
Discovering Attacks on Security Protocols

by Refuting Incorrect Inductive Conjectures

Graham J. Steel

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Centre for Intelligent Systems and their Applications

School of Informatics

University of Edinburgh

2003

(Graduation date: July 7th, 2004)

Abstract

Cryptographic security protocols are used to allow agents to communicate securely

over an insecure network. Although security protocols are usually quite short, they

often have subtle ¤aws in them which allow the protocol to be ‘attacked’ and security

breached.

Interactive inductive theorem proving has been used to verify properties of security

protocols. However, trying to verify a ¤awed protocol will result in an attempt to prove

an incorrect conjecture. A user might waste a lot of time proposing generalisations and

lemmas etc. in a futile attempt to prove a falsehood. In addition, even if he suspects

the protocol is ¤awed, it can be extremely difficult to find the attack (the sequence of

messages needed to expose the ¤aw). What is required is an automated tool which can

not only detect incorrect inductive conjectures, but also present a counterexample.

This thesis describes the development of such a tool, CORAL, based on the refu-

tation complete Comon-Nieuwenhuis method for ‘proof by consistency’. We describe

the testing of CORAL on some standard protocols known to be ¤awed, and two case

studies on new protocols, in which CORAL discovered five previously unknown at-

tacks. CORAL does not find attacks as fast as some competing approaches, but in its

successful modelling of two very different group protocols, shows a ¤exibility other

systems lack. This should make it suitable for a variety of future developments, in-

cluding the investigation of some more unusual protocols.

iii

Acknowledgements

Firstly, I would like to thank my supervisor, Prof. Alan Bundy for his patient and expert

guidance throughout the course of the research described in this thesis. I would also

like to thank my second supervisor, Dr. Monika Maidl, and my former second supervi-

sors, Dr. Ewen Denney and Dr. Louise Dennis. In particular, Dr. Maidl’s thorough and

thoughtful reading of my first draft contributed greatly to the quality of the final thesis.

I am grateful to my examiners, Prof. David Basin and Dr. Jacques Fleuriot, for their

rigorous criticism and considered suggestions for improvements to the thesis.

I would like to thank my family for their support, particularly during the protracted

period of illness that interrupted my Ph.D. research. Without their help and under-

standing, I certainly would not have been able to finish this thesis.

Finally, thanks are due to the other members of the DREAM group for their encourage-

ment, criticism and good company over the occasional beer.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Graham J. Steel)

v

vi

Publications

Some of the work in this thesis has previously been published, in [Steel et al., 2002a,

Steel et al., 2002b, Steel et al., 2003a, Steel et al., 2003b].

vii

Table of Contents

1 Introduction 1

1.1 Results . 3

1.2 Contribution of this Thesis . 4

1.3 Layout of this Thesis . 4

2 Cryptographic Security Protocols 7

2.1 General Principles . 7

2.2 A Simple Example: Needham-Schroeder Public Key 9

2.3 Protocol Attacks . 10

2.3.1 Protocol Goals . 11

2.3.2 The Spy . 11

2.3.3 Lowe’s attack on Needham-Schroeder Public Key 12

2.3.4 Needham-Schroeder Shared Key 13

2.3.5 The Otway-Rees Protocol 15

2.3.6 The Neuman-Stubblebine Protocol 18

2.4 Formal Methods for Protocol Analysis 19

2.4.1 State Exploration Approaches 20

2.4.2 The BAN logic . 22

2.4.3 The Spi Calculus . 23

2.4.4 Theorem Proving . 23

2.4.5 The Strand Space Model . 27

2.5 Outlook . 29

ix

3 Refuting Incorrect Conjectures 33

3.1 First-Order Finite Domain Enumerators 33

3.2 Finding Counterexamples by Instantiating with Constructors 34

3.2.1 Protzen’s Calculus for Refutation 34

3.2.2 Reif’s Counterexample Finder 35

3.2.3 Evaluation of Protzen’s and Reif’s Approaches 36

3.3 Monroy’s Non-theorem Work . 37

3.4 Proof by Consistency . 38

3.5 Evaluation . 40

4 The Theory of the Comon-Nieuwenhuis Method 41

4.1 Background . 41

4.2 First-Order Theorem Proving . 43

4.2.1 Modern Provers . 45

4.2.2 Memory Allocation . 48

4.2.3 Answer Extraction . 49

4.3 Overview of Comon-Nieuwenhuis Method 50

4.4 The Comon-Nieuwenhuis Method for Horn Clauses 50

4.5 Non-saturated Sets of Axioms . 57

4.6 Finding I-Axiomatisations . 59

4.7 Summary . 61

5 System Description 63

5.1 Adapting a First-Order Prover . 63

5.1.1 Choosing a First-Order Prover 63

5.1.2 Separation of Axioms and Conjectures 64

5.1.3 The Use of Lemmas in Reduction Rules 65

5.1.4 Recovery of the Counterexample 66

5.2 I-Axiomatisation Checking . 66

5.3 Testing . 68

5.4 Summary . 71

x

6 Formalisation of the Protocol Veri£cation Problem 73

6.1 The Nature of the Paulson Model . 73

6.2 Example - Needham-Schroeder Public Key 74

6.3 Free Constructors, Deciding Equivalence 74

6.4 Principals, Keys and Nonces . 76

6.5 Protocol Messages . 78

6.6 Modelling Intruder Knowledge . 80

6.7 Term Ordering . 81

6.8 Refutation Completeness . 83

6.9 I-Axiomatisation . 85

6.10 Comparison between Paulson’s Formalism and CORAL’s Formalism . 85

6.11 Formulating Conjectures in the Formalism 87

6.12 Summary . 88

7 Optimisations 89

7.1 Elimination of Invalid Terms . 89

7.2 Restricting the Spy’s Messages . 90

7.2.1 Spy Only Sends Protocol Messages 90

7.2.2 Spy Only Expects Protocol Messages 91

7.2.3 Spy Only Expects Subterms from Protocol Messages 92

7.2.4 No Two Spy Messages in a Row 92

7.3 Eager Elimination of Unsatisfiable parts Literals 93

7.4 Literal Selection . 93

7.5 Summary . 94

8 Rediscovering Known Attacks 95

8.1 The Development Set of Protocols 95

8.2 Attacking Needham-Schroeder Public Key 96

8.2.1 How CORAL Finds the NSPK Attack 97

8.3 Attacking a Clark-Jacob Protocol . 99

8.4 Attacking Neuman-Stubblebine . 101

8.5 Attacking BAN Otway-Rees . 103

xi

8.6 Development of Heuristics . 105

8.7 The Test Set of Protocols . 107

8.8 Results . 107

8.9 Summary . 109

9 Case Study 1:

The Asokan–Ginzboorg Protocol 111

9.1 Description of the Asokan–Ginzboorg Protocol 111

9.2 Modelling the Protocol . 114

9.2.1 Modelling Message 3 . 114

9.2.2 Ordering Considerations . 117

9.3 Modelling Spies in a Wireless Network 118

9.4 Attacking the Protocol . 119

9.4.1 Attacks by a Spy Outside the Room 120

9.4.2 Attacks by a Spy Inside the Room 122

9.5 An Improved Version of the Asokan–Ginzboorg Protocol 123

9.6 Summary . 124

10 Case Study 2:

The Tanaka–Sato Protocol 127

10.1 Description of the Tanaka–Sato Protocol

(Taghdiri–Jackson version) . 127

10.1.1 Commentary . 130

10.2 Modelling the Protocol . 131

10.3 Attacking the Protocol . 133

10.4 An Improved Version of the Protocol 136

10.5 Summary . 137

11 Related Work 139

11.1 Athena . 140

11.1.1 Description of Athena . 140

11.1.2 Results . 142

11.1.3 Summary . 144

xii

11.2 On-The-Fly Model Checker . 145

11.2.1 Description of the OFMC 145

11.2.2 Results . 146

11.2.3 Summary . 147

11.3 The Casrul System . 147

11.4 Other Work on Group Protocols . 149

11.5 Paulson’s Inductive Approach . 151

11.6 Weidenbach’s First-Order Formalism 153

11.7 General Inductive Refutation Tools 154

11.8 Summary . 155

11.8.1 Ultimate Applicability of the Technique 156

11.8.2 The Way Ahead . 156

12 Further Work 159

12.1 Improving CORAL as a Protocol Analysis Tool 159

12.2 Further Protocol Experiments . 161

12.3 Other Encryption Models . 162

12.4 Proving Theorems . 162

12.5 Other Application Areas . 163

12.6 Summary . 164

13 Conclusions 165

13.1 Evaluation of Research Contributions 165

13.2 Final Summary . 167

A Protocol Model Files 169

A.1 The Needham-Schroeder Public Key Protocol 169

A.2 Changes for the Clark-Jacob Protocol 173

A.3 Changes for the Neuman-Stubblebine Protocol 174

A.4 Changes for the Otway-Rees Protocol 178

B The Model for the Asokan–Ginzboorg Protocol 185

xiii

C The Model for the Tanaka–Sato Protocol 189

D Index of Terms 193

Bibliography 197

xiv

List of Figures

2.1 Encryption and Decryption . 8

2.2 Needham-Schroeder Public Key in a Strand Space Model 28

2.3 Needham-Schroeder Public Key Attacked 28

5.1 CORAL System Operation . 68

5.2 CORAL’s Results on Non-theorem Examples 70

9.1 Clauses for modelling message 3 . 115

10.1 Clauses for modelling the ‘send’ sub-protocol 133

xv

List of Tables

5.1 Results on Non-theorems from the Literature 72

8.1 The Pattern of Search for the NSPK Attack 98

8.2 Profile of CORAL’s reduction time 106

8.3 CORAL Attacking Protocols from the Clark-Jacob corpus 110

xvii

Chapter 1

Introduction

Inductive theorem provers are frequently employed in the verification of programs, al-

gorithms and protocols. The use of induction allows us to reason about structures with

infinite models, e.g. a program with loops in, a recursive function or a protocol that

may involve an arbitrary number of participants. However, programs and algorithms

often contain bugs, and protocols may be ¤awed, causing the proof attempt to fail. It

can be hard, even for expert users, to interpret a failed proof attempt: is it the proof

attempt or the conjecture under investigation which is at fault? In this situation, what

is required is an automated tool which can not only detect an incorrect conjecture, but

also supply a counterexample to allow the user to identify the ¤aw.

The aim of cryptographic security protocols is to prescribe a way in which users

may communicate securely over an insecure network. A protocol describes an ex-

change of messages in which the principals involved establish shared secrets, in order

perhaps to communicate privately or to protect themselves from impersonators. These

protocols are designed to be secure even in the presence of an active attacker, who may

intercept or delay messages and send faked messages in order to gain access to secrets.

Unsurprisingly, given this hostile operating environment, they have proven very hard

to get right. What’s more, protocol ¤aws are often quite subtle. New attacks are often

found on protocols many years after they were first proposed.

The work presented in this thesis represents the combination of these two areas of

research. L.C. Paulson has proposed a method for verifying the correctness of security

protocols using inductive theorem proving, [Paulson, 1998]. This method is attractive

1

2 Chapter 1. Introduction

in that it tries to prove security properties in the context of an arbitrary number of pos-

sible participants and parallel runs of the protocol. Hence, if a proof of correctness can

be found, it provides a strong guarantee that the protocol is, in fact, secure. Paulson’s

method can also be used to prove properties of group protocols, where an arbitrary

number of participants may be involved in a single round. Its simplicity also makes it

easy to adapt to different kinds of protocols, for example where elapsed time may have

to be considered, or where we may be interested in properties such as plausible deni-

ability. However, finding a proof is a challenging task, requiring some considerable

expertise. This means that a failed proof attempt is especially hard to interpret. Addi-

tionally, in order to convincingly show a protocol is ¤awed, it is not sufficient merely

to cite a failed proof attempt. Rather, it is necessary to exhibit a sequence of messages

leading to some compromise of security. This exchange constitutes a counterexam-

ple to the security property. So this would seem to be an area in which an automated

counterexample finder for inductive conjectures would be of particular value.

The method for finding counterexamples we investigate in this thesis is based on

a technique for inductive proof, called proof by consistency. This method was first

proposed in the 1980s, [Musser, 1980]. The idea is to show that a conjecture is a

theorem by proving consistency with the axioms in the intended semantics. Later

versions of the technique had the property of being refutation complete, i.e. in addition

to be able to show some theorems correct, it can refute any false conjecture in finite

time. Recently, Comon and Nieuwenhuis have proposed a new version of the technique

allowing any automatic first-order theorem prover to be used to search for proofs and

refutations, [Comon and Nieuwenhuis, 2000]. Our work is based on their ideas. We

have implemented their strategy in our system called CORAL, employing the first-order

theorem prover SPASS, [Weidenbach et al., 1999], and have used it to find attacks on a

number of protocols, including 3 previously unknown attacks on a protocol for ad-hoc

wireless networks, [Asokan and Ginzboorg, 2000], and 2 new attacks on a multicast

key management protocol, [Taghdiri and Jackson, 2003].

1.1. Results 3

1.1 Results

CORAL has rediscovered a number of known attacks on faulty protocols, as described

in Chapter 8. CORAL’s heuristics were initially developed on a set of four protocols,

before the tool was applied to a ‘test set’ of ten protocols from Clark and Jacob’s

corpus, [Clark and Jacob, 1997]. CORAL found all ten attacks.

More interestingly, CORAL has discovered several previously undiscovered at-

tacks. Three were found on the Asokan–Ginzboorg protocol for establishing a secure

session amongst a set of Bluetooth-enabled laptops, [Asokan and Ginzboorg, 2000].

This is especially significant because the protocol is designed to allow an arbitrary

number of participants to take part. Modelling this protocol in a general way, i.e.

without deciding on the size of the group in advance, is something that we can do in

CORAL because of its inductive model. Most other techniques for finding attacks can-

not do this. This enabled us to find attacks on the protocol for groups of size 2 and 3.

The details of our case study on the Asokan–Ginzboorg protocol are in Chapter 9.

CORAL has also been used to discover two new attacks on a group multicast key

management protocol originally proposed by Tanaka and Sato, [Tanaka and Sato, 2001],

and then improved by Taghdiri and Jackson, [Taghdiri and Jackson, 2003]. This proto-

col consists of a suite of sub-protocols which an agent may take part in an unbounded

number of times. Again, our inductive approach meant that we could model the im-

proved protocol without difficulty. Some minor additions to the formalism were re-

quired, but the simplicity of our approach meant that this was easily done. This case

study is described in Chapter 10.

Additionally, we have used CORAL to refute some incorrect conjectures from other

inductive theorem proving case studies. These results are given at the end of Chapter 5.

4 Chapter 1. Introduction

1.2 Contribution of this Thesis

The contribution of this thesis is an investigation of two hypotheses:

Hypothesis 1 By using the Comon-Nieuwenhuis strategy to refute incorrect inductive

conjectures in a first-order version of Paulson’s security protocol model, we can

effectively find attacks on faulty security protocols.

Hypothesis 2 The use of a simple first-order trace based formalism for analysing pro-

tocols allows us to quickly adapt to unusual protocols, such as group key agree-

ment and key management protocols, which approaches optimised for standard

2 and 3 party protocols would struggle with.

Evidence to support the first hypothesis is given by the results of testing on ten proto-

cols from the standard corpus at the end of Chapter 8. Given that there are many other

tools that can also find protocol attacks, the second hypothesis is more significant. Ev-

idence to support the second hypothesis is given in the form of two case studies, the

first in Chapter 9, where 3 new attacks were discovered, and the second in Chapter

10, where 2 new attacks were found. A comparison with other approaches is made in

Chapter 11. Here we will see that in terms of discovering previously unknown attacks

on group protocols, CORAL is currently the leading tool.

1.3 Layout of this Thesis

Chapter 2 introduces cryptographic security protocols, gives some examples of how

these protocols have been attacked, and describes other attempts to analyse security

protocols using formal methods.

Chapter 3 surveys previous work on automated refutation of incorrect conjectures.

Chapter 4 explains the theory of first-order theorem proving and the Comon-Nieuwenhuis

method for proof by consistency.

Chapter 5 describes the implementation of the Comon-Nieuwenhuis technique in the

CORAL system.

1.3. Layout of this Thesis 5

Chapter 6 is a description of our first-order version of Paulson’s inductive model for

security protocol analysis.

Chapter 7 gives the additional heuristics we used to enable CORAL to find security

protocol attacks in reasonable time.

Chapter 8 shows how we used CORAL to rediscover some known attacks on a number

of security protocols.

Chapter 9 contains the details of our case study on the Asokan–Ginzboorg protocol for

key agreement in an ad-hoc network of Bluetooth enabled laptops. Three new attacks

are given.

Chapter 10 documents our case study on the Tanaka–Sato protocol for group multicast

key management. Two new attacks are presented.

Chapter 11 compares CORAL to related work, both in the field of security protocol

analysis, and refuting incorrect inductive conjectures.

Chapter 12 suggests possible further work.

Chapter 13 summarises the thesis and draws conclusions.

Four appendices complete the thesis:

Appendix A gives the specification files used for two protocols involving a fixed num-

ber of parties: the Needham-Schroeder Public Key and Otway-Rees protocols.

Appendix B gives the specification file used for a group protocol, the Asokan–Ginzboorg

protocol.

Appendix C contains the specification file used for the Tanaka–Sato multicast key man-

agement protocol.

Appendix D is an index of technical terms.

Chapter 2

Cryptographic Security Protocols

Cryptographic protocols are used in distributed systems to allow agents to commu-

nicate securely. A protocol specifies an exchange of messages between some honest

users (the first two of which are by convention called Alice and Bob) and (possibly)

a secure server. Protocols are required to be secure in the presence of a spy, who can

see all the traffic in the network and may send malicious messages in order to try and

impersonate users and gain access to secrets.

Although security protocols typically describe an exchange of just 2 to 5 messages,

they have proven to be extremely difficult to get right. Subtle ¤aws are often found in

them after they have been in use for years. In this chapter, we examine the general

problem setting, and look at some proposed protocols. We will see how attacks have

been found and how these have suggested modifications. We will also survey some

attempts at formal protocol analysis.

2.1 General Principles

We assume that Alice and Bob have access to a cryptographic algorithm functioning

as described in Figure 2.1. Suppose Alice has a message P she wishes to transmit

across the network securely. The algorithm converts P from plaintext into ciphertext, a

form which is unintelligible to anyone monitoring the network. This process is called

encryption. The exact form of the encrypted text depends on the key K which Alice

7

8 Chapter 2. Cryptographic Security Protocols

uses. In order for Bob to be able to recover the original message from the ciphertext, a

process called decryption, he must use a second key K−1. So, the secrecy of messages

depends on being able to control access to keys.

(Bob)(Alice)

Ciphertext

P

Key = K Key = K
−1

DecryptionEncryption

Plaintext Plaintext

CP
Sender Receiver

Figure 2.1: Encryption and Decryption, [Clark and Jacob, 1996]

There are two schemes for organising encryption and decryption keys. In sym-

metric key cryptography, the decryption key K−1 and the encryption key K are easily

obtainable from each other by public techniques. Often, they are identical, and we gen-

erally assume this to be the case. The best known algorithm for symmetric key encryp-

tion is probably the Digital Encryption Standard (DES), [FIPS, 1977]. In a symmetric

key scheme, each pair of principals will have their own key for communicating with

each other. We use KAB to denote the key used for communication between principals

A and B. To minimize the damage done if a key is lost to a spy, each key has a limited

lifespan, after which it is no longer used. This means that principals will occasionally

need to communicate to set up a new short term key (also called a session key). How-

ever, they cannot use their old session keys to set up a new one, as this could allow

a spy who has obtained the old key to obtain the new one as well. Setting up a new

session key is one application of security protocols.

In public key cryptography, each principal A has a public key, pubKA, known to all

users of the network, and a private key priKA, known only to herself. Knowledge of a

user’s public key provides no help in finding her private key. All users of the network

can encrypt messages for A, and these messages will then be unintelligible to everyone

except A. The best-known public key cryptographic algorithm is the RSA algorithm,

[Rivest et al., 1978]. Under many public key schemes, including RSA, public keys

2.2. A Simple Example: Needham-Schroeder Public Key 9

and private keys can be used for both encryption and decryption. So, a principal A

can encrypt her transmission with her own private key, priKA. This creates a message

readable by everyone (they can decrypt it using A’s public key), with the property that

it must have been written by someone in possession of A’s private key. A disadvantage

is that public key encryption and decryption are generally much slower than shared key

operations for an equivalent1 key length.

2.2 A Simple Example: Needham-Schroeder Public Key

Cryptographic security protocols were first proposed by Needham and Schroeder,

[Needham and Schroeder, 1978]. Two different protocols for interactive communica-

tion were proposed, one using shared key encryption and one using public key encryp-

tion. We use the so-called Needham-Schroeder Public Key (NSPK) protocol as our

first concrete example of a security protocol. NSPK has become the standard example

in the protocol literature. It actually consists of seven messages, but four of these just

involve the principals obtaining each other’s public keys. Attention is usually restricted

to just the three messages we give here. First, we introduce some more notation2. We

denote Alice sending a message to Bob encrypted with Bob’s public key by writing

A→ B : {| message}| pubKB

The message consists of a number of items which may be agent identifiers (like A,

B or S for the server), keys, or unique identifying numbers called nonces3 which we

subscript with the agent who generated them (e.g. NA,NB etc.). The aim of the NSPK

protocol is to establish authenticity – this is pertinent because everyone is assumed to

know everyone else’s public keys, so an intruder could easily send a message pretend-

ing to be someone else. In order to prevent this, Alice and Bob exchange nonces in a

manner designed to establish mutual authenticity. The protocol runs like this:

1The concept of equivalent key lengths for shared and private key encryption is a slightly informal
one, but an equivalence of sorts is generally accepted.

2Our protocol notation follows that in [Paulson, 1998], which is based on the notation Needham and
Schroeder introduced in [Needham and Schroeder, 1978].

3Nonce is short for ‘oNly used ONCE’ - i.e. a number which once used in a full protocol exchange
is never used again.

10 Chapter 2. Cryptographic Security Protocols

1. A→ B : {| NA,A}| pubKB

2. B→ A : {| NA,NB}| pubKA

3. A→ B : {| NB}| pubKB

This can be described informally as follows:

1. Alice initiates a session with Bob by sending him a new nonce, NA.

2. Bob decrypts the package from Alice, and sends her back both the nonce Alice

sent him, NA, and a new nonce he has generated, NB.

3. Alice decrypts that package from Bob, and checks that nonce NA is indeed the

nonce she generated to start the run. Only Bob can have returned the same nonce

encrypted with her key, as only he could have read message 1. Alice responds by

sending Bob back his nonce, NB. Bob will receive this and assume that it must

have come from Alice, as only she could have decrypted message 2.

Alice and Bob can now use nonces NA and NB to sign their messages to each other. This

is designed not only to establish authenticity, but also freshness, i.e. if Bob receives

a message signed with nonce NA, he believes it not only to be from Alice, but also to

have been sent after the protocol run establishing the nonce took place. Without this

safeguard, a spy may intercept messages and then replay them later, with potentially

serious consequences (e.g. if the message is ‘enemy will attack in two days time’).

This looks simple enough: the idea of accepting a nonce based on the fact that only

the intended recipient could have read the original transmission seems to be a sound

one. But this protocol is ¤awed, as we demonstrate in §2.3.3

2.3 Protocol Attacks

To understand protocol attacks, we must first understand what properties we would

like our protocols to have, and also what we expect an intruder in the network to be

able to do.

2.3. Protocol Attacks 11

2.3.1 Protocol Goals

As new communication scenarios arise, the properties we would like our protocols to

establish are constantly updated. However, there are a number of common objectives

that we often want to achieve:

• Authenticity, that a message supposedly from principal A really is from principal

A, and often, additionally, the setting up of a nonce that can be used to establish

authenticity of future messages.

• Secrecy, that certain parts of messages broadcast over the network are only read-

able by their intended recipients.

• Non-repudiation, that a principal may not plausibly deny sending a particular

message.

The exact meaning of these high level goals (and in particular authenticity) are

open to a certain amount of interpretation. Some authors have worked on translating

them into more formal language and have highlighted the importance of being precise

about what a protocol is supposed to do, [Lowe, 1997, Gollmann, 2000]. The attacks

presented below will illustrate some of these issues.

2.3.2 The Spy

Mention is made in [Needham and Schroeder, 1978] of the assumptions made about

the behaviour of the principals and the spy. This is an issue central to work on cryp-

tographic protocols. Needham and Schroeder made the following assumptions, which

have been broadly accepted by the computer security community and are used either

implicitly or explicitly in the vast majority of the literature:

• Keys used in cryptographic protocols are not readily discoverable by exhaustive

search or cryptanalysis.

• The spy can interpose a computer in all communication paths. This means that in

addition to being able to see all traffic in the network, the spy can delay messages

12 Chapter 2. Cryptographic Security Protocols

or prevent them from ever reaching their intended recipient, and can add fake

messages of his own.

• Principals in the network other than the spy are trying to communicate securely.

Security protocols do not attempt to force all communication to be carried out in

a secure fashion.

In [Dolev and Yao, 1983], Dolev and Yao formalised a model of a spy with these abil-

ities, adding the further assumptions:

• The spy can break down messages he has seen in traffic into component nonces,

agent identifiers etc, and build new fake messages out of these parts.

• The spy can forward packages he cannot read (because they are encrypted).

Later work usually also assumes:

• The spy knows the long term or private key of one agent4. Usually we just

assume that the spy himself is accepted as an honest agent by the other principals,

and has long term keys of his own. This is the same thing in practice as the spy

‘stealing the identity’ of an honest agent, i.e. obtaining an honest agent’s private

keys.

This model of an intruder became known as ‘the Dolev-Yao intruder’, and is used in

almost all research in cryptographic protocol analysis.

2.3.3 Lowe’s attack on Needham-Schroeder Public Key

Here is an example of how such a spy may attack a protocol. This attack was found

by Gavin Lowe in 1995, [Lowe, 1995], on the NSPK protocol presented above (§2.2).

Here, A attempts to start a run with the dishonest agent C. This is plausible under the

above assumption that the spy is accepted as an honest agent by the other principals.

Then, C starts a parallel run with B (marked with ′s on the message numbers), in which

4Originally the spy was assumed to hold the long term keys of an arbitrary number of agents,
but it has since been shown that a spy holding the keys of just one agent is just as powerful,
[Syverson et al., 2000].

2.3. Protocol Attacks 13

he masquerades as A, using A as an oracle to decrypt B’s message 2′ in messages 2 and

3. The attack runs as follows:

1. A → C : {| NA,A}| pubKC

1′. CA → B : {| NA,A}| pubKB

2′. B → CA : {| NA,NB}| pubKA

2. C → A : {| NA,NB}| pubKA

3. A → C : {| NB}| pubKC

3.′ CA → B : {| NB}| pubKB

We use CA to indicate that the spy C is playing Alice’s part in the protocol. At the

end of this sequence of events, Bob believes he has carried out a complete run of the

protocol with Alice, when in fact he has not. The intruder C can use the nonces NA

and NB to impersonate A to B. Lowe suggests a scenario where B is a bank and the spy

sends the faked message:

CA→ B : {| NA,NB,transfer £1000 from my account to C’s}| pubKB

Like many published protocol ¤aws, this attack caused some controversy. Needham

argued that the protocol was never intended to be used in situation where a spy may

be accepted as an honest player, and certainly not in the banking scenario suggested

by Lowe. However, others argued it was perfectly valid to show the limitations of the

protocol, and that the acceptance of the spy as an honest player is a possibility that

must always be considered.

2.3.4 Needham-Schroeder Shared Key

The shared key version of the Needham-Schroeder protocol (NSSK) was also found to

be subject to attack, [Denning and Sacco, 1982]. This is an example of a freshness or

replay attack, i.e. an attack in which the spy re-sends a message an honest agent sent

earlier. The aim of this protocol is to securely distribute a new session key to Alice

and Bob, KAB. Alice and Bob both have keys shared only with the server, KA
5 and KB

respectively. These keys are only used occasionally, and then just to set up new session

keys, and so are assumed to remain secure. The protocol is described here:

5Some authors write this as KBS, as it is the key Bob shares only with the server S.

14 Chapter 2. Cryptographic Security Protocols

1. A→ S : A,B,NA

2. S→ A : {| NA,B,KAB,{| KAB,A}| KB}| KA

3. A→ B : {| KAB,A}| KB

4. B→ A : {| NB}| KAB

5. A→ B : {| NB−1}| KAB

This protocol starts with Alice sending a message to the authentication server indi-

cating her intention to start a conversation with Bob, including a nonce NA generated

by her. In message 2, the server replies with Alice’s nonce, Bob’s identifier and a fresh

session term key to use for talking to Bob, KAB. Also included is a package that Alice

can’t read, encrypted under Bob’s long term key KB. The whole message to Alice is

encrypted under her long term key KA

Message 3 consists of Alice forwarding to Bob the package she received encrypted

with his key, containing a copy of the session term key to be used and an indication

that it is to be used in conversation with Alice. The next part of the protocol is called

the handshake, i.e. a pair of messages exchanged by Alice and Bob under the new

key. The purpose of this is to convince Bob that Alice’s message 3 was timely, i.e. it

is not the result of a replay attack. Bob replies to Alice with a nonce he has generated

encrypted with the new session key. Alice knows that this must have come from Bob,

since only he could have decrypted message 3. Alice replies with NB− 1, encrypted

with the same key. Bob knows that only Alice could have decrypted his nonce and

subtracted 1, so he accepts the use of KAB for talking to Alice.

However, despite this handshake, Denning and Sacco were able to show that the

protocol is still susceptible to a replay attack. Suppose a spy C has obtained a session

key, KAB. The protocol must allow for this; if session keys are considered to be indef-

initely secure, then we would not need a protocol for setting up new ones. The spy

can then fool Bob into using that key for a new conversation span, and masquerade as

Alice, by the following sequence of messages:

3. CA→ B : {| KAB,A}| KB

2.3. Protocol Attacks 15

4. B→CA : {| NB}| KAB

5. CA→ B : {| NB−1}| KAB

C does not need to know Bob’s long term key KB to create message 3 - he just

replays it, as Alice must have sent it as a genuine message 3 earlier. At the end of

this sequence, Bob believes a correct protocol run has been followed, and accepts KAB.

Denning and Sacco suggested a fix for this problem involving the use of timestamps.

This requires the assumption that principals have access to at least loosely synchro-

nized clocks, an assumption that Needham and Schroeder were disinclined to make.

The protocol now requires no final handshake, and runs as follows, where TS denotes

a timestamp generated by the server S:

1. A→ S : A,B

2. S→ A : {| B,KAB,TS,{| A,KAB,TS}| KB}| KA

3. A→ B : {| A,KAB,TS}| KB

Needham and Schroeder suggested their own fix involving an extra handshake

at the beginning of the protocol, and no need for synchronised network clocks

[Needham and Schroeder, 1987]. The issue of synchronised network clocks remains

a controversial one: Gong exhibited a new risk of relying on network clocks for secu-

rity ten years after the Denning and Sacco protocol was proposed [Gong, 1992].

2.3.5 The Otway-Rees Protocol

In [Otway and Rees, 1987], Otway and Rees proposed a shared key protocol designed

to eliminate the risk of replay attack. The major departure from the Needham-

Schroeder shared key protocol was to require Alice to inform Bob of her wish to com-

municate in message 1, before any interaction with the authentication server. This way,

both principals are involved with obtaining the session key. Three nonces are required:

one to assure Alice of Bob’s identity, NA, one to assure Bob of Alice’s identity, NB, and

one to identify the run, N. The protocol is:

1. A→ B : N,A,B,{| NA,N,A,B}| KA

16 Chapter 2. Cryptographic Security Protocols

2. B→ S : N,A,B,{| NA,N,A,B}| KA,{| NB,N,A,B}| KB

3. S→ B : N,{| NA,KAB}| KA ,{| NB,KAB}| KB

4. B→ A : N,{| NA,KAB}| KA

In the first message of this protocol, Alice generates nonce N and nonce NA to

identify a new run, and then signals to Bob her desire to establish a fresh shared key

(which will be KAB). During the course of the protocol, the common nonce N gets

encrypted by both parties - hence it is sent in the clear in message 1. The identifiers

for the principals, A and B, also have to be sent in the clear so that the server knows

which keys to use to decrypt the contents of message 2 and obtain NA and NB. Nonce

NA is sent encrypted with Alice’s long term key. Bob receives the encrypted package

{| NA,N,A,B}| KA , but cannot read it. He forwards it along with a package containing a

nonce he generates himself (NB) encrypted with his own long term key to the server

S. The server knows all long term keys, so can decrypt both the packages it receives.

It generates a fresh shared key, packages it up separately for A and B, and sends the

whole lot to B in message 3. Bob decrypts his part of message 3, and checks that the

nonce NB is as he generated. If it is indeed the same, he accepts session key KAB. B

then forwards the rest of the message to A, who checks her nonce before accepting

KAB.

In later literature, [Burrows et al., 1990], Burrows et al. suggested that the same

guarantees could be derived from a protocol using only two nonces. They also sug-

gested, mistakenly, that nonce NB need not be encrypted in message 2. Attacks were

found on this simplified protocol by Mao and Boyd, [Mao and Boyd, 1993], and Paul-

son, [Paulson, 1998]. Paulson also showed that a version of the protocol that encrypted

NB but had only two nonces was secure with respect to his assumptions. Here is the

simplified protocol as suggested by Burrows et al. – it operates in the same manner as

the standard Otway-Rees, except that there is no nonce N, NA is used instead of N in

messages 2, 3 and 4, and nonce NB is sent in the clear in message 2:

1. A→ B : NA,A,B,{| NA,A,B}| KA

2. B→ S : NA,A,B,{| NA,A,B}| KA ,NB,{| NA,A,B}| KB

2.3. Protocol Attacks 17

3. S→ B : NA,{| NA,KAB}| KA ,{| NB,KAB}| KB

4. B→ A : NA,{| NA,KAB}| KA

Paulson discovered the following attack on the simplified version:

1. A→CB : NA,A,B,{| NA,A,B}| KA

1.’ C→ A : NC,C,A,{| NC,C,A}| KC

2.’ A→CS : NC,C,A,{| NC,C,A}| KC ,NA′,{| NC,C,A}| KA

2.”CA→ S : NC,C,A,{| NC,C,A}| KC ,NA,{| NC,C,A}| KA

3.” S→CA : NC,{| NC,KCA}| KC ,{| NA,KCA}| KA

4. CB→ A : NA,{| NA,KCA}| KA

Informally, what’s going on this attack is:

1. A tries to start a session with B, but the message is intercepted by the spy C, who

notes nonce NA.

1.’ C starts a new run with A.

2.’ A believes C to be an honest agent, and so sends message 2 of the protocol to

the server, having generated another new nonce, NA′ . C again intercepts this

message.

2.” C mixes up the message A tried to send the server with the nonce NA he noted

earlier to trick the server.

3.” The server is fooled and sends C back the old nonce NA encrypted with A’s secret

key.

4. C can now masquerade successfully as B.

In terms of authenticity, this is a serious attack: Alice has no way of telling if she

is talking to the real Bob or not. We look at how Paulson discovered this attack in

§2.4.4.1 below.

18 Chapter 2. Cryptographic Security Protocols

2.3.6 The Neuman-Stubblebine Protocol

The Neuman-Stubblebine protocol was designed to improve on previous shared key

protocols by using timestamps as nonces, [Neuman and Stubblebine, 1993]. Here is

the key establishment part of the protocol:

1. A→ B : A,NA

2. B→ S : B,{| A,NA,TB}| KB ,NB

3. S→ A : {| B,NA,KAB,TB}| KA ,{| A,KAB,TB}| KB ,NB

4. A→ B : {| A,KAB,TB}| KB,{| NB}| KAB

In message 1, A generates a nonce NA and sends it to B to signal that she wants to

establish a new key. B then generates both a timestamp, TB, and a nonce NB. The

timestamp he sends to the server encrypted under his long term key, while the nonce is

sent in the clear. In message 3 the server sends A a package containing B’s identifier,

A’s nonce, the fresh session key KAB and the timestamp for the key. A knows the key

must be good, because only the server could encrypt her nonce NA under her long term

key, and by the presence of B’s identifier, the server has also indicated the key is for

use with B, preventing an impersonation attack. In message 4, A forwards to B the rest

of message 3, but this time encrypting nonce NB under the fresh session key KAB. B

now receives the package containing A’s identifier, the new key KAB and the timestamp

he generated. He uses KAB to obtain nonce NB from the final part of message 4, which

proves to B the identity of A, since only A could have got the session key from the

server and used it to encrypt NB.

The attack on this protocol is an example of a type attack, and is dependent on the

implementation of the protocol using the same length bit strings for nonces as it uses

for keys. Here is the attack, due to Hwang et al. [Hwang et al., 1995]:

1. A→ B : A,NA

2. B→ S : B,{| A,NA,TB}| KB ,NB

4. CA→ B : {| A,NA,TB}| KB ,{| NB}|NA

2.4. Formal Methods for Protocol Analysis 19

In this attack, the spy first notes nonce NA, sent by A in the clear in message 1. The

spy intercepts B’s message 2 to the server, and then uses the encrypted package at the

beginning of that message and the nonce NB sent in the clear at the end to construct a

fake message 4 to send to B. This fools B into accepting nonce NA as the session key,

because the encrypted package he is expecting has the same structure as that sent in

message 2, and the spy can use nonce NA to encrypt nonce NB.

Some research has focused on eliminating the risk of type attacks by distinguishing

different types of object using tagging techniques, [Heather et al., 2000]. In this work,

the authors prove that by using a simple tagging system (which is assumed to be known

to the spy) whereby each agent attaches a few bits to each message element indicating

its intended interpretation, type attacks can be eliminated. What they in fact show is

that if there is a type attack which cannot be prevented by this tagging, then there is also

a simple attack where the spy makes up a value of his own. Informally, the intuitive

idea here is that type attacks usually involve a spy forwarding an encrypted packet,

hoping that it will be misinterpreted by an honest agent. However, he cannot actually

get inside the encrypted packet to change the tag, so the tagging prevents the attack.

If the type attack involves forwarding an unencrypted value for misinterpretation, then

the spy can just as effectively forward a value he has made up. We can conclude from

this work that a good implementation can remove the risk of type attacks. Some of the

formal approaches below, such as Paulson’s §2.4.4.1, assume such an implementation

will always be used, and so adopt a strongly-typed formalism in which type confusion

cannot occur.

2.4 Formal Methods for Protocol Analysis

The attacks presented above give an indication of just how tricky it is to specify a

secure protocol. One of the main thrusts of security research has been to apply formal

methods to the problem. Researchers have applied techniques from term rewriting,

model checking, theorem proving and modal logics amongst others. We look at some

of this work below.

The essential problem faced by designers of methods for protocol analysis is that

20 Chapter 2. Cryptographic Security Protocols

the problem is, in general, undecidable, even under quite severe restrictions on protocol

design, [Durgin et al., 1999]. There are at least three unbounded factors in the general

case: an unbounded number of agents who may be involved, an unbounded number of

parallel protocol runs (and so an unbounded number of nonces), and an unbounded set

of terms known to the intruder.

2.4.1 State Exploration Approaches

One way to analyse security protocols is to model them as some kind of state-transition

system. This idea has been used by a number of researchers.

2.4.1.1 The Dolev and Yao Approach

An early attempt to formalise the security protocol problem was presented by Dolev

and Yao, [Dolev and Yao, 1983]. The intruder modelled by their system became the

standard model in terms of its ability to intercept all messages and send fake messages

based on what has appeared in the traffic. However, their spy did not start with any

secret information, such as a private key belonging to one of the agents. The system is

modelled as a machine used by the intruder to generate words. The rules of the system

are expressed as rewrite rules. The problem of the intruder trying to discover a secret

is then expressible as a word problem in a rewrite system. Dolev and Yao presented

several algorithms that could be used to decide the problem for certain classes of pro-

tocols. However, the model had several weaknesses. It could not model the storing of

information by agents, and could not be used to prove authenticity or freshness.

Other researchers have developed tools based on Dolev and Yao’s work with aug-

mentations aimed at addressing these shortcomings. These include Millen’s Interroga-

tor, [Millen et al., 1987], and Meadows’ NPA6, [Meadows, 1996b]. NPA has been

used to analyse many protocols, including group protocols, [Meadows, 2000a], with

a certain amount of success. It can also be set to present counterexamples in the case

of a ¤awed protocol, yielding an appropriate attack. Proving authenticity guarantees

with NPA can be messy though, [Meadows, 2000b].

6NPA stands for ‘NRL Protocol Analyser’. NRL in turn stands for ‘Naval Research Laboratories’.
Meadows’ tool is sometimes also referred to as ‘NRL’.

2.4. Formal Methods for Protocol Analysis 21

2.4.1.2 Model checking

Model checking is a state exploration based technique that has been applied particu-

larly successfully to hardware verification and communication problems. The idea of

model checking is to first construct a model of the system you are interested in as a

finite state machine. A model checker then exhaustively searches the reachable states

in the model to determine whether or not they conform to some property. Properties

are typically specified in a modal logic of some kind, which means that typically both

secrecy and authenticity properties can be checked for.

Lowe used the FDR model checker to find an attack on the Needham-Schroeder

public key protocol, presented in §2.2, [Lowe, 1996]. One of the key advantages

of model checking is its ability to present a counterexample when asked to verify a

faulty system. When analysing the public key Needham-Schroeder protocol, the model

checker informed Lowe that the system was able to perform an action committing Bob

to a session with Alice even though Alice is not trying to establish a session with Bob.

By examining the CSP trace that formed this counterexample, the attack can be found.

Lowe’s team have continued to use the FDR model checker to analyse protocols, suc-

cessfully applying the technique to at least 50 protocols, [Donovan et al., 1999].

A disadvantage of model checking for security protocol analysis is that, in order

to guarantee termination in a reasonable time (and without exhausting available mem-

ory), a small finite abstraction of the system has to be considered, e.g. with only two

agents, each agent only able to generate one nonce, only one run of the protocol etc.

This could lead to attacks going undiscovered, and faulty protocols being certified as

correct. There are two ways to attack this problem: one, adopted by Lowe, is to first

check the small finite instance of the protocol, and then to prove on paper that if an

attack exists on the larger system, then there must also be an attack on the smaller

system, [Lowe, 1999]. Another is to do away with finite instances, and just look for

attacks on the unconstrained infinite system with arbitrary numbers of agents, nonces

etc. Termination (without a guarantee of correctness) can be achieved by checking all

traces of up to 10 messages say, or by using a time limit. This is the approach adopted

by Basin [Basin, 1999], who also adds some heuristics to prune and re-order the search

space, resulting in attacks being found very quickly. We compare Basin’s approach to

22 Chapter 2. Cryptographic Security Protocols

ours in more detail in Chapter 11.

