (0, 1).

(1.⇒ 2.) Assume that φ is unsatisfiable, and consider the coalition
game (G0 , C1), which is a Rabin-Streett game. By Theorem 3.15, there exists a
pure subgame-perfect equilibrium (σ0 , σ1) in this game. We claim that σ1[x]
is winning in (G0 , v) for every history xv of (G , C1). Consequently, (σ0 , σ1) is
also a subgame-perfect equilibrium of (G , C1)with payoff (0, 1). Otherwise,
let τ be a globally optimal positional strategy for player 0 in G0 (which ex-
ists by Theorem 2.11). By determinacy, τ would be winning in (G0 , v). But a
positional strategy τ of player 0 picks for each clause a literal contained in
this clause. Since φ is unsatisfiable, there must exist a variable X and clauses
C and C′ such that τ(C) = X and τ(C′) = ¬X. Player 1 could counter this strategy
by playing from X to C′ and from any other literal to C, a contradiction.

(2.⇒ 3.) Trivial.
(3.⇒ 1.) Let (σ0 , σ1) be a Nash equilibrium of (G , C1)with payoff (0, 1), and

assume that φ is satisfiable. Consider the following positional strategy τ of
player 0: whenever the play reaches a clause, then τ plays to a literal that
is mapped to true by the satisfying assignment. This strategy ensures that
for each variable X at most one of the literals X or ¬X is visited infinitely
often. Since the construction of G ensures that, under any strategy profile,
at least one literal is visited infinitely often, τ ensures a winning play for
player 0. Hence, player 0 can improve her payoff by playing τ instead of σ0 , a
contradiction to the fact that (σ0 , σ1) is a Nash equilibrium. □

The next result shows that StrQualNE is not only coNP-hard for Rabin
games, but also NP-hard. In fact, it is even NP-hard to decide whether in
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Figure 5.2. Reducing SAT to deciding the existence of a play winning for all players in
a deterministic Rabin game.

a deterministic Rabin game there exists a play that fulfils the objective of
each player.

Proposition 5.9. Theproblemof deciding, given adeterministicRabin game,
whether there exists a play that is won by each player is NP-hard.

Proof. We reduce from SAT: Given a Boolean formula φ = C1 ∧ ⋅ ⋅ ⋅ ∧ Cm in con-
junctive normal form over propositional variables X1 , . . . , Xn , where without
loss of generality each clause is nonempty, we show how to construct in
polynomial time a deterministic (n + 1)-player Rabin game G such that φ is
satisfiable if and only if there exists a play of G that is won by each player.
The game has vertices C1 , . . . , Cm and, for each clause C and each literal L that
occurs in C, a vertex (C, L). All vertices are controlled by player 0. There are
edges from a clause C j to each vertex (C j , L) such that L occurs in C j and from
there to C( j mod m)+1. The arena of G is schematically depicted in Figure 5.2.
The Rabin objectives are defined as follows:

• player 0 wins every play of G;
• player i ≠ 0 wins if each vertex of the form (C, Xi) is visited only finitely
often or each vertex of the form (C,¬Xi) is visited only finitely often.

Clearly, G can be constructed from φ in polynomial time. To establish the
reduction, we need to show that φ is satisfiable if and only if there exists a
play of G that is won by each player.
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(⇒) Assume that α∶ {X1 , . . . , Xn} → {true, false} is a satisfying assignment
of φ. Clearly, the positional strategy of player 0 where from each clause C
she plays to a fixed vertex (C, L) such that L is mapped to true by α induces a
play that is won by each player.

(⇐) Assume that there exists a play π of G that is won by each player.
Obviously, it is not possible that both a vertex (C, Xi) and a vertex (C′ ,¬Xi)
are visited infinitely often in π since this would violate player i’s objective.
Consider the variable assignment that maps X to true if some vertex (C, X) is
visited infinitely often in π. This assignment satisfies the formula because,
by the construction of G, for each clause C there exists a literal L in C such
that the vertex (C, L) is visited infinitely often in π. □

It follows from Theorem 5.8 and Proposition 5.9 that, unless NP = coNP,
both StrQualNE and StrQualSPE are not contained in NP ∪ coNP, even for
deterministic Rabin games. A slightly stronger result is that these problems
are hard for the class DP (see Appendix A).

Theorem 5.10. StrQualNE and StrQualSPE are DP-hard, even for determin-
istic Rabin games.

Proof. Let us focus on StrQualNE; the proof for StrQualSPE is similar.
The proof proceeds by a reduction from SAT-UNSAT; we show how to con-
struct in polynomial time from a pair (φ, ψ) of Boolean formulae in conjunc-
tive normal form a game (G , v0) such that φ is satisfiable and ψ is not if and
only if (G , v0) has a Nash equilibrium with payoff (0, 1, . . . , 1).

By Proposition 5.9, we know that from φ we can construct in polynomial
time a deterministic Rabin game (G1 , v1) such that φ is satisfiable if and only
if there exists a play of (G1 , v1) that is won by each player. Moreover, by (the
proof of ) Theorem 5.6, we know that from ψ we can construct in polynomial
time a two-player deterministic Rabin game (G2 , v2) such that every play
of G is won by player 1, and ψ is unsatisfiable if and only if (G2 , v2) has a Nash
equilibrium with payoff (0, 1). Without loss of generality, let us assume that
G1 is played by players 1, . . . , n and that G2 is played by players 0 and 1. The
game G is the disjoint union of G1 and G2 combined with a new vertex v0,
which is controlled by player 0. From v0 , player 0 can either play to v1 or to v2 .
We claim that φ is satisfiable and ψ is not if and only if (G , v0) has a Nash
equilibrium with payoff (0, 1, . . . , 1).

(⇒) Assume that φ is satisfiable and ψ is not. Hence, there exists a strategy
profile (σ1 , . . . , σn) of (G1 , v1) where all players win and a Nash equilibrium
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(τ0 , τ1) of (G2 , v2)with payoff (0, 1). Define a strategy profile σ∗ = (σ∗
0 , . . . , σ∗

n) of
(G , v0) by setting σ∗

i
[v0v1] = σi for i ≥ 1, σ∗

i
[v0v2] = τi for i ≤ 1 and σ∗

0(v1 ∣ v0) = 1.
Clearly, σ∗ has payoff (0, 1, . . . , 1). Moreover, σ∗ is a Nash equilibrium because
(σ1 , . . . , σn) and (τ0 , τ1) are Nash equilibria with suitable payoffs. In particular,
player 0 cannot improve her payoff of 0 by playing to v2 since (τ0 , τ1) is a
Nash equilibrium of (G , v2)where player 0 receives payoff 0.

(⇐) Assume that σ = (σ0 , . . . , σn) is a Nash equilibriumof (G , v0)with payoff
(0, 1, . . . , 1). Since all players 1, . . . , n win, we must have σ0(v1 ∣ v0) = 1. Hence,
σ induces a Nash equilibrium of (G1 , v1)with payoff (1, . . . , 1) and, by the con-
struction of G1, the formula φ is satisfiable. Why is ψ unsatisfiable? Assume
the opposite. Then, by the construction of G2, there exists a strategy τ for
player 0 such that (τ, σ1[v0v2]) gives payoff > 0 to player 0. But then player 0
could improve her payoff in (G , v0) by playing from v0 to v2 and applying
strategy τ afterwards, a contradiction. □

For stochastic Rabin games, we can show a completeness result: for these
games, StrQualNE and StrQualSPE are also hard for PNP[log].

Theorem 5.11. StrQualNE and StrQualSPE are PNP[log]-hard for Rabin SMGs.

Proof. Let us focus on StrQualNE; the proof for StrQualSPE is completely
analogous. Wagner (1990) and, independently, Buss & Hay (1991) showed
that PNP[log] equals the closure of NP with respect to polynomial-time Boolean
formula reducibility. The canonical complete problem for this class is to de-
cide, given a Boolean combination α of statements of the form “φ is satisfi-
able”, where φ ranges over all Boolean formulae, whether α evaluates to true.
We claim that for every such statement α we can construct in polynomial
time a Rabin SMG (G , v0) such that α evaluates to true if and only if (G , v0)
has a Nash equilibrium with payoff (0, 1, . . . , 1). The game G is constructed
by induction on the complexity of α; without loss of generality, we assume
that negations are only applied to atoms. If α is of the form “φ is satisfiable”
or “φ is not satisfiable”, then the existence of a suitable game G follows from
Proposition 5.9 or Theorem 5.8, respectively.

Now, let α = α1∧α2 , and assume that we already have constructed suitable
games (G1 , v1) and (G2 , v2), played by the same players 0, 1, . . . , n. The game G
is the disjoint union ofG1 andG2 combinedwith one new stochastic vertex v0 .
From v0, the game moves with probability 1

2 each to v1 and v2. Obviously,
(G , v0) has a Nash equilibrium with payoff (0, 1, . . . , 1) if and only if both
(G1 , v1) and (G2 , v2) have such an equilibrium.
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Algorithm 5.1. Finding end components in parity SMGs.

Input: parity SMG G = (Π, V , (Vi)i∈Π , ∆, χ, (Ωi)i∈Π), x = (xi)i∈Π ∈ {0, 1}Π

Output: ⋃{U ⊆ V ∶ U is an end component of G with payoff x}

output FindEC(V)

procedure FindEC(X)
Z ∶= ∅
compute all end components of G maximal in X
for each such end component U do
P ∶= {i ∈ Π ∶minΩi(χ(U)) ≡ xi mod 2}
if P = ∅ then

(∗ U is an end component with payoff x ∗)
Z ∶= Z ∪ U

else
(∗ U has the wrong payoff ∗)
Y ∶= ⋂i∈P{v ∈ U ∶ Ωi(χ(v)) > minΩi(χ(U))}
Z ∶= Z ∪ FindEC(Y)

end if
end for
return Z

end procedure

Finally, let α = α1 ∨ α2 , and assume that we already have constructed suit-
able games (G1 , v1) and (G2 , v2), again played by the same players 0, 1, . . . , n.
As in the previous case, the game G is the disjoint union of G1 and G2 com-
bined with one new vertex v0 , which has transitions to both v1 and v2 . How-
ever, this time v0 is controlled by player 1. Obviously, (G , v0) has a Nash
equilibrium with payoff (0, 1, . . . , 1) if and only if at least one of the games
(G1 , v1) and (G2 , v2) has such an equilibrium. □

To solve StrQualNE for parity SMGs, we employ Algorithm 5.1, which
computes for a game G with parity objectives (Ωi)i∈Π , and x ∈ {0, 1}Π the
union of all end components with payoff x. The algorithm is a straightfor-
ward adaptation of the algorithm for computing the union of all accepting
end components in a Streett MDP (Chatterjee et al. 2005). At the heart of the
algorithm lies the procedure FindEC that returns on input X ⊆ V the union
of all end components with payoff x that are contained in X. The proce-
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dure starts by computing all end components maximal in X. If such an end
component U has payoff x, all vertices in U can be added to the result of the
procedure. Otherwise, there exists a player i such that either xi = 0 and the
least priority for player i in U is odd or xi = 1 and the least priority for player i
in U is even. Each end component with payoff x inside Umust exclude all
vertices with this least priority. Hence, we call the procedure recursively on
the subset of U that results from removing these vertices.

Note that on input X, the total number of recursive calls to the procedure
FindEC is bounded by ∣X∣. Since, additionally, the set of all end components
maximal in a set X can be computed in polynomial time, this proves that
Algorithm 5.1 runs in polynomial time.

Theorem 5.12. StrQualNE is in UP ∩ coUP for parity SMGs.

Proof. An unambiguous nondeterministic polynomial-time algorithm that
decides StrQualNE for parity SMGsworks as follows: On input G , v0 , x, the al-
gorithm starts by guessing, for each player iwith xi = 0, the set Zi of vertices v
with valGi (v) = 0. Then, for each v ∈ V, the guess whether v ∈ Zi or v ∉ Zi is
verified by running the UP algorithm for the respective problem. If some
guess was not correct, the algorithm rejects immediately. Otherwise, it
constructs the subarena Z ∶= ⋂i∈Π∶x i=0 Zi and uses Algorithm 5.1 to determine
the union T of all end components with payoff x. Finally, the algorithm
computes in polynomial time the value valG(x)(v0) of the MDP G(x) (whose
domain is Z and whose objective is Reach(T)). If this value equals 1, the
algorithm accepts; otherwise, it rejects. Analogously, an algorithm for the
complement of StrQualNE accepts if and only if valG(x)(v0) < 1.

Obviously, both algorithms run in polynomial time. Moreover, on each
input there exists at least one accepting run because the algorithms only ac-
cept if each of the sets Zi has been guessed correctly. Finally, the correctness
of both algorithms follows from Lemma 5.3. □

Recall from Section 2.5 that it is open whether the qualitative decision
problem for parity S2Gs admits a polynomial-time algorithm. Such an al-
gorithm would allow us compute the domain of the MDP G(x) efficiently,
which would imply that StrQualNE is in P for parity SMGs. In fact, given a
class C of parity S2Gs for which the qualitative decision problem is in P, we
can easily derive a class of parity SMGs for which StrQualNE is in P. As in
Section 3.4, denote by C∗ the class of all parity SMGs such that for each player i
the coalition game Gi is in C.
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Theorem 5.13. Let C be a class of finite parity S2Gs such that the qualitative
decision problem is decidable in P for games in C. Then StrQualNE is in P
for games in C∗.

