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Abstract. Under maximal semantics, the occurrence of an event a in a
concurrent run of an occurrence net may imply the occurrence of other
events, not causally related to a, in the same run. In recent works, we have
formalized this phenomenon as the reveals relation, and used it to obtain
a contraction of sets of events called facets in the context of occurrence
nets. Here, we extend this idea to propose a canonical contraction of
general safe Petri nets into pieces of partial-order behaviour which can be
seen as “macro-transitions” since all their events must occur together in
maximal semantics. On occurrence nets, our construction coincides with
the facets abstraction. Our contraction preserves the maximal semantics
in the sense that the maximal processes of the contracted net are in
bijection with those of the original net.

1 Introduction and Motivation

The properties of the long-run, maximal behaviour of discrete event systems
induce correlations between occurrences, i.e. relations of the type “if a fires,
then b will fire sooner or later – unless it already has”. This could be exploited
in predicting (in the sense e.g. of failure prognosis, see [8]) events that inevitably
will occur: Consider the sequential system shown in Figure 1(a). It is given
here as a Petri net for convenience, but easily translated into an equivalent finite
automaton of six states, eight transitions and initial state 0. When in state 0, the
system can perform either a, e, or h. Whatever the choice of the first transition,
however, in each case the second choice is imposed: after a no other transition
than b is possible, after e only f , and after h only i.

It is known that structural transformations can facilitate verification of some
system properties, as witnessed by e.g. Berthelot [3], Desel and Merceron [5],
and other works. Here, we focus on other properties, those that depend only on
the language of the maximal runs of the system, such as liveness properties, or
particular other properties such as diagnosability or predictability, see [9,10]. In
such a perspective, the system can be thought of as contracted : any stretch of
consecutive transitions that occur always together in a maximal behavior pro-
vided that any one of them occurs, is fused into a single macro-transition that
inherits pre- and post-places from the first and (if it exists) last transitions. In
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Fig. 1. Contracting automata by removing non-branching states (here 1, 3, 4 and 5)

Figure 1(b): each of the new transitions is labeled with the transition chain that
it represents. Note that the infinite word hiω is obtained via a single macro-
transition without post-place, since the word has no last transition. Of course,
not all temporal properties of the system are preserved, since not all finite words
survive the contraction: abcg is a word produced by a run in Figure 1(a), but
not in Figure 1(b) which has no intermediate word between (ab) and (ab)(cgf).
However, one sees quickly that the maximal words – which coincide with the
infinite words – of the original system of Figure 1(a) are in bijection with the in-
finite words of the contracted system in Figure 1(b). This contraction represents
a reduction of the original system onto its essential behavior.

When concurrent behavior in partial order semantics is considered, the lan-
guage of words is replaced by a collection of partial orders representing the non-
sequential runs. The theory of the reveals relation and of reduced occurrence
nets is given in [6,7,1,2]. Figure 3(a) (whose formal discussion is postponed to
Section 2) illustrates the facets of an occurrence net; the contraction of its facets
yields the reduced occurrence net in Figure 3(b). The present work is based on
a combination of the ideas shown, on the one hand, in the automata contraction
such as in the example of Figure 1, and on the other hand of the facet con-
traction in the context of occurrence nets. We will identify macro-transitions in
safe Petri nets that allow contraction with preservation of maximal semantics,
and thus to give a contracted normal form for any given safe Petri net. If the
definition is applied to occurrence nets, we obtain exactly the facets according to
[6,7,1,2]. The relation between unfolding and reduction will be clarified below, in
particular Theorems 4 and 5, as well as Figure 6. At the same time, the reduced
net has never more, and generally much fewer, transitions than the original net.

Related work. Best and Randell [4] considered atomicity of subnets in occur-
rence graphs, focusing on non-interference in the temporal behavior and identi-
fying atomic and hence contractable blocks of behavior. The structures obtained
can be embedded into non-branching occurrence nets, allowing the approach to
be compared with ours. However, while the construction of facets appears ge-
ometrically similar, the approach of [6,7,1,2] focuses on the question of logical
occurrence regardless of the order in which events occur.
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Fig. 2. Overview of the canonical contraction of a safe Petri net

Occurrence nets are linked to safe Petri nets in the sense that the partial
order unfolding semantics of such Petri nets yields occurrence nets, as defined
above. The converse is true for occurrence nets corresponding to regular trace
languages: Following Zielonka [12], any regular trace language L is accepted by
an asynchronous automaton AL; moreover, AL can be synthesized directly from
L. As there are natural translations from asynchronous automata into safe Petri
nets, the approach extends immediately into a procedure that takes as input an
occurrence net ON and synthesizes a safe Petri net N whose unfolding semantics
yields again ON (up to isomorphism). The present paper aims not at mimicking
this synthesis but rather provides a contraction on the generating safe Petri net
itself.