2.4.2 The BAN logic

Burrows, Abadi and Needham were the first to propose a formal modal logic analysis

of the security protocol problem [Burrows et al., 1990]. They demonstrated the use

of a logic based on beliefs, where formulae express what an agent may infer upon

receiving a given message. This logic has become known as the BAN logic. It is simple

to understand and can be used to prove a variety of properties of protocols. However, in

general, it does not result in a counterexample in the case of a ¤awed protocol, though

it may suggest how one might be found. BAN logic has been used to detect ¤aws in

several protocols, but it has also missed others. Nessett exhibited a protocol that was

deeply ¤awed, yet the BAN logic showed it to be correct, [Nessett, 1990]. Burrows

et al. responded that this was because the protocol violated one of their assumptions -

that no messages should give away secret keys. However, as Nessett pointed out, this

assumption should be verified. It may be possible to trick an agent into giving away

a key. There are also some quite subtle issues involved in the translation from formal

specification to the BAN logic - a common problem in all formal methods work. A

good discussion of these issues is given in [Meadows, 1996a].

Various researchers have proposed augmented versions of the BAN logic, de-

signed to verify secrecy properties such as that referred to by Nessett, [Kindred, 1999,

Kessler and Wedel, 1994]. However, one of the chief attractions of the original logic

was its simplicity. Others have produced automated implementations of BAN-like

logics, e.g. [Schumann, 1997], where Schumann used the theorem prover SETHEO,

[Letz and Stenz, 2001], to automate proof in the calculus. However, this approach suf-

fered from the same drawbacks as BAN logic described above, and though proofs were

often found very quickly, SETHEO’s failure to find a proof provided no information on

where the ¤aw might be (it would just run forever). One advantage of doing the proofs

by hand was that the breakdown of a proof attempt would often lead to the discovery

of an attack.

2.4. Formal Methods for Protocol Analysis 23

2.4.3 The Spi Calculus

Abadi proposed an improved calculus for reasoning about security protocols called the

spi calculus in joint work with Gordon, [Abadi and Gordon, 1997]. This is an aug-

mentation of Milner’s pi calculus, [Milner, 1993]. Abadi and Gordon define a notion

of equivalence called observational equivalence, i.e. that two processes are the same

as far as another process (i.e. an attacker) can observe. This allows them to reason

about security properties in terms of this equivalence, e.g. item X remains secret if a

protocol with X is observationally equivalent to a protocol with X ′ for any X ′. The

spy is modelled rather neatly as an arbitrary spi calculus process. The spi calculus has

been used to specify and prove both authenticity and security properties of a number

of protocols. Gordon and Jeffrey have also produced a tool called Cryptyc that type

checks protocols specified in spi calculus, [Gordon and Jeffrey, 2001]. Typing tags are

added to the protocol, which means the type checker can show correctness in terms

of security and authenticity in the presence of a Dolev-Yao intruder. Properties can

be checked very quickly, though the tool is quite rigid in terms of what properties can

be checked for, what elements are allowed in protocols and what kinds of encryption

can be used. There is also the slight chance of a perfectly good protocol failing to

type check, though if it does type check it is at least guaranteed to be secure. No

counterexamples are given in the case of a ¤awed protocol.

2.4.4 Theorem Proving

Theorem proving of some kind has been used by a number of researchers to tackle the

protocol analysis problem. A variety of different models have been used.

2.4.4.1 Paulson’s Inductive Method

Paulson has used an inductive approach to verify properties of protocols,

[Paulson, 1998]. Protocols are formalised in typed higher-order logic as the set of

all possible traces, a trace being a list of events like ‘A sends message X to B’. Intruder

knowledge is specified in terms of what has been seen in the trace so far, using the

synth and analz operators. For a trace T , analz(T) specifies every individual term a

24 Chapter 2. Cryptographic Security Protocols

spy may extract from the trace, and synth(analz(T)) specifies everything he can build

from those terms. This formalism is mechanised in the Isabelle/HOL theorem prover.

Properties of the security protocol can be proved by induction on traces. Paulson has

proved theorems both of authenticity and secrecy by specifying them in terms of prop-

erties of traces, e.g. ‘If A receives message 3 with nonce N, and he sent message 1 with

nonce N to B, then message 3 came from B.’

Sometimes a theorem cannot be proved, and in these situations an attack may be

suggested, as in the Otway-Rees variant shown above (§2.3.5). However, Paulson notes

that it can be hard to interpret a failed proof attempt. It may be that some additional

lemmas need to be proved or a generalisation made. So, while Paulson’s formalism

is expressive enough to capture a good model of the system with arbitrary numbers

of agents and nonces, agents with compromised keys etc., it does not provide much

assistance in finding attacks on faulty protocols.

Paulson’s formalism has been used to model the Needham-Schroeder protocols,

the Otway-Rees protocol, smart card protocols and the SET online payment protocol

amongst others [Paulson, 1998, Bella et al., 2002, Bella, 2003].

2.4.4.2 First-Order Formalisms

Weidenbach has developed a first-order formalism of the security protocol problem,

[Weidenbach, 1999]. His aim was to combine the benefits of Paulson’s inductive

method and finite state analysis methods. By formalising the problem in a frag-

ment of monadic Horn logic, Weidenbach is able to specify an inductive model

where the intruder’s knowledge is, in general, unbounded, but still to carry out

proofs automatically using the SPASS saturation-based first-order theorem prover,

[Weidenbach et al., 1999]. A ¤avour of the formalism can be gained from the fol-

lowing example of a translation from our protocol notation (introduced in §2.2) to

Weidenbach’s formalism. Weidenbach used the Neuman-Stubblebine protocol for his

case study (§2.3.6). Weidenbach formalises the first message in this protocol with

these three formulae:

(1) Ak(key(as, t))

2.4. Formal Methods for Protocol Analysis 25

(2) P(a)

(3) M(sent(a,b, pair(a,na)))∧Sa(pair(b,na))

Formula (1) expresses that Alice (a) shares key as with the server t (Weidenbach uses t

to stand for ‘trusted server’). Formula 2 tells us that a is one of the principals involved

in the protocol. Formula (3) tells us firstly that a sent and stored message 1 of the

protocol, and secondly that she has stored the nonce she generated for verification

later on. Weidenbach formalises the rest of the protocol in a similar manner. He also

formalises a spy able to synthesize messages based on previous traffic, and is then able

to find the type attack on the protocol first discovered by Hwang et al. (§2.3.6) by

proving a conjecture that there exists some x that B thinks is a secure key for A, but is

in fact known to the spy, allowing him to impersonate A.

The main advantages of Weidenbach’s work are that proofs are fully automatic and

attacks are quite easy to construct from the output provided by SPASS. It is a matter

of inspecting the proof and working backwards through it to see what messages have

been exchanged. This process could probably be automated. However, Weidenbach’s

formalism is not as expressive as Paulson’s, and the proofs presented are not quite as

strong, for the following reasons:

1. The abilities of the spy are weaker. He does not control the private keys of any

legitimate agents, and cannot generate fresh nonces of his own. This severely

limits the scope for impersonation attacks that break authenticity properties.

2. There are only two agents in Weidenbach’s model. This means that to show that

the whole system is secure, we would have to prove theorems such as are proved

in model checking work, showing that if there is an attack on the large system

(i.e. with any number of agents and simultaneous protocol runs) there must be

an attack on the small system (with just two agents and one protocol run) as well.

3. Each agent modelled only knows one half of the protocol. An attack may require

one agent to be performing both halves of the protocol at once to two different

agents, e.g. Paulson’s attack on Otway-Rees [Paulson, 1998], Clark’s parallel

session attack [Clark and Jacob, 1996].

26 Chapter 2. Cryptographic Security Protocols

We compare our work to Weidenbach’s in detail in §11.

Blanchet has developed another Horn-clause model, in which the spy has full

Dolev-Yao capabilities, [Blanchet, 2002]. A specification in a spi calculus variant is

translated automatically into Horn clauses, and then a customised prover is used to

determine whether a certain term is derivable. If it is derivable, then an attack can be

found by stepping through the proof to see what messages were exchanged, in a similar

way to Weidenbach’s work. The method can verify protocols assuming an unbounded

number of nonces and parallel runs, though not an unbounded number of agents. It is

also not complete, in the sense that it may not terminate, or it may terminate with a

false attack. These false attacks are due to the way Blanchet represents freshness to

avoid having to use an explicit trace-based inductive formalism. False attacks seem

not to occur in practice though, and often secrecy and authenticity properties can be

verified in under a second for typical protocols.

Other first-order formalisms use rewriting as the basis for searching for attacks.

For example Jacquemard et al. have proposed a rewrite rule formalism suitable for the

theorem prover daTac, [Jacquemard et al., 2000]. A key feature of the daTac is that

it enables associative-commutative (AC) unification over the arguments of AC oper-

ators. This is used in the modelling of sets of messages that have been sent and sets

of terms the intruder has learnt. They also proposed a high-level specification lan-

guage for protocols, which can then be automatically compiled to the rewrite formal-

ism. The system produced is called Casrul. It has been tested on a number of ¤awed

protocols from the Clark-Jacob corpus, [Clark and Jacob, 1997], with good results,

[Chevalier and Vigneron, 2002], though it does require the user to decide a scenario in

advance, i.e. what agents will be involved and what role they will play in the protocol.

We compare Casrul to CORAL in more detail in §11.3.

Ernie Cohen has produced a first-order formalism for verification based on invari-

ants, called TAPS [Cohen, 2000]. TAPS models protocols as a transition system. A

state is represented by the set of steps that have been executed and the set of messages

that have been sent. The TAPS system constructs first-order invariants for the system

that capture desirable security properties. Sometimes, particularly in the case of simple

protocols, these protocols are constructed automatically, but sometimes hints from the

2.4. Formal Methods for Protocol Analysis 27

user are required. Once the invariant has been found, it is sent to a first-order theorem

prover and typically solved extremely fast (when the protocol is secure). If the proto-

col has a ¤aw however, TAPS does not give a counterexample. TAPS has been used

to verify a large number of protocols, and Cohen has published plans to add bitwise

operations and modelling of algebraic properties of cryptographic functions to the sys-

tem, [Cohen, 2003]. However, these plans look unlikely to become reality, as Cohen

has moved into a different area.

2.4.5 The Strand Space Model

A lot of recent interest has been sparked by Fábrega, Herzog and Guttman’s strand

space model for analysing protocols, [Fábrega et al., 1999]. A strand space is a collec-

tion of strands, with a graph structure which expresses causal relations. A strand is a

sequence of events that a single party may engage in. An event is the sending or recep-

tion of a message, represented by a node in the graph. Nodes have a sign: a positive

sign indicates a message was sent, and a negative sign indicates it has been received.

There are two kinds of strands in the model, those for honest participants and in-

truder strands. A strand belonging to an honest agent contains that agent’s actions in

one particular run of the protocol. If an agent is involved in several runs, each of these

will have its own strand. Nodes in separate strands are adjacent when they represent the

sending and reception of the same message. As an example, the Needham-Schroeder

public key protocol as represented by a strand space model is presented in Figure 2.2.

The intruder strands are sequences of nodes representing the intruder doing any-

thing that he is able to do, e.g. intercepting a message, breaking it down into compo-

nent parts, building new messages and sending them. Useful intruder actions may be

modelled by connecting many strands. For example, in Figure 2.3 we show Lowe’s

attack on the NSPK protocol (§2.3.3) represented in a strand space model. There are

two short intruder strands, I1 and I2.

A bundle is a finite acyclic subgraph of the strand space that is in a certain sense

backwards-closed: all received messages occurring in strands in the bundle must have

come from nodes also in the bundle, and if an event on a strand is in the bundle, then

all preceding events on that strand must also be in the bundle. Secrecy and authenticity

28 Chapter 2. Cryptographic Security Protocols

KBA{N , A}

KB
{N }B

A KA{N , N }B

A B

Figure 2.2: NSPK modelled in a strand space

IA B

I

A{N , A}KB

A KA{N , N }B

K{N }
BB

A{N , A}KC

KC
{N }B

1

2

Figure 2.3: NSPK attacked

2.5. Outlook 29

properties of the protocol can be expressed in terms of the connections between differ-

ent kinds of strands and bundles. For example, the property of the NSPK protocol that

is violated in Figure 2.3 would be roughly stated as:

Proposition 1 If:

1. C is a bundle in an NSPK strand space

2. C contains a responder strand for B using nonces NA and NB, in apparent commu-

nication with A

3. The spy does not have A’s private key, and

4. NB is a fresh nonce

Then C also contains an initiator strand for A using nonce NA and NB

In the original work, [Fábrega et al., 1999], proofs of these properties were carried

out by hand. For example, the authors showed that the property in Proposition 1 is true

for Lowe’s revised version of the NSPK protocol. More recently, an automated tool

called Athena which uses the strand space model has appeared, [Song et al., 2001].

Athena can also present counterexamples when a protocol is found faulty.

The advantages of the strand space model seem to be that, once understood, it pro-

vides a simple and succinct way of expressing the causal relationship between differ-

ent parts of a protocol, and together with some techniques for cutting down the search

space, it can be used to efficiently obtain automated proofs. However, it is not as ¤exi-

ble as, for example, Paulson’s model. Athena, the automated strand space prover, can

verify many protocols in a fraction of a second, though it does require a limit on num-

ber of concurrent runs and length of messages to achieve termination sometimes. We

compare the strand space model work with our own in detail in Chapter 11.

2.5 Outlook

The need for secure cryptographic protocols increases daily. The higher uptake of

the Internet and electronic commerce makes fraud potentially more profitable, increas-

ing the risk of attack and hence the need for security. Proposed new applications of-

ten require the development of a new kind of protocol, e.g. Internet auction houses

30 Chapter 2. Cryptographic Security Protocols

[Stajano and Anderson, 1999] and mobile phones incorporating Internet access. How-

ever, protocol designers continue to make simple design mistakes. For example, the

“secure” mail protocol proposed by GCHQ has been criticised for ignoring many

known protocol ¤aws, [Anderson and Roe, 1997].

As formal protocol analysis methods develop, researchers are looking to take it in

new directions. For example, some work has involved developing more fine-grained

models of the encryption algorithms used, taking into account properties such as as-

sociativity and commutativity, [Millen and Shmatikov, 2003]. Others have looked at

verifying properties of protocols which assume some underlying level of secrecy has

already been established, [Bella et al., 2003].

While the field of formal protocol analysis is a very active one, with a huge variety

of techniques and tools now available, formal methods are not widely used by protocol

designers. In fact, almost all published formal protocol analysis has been carried out

by the designers of the particular techniques used. This is probably because often

the formalisation of the protocol into the syntax required by the theorem prover or

model checker, and the subsequent use of the tool, demands a great deal of specialist

knowledge. Formal methods will only be used more widely when these tasks can be

made easier. Formal protocol analysis has other limitations. For example, it relies on

the abilities of an attacker being captured by a small number of assumptions. It may be

possible for an intruder to perform some action outside of this model and thus effect an

attack. So, a formal guarantee of protocol security is only as strong as the spy model

used.

However, formal methods have been responsible for the uncovering of many pub-

lished protocol attacks. It is possible that without these techniques, these attacks would

not have been discovered until a malicious user made use of them to commit fraud. The

model checking techniques seem to be particularly good at detecting simple errors in

protocols, while theorem proving methods can provide much stronger guarantees of

security than informal reasoning. So, the field of formal methods for protocol analysis

remains a promising one.

A large amount of security protocol literature is not concerned with formal

methods, but rather with good engineering practices, [Abadi and Needham, 1996,

2.5. Outlook 31

Gong and Syverson, 1998]. Also, authors such as Anderson have pointed out

that many security compromises arise as a result of implementation level errors

[Anderson and Needham, 1995]. Good system security can only arise as a conse-

quence of well designed and verified protocols, prudent engineering and sound im-

plementation.

In summary, the field of cryptographic security protocol design and analysis is one

of increasing importance. Formal techniques for protocol analysis form a key part

of research in the field, but cannot guarantee security on their own. Formal analysis

methods must be made simpler to use and understand in order for them to gain wider

acceptance by those responsible for implementing secure computer systems.

Chapter 3

Refuting Incorrect Conjectures

We saw in the previous chapter that Paulson’s model for the cryptographic protocol

analysis problem provides a very ¤exible and expressive setting for proving security

properties. However, some considerable expertise is required to complete the proofs. If

a protocol is ¤awed, a user may waste a lot of time trying to prove a conjecture about

the protocol’s security which is in fact false. An automated tool that can not only

detect these incorrect conjectures but also present a counterexample, i.e. an attack on

the protocol, would clearly be very useful. In this chapter we survey various different

approaches to the refutation of incorrect conjectures, and evaluate how suitable they

would be for discovering protocol attacks in a Paulson-style inductive model.

3.1 First-Order Finite Domain Enumerators

Several tools have been developed to find counterexamples to first order formulae over

finite domains. These include Finder [Slaney, 1995], and MACE [McCune, 1994].

These programs search a finite domain, evaluating a given conjecture at each point to

see if a counterexample has been found. Finder is a generic counterexample finder that

can be used with any search algorithm, whereas MACE has been designed specifically

to use the Davis Putnam procedure. As automated first-order theorem provers become

more powerful and can be applied to more complex problems, it is likely that the de-

velopment of tools like MACE and Finder will continue in a complementary fashion.

33

34 Chapter 3. Refuting Incorrect Conjectures

However, they are not suitable for applying to security protocols, since security proto-

cols in general have infinite models.

3.2 Finding Counterexamples by Instantiating with

Constructors

Inductive models are often specified in terms of a constructor theory – indeed, Paul-

son’s model for the cryptographic protocol problem is such a theory. A set of construc-

tors for a datatype is a set of symbols such that any term in the datatype can be built

from those symbols. A set of constructors is free when every element in the datatype

has a unique representation in terms of these constructors, and any two non-identical

constructor terms are unequal in the theory. At least two authors have suggested ways

of finding counterexamples in these kinds of theories. We describe their approaches

below, and evaluate their suitability for discovering protocol attacks in §3.2.3.

3.2.1 Protzen’s Calculus for Refutation

In [Protzen, 1992], Protzen presents a calculus which is sound and complete for the

refutation of faulty universally quantified conjectures in inductive theories specified

by universally quantified axioms and using only free datatypes. Given a universally

quantified and (possibly) incorrect conjecture, the method of refutation is as follows:

first, formulate an existentially quantified negation of the conjecture. Then, attempt to

find an instantiation of the existentially quantified variables such that the counterexam-

ple statement is satisfied. So it is a search to satisfy a Σ1 conjecture in a Π1 theory. The

search for the counterexample is guided by the recursive definitions of the function

symbols in the counterexample formula. For example, suppose we are trying to refute

the false conjecture:

∀n,m : nat.plus(n+1,m) 6= 1 (3.1)

with definitions

∀x,y : nat. x = 0⇒ plus(x,y) = y
∀x,y : nat. x 6= 0⇒ plus(x,y) = plus(x−1,y)+1

3.2. Finding Counterexamples by Instantiating with Constructors 35

A counterexample must be a witness to the formula:

∃n,m : nat. plus(n+1,m) = 1

The method proceeds by propagating a restriction on the value of plus(n+1,m) to its

subterms. The definition above of plus has two cases, and the first one gives us the

formula

∃n,m : nat. n+1 = 0
∧

m = 1

which is unsatisfiable. The second case of the definition, after some simplification and

propagation of restrictions, gives us the formula:

∃n,m : nat. n = 0
∧

m = 0

This gives us values for the variables n and m which satisfy the original (negated)

formula.

The method will not always terminate, as a semi-decision procedure is as good as

can be obtained for arithmetic formulae. So, for the method to be useful in practice, a

depth limit is specified. Protzen has implemented the counterexample finder as part of

the INKA inductive theorem prover, [Hutter and Sengler, 1996]. Its chief application

in this context is to refute incorrect generalisations. The method is quite suitable for

this, since the over generalisations that occur in this context are often quite trivially

false, and a counterexample can be found very close to the base case values.

3.2.2 Reif’s Counterexample Finder

Reif et al., [Reif et al., 2001], have implemented a method for counterexample con-

struction for infinite datatypes in first-order constructor specifications. It is integrated

with the interactive theorem prover KIV, [Reif, 1995]. Their method incrementally in-

stantiates the variables in a formula with constructor terms and evaluates the formulae

produced using the simplifier rules made available to the system during proof attempts.

A heuristic strategy guides the search through the resulting subgoals for one that can

be reduced to false. If such a subgoal is not found, the search terminates when all

variables have been instantiated to constructor terms. In this case the user is left with

36 Chapter 3. Refuting Incorrect Conjectures

a model condition, which must be used to decide whether the instantiation found is a

valid counterexample.

For example, take the conjecture:

sorted(l1)∧ sorted(l2) → sorted(append(l1, l2))

with the usual definitions of list append and the predicate sorted. This is not true in all

models of the specification, and Reif’s system finds the counterexample

l1 = cons(e1,nil) l2 = cons(e2,nil)

with the model condition

¬(e1 ≤ e2)

The user sees that this model condition can be satisfied, e.g. with e1 = 1 and e2 = 0,

and so accepts the counterexample.

3.2.3 Evaluation of Protzen’s and Reif’s Approaches

Reif’s system is attractive in that it is tightly integrated into the theorem prover, al-

lowing it to be easily called during a proof attempt. It can also deal with non-free

datatypes, which Protzen’s method cannot. However, although the examples tackled

by Reif are larger than those in [Protzen, 1992], they all involve domains where the

datatypes can be easily enumerated. For example, Reif refutes a number of false graph

theory conjectures by using a non-free datatype for graphs, in which a vertex may be

explicitly added to the graph, or may be be implicitly added in an edge. This means

that any combination of vertices and edges constitutes a valid graph, making it easy to

construct candidate counterexamples.

Reif’s method does not seem be suitable for inductive datatypes, such as are used

in protocol analysis. The relatively simple technique of combining constructors would

tend to generate many non-valid traces, for example, traces in which an honest agent

sends message 3 in a protocol without having received message 2. This could be

accounted for in the specification by using a predicate to specify valid traces, but it

would seem too inefficient to keep generating invalid traces only to later reject them.

3.3. Monroy’s Non-theorem Work 37

The vast majority of traces generated by constructor symbols would indeed be invalid.

Protzen’s method generates its instantiations by a slightly different method, but has the

same drawback.

3.3 Monroy’s Non-theorem Work

In 1993, Raul Monroy produced an MSc thesis, [Monroy, 1993], on correcting in-

correct inductive conjectures in first-order logic. The non-theorem detection was

carried out by a simple ‘formula tester’, borrowed from the Clam proof planner,

[Bundy et al., 1990]. This system tests conjectures by evaluating their truth at a few

pre-chosen values, typically 0, s(0) and s(s(0)) for conjectures over the natural num-

bers. Monroy used information based on the nature of the failure of the proof as a basis

for choosing a patch attempt. The idea is to synthesize a corrective predicate step by

step as the proof is attempted. At the end of the process, the corrective predicate gives

conditions under which the conjecture is a theorem.

Monroy’s latest work, [Monroy, 2000], proposes a more powerful technique

for correcting faulty conjectures. This new mechanism performs non-theorem de-

tection by referring to a user-defined finite set of obvious contradictions, e.g.

x 6= x,s(x) = x,s(x) = p(x). If, when proving a conjecture, the proof of a particular

subgoal fails, and that subgoal is not one of the known contradictions, then the sub-

goal is abducted into the patch predicate as a condition for the original conjecture to

be true.

For example, given the non-theorem

∀N : nat.double(half (N)) = N (3.2)

with definitions

double(0) = 0 half (0) = 0

double(s(N)) = s(s(double(N)) half (s(0)) = 0

half (s(s(N)) = s(half (N))

Monroy’s mechanism synthesizes a corrective predicate with definition

38 Chapter 3. Refuting Incorrect Conjectures

c(0) = true

c(s(0)) = false

c(s(s(N)) = c(N)

which specifies that the conjecture (3.2) is true for even numbers.

Note that if a subgoal is a non-theorem that is not included in the user-defined

contradiction set, then the process does not identify it as being incorrect. So, the

output from the process is of the form, ‘I can’t prove conjecture X as you presented it

to me, it may or may not be incorrect, but given conditions Y I can prove it to be true.’

However, the same ‘folk knowledge’ that leads us to look for simple counterexamples

around the base cases of recursive definitions suggests that a small but well chosen

set of contradictions may well trap a large proportion of the non-theorems, at least in

simple applications.

Monroy is currently working on extending the idea to more complex problems and

to higher-order theories, [Monroy, 2003]. He also observes that the corrective predi-

cates synthesized are sometimes ‘unnatural’, and is working on trying to characterise

families of corrective predicates to improve the quality of the patches.

An attraction of Monroy’s work is that we would like be able to say how to fix a

protocol that is found to be faulty, and Monroy’s corrective predicates may provide a

means of doing this. They might also allow us to specify requirements for the secure

implementation of an otherwise insecure protocol (this would be useful in the context

of legacy protocols which cannot be changed for backwards compatibility reasons).

However, the system for actually detecting incorrect conjectures is currently much too

basic for our requirements.

3.4 Proof by Consistency

Proof by consistency is a technique for automating inductive proof. It has also

been called inductionless induction, inductive completion, and implicit induction,

as the actual induction rule used is described implicitly inside a proof of the con-

3.4. Proof by Consistency 39

jecture’s consistency with the set of hypotheses. It was first proposed by Musser,

[Musser, 1980], and developed by Huet and Hullot, [Huet and Hullot, 1982], Jouan-

naud and Kounalis, [Jouannaud and Kounalis, 1989], Bachmair, [Bachmair, 1991],

Ganzinger and Stuber, [Ganzinger and Stuber, 1992], and Bouhoula and Rusinow-

itch, [Bouhoula and Rusinowitch, 1995], amongst others. Recent versions, from Bach-

mair’s work onwards, have been shown to be refutation complete, i.e. are guaranteed to

detect non-theorems in finite time.1 This is in contrast to classical ‘explicit induction’

techniques, [Boyer and Moore, 1979], that generally offer no such support.

Proof by consistency has generally fallen out of favour as a method for automat-

ing inductive proof, although it has recently been used to verify some properties of

the JavaCard bytecode verifier, [Barthe and Stratulat, 2003], and new hybrid versions

incorporating some techniques from more conventional explicit induction are still be-

ing proposed, e.g. [Deplagne and Kirchner, 2001, Avenhaus et al., 2003]. The loss of

interest in the technique was mainly due to problems encountered when scaling up

the method to larger problems, and because it is not very similar to the way humans

do induction, which makes combining it with an interactive approach quite difficult.

However, the suitability of the technique for refuting non-theorems of significant size,

e.g. a conjecture about properties of a security protocol, had not previously been tested.

Recently, Comon and Nieuwenhuis have proposed a setting of the proof

by consistency technique that encompasses and extends previous versions,

[Comon and Nieuwenhuis, 2000]. It allows proof by consistency to be carried out

using any saturation-based first-order theorem prover. There is no need for any spe-

cialised completion procedure. This allows powerful simplification and redundancy

rules developed for automatic first-order theorem proving to be utilised. Much of the

work in this thesis is based on this setting, and it will be explained in detail in the next

chapter.

1Such a technique must necessarily be incomplete with respect to proving theorems correct, by
Gödel’s incompleteness theorem.

40 Chapter 3. Refuting Incorrect Conjectures

3.5 Evaluation

In order to detect and refute incorrect security conjectures, and so obtain protocol at-

tacks, we require a refutation technique suitable for infinite, inductive models. Various

techniques have been proposed to refute small non-theorems that arise in automated

reasoning systems, as we have seen (§3.2.1, §3.2.2, §3.3). However, little attention

has been paid to refutation of larger non-theorems where enumerating the domain is a

non-trivial task. We decided the proof by consistency technique was the most promis-

ing for this purpose, since it allows us to use the full power of a modern first-order

theorem prover, and it will be interesting to see how useful this aspect of the proof

by consistency technique is in a practical example. Also, it gives us at least a theo-

retical possibility of working towards a proof of the correctness of a secure protocol

at the same time as we search for an attack. We describe the theory of the proof by

consistency technique in more detail in the next chapter.

Chapter 4

The Theory of the

Comon-Nieuwenhuis Method

In this chapter we outline the theory that lies behind the Comon-Nieuwenhuis method

for proof by consistency. The chapter is organised as follows: first we give the back-

ground required in terms of notation, definitions etc. Then we give a description of

the theory and terminology of automatic first-order theorem proving. This is followed

by an overview of how the Comon-Nieuwenhuis method works. We then describe the

method for Horn clause problems in detail, and describe different methods for obtain-

ing I-Axiomatisations (defined in Definition 4 below). Sections 4.3 to 4.6 draw heavily

on [Comon and Nieuwenhuis, 1998] and [Comon and Nieuwenhuis, 2000]. In particu-

lar, all proofs are from [Comon and Nieuwenhuis, 2000], except for Corollary 1, which

we prove here, and Theorem 3, which is proved in [Bachmair and Ganzinger, 1994].

4.1 Background

We use the standard notations of [Dershowitz and Jouannaud, 1990]. T (F ,X) is the

set of terms over a set of symbols F and a denumerable set of variables X . T (F) is

the set of ground terms over F . The subterm of t at position p is denoted t|p, and the

result of replacing t|p with s in t is written as t[s]p.

A multiset over a set S is a function M : S→ N. The union of multisets is defined

41

42 Chapter 4. The Theory of the Comon-Nieuwenhuis Method

as M1∪M2(x) = M1(x)+M2(x), sometimes written as M1,M2.

If → is a binary relation, then ← is its inverse, ↔ is its symmetric closure, →+

is its transitive closure and →∗ is its re¤exive-transitive closure. We write s→ ′ t if

s→∗ t and there is no t ′ such that t → t ′. Then t is called irreducible and a normal

form of s w.r.t. →. The relation → is well-founded or terminating if there exists no

infinite sequence s1→ s2→ We define the join of two relations,→1 ◦→2, to be the

following binary relation: s→1 ◦ →2 t iff ∃u.s→1 u→2 t. A relation→ is con¤uent

if the relation←∗ ◦→∗ is contained in→∗ ◦←∗. A relation→ on terms is monotonic

is s→ t implies u[s]p→ u[t]p for all terms s, t and u and positions p. A congruence is

a re¤exive, symmetric, transitive and monotonic relation on terms.

An equation is a multiset {s, t} of terms, denoted s = t or equivalently t = s. A

£rst-order clause is a pair of finite multisets of equations Γ (the antecedent) and ∆ (the

succedent), written as Γ−→ ∆. It is a Horn clause if ∆ contains at most one equation,

and a de£nite Horn clause if ∆ contains exactly one equation. The empty clause ¤ is

one with both Γ and ∆ empty. We will adopt the notational convention of sometimes

writing the multisets Γ−→ ∆ as disjunctions, i.e. we will write ¬P1∨ . . .∨¬Pn∨Q1∨

. . .∨Qm to denote {P1, . . . ,Pn} −→ {Q1, . . . ,Qn}.

A substitution σ is a function σ : X → T (F ,X). sσ is the term obtained by apply-

ing substitution σ to s.

A rewrite rule is an ordered pair of terms (s, t), written s → t, and a set of

rewrite rules R constitutes a term rewrite system (TRS). The rewrite relation with R

on T (F ,X), denoted→R, is the smallest monotonic relation such that lσ→R rσ for

all l→ r ∈ R and all substitutions σ. If s→R t then we say that s rewrites into t with

R. A rewrite system R is convergent if it is con¤uent and terminating; then every

term t has a unique normal form w.r.t. →R, denoted by n fR(t), and s = t is a logical

consequence of R iff n fR(s) = n fR(t).

A Herbrand model H of a set of clauses E is a set of congruence classes containing

only ground terms referred to in E such that H |= E. A minimal Herbrand model H for

a set of clauses E is a set of congruence classes such that H |= E, with the number of

congruence classes in H less than or equal to the number in any other Herbrand model

for E. An equality Herbrand interpretation is a Herbrand model constructed from a set

4.2. First-Order Theorem Proving 43

of ground terms and a congruence on those terms.

Let R be a set of ground equations or rewrite rules. Then the congruence ↔∗
R

defines an equality Herbrand interpretation denoted by R∗, where the only predicate =

is interpreted by s = t iff s↔∗
R t. We write s = t ∈ R∗ if s↔∗

R t. R∗ satisfies (or is a

model of) a ground clause Γ−→ ∆, denoted by R∗ |= Γ−→ ∆, if R∗ 6⊆ Γ, or R∗∩∆ 6= /0.

The empty clause ¤ is hence satisfied by no interpretation. R∗ satisfies a set of clauses

S, denoted by R∗ |= S, if it satisfies every clause in S.

A (strict partial) ordering on T (F ,X) is an irre¤exive, transitive relation Â. It is a

reduction ordering if it is well-founded and monotonic, and stable under substitutions:

sÂ t implies sσÂ tσ for all substitutions σ.

An example of such an ordering is the recursive path ordering (RPO). For this

ordering, we first set a strict precedence on the symbols in our signature F , ÂF . We

extend this to a suitable ordering Â on T (F ,X), by the following scheme:

f (s1, . . . ,sn) Â si ∀i,1≤ i≤ n

f (s1, . . . ,sn) Â g(t1, . . . , tm) i f f ÂF g, f (s1, . . . ,sn)Â t1, . . . , tm

f (s1, . . . ,si, . . . ,sn) Â g(s1, . . . ,si−1,

t1, . . . , tk,si+1, . . . ,sn) i f f = g or f ÂF ,

si Â t1, . . . ,si Â tk,k ≥ 0

4.2 First-Order Theorem Proving

Automated first-order theorem proving really took off with the advent of Robinson’s

resolution inference rule and £rst-order uni£cation algorithm, [Robinson, 1965]. We

give the resolution inference rule below. Unification is the process of finding substitu-

tions σ such that sσ = tσ for some terms s, t. The crucial point is that the resolution

inference rule is in some sense complete (as explained below), and the first-order uni-

fication algorithm is decidable. This means that first-order theorem proving can be

attempted completely automatically using Robinson’s methods.

Although many refinements have been made to Robinson’s technique, the basic

idea remains the same. Suppose we have a set of axioms A. Axioms are the formulae

we know to be true or assume to be true without proof in our intended semantics.

Additionally, suppose we have a conjecture C, that is a formula we would like to prove

44 Chapter 4. The Theory of the Comon-Nieuwenhuis Method

to be a logical consequence of our axioms. We must first convert the problem into

a suitable form for the resolution rule. To accomplish this, quantifiers are stripped

from the formulae by moving universal quantifiers to the outside, and by Skolemising

existentially quantified variables. Skolemising is the process of replacing existentially

quantified variables with fresh Skolem functions that indicate the dependence of the

existential variable on universally quantified variables. For example,

∃Y P(X ,Y)

is transformed to

P(X , f (X))

with f our new Skolem function. Then we stratify the logical connectives ¬,∧,∨,

putting the axioms and conjectures into conjunctive normal form, i.e. clauses of the

form we described in §4.1:

¬P1∨ . . .∨¬Pn∨Q1∨ . . .∨Qm (4.1)

We call the individual ¬Pi and Q j literals, and the number i or j identifying the literal is

known as the index of the literal. We will sometimes use the Γ−→ ∆ form for denoting

clauses in the rest of this section when it makes the inference rules clearer.

The conjecture C is negated, and the idea then is to prove C by deriving a

contradiction from ¬C∪A. The resolution inference rule is defined like this:

Resolution:

P,Γ1 −→ ∆1

Γ2 −→ ∆2,Q

(Γ1,Γ2 −→ ∆1,∆2)σ

with

σ the most

general unifier

of P and Q

We call the conclusion of the resolution inference rule the resolvent. The ver-

sion of the resolution rule given here is known as binary resolution, as there are only

two resolving literals, P and Q. In order for this form of resolution to be refutation

complete, i.e. guaranteed to find the empty clause from an inconsistent set of clauses

in finite time, we require a rule known as factoring:

4.2. First-Order Theorem Proving 45

Factoring:

Q1∨ . . .∨Qi∨ . . .∨Q j∨ . . .∨Qn

(Q1∨ . . .∨Qi∨ . . .∨Q j−1∨Q j+1∨ . . .∨Qn)σ
with

σ the most

general unifier

of Qi and Q j

The process of searching for the empty clause is typically organised as follows:

clauses are stored in two sets, the usable set and the worked off set. In general, we

start with all clauses in the usable set, though if we know our axioms are consistent

we may use the so-called set of support strategy, in which case only the conjecture

clauses are placed in the usable set, and the axioms in the worked off set.

Proof search then proceeds by picking a clause from the usable set, typically by a

simple weight heuristic, e.g. the clause with the fewest variables and function symbols

is chosen first. This clause is then called the given clause. The given clause is con-

sidered for resolution against all the other clauses in the worked off and usable sets,

unless we are using the set of support strategy in which case given clauses are only

considered for resolution against worked off clauses. Any resolvents produced from

these inferences are placed in the usable set. The given clause is then placed in the

worked off set. This continues until the given clause has weight 0, i.e. it is the empty

clause.

4.2.1 Modern Provers

In the years since Robinson first proposed the resolution calculus, a number of

important refinements have been made which have significantly increased the power

of automated first-order provers. One refinement has been to introduce slight variants

to the inference rules in order to better handle theories with equality. The paramodu-

lation calculus was introduced by Robinson and Wos, [Robinson and Wos, 1969], and

later the superposition calculus was developed by Bachmair and Ganzinger amongst

others, [Bachmair and Ganzinger, 1990, Bachmair and Ganzinger, 1994]. In the latter,

techniques from rewriting theory are used to restrict the application of the inference

rule while still preserving completeness. This requires us to choose well-founded

ordering on the terms in our theory, Â. Informally, the idea is that if our set of clauses

46 Chapter 4. The Theory of the Comon-Nieuwenhuis Method

is inconsistent, then we can get to the empty clause by deriving new clauses which are

smaller (w.r.t. Â) than those it was derived from. The superposition calculus for an

equational problem requires the following four inference rules1. The informal idea of

the superposition rules is to use a positive equation from the left premise as a rewrite

rule to simplify the rightmost clause.

Superposition left:

Γ1 −→ l = r,∆1 Γ2,s = t −→ ∆2

(Γ1,Γ2,s[r]p = t −→ ∆1,∆2)σ
if

σ = mgu(l,s|p) and s is not a variable,

and lσÂ rσ, and lσ = rσ is maximal

w.r.t. Â in (Γ1 −→ l = r,∆1)σ,

and sσÂ tσ and sσ = tσ is maximal

in (Γ2,s = t −→ ∆2)σ

Superposition right:

Γ1 −→ l = r,∆1 Γ2 −→ ∆2,s = t

(Γ1,Γ2 −→ s[r]p = t,∆1,∆2)σ
if

σ = mgu(l,s|p) and s is not a variable,

and lσÂ rσ and lσ = rσ is maximal

in (Γ1 −→ ∆1, l = r)σ, and

sσÂ tσ and sσ = tσ is maximal

in (Γ2 −→ ∆2,s = t)σ
and (s = t)σ 6¹ (l = r)σ.

Equality factoring:

Γ−→ ∆, l = r,s = t

(Γ,r = t −→ ∆,s = t)σ
if

σ = mgu(l,s) and rσ 6º lσ
and lσ = rσ is maximal in (Γ−→ ∆, l = r,s = t)σ

Equality resolution:

Γ, l = r −→ ∆

(Γ−→ ∆)σ
if

σ = mgu(l,r), and lσ = rσ is maximal in

(Γ, l = r −→ ∆)σ

Additionally, we can use information from our orderingÂ to check for redundancy.

If we derive a new clause that can itself be derived from smaller clauses we already

1For superposition left and right, the given clause is the rightmost premise

4.2. First-Order Theorem Proving 47

have, the new clause is redundant and so is pruned from the search space. More for-

mally, we write S≺c to denote the set of all ground instances of clauses S that are

smaller than a ground clause c w.r.t. Â, and then define:

De£nition 1 1. A ground clause c is redundant in a set of clauses S if S≺c |= c.

Similarly, a non-ground clause is redundant if all its ground instances are.

De£nition 2 A ground inference with rightmost premise c and conclusion c ′ is redun-

dant in a set of clauses S if S≺c |= c′. Similarly, a non-ground inference is redundant if

all its ground instances are.

De£nition 3 A set of clauses S is saturated if all inferences with premises in S are

redundant in S.

If we derive a set of saturated clauses S, then we know that it is consistent, so there

is no chance of deriving the empty clause. Techniques exist for constructing a model

from a saturated S (see Definition 11).

In order to determine whether a newly derived clause is redundant in practice, a

number of techniques have been proposed. One is to check for subsumption, i.e. if a

clause we have newly derived is a more specific instance of one we already have, then

it is redundant. In general, checking for subsumption is an NP-complete problem, but

various algorithms have been proposed that produce acceptable performance on a good

number of cases, [Gottlob and Leitsch, 1985].

A simpler test for redundancy is to look for tautologies, for example clauses of the

form Γ,E −→ ∆,E or Γ−→ ∆, t = t. Most modern provers employ rules to detect these

kinds of clauses and a number of other such rules.

As well as rules for testing redundancy, modern provers also employ a number

of rules which simplify the derived clause. These are known as reduction rules.

For example, provers often employ some kind of rewriting based reductions, based

on the rewrite rules inferred from other clauses. The theorem prover SPASS,

[Weidenbach et al., 1999], employs the following rules for local rewriting:

48 Chapter 4. The Theory of the Comon-Nieuwenhuis Method

Γ1 −→ ∆1,s = t Γ2,E −→ ∆2

Γ1 −→ ∆1,s = t

Γ2,E[tσ]p −→ ∆2

if

E|p = sσ, s = t is strictly maximal

in Γ1 −→ ∆1,s = t,

and sÂ t and Γ1σ⊆ Γ2,∆1σ⊆ ∆2

Γ1 −→ ∆1,s = t Γ2 −→ ∆2,E

Γ1 −→ ∆1,s = t

Γ2 −→ ∆2,E[tσ]p

if

E|p = sσ, s = t is strictly maximal

in Γ1 −→ ∆1,s = t,

and sÂ t and Γ1σ⊆ Γ2,∆1σ⊆ ∆2

Another refinement to the method is literal selection, the rough idea being that,

since we need to eliminate all literals in a clause to obtain a refutation, it cuts down

the search space if we decide to work on eliminating one literal at a time. For this

we define a function that selects a (possibly arbitrary) negative literal from a clause,

and then only that literal is considered as an equation s = t in a superposition left

inference. Only maximal selected literals (w.r.t. our ordering Â) are considered for

the other equations in superposition inferences. Superposition remains complete under

selection. A common strategy is to select a literal in a clause only if that clause has

more than one maximal literal.

4.2.2 Memory Allocation

A major improvement to the efficiency of theorem prover implementation has resulted

from the use of term indexing. This is used both to save memory, and to speed up

operations such as searching for unifying literals for use in inference and reduction

rules. The principle of the method is to try to store every subterm that occurs in the

worked off or usable set only once, together with a set of links to superterms containing

that subterm. These superterms are linked back to their own superterms, and hence

back to literals and then to clauses. Normalisation techniques are used to allow non-

ground terms to be shared more efficiently. This saves memory, and therefore also

allows the program to run faster.

To see how term indexing also allows inferences and reductions to be calculated

faster, suppose we have a given clause Γ,s = t −→ ∆ and we want to consider it for

4.2. First-Order Theorem Proving 49

inferences by superposition left on our selected literal s = t. We can retrieve possible

right premises for the inference rule application by looking at the subterms of s, ex-

tracting unifying subterms from the index, and then tracing back their superterm links.