Proof. Consider the algorithm given in the proof of Theorem 5.12. For each
player i, the set Zi can be computed in polynomial time if Gi ∈ C, and there is
no need to guess this set. The resulting deterministic algorithm still runs in
polynomial time. □

By Theorem 2.20, for each d ∈ M, we can decide the qualitative decision
problem for parity S2Gs with at most d priorities in polynomial time. Hence,
it follows from Theorem 5.13 that StrQualNE is decidable in polynomial time
for parity SMGs with at most d priorities. In particular, StrQualNE is in P for
(co-)Büchi SMGs.

Corollary 5.14. For each d ∈ M, StrQualNE is in P for parity SMGs with at
most d priorities.

5.2 The positive-one fragment

In this section, we prove the decidability of the problem OneNE. Formally,
OneNE is the following decision problem:

Given a finite SMG (G , v0) and p ∈ [0, 1], decide whether (G , v0) has a
Nash equilibrium with payoff ≥ (p, 1, . . . , 1).

Being more general than the qualitative decision problem, OneNE is Pspace-
hard for Muller SMGs. In order to put the problem into Pspace, we describe
a polynomial-space algorithm that, given a Muller SMG G and p ∈ [0, 1],
computes the set of vertices v such that (G , v) has a Nash equilibrium with
payoff ≥ (p, 1, . . . , 1).

Algorithm 5.2 is a variant on the classical algorithm for checking whether
in aMarkov decision process the optimal probability of reaching a certain set
of states is 1. (see Baier & Katoen 2008, Chapter 10). The general idea of the
algorithm is to find a subarena inwhich the players can ensure to visit an end
component with payoff (0, 1, . . . , 1) or (1, 1, . . . , 1)with probability 1; let us call
such an end component good. Additionally, at every vertex v in this subarena
the optimal probability of reaching an end componentwith payoff (1, 1, . . . , 1)
must be at least as high as the value valG0 (v); otherwise player 0 could improve
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Algorithm 5.2. Solving OneNE for Muller SMGs.

Input:Muller SMG G = (Π, V , (Vi)i∈Π , ∆, χ, (Fi)i∈Π), p ∈ [0, 1]
Output: {v ∈ V ∶ (G , v) has a Nash equilibrium with payoff ≥ (p, 1 . . . , 1)}

compute zv ∶= val
G
0 (v) for each v ∈ V

X ∶= V
repeat
X′ ∶= X
S ∶= ⋃{U ⊆ X ∶ U is an end component of G ↾ X with payoff (0, 1, . . . , 1)}
T ∶= ⋃{U ⊆ X ∶ U is an end component of G ↾ X with payoff (1, 1, . . . , 1)}
for each v ∈ X do

pv ∶= sup{Prσ

v(Reach(T)) ∶ σ strategy profile of G ↾ X}
end for
X ∶= {v ∈ X ∶ S ∪ T reachable from v inside G ↾ X} ∩ {v ∈ X ∶ zv ≤ pv}
(∗ compute the largest subarena contained in X ∗)
repeat
X′′ ∶= X
X ∶= {v ∈ X ∶ v∆ ∩ X ≠ ∅} ∩ {v ∈ X ∶ v ∈ ⋃i∈Π Vi or v∆ ⊆ X}

until X = X′′

until X = X′ or X = ∅
(∗ S ∪ T reachable from all vertices in G ↾ X, and valG0 (v) ≤ pv for all v ∈ X ∗)
output {v ∈ X ∶ p ≤ pv}

by switching to an optimal strategy at vertex v. Such a subarena can be found
by an iterative process; in every iteration, the algorithm computes (inside
the current subarena) the union of all good end components and the optimal
probability of reaching an end component where all players win. All vertices
from where a good end component is not reachable or where the latter
probability is strictly less than valG0 (v) are then removed from the arena.
If the resulting set X of vertices still forms a subarena, we can output all
vertices from where the optimal probability of reaching an end component
where all players win is at least p; otherwise we have to continue the process
with the largest subarena contained in X.

Theorem 5.15. OneNE is Pspace-complete for Muller SMGs.

Proof. Hardness follows from Theorem 2.18. To prove membership in Pspace,
we claim that Algorithm 5.2 is a polynomial-space algorithm that solves
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OneNE for Muller SMGs. First, for each vertex v, its value for player 0 can be
computed in polynomial space since we are dealing with Muller objectives.
Second, the sets S, T can be determined by enumerating all possible subsets,
one after another, and checking which ones are end components with the
right payoff. Third, the numbers pv can be computed in polynomial time via
linear programming. Fourth, the sets X, X′ and X′′ are subsets of V and can
thus be stored using polynomial space. Finally, the algorithm terminates
because in each iteration of one of the two repeat loops, the set X becomes
smaller until the termination criterion is met.

Now let (G , v0) be an arbitrary Muller SMG, and let p ∈ [0, 1]; we claim
that (G , v0) has a Nash equilibrium with payoff ≥ (p, 1, . . . , 1) if and only if
v0 is output by the algorithm on input G , p.

(⇒) Assume that (G , v0) has a Nash equilibrium σ with payoff ≥ (p, 1, . . . , 1),
and consider the set R ∶= {v ∈ V ∶ Prσ

v0 (Reach(v)) > 0}. We claim that every
vertex v ∈ R remains inside the set Xmaintained by the algorithm. Since X is
initially set to V, this is clearly true before the main loop has been entered.
Now, assume that R ⊆ X; let S, T be defined as in the algorithm, and let xv be
some history ending in v ∈ R that is consistent with σ. By Lemma 2.3 and
since σ has payoff ≥ (0, 1, . . . , 1), we have Prσ[x]

v (Reach(S ∪ T)) = 1; in partic-
ular, S ∪ T is reachable from v inside G ↾ R, and therefore also inside G ↾ X.
Moreover, since σ is a Nash equilibrium, we have

zv = val
G
0 (v)

≤ Prσ

v0 (χ
−1(Win0) ∣ xv ⋅ Vω) (by Lemma 3.3)

= Prσ[x]

v (Win0) (by Lemma 2.2)

≤ Prσ[x]

v (Reach(T)) (by Lemma 2.3)

≤ sup{Prσ

v(Reach(T)) ∶ σ strategy profile of G ↾ R}

≤ sup{Prσ

v(Reach(T)) ∶ σ strategy profile of G ↾ X}

= pv .

Finally, no vertex v ∈ R is removed from X in the inner repeat loop because
R is a subarena of G.

It follows that each vertex v ∈ R is still in the set X after completing the
main loop; in particular, this holds for v0 . Moreover, substituting v by v0 and
x by the empty word in the above calculation yields that p ≤ Prσ

v0 (Win0) ≤ pv0 .
Hence, v0 is in the output of the algorithm.
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(⇐) Assume that v0 is output by the algorithm on input G , p, and let X, S, T
and (pv)v∈V have the same values as at the end of the last iteration of the
main loop. We claim that sup

σ
Prσ

v(Reach(S ∪ T)) = 1 for all v ∈ X, where the
supremum ranges over all strategy profiles of G ↾ X. To see this, consider the
stationary strategy profile σ that for each v ∈ X picks a successor w ∈ v∆ ∩ X
uniformly at random. All bottom SCCs of (G ↾ X)σ contain a vertex of S ∪ T
since otherwise the whole SCC would have been removed from X by the
algorithm. Hence, S ∪ T is reached almost surely in (G ↾ X)σ .

Since reachability MDPs admit optimal positional strategies (Theo-
rem B.9), we can fix positional strategy profiles σS = (σS

i
)i∈Π and σT = (σT

i
)i∈Π

of G ↾ X such that Prσ
S

v (Reach(S ∪ T)) = 1 and Prσ
T

v (Reach(T)) = pv for all
v ∈ X. Moreover, by Lemma 2.4, we can fix pure finite-state strategy pro-
files τS = (τS

i
)i∈Π and τT = (τT

i
)i∈Π of G ↾ S and G ↾ T, respectively, such that

Prτ
S

v (⋂i∈Π/{0}Wini) = 1 for all v ∈ S and Prτ
T

v (⋂i∈ΠWini) = 1 for all v ∈ T. We
define a new pure finite-state strategy profile σ of G by setting

σi(xv) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σT
i
(v) if v ∈ X / T and pv > 0,

σS
i
(v) if v ∈ X / S and pv = 0,

τT
i
(x1v) if v ∈ T,

τS
i
(x2v) if v ∈ S and pv = 0,

arbitrary otherwise,

for all xv ∈ V∗Vi and i ∈ Π, where x1 and x2 are the longest suffixes of x
contained in T and S, respectively. We claim that σ fulfils the following three
properties:

1. Prσ

v0 (xv ⋅ V
ω) > 0 only if v ∈ X;

2. Prσ

v0 (χ
−1(Win0) ∣ xv ⋅ Vω) ≥ pv if xv is consistent with σ and v ∈ X;

3. Prσ

v0 (Wini) = 1 for each player i ≠ 0.

It follows from 1., 2. and the definition of X that Prσ

v0 (χ
−1(Win0) ∣ xv ⋅ Vω) ≥

pv ≥ val
G
0 (v) for each history xv consistent with σ. Moreover, it follows from

3. that Prσ

v0 (χ
−1(Wini) ∣ xv ⋅ Vω) = 1 ≥ valGi (v) for each player i ≠ 0 and for each

history xv consistent with σ. Hence, by Lemma 3.8, the game (G , v0) has
a pure finite-state Nash equilibrium σ∗ with Prσ

∗

v0 = Prσ

v0 . Moreover, since
pv0 ≥ p, it follows from 2. and 3. that σ∗ has payoff ≥ (p, 1, . . . , 1).

To complete the proof, we need to verify properties 1.–3. Property 1. is
immediate from the definition of σ and the fact that X is a subarena of G
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with v0 ∈ X. For 2., assume that xv is a history of (G , v0) consistent with σ
and ending in a vertex v ∈ X. The claim holds trivially if pv = 0. Otherwise,
σ[x] guarantees to reach T with probability pv . But once T has been reached,
σ[x] behaves like τT , which guarantees to fulfil the objective of player 0 almost
surely. Hence, Prσ

v0 (χ
−1(Win0) ∣ xv ⋅ Vω) = Prσ[x]

v (Win0) ≥ Prσ[x]

v (Reach(T)) = pv .
In order to prove 3., define Z ∶= {v ∈ X ∶ pv = 0}. By definition, Z is a

subarena of G ↾ X with Z ∩ T = ∅. We claim that Prσ

v0 (Reach((S ∩ Z) ∪ T)) = 1.
This proves 3. because, once (S ∩ Z) ∪ T has been reached, σ behaves either
like τS or like τT , which guarantee to fulfil the objective of each player i ≠ 0
almost surely. By the definition of σ, we have Prσ

v0 (Reach(Z) / Reach(S)) =
0 and therefore Prσ

v0 (Reach(Z)) = Prσ(Reach(S ∩ Z)). Moreover, if π ∈ Xω /
Reach(Z), then Prσ

v0 (Reach(T) ∣ π∣k ⋅ Xω) ≥ pπ(k−1) ≥ min{pv ∶ v ∈ X / Z} for all
k > 0 and therefore limk→∞ Prσ

v0 (Reach(T) ∣ π∣k ⋅ Xω) ≠ 0. Using Levy’s zero-
one-law (Theorem A.6), we can conclude that

1 = Prσ

v0 ({π ∈ Xω ∶ limk→∞ Prσ

v0 (Reach(T) ∣ π∣k) = 1Reach(T)(π)})

≤ Prσ

v0 ({π ∈ Xω / Reach(T) ∶ limk→∞ Prσ

v0 (Reach(T) ∣ π∣k) = 0} ∪ Reach(T))

≤ Prσ

v0 (Reach(Z) ∪ Reach(T))

= Prσ

v0 (Reach(Z)) + Prσ

v0 (Reach(T))

= Prσ

v0 (Reach(S ∩ Z)) + Prσ

v0 (Reach(T))

= Prσ

v0 (Reach((S ∩ Z) ∪ T))

and therefore Prσ

v0 (Reach((S ∩ Z) ∪ T)) = 1. □

Note that the Nash equilibrium σ∗ constructed in the proof of Theo-
rem 5.15 is a pure finite-state equilibrium. It follows that, at least for finite
SMGs with Muller objectives, the problem OneNE does not change when
one asks for a pure (finite-state) equilibriumwith payoff ≥ (p, 1, . . . , 1) instead
of an arbitrary equilibrium with such a payoff.

Of course, it also follows from Theorem 5.15 that OneNE is in Pspace for
SMGs with Streett-Rabin or parity objectives. In fact, we can do better, and
the complexity of OneNE is comparable to the complexity of the problem
StrQualNE, discussed in the previous section. In particular, we can show
that OneNE lies in NP for Streett SMGs. In fact, the same upper bound holds
for Streett-Rabin SMGs with a Streett objective for player 0.

Theorem 5.16. OneNE is in NP for Streett-Rabin SMGs with a Streett objec-
tive for player 0.
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Proof. To get a nondeterministic polynomial-time algorithm for the problem,
it suffices to modify Algorithm 5.2 as follows: Instead of computing valG0 (v)
explicitly, we guess a positional strategy τ of the coalition Π / {0} in the coali-
tion game G0 and compute zv ∶= val

τ(v). Moreover, instead of computing the
sets S and T explicitly, we guess suitable end components (at most ∣V ∣ many)
and take their union. Clearly, zv ≥ val

G
0 (v) for all v ∈ V. It follows that, in every

iteration of the main loop, the sets S, T and X are subsets of the “real” sets
S, T and X, and the numbers pv are bounded from above by the “real” value
of pv . In particular, if v is in the output of the modified algorithm on input
G , p, then it is also in the output of Algorithm 5.2 on input G , p. On the other
hand, if τ is globally optimal (such a strategy exists by Corollary 2.12), then
zv = val

G
0 (v) for all v ∈ V, and the modified algorithm outputs the same set as

Algorithm 5.2.
Why does the modified algorithm run in polynomial time? Since the

value of a Streett MDP can be computed in polynomial time, so can each of
the numbers zv; whether a set U is an end component with payoff (0, 1 . . . , 1)
or payoff (1, . . . , 1) can easily be checked in polynomial time; the set of states
from where S ∪ T is reachable can be computed in polynomial time using a
simple backward search procedure; all other operations are trivial set op-
erations. Finally, the total number of iterations of both repeat loops is at
most 2∣V ∣ + 1 since at least one vertex is removed from the set X in each
iteration but the last one. □

For Streett-Rabin SMGs with a Rabin objective for player 0, the best upper
bound we can show for the complexity of OneNE is that the problem lies in
the class PNP of problems decidable by a deterministic polynomial-time algo-
rithmwith access to an NP oracle. In particular, we do not knowwhether we
can bound the number of oracle queries to O(log n); this would put OneNE
into PNP[log].