Organization of the paper. We begin by recalling the basic definitions on un-
foldings, and results from [6,7,1,2] concerning facets in occurrence nets, based
on the reveals-relation, in Section 2. Section 3 contains the core of the present
work, with the study of macro-transitions that generalize facets from occurrence
nets to safe Petri nets. In Section 4, we identify the canonical reduced version
for a given safe net. The relation between the operations of reduction and of
unfolding is studied in Section 5. Finally, Section 6 concludes.

2 Reveals Relation and Facets in Occurrence Nets

Petri Nets, Occurrence Nets and Unfoldings. This part collects several
basic definitions used below. In this paper, only safe Petri nets are considered.



Definition 1 (Petri Net). A Petri net (PN), or simply net, is a tuple
(P, T, F,M0) where P and T are sets of places and transitions respectively,
F ⊆ (P × T ) ∪ (T × P ) is a flow relation, and M0 ⊆ P is an initial marking.

For any node x ∈ P ∪T , we call pre-set of x the set •x = {y ∈ P ∪T | (y, x) ∈ F}
and post-set of x the set x• = {y ∈ P ∪ T | (x, y) ∈ F}. A marking of a net is
a subset M of P . A transition t is enabled at M iff •t ⊆ M . Then t can fire,

leading to M ′ = (M \ •t) ∪ t•. In that case, we write M
t−→M ′. A marking M

is reachable if M0 −→∗ M , where −→ def
=
⋃
t∈T

t−→. A PN is safe iff for each
reachable marking M , for each transition t enabled at M , (t• ∩M) ⊆ •t. As
usual, in figures, transitions are represented as rectangles and places as circles.
If p ∈M , a black token is drawn in p (see Figure 2(a)).

Partial-order Semantics. Occurrence nets are used to represent the partial-
order behaviour of Petri nets. We need a few definitions to introduce them.
Denote by l the direct causality relation defined as: for any transitions s and t,

sl t
def⇔ s• ∩ •t 6= ∅. We write < for its transitive closure and ≤ for its reflexive

transitive closure, called causality. For any transition t, the set dte def
= {s | s ≤ t}

is the causal past of t, and for T ′ ⊆ T , the causal past of T ′ is defined as

dT ′e def
=
⋃
t∈T ′dte. Two distinct transitions s and t are in direct conflict, denoted

by s #d t, iff •s ∩ •t 6= ∅. Two transitions s and t are in conflict, denoted by
s # t, iff ∃s′ ∈ dse, t′ ∈ dte : s′ #d t

′, and the conflict set of t is defined as

#[t]
def
= {s | s # t}. Finally, two transitions s and t are concurrent, denoted by

s co t, iff ¬(s # t) ∧ ¬(s ≤ t) ∧ ¬(t ≤ s).

Definition 2 (Occurrence net). An occurrence net (ON) is a Petri net
(B,E, F,C0) where elements of B and E are called conditions and events, re-
spectively, and such that:

1. ∀b ∈ C0 •b = ∅,
2. ∀b ∈ B \ C0 |•b| = 1 (no backward branching),

3. ∀e ∈ E ¬(e < e) (≤ is a partial order),

4. ∀e ∈ E ¬(e # e) (no self-conflict),

5. ∀e ∈ E |dee| <∞ (finite causal pasts).

We say that event e consumes the conditions •e and creates the conditions e•.

Figure 3(a) gives an example of ON.

Occurrence nets are branching structures which have several possible execu-
tions in general. Each execution appears under the form of a configuration.

Definition 3 (Configurations and Maximal Configurations). A configu-
ration of an ON is a conflict-free and causally closed set of events, i.e. ω ⊆ E is
a configuration iff ∀e ∈ ω, (#[e]∩ω = ∅)∧(dee ⊆ ω). A configuration is maximal
iff it is maximal w.r.t. ⊆. We write Ωgen for the set of all configurations and
Ωmax for the set of maximal configurations.
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Fig. 3. An ON and its reduction through the facet abstraction.