This avoids the potentially very laborious process of looking through all the clauses

we have, looking through each literal in each clause and then looking in each literal

for a unifying term. In terms of efficiency improvement, term indexing is probably the

biggest implementation based advance to have been made in theorem proving in the

last 20 years.

4.2.3 Answer Extraction

Some applications of theorem proving require that we extract an answer, i.e. we prove

an existential goal ∃x.P(x) and extract a witness t satisfying P(t). This can be done in

resolution style theorem proving by the use of answer literals, [Green, 1969]. These

literals contain an occurrence of all the universally quantified variables2 that we are

interested in an instantiation of. As unifications are found and applied to the literals in

a clause, they are also applied to the answer literals. However, the answer literals are

hidden in the sense that they don’t count towards the weighting of a clause, and they

are never used for inferences. When the empty clause is derived, we simply look in the

answer literal and read off the value of the variable, yielding our answer t.

Answer extraction extends naturally from the resolution calculus to equational cal-

culi like the superposition calculus. We just need to accumulate the unifiers in the same

way. Some recent work has shown completeness of the method for equational calculi

(i.e. if we find all the proofs of a ∃x.P(x) = y conjecture, we will have obtained all

valid answers t such that P(t) = y), [Lynch, 1997].

2Recall that we negate a conjecture in order to try and prove it, so our existentially quanti£ed vari-
ables in the original conjecture will now be universally quanti£ed.

50 Chapter 4. The Theory of the Comon-Nieuwenhuis Method

4.3 Overview of Comon-Nieuwenhuis Method

The proof by consistency technique was developed to solve problems in equational

theories, involving a set of equations defining the initial model3, E. We will refer

to these as the axioms. The problem then is to establish the truth (or otherwise) of

a conjecture C with respect to this equational system, where C is not an equational

theorem of the system (i.e. there may be models of E in which C is not true), but C

may be an inductive theorem of E, i.e. it is true in the initial model.

The approach is to produce a first-order axiomatisation A of the minimal Herbrand

model such that C∪A ∪E is consistent if and only if C is an inductive consequence

of E. As we saw in §4.2.1, modern first-order theorem provers have two modes of

termination: one in which a contradiction is derived and the (negated) conjecture is

refuted, and one where the prover ascertains that a refutation cannot be found, and

so the conjecture is consistent with the axioms. If we can show consistency with our

axiomatisation A and the axioms E, then we have shown that C is a theorem of the

initial model of E. Note that this is the other way round to ordinary resolution theorem

proving, where we check the consistency of E ∪¬C, and if the consistency check fails

(i.e. we derive the empty clause), we have proved C. In proof by consistency, if our

consistency check of C∪A ∪E fails, then we have shown that C is not an inductive

theorem of E.

4.4 The Comon-Nieuwenhuis Method for Horn Clauses

Although the Comon-Nieuwenhuis method can be applied to non-Horn specifications,

the method for Horn clauses is easier to understand, as we have a unique minimal

model of the axioms. All the security protocol problems in this thesis are specified in

terms of Horn clauses.

We assume the axioms contain only equations, i.e. that equality is the only pred-

icate symbol. Other specifications could be transformed to meet this requirement by

converting literals A into A = true, with true a new, minimal function symbol. We will

3The initial or standard model is the minimal Herbrand model. This is unique in the case of a Horn
or purely equational speci£cation.

4.4. The Comon-Nieuwenhuis Method for Horn Clauses 51

also firstly assume that our set of axioms is saturated under superposition and equality

resolution (i.e. they could be written as a convergent rewrite systems). Later we will

show how to drop this requirement.

Suppose we have a saturated set of Horn clauses E, a set of conjectures C, and a

total ordering Â on the terms in E. Then there is a unique minimal Herbrand model of

E, which we will call I. In order to reduce the problem of proving or disproving C to

first-order consistency, we require an I-Axiomatisation:

De£nition 4 A set of £rst-order formulae A is an I-Axiomatisation of I if

1. A is a set of purely universally quanti£ed formulae

2. I is the only model of E ∪A up to isomorphism.

A must therefore contain enough negative information to rule out all non-minimal

Herbrand models. Assuming a total ordering on terms, Â, we define a normal I-

Axiomatisation.

De£nition 5 A ground term t is normal if it is the minimum (w.r.t. Â) representative of

its congruence class in I. A ground clause c is normal if all terms in c are normal. A

substitution σ is normal if xσ is normal for all x in the domain of σ.

De£nition 6 Let A be a set of £rst-order clauses s.t. I |= A and A |= s 6= t for all pairs

of distinct normal terms s and t. Then A is a normal I-Axiomatisation.

A proof that a normal I-Axiomatisation is indeed an I-Axiomatisation can be

found in [Comon and Nieuwenhuis, 2000]. Not all I-Axiomatisations are normal,

however we need our I-Axiomatisations to be normal for Theorem 2 below. Nor-

mal I-Axiomatisations are also convenient to construct. For example, suppose E is the

following specification of natural numbers and the plus symbol:

0+ x = x

s(x)+ y = s(x+ y)

52 Chapter 4. The Theory of the Comon-Nieuwenhuis Method

Then the following two formulae constitute a normal I-Axiomatisation, withÂ defined

such that + is bigger than s or 0:

0 6= s(x)

s(x) = s(y) −→ x = y

This theorem about I-Axiomatisations states a property central to the Comon-

Nieuwenhuis technique:

Theorem 1 If A is an I-Axiomatisation, then A ∪E ∪C is consistent ⇐⇒ I |= C

Proof: If I |= C, then I |= A ∪E ∪C, and hence A ∪E ∪C is consistent. Conversely,

if the set A ∪E ∪C is consistent, then it has a Herbrand model, as it is a set of purely

universal formulas. Now, this model must be I, as I is the only Herbrand model of

E ∪A . ¤

Comon and Nieuwenhuis discuss techniques for constructing I-Axiomatisations for

various classes of problem. We will look at this issue in §4.6 below.

We will now move on to the method of showing the consistency of A ∪E ∪C.

Informally, an attempt to show consistency involves two parts. In one, we pursue a

fair induction derivation. This is a restricted kind of saturation, where we need only

consider overlaps between axioms and conjectures, and produce inferences from an

adapted superposition rule. In the second part, every clause in the induction deriva-

tion is checked for consistency against the I-Axiomatisation. If any consistency check

fails, then the conjecture is incorrect. If they all succeed, and the induction derivation

procedure terminates, the theorem is proved.

We now describe the first part of the method more formally. The only inference

rule required by the prover is conjecture superposition. This is a superposition rule

restricted to simplification of conjectures by axioms. The left premise of the rule is a

(definite) Horn clause from E and the right premise is a conjecture c from C:

4.4. The Comon-Nieuwenhuis Method for Horn Clauses 53

Conjecture superposition:

D∨ l = r c

(D∨ c[r]p)σ
if

σ = mgu(c|p, l) and c|p is not a variable, and

for some ground θ:

lσθÂ (rσθ,Dσθ), and, if p is inside s in a

negative literal s = t of c then sσθÂ tσθ

The notion of redundancy is slightly different to that in conventional saturation-

based theorem proving, in that it includes the use, without ordering restrictions, of

any formula known to be true in I. This includes lemmas, i.e. arbitrary first-order

clauses L such that I |= L. We might have proved these in previous runs of the

Comon-Nieuwenhuis method or by other means. Redundancy is also defined with

respect to unproved conjectures which are smaller with respect to Â than our possibly

redundant conjecture. This is where the essence of induction is found - the use of

smaller conjectures in this manner is similar to applying an induction hypothesis.

Let C≺c be the set of all formulae in C smaller than conjecture c with respect to our

ordering Â. We then define the following:

De£nition 7 A ground conjecture c is redundant in a set of conjectures C if E ∪A ∪
L∪C≺c |= c. A non-ground conjecture c is redundant if all its ground instances are.

De£nition 8 A ground inference by superposition with rightmost premise c and con-

clusion c′ is redundant in a set of conjectures C if E ∪A ∪L∪C≺c |= c′. Similarly, a

non-ground inference is redundant if all its ground instances are.

De£nition 9 A set of conjectures C is saturated if all inferences by conjecture super-

position with rightmost premises in C are redundant in C.

We can now define a fair induction derivation. Informally, it is a sequence of sets

of conjectures in which all conjectures are, at some finite point in the sequence, shown

to be redundant, or considered for conjecture superposition.

De£nition 10

1. An induction derivation is a sequence of sets of conjectures C0,C1, . . . such that

each Ci+1 is obtained from Ci either by adding to Ci a logical consequence of

E,A ,L,Ci or by removing from Ci some conjecture that is redundant in Ci.

54 Chapter 4. The Theory of the Comon-Nieuwenhuis Method

2. A conjecture is persistent in the derivation if for some j it belongs to all Ck with

k ≥ j.

3. A derivation is fair if every conjecture superposition inference with a persistent

rightmost premise is redundant in C j for some j.

The second key theorem of the technique is this:

Theorem 2 Let A be a normal I-Axiomatisation, and C0,C1, . . . be a fair induction

derivation. Then I |= C0 iff A ∪{c} is consistent for all clauses c in ∪iCi.

To prove this theorem, we need a lemma, which states the fact that our inference system

only need reduce non-normal clauses:

Lemma 1 Suppose A is a normal I-Axiomatisation and c is a clause. Let cσ be a

normal clause such that I 6|= cσ. Then A ∪{c} is inconsistent.

Proof: (from [Comon and Nieuwenhuis, 2000]) A ∪{cσ} is inconsistent if (i) every

model of A satisfies the negative literals of cσ, and, (ii) no model of A satisfies any of

the positive ones. If I 6|= cσ then I |= s = t for all negative equations s = t in cσ. Since

s and t are both normal, it must be the case that s ≡ t, which implies (i). For (ii), let

u = v be a positive equation in cσ. Since I 6|= cσ, we have u 6≡ v, and hence, by the

normality of A , A |= u 6= v, and hence no model of A satisfies u = v. This implies the

inconsistency of A ∪{cσ}, and hence of A ∪{c}. ¤

We also require a definition of how to construct a model R∗ for a saturated set of (Horn)

clauses. The idea is to define a rewrite system R based on the rules generated by the

clauses, and then to use this to define a congruence for constructing a model.

De£nition 11 An instance G of the form, Γ −→ l = r, of a clause in E generates the

rule l→ r if

1. R∗G 6|= G,

2. l Â r, and (l = r)Âe e for all equations e in Γ,

3. l is irreducible by RG. where RG is the set of rules generated by all instances D of

clauses in E such that GÂG D. We denote by R the set of rules generated by all ground

instances of E.

4.4. The Comon-Nieuwenhuis Method for Horn Clauses 55

Theorem 3 (from [Bachmair and Ganzinger, 1994]) The ground TRS R is convergent.

Furthermore, if E is saturated under superposition and equality resolution then either

¤ ∈ E or else R∗ is a model for E, i.e. E is consistent. More precisely, I is isomorphic

to R∗.

Equipped with these definitions and results, we are now in a position to prove Theo-

rem 2.

Proof of Theorem 2: For the forward implication, suppose ∃ some c ∈ some C j s.t.

A ∪{c} is inconsistent, then I 6|= C0, since all such c are logical consequences from

E,A ,L,C0 and I |= E,A ,L.

For the reverse implication, assume A ∪ {c} is consistent ∀c ∈ ∪iCi. Suppose for

contradiction that I 6|= C0. Then we derive a contradiction from the existence of a

minimal (w.r.t. Â) ground instance cσ of a clause c in ∪iCi s.t. I 6|= cσ.

If c is redundant in some C j then from the definition of redundancy of conjectures, it

follows that there is some false instance of a conjecture in C j that is smaller than cσ,

contradicting the minimality of cσ.

Otherwise c must be persistent. By lemma 1, cσ is not a normal clause, otherwise

A ∪ {c} would be inconsistent. Furthermore, σ must be normal, since otherwise σ
must be reducible by R (see definition 11) into some σ′ such that I 6|= cσ′ and cσÂ cσ′,
contradicting the minimality assumption on cσ. Since cσ is therefore not a normal

clause, cσ is reducible at some position p by a rule lθ→ rθ in R, generated by some

clause D∨ l = r in E. Then (cσ)|p ≡ lθ and hence c|p and l are unifiable by some mgu

α.

Furthermore, if cσ is reducible by some rule in R only by some negative literal

sσ = tσ, then, since I |= sσ = tσ, the normal forms of sσ and tσ w.r.t. R coincide.

Hence, if sσÂ tσ, the maximal side sσ is reducible by R. Therefore, there exists some

inference by conjecture superposition

D∨ l = r c

(D∨ c[r]p)α

whose conclusion has an instance cσ[rθ]p such that I 6|= cσ[rθ]p and moreover cσ Â
cσ[rθ]. By fairness of the induction derivation, this conclusion is redundant in some

56 Chapter 4. The Theory of the Comon-Nieuwenhuis Method

C j. But then from the definition of redundancy of inferences, it follows that there is

some false instance of a conjecture in C j that is smaller than cσ, contradicting the

minimality of cσ. ¤

A key point about Theorem 2 is that it also gives us refutation completeness.

Corollary 1 The Comon-Nieuwenhuis system is refutation complete, i.e. will refute

any conjecture c inconsistent with E ∪A in £nite time.

Proof: Suppose c is our conjecture such that I 6|= c. Then the second half of the proof

of Theorem 2 shows that A 6|= {c′} for some c′ in ∪iCi. By fairness of the induction

derivation, we will eventually consider this c′. All that is required is that we do indeed

detect the first-order inconsistency between c′ and the I-Axiomatisation. If we use a

standard resolution-style theorem prover, for example, then as observed in §4.2, we

have the completeness required. ¤

Having refuted a non-theorem in this way, we now have an overall proof of the

falsehood of our original universally quantified inductive conjecture C. This consist

of two parts, first a derivation of some c′ via conjecture superposition inferences, and

then a derivation of the empty clause from c′∪A by standard first-order resolution type

methods. This refutation constitutes a resolution style proof of the theorem ¬C. Hence,

we can extract the counterexample, t, using Green’s answer literals, as described in

§4.2.3.

Note that we used the normality of A in the proof of Theorem 2. In fact, this

is required not just for this particular proof but for the theorem itself to hold. For

a counterexample, suppose we have a set of axioms E = a = b,c = d for constants

a,b,c,d, ordering aÂ bÂ cÂ d, I-Axiomatisation A = a 6= c, and C the false conjec-

ture b = d. We now have no available conjecture superposition inferences that can lead

us to a = c, and so detection of the inconsistency is not possible. In §6.9, we show that

the I-Axiomatisation we use in our security protocol model is normal, so preserving

refutation completeness.

4.5. Non-saturated Sets of Axioms 57

4.5 Non-saturated Sets of Axioms

A key advance on previous proof by consistency techniques made by the Comon-

Nieuwenhuis technique is its ability to handle non-saturated sets of axioms E, i.e.

specifications which cannot be expressed as a convergent rewrite system. Instead, we

require that E is a reductive de£nition, which is defined in terms of constructors. We

explain this part of the method here.

We defined constructors informally in §3.2. More formally, let F be the union

of F0, a non-empty set of constructor symbols, and D , a set of de£ned symbols. As-

sume E0 is a saturated subset of E build over T (F′,X). Terms in T (F′,X) are called

constructor terms. The constructors are called free if E0 is empty. We additionally

assume E is sufficiently complete, i.e. for every ground term s there is some ground

constructor term t such that E |= s = t.

As an example of a simple constructor specification, the two equations we gave

after Definition 6 in §4.4 specify + as a defined symbol in terms of constructors s

and 0. As an example of a function that cannot be defined in a convergent rewrite

system, we give the gcd function, as shown in Example 1. Our constructors here are

s and 0, and + and gcd are the defined symbols i.e. + is defined in terms of s and 0,

and gcd is defined in terms of s,0 and +. Our term ordering Â should ensure that all

defined symbols are larger than all constructor symbols, e.g. by using the RPO with

precedence gcd Â+Â sÂ 0.

Example 1

E =















































x+0 = x

s(x)+ y = s(x+ y)

gcd(0,x) = x

gcd(x,0) = x

gcd(x,x+ y) = gcd(x,y)

gcd(x+ y,y) = gcd(x,y)

This is not a saturated specification, but it is what Comon and Nieuwenhuis call a

reductive de£nition:

58 Chapter 4. The Theory of the Comon-Nieuwenhuis Method

De£nition 12 Let E be a possibly non-saturated constructor-based speci£cation

where E = E0 ∪E1 is a set of Horn clauses. E0 contains clauses axiomatising con-

structor terms, and E1 contains clauses de£ning the de£ned symbols.

Furthermore, assume that for every ground term u of the form f (t1, ..., tn) where

t j ∈ T (F0) for j = 1..n and f ∈D , there is some clause in E1 with an instance Γ−→
l = r such that E |= Γ, l = u, l is headed by f , and u Â (Γ,r). Then E is called a

reductive definition.

To see that our gcd definition in Example 1 is reductive, take any term u of the form

gcd(sn(0),sm(0)). If n (respectively m) is 0, then u is equivalent to the smaller term

sn (respectively sm). Otherwise, without loss of generality, let m = n + n′. Then E |=

gcd(sn(0),sn+n′(0)) = gcd(sn(0),sn(0)+sn′(0)), which can be reduced by the fifth rule

to gcd(sn(0),sn′(0)), which is smaller w.r.t. Â than u. Hence Example 1 is a reductive

definition.

In the proof of Theorem 2, sautratedness was used for showing that if cσ is not normal,

then cσ is reducible by R. The purpose of this is to show that for non-normal cσ such

that I 6|= cσ, there is some conjecture superposition inference yielding a smaller false

conjecture. We can also show this in the case of a reductive definition, as long as our

conjecture has a de£nition pattern:

De£nition 13 A definition pattern is a term of the form f (x1, . . . ,xn) where f is a

de£ned symbol and xi and x j are distinct variables for 1≤ i, j,≤ n, i 6= j.

Lemma 2 Let E be a reductive de£nition and let c be a conjecture such that c|p, with

p the position of the innermost de£ned symbol, is a de£nition pattern.

Then for every ground instance cσ where σ is normal, there exists some inference

by conjecture superposition at position p with a conclusion c′, and a normal substitu-

tion σ′ such that I 6|= cσ implies I 6|= c′σ′, and furthermore, cσÂ c′σ′.

Proof: Let c|p be f (x1, . . . ,xn)σ. By Definition 12, there exists an instance c2∨ l = r

of a clause c1 in E1 such that E |= l = s, l is headed with f , and s Â (c2,r). Further-

more, since σ is normal, l º s Â r. Hence there exists an inference of c1 on c, whose

conclusion has an instance of the form c2∨ cσ[r]p with the desired properties. ¤.

4.6. Finding I-Axiomatisations 59

We can appeal to this lemma instead of saturatedness to complete the proof of

Theorem 2 in the case where E is not saturated, but is a reductive definition. However,

we must be sure we have a definition pattern. In [Comon and Nieuwenhuis, 2000,

p.21-22], Comon and Nieuwenhuis give details of how this can be achieved using

variable abstractions.

Our formalism for the security protocol problem is a reductive definition rather than

a saturated one. However, it has a very simple equational part of the theory, and defined

symbols are always the outermost function symbols in a literal, allowing us to recover

refutation completeness without recourse to the variable abstraction mechanism. The

details of this are given in §6.8, after we have presented the formalisation itself. The

idea is to prove a stronger form of Lemma 2 without requiring definition patterns, and

thence to prove Theorem 2 for our formalism.

4.6 Finding I-Axiomatisations

There are a number of ways of obtaining a suitable set of clauses to be an

I-Axiomatisation A . In Musser’s original setting for proof by consistency,

[Musser, 1980], he assumed the presence of a completely de£ned equality function,

i.e. a function eq with the property that two terms are equal under the congruence re-

lation given by the equation set E if and only if eq(s, t) = true, and unequal if and only

if eq(s, t) = false. true and false are assumed to be irreducible.

Lemma 3 In this situation, a suf£cient I-Axiomatisation is the single equation true 6=

false.

Proof: I |= A as true 6=E false as soon as the initial algebra is not trivial. If M |= E∪A ,

then for any two ground terms s, t, if I 6|= s = t, then the normal forms of s and t

are different. It follows that E |= eq(s, t) = false, hence M |= eq(s, t) = false. Since

M |= true 6= false, M 6|= eq(s, t) = true, hence M 6|= s = t.

For any two ground terms, we have M |= s = t iff I |= s = t. If M is a Herbrand model,

it is isomorphic to I. ¤

For problems for which we have a set of free constructors, we can use Huet and

Hullot’s technique, [Huet and Hullot, 1982].

60 Chapter 4. The Theory of the Comon-Nieuwenhuis Method

De£nition 14 A set of constructors C is free if:

E ∪{s 6= t|s, t ∈ T (C),s 6≡ t} is consistent.

If we have this condition for our theory E, then we simply define A to express the

inequality of any two non-identical constructors, like this:

For every constructor symbol c:
∀x1, . . . ,xn,y1, . . . ,yn.c(x1, . . . ,xn) = c(y1, . . . ,yn) −→ x1 = y1∧ . . .∧ xn =
yn

For every pair of distinct constructors c,c′:
∀x1, . . . ,xn,y1, . . . ,yn.c(x1, . . . ,xn) 6= c′(y1, . . . ,yn)

Huet and Hullot also assume that E is a convergent rewrite system and, quite reason-

ably, that constructor terms are considered smaller than defined symbols.

Lemma 4 Under Huet and Hullot’s assumptions, A as speci£ed above is a normal

I-Axiomatisation.

Proof: Let s and t be distinct ground terms such that s Â t and s is minimal in its

equivalence class. Then s is irreducible, by convergence of the rewrite system, hence s

is a constructor term. Since s Â t, t must also be a constructor term. Since s and t are

distinct, then we must have A |= s 6= t.

For problems with non-free constructors, we may be able to use an

inductive reducibility predicate, as described by Jouannaud and Kounalis,

[Jouannaud and Kounalis, 1989]. This applies when the problem can be specified in

terms of a convergent rewrite system R. A term is defined to be inductively reducible

w.r.t. R if all its ground instances are reducible. Our I-Axiomatisation A is the rewrite

system R, and A ∪ {c} is inconsistent iff c is an equation l = r, l 6≡ r, and l is not

inductively reducible. Alternatively, Comon and Nieuwenhuis describe a method for

lifting the rewrite system to a finite set of clauses A so that consistency checking can

be carried out with a standard prover[Comon and Nieuwenhuis, 2000, p. 32].

Comon and Nieuwenhuis also give a general procedure for determin-

ing I-Axiomatisations for Horn clause examples based on disunification,

[Comon and Nieuwenhuis, 2000, p. 29]. However, the details are quite complex

and it is not really relevant to our work. Our protocol model uses free constructors, as

does Paulson’s. We describe the I-Axiomatisation we use in §6.9.

4.7. Summary 61

4.7 Summary

In this chapter, we have defined the notation we will use in the thesis, and explained

the theory of first-order theorem proving. We have given an overview of the Comon-

Nieuwenhuis method for proof by consistency, and explained in detail how it works for

the Horn clause case. The most important result is Theorem 2, which we have shown

gives us refutation completeness. Following the proof of this theorem, we made the

important observation that the answer extraction mechanism explained in §4.2.3 can

be simple adapted for extracting counterexamples from our refutation.

We have also discussed the theory of construction I-Axiomatisations. For free

constructor theories, such as the security protocol models developed in this thesis, it is

very straightforward.

Chapter 5

System Description

This chapter is divided into three sections. First, we describe the adaptation of a first-

order prover to pursue a fair induction derivation. Then we describe the parallel archi-

tecture of our system (which we decided to call CORAL) and explain how this facili-

tates the I-Axiomatisation check. Finally we give some results from testing CORAL.

5.1 Adapting a First-Order Prover

The aim of the system was an implementation of the Comon-Nieuwenhuis method for

proof by consistency in a fast, modern theorem prover. The first stage of this task

was to adapt a prover to construct fair induction derivations (Definition 10, p. 53).

This included the ‘conjecture superposition’ inference rule (see §4.4), and the use of

lemmas to show redundancy (also §4.4).

5.1.1 Choosing a First-Order Prover

The first issue addressed by our implementation work was the choice of first-order

theorem prover to adapt for proof by consistency. We chose SPASS, because it had

shown good performance in recent CASC first-order theorem prover competitions,

[Pelletier et al., 2002], and because the source code is freely available from the SPASS

website. The code is written in C and is well commented (in English), which also

contributed to the decision to use it.

63

64 Chapter 5. System Description

SPASS is described in [Weidenbach et al., 1999] and, more extensively, in

[Weidenbach, 2001]. It features term indexing, an extensive set of reduction rules,

and a variety of inference rules for different syntactic classes of problem.

5.1.2 Separation of Axioms and Conjectures

The inference rule described in §4.4 is similar to the normal superposition rule, except

that it requires that only overlaps between conjectures and axioms be considered, i.e.

the left premise is always an axiom and the right premise a conjecture. This means

that our system has to keep derived clauses and axioms separate, rather than putting

them together in a set of ‘worked-off clauses’ as is the standard practice in first-order

theorem proving.

In common with all modern first-order theorem provers, SPASS uses term indexing

to allow fast checking for clauses containing literals that unify. This is used both

when looking for a clause to partner the given clause in an application of an inference

rule, and also when performing redundancy checks on derived clauses. We only need

to check for unifications between axioms and conjectures (or usable clauses) when

considering inference rules, but when checking for redundancy we will need to check

lemmas and previously derived (i.e. worked off) clauses as well. In this process, the

worked off clauses and lemmas have the same status, so we can save some memory

and time by putting them in a shared index together. This is indeed what CORAL does,

producing a theorem prover with 3 sharing indexes, instead of the normal 2:

Axioms - used for conjecture superposition rule and redundancy checking

Worked Off - contains lemmas as well as worked off clauses, used for redundancy

checking

Usable - contains derived clauses yet to be considered as given clauses

Input to SPASS is via a file in DFG syntax, [Hähnle et al., 1996]. This is a common

syntax used in several provers, and translators exist to convert from and to this format

to and from other commonly used standards. DFG syntax only contains provision

for the input of axioms and conjectures. It would be a shame to deviate from this

5.1. Adapting a First-Order Prover 65

format. So, in the CORAL system, instead of changing the format to add in a section

for lemmas, we just use the existing label mechanism. Any axiom or conjecture in a

DFG syntax file can have a label attached, which is then used when referring to the

formula in the output of a proof. If no labels are given, SPASS creates its own labels,

like ‘axiom2’ or ’conjecture1’. So, CORAL treats any axiom the user has given a label

matching ‘lemmaN’ as a lemma, and adds it to the worked off index instead of the

axiom index.

5.1.3 The Use of Lemmas in Reduction Rules

By our definition in §4.4, we are permitted to use both axioms, lemmas and worked off

clauses in our proofs of redundancy. Lemmas in this context are taken to be theorems

added by the user to the input set that have been proved already. Our implementation

fully supports this. Some reduction rules required no modification to work with our

newly organised shared indexes. These are the ones that only compare the clause being

reduced to one other clause, such as subsumption checking (see §4.2)1. For these, we

just need to repeat the subsumption check firstly with the axiom index, and then with

the worked off index. This is precisely what CORAL does.

Only slightly more complicated is the implementation of rules such as rewriting,

where several previously derived rules may be used. In the standard implementation

of SPASS, this is done in one of two modes, depending on whether we have specified

complete inter-reduction or lazy reduction at the command line. In complete inter-

reduction mode, we may use rewrite rules inferred from either the worked off set or

the usable set. In lazy reduction mode, we only reduce with respect to the worked off

set. In CORAL, we made changes to allow the axiom set to be used for generating

rewrite rules in both these modes, although for our protocol experiments we used only

complete inter-reduction.

CORAL must exhaustively reduce a clause by rewriting, and in order to do this, it is

not sufficient to exhaustively rewrite using rules from one index, and then again with

the other indexes. It may be that by applying a rewrite rule from one index, we reduce

1The rules requiring no modi£cation were: trivial literal elimination (in SPASS notation Obv), unit
con¤ict (UnC), tautology elimination (Taut), subsumption deletion (Sub), removal of redundant equa-
tions (AED), and condensation (Con)

66 Chapter 5. System Description

a literal such that a rule from another index may apply. So where previously SPASS

would have reduced a clause using rules from the worked off set, CORAL’s rewriting

loop checks first for applications of rules from the axiom index, and then from the

worked off index. If either of these produces a reduction, then we go back and look

again for a rule to apply to the newly reduced clause. When complete inter-reduction is

specified, we combine our new mechanism for reducing with respect to rules from the

axiom and worked off indexes with the existing mechanism for additionally reducing

with respect to the usable set, allowing exhaustive reduction via rules from all three

sets of clauses.

5.1.4 Recovery of the Counterexample

A system designed to detect incorrect conjectures is only of practical use if it can also

exhibit counterexamples. For our proposed application to cryptographic protocols, a

counterexample to a security property will constitute an attack on the protocol, the

vital piece of evidence required to show that the protocol is indeed ¤awed.

To present counterexamples found, we used the same mechanism involving answer

literals explained in §4.2. In order to implement this in CORAL, it was necessary

to keep the answer literals ‘unshared’, i.e. not to place them into the term index.

This stops them from being picked up as potential partners for an application of the

inference or reduction rules.

When using CORAL for a problem where the counterexample is of interest, the

Ans command line ¤ag must be set. In this case, CORAL will move any answer literals

in the conjecture to the end of the clause, and keep them unshared. To see the final

answer, the standard SPASS ¤ag PEmp should also be set. This means that when an

empty clause is derived, it is printed out, revealing the answer.

5.2 I-Axiomatisation Checking

Theorem 2 requires that we check every clause in the fair induction derivation against

an I-Axiomatisation. If an inconsistency is found here, this indicates an incorrect con-

jecture. The fair induction derivation process is not guaranteed to terminate. In order

5.2. I-Axiomatisation Checking 67

to retain refutation completeness, we have to do our I-Axiomatisation checking at the

same time as the fair induction derivation is being computed.

In implementing the I-Axiomatisation check in CORAL, we were faced with two

choices: first, to combine I-Axiomatisation checking and inductive completion in a

single super prover, whereby we would keep a separate I-Axiomatisation set of clauses

in memory, and check each derived clause against it before adding it to the worked off

set. Second, we could feed derived clauses off to a parallel I-Axiomatisation checker.

We decided to opt for the latter option, for several reasons. One is that it allows us

to carry out the check at the same time as the induction derivation, as required in the

specification, but without resulting in a large, messy and unwieldy program. Another

advantage is that we are able to easily devote a machine solely to inductive completion

in the case of harder problems. It is also very convenient when testing a new model to

be able to just look at the deduction process before adding the consistency check later

on, and we preserve the attractive separation in the theory between the deduction and

the consistency checking processes.

Figure 5.1 illustrates the operation of CORAL. The induction derivation, as de-

scribed in §4.4, is pursued by the modified SPASS prover on the right of the diagram.

Every non-redundant clause derived is passed to the refutation control client on the left,

which launches a standard SPASS prover to do the check against the I-Axiomatisation.

Crucially, these spawned SPASS s are not given the original axioms – only the I-Axioms

are required (by Theorem 1, p. 52). Communication between the processes is via sock-

ets.

If, at any time, a refutation is found by a spawned prover, the proof is written to a

file and the completion process and all the other spawned SPASS processes are killed.

If completion is reached by the induction prover, this is communicated to the refutation

control program, which will then wait for the results from the spawned processes. If

they all terminate with saturation, then there are no inconsistencies, and so the theorem

has been proved (by Theorem 2, page 54).

One final issue was the passing on of answer literals. The I-Axiomatisation check

may frequently make further instantiations of variables in the answer literals, and we

would like the final answer presented to re¤ect these. To achieve this, we simply pass

68 Chapter 5. System Description

refutation control
client

(possibly several)

I−Axiomatisation file Problem file

File for each
spawned

clauses
all generated

I−Axiomatisation file
Problem file

Inputs:

standard

Spass

Spass

induction derivation(via sockets)

Spass

Figure 5.1: CORAL system operation

the answer literals on to the spawned SPASS processes in their partially instantiated

state, and any further substitutions are accrued in the usual way, resulting in the cor-

rect final answer being presented. It may well be that different spawned processes will

return different answers, but this is expected, and all the answers will be valid coun-

terexamples. This is proved in Green’s original paper on the use of answer literals,

[Green, 1969].

5.3 Testing

Before proceeding to develop the formalism for the cryptographic security protocol

verification problem, we tested the system. The separation of inductive completion

and I-Axiomatisation checking means that almost all of the search for an inconsis-

tency is done by the prover designed for inductive problems, and the spawned SPASS

processes are just used to check for inconsistencies between the new clauses and the

I-Axiomatisation. This should lead to a false conjecture being refuted after fewer in-

5.3. Testing 69

ference steps have been attempted than if the conjecture had been given to a standard

first-order prover together with all the axioms and I-Axioms. Additionally, we have

refutation completeness for our method, whereas a standard prover will not be able to

deal with commutativity conjectures. We tested this on a number of small examples

from the non-theorem refutation literature.

The results of this are in Table 5.1. The first three examples are from Protzen’s

work, [Protzen, 1992], and the next three from Reif et al.’s, [Reif et al., 2000]. As ex-

plained in §3.2.1, §3.2.2, these are two well-known techniques for refuting incorrect

inductive conjectures. Their examples are taken from verification case studies in in-

ductive theorem proving. The first example is the one given as a worked example in

§3.2.1. The next two are slightly tougher examples from inductive theorem proving

case studies. In particular, the third example shows how the splitting up of the in-

ference process into the fair inductive derivation and the I-Axiomatisation checking

allows us to tackle commutative type conjectures.

The fourth example is a lists conjecture from one of Reif’s case studies. The fifth

and sixth are from a case study in graph theory. In Reif’s graph theory work, a graph

is represented by a list containing entries v(x), which indicates the graph contains a

vertex x, and e(x,y), which indicates the graph contains a directed edge from x to y.

Referring to a vertex in an edge constructor implies it is also in the graph. So, the

counterexample to the conjecture ‘all graphs are acyclic’ is a graph with one vertex,

a, and a loop edge from a back to a. The counterexample to the next conjecture, ‘all

loopless graphs are acyclic’, is a graph with two nodes, a and s(a), with edges running

from a to s(a), and from s(a) to a, producing the cycle. Reif remarked that that this one

of the toughest conjectures he tested his system on, and it took several seconds to find

the counterexample. CORAL takes just under one second on a Pentium III machine.

The final example involving the greatest common divisor function, gcd, is in-

cluded because previous methods of proof by consistency could not refute this con-

jecture. This was because the gcd function could not be specified by a convergent

rewrite system. Comon and Nieuwenhuis showed in theory how it could be tack-

led, [Comon and Nieuwenhuis, 2000], and here we confirm that our implementation

of their method works.

70 Chapter 5. System Description

In addition to the results in the table, we also present the comparison between the

number of clauses derived by CORAL and the number derived by a standard prover in

a graph, Figure 5.2. Here, the clauses required by a standard prover are plotted on the

x-axis and the number of clauses required by CORAL on the y-axis. Both scales are

logarithmic. We only have a small number of data points, but we can see that CORAL

appears to save more time over the cruder approach as the examples get larger. This is

encouraging. We discuss our results on these examples in §11.7.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

Log (clauses required by standard prover)

Lo
g

(c
la

us
es

 r
eq

ui
re

d
by

 C
or

al
)

Coral’s Performance on some Non−theorem Examples

Figure 5.2: CORAL’s run-times in terms of clauses derived compared with that for a

standard prover

5.4. Summary 71

5.4 Summary

We have presented in this chapter our implementation of the Comon-Nieuwenhuis

method for proof by consistency. It involved the adaptation of a state of the art first-

order prover SPASS, to allow it to carry out the restricted inference steps to compute a

fair induction derivation, and to allow it to carry out consistency checking. The key fea-

tures are the separate indexes for axioms and lemmas, and the parallel I-Axiomatisation

checker utilising sockets.

The results achieved on some examples from the non-theorem literature were

enough to convince us that CORAL was working properly. Our work continued to

the task of formalising the cryptographic security protocol problem.

72
C

ha
pt

er
5.

S
ys

te
m

D
es

cr
ip

tio
n

Table 5.1: Sample of Results on Non-theorems from the Literature. In the third column, the £rst number shows the number of

clauses derived by the inductive completion prover, and the number in brackets indicates the number of clauses derived by the

parallel checker to spot the inconsistency. The fourth column shows the number of clauses derived by an unmodi£ed £rst-order

prover when given the conjecture, axioms and I-Axioms all together.

Problem
Counterexample

found

No. of clauses

derived to

find refutation

No. of clauses

derived by a

standard prover

∀N,M.¬(s(N)+M = s(0)) N = 0,M = 0 2(+0) 2

X 6= Y ∧X 6= 0∧Y 6= 0

⇒ (X ≥ Y ∧Y 6= 0)∨

(X 6= 0∧Y = 0)

X = s(0),

Y = s(s(X))
4 (+3) 6

app(K,L) = app(L,K) K = [0],L = [s(X)] 9(+11) stuck in loop

sort(l1)∧ l2 = app(l1, [head(l3)])

∧length(l3)≥ 2∗ length(l1)

∧l3 6= nil∧

member(head(l1), tail(l3))

⇒ sort(l2)

l1 = [s(X)],

l2 = [s(X),0]

l3 = [0,s(X)|Y]

55(+1) 76

All graphs are acyclic [e(a,a)] 99 123

All loopless graphs are acyclic [e(s(a),a),e(a,s(a))] 178 2577

gcd(X ,X) = 0 X = s(0) 17(+2) 29

Chapter 6

Formalisation of the Protocol

Veri£cation Problem

In this chapter we describe our formal model for cryptographic protocol analysis. It

is based on Paulson’s higher-order inductive model, [Paulson, 1998], which he for-

malised in Isabelle/HOL. Comon and Nieuwenhuis’ ‘Proof by Consistency’ is a first-

order technique, so we required a first-order model for the problem. Since we want to

provide a complementary counterexample finding tool for the Isabelle/HOL approach,

we tried to produce a model that is as close as possible to being a first-order version of

Paulson’s. We will show why it is possible to construct such a model in a satisfactory

way, and then give details of our solution.

6.1 The Nature of the Paulson Model

A key feature of most cryptographic protocols is the typed nature of the information

exchanged. Items sent in a message can be intended as keys, nonces, timestamps etc.

Some protocols have been found to be susceptible to type attacks, where a principal

accepts a nonce as a key for example (see §2.3.6). These kind of attacks assume

that such type confusion is possible, e.g. that the same number of bits are used to

specify a nonce and a key. Good engineering practice can easily prevent these kind of

attacks, [Heather et al., 2000]. Paulson’s model assumes that such an implementation

73

74 Chapter 6. Formalisation of the Protocol Veri£cation Problem

is used, i.e. that items of one type cannot be confused with items of another type.

Consequently, he uses typed higher-order logic to formalise protocols. Each item has

its type, and the type cannot change. However, no other higher-order features are used,

such as quantification over sets. This means we can produce a first-order version of the

model using some notion of first-order types or sorts.

6.2 Example - Needham-Schroeder Public Key

To explain how our model works, we will use the example of the Needham-Schroeder

public key protocol (see §2.2). This protocol was one of the first proposed in the origi-

nal paper on cryptographic protocols, [Needham and Schroeder, 1978]. The discovery

of a ¤aw in the protocol 17 years later was a major event, [Lowe, 1995]. Since then, it

has been used as the standard example for almost all tools for protocol analysis. Ex-

plaining our formalism for this protocol facilitates comparison with other approaches.

6.3 Free Constructors, Deciding Equivalence

At the base of our model is a free constructor theory. We have two basic sorts, numbers

and agents.

Numbers: 0,s(0),s(s(0)), . . .

Agents: spy,a,s(a),s(s(a)), . . .

Note that spy is an agent. For trusted third party protocols like Otway–Rees (see

§2.3.5), we will have a key server as well, but this is not accepted as an agent. In-

stead the server is a special 0 arity function symbol.

A free constructor theory allows us to easily produce axioms to decide (in)equality

of any pair of symbols. This allows us to restrict the overall theory to Horn clauses (i.e.

clauses with at most one positive literal). This restriction is achieved by using an equa-

tional theory where everything is equated to two symbols, true, or false (this follows an

example given by Comon and Nieuwenhuis, [Comon and Nieuwenhuis, 2000]). Sup-

pose we would like to add a rule

A∧¬B∧C→ D

6.3. Free Constructors, Deciding Equivalence 75

(this matches the pattern of the rules for principals sending new messages in §6.5). In

more usual disjunctive form, the clause would be written

¬A∨¬C∨B∨D

We can see from the two positive literals, B and D, that it is not Horn. However, when

we convert to the equational theory described above, the original rule looks like

A = true∧B = f alse∧C = true→ D = true

which is a Horn clause. We require suitable axioms for deciding the falsity of literals

equated to false. For example, we have a set of axioms for deciding if two agents are

the same person:

eqagent(U,V)=false→eqagent(s(U),s(V))=false

→ eqagent(spy,s(U))=false

→ eqagent(s(U),spy)=false

→ eqagent(s(U),a)=false

→ eqagent(a,s(U))=false

→ eqagent(a,spy)=false

→ eqagent(spy,a)=false

→ eqagent(U,U)=true

Note that we only need the one clause to decide if the agents are the same person,

since in a free constructor theory, two terms are equal only if they are syntactically

identical.

We also have functions agent and number for checking that symbols belong to the

sorts defined above. The slightly unusual construction for testing if a symbol is an

agent is to prevent things like s(spy),s(s(spy)), . . . qualifying as agents.

→ agent(spy)=true

→agent(a)=true

→agent(s(a))=true

agent(s(U))=true→agent(s(s(U)))=true

→number(0)=true

number(U)=true→number(s(U))=true

Protocols for key distribution often involve a secure server. In these cases, we represent

this principal as a special symbol, server.

76 Chapter 6. Formalisation of the Protocol Veri£cation Problem

6.4 Principals, Keys and Nonces

There are a number of different types of object that may form part of a message sent

in a protocol. However, to keep our formalism general and easily extensible, we don’t

want to have to define a set of symbols for each one and a set of axioms for deciding

equivalence of their constructor symbols. So instead we base them all on numbers, and

use a single arity function symbol as a type specifier. So we have message objects like

this:

Nonces: nonce(0), nonce(s(0)), . . .
Keys: key(0), key(s(0)), . . .

Note that these keys are short term keys generated by a server for shared key protocols.

Long term keys and public keys are based on the names of the principals:

Public keys: pubk(a), pubk(s(a)), . . .
Long term keys: longtermkey(a), longtermkey(s(a)), . . .

The names of agents, when they appear in the contents of a message, are represented

in a similar way:

Agent identifiers: principal(a), principal(s(a)), . . .

We usually want to put groups of symbols together to send in a message. We decided

to do this using fixed sized tuple symbols (pair, triple,quad etc.) rather than ¤exible

length lists, as this will enable CORAL to tell the difference between two unequal length

messages quickly without having to dig down the list. Some protocols have a ¤exible

amount of data in certain messages, but we can model this by including a list inside

the appropriate tuple symbol (for an example of this, see the modelling of message 3

of the Asokan–Ginzboorg protocol, Chapter 9).