Theorem 5.17. OneNE is in PNP for Streett-Rabin SMGs with a Rabin objec-
tive for player 0.

Proof. Again, the algorithm for proving membership in PNP is virtually iden-
tical to the one for Muller SMGs. The only critical steps are the computation
of the values zv and the computation of the sets S and T in the main loop.
Concerning the values, we can determine them by asking the oracle queries
of the form valG0 (v) ≥ x repeatedly and closing in on the value using binary
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search.² Finally, to compute the sets S and T, we can ask the oracle for each
v ∈ X whether v lies in an end component of G ↾ X with payoff (0, 1, . . . , 1) or
payoff (1, . . . , 1), respectively. □

As for StrQualNE, the problem OneNE is NP-hard or coNP-hard for de-
terministic games with Streett or Rabin objectives, respectively, even if the
number of players is bounded. Moreover, the same lower bounds hold for the
problem OneSPE, where we look for a subgame-perfect equilibrium instead
of a Nash equilibrium.

Theorem 5.18. OneNE and OneSPE are NP-hard for deterministic three-
player Streett games; both problems are coNP-hard for deterministic three-
player Rabin games.

Proof. From (the proofs of ) Theorems 5.6 and 5.8, we know that deciding
whether there exists a Nash, or subgame-perfect, equilibrium with pay-
off (0, 1) in a deterministic two-player Streett or Rabin game with a trivial
objective for player 1 (meaning that she wins every play) is NP-hard or coNP-
hard, respectively. We reduce from this problem: given a two-player Streett
or Rabin game (G , v0) in which all plays are won by player 1, we construct
a three-player game (G̃ , ṽ0) of the same type such that (G , v0) has a Nash
(subgame-perfect) equilibrium with payoff (0, 1) if and only if (G̃ , ṽ0) has a
Nash (subgame-perfect) equilibrium with payoff ≥ (0, 1, 1). The arena of G̃
is the arena of G with two more vertices: the initial vertex ṽ0, controlled by
player 0, and a new terminal vertex t. From ṽ0 , player 0 can either play to t or
to v0, in which case the game continues in G. The objectives for the players
are as follows:

• player 0 wins if her objective in G is fulfilled; if the game reaches t,
she loses;

• player 1 wins every play of G̃;

• player 2 wins if t is reached; otherwise she loses.

It is easy to see that these objectives can be represented as Streett or Rabin
objectives if the original objectives are of this form. We need to show that
(G , v0) has a Nash (subgame-perfect) equilibriumwith payoff (0, 1) if and only
if (G̃ , ṽ0) has a Nash (subgame-perfect) equilibrium with payoff ≥ (0, 1, 1).

² Recall from Chapter 2 that the value of a Rabin-Streett S2G is a rational number of polynomial
bit complexity.
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(⇒) Assume that (σ0 , σ1) is a Nash (subgame-perfect) equilibrium of (G , v0)
with payoff (0, 1). We extend σ0 and σ1 to strategies in G̃ by setting σ0(t ∣ ṽ0) =
1, σ0[ṽ0v0] = σ0[v0] and σ1[ṽ0v0] = σ1[v0]. It is easy to see that, combined
with the empty strategy for player 2, the resulting strategy profile is a Nash
(subgame-perfect) equilibrium of (G̃ , ṽ0)with payoff (0, 1, 1).

(⇐) Let σ = (σ0 , σ1 , σ2) be a Nash equilibrium of (G̃ , ṽ0)with payoff ≥ (0, 1, 1).
Note that, since σ gives payoff 1 to player 2, it must hold that σ0(t ∣ ṽ0) = 1, and
therefore σ actually gives payoff 0 to player 0. We claim that (σ0[ṽ0], σ1[ṽ0]) is
a Nash equilibrium of (G , v0)with payoff (0, 1). Otherwise, since player 1 wins
every play of G, there would exist a strategy τ of player 0 such that (τ, σ1[ṽ0])
gives payoff > 0 to player 0. But then player 0 could improve her payoff in
(G̃ , ṽ0) by playing from ṽ0 to v0 and applying τ afterwards, a contradiction
to the fact that σ is a Nash equilibrium. Finally, if σ is a subgame-perfect
equilibrium, then (σ0[ṽ0], σ1[ṽ0]) is a subgame-perfect equilibrium of (G , v0)
by definition. □

It follows from Theorems 5.16 and 5.18 that OneNE is NP-complete for
Streett SMGs. For Rabin games, Theorem 5.18 and Proposition 5.9 already
give good evidence that OneNE and OneSPE cannot be put into NP ∪ coNP.
As for StrQualNE and StrQualSPE, we can show the stronger result that
OneNE and OneSPE are, in fact, DP-hard for deterministic Rabin games and
PNP[log]-hard for Rabin SMGs. The proofs are virtually identical to the proofs
of Theorems 5.10 and 5.11 and are left to the reader.

Theorem 5.19. OneNE and OneSPE are DP-hard for deterministic Rabin
games and PNP[log]-hard for Rabin SMGs.

For parity SMGs, we can use Algorithm 5.1 to compute the union of the
relevant end components in polynomial time. Deciding OneNE therefore
reduces to computing the value for player 0.

Theorem 5.20. OneNE is in NP ∩ coNP for SMGs with parity objectives.

Proof. Membership in NP follows from Theorem 5.16. To prove membership
in coNP, we modify Algorithm 5.2 as follows: Instead of computing valG0 (v),
we guess a positional strategy τ for player 0 and set zv ∶= val

τ(v). Clearly, zv ≤
valG0 (v) for all v ∈ V. Finally, we switch the output of the algorithm, i.e. instead
of outputting the set {v ∈ X ∶ p ≤ pv}, we output {v ∈ V ∶ v ∉ X or p > pv} (since
we seek an algorithm for the complement of OneNE).
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The reasoning that the algorithm is correct is analogous to the reasoning
in the proof of Theorem 5.16: In every iteration of the main loop, the sets
S, T and X are supersets of the “real” sets S, T and X, and the numbers pv are
bounded from below by the “real” value of pv . Hence, if v is in the output of
the modified algorithm on input G , p, then it is certainly not in the output
of Algorithm 5.2 on input G , p. On the other hand, if σ is an optimal strategy
for player 0, then the modified algorithm outputs precisely the complement
of the output of Algorithm 5.2.

The reasoning that the algorithm runs in polynomial-time is identical
to the proof of Theorem 5.16, except for the computation of the sets S and T
inside the main loop: we can compute these sets using Algorithm 5.1 in
polynomial time. □

The natural question at this point is whether OneNE can be solved in
polynomial time on classes of games where StrQualNE can, such as SSMGs.
Clearly, if the value of an SS2G can be computed in polynomial time, then
OneNE is also decidable in polynomial time for SSMGs. On the other hand,
we can give a polynomial-time reduction from the quantitative decision
problem for SS2Gs toOneNE for two-player SSMGs. This shows that lowering
the complexity of OneNE to P would resolve a major open problem in the
theory of two-player zero-sum stochastic games.

Proposition 5.21. There is a polynomial-time reduction from the quantita-
tive decision problem for SS2Gs to OneNE for two-player SSMGs.

Proof. Let (G , v0) be an SS2G, and p ∈ [0, 1]. From G and p, we derive a two-
player SSMG G̃ as follows: At the initial vertex ṽ0 of G̃, player 0 can choose
to leave the game, in which case player 0 receives payoff 1 − p and player 1
receives payoff 1, or she canmove to v0 , in which case the play continues in G.
Clearly, G̃ can be constructed in polynomial time from G and p. To establish
the reduction, we show that valG1 (v0) ≥ p if and only if (G̃ , ṽ0) has a Nash
equilibrium with payoff ≥ (1 − p, 1).

(⇒) Assume that valG1 (v0) ≥ p and therefore valG0 (v0) ≤ 1 − p. Consider any
positional strategy profile (σ0 , σ1) of (G̃ , ṽ0)where player 0 leaves the game
and player 1 plays an optimal positional strategy in the game G. Clearly,
any such strategy profile has payoff (1 − p, 1). We claim that (σ0 , σ1) is also a
Nash equilibrium: For player 1, it is obvious that no improvement is possible.
For player 0, assume that she has a strategy τ that, together with σ1, gives
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her payoff > 1 − p. Consider the residual strategy τ[v0]. In order to beat a
payoff of 1 − p, the strategy profile (τ[v0], σ) must also give player 0 payoff
> 1− p in (G , v0). But this is impossible since valG0 (v0) ≤ 1− p and σ1 is optimal.

(⇐) Assume that (G̃ , ṽ0) has a Nash equilibrium with payoff ≥ (1 − p, 1),
but valG1 (v0) < p. Then valG0 (v0) > 1 − p, and player 0 could improve her payoff
in (G̃ , ṽ0) by first playing to v0 and applying an optimal strategy in (G , v0)
afterwards, a contradiction. □

5.3 The qualitative fragment for deterministic games

The aim of this section is to prove that the qualitative fragment of NE, in
the following denoted by QualNE, is decidable for deterministic games:

Given a finite deterministic game (G , v0) and x, y ∈ {0, 1}Π , decide
whether (G , v0) has a Nash equilibrium with payoff ≥ x and ≤ y.

As a by-product of the proof we show that pure strategies are as powerful
as arbitrary randomised strategies in this context. Since in a deterministic
game every pure strategy profile has a binary payoff, this implies that the
problem PureNE is decidable for deterministic games as well.

Characterisation of existence

The decidability of QualNE relies on the following characterisation of the
existence of a Nash equilibrium with a qualitative constraint on the pay-
off in any deterministic game with prefix-independent objectives, which
resembles Proposition 5.1 for stochastic games. As in Section 5.1, given a
deterministic game G, we denote by Wi the set of all vertices v such that
valGi (v) > 0 or, equivalently, valGi (v) = 1; we callWi the winning region of player i.

Proposition 5.22. Let (G , v0) be a finite deterministic game with prefix-in-
dependent objectives Wini ⊆ Vω , and let x, y ∈ {0, 1}k . Then the following
statements are equivalent:

1. there exists a Nash equilibrium of (G , v0)with payoff ≥ x and ≤ y;
2. there exists a strategy profile σ of (G , v0)with payoff ≥ x and ≤ y such that
Prσ

v0 (Reach(Wi) /Wini) = 0 for each player i;
3. there exists a play π of (G , v0)with payoff ≥ x and ≤ y such that π ∈Wini

or π ∉ Reach(Wi) for each player i;
4. there exists a pure Nash equilibrium of (G , v0)with payoff ≥ x and ≤ y.
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If additionally all objectives are ω-regular, then each of the above statements
is equivalent to the following statement:

5. there exists a pure finite-state Nash equilibrium of (G , v0)with payoff ≥ x
and ≤ y.

Proof. (1.⇒ 2.) Let σ be a Nash equilibrium of (G , v0)with payoff ≥ x and ≤ y.
It follows from Lemma 3.3 that Prσ

v(Wini ∣ Reach(Wi)) = 1 and therefore
Prσ

v0 (Reach(Wi) /Wini) = 0 for each player i.

(2.⇒ 3.) Assume that σ is a strategy profile of (G , v0)with payoff ≥ x and ≤ y
such that Prσ

v0 (Reach(Wi) /Wini) = 0, i.e. Prσ

v0 (Wini ∪ Vω / Reach(Wi)) = 1,
for each player i. Let X ⊆ Vω be the set of plays of (G , v0)with payoff ≥ x and ≤ y.
Clearly, Prσ

v0 (X) = 1. Hence, also Prσ

v0 (X ∩ ⋂i∈Π(Wini ∪ Vω / Reach(Wi))) = 1.
In particular, there exists a play π with payoff ≥ x and ≤ y such that π ∈Wini

or π ∉ Reach(Wi) for each player i.

(3.⇒4.) Assume that π is a play of (G , v0) with payoff ≥ x and ≤ y such
that π ∈Wini or π ∉ Reach(Wi) for each player i. There exists a pure strategy
profile σ of (G , v0) such that π is the unique play compatible with σ. For each
player i and each history xv that is consistent with σ, we either have π ∈Wini

and Prσ

v0 (Wini ∣ xv ⋅ Vω) = 1 or π ∉ Reach(Wi) and val
G
i (v) = 0. Hence, by

Lemma 3.7, (G , v0) has a pure Nash equilibrium σ∗ with the same payoff as σ.
In particular, σ∗ has payoff ≥ x and ≤ y.

(4.⇒ 1.) Trivial.

In the following, assume that, additionally, all objectives are ω-regular.

(3.⇒ 5.) Assume that π is a play of (G , v0) with payoff x ≤ (zi)i∈Π ≤ y such
that π ∈Wini or π ∉ Reach(Wi) for each player i. Consider the (deterministic)
MDPM that is obtained from G by removing all vertices v such that v ∈ Wi

for some player i with zi = 0 and imposing the objective

Win ∶= ⋂
i∈Π
z i=1

Wini ∩ ⋂
i∈Π
z i=0

Vω /Wini .