Notice that not every infinite configuration is maximal: in an ON with several
concurrent branches, a configuration containing only one branch is not maximal,
even if the branch is infinite.

Executions of safe Petri nets will be represented as non-branching processes,
using occurrence nets related to the original Petri net by a net homomorphism.

Definition 4 (Net homomorphism). A net homomorphism from N =
(P, T, F,M0) to N ′ = (P ′, T ′, F ′,M ′0) is a pair of maps π = (πP , πT ), where
πP : P → P ′ and πT : T → T ′, such that:



– for all t ∈ T , πP |•t (the restriction of πP to •t) is a bijection between •t and
•πT (t), and πP |t• is a bijection between t• and πT (t)

•
;

– and πP |M0 maps injectively M0 to (a subset of) M ′0.

We will often write simply π instead of πP or πT .

Net homomorphisms preserve the semantics of nets in the sense that they map
every firing sequence of N to a firing sequence of N ′, and πP |M0 needs not be
a bijection for that. If a place p′ of N ′ is not the image of any place of N , it
simply means that the images in N ′ of the firing sequences of N do not use the
token initially in p′. We need this subtlety to define macro-transitions later.

Definition 5 (Branching process). Let N = (P, T, F,M0) be a PN. A
branching process of N is a pair (O, π), where O = (B,E, F ′, C0) is an ON
and π is a homomorphism from (B,E, F ′, C0) to (P, T, F,M0) such that for all
t, t′ ∈ E,

(•t = •t′ ∧ π(t) = π(t′)
)
⇒ t = t′.

When E is a configuration, (O, π) is called a non-branching process.

Definition 6 (Run). A run of a safe Petri net N = (P, T, F,M0) is a branch-
ing process (O, π) of N with O = (B,E, F ′, C0) such that E is a configuration
and π(C0) = M0. The run is called nonempty if E 6= ∅.

Definition 7 (Prefix). For Π1, Π2 two branching processes, Π1 is a prefix of
Π2, written Π1 v Π2, if there exists an injective homomorphism h from ON1

into ON2, such that the composition π2 ◦ h coincides with π1.

Definition 8 (Maximal run). A run ρ is maximal if it is not a proper prefix of
any run, i.e. for every run ρ′, if ρ is a prefix of ρ′, then ρ and ρ′ are isomorphic.

We define a function µ which allows us to construct the run µ(ω) corresponding
to a configuration ω of an ON.

Definition 9 (µ). Let O = (B,E, F,C0) be an occurrence net. Every conflict-
free set of events E′ ⊆ E defines a run µ(E′) of the Petri net (B,E, F, •E′\E′•)1.
The occurrence net µ(E′) has E′ as events, their pre- and post-sets as conditions,
and •E′ \ E′• as initial conditions. The arcs are the restriction of F to these
events and conditions, and the folding homomorphism π is the identity.

Definition 10 (Unfolding). Let N be a PN. By Theorem 23 of [11], there
exists a unique (up to an isomorphism) v-maximal branching process, called
the unfolding of N and denoted U(N); by abuse of language, we will also call
unfolding of N the ON obtained by the unfolding.

1 Notice that (B,E, F, •E′ \E′•) is not an occurrence net in general: it satisfies items
3, 4 and 5 of Definition 2, but items 1 and 2 may not hold.



Reveals Relation and Facets Abstraction. The structure of an ON defines
three relations over its events: causality, conflict and concurrency. But these
structural relations do not express all logical dependencies between the occur-
rence of events in maximal configurations. A central fact is that concurrency is
not always a logical independency: it is possible that the occurrence of an event
implies, under the perspective of maximal runs, the occurrence of another one,
which is structurally concurrent. This happens with events labeled t1 and t′1
in Figure 3(a): we observe that t1 is in conflict with t0 and that any maximal
configuration contains either t0 or t′1. Therefore, if t1 occurs in a maximal con-
figuration, then t0 does not occur and eventually t′1 necessarily occurs. Yet t1
and t′1 are concurrent.

Another case is illustrated by events labeled t3 and t4 on the left of the same
figure: because t3 is a causal predecessor of t4, the occurrence of t4 implies the
occurrence of t3; but in any maximal configuration, the occurrence of t3 also
implies the occurrence of t4, because t4 is the only possible continuation to t3
and nothing can prevent it. Then t3 and t4 are actually made logically equivalent
by the maximal progress assumption.