A trace of messages exchanged by the principals is represented by a list, with the

usual cons and nil symbols being employed. The list consists of elements of the form

sent(A,B,M), with sent a special arity 3 symbol. The first two arguments store the

identities of the agent who sent the message and the intended recipient. The third

holds the body of the message. The reason for using this special symbol (rather than

6.4. Principals, Keys and Nonces 77

just triple) is to increase readability, but to also enable a shortcut in the definition of

the eq symbol, since we know that the first two elements of the triple will be agent

identifiers (see below).

As a final message element, we need to consider encrypted information. This is

represented by an arity 2 symbol encr, with the first argument being the data and the

second being the key. We can use the tuple symbols inside the first argument to encrypt

a package of data. Note that we don’t specify whether this is public or symmetric key

encryption – this is handled for a particular protocol by the rules governing what each

agent (and the spy) is able to do. As in most protocol models, we assume ‘perfect

cryptography’, i.e. that the only way someone may decrypt encr(X ,Y) is by knowing

the appropriate symmetric key Y or private key Y−1, depending on the encryption

scheme used.

These identifiers allow us to define an arity 2 function eq which can be used to

decide equivalence of any two symbols in the theory. It is defined by the following

axioms:

→ eq(U,U)=true

eq(MSG1,MSG2)=false→ eq(sent(U,W,MSG1),sent(V,Y,MSG2))=false

eqagent(A,B)=false→ eq(sent(A,W,X),sent(B,Y,Z))=false

eqagent(A,B)=false→ eq(sent(W,A,X),sent(Y,B,Z))=false

eq(H1,H2)=false→ eq(cons(H1,T1),cons(H2,T2))=false

eq(T1,T2)=false→ eq(cons(H1,T1),cons(H2,T2))=false

eq(MSG1,MSG2)=false→ eq(encr(MSG1,KEY1),encr(MSG2,KEY2))=false

eq(KEY1,KEY2)=false→ eq(encr(MSG1,KEY1),encr(MSG2,KEY2))=false

eq(M1,M2)=false→ eq(pair(M1,X),pair(M2,Y))=false

eq(M1,M2)=false→ eq(pair(X,M1),pair(X,M2))=false

eq(U,V)=false→ eq(nonce(U),nonce(V))=false

eq(U,V)=false→ eq(s(U),s(V))=false

→ eq(nonce(U),principal(V))=false

→ eq(principal(U),nonce(V))=false.

→ eq(a,s(U))=false

→ eq(spy,s(U))=false

78 Chapter 6. Formalisation of the Protocol Veri£cation Problem

→ eq(0,s(U))=false

→ eq(s(U),a)=false

→ eq(s(U),spy)=false

→ eq(s(U),0)=false

→ eq(a,spy)=false

→ eq(spy,a)=false

Note that the clauses for defining eq on terms with sent as their outermost function

symbol pass the check on the first two arguments on to the special eqagent function.

This speeds up the check and prevents nonsense values for agent identifiers being found

when the check is performed on uninstantiated variables (as will often be the case).

These would be detected later, but might waste a lot of proving time.

6.5 Protocol Messages

Our message trace model follows Paulson’s very closely. We define a unary function m

which is true just when its argument is a valid trace (with respect to the protocol being

modelled). It is defined recursively. The empty trace nil is a valid trace, and a valid

trace may be extended by a protocol message from an agent, or by a faked message

from the spy. To decide whether an agent can extend a trace with a particular message,

we need to be able to decide things about the messages that have already been sent.

For this, we first need a standard member function, defined like this:

eq(H1,H2) = false∧member(H1,L) = false
→ member(H1,cons(H2,L)) = false

→ member(U,nil)=false

member(H,L)=true→ member(H,cons(W,L))=true

→ member(H,cons(H,T))=true

member(U,nil)=true→

This allows an agent to decide, for example, only to send a message 2 when a valid

message 1 has been received. We also need agents to be able to generate fresh nonces.

We assume that fresh nonces are ‘perfectly fresh’, i.e. no freshly generated nonce

6.5. Protocol Messages 79

ever coincides with a previously used one. In a practical implementation of a pro-

tocol, agents would probably just choose random numbers from a suitably enormous

range so as to make coincidentally equal nonces almost impossible. To get a perfectly

fresh nonce, we have to define a ‘parts’ operator, similar to the one used by Paulson,

[Paulson, 1998, p. 12]. If H is a list of messages, then parts(H) is the least set contain-

ing the messages in H closed under projection and decryption. We are only concerned

with determining when something is not in parts(H). So we define the operator and a

set membership function in like this:

in(U,parts(V)) = false∧ in(U,parts(W)) = false
→ in(U,parts(cons(sent(X,Y,W),V))) = false

in(U,parts(V)) = false∧ in(U,parts(W)) = false
→ in(U,parts(encr(V,W))) = false

in(U,parts(V)) = false∧ in(U,parts(W)) = false
→ in(U,parts(pair(V,W))) = false

eq(U,V)=false→ in(nonce(U),parts(nonce(V)))=false

→ in(nonce(U),parts(principal(V)))=false

→ in(nonce(U),parts(key(V)))=false

→ in(U,parts(nil))=false

Having defined member and parts, we can then model the agents participating in a

protocol. For an explanation of this, we return to our example: the Needham-Schroeder

public key protocol. The protocol, explained in §2.2, looks like this:

1. A→ B : {| NA,A}| pubKB

2. B→ A : {| NA,NB}| pubKA

3. A→ B : {| NB}| pubKB

These three messages are modelled in our formalism like this:

agent(A)=true∧ agent(B)=true∧ number(NA)=true∧ m(Trace)=true∧
in(nonce(NA),parts(Trace))=false
→m(cons(sent(A,B,encr(pair(nonce(N),principal(A)),pubk(B))),Trace))=true

number(NB)=true∧ m(Trace)=true∧ in(nonce(NB),parts(Trace))=false
member(sent(X,B,encr(pair(nonce(NA),principal(A)),pubk(B))),Trace)=true
→m(cons(sent(B,A,encr(pair(nonce(NA),nonce(NB)),pubk(A))),Trace))=true

80 Chapter 6. Formalisation of the Protocol Veri£cation Problem

m(Trace)=true∧
member(sent(X,A,encr(pair(nonce(NA),nonce(NB)),pubk(A))),Trace)=true∧
member(sent(A,B,encr(pair(nonce(NA),principal(A)),pubk(B))),Trace)=true
→ m(cons(sent(A,B,encr(nonce(NB),pubk(B))),Trace))=true.

The first clause specifies that any agent can add a message 1 to the trace provided

the types for the nonce number and the agent identifiers are correct, and provided that

the nonce is fresh. Recall that we use the pubk(A) symbol to mean the public key

belonging to A. This makes it easy to decide who can decrypt the package (only agent

A). The second clause says that any trace with a message one in it may be extended

with a message 2 from the recipient of the message 1. Note that the agent responding

to message 1 cannot know for certain who the message 1 was from. We model this

with the new variable X in the member literal as the first argument of the sent function.

Again we require the nonce to be fresh.

The third clause specifies that a trace containing a message 1 from agent A, and a

message 2 apparently in response to that message, may be extended by a message 3

from A. The reader may have noticed that we allow principals to respond any number

of times to a message – this is the same as in Paulson’s formalism.

Finally, we need a clause specifying that the empty list is a valid trace, again fol-

lowing Paulson’s model:

→ m(nil)=true

A difference between our model and Paulson’s model is that the Paulson model

explicitly specifies that an agent should not send a message to himself. We could quite

easily add this specification to our model, using the eqagent symbol, but we omit it.

Instead we specify in our conjectures that if we are interested in some property for

party A in a run with party B, then they must be distinct agents. In practice, this speeds

up the discovery of counterexamples, since there are slightly fewer literals to consider.

6.6 Modelling Intruder Knowledge

To define what messages an intruder or spy may send, we need to define two more

operators. These are almost identical to those proposed by Paulson, [Paulson, 1998,

6.7. Term Ordering 81

p. 12]. The first is analz(H), defined to be the least set containing H closed under

projection and decryption by known keys. The second is synth, which is the least

set including agent names closed under pairing and encryption by known keys. Our

definition differs slightly from Paulson’s: since we will only ever be concerned with

the contents of synth(analz(X)) rather than just synth(X), we combine the definitions

together. The final content of synth(analz(X)) is identical to that in Paulson’s model

though. Here are the relevant clauses:

member(sent(U,V,W),X)=true→ in(W,analz(X))=true

in(encr(U,pubk(spy)),analz(V))=true→ in(U,analz(V))=true

agent(U)=true∧ in(V,synth(analz(W)))=true
→ in(encr(V,pubk(U)),synth(analz(W)))=true

in(pair(U,V),analz(W))=true→ in(U,analz(W))=true

in(pair(U,V),analz(W))=true→ in(V,analz(W))=true

in(U,synth(V))=true∧ in(W,synth(V))=true
→ in(pair(U,W),synth(V))=true

in(U,analz(V))=true→ in(U,synth(analz(V)))=true

agent(U)=true→ in(principal(U),analz(V))=true

→ in(U,synth(analz(nil)))=false

→ in(U,analz(nil))=false

Finally, we have a rule allowing the spy to add to a trace any message that he knows

how to make.

m(Trace) = true∧ eq(spy,AGENT) = false∧
in(MSG,synth(analz(Trace))) = true∧
→ m(cons(sent(spy,AGENT,MSG),Trace))=true (†)

6.7 Term Ordering

Superposition theorem proving requires a term ordering, as described in §4.2. For our

protocol formalism, we use a recursive path ordering (RPO), as defined in §4.1, with

one minor modification. In order for the analz operator to work as desired, we need

the ordering to work the opposite way when comparing two in(X,analz(Y)) terms.

82 Chapter 6. Formalisation of the Protocol Veri£cation Problem

Normally under the recursive path ordering, if one term has a function symbol as its

top functor, and the other term has a variable which is an argument of the first term’s

function symbol, then the first term is considered largest. An example makes this

clearer. We have rules which look like:

in(pair(U,V),analz(W))=true→in(U,analz(W))=true

The idea of this rule is that it allows the spy to decompose pairs of terms into com-

ponent parts. Under the RPO, the left hand side will be considered larger, since it

contains the variable U inside the function pair. However, we want the right hand side

to be maximal, as otherwise we won’t be able to use it for inferences by conjecture su-

perposition on negative literals (informally, we expect to encounter conjecture clauses

with the interpretation ‘the spy can send a particular fake message if he can get term

T ’, which corresponds to a clause with a negative in(T,analz(Trace)) literal). In order

to make the rule applicable to these clauses, we reverse the ordering for these kinds of

rules. This modification to the ordering requires a very simple addition to CORAL’s

implementation. When the SPOrd ¤ag is set, the result of a comparison between two

in(x,analz(Trace)) literals is reversed.

Note that our new ordering is in general now not well-founded. To see this, con-

sider a sequence

in(U,analz(Y))Â in(pair(U,V),analz(Y))Â in(pair(pair(U,V),W)) . . .

However, we prevent a sequence of terms like this from ever arising in our theory

by using ¤at constructors for messages of length 2,3 etc. as outlined in §6.4 above.

A heuristic reduction rule (described in §7.1) prevents terms with nested constructors

from arising. Note that our list constructor cons, which of course does have to occur

nested in order to make a list, does not arise inside the X in in(X,analz(y)) terms. This

is because the cons part of the trace is stripped away by the rule

member(sent(U,V,W),X)=true→ in(W,analz(X))=true

giving us just the message contents. Messages do not contain lists in fixed 2 and 3 party

protocols. In the case of group protocols however, like the one studied in Chapter 9,

we do indeed have lists inside messages. We discuss this problem in §9.2.2.

6.8. Refutation Completeness 83

In general, choosing the precedence for an ordering to be used for superposition

theorem proving is very much a matter of trial and error. One obvious restriction is

that defined symbols should be considered larger than the things they are defined in

terms of. With this in mind, we chose the ordering:

mÂinÂÂagentÂnumberÂmemberÂeqÂnonceÂsynthÂanalzÂcons
ÂencrÂsÂkeyÂpairÂsentÂnilÂ0ÂaÂspyÂfalseÂtrue

6.8 Refutation Completeness

As we saw in §4.5 (page 57), Comon and Nieuwenhuis recover refutation completeness

in the case of a non-saturated theory by means of reductive de£nitions (Definition 12)

and de£nition patterns (Definition 13). They use these two concepts in Lemma 2:

Lemma 2 Let E be a reductive de£nition and let c be a conjecture such that c|p, with

p the position of the innermost de£ned symbol, is a de£nition pattern.

Then for every ground instance cσ where σ is normal, there exists some inference

by conjecture superposition at position p with a conclusion c′, and a normal substitu-

tion σ′ such that I 6|= cσ implies I 6|= c′σ′, and furthermore, cσÂ c′σ′.

This lemma is then used to complete the proof of refutation completeness for the

Comon-Nieuwenhuis method for reductive definitions. However, although our formal-

ism is reductive, we do not in general have definition patterns. Comon and Nieuwen-

huis give a method for producing definition patterns in general formulae, but this adds

to the complexity of the inference process and is something we would like to avoid.

Fortunately, we can prove a version of Lemma 2 specific to our formalism, but with

the same conclusion. This is then sufficient to complete the proof of refutation com-

pleteness (see [Comon and Nieuwenhuis, 2000, p. 21]). Our form of the lemma is:

Lemma 3 Suppose E is the formalism for security protocols given above. Then for

every non-normal ground instance cσ where σ is normal, there exists some inference

by conjecture superposition with a conclusion c′, and a normal substitution σ′ such

that I 6|= cσ implies I 6|= c′σ′, and furthermore, cσÂ c′σ′.

84 Chapter 6. Formalisation of the Protocol Veri£cation Problem

Proof: First note that in our theory, all literals take the form of f (t1, . . . , tn) =

{true/ f alse}, with f a defined symbol from m, in,eq,agent,number,member, and no

further defined symbols occurring in the ti. This means that all superposition inferences

happen at the first position. Recall also that our formalism is a free constructor theory,

so equality in the formalism corresponds to syntactic identity.

To simplify the proof, we restrict the conjectures we will pose to Prolog-style

queries, i.e. with only negative literals. One literal specifies that we have some valid

trace Trace, and the other literals specifying properties of the trace using member, eq

and in(.,analz(.)), or specifying types using number or agent. This is sufficient to

cover secrecy, authenticity, resistance to disruption, and other properties. All the con-

jectures used to rediscover known attacks in Chapter 8, and also to carry out the case

studies described in Chapters 9 and 10, fit into this category.

Now, take a ground instance of a conjecture cσ, with σ a normal substitution.

We will now show that if I 6|= cσ, then a literal in the conjecture clause is reducible,

resulting in a smaller clause c′. Since cσ is non-normal, there must exist a literal

l = f (t1, . . . , tn) = {true/ f alse}. Now we treat the case where f is each defined sym-

bol in turn:

m(t1) = true: if t1 is nil, then l is immediately reducible to the tautology true = true.

Otherwise, t1 is equal to some other ground term. Since I 6|= cσ, then a counterexample

exists to our security conjecture, in which case t1 must be a sublist of a valid trace. Then

t1 is of the form cons(sent(.,.,),..). For a valid trace, this is always reducible by rule †

(above, §6.6, page 81) if the first message was sent by the spy, or one of the rules in

§6.5 if it was sent by an honest agent. Note we will not pose conjectures of the form

m(X)=false, since this is rather pointless.

member(t1, t2) = {true/ f alse}: From our definition in §6.5, l is reducible for any

ground term provided t2 is a list. But since t2 always will be the trace, and in the case

of I 6|= cσ, as above, t2 must be a sublist of a valid trace, so it must be a valid list and

hence l is reducible.

eq(t1, t2) = {true/ f alse}: In §6.4 we defined clauses specifying eq over all ground

terms. One of these will always apply to l in this case reducing it to {true/ f alse} =

{true/ f alse} as appropriate.

6.9. I-Axiomatisation 85

in(t1,analz(t2)) = true: Always reducible by the rules in §6.6.

in(t1,synth(analz((t2))) = true: Always reducible to in(t1,analz(t2)), by the rule in

§6.6.

in(t1, parts(t2)) = false: The rules in §6.5 reduce l for any ground term t2 provided

t1 is a nonce. But the only occurrences of parts in our theory refer to nonces, so l is

indeed reducible.

number(t1) = true: Since I 6|= cσ, t1 is a valid number, so l is reducible by the rules in

§6.3.

agent(t1) = true: As for number above.

¤

6.9 I-Axiomatisation

As we have a free constructor theory, and a completely defined equality function eq,

the job of constructing an I-Axiomatisation is an easy one. We can simply use Musser’s

technique (see §4.6). Hence the only equation we need in our I-Axiomatisation is

true 6= false

I-Axiomatisations constructed by Musser’s method are not necessarily normal.

However, ours is normal:

Theorem 4 The I-Axiomatisation as de£ned above is normal for our theory.

Proof: Suppose s Â t and s is minimal w.r.t. its congruence class. The eq function in

our theory reduces any two ground terms arising in the theory to true or false. Hence

if sÂ t, then s = t ≡ f alse = true, hence A |= s 6= t. ¤

6.10 Comparison between Paulson’s Formalism and

CORAL’s Formalism

Paulson’s inductive model for security protocol analysis is well established, and ac-

cepted as being a suitable model for the problem. Our model retains the key features

86 Chapter 6. Formalisation of the Protocol Veri£cation Problem

of Paulson’s model that give it its expressivity: we model an unbounded number of

agents, nonces, and messages in the trace. The formulae for modelling the honest

agents behaviour are almost identical. The formalism of the parts, synth and analz

operators is the same modulo the fact that we combine their definitions with the def-

inition of the in set membership operator. However, we cannot prove an equivalence

in the sense that any protocol and security property that can be formalised in Paul-

son’s model can also be formalised in ours. The problem is that Paulson’s model is in

higher-order logic, allowing quantifications to be made that we cannot make. Perhaps

someone might propose a protocol that establishes properties of some arbitrary set of

different types of object, and we will want to prove properties that quantify over all

possible types.

More differences between our formalism and Paulson’s are introduced in the next

chapter, where we introduce optimisations to make the search for refutations more

efficient. These optimisation are based principally on the results of Syverson et al.,

[Syverson et al., 2000], where it is shown that it is not necessary to model an arbitrary

number of bad agents, that is agents with compromised keys, nor is it necessary to

model a spy who may send any term. It is sufficient to model a spy who has a single

long term key (or a single malicious insider) who only sends messages which look like

messages from the protocol, i.e. will be accepted as valid protocol messages by some

hones agent. We show how we incorporate these results into our formalism in §7.2.1.

The salient point is that thanks to the results of Syverson et al., we have not reduced

the expressivity of our model in terms of finding protocol attacks.

Key advantages of the Paulson model are its naturalness and simplicity, which we

believe we have retained. In particular, these features have allowed the Paulson model

to be easily adapted to new non-standard protocols and security properties, for example

where the timeliness of messages must be modelled, [Bella and Paulson, 1997], or an

arbitrary number of principals may be involved, [Paulson, 1997], or properties such as

non-repudiation must be considered, [Bella and Paulson, 2001]. We believe that our

model has similar properties, as is demonstrated by its adaptation to two very different

kinds of group protocol in Chapter 9 and Chapter 10. We will return to this point in

our evaluation in §11.5.

6.11. Formulating Conjectures in the Formalism 87

6.11 Formulating Conjectures in the Formalism

The conjectures we have disproved in CORAL are very similar to those Paulson at-

tempts to prove. For example, here is the ‘possibility property’ for the Needham-

Schroeder public key protocol. A possibility property basically states that there are

valid traces that reach the end of the protocol. In our formalism, we effectively refute

an impossibility conjecture, i.e. that there are no valid traces that reach the end. The

counterexample is a valid trace. With the conjecture

% A and B are distinct honest agents
eqagent(A,B)=false ∧
eqagent(A,spy)=false ∧ eqagent(B,spy)=false∧

% Trace is a valid Needham-Schroeder trace
m(Trace)=true∧

% Trace contains a message 3
member(sent(A,B,encr(pair(nonce(NA),principal(A)),pubk(B))),Trace)=true
→

CORAL gives the counterexample

answer(cons(sent(s(a),a,encr(nonce(0),pubk(a))),

cons(sent(a,s(a),encr(pair(nonce(s(0)),nonce(0)),pubk(s(a)))),

cons(sent(s(a),a,encr(pair(nonce(s(0)),principal(s(a))),pubk(a)))

,nil)))),tru)

which is just a straight run of the protocol (note that message 3 appears first and mes-

sage 1 last, because of the way the lists are built in CORAL). We wrote a simple pretty-

printing script in Perl reverse the message order and give the output in a something

close to standard notation. for example, for the counterexample above, it produces the

output:

s(a) --> a : { N(1) , s(a) }_PK(a)

a --> s(a) : { N(1) , N(0) }_PK(s(a))

s(a) --> a : { N(0) }_PK(a)

88 Chapter 6. Formalisation of the Protocol Veri£cation Problem

which corresponds to a straight run of the protocol:

1. s(a)→ a : {| N1,s(a)}| pubKa

2. a→ s(a) : {| N1,N0}| pubKs(a)

3. s(a)→ a : {| N0}| pubKa

Attacks on protocols are found by refuting security properties. In Chapter 8, we

show how we posed conjectures to find known attacks on four security protocols. In

Chapter 9, we show how we posed conjectures which allowed CORAL to discover three

new attacks on a protocol. However, before this could be done, we had to add some

heuristics to CORAL to make the search problem tractable. These are described in

Chapter 7.

6.12 Summary

In this chapter we have shown how we formulated a first-order version of Paulson’s

inductive model, giving the formalisation of the Needham-Schroeder public Key pro-

tocol as a worked example. Our formalism consists only of Horn clauses, and uses

simple first-order types. We have shown why the Comon-Nieuwenhuis method is refu-

tation complete with respect to our formalism. We have also demonstrated the kind

of output CORAL gives when a counterexample is found, and how our pretty printer

renders it easy to understand. To refute security conjectures in a reasonable amount of

time, we had to add some domain specific reduction rules to the basic CORAL system

outlined in Chapter 5, and make some additions to the basic formalism. These heuris-

tics are described in the next chapter. In Chapter 8, we show how some known attacks

were found using CORAL and this formalism. In Chapters 9 and 10, we show how we

used the formalism to model group protocols, and find five new attacks.

Chapter 7

Optimisations

To make CORAL effective in finding attacks on faulty protocols, we had to make some

optimisations, both to the formalism described in the previous chapter and to the imple-

mentation of CORAL itself. We describe those optimisations and the reasoning behind

them here. The development of these heuristics was carried out during the rediscov-

ery of the attacks on the Needham-Schroeder, Otway-Rees, Neuman-Stubblebine and

Clark-Jacob protocols described in the next chapter. However, no further heuristics

were needed to carry out the case study described in Chapter 9, and for the case study

in Chapter 10, we simply had to re-implement the heuristic described in §7.3 to suit

the adapted formalism.

Throughout this chapter, it will help to bear in mind that the nature of CORAL is to

construct traces backwards, from the final message towards the first.

7.1 Elimination of Invalid Terms

A key heuristic was to eliminate clauses containing malformed terms, i.e. terms con-

taining nested pair, triple or quad type constructors. The exception is when the nested

constructor occurs inside an encr constructor – the correct way to represent a message

like

NA,{| NB,B}| KB

in our formalism is

89

90 Chapter 7. Optimisations

pair(nonce(NA),encr(pair(nonce(NB),principal(B)),key(B)))

CORAL contains a function that checks a term for nested pair type constructors taking

into account the encr constructor. Clauses containing malformed terms are discarded

as redundant.

7.2 Restricting the Spy’s Messages

One large source of combinatorial blow-up is the specification of the spy. He can send

anything he can build out of the preceding traffic in the network. This gives him the

potential to send a lot of garbage that has no chance of fooling the honest principals.

We use several heuristics to combat this problem. Heuristics of this type are used in

many protocol analysis tools, and are sometimes referred to as step compression, since

they combine steps taken by the spy to intercept and send messages with the steps

taken by honest agents to send messages in the protocol.

7.2.1 Spy Only Sends Protocol Messages

The spy has nothing to gain from sending messages which honest players will not

recognise as part of the protocol (this is shown formally in [Syverson et al., 2000]).

Therefore, we can cut down the search space by allowing the spy only to send mes-

sages which fit the protocol pattern. For example, in our formalism for the Needham-

Schroeder public key protocol (see §2.2), we turn the single rule:

m(XT)=true ∧ eq(spy,AGENT)=false ∧
in(MSG,synth(analz(XT)))=true
→ m(cons(sent(spy,AGENT,MSG),XT))=true

into the set of three rules (one for each protocol message):

% spy faking a message 1
m(Trace)=true ∧
in(encr(pair(nonce(NA),principal(A)),pubk(B)),synth(analz(Trace)))=true
∧ eq(spy,B)=false→
m(cons(sent(spy,B,encr(pair(nonce(NA),principal(A)),pubk(B))),Trace))=true

7.2. Restricting the Spy’s Messages 91

% spy faking a message 2
m(Trace)=true∧
in(encr(pair(nonce(NA),nonce(NB)),pubk(A)),synth(analz(Trace)))=true
∧ eq(spy,A)=false→
m(cons(sent(spy,A,encr(pair(nonce(NA),nonce(NB)),pubk(A))),Trace))=true

% faked message 3
m(Trace)=true∧
in(encr(nonce(NB),pubk(B)),synth(analz(Trace)))=true
∧ eq(spy,B)=false→
m(cons(sent(spy,B,encr(nonce(NB),pubk(B))),Trace))=true

7.2.2 Spy Only Expects Protocol Messages

A similar idea is to adapt the rules which model the spy learning new information to

the protocol being considered. CORAL builds traces in reverse, so what we are aiming

to do is remove clauses that involve the spy sending a message containing terms he

cannot possibly obtain from previous messages in the trace. For example, we don’t

want the spy to send messages based on the assumption that an honest agent will have

sent his long term key in clear text. To this end, in the case of the Needham-Schroeder

public key protocol, we exchange the single rule:

member(sent(A,B,MSG),Trace)=true→in(MSG,analz(Trace))=true

for the set of rules:

member(sent(X,Y,encr(pair(nonce(NA),principal(A)),pubk(B))),Trace)=true
→in(encr(pair(nonce(NA),principal(A)),pubk(B)),Trace)=true

member(sent(X,Y,encr(pair(nonce(NA),nonce(NB)),pubk(A))),Trace)=true
→in(encr(pair(nonce(NA),nonce(NB)),pubk(B)),Trace)=true

member(sent(X,Y,encr(nonce(NB),pubk(B))),Trace)=true
→in(encr(nonce(NB),pubk(B)),Trace)=true

Now the spy can only expect to gain information from messages that conform to the

protocol. To save the user some effort, we wrote a short Perl script to take the messages

92 Chapter 7. Optimisations

required to specify a protocol and produce both the rules required for eavesdropping

on messages like the ones above, and the rules required for the spy faking messages

like the ones in §7.2.1.

7.2.3 Spy Only Expects Subterms from Protocol Messages

As an enhancement to the above heuristic, we prevent the spy from expecting not just

invalid messages, but also terms which are not a subterm of a valid protocol message.

We can eliminate such terms very quickly by taking advantage of the term indexing

mechanism used in SPASS and similar modern provers (see §4.2). In order to speed up

the search for candidate literals for the next inference step, the prover indexes terms

by storing only one copy of every subterm, along with pointers to all of its superterms,

in the worked off clause index. In CORAL, where we have a separation between the

axioms and the worked off clauses in order to implement the proof by consistency

strategy (see §5.1.2), we also have such an index for the axiom clauses. The result of

this is that, for any given subterm, we can quickly extract a list of all literals in the

axiom set that contain candidate unifiers for that subterm1. We can then quickly check

to see if any of these are a succedent m() literal. These only occur in the description

of the protocol for honest users (see §6.5), and in the optimised version of the rules for

the spy’s faked messages (above, §7.2.1). So, a subterm found in such a situation must

be a subterm of a valid protocol message.

A clause containing a literal of the form in(X ,analz(Trace)) indicates that the spy

has sent a message containing the subterm X , and expects to find it in an earlier mes-

sage in the trace. If this subterm X , fails the test described above, i.e. it does not occur

in any succedent m() literal, then such a subterm does not exist in any valid message,

so the clause is pruned away as redundant.

7.2.4 No Two Spy Messages in a Row

In a normal two or three party protocol, where no honest party sends two messages in

a row, it can be seen that the spy gains nothing from sending two messages in a row. If

1The statistics in Table 8.2, on page 106, give an indication of how fast these operations are compared
to those required for subsumption checking and rewriting

7.3. Eager Elimination of Unsatis£able parts Literals 93

there is an attack on such a protocol involving the spy sending two messages in a row,

then there must also be one where he sends the first, waits for a response, and then

sends the second. We don’t want to have both of these in our search space, as such

duplication wastes search time.2

In CORAL, this simplification is implemented as a redundancy rule, turned on by

the SPRed command line ¤ag (this also turns on the redundancy rule described in

§7.2.3). Clauses containing an answer literal which represents a trace with two con-

secutive messages from the spy are marked as redundant, and hence pruned out.

7.3 Eager Elimination of Unsatis£able parts Literals

As explained in §6.5, we follow Paulson in using a parts operator to model freshness.

For a trace T , the set parts(T) contains all the keys, nonces and other message elements

that appear in T . A nonce N is only fresh with respect to T if in(nonce(N),parts(T)) =

false. This suggests another pruning heuristic. If a clause contains an antecedent literal

in(nonce(N),parts(T)) = false, and the term nonce(N) occurs in term T , then the

clause cannot possibly be reduced to the empty clause, so it is pruned from the search

space. These literals would eventually be removed anyway by the unpacking of the

definition of parts, but by eagerly pruning them away, we save time.

7.4 Literal Selection

Standard first-order theorem proving using an ordered superposition rule usually em-

ploys literal selection, as explained in §4.2. The intention is to exert a certain amount

of control over the theorem proving strategy, which will eliminate some duplication of

effort, i.e. in our case prevent different sequences of inferences that lead to the same

trace being examined. The standard literal selection function in SPASS chooses the lit-

eral of maximal weight. However, after some experimentation, we found that a slightly

customised selection strategy resulted in a significant performance increase. With the

2Note however that this is not necessarily useful for group protocols, where the spy may have to
imitate an agent sending out messages to several different members of the group. There is an example
of this is the Asokan–Ginzboorg protocol, examined in the next chapter.

94 Chapter 7. Optimisations

command line ¤ag SPSel set, the strategy first chooses in(x,analz(trace)) literals, and

if none of these can be found it chooses m() literals. If the clause contains neither of

these then the standard selection strategy is used.

We look for in() literals first because we don’t want to proceed further in examining

a clause with a spy’s message in it without determining what he needs to see earlier

in the trace. The second priority of the m() literals is for the same reason. Processing

each of these will generate further member() literals, which will in term lead to further

in() and m() literals.

7.5 Summary

In this chapter we have described the 5 heuristics developed to allow CORAL to redis-

cover security protocol attacks. These included new reduction rules, and some mod-

ifications to the way we formalise the protocols. These modifications are carried out

by an automatic pre-processor. In the next chapter, we show how CORAL was used to

rediscover 10 known attacks on security protocols, and evaluate the part these heuris-

tics played in this. In the subsequent chapters, we see that no further heuristics were

required to complete two successful case studies on new protocols, yielding 5 new

attacks.

Chapter 8

Rediscovering Known Attacks

In this chapter, we explain how CORAL was used to rediscover known attacks on some

standard security protocols. The protocols in this chapter are ‘standard’ in the sense

that they were all proposed in the academic literature, and involve just two parties

who wish to communicate with each other and, in some cases, a secure key server.

We follow standard AI methodology in that the heuristics described in the previous

chapter were refined on a small ‘development set’ of four protocols described in the

next section. We show how security properties were conjectured for these examples,

and the counterexamples CORAL found. We give timing information and evaluate

the effectiveness of the heuristics we developed, as described in the previous chapter.

For the Needham-Schroeder public key protocol, we also give a close analysis of the

search pattern. After completing the development, we applied CORAL to a ‘test set’ of

ten protocols from a standard corpus, [Clark and Jacob, 1997]. The ten protocols were

chosen to re¤ect the five different kinds of attacks in the corpus. We give timing results

for the test set, and then evaluate the performance of CORAL on these examples.

8.1 The Development Set of Protocols

The four protocols in the development set were chosen to re¤ect different kinds of

protocol and different kinds of attacks. Three involve shared key encryption, and one

a public key system. They were also chosen to vary from the simplest to the most

95

96 Chapter 8. Rediscovering Known Attacks

complex ‘standard’ protocol, in the hope that this would allow for smooth develop-

ment of heuristics. We present here first the results on the Needham-Schroeder public

key protocol, since this was used as example to explain the formalism in Chapter 6.

The next three attacks are presented in approximate order of complexity: first a sim-

ple parallel session attack on a didactic Clark-Jacob protocol, then an attack on the

Neuman-Stubblebine protocol, and finally a quite complex attack on the BAN Otway-

Rees protocol.

8.2 Attacking Needham-Schroeder Public Key

We used this protocol to demonstrate our formalism in Chapter 6. To discover the

well known attack on the NSPK protocol, we refute a conjecture which would be B’s

guarantee of the authenticity of A. Our conjectures are all in terms of a trace, and are

very similar to those used by Paulson in his work, [Paulson, 1998]. In this case, the

conjecture states that if B receives a message 3 apparently from A, and has sent out a

message 2 to A, then there is no valid trace in which that message 3 didn’t really come

from A. We formulate the conjecture like this:

% B has sent a message 2
member(sent(B,A,encr(pair(nonce(NA),nonce(NB)),pubk(A))),Trace)=true∧

% message 3 has been received
member(sent(X,B,encr(nonce(NB),pubk(B))),Trace)=true∧

% but A hasn’t sent it to B
member(sent(A,B,encr(nonce(NB),pubk(B))),Trace)=false
→

The counterexample is found in 38 seconds, and having been passed through CORAL’s

pretty printer, looks like this:

a --> spy : { N(1) , a }_PK(spy)

spy --> s(a) : { N(1) , a }_PK(s(a))

s(a) --> a : { N(1) , N(0) }_PK(a)

8.2. Attacking Needham-Schroeder Public Key 97

spy --> a : { N(1) , N(0) }_PK(a)

a --> spy : { N(0) }_PK(spy)

spy --> s(a) : { N(0) }_PK(s(a))

The counterexample CORAL has found is the well known attack discovered by Lowe:

1. A → C : {| NA,A}| pubKC

1′. CA → B : {| NA,A}| pubKB

2′ B → A : {| NA,NB}| pubKA

2 CB → A : {| NA,NB}| pubKA

3. A → C : {| NB}| pubKC

3.′ CA → B : {| NB}| pubKB

8.2.1 How CORAL Finds the NSPK Attack

We wrote a short script to analyse the output from CORAL’s rediscovery of the NSPK

attack. We used this to look at the path through the search space that lead to the attack,

the point in time at which each node on this path was considered, and what CORAL

was doing in between considering those nodes. The raw data for the attack path is in

the form of pairs consisting of a clause number and a number showing when this was

considered as the given clause. This is shown in Table 8.2.1.

Broadly speaking, there were three significant gaps in the search, between clauses

151 and 154 being considered, between clauses 154 and 520, and between clauses 902

and 912. Inspecting the output with our pretty printing tool gives some insight as to

what is going on:

Clause 151 represents a trace ending with the spy sending message 3. Between

clauses 151 and 154, CORAL considers other traces where the final message is sent by

an honest agent. These traces only involve honest agents and/or the spy behaving as an

honest agent, and so contain no literals requiring the spy to break down previous traffic

and replay messages. This makes them smaller and so more attractive to CORAL’s

98 Chapter 8. Rediscovering Known Attacks

Clause Step Clause Step Clause Step

93 1 916 350 1346 366

97 3 1295 351 1350 367

104 5 1298 352 1352 370

109 7 1301 353 1364 371

119 8 1303 356 1366 372

122 13 1314 357 1370 373

143 15 1318 358 1371 375

151 16 1320 360 1377 376

154 122 1326 361 1384 377

520 231 1333 363 1395 380

898 232 1385 378 1435 381

902 235 1340 365 1438 382

Table 8.1: The pattern of search for the NSPK attack.

standard lightest-first heuristic. Once these possibilities have been exhausted, the spy

comes back to clause 154, originally derived from clause 151.

Clause 154 represents the fact that the spy has replayed message 3 rather than

sending it as an honest participant in the protocol. Between clause 154 and clause

520 being considered, CORAL considers traces where the spy is involved in an honest

session with the agent who sends a message 3 for him to replay. Having exhausted all

these possible combinations, CORAL considers clause 520, where someone else has

sent message 2 to the agent whose message 3 he will eventually replay.

CORAL runs quickly through to clause 902. From here, it considers various ways

the sender of message 2 could be involved, until coming to clause 916, where the spy

sees a message 2 in the trace and replays it. From here, once clause 916 in considered,

CORAL runs straight through to the finish.

An interesting feature of CORAL highlighted by this analysis is the way that sub-

sumption checking prunes away redundant states in the search space. For example,

CORAL derives a clause corresponding to the trace fragment:

8.3. Attacking a Clark-Jacob Protocol 99

spy → Y : {| N2}| PubKY

Y → X : {| N1,N2}| PubKX

Later, CORAL derives a clause representing this trace:

Y → X : {| N1,N2}| PubKX

spy → Y : {| N2}| PubKY

This second clause is subsumed by the first, and so deleted as redundant. This is

because the second clause is identical except that it contains an additional literal, so it

must be a more specific instance of the original clause. This kind of subsumption is

used to prune 219 clauses from the search space during the rediscovery of the NSPK

attack.

This search pattern illustrates the way CORAL genuinely rediscovers the attack,

without any prior knowledge about who should be involved in the attack and what role

they should play in the protocol. However, this openness also explains why CORAL

finds the attack comparatively slowly. In the first gap in the search, it considers many

different honest principals being involved in a run, all represented by uninstantiated

variables, and how different bindings of the variables could possibly lead to an attack.

Of course, this turns out not to be possible - a dishonest player must involved. Although

subsumption checking rules out the checking of a lot of equivalent clauses, this still

takes up a lot of time. Other tools that are constrained to use one of two possible

ground terms to represent honest agents would not suffer this problem, and tools that

predetermine what roles the agents will play even less so (see §8.8).

8.3 Attacking a Clark-Jacob Protocol

On page 26 of their security protocol survey, [Clark and Jacob, 1997], Clark and Jacob

give a protocol intended to demonstrate the principle of parallel session attacks. The

protocol and the attack are very simple indeed, but the attack does demand that an

honest principal plays both roles in the protocol, i.e. he should be involved in two

parallel sessions, one as an initiator playing the part of A, and one as a responder

playing the part of B. This is something that some protocol models do not allow, e.g.

100 Chapter 8. Rediscovering Known Attacks

Weidenbach’s, presented in §2.4.4.2. The protocol assumes two parties already share

a key KAB, and wish to establish a fresh shared nonce NA to protect against replayed

messages. Here is the protocol.

1. A→ B : {| NA}| KAB

2. B→ A : {| s(NA)}| KAB

The only issue in modelling this protocol was the symmetry of key KAB. Normally,

we represent symmetric keys in our formalism as key(n) with n a number, assigned

by the key server. However, for this simple handshake, we are assuming the key has

already been given out. So we model the key as key(A,B), with A and B principal

names. The problem is now that syntactically key(A,B) 6= key(B,A), but in fact they

are the same key. So, we must add a commutativity axiom to our model for such keys,

i.e:

key(pair(X,Y))=key(pair(Y,X))

Being able to add these kinds of axioms is one of the advantages of using a theorem

prover that supports equational reasoning. All the clauses for the model are given in

Appendix A.

The attack arises when CORAL is given a simple authenticity guarantee for A. The

guarantee for A says that if A has initiated a protocol run with nonce NA, and receives a

response containing s(NA), then B must at some point have sent a response containing

s(NA). The conjecture in CORAL’s formalism looks like this:

% Trace is a valid trace
m(Trace)=true∧

% A and B are two honest agents
eqagent(A,spy)=false∧eqagent(B,spy)=false∧

% A has started a run
member(sent(A,B,encr(nonce(NA),key(pair(A,B)))),Trace)=true∧

% someone (X) has sent a response
member(sent(X,A,encr(s(nonce(NA)),key(pair(A,B)))),Trace)=true∧

% B has not responded
member(sent(B,A,encr(s(nonce(NA)),key(pair(A,B)))),Trace)=false
→

8.4. Attacking Neuman-Stubblebine 101

Note that this conjecture states that there is no trace in which A has started a run, A has

received a response apparently from B, and B has not responded. A counterexample

to this conjecture will be a trace in which these things have occurred in conjunction.

CORAL finds the following counterexample in 13 seconds:

a --> s(a) : { N(0) }_K((a,s(a))

spy --> a : { N(0) }_K((s(a),a)

a --> s(a) : { s(N(0)) }_K((s(a),a)

spy --> a : { s(N(0)) }_K((a,s(a))

We can see that CORAL has found the same attack that Clark and Jacob used the

protocol to demonstrate, viz.:

1. A→CB : {| NA}| KAB

1.’ CB→ A : {| NA}| KAB

2.’ A→CB : {| s(NA)}|KAB

2. CB→ A : {| s(NA)}|KAB

8.4 Attacking Neuman-Stubblebine

The Neuman-Stubblebine protocol was used as an example by Weidenbach is his first-

order protocol model, [Weidenbach, 1999]. In order to show that CORAL extends this

work, we wanted to be sure that CORAL can also find this attack. The attack is a type

attack, but our formalism, like Paulson’s, was explicitly designed to be strongly typed,

taking into account the fact that is has been shown that type attacks can be eliminated

from protocols, [Heather et al., 2000]. However, we can allow type confusion between

nonces and keys (which is what is required to effect this attack) to occur by relaxing

our formalism a little. The vital change is to specify in our conjecture only that the spy

102 Chapter 8. Rediscovering Known Attacks

has a term which has been sent to B as a key, and not to specify it is a term nonce(X)

or key(X).