The MDPM is well-defined since its arena is a subarena of G. With each of
the objectives Wini , the objective Win is prefix-independent and ω-regular.
Since π fulfils this objective, player 0 has a winning strategy in (M, v0).
But then, by Corollary 2.13, she must also have a pure finite-state winning
strategy. The claim now follows from Lemma 3.8.

(5.⇒ 1.) Trivial. □
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Figure 5.3. Agamewith only twopure but infinitelymany randomisedNash equilibria.

An immediate corollary of Proposition 5.22 is that, for deterministic
games with ω-regular objectives, pure finite-state strategies are as pow-
erful as arbitrary randomised strategies as far as the existence of a Nash
equilibrium with a qualitative constraint on the payoff is concerned.

Corollary 5.23. Let (G , v0) be a finite deterministic game with ω-regular ob-
jectives, and let x, y ∈ {0, 1}k . Then (G , v0) has a Nash equilibrium with payoff
≥ x and ≤ y if and only if (G , v0) has a pure finite-state Nash equilibriumwith
payoff ≥ x and ≤ y.

Proof. The claim follows from Proposition 5.22 and the fact that every game
with ω-regular objectives can be reduced to one with parity objectives. □

As witnessed by the following simple example, Corollary 5.23 fails if the
thresholds x and y are not binary.

Example 5.24. Consider the deterministic two-player game G depicted in
Figure 5.3. Clearly, there exist precisely two pure Nash equilibria in (G , v0),
one with payoff (1, 0) and one with payoff (1, 1). However, for every p ∈ [0, 1]
there exists a randomised Nash equilibrium of (G , v0)with payoff (1, p).

A consequence of Corollary 5.23 is that the problems QualNE, PureNE and
PureFinNE are polynomial-time equivalent for deterministic games with
ω-regular objectives: deciding the existence of a pure (finite-state) Nash
equilibrium with payoff ≥ x and ≤ y for x, y ∈ [0, 1]Π amounts to deciding the
existence a pure (finite-state) Nash equilibrium with payoff ≥ ⌈x⌉ and ≤ ⌊y⌋
(ceiling and floor applied componentwise); by Corollary 5.23, such an equilib-
rium exists if and only if there exists an arbitrary (possibly randomised) Nash
equilibrium with this payoff. Hence, all the complexity bounds we are going
to devise for the problem QualNE also apply to PureNE and PureFinNE.
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Computational Complexity

The decidability of QualNE for deterministic games follows from the de-
cidability of StrQualNE: by Corollary 5.23, it suffices to check for each bi-
nary payoff in-between the thresholds whether there exists an equilibrium
with this payoff. However, since QualNE is more general than StrQualNE,
the complexity of QualNE is, a priori, higher. For games with Muller or
Streett objectives, this higher generality comes for free, and both problems
have the same complexity.

Theorem 5.25. QualNE is Pspace-complete for deterministic Muller games.

Proof. Hardness follows from Theorem 2.18. To prove membership in Pspace,
consider the polynomial-space algorithm for StrQualNE on the class of
Muller SMGs (Theorem 5.4). To decide QualNE, we just need to call this
algorithm for each binary payoff x ≤ z ≤ y, which can also be done using
polynomial space. If the algorithm accepts for one such payoff, we know
that there exists a suitable Nash equilibrium. Otherwise, by Corollary 5.23,
no such equilibrium exists. □

Theorem 5.26. QualNE is NP-complete for deterministic Streett games.

Proof. NP-hardness follows from Theorem 5.6. Membership in NP follows
from Theorem 5.5 with almost the same reasoning as in the proof of Theo-
rem 5.25. Instead of enumerating all binary payoffs x ≤ z ≤ y, the algorithm
just guesses such a payoff in the beginning. □

For deterministic Streett-Rabin games, we can show the same upper
bound as for StrQualNE: the problem lies in PNP[log]. However, we do not
know whether QualNE is complete for this class; we can only prove that the
problem is DP-hard (see Theorem 5.10).

Theorem 5.27. QualNE is in PNP[log] for deterministic Streett-Rabin games.

Proof. To prove membership in PNP[log], let us describe a polynomial-time
algorithm performing a logarithmic number of queries to an NP oracle for
the problem. We use the same trick as in the proof of Theorem 5.7. Given the
input G , v0 , x, y, denote by R and S the set of players i ∈ Π with a Rabin and
a Streett objective, respectively. The algorithm starts by determining the
number r of pairs (v, i) such that i ∈ R and player i has a winning strategy
from vertex v. Again, it is easy to see that this number can be computed
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by performing only a logarithmic number of queries to an NP oracle. Then
we perform one more query; we ask whether for each player i there exists
a set Zi ⊆ V as well as positional strategies (σi)i∈R and (τi)i∈S , where σi is a
strategy of player i and τi is a strategy of the coalition Π / {i} in the coalition
game Gi , a binary payoff z = (zi)i∈Π with x ≤ z ≤ y, and an end component
(i.e. a strongly connected subarena) U ⊆ V with the following properties:

1. ∑i∈R ∣Zi ∣ = r;
2. σi is winning from each vertex v ∈ Zi for each player i ∈ R;
3. τi is winning from each vertex v ∈ V / Zi for each player i ∈ S;
4. U ⊆ ⋂i∈Π∶z i=0(V / Zi);
5. U is reachable from v0 inside ⋂i∈Π∶z i=0(V / Zi);
6. U has payoff z.

This query can be decided by an NP oracle by guessing suitable sets and
strategies together with a suitable binary payoff and verifying 1.–7. in poly-
nomial time. If the answer to the query is yes, the algorithm accepts, other-
wise it rejects.

Obviously, the algorithm runs in polynomial time. To see that the al-
gorithm is correct, first note that for each player i ∈ R (i ∈ S) the set Zi is
an under- (over-)approximation of the winning region Wi . In fact, for each
player i ∈ R, we have Zi = Wi: otherwise, for some player i ∈ R, there would
exist a vertex v ∈ Wi / Zi; but then the number of pairs (v, i)with i ∈ R and
v ∈ Wi would be strictly greater than r, a contradiction. Now assume that
the algorithm accepts its input. Then there exists a play π of (G , v0) with
Inf(π) = U that stays inside ⋂i∈Π∶z i=0(V / Wi). In particular, π has payoff z.
By Proposition 5.22, this play can be extended to a pure Nash equilibrium
with the same payoff. On the other hand, if σ is a pure Nash equilibriumwith
payoff ≥ x and ≤ y, then the query will succeed because we can set Zi to Wi ,
σi to a globally optimal positional strategy of player i for each player i ∈ R,
τi to a globally optimal positional strategy of the coalition Π / {i} for each
player i ∈ S (such strategies exist by Theorem 2.11), z to the payoff of σ, and
U to the set of vertices visited infinitely often in σ; with these choices, all of
the above properties are fulfilled. □

An immediate consequence of Theorem 5.26 is that QualNE belongs to
NP for deterministic parity games. However, in many cases, we can do
better: For two payoff vectors x, y ∈ {0, 1}Π , denote by dist(x, y) the Hamming
distance of x and y, i.e. the number ∑i∈Π ∣yi − xi ∣ of non-matching bits. Note
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that dist(x, y) is always bounded by the number of players. We show that, if
dist(x, y) is bounded by a constant, then QualNE is in UP ∩ coUP.

Theorem 5.28. QualNE is in UP ∩ coUP for deterministic parity games and
bounded dist(x, y).

Proof. Assume that dist(x, y) is bounded. An unambiguous nondeterministic
algorithm for QualNE works as follows: On input G , v0 , the algorithm starts
by guessing the winning region Wi of each player. Then, for each vertex v
and each player i, the guess whether v ∈ Wi or v ∉ Wi is verified by running
the UP algorithm for the respective problem. If one guess was incorrect,
the algorithm rejects immediately. Otherwise, the algorithm checks for each
payoff z ∈ {0, 1}Π with x ≤ z ≤ ywhether there exists awinning play from v0 in
the one-player Streett gamewith objective⋂i∈Π∶z i=1Wini∩⋂i∈Π∶z i=0(C

ω /Wini),
played on the subarena ⋂i∈Π∶z i=0(V /Wi) of G. The algorithm accepts if such
a play exists for at least one payoff z. Analogously, a UP algorithm for the
complement of QualNE accepts if there is no such play for all admissible
payoffs z.

Clearly, both algorithms run in polynomial time; they are unambiguous
because they only accept if each winning region has been guessed correctly.
Finally, their correctness follows from Proposition 5.22. □

If there were to exist a polynomial-time algorithm for the qualitative
decision problem for deterministic parity games, then we could compute
the winning region for each player efficiently, and QualNE would be de-
cidable in polynomial time for deterministic parity games and bounded
dist(x, y). In general, a polynomial-time algorithm for the qualitative deci-
sion problem on a class C of deterministic two-player zero-sum parity games
can be extended to a polynomial-time algorithm for QualNE with bounded
dist(x, y) on the class C∗ of all two-player zero-sum parity games where for
each player i the coalition game Gi is in C.

Corollary 5.29. Let C be a class of finite deterministic two-player zero-sum
parity games such that the qualitative decision problem is decidable in P for
games in C. Then QualNE is in P for games in C∗ and bounded dist(x, y).

Proof. By Proposition 5.22, we only need to check for every binary payoff
x ≤ z ≤ y, whether G has a Nash equilibrium with payoff z. By Theorem 5.13,
the latter property can be checked in polynomial time if G ∈ C∗. □
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Instead of assuming that dist(x, y) is bounded by a constant, we can treat
this number as a parameter for the problem QualNE. Theorem 5.13 implies
that QualNE is fixed-parameter tractable with respect to this parameter on
every suitable class C∗, i.e. there exists a deterministic algorithm that decides
QualNE for games in C∗ in time exponential in the size of the parameter but
polynomial in the size of the game. The proof is virtually identical to the
proof of Corollary 5.29.

Corollary 5.30. Let C be a class of finite deterministic two-player zero-sum
parity games such that the qualitative decision problem is decidable in P for
games in C. Then QualNE is fixed-parameter tractable with respect to the
parameter dist(x, y) for games in C∗.

In particular, it follows fromCorollary 5.30 and Theorem 2.19 that QualNE
is fixed-parameter tractable for deterministic parity games with a bounded
number of priorities.

Corollary 5.31. For each d ∈ M, QualNE is fixed-parameter tractable with
respect to the parameter dist(x, y) for deterministic parity games with at
most d priorities.

The natural question at this point iswhetherQualNE is actually decidable
in polynomial time for parity games with a bounded number of priorities.
As witnessed by the following theorem, this is quite unlikely: QualNE is NP-
hard for deterministic co-Büchi games, and the same is true for QualSPE,
the analogous problem for subgame-perfect equilibria.

Theorem 5.32. QualNE and QualSPE are NP-hard for deterministic games
with co-Büchi objectives.

Proof. Again, we reduce from SAT. Given a Boolean formula φ = C1 ∧ ⋅ ⋅ ⋅ ∧ Cm

in conjunctive normal form over propositional variables X1 , . . . , Xn , where
without loss of generality m ≥ 1 and each clause is nonempty, we build
a game G played by players 0, 1, . . . , n as follows: The game G has vertices
C1 , . . . , Cm controlled by player 0 and for each clause C and each literal L
that occurs in C a vertex (C, L), controlled by player i if L = Xi or L = ¬Xi;
additionally, the game contains a terminal vertex �. There are edges from
a clause C j to each vertex (C j , L) such that L occurs in C j and from there
to C( j mod m)+1, and there is an edge from each vertex of the form (C,¬X) to �.
The arena of G is schematically depicted in Figure 5.4. The players’ objectives
are as follows:
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Figure 5.4. Reducing SAT to QualNE for deterministic co-Büchi games.

• player 0 wins if � is visited only finitely often (i.e. never);

• player i ≠ 0 wins if each vertex (C, Xi) is visited only finitely often.

Clearly, G can be constructed from φ in polynomial time. To establish both
reductions, we prove the equivalence of the following three statements:

1. φ is satisfiable;

2. (G , C1) has a subgame-perfect equilibrium where player 0 wins;

3. (G , C1) has a Nash equilibrium where player 0 wins.

(1.⇒ 2.) Assume that α∶ {X1 , . . . , Xn} → {true, false} is a satisfying assign-
ment for φ. We show that the positional strategy profile σ where at any time
player 0 plays from a clause C to a fixed vertex (C, L) such that L is mapped to
true by α and each player i ≠ 0 plays from ¬Xi to � if and only if α(Xi) = true is
a subgame-perfect equilibrium of (G , C1)where player 0 wins. First note that
the induced play never reaches �; hence player 0 wins. To show that σ is a
subgame-perfect equilibrium, we only need to prove that σ is a Nash equilib-
rium of (G , v) for every vertex v: If v = (C,¬Xi) and α(Xi) = true, then player i
moves to � immediately. Hence, all players but player 0 win, but player 0
cannot improve her payoff since no clause vertex is visited. Otherwise, the
induced play never reaches �, and player 0 wins. Consider any player iwhose
objective is violated. Hence, a vertex of the form (C, Xi) is visited infinitely
often. However, as player 0 plays according to the satisfying assignment,
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no vertex of the form (C′ ,¬Xi) is ever visited. Hence, player i cannot improve
her payoff by playing to �.

(2.⇒ 3.) Trivial.