Definition 11 (Reveals relation [6,7,1,2]). We say that event e reveals event
f , and write e . f , iff ∀ω ∈ Ωmax, (e ∈ ω ⇒ f ∈ ω).

Definition 12 (Facets Abstraction in Occurrence Nets[6]). Let ∼ be the

equivalence relation defined by ∀ e, f ∈ E : e ∼ f
def⇔ (e . f) ∧ (f . e). Then a

facet of an ON is an equivalence class of ∼.

In Figure 3(a), the facets are highlighted in grey. If ψ is a facet, then for any
maximal configuration ω ∈ Ωmax and for any event e such that e ∈ ψ, e ∈ ω
iff ψ ⊆ ω. In this sense, facets can be seen as atomic sets of events (under the
maximal semantics). Denote the set of O’s facets as Ψ(O).

For any facet and for any configuration, either all events in the facet are
in the configuration or no event in the facet is in the configuration. Therefore,
facets can be seen as events.

Definition 13 (Reduced occurrence net). A reduced ON is an ON
(B,E, F,C0) such that ∀e1, e2 ∈ e, e1 ∼ e2 ⇐⇒ e1 = e2.

As shown in [6,1], every occurrence net O = (B,E, F,C0) has a uniquely defined
reduction ON O whose events are the facets of O and whose conditions those
from B that are post-conditions of a maximal event of some facet:

Definition 14 (Reduction of an occurrence net). The reduction of occur-
rence net O = (B,E, F,C0) is the occurrence net O = (B,Ψ(O), F , C0), where

B = C0 ∪ {b ∈ B : ∃ ψ ∈ Ψ (O) , e ∈ ψ : (e, b) ∈ F ∧ b• ∩ ψ = ∅} (1)

F =
{

(b, ψ) : b ∈ B ∧ ∃ e ∈ ψ : (b, e) ∈ F
}

∪
{

(ψ, b) : b ∈ B ∧ ∃ e ∈ ψ : (e, b) ∈ F
} (2)

Figure 3 shows the facets of an occurrence net and its reduction.



3 Generalizing Facets to Safe Petri Nets

We propose to identify pieces of partial-order behaviour of a safe Petri net, under
the form of macro-transitions which group events that always occur together
when at least one of them occur in any maximal run of the original net. There
will be a fundamental difference in the approach here with respect to the work
in [6,7,1,2]: there, the set of events to be contracted (the facets) were obtained as
the strongly connected components of a transitive binary reveals-relation, where
a reveals b iff any run containing a also contains b. Here, such a relation is not
available on the level of transitions. Our approach is thus to identify directly sets
of transitions such that, if any one of them fires, all others fire sooner or later.

Definition 15 (Macro-transition). Let N = (P, T, F,M0) be a PN. A macro-
transition of N is a run φ = (O, π) of (P, T, F, π(C0)) (the net N initialized
with any marking π(C0), thus denoted as the image of the initial conditions C0

of O) such that for any reachable marking M of N with π(C0) ⊆ M and for
any maximal run ρ of (P, T, F,M) (the net N starting at M), if there exists a
nonempty prefix φ′ of φ which is also a prefix of ρ, then the entire φ is a prefix
of ρ.

Figures 4 and 5 show examples and counter-examples of macro-transitions of
the Petri net of Figure 2(a).

– φ1 is trivially a macro-transition.
– In φ2 we have two events: an occurrence of t1 and one of t′1. The initial

conditions of φ2 are mapped to places 0 and 0′ of N . The only reachable
marking of N which contains {0, 0′} is {0, 0′} itself; in {0, 0′}, if one of the
two transitions fire, the other one will necessarily fire in any maximal run.

– Consider now φ3: again the only reachable marking of N which contains
{1, 5} is {1, 5} itself. From it, if t2 fires, it is necessarily followed by an
infinite sequence of firings of t5. φ3 is exactly a prefix of it.

We also find counter-examples here:

– φ4 is not a macro-transition as it is not a run: t0 and t1 are in conflict.
– φ5 is not a macro-transition because an occurrence of t1 is not necessarily

followed by an occurrence of t2.
– Concerning φ6, it is exactly a prefix of every maximal run from {1, 0′} start-

ing by an occurrence of t2, but not of every run starting by an occurrence
of t′1 (because t′2 can fire instead of t2).