The Neuman-Stubblebine protocol was explained in §2.3.6. Here again is the key-

establishment part of the protocol:

1. A→ B : A,NA

2. B→ S : B,{| A,NA,TB }| KB ,NB

3. S→ A : {| B,NA,KAB,TB }| KA ,{| A,KAB,TB }| KB ,NB

4. A→ B : {| A,KAB,TB }| KB ,{| NB }| KAB

The clauses we used to model this protocol are given in Appendix A. The attack is

found when we give CORAL the following conjecture, which is a secrecy guarantee

for B:

% B has sent a message 2
member(sent(B,server,triple(principal(B),encr(triple(principal(A),nonce(NA),

nonce(T)),longtermkey(B)),nonce(NB))),Trace)=true∧

% B has been sent key Key (note - untyped)
member(sent(X,B,pair(encr(triple(principal(A),Key,nonce(T)),longtermkey(B)),

encr(nonce(NB),Key))),Trace)=true∧

% and that key is in the spy’s knowledge
in(Key,analz(Trace))=true
→

CORAL refutes this conjecture in 10 seconds giving the following counterexample:

a --> s(a) : a , N(s(0))

s(a) --> server : s(a) , { a , N(s(U)),time(t) }_longtermK(s(a)) , N(0)

spy --> s(a) : { a , N(s(0)),time(t) }_longtermK(s(a)) , { N(0)}_,K(N(s(0)))

This corresponds to the same attack Weidenbach found, originally discovered by

Hwang et al., [Hwang et al., 1995]:

8.5. Attacking BAN Otway-Rees 103

1. A→ B : A,NA

2. B→ S : B,{| A,NA,TB }| KB ,NB

4. CA→ B : {| A,NA,TB }| KB ,{| NB}| NA

8.5 Attacking BAN Otway-Rees

An important example of an attack which is not in the standard corpus,

[Clark and Jacob, 1997], is the attack on the simplified Otway-Rees protocol proposed

by Burrows, Abadi and Needham, [Burrows et al., 1990]. The Otway-Rees attack, dis-

covered by Paulson, [Paulson, 1998], is a significant example in that it requires one

agent to play both roles in the protocol, and also requires her to take part in two in-

terleaving runs at the same time. Formal approaches relying on small abstractions of

the protocol problem, e.g. Weidenbach’s, §2.4.4.2, are not able to find these kinds of

attacks. It also requires quite a lot of disassembling and reassembling of messages by

the intruder. As such it seemed a good example to complete the development set. Here

is the protocol, which we presented and explained in §2.3.5:

1. A→ B : NA,A,B,{| NA,A,B}| KA

2. B→ S : NA,A,B,{| NA,A,B}| KA ,NB,{| NA,A,B}| KB

3. S→ B : NA,{| NA,KAB }| KA ,{| NB,KAB }| KB

4. B→ A : NA,{| NA,KAB }| KA

The details of the clauses used to model the Otway-Rees protocol are given in Ap-

pendix A. When Paulson originally analysed the protocol, [Paulson, 1998], he found

he could not prove a conjecture about the security of the key received by Alice. Even-

tually he was able to discover the reason for the failed proof – there is an attack on the

protocol. Finding this attack automatically from such a conjecture is precisely what

we want CORAL to be able to do. The conjecture Paulson could not prove stated that

if Alice starts a run with a message 1 using nonce NA, and then receives a key from the

104 Chapter 8. Rediscovering Known Attacks

server under her long term key KA tagged with the same nonce NA, then the key must

be secret, i.e. not be known to the spy. We state the conjecture the same way:

% A started a run with nonce NA
member(sent(A,B,quad(nonce(NA),principal(A),principal(B),
encr(triple(nonce(NA),principal(A),principal(B)),
longtermkey(A)))),Trace)=true

% message 4 received by A with same nonce NA
member(sent(X,A,pair(nonce(NA),encr(pair(nonce(NA),key(K)),
longtermkey(A)))),Trace)=true

% the spy has that key
not(equal(in(key(K),analz(Trace))=true
→

After 7 minutes 12 seconds, CORAL gives the counterexample:

a --> s(a) : N(2) , a , s(a) , { N(2) , a , s(a) }_longtermK(a)

spy --> a : N(0) , spy , a , { N(0) , spy , a }_longtermK(spy)

a --> server : N(0) , spy , a , { N(0) , spy ,a}_longtermK(spy),

N(1) , { N(0) , spy , a }_longtermK(a)

spy --> server : N(0) , spy , a , { N(0) , spy , a}_longtermK(spy) ,

N(2) , { N(0) , spy , a }_longtermK(a)

server --> a : N(0) , { N(0) , K(0) }_longtermK(spy) ,

{ N(2) , K(0) }_longtermK(a)

spy --> a : N(2) , { N(2) , K(0) }_longtermK(a)

which represents the same attack that Paulson found:

1. A→CB : NA,A,B,{| NA,A,B}| KA

1.’ C→ A : NC,C,A,{| NC,C,A}| KC

8.6. Development of Heuristics 105

2.’ A→CS : NC,C,A,{| NC,C,A}| KC ,NA′,{| NC,C,A}| KA

2.”CA→ S : NC,C,A,{| NC,C,A}| KC ,NA,{| NC,C,A}| KA

3.” S→CA : NC,{| NC,KCA}| KC ,{| NA,KCA}| KA

4. CB→ A : NA,{| NA,KCA}| KA

8.6 Development of Heuristics

In order the find the very simple attack on the didactic Clark-Jacob protocol,

[Clark and Jacob, 1997, p.26], only the invalid term elimination rule (§7.1) is nec-

essary, though without the others the attack takes longer to find. For the NSPK

protocol and the Neuman-Stubblebine protocol, [Needham and Schroeder, 1978,

Neuman and Stubblebine, 1993], the literal selection heuristic (§7.4), the faked mes-

sages heuristic (§7.2.1), the rule preventing the spy sending two messages in a row

(§7.2.4), and the invalid term elimination heuristic (§7.1) were required to find the at-

tacks, though again, without the other optimisations CORAL needs much more time.

For the attack on the BAN Otway-Rees protocol, [Burrows et al., 1990], the heuris-

tics governing what terms the spy could expect to see, described in §7.2.2 and §7.2.3,

were needed to find the attack. The Otway-Rees protocol has much longer messages

that the others, giving the spy many more possibilities for combining terms that might

eventually make up a valid message. It was this example which lead us to develop the

heuristics described in §7.2.2 and §7.2.3. The heuristic that prunes away unsatisfiable

parts literals, described in §7.3, was developed after all the development examples had

been attempted, but before testing on the test set. It lead to much better times on all

protocols, up to a factor of four on the Otway-Rees protocol.

We added code to CORAL to allow us to profile the amount of time used to ap-

ply these heuristics. In Table 8.2, we show the results of this profiling on the NSPK

protocol and the Otway-Rees-BAN protocol. Thanks to our use of the term index-

ing for implementing the most complex heuristic (§7.2.3), the total time used is for

domain-specific reductions is only a very small fraction of the total time taken.

106 Chapter 8. Rediscovering Known Attacks

NSPK

Total problem time 37.30 sec

Time spent on reductions 34.85 sec

Of this:

Rewriting 20.53 sec

Subsumption checking 10.01 sec

Security protocol heuristics 0.29 sec

Other reductions 4.02 sec

Otway-Rees-BAN

Total problem time 7 min 10.95 sec

Time spent on reductions 6 min 56.02 sec

Of this:

Rewriting 4 min 52.86 sec

Subsumption checking 1 min 34.74sec

Security protocol heuristics 1.49 sec

Other reductions 26.93 sec sec

Table 8.2: Pro£le of CORAL’s reduction time

8.7. The Test Set of Protocols 107

8.7 The Test Set of Protocols

The test protocols were chosen from the Clark-Jacob corpus, [Clark and Jacob, 1997],

the standard corpus in the field. There are five different kinds of attack demonstrated

in the corpus: replay, man in the middle (MITM), type confusion, parallel session, and

attacks based on the compromise of a short-term secret (STS). We chose two of each

kind, giving a test set of ten protocols. There are about 33 examples in the corpus

in total1. Our main reason for not devoting more time to testing CORAL on the whole

corpus was that we did not expect CORAL to produce ground–breaking performance in

terms of attack finding speeds. Other tools have been built from the ground up to anal-

yse these kinds of standard protocols, strictly in a Dolev-Yao intruder scenario, with

tailor made representations and pre-setting of the roles to be played by particular agents

in order to find the attacks in the minimum possible time, e.g. [Basin et al., 2003]. As

explained in Chapter 1, the aim of CORAL was to build a ¤exible tool with the ad-

vantages of Paulson’s approach in that it can be easily adapted to slight changes in the

protocol scenario, such as a weaker intruder, or a protocol with an unbounded number

of different roles and agents, something that would be very difficult with tools tailored

to Clark-Jacob protocols. We investigate the ¤exibility of CORAL in the case studies

in the next two chapters, and discuss the issue further in our evaluation of CORAL with

respect to related work in Chapter 11. Notwithstanding these provisos, we felt that a

test on some standard protocol was necessary, to demonstrate CORAL’s coverage of

known results.

8.8 Results

The results of CORAL on the ten examples from the corpus are given in Table 8.3. All

timings are taken on a Pentium IV Linux box. CORAL found all 10 of the attacks we

searched for, 5 of them in under 10 seconds, 8 of them in under a minute, 9 in under

15 minutes and all ten in under half an hour. The total run time for all ten is a little

1The exact number is a matter of a interpretation. For example, some protocol analysis tool designers
count only one attack for each protocol, and others include type attacks that other authors consider
dubious.

108 Chapter 8. Rediscovering Known Attacks

under 43 minutes and 30 seconds. The parallel session attack on the Andrew-RPC

protocol took a long time to find because it is 8 steps long, and requires the symmetry

of the key to be exploited 4 times. In fact this attack, though mentioned in the Clark-

Jacob survey, has often been left out in the testing of other protocol analysis tools, e.g.

[Basin et al., 2003], where only the simpler replay and type ¤aw attacks are found.

CORAL’s times are comparable with those achieved on the same examples by

some competing tools, e.g. [Chevalier and Vigneron, 2002]. However, other tools

can achieve much more impressive run times - a fraction of a second for most of

the attacks in the corpus, even on significantly slower hardware, [Basin et al., 2003,

Song et al., 2001]. There are two key reasons for this. One is that these tools were

designed and optimised for attacking these standard protocols. They model the pro-

tocol and a system entirely under the control of the intruder, where each principal is

considered to be moved between states by the intruder under the rules of the protocol.

This means they do not have to re-infer information from the trace about what mes-

sages a principal is expecting to receive when considering whether he should respond

to a message, as we have to in CORAL. Instead, it is encoded in the state information

for that principal. We could not practically do this in CORAL without pre-determining

the number of principals, since we cannot have rules applying to arbitrary predicates

in a first-order model. This leads on to the second reason for these tool’s better perfor-

mance - they restrict the number of agents involved in a run in advance. Indeed, the

tools described in [Basin et al., 2003] and [Chevalier and Vigneron, 2002] go further

in requiring the user to choose a scenario before modelling takes place. To rediscover

Lowe’s attack on the NSPK protocol (§2.3.3), these tools require the user to tell the

tool to investigate a scenario where Alice starts one run with the spy, and Bob expects

Alice to start a run with him. The problem is then compiled so that just the right agent

identifiers are included, and the roles of the agents are set up exactly for the attack sce-

nario (in [Chevalier and Vigneron, 2002], the number of nonces is also bounded). It is

arguable how much ‘rediscovery’ is really going on here - finding the right scenario

constitutes most of the work for finding this attack. Of course one could automatically

generate all possible scenarios for two agents and a spy, but this is not included in

the timings given in [Basin et al., 2003] and [Chevalier and Vigneron, 2002]. In §8.2.1

8.9. Summary 109

above, we analysed how CORAL finds the NSPK attack with no previous knowledge

of the roles that are required to find it. This explains a little why CORAL’s times are so

much slower. Additionally, for a protocol involving a pre-existing symmetric key, like

the Andrew RPC protocol, these tools assume there is only one key available and give

it an atomic value, thus ruling out problems with modelling the symmetry of the key.

Athena, [Song et al., 2001], can discover the attacks in comparable times without

any pre-setting of roles and protocol instances. It relies on other simplifications - for

example, only atomic keys can be used, and agents can only encrypt and decrypt with

keys they already have, type attacks cannot be discovered, and each role in the protocol

must be finite. This would rule out study of protocols like SSL and SET, which can

be analysed in the Paulson model, [Paulson, 1998], and group protocols, including the

protocols we analysed using CORAL in the next two chapters.

We were pleased that little effort was required to specify the protocols in our

formalism and discover the attacks using CORAL. The script for preparing intruder

messages described in §7.2.2 functioned properly, saving considerable time. Besides

changing the messages, the only change to the formalism that was required to complete

the test set was for the Hwang-Chen protocol, where we needed to model agents sign-

ing messages with their secret keys. This required us to add two clauses to the intruder

model, one to allow him to sign messages using his own key, and one allowing him to

remove the signature from an item signed by someone else using their secret key. With

the addition of these clauses the attack was found without difficulty. Furthermore, no

new heuristics were required for the test protocols.

8.9 Summary

In summary, we were pleased with CORAL’s coverage of the test set, and though the

times are much slower than for some tools, the fact that CORAL achieved these re-

sults without a predefined ‘scenario’ and without restrictions on the number of agents,

nonces or roles, or the nature of keys or encryption/decryption operations meant we

were confident of success in analysing some new protocols outside the scope of exist-

ing tools. In the next two chapters, we describe how we used CORAL to do that.

110 Chapter 8. Rediscovering Known Attacks

Protocol Attack Type Attack Time

ISO Two Pass mutual authentication Replay 2.24 sec

Andrew RPC Replay 51.21 sec

Andrew RPC Parallel Session 29 min 43.36 sec

Woo-Lam Π Parallel Session 9.98 sec

Needham-Schroeder shared key STS 5.64 sec

Neuman-Stubblebine (repeated au-

thentication part)

STS 11 min 28.99 sec

Otway-Rees Type Attack 12.32 sec

Neuman-Stubblebine (complete) Type Attack (on final

part)

51.84 sec

Hwang-Chen SPLICE MITM 2.38 sec

Needham-Schroeder signature proto-

col

MITM 0.69 sec

Table 8.3: CORAL Attacking Protocols from the Clark-Jacob corpus

Chapter 9

Case Study 1:

The Asokan–Ginzboorg Protocol

It is important in the evaluation of any protocol analysis tool to test its ability to find

new protocol attacks. One advantage of the inductive formalism used in CORAL is

that is gives us the ability to reason about protocols where an arbitrary number of

agents might be involved in a single run, e.g. group key protocols. Attacking these

protocols is something other automated approaches have struggled with (see §11.4).

To test CORAL’s ability to find new protocol attacks, and also to test its suitability for

analysing multi-agent protocols, we selected two relatively new protocols for analysis.

The first is a protocol for group key agreement that had not been analysed before, the

Asokan–Ginzboorg protocol, [Asokan and Ginzboorg, 2000]. We describe the process

of modelling the protocol and discovering 3 new attacks in this chapter. The second

protocol is for group key management in a scenario where agents may join and leave

the group at any time, and is covered in the next chapter.

9.1 Description of the Asokan–Ginzboorg Protocol

Bluetooth is a method for data communication that uses short-range radiolinks to re-

place cables between computers and peripherals. A key idea of the technology is that

no setting up should be required in order to get a new Bluetooth enabled device talking

111

112 Chapter 9. Case Study 1: The Asokan–Ginzboorg Protocol

to all the other Bluetooth devices in a room. Protocols exist to facilitate this, but they

contain little provision for ad-hoc security, i.e. in a situation where we don’t know in

advance who is going to want to connect, and whether or not they are authorised to do

so. Instead, it is left up to application programmers to take these considerations into

account.

Asokan and Ginzboorg have proposed a protocol for one such application,

[Asokan and Ginzboorg, 2000]. The scenario they consider is this: a group of peo-

ple are in a meeting room and want to set up a secure session amongst their laptops.

They know and trust each other, but their computers have no shared prior knowledge

and there is no trusted third party or public key infrastructure available. The proto-

col proceeds by assuming a short group password is chosen and displayed, e.g. on a

whiteboard. The password is assumed to be susceptible to a dictionary attack, i.e. it

could be guessed in a reasonable time by an attacker trying all the words from a nor-

mal dictionary. However, the participants in the meeting use the ‘soft secret’ of the

password to establish a secure secret key. The protocol is contributory, i.e. all partici-

pants contribute a secret number of their own to the final key, and the key is calculated

from these numbers using a carefully chosen function, thus ensuring a subgroup of

dishonest participants cannot conspire to keep the key within a certain restricted range.

The idea of restricting the key to a small range would be to make it easily breakable

by a co-conspirator outside the room. The key calculation function would be chosen

to ensure each agent’s contribution may vary the key over its full range, much like a

hashing function.

Asokan and Ginzboorg describe two protocols for establishing such a key in their

paper, [Asokan and Ginzboorg, 2000]. The first involves ‘black box’ public key and

shared key encryption, such as is generally modelled by protocol analysis tools. It is

this protocol we have analysed in CORAL. The second protocol uses a lower level

encryption method involving Diffie-Hellman style exponentiation that we can’t model

in CORAL yet (however, see §12).

Here is a description of the first Asokan–Ginzboorg protocol (which we will here-

after refer to as simply ‘the Asokan–Ginzboorg protocol’). Let the group be of size n

for some arbitrary n ∈ N,n≥ 2. We write the members of the group as Mi, 1 ≤ i≤ n,

9.1. Description of the Asokan–Ginzboorg Protocol 113

with Mn acting as group leader.

1. Mn → ALL : Mn,{| E}| P

2. Mi → Mn : Mi,{| Ri,Si}| E i = 1, . . . ,n−1

3. Mn → Mi : {| {S j, j = 1, . . . ,n}}| Ri i = 1, . . . ,n−1

4. Mi → Mn : Mi,{| Si,h(S1, . . . ,Sn)}| K some i, K = f (S1, . . . ,Sn)

Informally, what is happening in a protocol run is this:

1. Mn broadcasts a message containing a fresh public key, E, encrypted under the

password, P, written on the whiteboard.

2. Every other participant Mi, for i = 1, . . . ,n− 1, sends Mn a contribution to the

final key, Si, and a fresh symmetric key, Ri.

3. Once Mn has a response from everyone in the room, she collects together the

Si in a package along with a contribution of her own (Sn) and sends out one

message to each participant, containing this package S1, . . . ,Sn encrypted under

the respective symmetric key Ri.

4. One participant responds to Mn with the package he just received passed through

a one way hash function h(.) and encrypted under the new group key K =

f (S1, . . . ,Sn), with f a commonly known function.

Asokan and Ginzboorg argue that it is sufficient for each group member to receive

confirmation that one other member knows the key: everyone except Mn receives this

confirmation in step 3. Mn gets confirmation from a random member of the group in

step 4. Once this message is received, the protocol designers argue, agents M1, . . . ,Mn

must all have the new key K = f (S1, . . . ,Sn). A spy eavesdropping on Bluetooth com-

munications from outside the room cannot know the key, and nor can he prevent the

agents in the room from setting up a key by sending spurious messages of his own. We

investigate these claims in §9.4.

114 Chapter 9. Case Study 1: The Asokan–Ginzboorg Protocol

9.2 Modelling the Protocol

Our methodology for modelling the protocol was the same as for fixed 2 or 3 principal

protocols (see §6.5), i.e. to produce one rule for each protocol message describing how

a trace may be extended by that message, taking into account the tests which an honest

agent will apply. So for message 2, our rule express the fact that an agent will only send

a message 2 if he has seen a message 1 in the trace, and will only use fresh numbers Si

and Ri in his message. However, for the Asokan–Ginzboorg protocol, message 3 posed

a problem. For a group of n participants, n−1 message 3s will be sent out at once, each

encrypted under a different key. Moreover, the group leader for the run must check that

she has received n−1 message 2s. In order to model this without predetermining the

size of the group, we needed to accommodate the possibility of different numbers of

messages being added to the trace in one instant. This problem was solved by the use

of a logic programming style approach. Note that this was only required for modelling

honest agents sending message 3, since they have to conform to the protocol. The

intruder can send any combination of message 3s, no matter what message 2s have

appeared in the trace. He is only constrained by what knowledge he can extract from

previous messages in the trace, by the same rules as for regular protocols.

9.2.1 Modelling Message 3

Figure 9.1 gives the clauses we used to model message 3 of the protocol. This requires

some explanation: we will examine it clause by clause. Clause 1 models the addition

of message 3s to the protocol. The first three literals require that A is an honest agent,

MN another agent, and Trace is a valid trace. The 4th literal requires that a message

1 has been sent by agent MN at some point in the trace. The 5th literal then calls

the all msg2s received function on the old trace. This instantiates the new trace

variable, NewTrace, which we assert as valid in the antecedent literal.

The purpose of the all msg2s received function is to check that sufficient mes-

sage 2s have been received for agent MN to make a response, and also to work out what

that response should be. To avoid unnecessary duplicate representations for the equiv-

alent protocol runs, we require that MN, the leader in this run, be the highest numbered

9.2. Modelling the Protocol 115

1.
eqagent(A,MN)=false ∧ eqagent(A,spy)=false ∧ m(Trace)=true ∧
member(sent(MN,all,pair(principal(MN),encr(key(E),key(P)))),Trace)=true ∧
all msg2s received(Trace,A,MN,E,nil,NewTrace,FinalPackage)=true→
m(NewTrace)=true

2.
member(sent(X,MN,pair(principal(a),

encr(pair(nonce(Ri),nonce(Si)),key(E)))),Trace)=true→
all msg2s received(Trace,a,MN,E,Package,

cons(sent(MN,a,encr(cons(nonce(Si),Package),nonce(Ri))),Trace),
cons(nonce(Si),package)=true

3.
member(sent(X,MN,pair(principal(s(MX)),

encr(pair(nonce(Ri),nonce(Si)),key(E)))),Trace)=true∧
all msg2s received(Trace,MX,MN,E,cons(nonce(Si),Package),

NewTrace,FinalPackage)=true→
all msg2s received(Trace,s(MX),MN,E,Package,

cons(sent(MN,s(MX),encr(FinalPackage,nonce(Ri))),
NewTrace),FinalPackage)=true

Figure 9.1: Clauses for modelling message 3

116 Chapter 9. Case Study 1: The Asokan–Ginzboorg Protocol

agent in our numbering system which runs a,s(a),s(s(a)), The arguments to the

all msg2s received function run like this:

Trace The trace of messages exchanged

MX At the first call to the function, the agent receiving the

first message 3. In subsequent calls, the next agent,

until MX = a, the first agent in our model.

MN Agent who initiated the run

E Public key used in message 1 of the run

Package Accumulator for the packaged Si

NewTrace The new trace with the message 3s in

FinalPackage The final package of Sis to be sent out, remains unin-

stantiated until the base case of all msg2s received is

satisfied.

Clause 2 in Figure 9.1 is the base case of the definition of all msg2s received. It

checks that is there is a message 2 (apparently) from agent a in the trace sent under

the correct public key and contributing nonce(Si) to the final package S1, . . . ,Sn, used

to form the group key. If so, the antecedent literal asserts that this trace qualifies as

having sufficient message 2s if the first recipient of a message 3 is a, and instantiates

the response to be just that message 3, sent under the appropriate key Ri. The package

of S1, . . . ,Sn to be sent is instantiated as nonce(Si) added to the packaged S1, . . . ,Sn

passed in the accumulator (argument 5). The 7th argument is also instantiated to this

final package.

Clause 3 in Figure 9.1 models the recursive case of the definition. The antecedent

literals require that all appropriate message 2s are in the trace up to that apparently

from agent MX , and that a message 2 from agent s(MX) is also in the trace. Then

the succedent literal states that all message 2s must have been received up to s(MX),

making the appropriate instantiations to the new trace argument. Note that the message

3 added to the trace refers to the final package of S1, . . . ,Sn, which is as yet still a pure

variable but gets instantiated in the base case. In the recursive call in the antecedent,

agent s(MX)’s contribution to the package is added to the accumulator argument.

This is fairly complex stuff for a protocol model, but shows some advantages of a

9.2. Modelling the Protocol 117

theorem proving approach for these very ¤exible protocols. We have variables avail-

able for things like accumulators and putting together response sequences, and can do

some fairly involved deduction to work out what responses are required. A key feature

of this part of the formalism is that it works backwards, i.e. given pure variables it will

give traces containing a valid set of message 1s, 2s and 3s. This is vital, since it is

in the nature of CORAL to start from a security conjecture and work backwards from

the final message to the first to produce a counterexample trace. The full listing of the

specification for the Asokan–Ginzboorg protocol is given in Appendix B.

9.2.2 Ordering Considerations

One final complication of the Asokan–Ginzboorg model is that it requires us to deal

with compound keys, i.e. keys that are built out of the contributed numbers coming

from the other members of the group. In message 3 the leader sends out a package that

contains the numbers needed to make the key, S1, . . . ,Sn . This is easily represented as

a list in our model, cons(s1,cons(. . .cons(sn,nil) . . .). However, we need to allow the

spy to be able to take the list apart and make new packages. This requires additional

synth and analz (see §6.6) rules to be added, viz.:

in(cons(nonce(X),Y),analz(XSET))=true
→ in(nonce(X),analz(XSET))=true

in(cons(nonce(X),Y),analz(XSET))=true
→ in(Y,analz(XSET))=true

in(nonce(X),analz(XSET))=true∧
in(cons(Y,Z),synth(analz(XSET)))=true
→ in(cons(nonce(X),cons(Y,Z)),synth(analz(XSET)))=true

in(nonce(X),synth(analz(XSET)))=true
→ in(cons(nonce(X),nil),synth(analz(XSET)))=true

This gives the spy the abilities we would like him to have, but it has the unwanted side

effect of making our adapted term ordering non-well-founded (see §6.7), because we

now have an infinite sequence:

118 Chapter 9. Case Study 1: The Asokan–Ginzboorg Protocol

in(U,analz(Y))Â
in(cons(U,V),analz(Y))Â
in(cons(U,(cons(V,W))),analz(Y)) . . .

A similar problem has been encountered by other designers of protocol analysis tools

in one form or another for such keys, and the most common solution is to fix a bound

on the depth of the terms. However, this would constrain the size of the group, which

we don’t want to do. So, we have left things alone. In theory, this means our inference

system for this protocol is not necessarily refutation complete. Nevertheless, it still

successfully discovers new attacks as we shall see below. This is probably because

although CORAL could consider the possibility of the spy obtaining a particular nonce

from larger and larger packages of key contributions, this would require larger and

larger clauses to be considered, which will not be favoured by CORAL’s basic heuris-

tic of considering the least weight clause first. There may be better solutions to this

problem though, and we discuss this in § 12.

9.3 Modelling Spies in a Wireless Network

The Dolev-Yao model (see §2.3.2) is widely agreed upon as a realistic model of a spy

in a fixed network. However, some of the Dolev-Yao assumptions seem inappropriate

in a wireless situation. Although an attacker may be able to totally disrupt communica-

tions by jamming the radio signal, it seems unlikely that he would be able to selectively

intercept some messages and remove them from the airwaves, while allowing other

messages to pass1. In fact, Asokan and Ginzboorg mention that they intend the proto-

col to be tolerant to disruption attacks2 by an attacker who can add fake messages, but

not block or delay messages, so we assume these abilities for our spy.

There is also the question of whether the spy should be accepted as an honest

participant by the other players, as he generally is in fixed-network protocol models.

An honest participant will be present in the room and able to see the password on the

1We are assuming here that a “single-hop” wireless network is used in the meeting room, i.e. par-
ticipants receive messages direct from the sender. If an intruder was able to interpose a machine in a
multi-hop network, then the usual Dolev-Yao assumptions would apply.

2A disruption attack is an attack whereby a spy prevents the honest agents from completing a suc-
cessful run of the protocol.

9.4. Attacking the Protocol 119

whiteboard, whereas the protocol is primarily intended to protect against attacks by

a spy in an adjacent room, who can interfere with communications but who does not

know the password. However, the protocol is also explicitly designed, by means of the

contributory key generation, to protect participants against conspiracy by a group of

other participants trying to restrict the agreed key to a pre-chosen range. Some possible

dishonesty from agents in the room must therefore be considered. We decided to test

the protocol against two attackers: one inside the room, and one outside. Different

outcomes are considered successful for the different spies.

Spy 1 - Outside the Room

This spy cannot see the whiteboard, so does not know the password. His objective is

to effect a disruption attack. Since he cannot block messages or remove them from the

airwaves, he must do this by adding messages in such a way as to disrupt the protocol

run, e.g. by making honest participants accept keys which are not mutually shared.

Spy 2 - In the Room

This spy’s capabilities differ from the first in that he knows the passwords written on

the whiteboard, and is accepted as an honest agent. A disruption attack would be trivial

for this spy (he could just refuse to send any messages), so instead his objective is to

gain control of communication in the room, i.e. by making all participants agree on

different keys that only he knows.

9.4 Attacking the Protocol

The advantage of our approach is that we can model ¤exible group protocols without

having to restrict ourselves to a small concrete instance with a fixed number of partici-

pants. This means that we don’t have to guess how many players are needed to achieve

an attack, CORAL will search for attacks involving any number of participants.

As we have explained in the previous chapters, finding attacks in CORAL results

from finding counterexamples to security properties. These are formulated in a similar

120 Chapter 9. Case Study 1: The Asokan–Ginzboorg Protocol

way to Paulson’s model. We must formulate the required properties in terms of the set

of possible traces of messages.

9.4.1 Attacks by a Spy Outside the Room

The following conjecture was used to check for disruption attacks:

%% some honest xi has sent message 4, so has key f(Package):
eqagent(XI,spy)=false ∧
member(sent(XI,XK,pair(principal(XI),

encr(pair(nonce(SI),h(Package)), f (Package)))),Trace) = true

%% genuine messages 3 and 1 are in the trace to some agent XJ:
member(sent(MN,XJ,encr(Package,nonce(RJ))),Trace)=true
member(sent(MN,all,pair(principal(MN),encr(key(E),key(P)))),Trace)=true

%% but XJ never sent a message 2 under public key E with nonces SJ
%% (which is in Package) and RJ (which the message 3 meant for
%% him was sent under). That means he doesn’t have RJ, and so can’t
%% get the key from his message 3.
member(nonce(SJ),Package)=true
member(sent(XJ,MN,pair(principal(XJ),encr(pair(nonce(RJ),nonce(SJ)),

key(E)))),Trace)=false
→

This conjecture may look somewhat contrived, but it is a natural way of expressing that

a run had been finished (i.e. a message 4 has been sent) but that there is some agent

who does not now have the key. We assume that the disruption comes about as a result

of one agent not being able to read the message 3 intended for him. This is because

the leader can see how many people are in the room, and so will at the very least send

out one message 3 to each other member of the group. With the spy outside the room,

only honest agents can generate a correct message 1, so the leader cannot be the spy.

Note that conjecture is negative, i.e. it says that for all possible traces, no trace can

have the combination of genuine messages 4,3 and 1 without a corresponding message

2. When first run with this conjecture, CORAL produces the following counterexample

for a group of size 2:

9.4. Attacking the Protocol 121

1. M2 → ALL : M2,{| E}| P

1′. spyM1 → ALL : M1,{| E}| P

2′. M2 → M1 : M2,{| R2,S2}| E

2. spyM1 → M2 : M1,{| R2,S2}| E

3. M2 → M1 : {| S′2,S2}| R2

3′. spyM1 → M2 : {| S′2,S2}| R2

4.′ M2 → M1 : M2,{| S2,h(S′2,S2)}| f (S′2,S2)

At the end of the run, M2 now accepts the key f (S′2,S2) as a valid group key, but it

contains numbers known only to M2. The attack requires that the spy manages to send

message 2 before the honest agent M1 can send her reply. In a single hop network,

there is a certain amount of luck involved. It might require M1 to invoke the command

to establish a key just after M2 does. This attack also assumes that the implementation

of the protocol does not protect against parallel sessions, i.e. by stopping an agent from

taking part in two concurrent attempts to set up a key. This is certainly possible, so

we should alter the protocol to protect against it. To do so is quite straightforward (see

§9.5). However, when we corrected the protocol to protect against this attack, and ran

CORAL again with the same conjecture, CORAL found the following counterexample

for a group of size 3:

1. M1 → ALL : {|M1,E}| P

2. M2 → M1 : M2,{| R2,S2}| E

2. spyM3 → M1 : M3,{| R2,S2}| E

3. M1 → M2 : {| S2,S2,S1}| R2

3. M1 → M3 : {| S2,S2,S1}| R2

4. M2 → M1 : M2,{| S2,h(S2,S2,S1)}| f (S2,S2,S1)

This is another disruption attack, where the spy eavesdrops on the first message 2 sent,

and then fakes a message 2 from another member of the group. This results in the

protocol run ending with only two of the three person group sharing the key. This

attack can also be prevented by a small change to the protocol (see §9.5 below). With

these two attacks prevented, CORAL finds no further disruption attacks.

122 Chapter 9. Case Study 1: The Asokan–Ginzboorg Protocol

9.4.2 Attacks by a Spy Inside the Room

When considering a scenario where one of the agents inside the room is a spy, we

were forced to consider what kind of behaviour might constitute an attack. Simple

disruption attacks would be trivial - the spy could just refuse to send any messages.

We decided to consider what might be possible when all the players in the room think

they have agreed on a key, but they have in fact agreed on different ones. What if

the spy knows all these keys? He could filter all the information exchanged, perhaps

making subtle but important changes to a document in a pre-defined way, such that the

other agents in the room are none the wiser. We checked for these kinds of attacks by

giving CORAL the following conjecture:

% we have distinct honest agents XI and XJ
eqagent(XI,spy)=false ∧
eqagent(XJ,spy)=false ∧
eqagent(XJ,XI)=false ∧

% they both sent message 2s
member(sent(XI,MN,pair(principal(XI),
encr(pair(nonce(RI),nonce(SI)),key(E)))),Trace) = true∧
member(sent(XJ,MN,pair(principal(XJ),
encr(pair(nonce(RJ),nonce(SJ)),key(E)))),Trace) = true∧

% and received message 3s under the correct keys, RI and RJ
member(sent(MN,XI,encr(Package1,nonce(RI))),Trace)=true∧
member(sent(MN,XJ,encr(Package2,nonce(RJ))),Trace)=true∧

% but the packages they received were different
eq(Package1,Package2)=false→

Note again that the conjecture is negative, i.e. it states that there is no trace for which

this combination of conditions can hold. CORAL refuted this property, producing the

counterexample trace3.

3It should be noted that, as a result of examining the protocol to create the model, we realised that
an attack like this would be possible before CORAL found it.

9.5. An Improved Version of the Asokan–Ginzboorg Protocol 123

1. spy → ALL : spy,{| E}| P

2. M1 → spy : M1,{| R1,S1}| E

2. M2 → spy : M2,{| R2,S2}| E

3. spy → M1 : {| S1,S2,Sspy}| R1

3. spy → M2 : {| S1,S2,S′spy}| R2

4. M1 → spy : M1,{| S1,h(S1,S2,Sspy)}| f (S1,S2,Sspy)

This attack is just a standard protocol run for three participants, except that in the first

message 3, the spy switches in a number of his own (S′spy in the place of S2). This

means that M1 accepts the key as f (Sspy,S1,S′spy), whereas M2 accepts f (Sspy,S1,S2),

and both of the keys are known to the spy.

Note that only the initiator of the run can effect this attack - the use of public key

cryptography in message 2 prevents another participant from being able to carry out a

similar deception. The attack can be easily adapted to a group of any size. We discuss

how to prevent this attack below, §9.5.

9.5 An Improved Version of the Asokan–Ginzboorg

Protocol

The disruption attacks are a result of the agents’ identifiers being sent in cleartext in

messages 1 and 2. This allows a spy to deceive the honest players with faked versions

of these messages. The non-matching keys attack is a result of there being no way

to confirm that everyone has received the same key. We can say the protocol is non-

symmetric, in that the leader has an advantage over the other players, since he is in

control of what keys everyone receives.

To protect against the first disruption attack, we can include the agent identifier

inside the encrypted package in message 1. This will prevent the faked message 1’.

The agent identifier in message 2 should also be encrypted. This change prevents the

spy from faking message 2s as he does in the second disruption attack. With these

changes, CORAL finds no more disruption attacks after considerable run-time.

Protecting against the non-matching keys attack is a more subtle problem: one way

124 Chapter 9. Case Study 1: The Asokan–Ginzboorg Protocol

to do it would be to have message 4 broadcast to all participants. This would make

sense in a normal run as it would allow other participants to see that someone had sent

message 4, and that the run was finished. Other participants could open the encrypted

package and check that the hashed number matches the hash of the key they received

in message 3. If anyone is unhappy, they could cry foul and get everyone to do another

run. The spy could fake a message 4 from an agent who has been given a duff key, but

since the message is broadcast to everyone, the agent concerned could recognise that

he is being impersonated and call a halt to proceedings.

Here is the revised protocol:

1. Mn → ALL : {| Mn ,E}| P

2. Mi → Mn : {| Mi ,Ri,Si}| E , i = 1, . . . ,n−1

3. Mn → Mi : {| {S j, j = 1, . . . ,n}}| Ri, i = 1, . . . ,n−1

4. Mi → ALL : Mi,{| Si,h(S1, . . . ,Sn)}| K , some i.

9.6 Summary

In general the results achieved in the case study were very pleasing. We were able to

model a group protocol in a general way without predetermining the size of the group,

and we discovered three new attacks, all quite novel and requiring unusual security

properties to be formulated. However, formulating the 2 security properties was a

non-trivial task. It took several attempts to get them right, the first incorrect attempts

yielding traces that were quite clearly not attacks. In each case, the bugs were easy

to track down. For example, for the conjecture about resistance to disruption attacks,

we realised it was necessary to specify that nonce S j be part of the package sent in a

message 4. This need to debug the conjecture slowed down the attack finding process

considerably, because CORAL takes a long time to run on these protocols, so some

bugs took hours to come to light. In extremis, the second disruption attack took 73

hours run time to find (the first took 1 hour 30 mins, and the non-matching keys attack

3 hours 12 mins). This is not really acceptable compared to run times for competing

tools, though no competing tools can attack group protocols in such a general fashion.

This point is investigated more fully in the next chapter, where we evaluate CORAL

9.6. Summary 125

in the context of the most closely related work in the field. Some ideas for improving

CORAL’s run times are given in § 12.

Chapter 10

Case Study 2:

The Tanaka–Sato Protocol

This chapter describes our analysis of a different kind of group protocol. The protocol

in the previous chapter dealt with the problem of group key establishment, whereas the

Tanaka–Sato protocol, [Tanaka and Sato, 2001], addresses the problem of group key

management, where agents may join and leave the group at any time, and the group key

must remain secure. Following the pattern of the previous chapter, we first describe

the protocol, then describe the modelling process. We present the results, including

two new attacks discovered by CORAL, and then propose an improved version of the

protocol.

10.1 Description of the Tanaka–Sato Protocol

(Taghdiri–Jackson version)

Unlike the Asokan–Ginzboorg protocol modelled in the previous chapter, the Tanaka–

Sato protocol has been analysed using formal methods before, by Taghdiri and Jackson,

[Taghdiri and Jackson, 2003]. The protocol was formalised in the Alloy specification

language, [Jackson, 2002], and a SAT checker was used to search for counterexamples

to desirable properties of the protocol. Several counterexamples were found, the most

serious one indicating that current members of the group will accept as valid messages

127

128 Chapter 10. Case Study 2: The Tanaka–Sato Protocol

broadcast by ex-members of the group. Taghdiri and Jackson proposed an improved

protocol. However, their formal protocol model differed from the norm established

over the last 25 years in that no active attacker was included. If anything, it would

seem even more likely that a multicast protocol would be subject to attack by an active

intruder compared to a unicast protocol, as argued in [Mittra, 1997]. There are inher-

ently more opportunities for interception of traffic, and the ‘crowd’ of principals would

typically make it easier for an intruder to pose as another legitimate principal. Such

protocols should therefore be subjected to analysis under the full Dolev-Yao attacker

model, as is standard for unicast protocols. In this chapter, we describe the modelling

of Taghdiri and Jackson’s improved protocol, and show how CORAL discovered two

new attacks, just as serious as the ones the improvements were supposed to prevent.

The protocol that Tanaka and Sato originally proposed, called the Pull-Based Asyn-

chronous Rekeying Framework, [Tanaka and Sato, 2001], was primarily concerned

with minimising the burden of key updates in terms of network traffic and proces-

sor time. Two main design features were introduced for this purpose: the first was the

division of the group into subgroups, each under the management of a key distribution

server (KDS). The communication between the KDSs is assumed to be not only se-

cure but also conducted under a reliable totally ordered multicast protocol (RTOMP).

Taghdiri and Jackson, [Taghdiri and Jackson, 2003], modelled this by assuming that as

soon as one KDS updates its key, all the other KDSs instantaneously update theirs, ef-

fectively reducing the model to a single server. Our model also makes this assumption.

The second design feature of the protocol is that agents retain a list of keys rather than

just one key. They discard an old key as invalid t units of time after having received

a more up-to-date key, where t is set with respect to the delay in the network. Keys

are distributed only when an agent sends a request to the server. An agent will make

such a request when he wants to send a multicast message, or if he receives a message

encrypted under a key he doesn’t already have. In both cases, he will send a message

to the server giving the ID number of the newest key he has, and the server will send

back all newer keys. Only the newest key is used for multicast broadcasting.

This retention of a list of keys was shown in Taghdiri and Jackson’s analysis to lead

to major security problems. The most serious attack involved members of the group

10.1. Description of the Tanaka–Sato Protocol (Taghdiri–Jackson version) 129

accepting messages from a principal outside the group. An member of the group A

can simply broadcast a message from inside the group, leave, and then broadcast a

message using the same key. Though the group key has been updated as a result of

A leaving, the other agents in the group will still accept the second message as valid

as they all have the old key. To counter this, Taghdiri and Jackson suggested changes

to the protocol. Each agent should retain only the most recent key he has received,

and upon receiving a multicast message, should contact the server to confirm that it is

encrypted under the newest key. This may result in some message loss, because delays

in the network might mean that by the time a multicast message has been received and

a key request sent to the server, the group key has changed, but this was reckoned to

be acceptable compared to the potential security breach.

The Tanaka-Sato protocol assumes the existence of a unicast authentication proto-

col that allows the server to establish an individual key (IK) with a new member joining

the group. This IK is used to encrypt all communication between that member and the

server. We model the underlying authentication protocol by assuming the existence of

a long-term key shared by each valid potential member of the group with the KDS.

Since we are looking for attacks on the protocol rather than trying to verify it, we can

easily justify this. We can simply take the attacks we discover and examine them to

see if the specific way we implemented the authentication phase was exploited. The at-

tacks described in this paper would be effective for any initial authentication protocol.

Additionally, we make the standard assumption that the spy has access to one valid

long term key, i.e. he is able to pose as a legitimate agent.

Here is a description of the improved version of the protocol as described by

Taghdiri and Jackson:

Joining the Group

1. Mi → S : {| join }| KMi

2. S → Mi : {| IkMi ,Gk(n)}| KMi

In message 1, Mi wants to join the group, so sends a join request under his long term

key KMi . The server generates a fresh individual key , IkMi, and a new group key Gk(n).

Each group key has a unique ID number (n). The new individual key and group key

are sent to the joining member in message 2.

130 Chapter 10. Case Study 2: The Tanaka–Sato Protocol

Leaving the Group

1. Mi → S : {|leave}| IkMi

2. S → Mi : {|ack.leave}| IkMi

In message 1, Mi sends a request to leave encrypted under his individual key Ik. The

server acknowledges the leave in message 2, and generates a new group key. This key

is not distributed though, and if another membership change occurs before a request

for a key is received, it will never be distributed.