(3.⇒ 1.) Assume that (G , C1) has a, without loss of generality pure, Nash
equilibriumwhere player 0wins. Since player 0wins, the terminal vertex � is
not reached in the induced play π. Moreover, we claim that it is not the case
that both a vertex (C, Xi) and a vertex (C′ ,¬Xi) are visited infinitely often
in π. Otherwise, player i would lose, but could improve her payoff by playing
from (C′ ,¬Xi) to �, a contradiction. Now consider the variable assignment α
that maps X to true if some vertex (C, X) is visited infinitely often; we claim
that α satisfies the formula. Consider any clause C. By the construction of G,
there exists a literal L in C such that the vertex (C, L) is visited infinitely
often in π. But then αmaps L to true and satisfies C. □

Theorem 5.32 leaves open the existence of a polynomial-time algorithm
for QualNE on the class of deterministic Büchi games. In fact, we can give a
polynomial-time algorithm that computes, given a deterministic game G
with Büchi objectives Fi ⊆ C and payoff thresholds x, y ∈ {0, 1}Π , the set of
vertices from where there exists a Nash equilibrium with payoff ≥ x and ≤ y.

Algorithm 5.3 is a variant of the classical algorithm for deciding deter-
ministic one-player Streett games (Emerson & Lei 1987) andworks as follows:
By Proposition 5.22, the game (G , v) has a Nash equilibrium with payoff ≥ x
and ≤ y if and only if there exists a play π with this payoff that stays outside
the winning region Wi of each player i with Inf(π) ∩ Fi = ∅. Clearly, such a
play exists if and only if there exists a payoff z ∈ {0, 1}Π with x ≤ y ≤ z and
a strongly connected subarena U ⊆ ⋂i∈Π∶z i=0(V /Wi) reachable from v inside

⋂i∈Π∶z i=0(V /Wi) such that χ(U) ∩ Fi ≠ ∅ if and only if zi = 1. The essential part
of the algorithm is the procedure SolveSubgame; on input X, its task is to
find any such set contained in X.

At first, SolveSubgame computes all end components of G maximal in X
(i.e. all nontrivial strongly connected components ofG ↾ X). For each such end
component U, the procedure performs the following steps: First, the set P of
players i such that χ(U)∩Fi = ∅ is computed. If this set contains a player iwith
xi = 1, there is no hope of finding a strongly connected set with a suitable
payoff inside U, and U does not have to be explored further. Otherwise, the
algorithm checks whether U does not intersect with the winning region of
each player i ∈ P. If yes, we have found a strongly connected set with a suit-
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Algorithm 5.3. Solving QualNE for deterministic Büchi games.

Input: deterministic Büchi game G = (Π, V , (Vi)i∈Π , ∆, χ, (Fi)i∈Π), x, y ∈ {0, 1}Π

Output: {v ∈ V ∶ (G , v) has a Nash equilibrium with payoff ≥ x and ≤ y}

compute Wi ∶= {v ∈ V ∶ valGi (v) > 0} for each i ∈ Π
X ∶= ⋂i∈Π∶y i=0(V / χ−1(Fi))
output SolveSubgame(X)

procedure SolveSubgame(X)
Z ∶= ∅
compute all end components of G maximal in X
for each such end component U do
P ∶= {i ∈ Π ∶ χ(U) ∩ Fi = ∅}
if i ∉ P for all i with xi = 1 then
Y ∶= U ∩⋂i∈P(V /Wi)
if Y = U then
Z ∶= Z ∪ {v ∈ V ∶ U reachable from v in G ↾ ⋂i∈P(V /Wi)}

else
Z ∶= Z ∪ SolveSubgame(Y)

end if
end if

end for
return Z

end procedure

able payoff z, namely zi = 1 if and only if χ(U) ∩ Fi ≠ ∅. Hence, the procedure
adds U and all vertices from where U is reachable inside ⋂i∈Π∶z i=0(V /Wi) to
the result set. Otherwise, it removes the winning region of each player i ∈ P
from U. The resulting set of vertices may not be strongly connected any
more and fewer objectives may be satisfied; hence, the procedure has to be
called recursively.

As we are only interested in strongly connected sets that do not fulfil
the objectives of players i with yi = 0, SolveSubgame is called initially for the
subarena of G that results from removing all vertices v such that χ(v) ∈ Fi for
some player i with yi = 0.

Theorem 5.33. QualNE is decidable in polynomial time for deterministic
Büchi games.
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Proof. We claim that Algorithm 5.3 outputs the set of vertices from where
there is a Nash equilibrium with a payoff ≥ x and ≤ y. Since the number of
recursive calls is bounded by the size of the arena and maximal end compo-
nents can be computed in polynomial time, the procedure SolveSubgame
runs in polynomial time. For each player i, the set of vertices from where
she has a winning strategy can also be computed in polynomial time (Theo-
rem 2.20); hence, the algorithm runs in polynomial time.

To prove the correctness of the algorithm, let Z ⊆ V be the output of the
algorithm on input G , x.y. We claim that Z equals the set of vertices v ∈ V
such that (G , v) has a Nash equilibrium with payoff ≥ x and ≤ y.

(⊆)Assume that v ∈ Z. Hence, in some call of the procedure SolveSubgame,
say on input X, the algorithm finds a maximal end component U of G ↾ X
reachable from v and contained inside⋂i∈P(V /Wi), and χ(U)∩Fi only if xi = 0.
Let z ∈ {0, 1}Π be defined by zi = 1 if and only if χ(U)∩Fi ≠ ∅; in particular x ≤ z.
Hence, U is, in fact, reachable from v and contained inside ⋂i∈Π∶z i=0(V /Wi).
Since U is strongly connected, we can build a play π such that Inf(π) = U
and π ∉ Reach(Wi) for each player i with zi = 0; in particular, π has payoff z.
By Proposition 5.22, this play can be extended to a pure Nash equilibrium
of (G , v)with payoff z. Moreover, since the algorithmmaintains the invariant
that χ(X) ∩ Fi = ∅ for each i ∈ Π with yi = 0, we have z ≤ y.

(⊇) Suppose there exists a (pure) Nash equilibrium of (G , v) with payoff
x ≤ z ≤ y. Hence, by Proposition 5.22, there exists a play π of (G , v) with
payoff z such that π ∉ Reach(Wi) for each player i with zi = 0. Let X be
defined as in the first call of the procedure SolveSubgame. By the definition
of π, the set Inf(π) is contained in a maximal end component U of G ↾ X. Let
P ∶= {i ∈ Π ∶ χ(U)∩Fi = ∅}. If U is contained in⋂i∈P(V /Wi), then the algorithm
adds v to Z immediately. Otherwise, Inf(π) ⊆ U∩⋂i∈P(V /Wi) = Y, and Inf(π) is
contained in a maximal end component of G ↾ Y. Hence, the procedure
will eventually find a maximal end component U of G ↾ X such that U is
contained in ⋂i∈P(V /Wi) and Inf(π) ⊆ U. In particular, P ⊆ {i ∈ Π ∶ zi = 0},
and U is reachable from v inside G ↾ ⋂i∈P(V /Wi). Hence, v is added to Z. □

Remark. By combining the proofs of Corollary 5.29 and Theorem 5.33, we can
show that QualNE is, in fact, decidable in polynomial time for deterministic
games with an arbitrary number of Büchi objectives and a bounded number
of co-Büchi objectives (or even a bounded number of parity objectives with a
bounded number of priorities).
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5.4 Summary of results

Table 5.1. The complexity of StrQualNE, OneNE and QualNE.

StrQualNE OneNE QualNE (det. games)

SSMGs P-complete NP ∩ coNP P-complete
Büchi P-complete NP ∩ coNP P-complete
co-Büchi P-complete NP ∩ coNP NP-complete
Parity[d] P-complete NP ∩ coNP NP-complete
Parity UP ∩ coUP NP ∩ coNP NP-complete
Streett NP-complete NP-complete NP-complete

Rabin PNP[log]-complete
PNP PNP[log]

PNP[log]-hard DP-hard
Muller Pspace-complete Pspace-complete Pspace-complete

5.4 Summary of results

Our main results on the complexity of StrQualNE and OneNE for SMGS
as well as QualNE for deterministic games are summarised in Table 5.1;
similarly to Section 2.5, Parity[d] denotes the class of all parity SMGs whose
priority functions refer to at most d priorities. All lower bounds also hold
for the corresponding problems for subgame-perfect equilibria, and the
upper bounds for games with Rabin objectives also hold for games with
Streett-Rabin objectives.
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6
Conclusion

In this final chapter, we sum up the main results of this work and list some
open problems. Finally, we discuss several perspectives for future work.

6.1 Summary and open problems

In this work, we have analysed the existence and computational complex-
ity of game-theoretic equilibrium concepts in the context of turn-based
stochastic games played on graphs.

In Chapter 3, we proved that every finite stochastic game with prefix-
independent objectives has a Nash equilibrium in pure strategies (Theo-
rem 3.9); if each player has an ω-regular objective, there also exists a Nash
equilibrium inpurefinite-state strategies (Theorem3.10). The corresponding
statements about subgame-perfect equilibria are only true for deterministic
games (Theorems 3.15 and 3.16); there exists a stochastic game with Büchi
objectives that has no subgame-perfect equilibrium (Proposition 3.18).

In Chapter 4, we studied the different decision problems associated to a
solution concept and a strategy type in their full generality. On the posi-
tive side, we proved the problems PosNE, PosSPE, StatNE and StatSPE to be
decidable; the former two problems are NP-complete, while the latter two
problems are contained in Pspace and SqrtSum-hard. What remains open is
the precise complexity of StatNE and StatSPE. Given that these problems are
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intimately connected to the square-root sum problem and the existential
theory of the reals, such bounds seem hard to come by.

Problem 6.1. What is the precise complexity of StatNE and StatSPE?

We continued our analysis by proving that even the qualitative fragments
of all other decision problems (NE, SPE, PureNE, PureSPE, FinNE, FinSPE,
PureFinNE and PureFinSPE) are undecidable for SSMGs with a bounded
number of players (Theorems 4.10 and 4.13). These results leave open the de-
cidability of these problems for gameswith a small number of players. In par-
ticular, it is conceivable thatNE or PureNE is decidable for two-player SSMGs,
or even for two-player SMGs with ω-regular objectives. In fact, it follows
from the decidability of OneNE (Theorem 5.15) that for two-player SMGs
with ω-regular objectives the qualitative fragments of NE and PureNE coincide
and are indeed decidable.

Problem 6.2. Is NE decidable for two-player SSMGs? Is NE decidable for
two-player SMGs with ω-regular objectives?

Problem 6.3. Is PureNE decidable for two-player SSMGs? Is PureNE decid-
able for two-player SMGs with ω-regular objectives?

In Chapter 5, we looked at several restrictions of the original decision
problems. In particular, we proved that the problems StrQualNE and OneNE
are decidable for SMGs with ω-regular objectives and that QualNE is decid-
able for deterministic games with ω-regular objectives. There are several
open questions regarding these results. For instance, the precise complexity
of OneNE for SMGs with Streett-Rabin objectives remains open: while we
could prove membership in PNP (Theorem 5.17), we could only show that this
problem is hard for PNP[log] (Theorem 5.19).

Problem 6.4. What is the precise complexity of OneNE for SMGs with
Streett-Rabin objectives?

A similar open problem is to determine the precise complexity of QualNE
for deterministic Streett-Rabin games; for this problem, we proved mem-
bership in PNP[log] (Theorem 5.27) but hardness only for DP (Theorem 5.10).

Problem 6.5. What is the precise complexity of QualNE for deterministic
Streett-Rabin games?
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More fundamentally, although we could establish the decidability of
QualNE for deterministic games with ω-regular objectives, the decidabil-
ity of NE (where arbitrary rational payoff thresholds are allowed) for these
games remains open.

Problem 6.6. Is NE decidable for deterministic simple reachability games?
Is NE decidable for deterministic games with ω-regular objectives?

The decidability of QualNE for deterministic games relies on Lemma 3.7,
which gives a necessary and sufficient condition for the existence of a pure
Nash equilibrium with a certain payoff, and the fact that pure strategies
are sufficient to realise any binary payoff. To decide NE, we cannot employ
Lemma 3.7 because pure strategies are not sufficient to realise a non-binary
payoff. However, almost pure strategies, which require randomisation only
for finitely many histories, do suffice for this purpose. We conjecture that
Lemma 3.7 can be extended to almost pure strategies, which would yield a
positive answer to Problem 6.6.

Another fundamental open question about the decision problems we
studied in Chapter 5 is whether these problems are decidable, when one
looks for a subgame-perfect equilibrium instead of a Nash equilibrium.

Problem 6.7. Is StrQualSPE decidable for SSMGs? Is StrQualSPE decidable
for SMGs with ω-regular objectives?

Problem 6.8. Is OneSPE decidable for SSMGs? Is OneSPE decidable for SMGs
with ω-regular objectives?

Problem 6.9. Is QualSPE decidable for deterministic SSMGs? Is QualSPE
decidable for deterministic games with ω-regular objectives?

The only nontrivial decidable decision problem about subgame-perfect
equilibria in infinite-duration games we are aware of is PureSPE for deter-
ministic games with ω-regular objectives (Ummels 2005, 2006). However,
the best known algorithm for this problem requires exponential time, even
for games with Büchi objectives, for which the NP lower bound of Theo-
rem 5.32 does not apply. A related open question is whether pure strategies
are sufficient to realise any subgame-perfect equilibrium with a binary pay-
off in a deterministic game with ω-regular objectives (as for Nash equilibria).
Since PureSPE is decidable for these games, a positive answer to this question
would imply the decidability of QualSPE for these games.
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6.2 Perspectives

Broadly speaking, this work can be extended along two axes: One canmodify
the game model, or one can modify the solution concept.