The two following properties are immediate consequences of the definition.

Property 1. Any single transition t ∈ T induces a macro-transition defined as
the (unique, up to isomorphism) non-branching process which contains a single
event mapped to t and whose initial conditions are mapped to •t. For example,
the facet induced by t1 in the net of Figure 2(a) is the one depicted in Figure 4(a).
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Property 2. Let φ be a macro-transition of a Petri net N . Then any prefix of φ
with the same initial conditions as φ is also a macro-transition of N .

Definition 16 (Φ-contracted net). Given a set Φ of macro-transitions of a
Petri net N = (P, T, F,M0), we construct the Φ-contracted net N/Φ by replac-
ing the transitions of N by the macro-transitions. The contracted net is formally
defined as the net N/Φ = (P,Φ, FΦ,M

0) where the macro-transitions are inter-
preted as transitions and with the flow relation FΦ defined such that, for every
φ = (O, π) ∈ Φ, •φ is the image by π of the initial conditions of O, and φ• is
the image by π of the conditions of O that are not consumed by any event of O.

To express the soundness of this contraction, we define a function χ which
maps any branching process (O, π) of the contracted net N/Φ to a branching pro-
cess of N . Intuitively, χ simply expands every event e of O into a set of events
corresponding to the content of the macro-transition π(e). For example, the re-
duced unfolding of Figure 3(b), viewed as a branching process of the contraction
of the unfolding U of Figure 3(a), is mapped by χ to U .



Definition 17 (χ). Let N = (P, T, F,M0) be a Petri net, Φ a set of macro-
transitions of N and ρ = (O, π) a branching process of the contracted net N/Φ,
with O = (B,E, F,C0). We define the branching process χ(ρ) of N as χ(ρ) =
(O′, π′) with O′ = (C0∪χcond(E), χevents(E), χarcs(E), C0) where χevents , χcond

and χarcs associate to every event e ∈ E a set of events χevents(e), a set of
conditions χcond(e) and a set of arcs χarcs(e), all specified below. Note that e
is an occurrence of transition π(e) of N/Φ, which is also a macro-transition
of N and thus has the form (Oe, πe) with Oe an occurrence net and πe a net
homomorphism from Oe to (P, T, F, π(C0

e )), where C0
e are the initial conditions

of Oe.
The set χevents(e) is defined as the set of pairs (e, f) with f an event of Oe;

it represents an occurrence of each of the events that were grouped inside the
macro-transition π(e) of the contracted net N/Φ.

The set χcond(e) is defined as the set of pairs (e, b) with b a condition created
by an event of Oe; it represents all conditions created by events in χevents(e).
The initial conditions of π(e) are not reproduced since they will be merged with
the final conditions of the occurrence of the macro-transition that created them.

The arcs in χarcs(e) connect every event (e, f) to the conditions (e, b) with
b ∈ f•, and every condition (e, b) with b ∈ •f to the event (e, f). The case of the
initial conditions of Oe needs to be handled separately: for every initial condition
b of Oe, there exists a unique condition b′ ∈ •e such that π(b′) = πe(b) ∈ P .
Either this b′ is an initial condition of O or it is created by an event e′ ∈ E. In
the first case, b′ is also an initial condition of O′; in the second case b′ comes
from a final condition of π(e′), which appears in χcond(e′) under the form of a
pair (e′, b′′). Thun an arc is added in χarcs(e) to connect either b or (e′, b′′) to
every event (e, f) ∈ χevents(e) representing an event f of Oe which consumes b.

Finally, we define the homomorphism π′ from O′ to N . It maps simply every
event (e, f) to the transition πe(f) ∈ T , and every condition (e, b) to πe(b) ∈ P .
On the set C0 of initial conditions, π′ coincides with π : π|C0

≡ π′|C0
.

Lemma 1 (Soundness). Let N be a Petri net and Φ a set of macro-transitions
of N . The function χ maps any branching process (O, π) of the contracted net
N/Φ to a branching process of N .

Proof. We have to show that the constructed O′ is an occurrence net. Causality
in O′ is a partial order because causality in O is, as well as causality in each
macro-transition. Take now an event e of O′ and assume that e is in self conflict:
this conflict originates at two events in the causal past of e. Either these two
events come from the same occurrence of a macro-transition, which contradicts
the fact the the macro-transition is conflict-free; or they come from different
occurrences of macro-transitions (i.e. different events of O), and then this implies
that the event of O from which e comes, is in self-conflict in O.