Sending a message

1. Mi → S : {|send,n}| IkMi

2. S → Mi : {| n′,Gk(n′)}| IkMi

3. Mi → ALL : {|message}| Gk(n′)

In message 1, agent Mi signals to the server that he would like to send a message by

sending what the protocol designers call a ‘sequence request’ message together with

the ID number of the newest key he has, n. The server checks that Mi is in the group,

and then sends back the newest key Gk(n′). If no joins or leaves have occurred since

Mi last received a key, it may be that n = n′, but this will not be the case in general. In

message 3, agent Mi broadcasts his message to the group.

Receiving a message

1. M j → S : {|read,n}| IkM j

2. S → M j : {| Gk(n′)}| IkM j

Suppose a multicast message has been broadcast, as in message 3 of the ‘sending a

message’ fragment above. When another agent M j receives the message, he first sends

a request to the server for the newest key. He then receives the newest key Gk(n′), and

will only accept the multicast message if it was encrypted under that key.

10.1.1 Commentary

The revised protocol as proposed by Taghdiri and Jackson contains some redundancy

as a result of their security improvements. For example, there is no reason for the

server to send the key to a new member when he joins, since he is required to ask for

a key update whenever he sends or receives a multicast message. Additionally, the

10.2. Modelling the Protocol 131

sequence number sent in the request for a key update before sending a message also

seems redundant. Previously, the server would have used it to decide which keys to

send back, but in the revised version, the server only ever sends back the most recent

key. It would be better to replace this with a nonce, as we argue after presenting the

attacks we discovered, in §10.4.

10.2 Modelling the Protocol

A feature of our model described in Chapter 6 is that all the information about the

state of the system, i.e. the state and knowledge of all the principals involved, is stored

in the trace and inferred from the trace each time it is needed. This was particularly

useful when we were modelling the Asokan–Ginzboorg group key agreement protocol

in the previous chapter. This was the key feature that allowed us to model message

3 in a general way, and so to perform the analysis without pre-setting the size of the

group. However, for the Taghdiri-Jackson protocol, this was not so helpful. Some

information about the state of the system does not normally appear in the trace. For

example, when an agent leaves the group, the server generates a new key, but this key

does not appear in the trace. A further consideration with this protocol is that we often

need to know who is in the group, in order to model the control conditions, i.e. tests

that honest agents apply before sending a protocol message. An honest agent will only

apply to join the group if he is not already in it, and will only send a message if he is

in the group etc. With the trace based model, a lot of examination of the trace would

be required to determine group composition, and we would need to do this almost

every time an agent sent a message, creating an enormous search problem. So, for this

protocol, some slight changes to the model were made, to include some information

about the state of the principals. The unary function m() that was previously used to

store just the message trace is now an arity 4 function storing the trace, a counter, the

current group key stored by the server, and the composition of the group stored as a

list of triples. The triples store the agents name, the individual key which he shares

with the server for this session in the group, and the most recent group multicast key

he has received. We define a boolean function ingroup on these lists of triples that

132 Chapter 10. Case Study 2: The Tanaka–Sato Protocol

determine whether or not a particular agent is in the group. A further change is our

modelling of freshness. We used to use the parts operator as used by Paulson, but in

our model for this protocol, we have a counter, and use this to model fresh values.

Our motivation for this was that so many fresh values have to be created in a typical

scenario, for individual keys, group keys and multicast messages, that our checking

of the parts literals would quickly slow down the search process. We model multicast

messages as hello(T), where T is the counter value when the message was sent, thus

ensuring all (honestly sent) messages are unique.

Having chosen to use a counter-based model, our heuristic for eager elimination

of parts literals (see §7.3) was now no use. However, an analogous heuristic using an

occurs check immediately suggests itself: if the counter variable occurs in term X in

a literal ingroup(X,Y,Z) = true, then the clause is redundant, since this would require

an agent at some point in the past to join the group and obtain a group key or individual

key that is only available now. A similar check can be applied to member(X,Y) = true

literals. The implementation of this heuristic required only a minor adjustment from

the existing parts heuristic, and results in the elimination of a lot of unreachable states

from the search. This rule could be generally applied to backward searching tools

using a tick based model.

As an illustration, in Figure 10.1, we give the clauses required for modelling the

sub-protocol for the sending of multicast messages. Note that we record the composi-

tion of the group at each point in time in the fourth argument of the send constructor.

This is important for making conjectures about security properties later on. Note also

that ingroup is an arity 3 function, with the third argument returning the a list of group

members without the agent named in the first argument. This is used when agents leave

the group or update their keys, as in the third clause in Figure 10.1. A further point to

note is that we still infer state information about principals from the trace, for example

to decide if they should be expecting a key update message in the third clause. Our new

model is something of a hybrid between a Paulson style trace model and a state-based

model like that used, for example, in [Basin et al., 2003]. We would like to experiment

further with more state-based model using CORAL’s backwards search (see §12.1).

10.3. Attacking the Protocol 133

%% SEND a message

m(Trace,Group,Keysequence,Tick)=true ∧

ingroup(triple(principal(Mi),Ikey,key(Sq)),Group,Newgp)=true

→m(cons(sent(Mi,server,encr(send(Sq),Ikey),Group),Trace),Group,Keysequence,s(Tick))=true

%% server gives key

m(Trace,Group,Keysequence,Tick)=true ∧

ingroup(triple(principal(Mi),Ikey,Oldk),Group,Newgp)=true ∧

member(sent(X,server,encr(send(Sq),Ikey),Tgroup),Trace)=true

→ m(cons(sent(server,Mi,encr(pair(key(Keysequence),send(Sq)),Ikey),group),Trace),

group,Keysequence,s(Tick))=true

%% agent broadcasts his message, updates his key

m(Trace,Group,Keysequence,Tick)=true ∧

ingroup(triple(principal(Mi),Ikey,Oldk),Group,Newgp)=true ∧

member(sent(X,Mi,encr(pair(key(Xk),send(Sq)),Ikey),Tg1),Trace)=true ∧

member(sent(Mi,server,encr(send(Sq),Ikey),Tg2),Trace)=true

→m(cons(sent(Mi,all,encr(hello(s(Tick)),key(Xk)), cons(triple(principal(Mi),Ikey,key(Xk)),Newgp)

),Trace),cons(triple(principal(Mi),Ikey,key(Xk)),Newgp),Keysequence,s(Tick))=true

Figure 10.1: Clauses for modelling the ‘send’ sub-protocol

10.3 Attacking the Protocol

In [Pereira and Quisquater, 2003], Pereira and Quisquater attempt to lay down a list

of desirable security properties for group protocols. They define implicit key authen-

tication, that an outsider cannot learn the group key; two ¤avours of perfect forward

secrecy, i.e. that the compromise of long term keys does not compromise past ses-

sion keys; and resistance to known-key attacks, i.e. that compromise of session keys

does lead the loss of future session keys. However, the properties Taghdiri and Jack-

son found not to be satisfied by the original protocol design fall outside of this cate-

gorisation. Essentially, this seems to be because, unlike the protocols in the Pereira–

Quisquater case study, we are dealing with a protocol involving a trusted key server.

This means that there are no key establishment sessions involving all the principals in

134 Chapter 10. Case Study 2: The Tanaka–Sato Protocol

the group. Since principals aren’t party to decisions the server makes about updating

the key to account for new group membership, this leaves them open to different kinds

of attack.

The property vital to a multicast key management protocol is that throughout the

evolution of the group, agents currently outside the group should not be accepted as

group members by the agents inside the group. We could perhaps call this group

multicast authenticity. This property has two ¤avours: the first, which Taghdiri and

Jackson call ‘outsider can’t read’, implies that no agent outside the group should be

able to read a message sent by a member of the group. The second, which they call

‘outsider can’t send’, implies that members of the group should not accept as valid a

message sent from outside the group. We posed the former property as a conjecture to

CORAL in this form:

% A trace ending with an honest agent broadcasting under Mk
m(cons(sent(Mj,all,encr(hello(Y),Mk),Xgroup),

cons(sent(X,Mj,encr(pair(Mk,send(Sq2)),Ikey),Xgroup),
cons(sent(Mj,server,encr(send(Sq2),Ikey),Xgroup),
Trace))),Group,Keyseq,Tick)=true ∧

eqagent(Mj,spy)=false ∧

% But Mk is known to the spy
in(Mk,analz(Trace)=true ∧

% and the spy is not legitimately in the group
ingroup(triple(principal(spy),X3,X2),Xgroup,Newgp2)=false
→

This conjecture is negative, i.e. it states there should be no trace Trace ending with the

3 messages specified in the first literal, with the spy outside the group, and with the

message hello(y) being sent under a key the spy knows (analz(X) is the set of terms

the spy can learn from a trace X). The three final messages had to be specified together

because otherwise CORAL finds a rather trivial attack where the spy leaves the group

between the server sending a key update out to M j and M j broadcasting his message.

Then he can read the message quite legitimately, since he was in the group when it was

sent. Given the above form of conjecture, CORAL gives the following counterexample:

10.3. Attacking the Protocol 135

1. spy → server : {| spy}| longtermK(spy)

2. server → spy : {| ik(1),K(1)}| longtermK(spy)

3. a → server : {| a}| longtermK(a)

4. server → a : {| ik(3),K(2)}| longtermK(a)

5. spy → server : {| send(1)}| ik(1)

6. server → spy : {| K(2),send(1)}| ik(1)

7. a → server : {| send(2)}| ik(3)

8. server → a : {| K(2),send(2)}| ik(3)

9. a → all : {| hello(9)}| K(2)

10. spy → server : {| leave}| ik(1)

11. server → spy : {| ackleave}| ik(1)

12. a → server : {| send(2)}| ik(3)

13. spy → a : {| K(2),send(2)}| ik(3)

14. a → all : {| hello(14)}| K(2)

This is an attack on the protocol which hinges on the spy sending a replayed key update

message in message 13. Since in general the key may or may not have changed since

she last saw it, agent a will accept the same key again. The problem is that there is

no freshness information sent in the request for a key, just the sequence number of the

key an agent currently holds. Enclosing a nonce inside the package sent to the server

requesting a key update would blunt this attack. Having discovered this attack, we

realised that there should be a similar one whereby a spy can send a message from

outside the group and have it accepted by an agent inside the group. To confirm this,

we gave CORAL the following conjecture:

% A trace ending with someone accepting a message from the spy
m(cons(sent(X,Mj,encr(key(Mk),ik(Ikey)),Xgroup),cons(

sent(Mj,server,encr(read,ik(Ikey)),Xgroup),cons(
sent(spy,all,encr(hello(Y),key(Mk)),Group),trace))),Group,Keyseq,Tick)=true

∧
eqagent(Mj,spy)=false

% but the spy is not in the group
ingroup(triple(principal(spy),X3,X2),Xgroup,Newgp)=false

136 Chapter 10. Case Study 2: The Tanaka–Sato Protocol

Given this conjecture, CORAL finds the following counterexample:

1. a → server : {| a}|l ongtermK(a)

2. server → a : {| ik(1),K(1)}|l ongtermK(a)

3. spy → server : {| spy}|l ongtermK(spy)

4. server → spy : {| ik(3),K(2)}|l ongtermK(spy)

5. spy → server : {| read}|i k(3)

6. server → spy : {| K(2)}|i k(3)

7. a → server : {| read}|i k(1)

8. server → a : {| K(2)}|i k(1)

9. spy → server : {| leave}|i k(3)

10. server → spy : {| ackleave}|i k(3)

11. spy → all : {| hello(12)}|K (2)

12. a → server : {| read}|i k(1)

13. spy → a : {| K(2)}|i k(1)

This attack is similar to the first one, also relying on the spy replaying an old key

update message, but this time in response to a read request. This attack could also be

prevented by enclosing freshness information in key updates. We propose to do this

using nonces in the improved protocol below.

10.4 An Improved Version of the Protocol

Sending a message

1. Mi → S : {|send, NMi }| IkMi

2. S → Mi : {| NMi ,Gk(n′)}| IkMi

3. Mi → ALL : {|message}| Gk(n′)

Receiving a message

1. M j → S : {|read, NM j }| IkM j

2. S → M j : {| Gk(n′), NM j }| IkM j

The boxes highlight the changes to the protocol. The idea is that each time an agent

wants to update his key, he includes a fresh nonce in his request. This is returned to

10.5. Summary 137

him along with an update key. So, although the message may be delayed, the honest

agent knows that the key was issued after he made his original request, which is the

best we can hope for in this protocol scenario.

10.5 Summary

The attacks described above are serious and do not even require the spy to have full

Dolev-Yao capabilities - he need only be able to replay an old message, he does not

need to stop a message from being received or break messages apart etc. As such, it

can hardly be argued that Taghdiri and Jackson’s improved protocol was secure. After

making the improvements required to secure against this attack, the protocol doesn’t

look like a good candidate for solving the problem of multicast key management. Al-

most all the original optimisations to ensure the scalability of the protocol have had to

be removed for security reasons, and we now have to generate fresh nonces every time

we want to send or read a message. There are many other protocols for this scenario,

but few of them have been subject to any formal security analysis. There is much

potential for future work here (see §12).

We were quite pleased with the way CORAL performed on this protocol. Firstly,

the use of an inductive model meant we didn’t have to make fundamental changes to

our modelling strategy to accommodate an open-ended protocol with an unbounded

number of agents, joins, leaves, messages sent and received etc. Secondly, modelling

at the first-order Horn clause level in a theorem prover meant making the adaptations

required to store and manipulate a list of current group members was just an evening’s

work. Thirdly, CORAL was able to discover attacks requiring a long trace of messages

to be sent, indicating it has scaled up well, despite exploring a model without any

pre-setting of the number of agents, joins and leaves etc.

There were two weaker aspects to CORAL’s performance: one was the run times

(up to 3.5 hours to find the second attack). This is not as long as was required for the

Asokan–Ginzboorg protocol, but it is still a long time. The second weaker aspect was

the difficulty of posing conjectures. It took several attempts to pose the security prop-

erty in such a way that counterexamples really were attacks. However, we think that

138 Chapter 10. Case Study 2: The Tanaka–Sato Protocol

having analysed this protocol, it would be much easier to now go ahead and analyse

other similar protocols (see §12).

Chapter 11

Related Work

The field of automated security protocol analysis has matured considerably over the

last few years. There are now dozens of rival tools and techniques. To evaluate CORAL

we must therefore compare it to the best systems which are designed to achieve the

same goals, i.e. to automatically detect and present attacks on protocols. Two highly

regarded systems for this purpose are Athena, [Song et al., 2001], and the On-The-¤y

Model Checker, [Basin et al., 2003]. The first two sections in this chapter compare

CORAL to these two approaches.

A closely related approach is the Casrul system proposed by Chevalier et al. using

the daTac theorem prover, [Chevalier and Vigneron, 2002]. We discuss the relation-

ship in §11.3.

CORAL’s advantage over other approaches is its ability to find attacks in a very

¤exible model, allowing us to, for example, attack a general model of a group protocol

without predetermining the size of the group, or what roles agents will play once they

join. We compare CORAL to other attempts to attack group protocols in §11.4.

The CORAL approach is closely related to Paulson’s inductive method for protocol

analysis, [Paulson, 1998]. We explore this relationship in §11.5. CORAL also builds on

previous work on analysing protocols in first-order logic carried out by Weidenbach,

[Weidenbach, 1999]. We compare CORAL to Weidenbach’s work in §11.6. We brie¤y

compare CORAL to the general refutation tools developed by Reif and Protzen in §11.7.

There is a summary of the chapter in §11.8, including a discussion of the ultimate

applicability of CORAL in §11.8.1.

139

140 Chapter 11. Related Work

11.1 Athena

Athena, [Song et al., 2001], is widely considered to be the state of the art as far as

automatic protocol analysis tools are concerned. It is a dedicated tool designed from

the ground up for security protocol analysis, using a combination of theorem proving

and model checking techniques.

11.1.1 Description of Athena

Athena uses a model based on the strand space of Fábrega et al [Fábrega et al., 1999].

We looked at the strand space model in §2.4.5. We will recap here the definitions

of strands, bundles and strand spaces: a strand space is a collection of strands, with

a graph structure which expresses causal relations. A strand is a sequence of events

that a single party may engage in. An event is the sending or reception of a message,

represented by a node in the graph. Nodes have a sign: a positive sign indicates a

message was sent, and a negative sign indicates it has been received. There are two

kinds of strands in the model, those for honest participants and intruder strands. A

strand belonging to an honest agent contains that agent’s actions in one particular run

of the protocol. If an agent is involved in several runs, each of these will have its own

strand. Nodes in separate strands are adjacent when they represent the sending and

receiving of the same message.

A bundle is a finite acyclic subgraph of the strand space that is in a certain sense

backwards-closed: all received messages occurring in strands in the bundle must have

come from nodes also in the bundle, and if an event on a strand is in the bundle, then

all preceding events on that strand must also be in the bundle.

Athena additionally uses the notions of semi-bundles and goal-bindings. A semi-

bundle is like a bundle but closed only under backwards tracing of strands, not under

sending of received messages. Goal-bindings are used to keep track of the search for

ways a message might have originated, from another honest agent or from an intruder.

In other words, goal-bindings record ways in which a semi-bundle could be expanded

towards becoming a bundle. These concepts are used to remove some redundancy

from the protocol trace representation. The idea is to eliminate search space explosion

11.1. Athena 141

caused by infinite forwarding of a message, where arbitrarily many intruder strands

may receive and pass on the same message. CORAL uses the step compression heuris-

tic, described in §7.2.1, to achieve the same effect. However, by the same technique,

Athena can additionally remove the redundancy caused by duplicate representations

of what are the effectively the same protocol runs where only the order of interleaving

actions has changed. CORAL does a similar kind of pruning by subsumption check-

ing (see §8.2.1). However, it is not as efficient as the representation-based approach

Athena uses. In the strand space model, a single representation captures the exchange

up to a certain amount of permutation of messages. For example, take the attack Paul-

son found on the simplified Otway-Rees protocol, §2.3.5 (p. 17). There is also an

attack which is identical except that the first two messages are swapped round, since

the spy requires no information from the honest agent’s message 1 to send a faked

message 1’. In the strand space model, both these traces would be represented by the

same bundle. Furthermore, this applies not just to the final result, but to the interme-

diate stages of the search for an attack or a security proof. So Athena’s representation

is more efficient. CORAL’s representation is simpler, and subsumption checking is not

always sufficient to spot when two traces are effectively identical.

Athena has a dedicated logic for expressing security properties in terms of strands

and bundles. Properties are expressed as sequents of the form

P;Γ ` ∆ (11.1)

where Γ and ∆ are sets of strands under the protocol P. The semantics of the sequent

are that for any bundle C representing a run of the protocol P, if Γ⊆C then ∆∩C 6= /0.

In order to prove such a property, Athena tries to show that all possible bundles con-

taining Γ contain at least one strand from ∆. Proof search is carried out by a dedicated

inference algorithm. The first step is to convert the sequent to a form that also repre-

sents the state. Informally, this includes information about the set of possible semi-

bundles under consideration and their possible goal-bindings, i.e. ways they could be

extended to bundles. If the state contains a strand in ∆, then the property is proved.

Otherwise, a split rule is applied, and a next state function calculates the possible dif-

ferent ways of extending the semi-bundle. Each of these ways generates a new sequent

and state, and each of these sequents must be proved. If there are no unbound goals in

142 Chapter 11. Related Work

a sequent, that is it cannot be extended by further strands, but the state does not contain

a strand in ∆, then the security property is false. In this situation, the state information

contains the counterexample or attack.

Athena contains some additional optimisations to improve efficiency, such as prun-

ing theorems. These prevent Athena from wasting time considering contradictory

states. For example, if a state requires that an intruder be given a secret key k, but

that key is never sent in any protocol traffic, then the state is contradictory. CORAL

also includes a heuristic that prunes out these kinds of states (see §7.2.2). However,

Athena’s pruning mechanism is generic, and users can easily add pruning theorems of

their own. In CORAL, they are currently ‘hard wired’ in the modifications to SPASS.

However, the Comon-Nieuwenhuis method allows for user-defined lemmas to be used

to prune out redundant states, so it is possible to to add lemmas to CORAL as well. The

only restriction is that, because the answer literals in CORAL containing the trace are

hidden from the general proving mechanism, lemmas cannot currently refer directly

to properties of the trace represented by a particular clause. It would be possible to

modify CORAL to accept these kinds of lemmas though, (see §12.1).

By using a dedicated representation, logic and inference algorithm, Athena

achieves considerable improvements over previous tools in terms of efficiency. How-

ever, using a new and hence untrusted program to provide proofs of security is risky.

For example, an attempt to implement the Athena algorithm in the SyMP model prover

revealed a number of implementation considerations that are not described in the orig-

inal Athena paper, [Berezin and Groce, 2001]. If steps are not taken to treat bound

variables in a particular way not described by Athena’s authors, false attacks may be

produced. This erodes confidence in Athena’s proofs of security.

11.1.2 Results

Athena’s results on what has become the standard corpus of 2 and 3 party protocol

examples, the Clark-Jacob library, [Clark and Jacob, 1997], are impressive. 30 proto-

cols from the library have been checked by Athena, with a security property taking on

average 0.16 seconds to check. CORAL is much slower, taking for example 37 sec-

onds to discover the well known attack on the Needham-Schroeder protocol (see §8).

11.1. Athena 143

Athena’s authors do not mention explicitly the rediscovery of the attack on the sim-

plified Otway-Rees protocol, [Mao and Boyd, 1993], which CORAL has rediscovered,

but there seems to be no reason why Athena should not have discovered this. This

attack is significant because it requires an honest player to play two parallel roles, and

generate two nonces. This was something which older formal models for protocols

would not allow, but newer models such as the inductive model used by Paulson and

in CORAL, and the strand space model, do allow.

It does not seem, however, that Athena has been used to discover any new attacks

on known protocols. The only new attacks reported are on a set of 1641 artificially

generated protocols produced by an automatic protocol generator written by the Athena

authors. CORAL, however, has discovered five new attacks on two serious protocols

proposed new applications (see Chapter 9 and Chapter 10).

Athena has not been used to analyse any group protocols. Indeed, the only men-

tion of the use of the strand space model to analyse group protocols seems to be in

[Millen and Shmatikov, 2003]. However, the method sketched here requires the ana-

lyst to choose in advance how many principals will be involved in the group. As we

saw in Chapter 9, and is further shown in [Pereira and Quisquater, 2001] where attacks

require a group to be of size at least 4, this choice is critical, as it can affect whether or

not attacks are detected. CORAL can model group protocols in a general way, allowing

attacks on different sized groups to be found, as is evidenced in Chapter 9.

It seems that any method for group protocol analysis in Athena would require

the group size to be pre-determined. This is because of the semi-bundle construct.

Athena requires that semi-bundles are finite and closed under backwards traversal

along strands. This is not possible in a general model of the Asokan–Ginzboorg pro-

tocol attacked by CORAL in Chapter 9. If a bundle contains a node modelling the

sending of a general message 3, this must occur in a strand for the group leader role.

This strand is infinite, as there may be an unbounded number of different, preceding

message 3s in the strand, one for each member of the group, and we must in general

consider the group to be of unbounded size. To work around this would require some

non-trivial modifications to the strand space model and/or the notions used in Athena.

Perhaps a set of message 3s could be considered to be sent simultaneously, represented

144 Chapter 11. Related Work

in some generic way by a sort of supernode, then only expanded later in the proof

search when it became relevant. Some thought would be required to make this adap-

tation successfully. Additionally, in our second case study in §10, CORAL analysed

a protocol where the same agents may take part in an unbounded number of runs of

different sub-protocols, one after the other. Each time they must preserve values from

one sub-protocol (such as keys distributed by the server) to use in the next sub-protocol

(for example to leave the group). This would also produce infinite semi-bundles, which

cannot be handled by the Athena tool.

Athena is also tied to the notion of the Dolev-Yao attacker. For wireless proto-

cols like the one considered in Chapter 9, we model a weaker intruder who cannot

block messages from being received. To do this in Athena would require some repro-

gramming, to force semi-bundles to be constructed in such a way that messages sent

on honest strands must reach their recipient, and before any messages from intruder

stands using terms contained in the honest message.

11.1.3 Summary

In summary, Athena gains efficiency from dedicated representation and inference al-

gorithms, and from its generic interface for pruning theorems. It has been applied to

more of the standard protocols than CORAL, and can check these protocols for attacks

extremely fast. It can also prove protocols to be correct, which CORAL as yet does not,

though it has the theoretical ability to do so (see §12.4). However, the use of a new

dedicated algorithm and implementation introduces an element of required faith in its

results that one might not consider to be so great for e.g. a proof in and LCF prover like

Isabelle. This is of more significance when Athena concludes a protocol is secure, of

course. In the case of attacks, one can always write the attack down and then debate its

validity. Athena has not yet been used to discover any significant new attacks though.

The representation used in Athena improves on trace based models such as that

used in CORAL in terms of the clever way it avoids considering many states which are

equivalent to states already seen. However, along with the greater efficiency comes less

¤exibility, as is evidenced by the difficulties in representing group protocols like the

Asokan–Ginzboorg protocol in Athena’s model, and particularly protocols comprising

11.2. On-The-Fly Model Checker 145

a suite of sub-protocols like the Tanaka–Sato protocol. This seems to be an unavoidable

trade-off.

11.2 On-The-Fly Model Checker

Basin, Mödersheim and ViganÁo have written an on-the-¤y model checker (OFMC) for

searching for security protocol attacks, [Basin et al., 2003]. Its results have also been

impressive.

11.2.1 Description of the OFMC

The OFMC features two key innovations over the ‘standard’ model checking ap-

proaches, e.g. Lowe’s, [Lowe, 1996]. The first is lazy data-types. A lazy data type

is one in which constructors such as cons build data types without evaluating their

arguments. This allows protocol models to be formalised as infinite trees, with the

tree only being computed on-the-¤y as the states are explored. This presents a clean

way of handling the infinite state space that occurs in a security protocol model. Ad-

ditionally, the OFMC employs a lazy intruder model, whereby instead of generating

all the intruder’s knowledge at each point in the space of possible traces, the intruder’s

knowledge is represented in a symbolic fashion. At each point in the search space,

the OFMC checks to see if the intruder can generate a message that an honest player

expects.

The OFMC requires as input a parameterised version of the protocol under analysis.

That is, the user must choose a scenario for investigation, which must specify the exact

runs of the protocol to be considered. For example, for the NSPK protocol, the user

would specify a run between an agent Alice and the spy, and between Alice and Bob in

order to discover the attack. This cuts down the search space considerably. Input can

be given to the OFMC in the same high-level language as is used by the Casrul system,

[Jacquemard et al., 2000].

The search procedure for the OFMC is the same as for most model checking ap-

proaches, i.e. to start with an empty trace and search forwards to generate the set of

reachable states. An attack is defined by a set of goal states, i.e. states in which secu-

146 Chapter 11. Related Work

rity has been violated in some way. The OFMC compares each generated state with the

goal states to see if an attack has been found. Both secrecy and authenticity properties

can be specified.

The OFMC’s primary aim is to discover attacks. It is a semi-decision procedure

for finding attacks on faulty protocols, as CORAL is at present. Additionally, a limit to

the number of sessions can be used to guarantee termination and give some indication

of protocol security.

11.2.2 Results

The OFMC has been applied to 33 ¤awed protocols from the Clark-Jacob corpus,

[Clark and Jacob, 1997], and has found attacks on 32 of them, including a previously

unknown ¤aw. For each ¤awed protocol, a ¤aw is found in under 4 seconds. However,

for all these timings, the OFMC was given exactly the right scenario for the attack.

The OFMC can also find the attack on the simplified Otway-Rees protocol, which as

we explained in §11.1.2 above, is an important test example from outside the standard

corpus, [Compagna, 2002]. Perhaps more impressively, the OFMC has also been used

to find a previously unknown ¤aw in a protocol proposed by Siemens for multimedia

communication in mobile devices (H.530). This ¤aw was quite a serious one, and

Siemens have now changed the protocol to protect against it, [Basin et al., 2003].

It seems that the OFMC has not been used to analyse any group protocols yet.

It should be able to so this so long as the number of agents in the group is fixed in

advance. Modelling a general-sized group protocol in the OFMC does not seem to be

so straightforward. The problem lies in the fact that, although the intruder knowledge is

modelled symbolically, the state transitions still have the interpretation of one message

being sent, or the intruder carrying out one action, albeit with variables representing

some of the terms in the message or action. In order to model the Asokan–Ginzboorg

protocol in a general way (see Chapter 9), CORAL had to use variables to represent

arbitrary numbers of message 2s and 3s, with these variables later being instantiated as

required. There does not seem to be a way to do this in the model used by the OFMC,

although it could perhaps be adapted to do so.

The need for an explicit scenario would cause problems when trying to model a

11.3. The Casrul System 147

protocol like the one we analysed in CORAL in Chapter 10. In this multicast protocol,

we not only have an unbounded number of agents to consider, but additionally each

agent may play any number of roles, i.e. he may join the group, send messages, receive

messages, and leave the group in any valid combination, any number of times. Differ-

ent kinds of interaction are required to effect the attacks we found – for example for the

first attack, an agent must send a message in order to generate the message which the

spy can later replay, and in the second attack, an honest agent must receive a message

in order to generate the message the spy will later replay. It would be hard to guess the

right scenario in terms of roles without already knowing the attack.

11.2.3 Summary

The OFMC finds attacks on standard protocols much faster than CORAL, for similar

reasons to those behind Athena’s speed: the representation is more tailored to the prob-

lem, and the inference algorithms, particularly the lazy generation of intruder knowl-

edge, are designed specifically for the job. CORAL also generates intruder knowl-

edge in a lazy way, although as it is performing backwards search, it is really doing

knowledge checking rather than knowledge generation. However, CORAL’s intruder

knowledge is handled by axioms in the model which are then repeatedly applied by the

prover to compute messages the intruder would have to intercept. The intruder knowl-

edge handling in the OFMC is hard wired into the model checker, making it much

faster.

The OFMC, like Athena, does not seem to have the ¤exibility to attack a general

model of a group protocol. Instead, one would have to choose the number of players

in advance. It does not seem to be able to model a protocol where the same agent may

take part in an arbitrary number of sub-protocols, because it requires the scenario to be

fixed in advance.

11.3 The Casrul System

Chevalier et. al proposed a first-order model which has some similarities to the one

we use in CORAL, [Chevalier and Vigneron, 2002]. Their main innovation is the use

148 Chapter 11. Related Work

of puppet principals, i.e. dummy principals who can be sent messages by the intruder

in order to act as oracles. These oracles may give the intruder the terms he needs to

generate attacks. The real principals are restricted to a particular scenario, as they are

for the OFMC described above, and the dummy principals are set to always generate

the same nonces. These two restrictions ensure the system terminates. The Casrul

system also uses a lazy intruder model, like the OFMC, whereby instead of generating

all the terms the intruder knows at a certain point, the system just checks to see if the

intruder can generate a particular message that an honest player (or a puppet principal)

expects.

CORAL’s model is similar in that the heuristic described in §7.2.3 also stops the

intruder from considering terms which don’t match protocol messages, but because

Casrul model is bound to particular scenario, this can be used to restrict further the

messages the intruder might generate, i.e. Casrul will only generate those that fit the

scenario, and not just those which match the pattern of the protocol. The Casrul model

also takes advantage of the associative and commutative (AC) unification supported

in the theorem prover daTac, [L.Vigneron, 1996]. This facilitates the definition of an

AC operator for combining elements in a set, which is used to represent the set of all

sent messages, and the set of all states of principals. Now AC unification can be used

to allow the rules for state transitions to be applied to any previously sent message,

and any principal. Casrul gains a significant efficiency advantage over CORAL here.

We have to explicitly define a member function for extracting candidates from a list

of previously sent messages. Each time a member literal is satisfied, many inference

rules may have to be applied. This is particularly laborious if we are checking for non-

membership, i.e. satisfying a member(X,Trace) = false literal, when we have to check

every message in the trace. The use of lists does mean that CORAL’s model retains the

ability to reason about the order in which messages were sent, but this could perhaps

be recovered in Casrul if necessary, using a counter or similar mechanism.

Casrul’s run times on the standard protocols from [Clark and Jacob, 1997] are sig-

nificantly slower than those for the OFMC or Athena, and are broadly comparable with

CORAL. For example, for the Otway-Rees protocol, times are almost identical; for the

Hwang-Chen Splice protocol, CORAL is significantly faster; and for the Andrew RPC

11.4. Other Work on Group Protocols 149

protocol, Casrul is significantly faster (though it is not clear which attack the timing

is for). Both systems were tested on Pentium Linux boxes of similar vintage (though

exact hardware details are not given in [Chevalier and Vigneron, 2002]). Bearing in

mind that the Casrul system must have the scenario for the attack specified before the

search starts, CORAL compares favourably here. The Casrul system typically requires

the consideration of far fewer states than CORAL, which would seem to give it better

potential for scaling up. However, the Casrul system as it stands is bound to the notion

of the Dolev-Yao intruder and to the analysis of specific scenarios, which would hinder

adequate formalisation of the protocols we used as case studies in Chapters 9 and 10.

Additionally, it doesn’t seem possible to model an arbitrarily-sized group protocol in

the Casrul system, since a rule to send arbitrary numbers of different messages at the

same instant would not be first-order in the model they use.

Casrul has been used to discover one new attack on the Denning-Sacco symmetric

key protocol, [Denning and Sacco, 1982], though some may consider it slightly dubi-

ous. It requires an extreme case of type confusion, where an agent mistakes a package

of the form T,{| BKABT}| KA for a timestamp T . Since the package itself begins with a

timestamp, this might seem unlikely, but the authors do give particular implementation

scenarios where it could possibly occur, such as if the recipient of the package reads

the timestamp and then disregards the rest of the message.

In summary, Casrul has some efficiency advantages over CORAL in terms of the

number of states explored thanks mainly to its use of a theorem prover supporting

AC unification and a model which is restricted to a specific scenario. However, run

times are about the same as CORAL and the Casrul model is not as expressive. It has

discovered a single new attack on a standard protocol, but has not been used to model

any group protocols.

11.4 Other Work on Group Protocols

Various other attempts have been made to analyse group protocols. The most suc-

cessful in terms of finding new attacks was [Pereira and Quisquater, 2003], where the

case study was from the CLIQUES protocol suite, [Ateniese et al., 2000]. Pereira and

150 Chapter 11. Related Work

Quisquater discovered a number of new attacks, using a pen-and-paper approach and

borrowing some ideas from the strand space model. Their attacks were quite subtle,

involving properties of the Diffie-Hellman exponentiation operation widely used in the

CLIQUES suite. They also involved the spy doing some quite imaginative things, like

joining the group, leaving, and then forcing the remaining members to accept a com-

promised key. This showed the value of by-hand analysis taking algebraic properties

of cryptographic functions into account, but only when undertaken by experts.

Meadows made an attempt to extend the NRL protocol analysis tool

(NPA), [Meadows, 1996b], to make it suitable for analysing group protocols,

[Meadows, 2000a]. Again the CLIQUES protocols were used as an example. How-

ever, NPA was not able to rediscover the attacks Pereira and Quisquater had discovered,

because of the intricate series of actions the spy has to perform to effect the attack. NPA

is tied to quite constrained notions of secrecy and authenticity, which may be where

the problem lay.

It would be interesting to see whether these kinds of attacks could be found auto-

matically by CORAL. We hope that the very flexible inductive model used might mean

that these attacks are within CORAL’s scope. However, some work would be required

to model the associative and commutative properties of the exponentiation operation

used. We are at an advantage here because of our access to equational reasoning in

SPASS– we already use this to model the commutative properties of symmetric keys

(see §8.3). Modelling these properties is a topic which has recently started to attract

more research interest, [Millen and Shmatikov, 2003, Bertolotti et al., 2003]

As we mentioned at the beginning of Chapter 10, the Pull-Based Asynchronous

Rekeying Framework of Tanaka and Sato, [Tanaka and Sato, 2001], has previously

been modelled by Taghdiri and Jackson, [Taghdiri and Jackson, 2003]. The Taghdiri-

Jackson model is general in terms of the number of members of the group, but does not

model a malicious intruder trying to break the protocol. Instead, they just investigate

correctness properties of the protocol, using a specification language called Alloy and

a verification tool for this language based on a SAT-solver. One correctness property is

found not to hold, revealing a ¤aw whereby a member of the group may accept a mes-

sage from an ex-member of the group as being current. Taghdiri and Jackson proposed

11.5. Paulson’s Inductive Approach 151

a fix for the protocol, and could find no more attacks, but by modelling the protocol in

CORAL (see Chapter 10) we were able to discover two new attacks, both as serious as

the one found by Taghdiri and Jackson.

11.5 Paulson’s Inductive Approach

The CORAL system was inspired by the idea of a counterexample finder for Paulson’s

inductive model. Paulson’s formalism for security protocol analysis, [Paulson, 1998],

is mechanised in the interactive theorem prover Isabelle/HOL, [Paulson, 1989]. To for-

malise a protocol, an inductive datatype is defined using rules that define how agents

might add messages to the trace. Additionally, further rules establish what the knowl-

edge the spy can extract from previous network traffic, and how the spy might add

fake messages. The rules we use in our formalism are very similar (§6.5 and §6.6). In

particular, the same synth and analz operators are used in our model. Paulson’s model

is unconstrained in terms of the number of agents who might possibly take part in a

protocol, the number of nonces each agent might generate, the number of interleaving

sessions, etc. CORAL’s is similarly unbounded. The spy is not accepted as an honest

agent in Paulson’s work, but instead a subset of the agents are considered ‘bad’, that is

the spy has their long term keys. This has since been proved to be equivalent to having

the spy alone accepted as an agent by the other players, [Syverson et al., 2000]. So

here CORAL’s model is also equivalent. The security properties Paulson attempts to

prove are very similar to the conjectures CORAL refutes.

The main difference between the formalisms is that while CORAL’s is first-order,

Paulson’s is in higher-order logic. Using higher-order logic makes it easy to create a

strongly typed model. However, in our model, we were able to use unary functions

number, agent to specify sorts, and then modifiers like key and nonce to distinguish

between message objects. In this way we were also able to create a typed formalism.

Of course, we cannot recover the full power of higher order logic, but this does not

seem to be necessary to specify and analyse most protocols. This is perhaps not so sur-

prising, since a protocol model has conceptually simple semantics. The main problems

with protocol analysis occur not in trying to specify the model, but from the combina-

152 Chapter 11. Related Work

torial blow up caused by the agent’s infinite knowledge, the infinite number of agents

etc.

In CORAL we have specified a number of protocols that Paulson has also investi-

gated, and found the relevant attacks. Additionally we have found attacks on a group

protocol. One of the unusual features of Paulson’s work is that his approach has been

used to prove properties of a (different) group protocol, [Paulson, 1997]. So, we have

gone some way to make a convincing case for CORAL as a complementary counterex-

ample finder for the Paulson approach. CORAL’s long run-times are perhaps not so

much of an issue in this context, as the process of finding a proof in the Isabelle/HOL

prover is a fairly long one even for an expert user. CORAL could run on a parallel

machine attempting to disprove the conjecture the user is trying to prove.

We tried giving CORAL ‘failure information’ from the Paulson proofs. For a faulty

protocol, we gave CORAL hints, in the form of extra member specifications, from the

final subgoal where Paulson’s proof broke down. These false subgoals typically spec-

ify that several different messages are in a trace, and that this implies something false,

such as that the key remains secure. However, giving this information to CORAL in

fact made run-times much longer. This is perhaps because, even though these failed

subgoals are far from full specifications for an attack, they are still too much informa-

tion to give to CORAL. If CORAL is given a conjecture with many member literals in

it, it tends to slow it down, since CORAL can arrange for the required material to be

in the trace in many different orders, and then has to work out which of these might

lead to a valid trace. The conjecture we used for looking for disruption attacks on the

Asokan–Ginzboorg protocol is a good example of this (see §9.4.1). When Paulson

looks at such a failed subgoal, he uses human common sense to help work out what

a likely guess at what order the messages must be in an attack trace, for example that

a message 3 is probably after a message 1. CORAL currently doesn’t do this kind of

reasoning, but we could perhaps define some rules like this to act as heuristics to assist

CORAL in choosing which clause to consider next.

An important feature of Paulson’s model that we wanted to preserve was its easy

adaptability to non-standard protocols, as we discussed in §6.10. We believe that Chap-

ters and 9 and 10 provide some good evidence that we have succeeded. The Asokan–

11.6. Weidenbach’s First-Order Formalism 153

Ginzboorg protocol in Chapter 9 required us to model compound keys, a weaker in-

truder, and an arbitrary number of agents. A couple of extra Horn clauses were needed

to allow the spy to manipulate compound keys. Our trace based model allowed us

to make conjectures about attacks in a wireless network without difficulty. The trace

based inductive model allowed us to model the addition of an arbitrary number of dif-

ferent messages to the trace in one instant, which was the vital feature for the modelling

of the protocol without pre-setting the size of the group. For the Tanaka–Sato protocol

in Chapter 10, we had to add knowledge about the composition of the group to the

trace, and also to store the current group key at each point. This was very simple. Our

model needed no adaptations to account for the fact that agents may take part in any

valid combination of runs of the join, leave, send and receive sub-protocols. All of

these features are a real challenge to rival attack finding systems.

Cohen’s TAPS system, [Cohen, 2000], is related to Paulson’s in that the proving of

security invariants is somewhat similar to proving security properties by induction. It

has the advantage over Paulson’s technique that proofs are often completely automated.

Cohen’s method also provides no support for finding counterexamples. CORAL could

perhaps help out here too. The proof obligations generated by TAPS are currently

discharged by a resolution theorem prover, which suggests that it should be possible to

adapt CORAL to use this model.

11.6 Weidenbach’s First-Order Formalism

Weidenbach formalised the security protocol problem in a simple first order model,

suitable for the SPASS theorem prover, [Weidenbach, 1999]. His stated aim was to

combine the benefits of Paulson’s inductive model with the push-button nature of

model checking approaches. However, the simplifications he had to make to get the

very fast SPASS proofs were too drastic. They would prevent many attacks from be-

ing discovered, and so give false guarantees of security. For example, the attack on

the simplified Otway-Rees protocol, which CORAL rediscovered (§8.5), and even the

very simple attack on the Clark-Jacob protocol, which CORAL has also rediscovered

(§8.3), are beyond the scope of Weidenbach’s model. This is because the two agents

154 Chapter 11. Related Work

in his model are restricted to playing only one part in the protocol. One is always the

initiator, and the other always the responder. Additionally, there are only two nonces

available for use, and the spy is not accepted as an honest agent. For the Otway-Rees

attack, we need three nonces, and a spy who can pass himself off as an honest player.

In fact, the attack on the Neuman-Stubblebine protocol, which Weidenbach used as a

case study, is one of the few in the literature that his approach would have been able to

find. We showed, for the sake of completeness, that CORAL can also find this attack in

§8.4.

11.7 General Inductive Refutation Tools

In §3.2, we introduced two tools for finding counterexamples to false inductive conjec-

tures, those of Protzen, [Protzen, 1992], and Reif, [Reif et al., 2001]. Though Reif’s

more recent tool is more powerful than Protzen’s, neither would be adequate for finding

security protocol attacks. This is because their approaches are designed for datatypes

that are easy to enumerate. To generate all valid protocol traces is a non-trivial task,

taking into account the calculation of possible faked messages from the spy. Both tools

would tend to generate a lot of invalid traces, and get stuck very quickly.