Different game models

A possible extension to the game model is to add nondeterminism, which can
be used to model behaviour that is neither controllable nor describable by a
probability distribution. The easiest way to incorporate nondeterminism in
the model is to add another type of vertices: vertices of this additional type
are neither stochastic nor controlled by player, and when a play arrives at
such a vertex, a successor is chosen nondeterministically. Formally, these
vertices can be assigned to a Byzantine player, whose strategy is unknown.
A Nash equilibrium of such a game would be a profile of strategies for the
remaining players that is a Nash equilibrium (in the classical sense) for any
strategy of the Byzantine player. We conjecture that many of the decidability
results of Chapter 5 carry over to this setting, albeit with higher complexity.

We have already pointed out in Chapter 2 that our model lacks concur-
rency. In a concurrent game, whenever the play reaches a vertex, all players
simultaneously choose an action; the chosen profile of action determines
a probability distribution on successor vertices. The arguments for the de-
cidability of PosNE and StatNE for SMGs also prove the decidability of these
problems for concurrent SMGs. On the other hand, problems that are already
undecidable for turn-based SMGs are also undecidable for concurrent SMGs.
In fact, it is easy to extend our undecidability proof for NE to prove that even
the existence of any Nash equilibrium is undecidable for concurrent SMGs.
(Note that a concurrent SMGmay fail to have an equilibrium.) On the other
hand, Fisman et al. (2010) proved that PureNE is decidable for deterministic
concurrent games with ω-regular objectives (see also Bouyer et al. 2010b).

Recently, much effort has been invested into extending the algorithmic
results on two-player zero-sum games with finitely many states to games
with a countable infinite number of states. In particular, games that are
played on the configuration graphs of pushdown automata, so-called push-
down games, have been studied thoroughly. Walukiewicz (2001) showed that
deciding the winner of a deterministic two-player zero-sum parity push-
down game is Exptime-complete, which gives hope that the decidability
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results for deterministic games in Chapter 5 can be extended to pushdown
games. For stochastic pushdown games, however, most problems are un-
decidable, even for MDPs (Etessami & Yannakakis 2005). Hence, in order to
obtain decidability results, one has to consider more restricted classes such
as one-exit recursive stochastic games (Etessami & Yannakakis 2005) or one-counter
stochastic games (Brázdil et al. 2010).

An extension whose semantics are actually given by a concurrent game
with uncountably many states is the model of timed games. In a timed game,
a set of clocks is used tomeasure real time: states and transitions have guards,
which specify for which clock values resting in a state or taking a transition
is legal, and clocks can be reset along transitions. For non-stochastic timed
games, preliminary results on the complexity of computing Nash equilibria
have recently been obtained by Bouyer et al. (2010a,b).

As pointed out in Chapter 1, in the original stochastic game model, in-
troduced by Shapley (1953), the objective of a player is not given by a set of
plays, but by rewards that are assigned to states or transitions. There are
several ways to obtain a payoff from the infinite stream of rewards a player
receives; popular payoff functions include the discounted sum of the accu-
mulated rewards (with respect to some discount factor λ < 1), their limit
average and their total sum (which can be infinite). An SSMG can be viewed
as a limit-average game, where non-zero rewards occur only on terminal
vertices, or as a total-reward game (by introducing intermediate vertices on
transitions to terminal vertices). Hence, all our lower bounds for SSMGs also
apply to games with limit-average or total-reward objectives; we conjecture
that the same bounds also hold for discounted games.

Different solution concepts

After Nash (1950) introduced his equilibrium concept, a plethora of other
solution concepts have been introduced to mitigate the drawbacks of this
solution concept (such as the requirement for coordination). Formally, a so-
lution concept assigns to each game a set of strategy profiles, each of which
is a solution of the game. We say that a solution concept C is stronger (weaker)
than a solution concept D if on every game the set of all C solutions is a
subset (superset) of the set of all D solutions. In the literature, both solution
concepts stronger and solution concepts weaker thanNash equilibriumhave
been explored: prominent examples in the former category are strong and
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subgame-perfect equilibria; examples in the latter category are correlated
equilibria and rationalisability (see Osborne & Rubinstein 1994).

In a Nash equilibrium, no player can gain from switching to a different
strategy. A natural relaxation of Nash equilibrium is to allow that players
can gain only a small amount by deviating. Formally, for ε > 0, a strategy
profile is an ε-equilibrium if each player cannot increase her probability of
winning by more than ε when switching to a different strategy. In many
cases, ε-equilibria are a suitable alternative to Nash equilibria when the
latter solution concept is too strong. For instance, in concurrent games,
the existence of ε-Nash equilibria is usually the best one can hope for (see
Section 1.1). Our undecidability proof for Nash equilibria relies heavily on
the fact that profitable deviations are forbidden in Nash equilibria. Hence,
it is conceivable that problems such as NE and PureNE become decidable
when we take ε-equilibria into account.

As argued by Abraham et al. (2006), of particular relevance for distributed
computing are equilibria in which a deviation of up to a certain number k of
players does not increase these players’ payoffs and in which a deviation of up
to a possibly different number t of players does not decrease the payoff of the
other players; such an equilibrium is called (k, t)-robust. By definition, every
Nash equilibrium is (1, 0)-robust, and a (k, t)-robust equilibrium is also a
Nash equilibrium as long as k ≥ 1. It seems that most of our proofs do not ex-
tend to, for instance, (2, 0)-robust equilibria or (1, 1)-robust equilibria. From
an optimistic point of view, this might enable more decidability results.

Another refinement of Nash equilibrium, which can be used for assume-
guarantee reasoning, has been introduced by Chatterjee et al. (2006) under
the name secure equilibria. Intuitively, such an equilibrium captures rational
behaviour if a player is not only interested in maximising her own payoff
but also in decreasing the other players’ payoffs. More precisely, a Nash
equilibrium is secure if each player can only decrease another player’s payoff
by decreasing her own payoff. As for ε-equilibria and (k, t)-robust equilibria,
we do not know whether our results carry over to this equilibrium notion.
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AppendixA
Preliminaries

In this appendix, we review concepts from probability and complexity theory
that are used in this work. For a thorough introduction to these topics,
we recommend the textbooks (Billingsley 1995) and (Papadimitriou 1994),
respectively.

A.1 Probability theory

Let Ω be an arbitrary nonempty set, called the sample space. An algebra over Ω
is a collection F ⊆ P(Ω) of subsets of Ω, called events, that contains Ω and is
closed under complementation and taking finite unions:

• Ω ∈ F ;
• if X ∈ F , then Ω / X ∈ F ;
• if X, Y ∈ F , then X ∪ Y ∈ F.

A σ-algebra is an algebra F ⊆ P(Ω) that is also closed under taking countable
unions:

• if X0 , X1 , . . . ∈ F , then ⋃n∈M Xn ∈ F.

Given an arbitrary class F ⊆ P(Ω), we denote by σ(F) the σ-algebra generated
byF. Formally, σ(F) is the intersection of all σ-algebras that containF. IfF is
an algebra, then σ(F) can alternatively be characterised as the least monotone
class that containsF . Formally, we say that a collectionM ⊆ P(Ω) is monotone
if it is closed under taking limits of chains:
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• If X0 ⊆ X1 ⊆ ⋅ ⋅ ⋅ ∈M, then ⋃n∈M Xn ∈M;
• If X0 ⊇ X1 ⊇ ⋅ ⋅ ⋅ ∈M, then ⋂n∈M Xn ∈M.

Obviously, any σ-algebra is monotone.

Theorem A.1 (Monotone class theorem). LetF be an algebra, and letM be a
monotone collection of subsets of Ω. IfF ⊆M, then σ(F) ⊆M. In particular,
σ(F) is the smallest monotone class that contains F.

Given an algebra F ⊆ P(Ω), a function P∶F → [0, 1] is a probability measure
on F if it satisfies the following properties:

• P(∅) = 0;
• P(Ω) = 1;
• if X0 , X1 , . . . ∈ F is a sequence of pairwise disjoint sets with ⋃n∈M Xn ∈ F ,

then P(⋃n∈M Xn) = ∑n∈M P(Xn).

If P(X) = 1, we say that the event X happens almost surely. The following
laws are proved easily from the axioms.

Proposition A.2. LetF be an algebra with X, Y ∈ F , and let P be a probability
measure on F.

1. P(Ω / X) = 1 − P(X);
2. P(X ∪ Y) = P(X) + P(Y) if X ∩ Y = ∅;
3. P(Y) = P(X) + P(Y / X) ≥ P(X) if X ⊆ Y;
4. P(X ∩ Y) = P(X) if P(Y) = 1.

Moreover, probability measures are continuous from below and above.

Proposition A.3. Let P be a probability measure on an algebra F .

1. If X0 ⊆ X1 ⊆ ⋅ ⋅ ⋅ ∈ F and ⋃n∈M Xn ∈ F , then P(⋃n∈M Xn) = limn P(Xn);
2. if X0 ⊇ X1 ⊇ ⋅ ⋅ ⋅ ∈ F and ⋂n∈M Xn ∈ F , then P(⋂n∈M Xn) = limn P(Xn).

For an arbitrary sequence X0 , X1 , . . . ∈ F of events, define

lim inf n Xn ∶= ⋃
n∈M

⋂
k≥n

Xk and

limsup
n
Xn ∶= ⋂

n∈M
⋃
k≥n

Xk .

The set lim inf n Xn consists of all elements that occur in all but finitely many
of the sets Xn , and limsup

n
Xn consists of all elements that occur in infinitely

many of the sets Xn .
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Proposition A.4. Let P be a probability measure on a σ-algebra F , and let
X0 , X1 , . . . ∈ F . Then P(lim inf n Xn) ≤ lim inf n P(Xn) ≤ limsup

n
P(Xn) ≤

P(limsup
n
Xn).

How can we set up a probability measure? In applications, it is often
easier to define a probability measure on an algebra rather than a σ-algebra.
However, an algebramight be too small, andwewould like to assign a proba-
bility tomore events, e.g. to all sets in the generated σ-algebra. The following
theorem allows us to do just that; in fact, the extended measure is unique.

Theorem A.5 (Carathéodory’s extension theorem). LetF be an algebra, and
let P be a probability measure on F . Then there exists a unique probability
measure P∗ on σ(F) such that P∗(X) = P(X) for all X ∈ F .

Conditional probabilities

Let P be a probability measure on an algebra F . Given events X, Y ∈ F , we
define the conditional probability of Y given X as

P(Y ∣ X) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

P(X ∩ Y) / P(X) if P(X) > 0,

1 otherwise.

From the definition, the identity P(X∩Y) = P(X)⋅P(Y ∣ X) follows immediately.
Note that, unless P(X) = 0, the function P(⋅ ∣ X) that maps Y ∈ F to P(Y ∣ X) is
also a probability measure on F .

Random variables

Given a σ-algebra F over a set Ω, a (discrete) random variable is a mapping
Θ∶Ω → A into a countable set A such that

Θ−1(a) ∶= {x ∈ Ω ∶ Θ(x) = a} ∈ F

for all a ∈ A. It is customary in probability theory to omit the argument
in expressions involving a random variable. For example, we usually write
P(Θ = a) instead of P({x ∈ Ω ∶ Θ(x) = a}).

Probability measures on infinite sequences

The sample space that arises when one deals with stochastic games is
the space Aω of infinite sequences over a countable set A. The relevant
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σ-algebra F is generated by the basic cylinder sets: these are sets of the
form x ⋅ Vω , where x ∈ V∗, i.e. they consist of all infinite prolongations of
a finite sequence x. More generally, a cylinder set is a finite, disjoint union
of basic cylinder sets. The class C of all cylinder sets forms an algebra, and
thus we can apply Carathéodory’s extension theorem to extend a probability
measure on C to a probability measure onF = σ(C). The σ-algebraF is called
the Borel σ-algebra, and we call a set X ∈ F a Borel set.

The following theorem is a reformulation of Levy’s zero-one law in the spe-
cial case of the Borel σ-algebra over infinite sequences.¹ Intuitively, the the-
orem states that the conditional probabilities of an event X given the basic
cylinder sets induced by longer and longer prefixes of an infinite sequence α
approach either 1 or 0, depending on whether α ∈ X or not. More precisely,
this convergence happens almost surely. We denote by 1X ∶ Aω → {0, 1} the
indicator function of X ⊆ Aω , defined by 1X(α) = 1 if and only if α ∈ X.

Theorem A.6 (Levy’s zero-one law). Let F be the Borel σ-algebra over Aω ,
and let P be a probability measure on F . Then

P({α ∈ Aω ∶ limk P(X ∣ α(0) . . . α(k − 1) ⋅ Aω) = 1X(α)}) = 1

for all X ∈ F .

A.2 Computational complexity

We assume that the reader is familiar with (non-)deterministic Turing ma-
chines and the classes P, NP, coNP and Pspace. In the following, we give a
brief description of the other complexity classes that play a role in this work.

Decision classes

Between P and NP lies the class UP of languages decidable by an unambiguous
nondeterministic Turingmachine, i.e. a nondeterministic machine that has
at most one accepting run on every input. As for NP, it is neither known nor
believed that UP is closed under complementation. Hence, we define coUP
to be the class of problems whose complement is in UP. Obviously, we have
P ⊆ UP ⊆ NP and P ⊆ coUP ⊆ coNP; in the absence of a proof that P ≠ NP,
neither of these inclusions is known to be proper.