The rest is direct. ut

Definition 18 (Completeness). A set Φ of macro-transitions of a Petri net
N = (P, T, F,M0) is complete if for every reachable marking M of the contracted
net N/Φ = (P,Φ, F ′,M0) and every transition t ∈ T firable from M , the run of



(P, T, F,M) composed of all the events revealed by the initial occurrence of t in
the unfolding of (P, T, F,M), is the image by χ of a run of (P,Φ, F ′,M).

Lemma 2. Let N be a Petri net and Φ a complete set of macro-transitions of
N . Then every maximal run ρ of N is (isomorphic to) the image by χ of a
maximal run ρ′ of N/Φ.

Proof. To construct the ρ′, start from the process with no events and initial
conditions corresponding to the initial marking of N (which is also the initial
marking of N/Φ). Then, as long as there are events in ρ which are not in χ(ρ′),
take one which is minimal w.r.t. causality and call it e. (Among the possible
choices, e should be of minimal depth2 so that every event of ρ is eventually in
χ(ρ′).) The transition t of N which is the image of e by the homomorphism of ρ,
can fire from the marking M reached after ρ′ (which is also the marking reached
after χ(ρ′)). By the completeness hypothesis, there exists a run of (P,Φ, F ′,M)
whose image by χ yields all the events revealed by the firing of t from M . Then
ρ′ can be augmented by this run. Our e of ρ is now one of the new events in
χ(ρ′); and the other new events are also in ρ because they are revealed by the
occurrence of t from M and ρ is maximal.

Notice that at each step, χ(ρ′) is a prefix of ρ. The iteration may not termi-
nate but, since ρ′ always grows, we consider its limit (containing all the events
that are eventually added). By construction this limit is the desired process. ut

Definition 19 (Non-Redundancy). A set Φ of macro-transitions of a Petri
net N = (P, T, F,M0) is called non-redundant if for every transition t ∈ T , at
most one macro-transition φ ∈ Φ starts by3 t.

Theorem 1 (Facets as Macro-Transitions). Let O = (B,E, F,C0) be an
occurrence net and ψ ⊆ E a facet of O. Then µ(ψ) is a macro-transition of O.
Moreover the image by µ of all the facets of O is a complete non-redundant set
of macro-transitions of O.

Proof. Consider a reachable set of conditions C ⊇ •ψ, and let ω be a maximal
run of (B,E, F,C) starting by a nonempty prefix of µ(ψ). Then ω starts by
µ({e}) with e an initial event of ψ. By Definition 12, e reveals all the events in
ψ. This implies that ω starts by the entire µ(ψ).

For completeness, remark that for every run ρ of the contracted ON, the set
of events in χ(ρ) is a union of facets of O. After such a run, every maximal run
corresponds again to a union of facets.

Non-redundancy holds because the facets are a partition of the events. ut

4 Canonical Contraction

Before defining our canonical contraction, we study the markings that are reach-
able after a run of a contracted net.
2 The depth of an event e is the size of the longest path from an initial condition to e.
3 By “φ starts by t”, we mean that there exists an event in φ which is mapped to t

and consumes only initial conditions of φ.



For every configuration O, we call cut of O the set of conditions which are
created and not consumed along O. When O is the ON in a finite run (O, π) of
a net N , the homomorphism π maps the cut of O to a reachable marking of N .
And conversely every reachable marking of N is the image of the final conditions
of a finite run.

But in this paper we focus on maximal runs, which are in general infinite. And
the image of a cut of an infinite run may be only a subset of a reachable marking
of N . An example is the maximal run of the net of Figure 1(a) containing an
occurrence of h and an infinite chain of i’s. All the conditions are consumed, and
the cut is empty. Yet the empty marking is not reachable after any finite run.

Then we call asymptotically reachable (or a-reachable for short) in N any
marking that is the image of the cut of a (possibly infinite) run of N .

Lemma 3 (A-Reachability in a Contracted Net). Let N be a Petri net
and Φ a set of macro-transitions of N . Any marking a-reachable in N/Φ is also
a-reachable in N .