In §5.3, we reported on experiments with CORAL on the kinds of simple non-

theorems these systems were designed for. CORAL’s performance was good. Although

it is hard to make valid comparison with Protzen’s work, given how much faster com-

puter hardware has become in the last 10 years, Reif’s experiments were carried out

quite recently. He reported run times of several seconds on his hardest problem, but

CORAL was able to find the counterexample in under a second. The reason for this

is that Reif’s system, and Protzen’s, were designed to be subsystems of larger provers

that would tackle the refutation of false conjectures in the context of a large inductive

proof. In CORAL, we bring all the power of a full first-order theorem prover to bear

on the problem of finding counterexamples. Given that computer hardware costs are

relatively low, it would not be unrealistic to have CORAL running on a parallel ma-

chine doing refutation tasks as part of a larger proof effort. This would seem to be a

promising approach for assisting an automated inductive theorem prover. We discuss

11.8. Summary 155

this in §12.5.

11.8 Summary

We can summarise our comparison of CORAL to related work in a few key points:

• Purpose built protocol analysis tools like Athena and OFMC have a huge speed

advantage over CORAL, due to the fact that CORAL is essentially a modified first-

order theorem prover, using general inference rules and algorithms. However, we

also model protocols under fewer assumptions about the number of agents and

what roles they will play.

• No other automated tools have been able to find attacks by an active intruder

on a group protocols, as CORAL has. The nearest efforts have been the Alloy

model used by Taghdiri and Jackson, which was general with respect to group

size and found a rather obvious ¤aw, but did not include a malicious intruder.

When we modelled this protocol in CORAL, with an active intruder, we found

two new attacks. CORAL’s success in this area is a product of the very general

inductive model used. There seems to be an inevitable trade-off in designing

protocol analysis tool between ¤exibility and speed.

• CORAL’s model is a satisfactory first-order version of Paulson’s higher order

model in that it maintains the essential expressiveness in terms of numbers of

agents, nonces etc. It also maintains the simplicity and level of abstraction that

allows the model to be rapidly adapted to slightly different protocol scenar-

ios.This is demonstrated by CORAL’s modelling of a group key establishment

protocol and a multicast key management protocol. CORAL would be a useful

tool to run in parallel to an attempt to prove a protocol secure using Paulson’s

methods.

• CORAL builds and improves on Weidenbach’s first-order protocol model, as it

provides the intruder and also the honest agents with much more realistic ca-

pabilities. This enabled CORAL to find attacks that Weidenbach’s model would

156 Chapter 11. Related Work

not allow. The price is that CORAL only finds attacks, not proofs of security at

present, though this could perhaps be addressed by future research (see §12.4).

• Outside of the protocol analysis field, CORAL is also a powerful tool for quickly

finding counterexamples to smaller false conjectures in simpler datatypes. It

improves on previous work in this area.

11.8.1 Ultimate Applicability of the Technique

The comparison with other protocol analysis approaches gives us a picture of CORAL

as a niche tool, which although able to find the standard attacks on two and three

party protocols, is not in its present form the most efficient tool for this task. Instead,

its strength is to be found in its ¤exibility. It is suitable for analysing more unusual

protocols where the parameters such as number of participants, the roles they play

in the protocol and size of key may vary, or, where the goals are unusual, and may

require several parts of the trace of messages to be considered rather than just some

final state. Additionally, CORAL’s model can be very quickly adapted to new protocols

which don’t fit the pattern of the well-analysed Clark-Jacob corpus. This is illustrated

by the fact that CORAL has been used to find five new attacks on serious protocols

from the literature. The OFMC has found two new attacks, and none have been found

using Athena. This was a direct result of the fact that we could very quickly make the

small adaptations to the model required to analyse protocols that OFMC and Athena

could not analyse in their present forms. CORAL’s applicability then is a little like the

applicability of a high level language like Prolog - it can be quickly adapted to deal

with a new example which differs from previously considered protocols, but will not

give the kind of performance that can be obtained from optimising a tool for a set of

very similar protocols.

11.8.2 The Way Ahead

The further development of CORAL would require the decision to be made as to

whether we attempt to fully retain generality, so that CORAL can continue to be used

11.8. Summary 157

for finding counterexamples in any inductive specification, or whether we specialise

CORAL to be a protocol analysis tool. We consider the possibilities in Chapter 12.

Chapter 12

Further Work

There are many possible ways in which CORAL may be developed. Here we discuss

some ideas for improving CORAL’s performance on security protocol problems, for

making it easier to use and for other application areas where CORAL might be useful

tool.

12.1 Improving CORAL as a Protocol Analysis Tool

There are a number of small tweaks we could make to CORAL that would improve its

efficiency as a special-purpose protocol analysis tool. When searching for an attack in

our model, CORAL often generates clauses that contain a literal stating true 6= false.

This is of course an axiom of our theory, and so the clause is detected as redundant by

subsumption. So many clauses are deleted this way that it may be faster to detect and

prune them away by a simple special-purpose syntactic check. At the moment, CORAL

spends a lot of time doing subsumption checking, a little under half of the time spent

doing reductions. Looking for reductions and detecting redundancy constitutes about

99% of the total run time for a hard problem. So, any time we can save here would be

worthwhile.

The dedicated security protocol redundancy rules, described in Chapter 7, take

very little time to check, but have a big impact on the search space. This suggests that

more special purpose redundancy rules would further improve CORAL’s performance.

159

160 Chapter 12. Further Work

We should also like to allow the user to add his own redundancy rules in the form

of lemmas. As discussed in §11.1.1, CORAL already allows the user to add lemmas,

but because of the way the answer literal is hidden, they cannot currently refer to

properties of the trace represented by a clause. This restricts their efficacy. It would

take a little work, but it would be quite possible to alter CORAL to extend the scope of

these lemmas to reasoning about the trace, and so to give them the same power they

have in the Athena tool.

Another idea is to hard-wire a certain amount of the inference that is standard

across all protocols, e.g. the calculation of the spy’s knowledge. This could be used

to more effectively prune out states which require information to be revealed that is

never sent in the trace. Currently, this may take a while to do, because of having

to process several synth rules in order to break a faked message down into all the

terms required. If we had the breaking down and rebuilding of messages hard-wired

in CORAL, we could check redundancy for every synth(analz(. . .)) term instead of ev-

ery analz(. . .) term, and thereby save considerable time, particularly for protocols with

long messages or complex message structure. This hard-wiring of the spy’s knowl-

edge calculations could also fix the problem we had in trying to keep the ordering well

founded for the Asokan–Ginzboorg protocol, as mentioned in §9.2.2. We could do

some meta-reasoning about the number of players in the group, and that way avoid

problems involving calculating what the intruder might learn from a message with in-

finite key length. CORAL still successfully found attacks using the imperfect ordering,

but it would be good to recover our refutation completeness for these compound key

protocols.

CORAL is at present a general counterexample finding tool with some domain-

specific heuristics. This means we should be able to experiment with changing our

representation for the security protocol problem. In particular, as we saw in §11.1.1,

the strand space model is attractive in that is cuts out some redundancy from the search

space. It should be possible represent strands and semi-bundles as inductive first-order

objects, and then to reason about them in CORAL. This would provide an interesting

comparison, as we would be able to see just how much of an advantage the strand

space representation gives to a protocol analysis tool.

12.2. Further Protocol Experiments 161

Another interesting experiment would be to try to use CORAL on the models used

by the OFMC and Casrul tools (see §11.2). This would allow backwards search and

forwards search in the same model to be directly compared. The main obstacle to

immediately using the Casrul model in CORAL is that SPASS does not have explicit

support for AC unification. We would have to add explicit equations to the formalism

to model associative and commutative properties of the relevant operators. It may be

easier to implement the Comon-Nieuwenhuis strategy and CORAL’s heuristics, appro-

priately adjusted to the new model, in daTac.

As CORAL is built on SPASS, a theorem prover capable of equational reasoning,

we should be able to find a way to reason about some simple algebraic properties

of the cryptosystems underlying protocols, such as Diffie-Hellman type operations.

This would allow us to analyse the second Asokan–Ginzboorg protocol, which is quite

different to the first, and seems not to be susceptible to the same attacks. Also it would

allow us to look at the CLIQUES protocols, which have already been shown to be

faulty as we discussed in §11.4. The problem of reasoning effectively about protocols

utilising Diffie-Hellman type exponentiation operations is currently being tackled by

several research groups, [Millen and Shmatikov, 2003, Bertolotti et al., 2003] . Our

approach would be to extend the current simple equational part of our formalism with

axioms specifying commutative and associative properties of keys constructed from

exponentiation.

12.2 Further Protocol Experiments

Having used CORAL to discover attacks on one multicast key management protocol,

one obvious area for experimentation is to try CORAL on some other protocols de-

signed to address the same task. There are dozens of protocols for this scenario in the

literature, most of which have received little or no formal attention. Our experience so

far suggests that they are likely to be vulnerable to attack.

162 Chapter 12. Further Work

12.3 Other Encryption Models

One weak point of almost all current protocol analysis is the perfect encryption model

they use, i.e. they assume that either a principal has the correct key and can read a

message, or he hasn’t and so he can’t. Recently, several attacks have been found on

the API1s used by hardware modules which implement electronic payment systems.

These attacks involve finding a sensitive piece of information, e.g. an account holder’s

PIN, by making successive guesses and using the output from the API to improve the

guess, [Bond and Anderson, 2001]. The attacks are potentially very serious, but are

completely outside the scope of current tools. It would interesting and exciting to try

to extend and develop CORAL to find attacks like these. Several changes would be

required. We would have to take into account the complexity of obtaining different

pieces of information, in terms, perhaps, of average number of guesses required. One

idea would be to carry this information in constraint literals, similar to the answer

literals CORAL currently uses. Axioms defining the API protocol could then specify

the effect of a particular command on the complexity of obtaining specific terms. This

idea would need a lot of work, but the hope is that the ¤exibility that CORAL showed

in its adaptability to group protocols would make it suitable for adaptation to security

APIs.

12.4 Proving Theorems

Though we have used it in this work to refute non-theorems, the Comon-Nieuwenhuis

method for proof by consistency was originally conceived for proving inductive theo-

rems. This means that in theory, CORAL can also show security properties of proto-

cols to be correct when there are no attacks to be found. However, to make this work

in practice would require some considerable work. The formulae to be proved are

significantly larger than the kinds of examples that have been proved by proof by con-

sistency in the past. The proof by consistency method has recently been used success-

fully for a verification case study on JavaCard bytecode, [Barthe and Stratulat, 2003].

1Application Program Interface - a protocol describing how other processes can interact with the
process in question.

12.5. Other Application Areas 163

This was carried out using the SPIKE prover, [Bouhoula and Rusinowitch, 1995],

which utilises a divergence critic developed by Walsh to assist in finding proofs,

[Walsh, 1996]. Similar critics could be added to CORAL.

A key to any attempt at inductive proof is devising and proving appropriate inter-

mediate lemmas in order to eventually prove the goal. Walsh’s divergence critic is

one way of suggesting lemmas. In the specific case of security protocols, there may

be some fixed lemmas we can use to increase our chances of achieving saturation in

the case of a correct protocol, or speeding up attack finding in the case of faulty one.

For example, we could experiment with the various ‘forwarding’ and ‘unicity’ lemmas

used by Paulson in his inductive protocol model.

Several redundancy detection techniques for general first-order proving have been

suggested that are not implemented in SPASS, for example, contextual rewriting,

[Nivela, 1993]. These could be implemented SPASS and used in CORAL in order to

assess their usefulness for aiding proof by consistency.

12.5 Other Application Areas

There are other areas of automated reasoning where a tool for detecting and refuting in-

correct inductive conjectures would be of use. The most significant of these is perhaps

inside an automated inductive theorem prover. The application here would be to refut-

ing incorrect lemmas and generalisations suggested by the system during the course

of a proof. As mentioned above, most inductive proofs of any size require several

intermediate lemmas to be proved before the main conjecture can be proved. These

lemmas may have to be generalised to facilitate a proof in the system, or indeed the

original conjecture itself may have to be generalised. Many tools contain mechanisms

for suggesting these lemmas and generalisations, e.g. [Ireland, 1996], but the lemmas

and generalisations may actually be false. If we can detect this early, for example using

CORAL, then we can save a lot of work for the prover. Furthermore, the counterex-

ample discovered could be useful in suggesting a correction to the formula. Given the

parallel nature of CORAL’s architecture, it should be simple to set up a version that

would run on a separate machine, accepting conjectures to investigate from the main

164 Chapter 12. Further Work

prover as they arise in a proof attempt. This arrangement would prevent the resource-

hungry theorem prover at the heart of CORAL from slowing the main inductive prover

down.

12.6 Summary

In this chapter, we have suggested several ways in which CORAL might be developed

in future work. These can be split into two main areas:

1. Specialising CORAL to security protocols, where ideas include hard-wiring more

of the model into the inference process, developing new domain-specific heuris-

tics, experimenting with more multicast key management protocols and adapting

the model to deal with protocols requiring more detailed cryptographic models.

2. Applying CORAL to other problems, such as refuting incorrect conjectures inside

an automated inductive theorem prover.

Further development in these areas will allow us to build a more complete picture of

the potential of the Comon-Nieuwenhuis approach, as well attacking some of the major

outstanding problems in automated cryptographic protocol analysis.

Chapter 13

Conclusions

In this chapter, we discuss in more detail the research contributions of the thesis that

were outlined in Chapter 1, in the light of the presentation we have given in Chapters

2–11. This serves to summarise and evaluate the thesis.

13.1 Evaluation of Research Contributions

In Chapter 1, we presented very brie¤y the research contributions of this thesis. These

were given in in the form of two hypotheses that we believe are supported by the

evidence presented in this thesis. Having described the background, the theory, the

implementation, the experiments we have carried out and related work in more detail,

we are now in a position to discuss these hypotheses more fully.

Hypothesis 1 By using the Comon-Nieuwenhuis strategy to refute incorrect inductive

conjectures in a first-order version of Paulson’s security protocol model, we can

effectively find attacks on faulty security protocols.

In Chapter 5 we showed how we adapted the SPASS proved to use the Comon-

Nieuwenhuis strategy. We presented our model in Chapter 6, and showed how, together

with the heuristics described in Chapter 7, it could be used to discover 10 standard pro-

tocol attacks in Chapter 8.

165

166 Chapter 13. Conclusions

Hypothesis 2 The use of a simple first-order trace based formalism for analysing pro-

tocols allows us to quickly adapt to unusual protocols, such as group key agree-

ment and key management protocols, which approaches optimised for standard

2 and 3 party protocols would struggle with

The model we presented in Chapter 6 was shown to be ¤exible enough to model

general-sized group protocols in Chapter 9, and, with minor changes, to model a mul-

ticast group key management protocol in Chapter 10. As we saw in §11.1.1 and §11.2,

some other models used for protocol analysis have less redundancy and so can find at-

tacks on standard protocols from the Clark-Jacob corpus faster. However, these special

purpose models with their associated special purpose inference mechanisms generally

lack the ability to formalise arbitrary sized group protocols and protocols allowing the

same agents to play an arbitrary number of different roles in a protocol. As we saw in

Chapter 2, the field of standard protocol analysis is now somewhat saturated. CORAL’s

ability to adapt to new non-standard protocols is therefore important. CORAL’s ¤exi-

bility is a result of its simple, open ended, Horn clause inductive model, and the fact

that this model is mechanised in a first-order theorem prover with support for equa-

tional reasoning.

How significant is the ability to model group protocols in a general way, i.e. with-

out predetermining the size of the group? We have seen from our first case study that

it is at least of some significance, since the Asokan–Ginzboorg protocol had an attack

on a group of size 2 and one on a group of size 3. The attack for a three person group

is impossible for a group of size 2, since in the smaller group, once a single message 2

has been sent, there is nobody remaining for the spy to impersonate by replaying that

message 2. This means that if we had chosen the simplest model, we would not have

found the attack. On another group protocol, Pereira and Quisquater found an attack

on a group of minimum size 4, [Pereira and Quisquater, 2001]. So predetermining the

size of the group certainly does prejudice the chances of finding an attack. However,

if we can analyse and check a group protocol of fixed size very fast, then we could

perhaps analyse many different sized groups from size 1 to size n, and then conclude

the protocol is secure for groups up to n if we have not found any attacks. This would

require the person doing the analysis to construct different models for each different

13.2. Final Summary 167

sized group however, increasing the risk of making a mistake. Given that protocol de-

signers generally seem reluctant to use formal tools as it is, making the user do even

more work is undesirable.

Our second case study, on the Tanaka-Sato ARF Framework, is also significant, for

several reasons. One is that the protocol requires the same agents to play a possibly

unbounded number of different roles during one run. Protocol analysis approaches

tailored to the Clark-Jacob corpus would struggle to deal with this, and would certainly

require significant adaptation, whereas CORAL’s simple trace based model handled it

very naturally. The case study also highlights the inadequacy of the only previous

attempt at mechanised analysis of a multicast key management protocol. Taghdiri and

Jackson made a model of this protocol, but neglected to model anyone who actually

trying to break the protocol. CORAL’s model included a standard active intruder, and

this allowed us to discover 2 new attacks.

As a final remark in support of our second hypothesis, we observe that in the course

of the project, CORAL found five previously unknown attacks on two very different

group protocols, making it currently the leading automated tool for finding group pro-

tocol attacks.

13.2 Final Summary

• CORAL succeeds as a counterexample finder for inductive conjectures in a first-

order version of Paulson’s inductive protocol model, and thanks to its use of such

an expressive formalism, as a tool for discovering novel attacks on protocols that

other tools have difficulty modelling.

• Compared to some other protocol analysis tools, CORAL is quite slow. This is a

result of its generality. Further specialisation towards protocol analysis, and in

particular to particular types of protocols, would enable the implementation of

heuristics to make it faster.

• Other possible future directions include: trying to prove security properties in

the absence of attacks using critics and lemmas; developing an encryption model

168 Chapter 13. Conclusions

adequate for finding attacks where many guesses are made and the results used to

break cryptographic functions; applying CORAL to other areas where incorrect

inductive conjectures must be refuted.

Appendix A

Protocol Model Files

This appendix contains the specification file for the Needham-Schroeder public key

protocol. The specification for the Needham-Schroeder protocol was used as a worked

example for explaining the formalism in Chapter 6, but then we explained in Chapter 7

how we optimised the formalism using step compression. Here, we give the specifica-

tion in its final form, with the step compression optimisations marked in the comments.

Additionally, this appendix contains the changes to the protocol-specific part of the

formalism required to model the Clark-Jacob, Neuman-Stubblebine and BAN Otway-

Rees protocols.

A.1 The Needham-Schroeder Public Key Protocol

Recall that in our protocol notation, the Needham-Schroeder public key protocol runs

like this:

1. A→ B : {| NA,A}| pubKB

2. B→ A : {| NA,NB}| pubKA

3. A→ B : {| NB}| pubKB

The clauses for modelling the protocol are:

169

170 Appendix A. Protocol Model Files

% defining basic sorts

→ eqagent(U,U)=true

eqagent(U,V)=false→ eqagent(s(U),s(V))=false

→ eqagent(spy,s(U))=false

→ eqagent(s(U),spy)=false

→ eqagent(s(U),a)=false

→ eqagent(a,s(U))=false

→ eqagent(a,spy)=false

→ eqagent(spy,a)=false

→ agent(spy)=true

→ agent(a)=true

→ agent(s(a))=true

agent(s(U))=true→ agent(s(s(U)))=true

→ number(0)=true

number(U)=true→ number(s(U))=true

% The eq function

→ eq(U,U)=true

eq(MSG1,MSG2)=false→ eq(sent(U,W,MSG1),sent(V,Y,MSG2))=false

eqagent(A,B)=false→ eq(sent(A,W,X),sent(B,Y,Z))=false

eqagent(A,B)=false→ eq(sent(W,A,X),sent(Y,B,Z))=false

eq(H1,H2)=false→ eq(cons(H1,T1),cons(H2,T2))=false

eq(T1,T2)=false→ eq(cons(H1,T1),cons(H2,T2))=false

eq(MSG1,MSG2)=false→ eq(encr(MSG1,KEY1),encr(MSG2,KEY2))=false

eq(KEY1,KEY2)=false→ eq(encr(MSG1,KEY1),encr(MSG2,KEY2))=false

eq(M1,M2)=false→ eq(pair(M1,X),pair(M2,Y))=false

eq(M1,M2)=false→ eq(pair(X,M1),pair(Y,M2))=false

eq(principal(U),principal(V))=true→ eq(U,V)=true

eq(U,V),false→ eq(nonce(U),nonce(V))=false

eq(U,V)=false→ eq(s(U),s(V))=false

→ eq(nonce(U),principal(V))=false

→ eq(principal(U),nonce(V))=false.

A.1. The Needham-Schroeder Public Key Protocol 171

→ eq(a,s(U))=false

→ eq(spy,s(U))=false

→ eq(0,s(U))=false

→ eq(s(U),a)=false

→ eq(s(U),spy)=false

→ eq(s(U),0)=false

→ eq(a,spy)=false

→ eq(spy,a)=false

% The list member function

eq(H1,H2) = false∧member(H1,L) = false
→ member(H1,cons(H2,L)) = false

→ member(U,nil)=false

member(H,L)=true→ member(H,cons(W,L))=true

→ member(H,cons(H,T))=true

member(U,nil)=true→

% The parts operator

in(U,parts(V)) = false∧ in(U,parts(W)) = false
→ in(U,parts(cons(sent(X,Y,W),V))) = false

in(U,parts(V)) = false∧ in(U,parts(W)) = false
→ in(U,parts(encr(V,W))) = false

in(U,parts(V)) = false∧ in(U,parts(W)) = false
→ in(U,parts(pair(V,W))) = false

eq(U,V)=false→ in(nonce(U),parts(nonce(V)))=false

eq(U,V)=false→ in(key(U),parts(key(V)))=false

→ in(nonce(U),parts(principal(V)))=false

→ in(nonce(U),parts(key(V)))=false

→ in(U,parts(nil))=false

% The spy - analz and synth operators

in(encr(U,pubk(spy)),analz(V))=true→ in(U,analz(V))=true

agent(U)=true ∧ in(V,synth(analz(W)))=true
→ in(encr(V,pubk(U)),synth(analz(W)))=true

172 Appendix A. Protocol Model Files

in(pair(U,V),analz(W))=true→ in(U,analz(W))=true

in(pair(U,V),analz(W))=true→ in(V,analz(W))=true

in(U,synth(V))=true∧ in(W,synth(V))=true
→ in(pair(U,W),synth(V))=true

in(U,analz(V))=true→ in(U,synth(analz(V)))=true

agent(U)=true→ in(principal(U),analz(V))=true

→ in(U,synth(analz(nil)))=false

→ in(U,analz(nil))=false

%%% The rest of the clauses are specific to NSPK

% honest agents taking part in the protocol:

agent(A)=true ∧ agent(B)=true ∧ number(NA)=true ∧ m(Trace)=true ∧
in(nonce(N),parts(Trace))=false
→m(cons(sent(A,B,encr(pair(nonce(N),principal(A)),pubk(B))),Trace))=true

number(NB)=true∧ m(Trace)=true∧ in(nonce(NB),parts(Trace)),false
member(sent(X,B,encr(pair(nonce(NA),principal(A)),pubk(B))),Trace)=true
→m(cons(sent(B,A,encr(pair(nonce(NA),nonce(NB)),pubk(A))),Trace))=true

m(Trace)=true∧
member(sent(X,A,encr(pair(nonce(NA),nonce(NB)),pubk(A))),Trace)=true∧
member(sent(A,B,encr(pair(nonce(NA),principal(A)),pubk(B))),Trace)=true
→ m(cons(sent(A,B,encr(nonce(NB),pubk(B))),Trace))=true

% spy learning things from the trace

member(sent(X,Y,encr(pair(nonce(NA),principal(A)),pubk(B))),Trace)=true
→in(encr(pair(nonce(NA),principal(A)),pubk(B)),analz(Trace))=true

member(sent(X,Y,encr(pair(nonce(NA),nonce(NB)),pubk(A))),Trace)=true
→in(encr(pair(nonce(NA),nonce(NB)),pubk(B)),analz(Trace))=true

member(sent(X,Y,encr(nonce(NB),pubk(B))),Trace)=true
→in(encr(nonce(NB),pubk(B)),analz(Trace))=true

% Spy adding messages to the trace

% spy faking a message 1
m(Trace)=true ∧
in(encr(pair(nonce(NA),principal(A)),pubk(B)),synth(analz(Trace)))=true
∧ eq(spy,B)=false→
m(cons(sent(spy,B,encr(pair(nonce(NA),principal(A)),pubk(B))),Trace))=true

A.2. Changes for the Clark-Jacob Protocol 173

% spy faking a message 2
m(Trace)=true∧
in(encr(pair(nonce(NA),nonce(NB)),pubk(A)),synth(analz(Trace)))=true
∧ eq(spy,A)=false→
m(cons(sent(spy,A,encr(pair(nonce(NA),nonce(NB)),pubk(A))),Trace))=true

% spy faking a message 3
m(Trace)=true∧
in(encr(nonce(NB),pubk(B)),synth(analz(Trace)))=true
∧ eq(spy,B)=false→
m(cons(sent(spy,B,encr(nonce(NB),pubk(B))),Trace))=true

A.2 Changes for the Clark-Jacob Protocol

Here we give the clauses required to model the Clark-Jacob protocol. These take the

place of the clauses marked above as being specific to the Needham-Schroeder proto-

col. No other changes to the model were required. The Clark-Jacob handshake consists

of just two messages:

1. A→ B : {| NA}| KAB

2. B→ A : {| s(NA)}| KAB

These were modelled by three clauses (because of the symmetric nature of the key, see

§8.3).

m(Trace)=true ∧
agent(A=true ∧
agent(B)=true ∧
number(NA)=true ∧
member(sent(X,Y,encr(nonce(NA),Z)),Trace)=false
→

m(cons(sent(A,B,encr(nonce(NA),key(pair(A,B)))),Trace))=true

member(sent(Z,B,encr(nonce(NA),key(pair(A,B)))),Trace)=true ∧
m(Trace)=true
→

m(cons(sent(B,A,encr(s(nonce(NA)),key(pair(A,B)))),Trace))=true

% additional axiom to make keys symmetric

key(pair(X,Y))=key(pair(Y,X))

174 Appendix A. Protocol Model Files

A.3 Changes for the Neuman-Stubblebine Protocol

For this protocol, we allowed type confusion between nonces and keys. The Neuman-

Stubblebine protocol runs like this:

1. A→ B : A,NA

2. B→ S : B,{| A,NA,TB }| KB ,NB

3. S→ A : {| B,NA,KAB,TB }| KA ,{| A,KAB,TB }| KB ,NB

4. A→ B : {| A,KAB,TB }| KB ,{| NB }| KAB

The clauses required were:

% message 1

agent(A=true ∧
agent(B)=true ∧
number(NA)=true ∧
m(Trace)=true ∧
% nonce freshness check
in(nonce(NA),parts(Trace)),false
→

m(cons(sent(A,B,pair(principal(A,nonce(NA))),Trace))=true

%% message 2 m(Trace)=true ∧
number(NB)=true ∧
member(sent(X,B,pair(principal(A,nonce(NA))),Trace)=true ∧
in(nonce(NB),parts(Trace))=false →
m(cons(sent(B,server,triple(principal(B),encr(triple(principal(A,nonce(NA),

time(T)),longtermkey(B)),nonce(NB))),Trace))=true

% message 3 m(Trace)=true ∧
member(sent(X,server,triple(principal(B),encr(triple(principal(A,nonce(NA),time(T)),

longtermkey(B)),nonce(NB))),Trace)=true
→

m(cons(sent(server,A,triple(encr(quad(principal(B),nonce(NA),key(NA),time(T)),
longtermkey(A),encr(triple(principal(A,key(NA),time(T)),
longtermkey(B)),nonce(NB))),Trace))=true

% message 4

m(Trace)=true ∧
agent(A=true ∧

A.3. Changes for the Neuman-Stubblebine Protocol 175

agent(B)=true ∧
member(sent(X,A,triple(encr(quad(principal(B),nonce(NA),key(NA),time(T)),

longtermkey(A),packet,nonce(NB))),Trace)=true ∧
member(sent(A,B,pair(principal(A,nonce(NA))),Trace)=true
→

m(cons(sent(A,B,pair(packet,encr(nonce(NB),key(NA)))),Trace))=true

%% spy faking a message 1

m(Trace)=true ∧
in(pair(principal(A,nonce(NA)),synth(analz(Trace)))=true ∧
eq(spy,B)=false
→

m(cons(sent(spy,B,pair(principal(A,nonce(NA))),Trace))=true

%% spy faking a message 2

m(Trace)=true
in(triple(principal(B),encr(triple(principal(A,nonce(NA),time(T)),

longtermkey(B)),nonce(NB)),synth(analz(Trace)))=true ∧
→

m(cons(sent(spy,server,triple(principal(B),encr(triple(principal(A,nonce(NA),
time(T)),longtermkey(B)),nonce(NB))),Trace))=true

%%%% faked message 3
%%% note for type confusion, we allow Key instead of key(NA) here

m(Trace)=true ∧
in(triple(encr(quad(principal(B),nonce(NA),key(NA),time(T)),longtermkey(A),

encr(triple(principal(A,Key,time(T)),longtermkey(B)),nonce(NB)),
synth(analz(Trace)))=true ∧

eq(spy,A)=false ∧
→

m(cons(sent(spy,A,triple(encr(quad(principal(B),nonce(NA),key(NA),time(T)),
longtermkey(A),encr(triple(principal(A,Key,time(T)),
longtermkey(B)),nonce(NB))),Trace))=true

% faked message 4 - again Key instead of key(NA) used here

m(Trace)=true ∧
in(pair(encr(triple(principal(A,Key,time(T)),longtermkey(B)),

encr(nonce(NB),Key)),synth(analz(Trace)))=true
→

m(cons(sent(spy,B,pair(encr(triple(principal(A,Key,time(T)),longtermkey(B)),
encr(nonce(NB),Key))),Trace))=true

176 Appendix A. Protocol Model Files

%% spy eavesdropping on message 1

member(sent(X,Y,pair(principal(A,nonce(NA))),Trace)=true
→ in(nonce(NA),analz(Trace))=true

% two clauses to model two possible things
% that can be obtained from eavesdropping on message 2

member(sent(X,Y,triple(principal(B),encr(triple(principal(A,nonce(NA),time(T)),
longtermkey(B)),nonce(NB))),Trace)=true
→

in(encr(triple(principal(A,nonce(NA),time(T)),longtermkey(B)),analz(Trace))=true

member(sent(X,Y,triple(principal(B),encr(triple(principal(A,nonce(NA),time(T)),
longtermkey(B)),nonce(NB))),Trace)=true
→ in(nonce(NB),analz(Trace))=true

%%% three things from a message 3

member(sent(server,A,triple(encr(quad(principal(B),nonce(NA),key(NA),time(T)),
longtermkey(A),encr(triple(principal(A,key(NA),time(T)),
longtermkey(B)),nonce(NB))),Trace)=true
→

in(nonce(NB),analz(Trace))=true

member(sent(server,A,triple(encr(quad(principal(B),nonce(NA),key(NA),time(T)),
longtermkey(A),encr(triple(principal(A,key(NA),time(T)),
longtermkey(B)),nonce(NB))),Trace)=true
→

in(encr(quad(principal(B),nonce(NA),key(NA),time(T)),longtermkey(A),analz(Trace))=true

member(sent(server,A,triple(encr(quad(principal(B),nonce(NA),key(NA),time(T)),
longtermkey(A),encr(triple(principal(A,key(NA),time(T)),
longtermkey(B)),nonce(NB))),Trace)=true
→

in(encr(triple(principal(A,key(NA),time(T)),longtermkey(B)),analz(Trace))=true

%two things from a message 4

member(sent(X,Y,pair(encr(triple(principal(A,Key,time(T)),longtermkey(B)),
encr(nonce(NB),Key))),Trace)=true
→

in(encr(triple(principal(A,Key,time(T)),longtermkey(B)),analz(Trace))=true

member(sent(X,Y,pair(encr(triple(principal(A,Key,time(T)),longtermkey(B)),
encr(nonce(NB),Key))),Trace)=true
→

in(encr(nonce(NB),Key),analz(Trace))=true

A.3. Changes for the Neuman-Stubblebine Protocol 177

Whereas the Needham-Schroeder public key protocol only has messages of length 1

and 2, the Neuman-Stubblebine protocol has messages of length 2,3 and 4. So, we

require the following additonal axioms:

% rules for parts:

in(X,parts(Y))=false∧
in(X,parts(Z))=false∧
in(X,parts(G))=false
→in(X,parts(triple(Y,Z,G)))=false

in(X,parts(Y))=false∧
in(X,parts(Z))=false∧
in(X,parts(G))=false∧
in(X,parts(H))=false∧
→in(X,parts(quad(Y,Z,G,H)))=false

% rules for analz

in(triple(X,Y,Z),analz(Xset))=true
→in(X,analz(Xset))=true

in(triple(X,Y,Z),analz(Xset))=true
→in(Y,analz(Xset))=true

in(triple(X,Y,Z),analz(Xset))=true
→in(Z,analz(Xset))=true

in(quad(X,Y,Z,G),analz(Xset))=true
→in(Y,analz(Xset))=true

in(quad(X,Y,Z,G),analz(Xset))=true
→in(X,analz(Xset))=true

in(quad(X,Y,Z,G),analz(Xset))=true
→in(Z,analz(Xset))=true

in(quad(X,Y,Z,G),analz(Xset))=true
→in(G,analz(Xset))=true

% rules for synth

in(X,synth(Xset))=true∧
in(Y,synth(Xset))=true
→in(pair(X,Y),synth(Xset))=true

178 Appendix A. Protocol Model Files

in(X,synth(Xset))=true∧
in(Y,synth(Xset))=true∧
in(Z,synth(Xset))=true
→in(triple(X,Y,Z),synth(Xset))=true

in(X,synth(Xset))=true∧
in(Y,synth(Xset))=true∧
in(Z,synth(Xset))=true∧
in(G,synth(Xset))=true
→in(quad(X,Y,Z,G),synth(Xset))=true

% rules for eq
eq(M1,M2)=false→ eq(triple(M1,G,H),triple(M2,X,Y))=false

eq(M1,M2)=false→ eq(triple(G,M1,H),triple(X,M2,Y))=false

eq(M1,M2)=false→ eq(triple(G,H,M1),triple(X,Y,M2))=false

eq(M1,M2)=false→ eq(quad(M1,G,H,I),quad(M2,X,Y,Z))=false

eq(M1,M2)=false→ eq(quad(G,M1,H,I),quad(X,M2,Y,Z))=false

eq(M1,M2)=false→ eq(quad(G,H,M1,I),quad(X,Y,M2,Z))=false

eq(M1,M2)=false→ eq(quad(G,H,I,M1),quad(X,Y,Z,M2))=false

A.4 Changes for the Otway-Rees Protocol

Here we show the different clauses required to model the Otway-Rees protocol. The

Otway-Rees protocol (or to be exact, the Burrows-Abadi-needham version of the pro-

tocol, [Burrows et al., 1990]) runs like this:

1. A→ B : NA,A,B,{| NA,A,B}| KA

2. B→ S : NA,A,B,{| NA,A,B}| KA ,NB,{| NA,A,B}| KB

3. S→ B : NA,{| NA,KAB}| KA ,{| NB,KAB}| KB

4. B→ A : NA,{| NA,KAB}| KA

The clauses for modelling honest agents taking part in the protocol are:

A.4. Changes for the Otway-Rees Protocol 179

% message 1: A to B

agent(A)=true ∧ agent(B)=true ∧
number(NA)=true ∧
m(Trace)=true ∧
% nonce NA must be fresh
in(nonce(NA),parts(Trace))=false
→

m(cons(sent(A,B,quad(nonce(NA),principal(A),principal(B),encr(
triple(nonce(NA),principal(A),principal(B)),longtermkey(A)))),Trace))=true

% message 2: B to server

m(Trace)=true∧
number(NB)=true∧
% Note B cannot read Packet, he just passes it on
member(sent(X,B,quad(nonce(NA),principal(A),principal(B),

Packet)),Trace) = true
% Nonce NB freshness check
in(nonce(NB),parts(Trace))=false
→

m(cons(sent(B,server,sex(nonce(NA),principal(A),principal(B),
packet,nonce(NB),
encr(triple(nonce(NA),principal(A),principal(B)),longtermkey(B)))),Trace))=true

% message 3: server responds with msg to B

m(Trace)=true ∧
member(sent(X,server,sex(nonce(NA),principal(A),principal(B),

encr(triple(nonce(NA),principal(A),principal(B)),longtermkey(A)),
nonce(NB),
encr(triple(nonce(NA),principal(A),principal(B)),longtermkey(B)))),
Trace)=true
→

m(cons(sent(server,B,triple(nonce(NA),
encr(pair(nonce(NA),key(NA)),longtermkey(A)),
encr(pair(nonce(NB),key(NA)),longtermkey(B)))),Trace))=true

% message 4: B to A
m(Trace)=true ∧
member(sent(X,B,triple(nonce(NA),Packet,

encr(pair(nonce(NB),key(K)),longtermkey(B)))),Trace)=true
member(sent(B,server,sex(nonce(NA),principal(A),principal(B),

Packet2,nonce(NB),

180 Appendix A. Protocol Model Files

encr(triple(nonce(NA),principal(A),principal(B)),longtermkey(B)))),Trace)=true
→

m(cons(sent(B,A,pair(nonce(NA),Packet)),Trace))=true

The Otway-Rees problem file also has different clauses for the spy’s sending and re-

ceiving of messages, following the heuristics outlined in Chapter 7.

% spy faking a message 1

m(Trace)=true∧
in(quad(nonce(NA),principal(A),principal(B),encr(triple(nonce(NA),principal(A),

principal(B)),longtermkey(A))),synth(analz(Trace)))=true∧
eq(spy,B)=false→
m(cons(sent(spy,B,quad(nonce(NA),principal(A),principal(B),encr(triple(

nonce(NA),principal(A),principal(B)),longtermkey(A)))),Trace))=true

% spy faking a message 2

m(Trace)=true ∧
in(sex(nonce(NA),principal(A),principal(B),encr(triple(nonce(NA),

principal(A),principal(B)),longtermkey(A)),nonce(NB),
encr(triple(nonce(NA),principal(A),principal(B)),longtermkey(B))),
synth(analz(Trace)))=true
→

m(cons(sent(spy,server,sex(nonce(NA),principal(A),principal(B),
encr(triple(nonce(NA),principal(A),principal(B)),longtermkey(A)),nonce(NB),
encr(triple(nonce(NA),principal(A),principal(B)),longtermkey(B)))),Trace))=true

% spy faking a message 3

m(Trace)=true ∧
in(triple(nonce(NA),encr(pair(nonce(NA),key(K)),longtermkey(A)),

encr(pair(nonce(NA),key(K)),longtermkey(B))),synth(analz(Trace)))=true
∧ eq(spy,A)=false→
m(cons(sent(spy,A,triple(nonce(NA),encr(pair(nonce(NA),key(K)),longtermkey(A)),

encr(pair(nonce(NA),key(K)),longtermkey(B)))),Trace))=true

% spy faking a message 4

m(Trace)=true ∧
in(pair(nonce(NA),encr(pair(nonce(NA),key(K)),longtermkey(A))),

synth(analz(Trace)))=true ∧
eq(spy,A)=false→
m(cons(sent(spy,A,pair(nonce(NA),encr(pair(nonce(NA),key(K)),longtermkey(A)))),

Trace))=true

% spy eavesdropping on a message 1

A.4. Changes for the Otway-Rees Protocol 181

member(sent(X,Y,quad(nonce(NA),principal(A),principal(B),
encr(triple(nonce(NA),principal(A),principal(B)),
longtermkey(A)))),Trace)=true
→ in(nonce(NA),analz(Trace))=true

member(sent(X,Y,quad(nonce(NA),principal(A),principal(B),
encr(triple(nonce(NA),principal(A),principal(B)),
longtermkey(A)))),Trace)=true
→in(encr(triple(nonce(NA),principal(A),principal(B)),
longtermkey(A)),analz(Trace))=true

% spy eavesdropping on a message 2

member(sent(X,Y,sex(nonce(NA),principal(A),principal(B),
encr(triple(nonce(NA),principal(A),principal(B)),longtermkey(A)),
nonce(NB),encr(triple(nonce(NA),principal(A),principal(B)),longtermkey(B)))),
Trace)=true
→in(nonce(NA),analz(Trace))=true

member(sent(X,Y,sex(nonce(NA),principal(A),principal(B),
encr(triple(nonce(NA),principal(A),principal(B)),longtermkey(A)),
nonce(NB),encr(triple(nonce(NA),principal(A),principal(B)),longtermkey(B)))),
Trace)=true
→in(nonce(NB),analz(Trace))=true

member(sent(X,Y,sex(nonce(NA),principal(A),principal(B),
encr(triple(nonce(NA),principal(A),principal(B)),longtermkey(A)),
nonce(NB),encr(triple(nonce(NA),principal(A),principal(B)),longtermkey(B)))),
Trace)=true
→in(encr(triple(nonce(NA),principal(A),principal(B)),longtermkey(A)),analz(Trace))=true

member(sent(X,Y,sex(nonce(NA),principal(A),principal(B),
encr(triple(nonce(NA),principal(A),principal(B)),longtermkey(A)),
nonce(NB),encr(triple(nonce(NA),principal(A),principal(B)),longtermkey(B)))),
Trace)=true
→in(encr(triple(nonce(NA),principal(A),principal(B)),longtermkey(B)),analz(Trace))=true

% spy eavesdropping on a message 3

member(sent(X,Y,triple(nonce(NA),encr(pair(nonce(NA),key(Z)),longtermkey(A)),
encr(pair(nonce(NB),key(Z)),longtermkey(B)))),Trace)=true
→in(nonce(NA),analz(Trace))=true

member(sent(X,Y,triple(nonce(NA),encr(pair(nonce(NA),key(Z)),longtermkey(A)),
encr(pair(nonce(NB),key(Z)),longtermkey(B)))),Trace)=true
→in(encr(pair(nonce(NA),key(Z)),longtermkey(A)),analz(Trace))=true

member(sent(X,Y,triple(nonce(NA),encr(pair(nonce(NA),key(Z)),longtermkey(A)),

182 Appendix A. Protocol Model Files

encr(pair(nonce(NB),key(Z)),longtermkey(B)))),Trace)=true
→in(encr(pair(nonce(NB),key(Z)),longtermkey(B)),analz(Trace))=true

% spy eavesdropping on a message 4

member(sent(X,Y,pair(nonce(NA),encr(pair(nonce(NA),key(Z)),longtermkey(A)))),Trace)=true
→in(nonce(NA),analz(Trace))=true

member(sent(X,Y,pair(nonce(NA),encr(pair(nonce(NA),key(Z)),longtermkey(A)))),Trace)=true
→in(encr(pair(nonce(NA),key(Z)),longtermkey(A)),analz(Trace))=true

Finally, whereas previous protocol have had messages of length 1,2,3 and 4, the Otway-

Rees protocol has messages of length 2,3,4 and 6. So, we require the following addi-

tonal axioms:

% rules for parts:

in(X,parts(Y))=false∧
in(X,parts(Z))=false∧
in(X,parts(G))=false∧
in(X,parts(H))=false∧
in(X,parts(I))=false∧
in(x,parts(J))=false
→in(X,parts(sex(Y,Z,G,H,I,J)))=false

% rules for analz

in(sex(X,Y,Z,G,H,I),analz(Xset))=true
→in(Y,analz(Xset))=true

in(sex(X,Y,Z,G,H,I),analz(Xset))=true
→in(X,analz(Xset))=true

in(sex(X,Y,Z,G,H,I),analz(Xset))=true
→in(Z,analz(Xset))=true

in(sex(X,Y,Z,G,H,I),analz(Xset))=true
→in(G,analz(Xset))=true

in(sex(X,Y,Z,G,H,I),analz(Xset))=true
→in(H,analz(Xset))=true

in(sex(X,Y,Z,G,H,I),analz(Xset))=true
→in(I,analz(Xset))=true

A.4. Changes for the Otway-Rees Protocol 183

% rules for synth

in(X,synth(Xset))=true∧
in(Y,synth(Xset))=true∧
in(Z,synth(Xset))=true∧
in(G,synth(Xset))=true∧
in(H,synth(Xset))=true∧
in(I,synth(Xset))=true
→in(sex(X,Y,Z,G,H,I),synth(Xset))=true

% rules for eq

eq(M1,M2)=false→ eq(sex(M1,G,H,I,J,K),sex(M2,X,Y,Z,A,B))=false

eq(M1,M2)=false→ eq(sex(G,M1,H,I,J,K),sex(X,M2,Y,Z,A,B))=false

eq(M1,M2)=false→ eq(sex(G,H,M1,I,J,K),sex(X,Y,M2,Z,A,B))=false

eq(M1,M2)=false→ eq(sex(G,H,I,M1,J,K),sex(X,Y,Z,M2,A,B))=false

eq(M1,M2)=false→ eq(sex(G,H,I,J,M1,K),sex(X,Y,Z,A,M2,B))=false

eq(M1,M2)=false→ eq(sex(G,H,I,J,K,M1),sex(X,Y,Z,A,B,M2))=false

Appendix B

The Model for the Asokan–Ginzboorg

Protocol

This chapter gives details of the specification file for the Asokan–Ginzboorg protocol,

used for the case study in Chapter 9. Here again is a description of the Asokan–

Ginzboorg protocol. It is explained in §9.1.