¹ For the general formulation, see (Durret 2010, Chapter 5).
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Above NP and coNP lies the class DP of all languages L of the form L =
L1∩L2 for L1 ∈ NPand L2 ∈ coNP, and its dual, the class coDP of all languages L
of the form L = L1 ∪ L2 for L1 ∈ NP and L2 ∈ coNP. The canonical complete
problem for DP is SAT-UNSAT, the problem of deciding, given a pair (φ, ψ) of
two Boolean formulae (in conjunctive normal form), whether φ is satisfiable
and ψ is unsatisfiable. Hence, a pair (φ, ψ) belongs to SAT-UNSAT if and only
if φ ∈ SAT and ψ ∉ SAT. Any DP-complete problem is both NP-hard and
coNP-hard. Hence, it is believed that NP ∪ coNP is properly contained in DP
(since otherwise NP would equal coNP).

Theorem A.7. SAT-UNSAT is DP-complete.

The remaining decision classes that play a role in this work are defined
via oracle machines: An oracle machine is a Turing machine that is equipped
with one extra working tape, called the oracle tape. The semantics of the
machine is defined with respect to a certain fixed language L, e.g. L = SAT.
At any time of its computation, the machine can “ask” the oracle whether
the inscription of the oracle tape belongs to L or not. The omniscient oracle
will return the answer immediately, and themachinemay continue with its
computation depending on the answer. For a complexity class C, we denote
by PC and NPC the classes of languages that are decidable by a deterministic
respectively non-deterministic, polynomial-time oracle machine with an
oracle for a language L ∈ C. Finally, coNPC is the class of all languages whose
complements are in NPC .

The polynomial hierarchy (PH) consists of the classes ΣP
k
, ΠP

k
and ∆P

k
, where

k ∈ M, defined inductively by setting ΣP0 = ΠP
0 = ∆P0 = P and

ΣPk+1 = NP
ΣP
k ,

ΠP
k+1 = coNP

ΣP
k ,

∆Pk+1 = P
ΣP
k

for all k ∈ M. Note that ΣP1 = NP, ΠP
1 = coNP and ∆P1 = P. Regarding inclusions,

it is obvious that ∆P
k
⊆ ΣP

k
⊆ ∆P

k+1 and ∆
P
k
⊆ ΠP

k
⊆ ∆P

k+1 for each k ∈ M. Moreover,
it is easy to see that PH ⊆ Pspace.

Of particular relevance to this work is the class ∆P2 = PNP, which can
alternatively be characterised as the class of languages decidable by a de-
terministic polynomial-time oracle machine with an oracle for SAT, and its
subclass PNP[log], the class of languages that are decidable by a deterministic
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polynomial-time oracle machine that, on inputs of length n, may perform
at most O(log n) queries to an oracle for SAT. Since any problem in DP can
be decided with just two queries to an oracle for SAT, we have DP ⊆ PNP[log].

Figure A.1 visualises the decision classes considered in this work and
their relationships to each other.

Function classes

In complexity theory, a function problem is not merely the problem of comput-
ing the output of a function but, more generally, the problem of computing,
given a binary relation R, for every input x a possible output y such that
(x, y) ∈ R, if such a y exists; if no such y exists, the input x should be rejected.

The classical example of a function problem is FSAT, the problem of com-
puting for a Boolean formula φ a satisfying assignment. In this case, the
underlying relation is polynomial-time decidable: given a formula φ and an
assignment α, we can decide in polynomial time whether α satisfies φ. Such
function problems make up the class FNP. Formally, a function problem
“given x, compute y such that (x, y) ∈ R” is in FNP if the relation R is polyno-
mially balanced and decidable by a deterministic polynomial-time algorithm.
(A relation R is polynomially balanced if there exists k ∈ M such that ∣y∣ ≤ ∣x∣k

for all (x, y) ∈ R).
The class FP ⊆ FNP consist of all those problems in FNP forwhich a correct

output can be computed in (deterministic) polynomial time. The problem
FSAT turns out to be complete for FNP (via a suitable notion of polynomial
reduction), and it is easy to see that a polynomial-time algorithm for SAT
could be extended to a polynomial-time algorithm for FSAT. Hence, P = NP
if and only if FP = FNP.

Theorem A.8. FP = FNP if and only if P = NP
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Figure A.1. A hierarchy of complexity classes.
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AppendixB
Markov Chains and

Markov Decision Processes

In this appendix, we review Markov chains and Markov decision processes.
In particular, we discuss how to compute the (optimal) probability of a given
objective in these models. More details (including proofs) can be found in
(Baier & Katoen 2008; Puterman 1994).

B.1 Markov chains

In a Markov chain, the system evolves alone through stochastic transitions.
Moreover, the probability that the system moves to a certain successor state
does only depend on the current state. Formally, a (time-homogenous)
Markov chain (MC)M consists of:

• a nonempty, countable set S of states,
• a transition function δ∶ S → D(S), and
• a colouring function χ∶ S → C into a set C of colours.

We denote by δ(t ∣ s) the probability thatMmoves from state s to state t,
i.e. δ(t ∣ s) = δ(s)(t). The transition graph ofM is the directed graph (S, E)with
(s, t) ∈ E if and only if δ(t ∣ s) > 0.

Given a starting state s ∈ S, we define a probability measure on the
Borel σ-algebra over Sω as follows: the probability of a basic cylinder set
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s0 . . . sk ⋅ Sω equals the product of the probabilities δ(s j ∣ s j−1) for j = 1, . . . , k if
s = s0; basic cylinder sets that start in a state different from s have probabil-
ity 0. By Carathéodory’s extension theorem (Theorem A.5), this definition
induces a unique probability measure on the Borel σ-algebra over Sω; we de-
note this measure by PrMs . Finally, we obtain a probability measure on the
Borel σ-algebra over Cω by viewing the colouring function χ as a continuous
function Sω → Cω . We abuse notation and denote this measure also by PrMs .

Remark. More generally, a Markov chain is a sequence (Θn)n∈M of discrete
random variables into S such that the probability of being in a state t at
time k only depends on the probabilities of being in states s ∈ S at time k − 1:

Pr(Θk+1 = t ∣ Θk = sk , Θk−1 = sk−1 , . . . , Θ0 = s0) = Pr(Θk+1 = t ∣ Θk = sk)

for all k ∈ M and s0 , . . . , sk , t ∈ S. This definition is more general since the
probabilities Pr(Θk+1 = t ∣ Θk = s) may depend on k. If these probabilities do
not depend on k, the Markov chain is called time-homogenous, in which case
Pr(Θk+1 = t ∣ Θk = s) = δ(t ∣ s) for all k ∈ M and s, t ∈ S.

Reachability objectives

The basic probabilities that we wish to compute are the probabilities
Prs(Reach(F)) of reaching a designated subset F ⊆ S of states. In terms of
basic cylinder sets, we have

PrMs (Reach(F)) = ∑
xt∈(S/F)

∗
F

PrMs0 (xt ⋅ Sω) .

Moreover, given a set Z ⊆ S of states such that Prs(Reach(F)) = 0 for all s ∈ Z,
the probabilities xs ∶= PrMs (Reach(F)) satisfy the following equations:

xs = 1 if s ∈ F;

xs = 0 if s ∈ Z;

xs = ∑
t∈S

δ(t ∣ s) ⋅ xt if s ∈ S / (F ∪ Z).
(B.1)

In fact, the probabilities PrMs (Reach(F)) form the least solution of (B.1).

Theorem B.1. LetM be a Markov chain, and let F, Z ⊆ be sets of states such
that PrMs (Reach(F)) = 0 for all s ∈ Z. If (xs)s∈S ∈ [0, 1]S is a solution of (B.1),
then xs ≥ PrMs (Reach(F)) for all s ∈ S.
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By Theorem B.1 (taking Z = ∅), the probabilities PrMs (Reach(F)) can be
computed in polynomial time by solving the following linear programme:

Minimise ∑s∈S xs subject to

xs ≥ 0 for all s ∈ S,

xs = 1 for all s ∈ F,

xs = ∑
t∈S

δ(t ∣ s) ⋅ xt for all s ∈ S / F.

Corollary B.2. Given a finite MCM (with rational transition probabilities)
and a set F ⊆ S, the probabilities PrMs (Reach(F)) can be computed in polyno-
mial time.

In practice, there is an easier way to compute reachability properties,
which is supported by the following theorem.

Theorem B.3. LetM be a finite MC, and let F ⊆ S. If Z equals the set of all
s ∈ S such that PrMs (Reach(F)) = 0, then the probabilities xs ∶= PrMs (Reach(F))
are the only solution of (B.1).

Since PrMs (Reach(F)) = 0 if and only if there is no path from s to F in the
transition graph ofM, the set Z in Theorem B.3 can be computed in linear
time. To determine PrMs (Reach(F)) for each s ∈ S, we can then solve (B.1)
using Gaussian elimination.

Infinitary objectives

The central notion for the verification of objectives that speak about the
infinite behaviour of a Markov chain is that of a bottom strongly connected
component (BSCC). A BSCC of a Markov chainM is a maximal subset T of
states that is strongly connected (i.e. in the subgraph of the transition graph
ofM that is induced by T every state has a path to every other state) and
that has no transitions leading outside T, i.e. δ(s ∣ t) = 0 for all t ∈ T and
s ∈ S / T. The importance of BSCCs stems from the following fact.

Lemma B.4. LetM be a finite MC. Then PrMs ({π ∈ Sω ∶ Inf(π) is a BSCC}) = 1
for all s ∈ S.

By Lemma B.4, to compute the probability of fulfilling a given Muller
objective, it suffices to compute the probability of reaching a BSCC that
corresponds to an accepting set.
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Theorem B.5. LetM be a finite MC, and let F ⊆ P(C) be a Muller objective.
Then PrMs (Muller(F)) = PrMs (Reach(U)) for all s ∈ S, where U is the union of
all BSCCs T ofM such that χ(T) ∈ F.

Since all SCCs of a finite graph can be identified in linear time, e.g. using
Tarjan’s algorithm (see Cormen et al. 2009), it follows from Theorem B.5
and Corollary B.2 that the probability of fulfilling a given Streett, Rabin or
Muller objective can be computed in polynomial time.

Corollary B.6. Given a finite MCM (with rational transition probabilities)
and a Streett, Rabin or Muller objective Win, the probabilities PrMs (Win) can
be computed in polynomial time.

B.2 Markov decision processes

Markov decision processes extend Markov chains with control. Formally,
a Markov decision process (MDP)M consists of:

• a nonempty, countable set S of states,
• a subset S0 ⊆ S of controlled states,
• a transition relation ∆ ⊆ S × ([0, 1] ∪ {�}) × S, and
• a colouring function χ∶ S → C into a set C of colours.

We require that a transition is labelled with � if and only if it originates in a
controlled state, and that transition probabilities are unique: if s ∈ S / S0 and
t ∈ S, then there exists precisely one p ∈ [0, 1]with (s, p, t) ∈ ∆; let us denote
this probability by ∆(t ∣ s). Naturally, we assume that for each s ∈ S / S0 the
probabilities on outgoing transitions sum up to 1: ∑t∈S ∆(t ∣ s) = 1. For the
sake of simplicity, we require additionally that for each s ∈ S0 there exists at
least one state t with (s, �, t) ∈ ∆.

For a state s ∈ S, we denote by s∆ the set of all states t ∈ S such that there
exists 0 ≠ p ∈ [0, 1] ∪ {�}with (s, p, t) ∈ ∆. The transition graph of an MDPM is
the directed graph (S, E), where (s, t) ∈ E if and only if t ∈ s∆.

Remark. In the literature, MDPs are often defined using actions: in each state,
the controller chooses an action, which determines a probability distribution
on successor states. The two definitions are essentially equivalent: On the
one hand, we can view states as actions. On the other hand, we can simulate
actions by alternating between controlled and non-controlled states.
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The behaviour of the controller is described by a strategy (other names in
the literature include policy and scheduler). Formally, a (randomised) strategy
inM is a mapping σ∶ S∗S0 → D(S) that assigns to each finite sequence of
states that ends in a controlled state a probability distribution on states
such that σ(t ∣ xs) ∶= σ(xs)(t) > 0 only if (s, �, t) ∈ ∆. We extend σ to a mapping
S+ → D(S) by setting σ(t ∣ xs) ∶= δ(t ∣ s) for all x ∈ S∗, s ∈ S / S0 and t ∈ S.

As for SMGs (see Section 2.2), we call a strategy σ pure (or deterministic) if
σ(t ∣ xs) ∈ {0, 1} for all xs ∈ S∗S0 and t ∈ S, and we call σ stationary if σ(xs) = σ(s)
for all xs ∈ S∗S0. Finally, we say that a strategy is positional if it is both pure
and stationary.

Given a strategy σ and an initial state s, we define a probability measure
on the Borel σ-algebra over Sω as for SMGs: the probability of a basic cylinder
set s0 . . . sk ⋅Sω is the product of the probabilities σ(s j ∣ s0 . . . s j−1) for j = 1, . . . , k;
a basic cylinder set that starts in a different state than s0 has probability 0.
By Carathéodory’s extension theorem (Theorem A.5), this definition induces
a unique probability measure on the Borel σ-algebra over Sω; we denote both
this measure and the correspondingmeasure on the Borel σ-algebra over Cω

(defined via the colouring χ) by Prσ

s .

The central problem in the analysis of a Markov decision process is com-
puting the optimal probability of fulfilling a certain objective. Formally, given
anMDPM, a state s and an objectiveWin (over states or colours), we want to
compute sup

σ
Prσ

s (Win). Note that this supremum ranges over all strategies
inM and that an optimal strategy does not need to exist.

Reachability objectives

For reachability objectives, the optimal probabilities can again be charac-
terised as the least solution of a system of equations.

Theorem B.7. LetM be a Markov decision process, and let F ⊆ S. The opti-
mal probabilities sup

σ
Prσ

s (Reach(F)) form the least solution (over [0, 1]S) of
the following system of equations:

xs = 1 if s ∈ F;

xs = max{xt ∶ t ∈ s∆} if s ∈ S0 / F;

xs = ∑
t∈S

δ(t ∣ s) ⋅ xt if s ∈ S / (F ∪ S0).