Proof. This is an immediate consequence of Lemma 1. ut

Notice however that in general not every marking a-reachable in N is a-
reachable in N/Φ. And this is actually what allows us to skip some intermediate
markings and give a more compact representation of the behaviour of the net.

In this sense we can say that a complete contracted net N/Φ is more compact
than another N/Φ′ if all markings a-reachable in N/Φ are also a-reachable in
N/Φ′ . We will show now that there exists a complete non-redundant contracted
net which is optimal w.r.t. this criterion: i.e. all markings a-reachable in this
contracted net are a-reachable in any complete non-redundant contracted net.

Definition 20 (MN and RN). We define inductively a set MN of markings
of M and a set RN of runs as the smallest sets satisfying:

– M0 ∈MN ;
– for every M ∈MN , for every transition t firable from M , µ(E) ∈ RN , where
E is the set of events revealed by the initial occurrence of t in U((P, T, F,M))
(note that by its definition, E is conflict-free);

– for every M ∈ MN , for every ρ ∈ RN such that •ρ ⊆ M , the marking
(M \ •ρ) ∪ ρ• reached after firing ρ from M , belongs to MN ;

– for every ρ1, ρ2 ∈ RN , the largest common prefix of ρ1 and ρ2 is in RN .

Theorem 2. Let N = (P, T, F,M0) be a Petri net and Φ a non-redundant com-
plete set of macro-transitions. All markings of MN are a-reachable in N/Φ.

Proof. Let N/Φ = (P,Φ, F ′,M0). The theorem is a direct consequence of the
following lemma: for every marking M a-reachable in N every run ρ ∈ RN firable
from M satisfies the property that ρ is the image by χ a run ρ′ of (P,Φ, F ′,M).
This lemma is proved by induction, following the construction of RN : at each
step of the construction, we prove that if all the runs in the current RN satisfy



the property, then the new runs added to RN also satisfy it. Initialization of the
induction is trivial since RN is initially empty.

By completeness of Φ, the property is satisfied by all the runs of the form
µ(E) with E the set of events revealed by the initial occurrence of a transition t
in U((P, T, F,M)). For every run ρ constructed as the largest common prefix of
two runs ρ1 and ρ2 already inRN , assume that ρ1 and ρ2 satisfy our property and
call ρ′1 and ρ′2 the corresponding runs of the contracted net. By non-redundancy
of Φ, ρ′1 and ρ′2 must coincide on the largest common prefix ρ of ρ1 and ρ2. Then
ρ is the image by χ of the largest common prefix of ρ′1 and ρ′2. ut

Definition 21 (Canonical contraction N). We define the canonical con-

traction of a safe Petri net N as the contracted net N
def
= N/ΦN

where ΦN is the
set of nonempty runs of RN which are minimal w.r.t. the prefix relation.

Theorem 3. For every safe Petri net N , the set ΦN of macro-transitions in N
is complete and non-redundant, and the set of states a-reachable in N is precisely
MN . Moreover |ΦN | ≤ |T |.

Proof. Completeness is ensured by the insertion in RN of all the runs of the form
µ(E) with E the set of events revealed by the initial occurrence of a transition t in
U((P, T, F,M)). For redundancy, assume two runs ρ1 and ρ2 ofRN both start by
an occurrence of t. Then their common prefix ρ is nonempty and is in RN . Then
ρ1 and ρ2 are not minimal in RN w.r.t. the prefix relation, and they are not
in ΦN . By construction all the states a-reachable in N are in MN . Finally the
inequality |ΦN | ≤ |T | is a direct consequence of the non-redundancy of ΦN . ut

Illustration. Let us construct the canonical contraction of the net N of Fig-
ure 2(a). MN contains the initial marking {0, 0′}. From this marking t0, t1 and
t′1 are firable. Since t1 and t′1 reveal each other, RN contains the runs t0 and
t1t
′
1, and MN contains the reached markings {} and {1, 4}. From {1, 4}, t2 and

t′2 can fire; they reveal nothing, so they are added as such to RN . The marking
{2, 4} is now reachable; it is added toMN . From {2, 4}, t3 and t′3 can fire, and in
both cases an occurrence of t4 necessarily follows. Hence t3t4 and t′3t4 are added
to RN . We can now reach {1, 5} and fire t2 or t′2 again. But, from {1, 5} firing
t2 (or t′2) reveals an infinite sequence of occurrences of t5. For this t2t

ω
5 and t′2t

ω
5

are added to RN . But, since t2 and t′2 already appear “alone” – i.e. as singleton
transitions – in RN , marking {2, 5} obtained after firing them from {1, 5} must
also be added to MN . And from it, tω5 can fire and is added to RN . Now, ΦN
is constructed by extracting the runs of RN that are minimal w.r.t. the prefix
relation. Here we get all of them, except t2t

ω
5 and t′2t

ω
5 . The resulting contracted

net is shown in Figure 2(b).