1. Mn → ALL : Mn,{| E}| P

2. Mi → Mn : Mi,{| Ri,Si}| E i = 1, . . . ,n−1

3. Mn → Mi : {| {S j, j = 1, . . . ,n}}| Ri i = 1, . . . ,n−1

4. Mi → Mn : Mi,{| Si,h(S1, . . . ,Sn)}| K some i, K = f (S1, . . . ,Sn)

We now give the parts of the specification file specific to the protocol.

% Message 1 % MN initiates a run as leader

agent(MN)=true ∧
% uncomment this to keep the spy out of the room:
% eqagent(MN,spy)=false ∧
in(key(E),parts(Trace))=false ∧ number(E)=true ∧
number(Pass)=true ∧ m(Trace)=true
→

m(cons(sent(MN,all,pair(principal(MN),encr(key(E),key(Pass)))),Trace))=true

% Message 2

m(Trace)=true ∧
number(Ri)=true ∧ number(Si)=true ∧

185

186 Appendix B. The Model for the Asokan–Ginzboorg Protocol

in(nonce(Si),parts(Trace))=false ∧
in(nonce(Ri),parts(Trace))=false ∧
eqagent(Mi,MN)=false ∧
% again, uncomment this to keep the spy out of the room:
% eqagent(MN,spy)=false ∧
agent(Mi)=true ∧
member(sent(x,all,pair(principal(MN),encr(key(E),key(Pass)))),Trace)=true
→

m(cons(sent(Mi,MN,pair(principal(Mi),encr(pair(nonce(Ri),nonce(Si)),key(E)))),Trace))=true

% Message 3

eqagent(A,MN)=false ∧ eqagent(A,spy)=false ∧ m(Trace)=true ∧
member(sent(MN,all,pair(principal(MN),encr(key(E),key(P)))),Trace)=true ∧
all msg2s received(Trace,A,MN,E,nil,

cons(sent(MN,A,encr(Package,Ri)),NewTrace),FinalPackage)=true
→

m(cons(sent(MN,A,encr(Package,Ri)),NewTrace))=true

% Message 4
% anyone might send message 4. They must have sent a message 2 and
% received a message 3

m(Trace)=true ∧
agent(Mi)=true ∧
member(sent(Mi,MN,pair(principal(Mi),encr(pair(nonce(Ri),nonce(Si)),key(E)))),Trace)=true
∧ member(sent(Y,Mi,encr(Package,nonce(Ri))),Trace)=true ∧
→m(cons(sent(Mi,MN,pair(principal(Mi),encr(pair(nonce(Si),h(Package)),
f(Package)))),Trace))=true

% base case for all msg2s received

member(sent(X,MN,pair(principal(a),
encr(pair(nonce(Ri),nonce(Si)),key(E)))),Trace)=true
→

all msg2s received(Trace,a,MN,E,Package,
cons(sent(MN,a,encr(cons(nonce(Si),Package),nonce(Ri))),Trace),
cons(nonce(Si),Package)=true

% recursive case for all msg2s received

member(sent(X,MN,pair(principal(s(MX)),
encr(pair(nonce(Ri),nonce(Si)),key(E)))),Trace)=true∧

187

all msg2s received(Trace,MX,MN,E,cons(nonce(Si),Package),
NewTrace,FinalPackage)=true
→

all msg2s received(Trace,s(MX),MN,E,Package,
cons(sent(MN,s(MX),encr(FinalPackage,nonce(Ri))),
NewTrace),FinalPackage)=true

% spy eavesdropping on trace

member(sent(X,Y,pair(principal(xa),encr(key(E),key(Pass)))),Trace)=true
→in(encr(key(E),key(Pass)),analz(Trace))=true

member(sent(X,Y,pair(principal(Mi),encr(pair(nonce(Ri),nonce(Si)),key(E)))),Trace)=true
→ in(encr(pair(nonce(Ri),nonce(Si)),key(E)),analz(Trace))=true

member(sent(X,Y,encr(FinalPackage,nonce(Ri))),Trace)=true
→in(encr(FinalPackage,nonce(Ri)),analz(Trace))=true)))

member(sent(X,Y,encr(pair(nonce(Si),h(Package)),f(Package))),Trace)=true
→ in(encr(pair(nonce(Si),h(Package)),f(Package)),analz(Trace))=true)))

% spy faking a message 1

m(Trace)=true∧
in(pair(principal(MN),encr(key(E),key(Pass))),synth(analz(Trace)))=true
→

m(cons(sent(spy,all,pair(principal(MN),encr(key(E),key(Pass)))),Trace))=true)))

% spy faking a message 2

m(Trace)=true∧
eqagent(spy,MN)=false∧
in(pair(principal(Mi),encr(pair(nonce(Ri),nonce(Si)),key(E))),synth(analz(Trace)))=true
→

m(cons(sent(spy,MN,pair(principal(Mi),encr(pair(nonce(Ri),nonce(Si)),
key(E)))),Trace))=true

% spy faking a message 3

m(Trace)=true∧
eqagent(spy,Mi)=false∧
in(encr(FinalPackage,nonce(Ri)),synth(analz(Trace)))=true
→

m(cons(sent(spy,Mi,encr(FinalPackage,nonce(Ri))),Trace))=true

188 Appendix B. The Model for the Asokan–Ginzboorg Protocol

% spy faking a message 4

m(Trace)=true∧
eqagent(spy,MN)=false∧
in(encr(pair(nonce(Si),h(Package)),f(Package)),synth(analz(Trace)))=true
→

m(cons(sent(spy,MN,pair(principal(Mi),encr(pair(nonce(Si),h(Package)),f(Package)))),Trace))=true

% spy knows some fresh nonces

in(nonce(N),parts(Trace)=false
→in(nonce(N),analz(Trace))=true

% to allow the spy to make fake compound keys
% the spy can break open a package and reassemble packages:

in(cons(nonce(X),Y),analz(Xset))=true
→ in(nonce(X),analz(Xset))=true

in(cons(nonce(X),Y),analz(Xset))=true
→ in(Y,analz(Xset))=true

in(cons(Y,z),synth(analz(Xset)))=true
→ in(cons(nonce(X),cons(Y,z)),synth(analz(Xset)))=true

in(nonce(X),synth(analz(Xset)))=true
→ in(cons(nonce(X),nil),synth(analz(Xset)))=true

Appendix C

The Model for the Tanaka–Sato

Protocol

This appendix gives the clauses used for modelling the Taghdiri–Jackson version of

the Tanaka–Sato protocol, described in Chapter 10.

% m function now takes args (Trace, Group, Keysequence, Tick)

% nobody in the group at the start

m(nil,nil,x,nought)=true

%%%% JOIN

m(Trace,Group,Keysequence,Tick)=true ∧
ingroup(triple(principal(Mi),X,Y),Group,Xnewgroup)=false ∧
agent(Mi)=true
→ m(cons(sent(Mi,server,

encr(principal(Mi),longtermkey(Mi)),Group),Trace),
group,Keysequence,s(Tick))=true

%%% server acknowledges join, makes new key, sends key

m(Trace,Group,Keysequence,Tick)=true ∧
member(sent(Y,server,encr(principal(Mi),longtermkey(Mi)),Tgroup),Trace)=true
∧ agent(Mi)=true ∧
ingroup(triple(principal(Mi),X,Z),Group,Xnewgroup)=false
→ m(cons(sent(server,Mi,

189

190 Appendix C. The Model for the Tanaka–Sato Protocol

encr(pair(ik(Tick),key(s(Keysequence))),longtermkey(Mi)),
cons(triple(principal(Mi),ik(Tick),key(s(Keysequence))),Group)),Trace),
cons(triple(principal(Mi),ik(Tick),key(s(Keysequence))),Group),
s(Keysequence), s(Tick))=true

%%%% LEAVE

m(Trace,Group,Keysequence,Tick)=true ∧
ingroup(triple(principal(Mi),Ikey,Gk),Group,Newgp)=true
→m(cons(sent(Mi,server,encr(leave,Ikey),Group),Trace),Group,Keysequence,s(Tick))=true

m(Trace,Group,Keysequence,Tick)=true ∧
ingroup(triple(principal(Mi),Ikey,Gk),Group,Newgp)=true ∧
member(sent(X,server,encr(leave,Ikey),Tgroup),Trace)=true
→m(cons(sent(server,Mi,encr(ackleave,Ikey),Newgp),Trace),Newgp,s(Tick),s(Tick))=true

%%%%% SEND a message

m(Trace,Group,Keysequence,Tick)=true ∧
ingroup(triple(principal(Mi),Ikey,key(Sq)),Group,Newgp)=true
→m(cons(sent(Mi,server,encr(send(Sq),Ikey),Group),Trace),Group,Keysequence,s(Tick))=true

%% server gives key

m(Trace,Group,Keysequence,Tick)=true ∧
ingroup(triple(principal(Mi),Ikey,Oldk),Group,Newgp)=true ∧
member(sent(X,server,encr(send(Sq),Ikey),Tgroup),Trace)=true
→ m(cons(sent(server,Mi,encr(pair(key(Keysequence),send(Sq)),Ikey),

Group),Trace),Group,Keysequence,s(Tick))=true

%% agent broadcasts his message, updates his key

m(Trace,Group,Keysequence,Tick)=true ∧
ingroup(triple(principal(Mi),Ikey,oldk),Group,Newgp)=true ∧
member(sent(X,Mi,encr(pair(key(Xk),send(Sq)),Ikey),Tg1),Trace)=true ∧
member(sent(Mi,server,encr(send(Sq),Ikey),Tg2),Trace)=true
→ m(cons(sent(Mi,all,encr(hello(s(Tick)),key(xk)),

cons(triple(principal(Mi),Ikey,key(xk)),newgp)),Trace),
cons(triple(principal(Mi),Ikey,key(xk)),newgp),Keysequence,
s(Tick))=true

%%%%% RECEIVE a message - sends request for key

191

m(Trace,Group,Keysequence,Tick)=true
ingroup(triple(principal(Mi),Ikey,Gk),Group,Newgp)=true
→ m(cons(sent(Mi,server,encr(read,Ikey),Group),Trace),

Group,Keysequence,s(Tick))=true

%%% server gives key

m(Trace,Group,Keysequence,Tick)=true
ingroup(triple(principal(Mi),Ikey,Oldk),Group,Newgp)=true
member(sent(X,server,encr(read,Ikey),Somegp),Trace)=true
→ m(cons(sent(server,Mi,encr(key(Keysequence),Ikey),

Group),Trace),Group,Keysequence,s(Tick))=true

%% agent updates his key

m(Trace,Group,Keysequence,Tick)=true ∧
ingroup(triple(principal(Mi),Ikey,Oldk),Group,newgp)=true ∧
member(sent(X,Mi,encr(key(Xk),Ikey),Somegp2),Trace)=true ∧
member(sent(Mi,server,encr(read,Ikey),Somegp),Trace)=true
→m(Trace,cons(triple(principal(Mi),Ikey,key(Xk)),Newgp),Keysequence,s(Tick))=true

%%% Ingroup - third arg returns the group *without* the member if

%%% he’s found.

ingroup(X,nil,Y)=false

ingroup(X,nil,Y)=true→

→ ingroup(triple(principal(Mi),Ikey,Gk),
cons(triple(principal(Mi),Ikey,Gk),Group),Group)=true

ingroup(Y,Gp,Rest)=true
→ ingroup(Y,cons(X,Gp),cons(X,Rest))=true

eqagent(Mi,Mj)=false ∧
ingroup(triple(principal(Mi),Ikey,Gk),Group,Rest)=false
→ ingroup(triple(principal(Mi),Ikey,Gk),

cons(triple(principal(Mj),X,Y),Group),Rest)=false

Appendix D

Index of Terms

Here we give a reference to the definition of technical terms used in the thesis.

Term Section Page

Analz 6.6 81

Answer Literals 4.2.3 49

Authenticity 2.3.1 11

Binary Resolution 4.2 44

Bundle 2.4.5 27

Ciphertext 2.1 7

Clause 4.1 44

Completely Defined Equality Function 4.6 59

Compound Keys 9.2.2 117

Con¤uent 4.1 42

Congruence 4.1 42

Conjecture Superposition 4.4 53

Conjunctive Normal Form 4.2 43

Constructor 3.2 34

Contributory 9.1 112

Convergent 4.1 41

Decryption 2.1 8

193

194 Appendix D. Index of Terms

Term Section Page

Dictionary Attack 9.1 112

Disruption Attacks 9.3 118

Encryption 2.1 7

Equality Factoring 4.2.1 45

Events 2.4.5 27

Factoring 4.2 43

Fair Induction Derivation 4.4 52 Defn. 10

Free Constructors 4.6 59 Defn. 14

Freshness 2.2 9

Given Clause 4.2 43

Goal-Bindings 11.1.1 140

Handshake 2.3.4 13

Herbrand Model 4.1 42

Horn Clause 4.1 42

I-Axiomatisation 4.4 50 Defn. 4

Index (of a literal) 4.2 43

Inductive Reducibility 4.6 59

Irreducible 4.1 42

Literal 4.2 44

Local Rewriting 4.2.1 45

Monotonic 4.1 42

Multiset 4.1 41

Next State Function 11.1.1 140

Node 2.4.5 27

Normal 4.4 51 Defn. 5

Normal I-Axiomatisation 4.4 51 Defn. 6

Normal Subsitution 4.4 51 Defn. 5

Ordering 4.1 43

Paramodulation 4.2.1 45

Parts 6.5 78

Plaintext 2.1 7

195

Term Section Page

Proof By Consistency 4.3 50

Public Key Cryptography 2.1 8

recursive Path Ordering (RPO) 4.1 43

Reduction Ordering 4.1 43

Reduction Rules 4.2.1 45

Reductive Definition 4.5 57 Defn. 12

Redundancy

– general 4.2.1 45 Defn. 1 & 2

– in the Comon-Nieuwenhuis method 4.4 53 Defn. 7 & 8

Refutation Complete 4.2 44

Replay Attack 2.3.4 13

Resolution 4.2 44

Resolvent 4.2 44

Rewrite Rule 4.1 41

Saturation

– general 4.2.1 45 Defn. 3

– in the Comon-Nieuwenhuis method 4.4 53 Defn. 9

Secrecy 2.3.1 11

Selection (of Literals) 4.2.1 45

Semi-Bundles 11.1.1 140

Session Key 2.1 7

Set of Support 4.2 43

Skolem Function 4.2 44

State (in a strand space context) 11.1.1 140

Step Compression 7.2.1 90

Strand Space 2.4.5 27

Strand 2.4.5 27

Substitution 4.1 42

Subsumption 4.2.1 45

196 Appendix D. Index of Terms

Term Section Page

Superposition 4.2.1 45

Superposition Left 4.2.1 45

Superposition Right 4.2.1 45

Symmetric Key Cryptography 2.1 8

Synth 6.6 81

Tautologies 4.2.1 45

Term Indexing 4.2.2 48

Term Rewrite System 4.1 42

Terminating 4.1 42

Timely 2.3.4 13

Type Attack 2.3.6 18

Usable 4.2 43

Well-Founded 4.1 41

Worked Off 4.1 41

Bibliography

[Abadi and Gordon, 1997] Abadi, M. and Gordon, A. (1997). A calculus for crypto-

graphic protocols: The spi calculus. In Fourth ACM Conference on Computer and

Communications Security, pages 36–47. ACM Press.

[Abadi and Needham, 1996] Abadi, M. and Needham, R. (1996). Prudent engineering

practice for cryptographic protocols. IEEE Transactions on Software Engineering,

22(1):6–15.

[Anderson and Needham, 1995] Anderson, R. and Needham, R. (1995). Computer

Science Today: Recent Trends and Developments, volume 1000 of LNCS, chapter

Programming Satan’s Computer, pages 426–440. Springer.

[Anderson and Roe, 1997] Anderson, R. and Roe, M. (1997). The GCHQ protocol

and its problems. Available from Ross Anderson’s webpage, http://www.cl.cam.

ac.uk/users/rja14/.

[Asokan and Ginzboorg, 2000] Asokan, N. and Ginzboorg, P. (2000). Key-agreement

in ad-hoc networks. Computer Communications, 23(17):1627–1637.

[Ateniese et al., 2000] Ateniese, G., Steiner, M., and Tsudik, G. (2000). New mul-

tiparty authentication services and key agreement protocols. IEEE Journal on Se-

lected Areas in Communications, 18(4):628–639.

[Avenhaus et al., 2003] Avenhaus, J., Kuehler, U., Schmidt-Samoa, T., and Wirth, C.-

P. (2003). How to prove inductive theorems? quodlibet! In 19th Conference on

Automated Deduction, volume 2741 of Lecture Notes in Computer Science, pages

328–333. Springer.

197

198 Bibliography

[Bachmair, 1991] Bachmair, L. (1991). Canonical Equational Proofs. Birkhauser.

[Bachmair and Ganzinger, 1990] Bachmair, L. and Ganzinger, H. (1990). Completion

of First-order clauses with equality by strict superposition (extended abstract). In

Proceedings 2nd International CTRS Workshop, pages 162–180, Montreal, Canada.

[Bachmair and Ganzinger, 1994] Bachmair, L. and Ganzinger, H. (1994). Rewrite-

based equational theorem proving with selection and simplification. Journal of

Logic and Computation, 4(3):217–247. Revised version of Research Report MPI-

I-91-208, 1991.

[Barthe and Stratulat, 2003] Barthe, G. and Stratulat, S. (2003). Validation of the

javacard platform with implicit induction techniques. In Nieuwenhuis, R., editor,

Rewriting Techniques and Applications, 14th International Conference, RTA 2003,

Valencia, Spain, June 9-11, 2003, Proceedings, volume 2706 of Lecture Notes in

Computer Science, pages 337–351. Springer.

[Basin, 1999] Basin, D. (1999). Lazy infinite-state analysis of security protocols. In

Secure Networking — CQRE [Secure] ’99, number 1740 in Lecture Notes in Com-

puter Science, pages 30–42, Düsseldorf, Germany. Springer-Verlag.

[Basin et al., 2003] Basin, D., Mödersheim, S., and ViganÁo, L. (2003). An on-the-¤y

model-checker for security protocol analysis. In Proceedings of the 2003 European

Symposium on Research in Computer Security, pages 253–270. Extended version

available as Technical Report 404, ETH Zurich.

[Bella, 2003] Bella, G. (2003). Inductive verification of smart card protocols. Journal

of Computer Security, 11(1):87–132.

[Bella et al., 2003] Bella, G., C.Longo, and Paulson, L. (2003). Verifying second-level

security protocols. In Basin, D. and Wolff, B., editors, Theorem Proving in Higher

Order Logics, number 2758 in LNCS, pages 352–366. Springer.

[Bella and Paulson, 1997] Bella, G. and Paulson, L. (1997). Using isabelle to

prove properties of the kerberos authentication system. In DIMACS Work-

shop on Design and Formal Veri£cation of Security Protocols. Electronic pro-

Bibliography 199

ceedings available from http://dimacs.rutgers.edu/Workshops/Security/

program2/program.html.

[Bella and Paulson, 2001] Bella, G. and Paulson, L. (2001). Mechanical proofs about

a non-repudiation protocol. In Boulton, R. and Jackson, P., editors, Theorem Prov-

ing in Higher Order Logics, volume 2152 of Lecture Notes in Computer Science,

pages 91–104.

[Bella et al., 2002] Bella, G., Paulson, L. C., and Massacci, F. (2002). The verification

of an industrial payment protocol: the set purchase phase. In ACM Conference on

Computer and Communications Security, pages 12–20.

[Berezin and Groce, 2001] Berezin, S. and Groce, A. (2001). Athena Hacker’s Man-

ual. CMU.

[Bertolotti et al., 2003] Bertolotti, I., Durante, L., Sisto, R., and Valenzano, A. (2003).

Introducing commutative and associative operators in cryptographic protocol anal-

ysis. In Proceedings of Formal Techniques of Networked and Distributed Systems -

FORTE 2003, LNCS, Berlin. Springer.

[Blanchet, 2002] Blanchet, B. (2002). From secrecy to authenticity in security pro-

tocols. In Hermenegildo, M. and Puebla, G., editors, International Static Analysis

Symposium (SAS’02), volume 2477 of Lecture Notes in Computer Science, pages

342–359, Madrid, Spain.

[Bond and Anderson, 2001] Bond, M. and Anderson, R. (2001). API level attacks on

embedded systems. IEEE Computer Magazine, pages 67–75.

[Bouhoula and Rusinowitch, 1995] Bouhoula, A. and Rusinowitch, M. (1995). Im-

plicit induction in conditional theories. Journal of Automated Reasoning,

14(2):189–235.

[Boyer and Moore, 1979] Boyer, R. and Moore, J. (1979). A Computational Logic.

Academic Press. ACM monograph series.

200 Bibliography

[Bundy et al., 1990] Bundy, A., van Harmelen, F., Horn, C., and Smaill, A. (1990).

The Oyster-Clam system. In Stickel, M. E., editor, 10th International Conference on

Automated Deduction, pages 647–648. Springer-Verlag. Lecture Notes in Artificial

Intelligence No. 449. Also available from Edinburgh as DAI Research Paper 507.

[Burrows et al., 1990] Burrows, M., Abadi, M., and Needham, R. (1990). A logic of

authentication. ACM Transactions on Computer Systems, 8(1):18–36.

[Chevalier and Vigneron, 2002] Chevalier, Y. and Vigneron, L. (2002). Automated

unbounded verification of security protocols. In Brinksma, E. and Larsen, K., ed-

itors, Computer Aided Veri£cation, 14th International Conference, volume 2404

of Lecture Notes in Computer Science, pages 324–337, Copenhagen, Denmark.

Springer.

[Clark and Jacob, 1996] Clark, J. and Jacob, J. (1996). Attacking authentication pro-

tocols. High Integrity Systems, 1(5):465–474.

[Clark and Jacob, 1997] Clark, J. and Jacob, J. (1997). A survey of authentication

protocol literature: Version 1.0. Available via http://www.cs.york.ac.uk/jac/

papers/drareview.ps.gz.

[Cohen, 2000] Cohen, E. (2000). TAPS a first-order verifier for cryptographic proto-

cols. In Proceedings of the 13th IEEE Computer Security Foundations Workshop,

pages 144–158, Cambridge, England.

[Cohen, 2003] Cohen, E. (2003). TAPS: The last few slides. In Formal Aspects of

Security, volume 2629 of Lecture Notes in Computer Science, pages 183–190.

[Comon and Nieuwenhuis, 1998] Comon, H. and Nieuwenhuis, R. (1998). Induc-

tion = I-Axiomatization + First-Order Consistency. Technical report, Labora-

toire Spécification et Vérification, Ecole Normale Supérieure de Cachan, Cachan,

France. Presented as a talk to the 1998 Conference on Rewriting techniques and

Applications, Tsukuba, Japan.

Bibliography 201

[Comon and Nieuwenhuis, 2000] Comon, H. and Nieuwenhuis, R. (2000). Induc-

tion = I-Axiomatization + First-Order Consistency. Information and Computation,

159(1-2):151–186.

[Compagna, 2002] Compagna, L. (2002). Private communication. via Email.

[Denning and Sacco, 1982] Denning, D. and Sacco, G. (1982). Timestamps in key

distribution protocols. Communications of the Association for Computing Machin-

ery, 24(8):533–536.

[Deplagne and Kirchner, 2001] Deplagne, E. and Kirchner, C. (2001). Induc-

tion as deduction modulo. Submitted. Available from http://www.loria.fr/

˜ckirchne/.

[Dershowitz and Jouannaud, 1990] Dershowitz, N. and Jouannaud, J.-P. (1990).

Rewrite systems. In Handbook of Theoretical Computer Science, Volume B: Formal

Models and Sematics (B), pages 243–320. Elsevier and MIT Press.

[Dolev and Yao, 1983] Dolev, D. and Yao, A. (1983). On the security of public key

protocols. IEEE Transactions in Information Theory, 2(29):198–208.

[Donovan et al., 1999] Donovan, B., Norris, P., and Lowe, G. (1999). Analyzing a

library of security protocols using casper and FDR. In Proceedings of the Workshop

on Formal Methods and Security Protocols. Electronic proceedings available at

http://www.cs.bell-labs.com/who/nch/fmsp99/program.html.

[Durgin et al., 1999] Durgin, N., Lincoln, P., Mitchell, J., and Scedrov, A. (1999).

Undecidability of bounded security protocols. In Heintze, N. and Clarke, E., editors,

Proceedings of the Workshop on Formal Methods and Security Protocols — FMSP,

Trento, Italy. Electronic proceedings available at http://www.cs.bell-labs.

com/who/nch/fmsp99/program.html.

[Fábrega et al., 1999] Fábrega, F., Herzog, J., and J., G. (1999). Strand spaces: Prov-

ing security protocols correct. Journal of Computer Security, 7:191–230.

202 Bibliography

[FIPS, 1977] FIPS (1977). Data encryption standard. Federal Information Processing

Standards Publication. Reaffirmed 1988. Superseded by FIPS 46-2 (1993), FIPS

46-3 (1999).

[Ganzinger, 1999] Ganzinger, H., editor (1999). Automated Deduction – CADE-16,

16th International Conference on Automated Deduction, LNAI 1632, Trento, Italy.

Springer-Verlag.

[Ganzinger and Stuber, 1992] Ganzinger, H. and Stuber, J. (1992). Inductive theorem

proving by consistency for £rst-order clauses, pages 441–462. Teubner Verlag.

[Gollmann, 2000] Gollmann, D. (2000). On the verification of cryptographic proto-

cols - a tale of two committees. In Schneider, S. and Ryan, P., editors, Electronic

Notes in Theoretical Computer Science, volume 32. Elsevier.

[Gong, 1992] Gong, L. (1992). A security risk of depending on synchronized clocks.

Operating Systems Review, 26(1):49–53.

[Gong and Syverson, 1998] Gong, L. and Syverson, P. (1998). Fail-stop protocols:

An approach to designing secure protocols. Dependable Computing for Critical

Applications, 5:79–100. IEEE Computer Society.

[Gordon and Jeffrey, 2001] Gordon, A. and Jeffrey, A. (2001). Authenticity by typing

for security protocols. Technical Report MSR-2001-49, Microsoft Research.

[Gottlob and Leitsch, 1985] Gottlob, G. and Leitsch, A. (1985). On the efficiency of

subsumption algorithms. JACM, 32(2):280–295.

[Green, 1969] Green, C. (1969). Theorem proving by resolution as a basis for

question-answering systems. In Meltzer, B. and Michie, D., editors, Machine Intel-

ligence, volume 4, pages 183–208. Edinburgh University Press.

[Hähnle et al., 1996] Hähnle, R., Kerber, M., and Weidenbach, C. (1996). Common

syntax of the dfg-schwerpunktprogramm ”deduktion”. Interner Bericht 10/96, Uni-

versitt Karlsruhe. Current version available from http://spass.mpi-sb.mpg.

de/.

Bibliography 203

[Heather et al., 2000] Heather, J., Lowe, G., and Schneider, S. (2000). How to pre-

vent type ¤aw attacks on security protocols. In PCSFW: Proceedings of The 13th

Computer Security Foundations Workshop. IEEE Computer Society Press.

[Huet and Hullot, 1982] Huet, G. and Hullot, J. (1982). Proofs by induction in equa-

tional theories with constructors. Journal of the Association for Computing Ma-

chinery, 25(2).

[Hutter and Sengler, 1996] Hutter, D. and Sengler, C. (1996). INKA: the next genera-

tion. In McRobbie, M. A. and Slaney, J. K., editors, 13th Conference on Automated

Deduction, pages 288–292. Springer-Verlag. Springer Lecture Notes in Artificial

Intelligence No. 1104.

[Hwang et al., 1995] Hwang, T., Lee, N.-Y., Li., C.-H., Ko, M.-Y., and Chen, Y.-H.

(1995). Two attacks on Neuman-Stubblebine authentication protocols. Information

Processing Letters, 53:103–107.

[Ireland, 1996] Ireland, A. (1996). Productive use of failure in inductive proof. Jour-

nal of Automated Reasoning, 16(1-2):79–111.

[Jackson, 2002] Jackson, D. (2002). Alloy: a lightweight object modelling nota-

tion. ACM Transactions on Software Engineering and Methodology (TOSEM),

11(2):256–290.

[Jacquemard et al., 2000] Jacquemard, F., Rusinowitch, M., and Vigneron, L. (2000).

Compiling and verifying security protocols. http://www.loria.fr/˜rusi/pub/

lpar2000.ps.gz.

[Jouannaud and Kounalis, 1989] Jouannaud, J.-P. and Kounalis, E. (1989). Proof by

induction in equational theories without constructors. Information and Computa-

tion, 82(1).

[Kessler and Wedel, 1994] Kessler, V. and Wedel, G. (1994). Autolog- an advanced

logic of authentication. In Proc. IEEE Computer Security Foundations Workshop

IV, pages 90–99. IEEE.

204 Bibliography

[Kindred, 1999] Kindred, D. (1999). Theory Generation for Security Protocols. PhD

thesis, Carnegie Mellon University.

[Letz and Stenz, 2001] Letz, R. and Stenz, G. (2001). Model elimination and connec-

tion tableau procedures. In Robinson, A. and Voronkov, A., editors, Handbook of

Automated Reasoning, volume II, chapter 28, pages 2015–2114. Elsevier Science.

[Lowe, 1995] Lowe, G. (1995). An attack on the needham-schroeder public-key au-

thentication protocol. Information Processing Letters, 56(3):131–133.

[Lowe, 1996] Lowe, G. (1996). Breaking and fixing the Needham Schroeder public-

key protocol using FDR. In Proceedings of TACAS, volume 1055, pages 147–166.

Springer Verlag.

[Lowe, 1997] Lowe, G. (1997). A hierarchy of authentication specifications. In Pro-

ceedings of 10th IEEE Computer Security Foundations Workshop.

[Lowe, 1999] Lowe, G. (1999). Towards a completeness result for model checking of

security protocols. Journal of Computer Security, 7(2,3):89–146.

[L.Vigneron, 1996] L.Vigneron (1996). Positive deduction modulo regular theories.

In Büning, H. K., editor, Computer Science Logic, 9th International Workshop,

volume 1092 of Lecture Notes in Computer Science, pages 468–485. Springer.

[Lynch, 1997] Lynch, C. (1997). Oriented equational logic programming is complete.

Journal of Symbolic Computation, 23(1):23–45.

[Mao and Boyd, 1993] Mao, W. and Boyd, C. (1993). Towards formal analysis of

security protocols. In Proceedings of the Computer Security Foundationn Workshop

VI, pages 147–158.

[McCune, 1994] McCune, W. (1994). A Davis Putnam program and its application to

finite first order model search. Technical report, Argonne National Laboratory.

[Meadows, 1996a] Meadows, C. (1996a). Formal verification of cryptographic proto-

cols: A survey. In Proceedings of Asiacrypt 96.

Bibliography 205

[Meadows, 1996b] Meadows, C. (1996b). The NRL protocol analyzer: An overview.

Journal of Logic Programming, 26(2):113–131.

[Meadows, 2000a] Meadows, C. (2000a). Extending formal cryptographic protocol

analysis techniques for group protocols and low-level cryptographic primitives. In

Degano, P., editor, Proceedings of the First Workshop on Issues in the Theory of

Security, pages 87–92, Geneva, Switzerland.

[Meadows, 2000b] Meadows, C. (2000b). Invariant generation techniques in crypto-

graphic protocol analysis. In PCSFW: Proceedings of The 13th Computer Security

Foundations Workshop. IEEE Computer Society Press.

[Millen et al., 1987] Millen, J., Clark, S., and Freedman, S. (1987). The interrogator:

Protocol security analysis. IEEE Transactions Software Engineering, 13(2):274–

288.

[Millen and Shmatikov, 2003] Millen, J. and Shmatikov, V. (2003). Symbolic proto-

col analysis with products and Diffie-Hellman exponentiation. In IEEE Computer

Security Foundations Workshop.

[Milner, 1993] Milner, R. (1993). The polyadic pi-calculus: a tutorial. In Bauer, F. L.,

Brauer, W., and Schwichtenberg, H., editors, Logic and Algebra of Speci£cation,

pages 203–246. Springer-Verlag. Also available as Technical Report ECSLFCS-91-

180, Computer Science Department, University of Edinburgh, UK, October 1991.

[Mittra, 1997] Mittra, S. (1997). Iolus: A framework for scalable secure multicasting.

In Proceedings of the ACM SIGCOMM ’97 Conference on Applications, Technolo-

gies, Architectures, and Protocols for Computer Communication, pages 277–288,

Cannes, France.

[Monroy, 1993] Monroy, R. (1993). The Use of Abduction to Correct Faulty Conjec-

tures. Master’s thesis, University of Edinburgh.

[Monroy, 2000] Monroy, R. (2000). The use of abduction and recursion-editor tech-

niques for the correction of faulty conjectures. In Ledru, Y., editor, 15th Conference

on Automated Software Engineering, Grenoble, France.

206 Bibliography

[Monroy, 2003] Monroy, R. (2003). Predicate synthesis for correcting faulty conjec-

tures: The proof planning paradigm. In Automated Software Engineering, pages

247–269.

[Musser, 1980] Musser, D. (1980). On proving inductive properties of abstract data

types. In Proceedings 7th ACM Symp. on Principles of Programming Languages,

pages 154–162. ACM.

[Needham and Schroeder, 1978] Needham, R. and Schroeder, M. (1978). Using en-

cryption for authentication in large networks of computers. Communications of the

ACM, 21(12):993–999.

[Needham and Schroeder, 1987] Needham, R. and Schroeder, M. (1987). Authentica-

tion revisited. Operating Systems Review, 21(7):7.

[Nessett, 1990] Nessett, D. (1990). A critique of the Burrows, Abadi, and Needham

logic. Operating Systems Review, 24(2):35–38.

[Neuman and Stubblebine, 1993] Neuman, B. and Stubblebine, S. (1993). A note on

the use of timestamps as nonces. Operating Systems Review, 27(2):10–14.

[Nivela, 1993] Nivela, P. amd Nieuwenhuis, R. (1993). Practical results on the satu-

ration of full first-order clauses: Experiments with the saturate system. In Kirchner,

C., editor, 5th International Conference on Rewriting Techniques and Applications,

number 690 in LNCS, Montreal, Canada. Springer-Verlag.

[Otway and Rees, 1987] Otway, D. and Rees, O. (1987). Efficient and timely mutual

authentication. Operating Systems Review, 21(7):8–10.

[Paulson, 1989] Paulson, L. (1989). The foundation of a generic theorem prover. JAR,

5:363–397.

[Paulson, 1998] Paulson, L. (1998). The Inductive Approach to Verifying Crypto-

graphic Protocols. Journal of Computer Security, 6:85–128.

[Paulson, 1997] Paulson, L. C. (1997). Mechanized proofs for a recursive authentica-

tion protocol. In 10th Computer Security Foundations Workshop, pages 84–95.

Bibliography 207

[Pelletier et al., 2002] Pelletier, F. J., Sutcliffe, G., and Suttner, C. (2002). The devel-

opment of casc. AI Communications, 15(2):79–90.

[Pereira and Quisquater, 2001] Pereira, O. and Quisquater, J.-J. (2001). Security anal-

ysis of the cliques protocols suites: 1st results. In In Proceedings of IFIP Sec’01,

pages 151–166.

[Pereira and Quisquater, 2003] Pereira, O. and Quisquater, J.-J. (2003). Some attacks

upon authenticated group key agreement protocols. Journal of Computer Secu-

rity, 11(4):555–580. Special Issue: 14th Computer Security Foundations Workshop

(CSFW14).

[Protzen, 1992] Protzen, M. (1992). Disproving conjectures. In Kapur, D., editor,

11th Conference on Automated Deduction, pages 340–354, Saratoga Springs, NY,

USA. Published as Springer Lecture Notes in Artificial Intelligence, No 607.

[Reif, 1995] Reif, W. (1995). The KIV Approach to Software Verification. In M.

Broy and S. Jähnichen, editors, KORSO: Methods, Languages and Tools for the

Construction of Correct Software, volume 1009. Springer Verlag.

[Reif et al., 2000] Reif, W., Schellhorn, G., and Thums, A. (2000). Fehlersuche in

formalen Spezifikationen. Technical Report 2000-06, Fakultät fur Informatik, Uni-

versität Ulm, Germany. (In German).

[Reif et al., 2001] Reif, W., Schellhorn, G., and Thums, A. (2001). Flaw detection in

formal specifications. In IJCAR’01, pages 642–657.

[Rivest et al., 1978] Rivest, R., Shamir, A., and Adleman, L. (1978). A method for

obtaining digital signatures and public key cryptosystems. Communications of the

ACM, 21:120–126.

[Robinson and Wos, 1969] Robinson, G. and Wos, L. (1969). Paramodulation and

theorem-proving in first-order theories with equality. In Michie, D. and Meltzer,

R., editors, Machine Intelligence, volume IV, pages 135–150. Edinburgh University

Press.

208 Bibliography

[Robinson, 1965] Robinson, J. (1965). A machine-oriented logic based on the resolu-

tion principle. JACM, 12(1).

[Schumann, 1997] Schumann, J. (1997). Automatic verification of crytographic pro-

tocols with SETHEO. In McCune, W., editor, CADE14 - Proceedings of the 14th

International Conference on Automated Deduction, Australia.

[Slaney, 1995] Slaney, J. (1995). FINDER: Finite Domain Enumerator. Australian

National University. Available from ftp://arp.anu.edu.au/pub/papers/

slaney/finder/finder.ps.gz.

[Song et al., 2001] Song, D., Berezin, S., and Perrig, A. (2001). Athena: A novel

approach to efficient automatic security protocol analysis. Journal of Computer

Security, 9(1/2):47–74.

[Stajano and Anderson, 1999] Stajano, F. and Anderson, R. (1999). The cocaine auc-

tion protocol: On the power of anonymous broadcast. In Pfitzmann, A., editor,

Proceedings of Information Hiding Workshop, Dresden, Germany.

[Steel et al., 2002a] Steel, G., Bundy, A., and Denney, E. (2002a). Finding counterex-

amples to inductive conjectures and discovering security protocol attacks. In Pro-

ceedings of the Foundations of Computer Security Workshop. Appeared in Proceed-

ings of The Verify’02 Workshop as well. Also available as Informatics Research

Report EDI-INF-RR-0141.

[Steel et al., 2002b] Steel, G., Bundy, A., and Denney, E. (2002b). Finding counterex-

amples to inductive conjectures and discovering security protocol attacks. The AISB

Journal, 1(2).

[Steel et al., 2003a] Steel, G., Bundy, A., and Denney, E. (2003a). Using the CORAL

system to discover attacks on security protocols. In Herbert, A. and Jones, K. S.,

editors, Computer Systems: Theory, Technology and Applications, Papers for Roger

Needham. Springer.

[Steel et al., 2003b] Steel, G., Bundy, A., and Maidl, M. (2003b). Attacking the

Asokan–Ginzboorg protocol for key distribution in an ad-hoc bluetooth network us-

Bibliography 209

ing CORAL. In Proceedings of FORTE 2003 (work in progress papers). Available

from http://homepages.inf.ed.ac.uk/s9808756/papers/, Berlin.

[Syverson et al., 2000] Syverson, P., Meadows, C., and Cerversato, I. (2000). Dolev-

Yao is no better than Machiavelli. In Degano, P., editor, Proceedings of the First

Workshop on Issues in the Theory of Security, pages 87–92, Geneva, Switzerland.

[Taghdiri and Jackson, 2003] Taghdiri, M. and Jackson, D. (2003). A lightweight for-

mal analysis of a multicast key management scheme. In Proceedings of Formal

Techniques of Networked and Distributed Systems - FORTE 2003, LNCS, pages

240–256, Berlin. Springer.

[Tanaka and Sato, 2001] Tanaka, S. and Sato, F. (2001). A key distribution and rekey-

ing framework with totally ordered multicast protocols. In Proceedings of the 15th

International Conference on Information Networking, pages 831–838.

[Walsh, 1996] Walsh, T. (1996). A divergence critic for inductive proof. Journal of

Arti£cial Intelligence Research, 4:209–235.

[Weidenbach, 1999] Weidenbach, C. (1999). Towards an automatic analysis of secu-

rity protocols in first-order logic. In [Ganzinger, 1999], pages 314–328.

[Weidenbach, 2001] Weidenbach, C. (2001). Combining superposition, sorts and

splitting. In Robinson, A. and Voronkov, A., editors, Handbook of Automated Rea-

soning, volume II, chapter 27, pages 1965–2013. Elsevier Science.

[Weidenbach et al., 1999] Weidenbach, C. et al. (1999). System description: SPASS

version 1.0.0. In [Ganzinger, 1999], pages 378–382.