153



B Markov Chains and Markov Decision Processes

By replacing equations containingmax with suitable inequalities, we ob-
tain the following linear programme, whose optimal solution is the vector
of optimal reachability probabilities:

Minimise ∑s∈S xs subject to

xs ≥ 0 for all s ∈ S,

xs = 1 for all s ∈ F,

xs ≥ xt for all (s, �, t) ∈ ∆,

xs = ∑
t∈S

δ(t ∣ s) ⋅ xt for all s ∈ S / (F ∪ S0).

Corollary B.8. Given a finite MDPM (with rational transition probabilities)
and a set F ⊆ S, the optimal probabilities sup

σ
Prσ

s (Reach(F)) can be computed
in polynomial time.

Do optimal strategies exist in MDPs with reachability objectives? For
finite MDPs, the answer is positive. In fact, there always exists an optimal
positional strategy. However, infinite MDPs with reachability objectives do,
in general, not admit an optimal strategy (see Example 2.8).

Theorem B.9. LetM be a finite MDP, and let F ⊆ S. There exists a positional
strategy τ inM such that Prτ

s (Reach(F)) = sup
σ
Prσ

s (Reach(F)) for all s ∈ S.

Infinitary objectives

For computing the optimal probability of fulfilling an infinitary objective,
end components take the role that BSCCs play for Markov chains. Formally,
a sub-MDP of an MDPM is a subset T ⊆ S of states such that:

• T ≠ ∅,
• s∆ ∩ T ≠ ∅ for all s ∈ T, and
• s∆ ⊆ T for all s ∈ T / S0.

A set T ⊆ S is an end component ofM if T is a sub-MDP ofM that is strongly
connected (with respect to the transition graph ofM). Finally, we say that
an end component T ofM is maximal in a set U ⊆ S if there exists no end
component T′ ofM such that T ⊊ T′ ⊆ U.

Algorithm B.1 is a polynomial-time algorithm for computing all end
components maximal in a given set U (for a finite MDPM). The core of
the algorithm is the procedure FindMEC, which on input X ⊆ S computes
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Algorithm B.1. Finding maximal end components.

Input:MDPM = (S, S0 , ∆, χ), U ⊆ S
Output: {T ⊆ S ∶ T is an end component ofMmaximal in U}

output FindMEC(U)

procedure FindMEC(X)
Z ∶= ∅
compute all nontrivial SCCs of (X, {(s, t) ∶ t ∈ s∆})
for each such SCC T do
C ∶= {s ∈ T / S0 ∶ s∆ ⊈ T}
if C = ∅ then
Z ∶= Z ∪ {T}

else
Z ∶= Z ∪ FindMEC(T / C)

end if
end for
return Z

end procedure

all end components ofMmaximal in X. The procedure first computes all
nontrivial SCCs in the transition graph ofM restricted to X (i.e. all maxi-
mal strongly connected subsets of X that contain at least one edge). If such
an SCC T is a sub-MDP, then T is also a maximal end component and can
be added to the output of the algorithm. Otherwise, we can remove all
non-controlled states s with s∆ ⊈ T from T. The resulting set might not be
strongly connected any more; hence, the procedure calls itself recursively
on this set.

The termination of Algorithm B.1 is guaranteed by the fact that the pro-
cedure FindMEC on input X calls itself only on proper subsets of X. Moreover,
since recursive calls are limited to disjoint subsets, the total number of recur-
sive calls is bounded by the number of states. For identifying all nontrivial
SCCs of a directed graph, we can again employ Tarjan’s linear-time algo-
rithm. Hence, Algorithm B.1 computes all end components maximal in U in
quadratic time.

Theorem B.10. Given a finite MDPM and a set U ⊆ S, the set of all end
components ofMmaximal in U can be computed in quadratic time.
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The fundamental fact about end components is that, under any strategy,
the set of states visited infinitely often in a finite MDP is almost surely an
end component.

Lemma B.11. LetM be a finite MDP, and let σ be a strategy inM. Then
Prσ

s ({π ∈ Sω ∶ Inf(π) is an end component}) = 1 for all s ∈ S.

Moreover, we can build a strategy σ that, when started in an end compo-
nent T, visits almost surely all (and only) states in T infinitely often. There
are two ways to construct such a strategy: First, the stationary strategy that
moves from a state s ∈ T to each state t ∈ s∆ ∩ T with the same probability
does the job. Second, it is not very hard to construct a pure strategy that
achieves the same task.

Lemma B.12. LetM be a finite MDP, and let T be an end component ofM.
There exists both a stationary strategy σ and a pure strategy σ such that
Prσ

s ({π ∈ Sω ∶ Inf(π) = T}) = 1 for all s ∈ T.

By Lemmas B.11 and B.12, computing the optimal probability of fulfilling
a given Muller objective reduces to computing the optimal probability of
reaching an accepting end component.

Theorem B.13. LetM be a finiteMDP, and letF ⊆ P(C) be aMuller objective.
Then sup

σ
Prσ

s (Muller(F)) = sup
σ
Prσ

s (Reach(U)) for all s ∈ S, where U is the
union of all end components T ofM such that χ(T) ∈ F.

Given a Muller objective F ⊆ P(C), in order to compute the union of
all accepting components, we employ Algorithm B.1 to compute, for each
F ∈ F, all end components maximal in χ−1(F). If such an end component T
contains all colours c ∈ F, we can include T in the union of all accepting
end component; otherwise, there is no hope of finding an accepting end
component inside T (at least for the Muller set F). In fact, the same idea can
be used to compute the union of all accepting end components with respect
to a Rabin objective. Finally, for Streett objectives, Chatterjee et al. (2005)
gave an algorithm for computing the union of all accepting end components,
which employs Algorithm B.1 as a subroutine (see Algorithm 5.1).

Corollary B.14. Given a finite MDPM (with rational transition probabili-
ties) and a Streett, Rabin or Muller objective Win, the optimal probabilities
sup

σ
Prσ

s (Win) can be computed in polynomial time.
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Notation

Note: See referenced pages for formal definitions.

(σ−i , τ) strategy profile σ with strategy for player i replaced by τ 37

[0, 1] closed interval from 0 to 1 31

∣x∣ length of x 31

≺ proper prefix relation 31

⪯ prefix relation 31

⊢ successor relation 88

A∗ finite sequences over A 31

A+ non-empty finite sequences over A 31

Aω infinite sequences over A 31

α∣k prefix of length k of α 31

Bnd(U) boundary of value class U 52

Büchi(F) infinite sequences hitting F infinitely often 34

C set of colours 32

χ colouring function 32

coBüchi(F) infinite sequences staying in F from some point onwards 34

C∗ class of SMGs derived from class C of S2Gs 70

∆ transition relation 32

δ(q) enabled transitions in state q 88

∆(w ∣ v) transition probability 32

dist(x, y) Hamming distance of x and y 126

D(A) probability distributions over A 31

ε empty word 31

G(x) MDP induced by Muller SMG G and payoff x 101

G[x] residual game after history x 40
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Notation

Gσ−i MDP induced by strategy profile σ and player i 39, 40

Gσ Markov chain induced by strategy profile σ 39, 40

Gi coalition game against player i 43

G ↾ U restriction of G to subarena U 41

G S2G with boundary states made absorbing 52

Inf(α) elements occurring infinitely often in α 31

limn Xn limit of chain (Xn)n∈M 57

Muller(F) infinite sequences fulfilling Muller objective F 35

M natural numbers 31

Parity(Ω) infinite sequences fulfilling parity objective Ω 34

Parity[d] Parity SMGs or S2Gs with at most d priorities 49, 133

Π set of players 32

Prσ

v0 probability measure induced by strategy profile σ and initial
state v0 38

P(A) power set of A 31

Rabin(Ω) infinite sequences fulfilling Rabin objective Ω 35

Reach(F) infinite sequences hitting F 34

e real numbers 31

R ordered field of real numbers 82

Safe(F) infinite sequences staying in F 34

σ(w ∣ xv) transition probability with strategy σ 37

σ[x] residual strategy after history x 40

σ(w ∣ xv) transition probability with strategy profile σ 37

σ[x] residual strategy profile after history x 40

Streett(Ω) infinite sequences fulfilling Streett objective Ω 35

V set of vertices 32

Vi set of vertices controlled by player i 32

valG(v) value of G from v 43

valτ(v) value of strategy τ from v 42

valGi (v) value of G for player i from v 42

v∆ ∆-successors of v 32

Wi winning region for player i 100, 122

Wini objective for player i 33
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Index

accepting set 35
action 33, 152
algebra 141
arena 32

subarena 41

Büchi objective 34
Bach or Stravinsky 16
basic cylinder set 144
best response 55
Borel set 144
Borel σ-algebra 144
bottom strongly connected component

(BSCC) 151
BSCC, see bottom strongly connected

component

Carathéodory’s extension theorem 143
Church’s problem 19
co-Büchi objective 34
co-UP 144
coalition game 43
colour 32, 149, 152
colouring function 32, 149, 152
computation 88

partial 88
concurrent game 33, 138
conditional probability 143
configuration 88
initial 88
successor 88

counter machine, see two-counter
machine

cylinder set 144
basic 144

dining philosophers problem 21
stochastic 22

DP 145

end component 41, 154
accepting 156
maximal 41, 154
winning 42

ε-equilibrium 19, 140
event 141
almost sure 142

existential theory of the reals 82
extensive-form game 17

FinNE 74
FinSPE 74
FNP 69, 146

halting problem 89
Hamming distance 126
history 33
compatible with a strategy 37
compatible with a strategy profile 37
consistent with a strategy profile 38
deviation 60
of an initialised SMG 33

Levy’s zero-one law 144

Markov chain (MC) 33, 149, 150
time-homogenous 150

Markov decision process (MDP) 33, 152
matching pennies 17, 18
matrix game 15
MC, seeMarkov chain
MDP, seeMarkov decision process
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Index

memory structure 39
minimax theorem 17
monotone class 141
monotone class theorem 142
Muller objective 35

Nash equilibrium 16, 17, 55; see also
strategy profile

Nash’s theorem 17
NE 73
non-halting problem 89
nondeterminism 138

objective 32
Büchi 34
co-Büchi 34
Muller 35
ω-regular 35
parity 34
prefix-independent 35
Rabin 35
reachability 34
safety 34
simple reachability 35
Streett 35

OneNE 113
OneSPE 119

parity objective 34
partial computation 88
payoff
discounted 19, 139
limit-average 19, 139
of a play 19, 33, 139
of a strategy profile 38
of an end component 42
total 19, 139

PCTL, see probabilistic computation tree
logic

play 33
compatible with a strategy 37
compatible with a strategy profile 37
of an initialised SMG 33

player 31
Byzantine 138

PNP 118, 145
PNP[log] 105, 145
polynomial hierarchy 145
positive-one fragment 99, 113
PosNE 74
PosSPE 74
priority 34
priority function 34
probabilistic computation tree logic

(PCTL) 95
probability distribution 31
probability measure 142
PureFinNE 74
PureFinSPE 74
PureNE 74
PureSPE 74
pushdown game 138

qualitative decision problem 47
qualitative fragment 74, 122

strictly 99
QualNE 122
QualSPE 128
quantitative decision problem 47

Rabin objective 35
Rabin pair 35
random variable 143
reachability objective 34

simple 35
residual game 40
reward 18, 139
robust equilibrium 140

safety objective 34
sample space 141
SAT-UNSAT 145
secure equilibrium 140
Shapley game 18
σ-algebra 141
Borel 144
generated 141

simple stochastic multiplayer game
(SSMG) 37; see also stochastic
multiplayer game
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Index

simple stochastic two-player zero-sum
game (SS2G) 37; see also stochastic
two-player zero-sum game

SMG, see stochastic multiplayer game
solution concept 139
SPE 73
SqrtSum 84
square root sum problem 84
SSMG, see simple stochastic multiplayer

game
SS2G, see simple stochastic two-player

zero-sum game
state 32, 88, 149, 152; see also vertex
controlled 152
initial 88

StatNE 74
StatSPE 74
stochastic dining philosophers

problem 22
stochastic multiplayer game (SMG) 33
deterministic 34
finite 33
initialised 33
simple 37

stochastic two-player zero-sum game
(S2G) 34; see also stochastic
multiplayer game

determined 43
simple 37

strategy 15, 37, 40, 153
deterministic 37, 153
ε-optimal 42
finite-state 39
globally ε-optimal 42
globally optimal 42
mixed 17
optimal 42
positional 25, 39, 153
pure 19, 37, 40, 153
randomised 19, 37, 40, 153
residual 40
residually optimal 42
stationary 19, 39, 40, 153
strongly optimal 42

threat 59
winning 42
with memory 39, 40

strategy profile 37
deterministic 37
finite-state 39
positional 39
pure 37
randomised 37
residual 40
safe 91
stable 91
stationary 39
with memory 39

Streett objective 35
Streett pair 35
strictly qualitative fragment 99
StrQualNE 99
StrQualSPE 104
sub-MDP 154
subarena 41
subgame-perfect equilibrium 58; see

also strategy profile
support 83
S2G, see stochastic two-player zero-sum

game

timed game 139
transition function 149
transition graph
of a Markov chain 149
of an MDP 152

transition probability 32, 152
transition relation 32, 88, 152
two-counter machine 88
deterministic 88

UP 144

value
for a player 42
of a strategy 42
of an S2G 43

value class 52
positive 52
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Index

vertex 32
controlled 32
initial 33
stochastic 32
terminal 35

winning condition, see objective
winning region 122
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