Contraction and Automata. It is clear that applying our contraction to the
Petri net representation N of an automaton (i.e. a Petri where every transition
has exactly one input- and one output-place) removes the deterministic states
(or places), i.e. those from which there is no choice. Concretely, these places
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(a) The unfolding of the contracted Petri
net of Figure 2(b). Remark that the unfold-
ing is not reduced: the last occurrence of t2
and the following tω5 are in the same facet
(similarly for t′2 and the following tω5 ).
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Fig. 6. Unfolding and contraction.

will not appear in the set MN . The macro-transitions are the paths between
non-deterministic states with only deterministic intermediate states.

5 Reductions and Unfoldings

When concurrent behavior in partial order semantics is considered, our contrac-
tion is related to the facets reduction [6].



Theorem 4 (Reduction as contraction of ONs). For every occurrence net
O, the canonical contraction of O is isomorphic to its facet reduction.

Proof. By Definition 20, all runs inRO correspond to unions of facets of O. Now,
let ρ ∈ RO be a run containing more than one facet. By definition of facets, the
reveals relation on facets is antisymmetric. Then one of O′s initial facets, say ψ1,
does not reveal the other, say ψ2. Take an initial event e of ψ1 and a marking
M ∈MO from which ρ can fire; e is firable from M in O. Therefore RO contains
the run ρ′ containing the events revealed by e from M . This run contains ψ1 but
not ψ2. By definition, RO contains the largest common prefix of ρ and ρ′. Hence
ρ is not minimal in RO w.r.t. the prefix relation, and is not in ΦO. ut

As illustrated in Figure 6, the operation of reduction does not entirely com-
mute with unfolding. That is, in general, the unfolding U(N) of reduced Petri
net N is coarser, as an occurrence net, than the reduction U(N) of the original
net N ’s unfolding. In the example of Figure 6, the facets labeled t2t

ω
5 and t′2t

ω
5

in U(N) are both split into two events of U(N).
However, one retrieves the reduction of U(N) from U(N) as follows.

Theorem 5. For every net N , applying the occurrence net facet reduction to
U(N) yields U(N) up to isomorphism.

Proof. By definition of macro-transitions, for every event e of U(N), all the
events of U(N) which are in χevents(e), reveal each other. Then χevents(e) is
included in a facet ψ of U(N). And for two events e1 and e2 of U(N), an event
in χevents(e1) reveals (in U(N)) an event in χevents(e2) iff e1 reveals e2 in U(N).
Therefore the facets reduction of U(N) regroups e1 and e2 into the same facet
iff the events in χevents(e1) and those in χevents(e2) are in the same facet. ut

6 Conclusion

We have presented a method for identifying and contracting macro-transitions in
safe Petri nets. The procedure includes and justifies our previous work in [6,7,1,2]
focusing on facets in occurrence nets. The result is a unique contracted 1-safe
Petri net with no more macro-transitions than transitions in the original net.
The construction provides a unique canonical version for any given 1-safe Petri
net, whose maximal behaviour offers a condensed view of the maximal behaviour
of the original net. By computing offline the canonical version, verification pro-
cedures for any property that depends only on the maximal run behavior can
be run on the smaller contracted net instead. This is for instance the case of
all the properties that can be reduced to fireability of a transition. Computing
the contraction (with finite representations of the macro-transitions) is in gen-
eral costly (computing the reveals relation on the unfolding of a finite Petri net
is PSPACE-complete [7]), but in practice many syntactic sufficient conditions
can be used to identify macro-transitions. For instance, a run in which every
intermediate condition corresponds to a place of the Petri net which has only



one output transition, is a macro-transition. Also, in practice, models are usu-
ally built hierarchically by transition refinement; this gives natural candidates
for macro-transitions. Hence our contraction appears as an optimal, canonical
contraction, to which other contractions based on macro-transitions can be com-
pared.
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