
Towards a Formal Security Analysis

of the Sevecom API

Graham Steel

LSV, INRIA & CNRS & ENS-Cachan

1 Introduction

Sevecom 1 was an EU 6th Framework project aimed at defining “a consistent and future-
proof solution to the problem of Vehicular communications VC [Vehicular communica-
tions]/IVC [Inter-Vehicular Communications] security”. An early conclusion of the project
was that the solution must include the use of a tamper-resistant cryptographic device on
board the vehicle. Indeed, the design of such a device has been a common conclusion of
much recent research in the area [9]. A feature of the Sevecom project is that it defines
the API for the tamper resistant device (TRD). This is a security-critical part of the
design, since the API regulates how applications on the vehicle (which in the worst case
may include malware, viruses, applications deliberately placed in the system by crooked
vehicle owners, etc.) access the secret key material stored in the TRD. Flaws in the de-
signs of previous APIs for similar devices in the ATM (cash machine) network and for
cryptographic USB key tokens have been shown to lead to catastrophic attacks, whereby
sensitive keys are revealed in the clear [2, 3].

In the last few years, we have been researching formal techniques for analysing such
interfaces and checking them for flaws. This has resulted in the detection of a number of
previously unknown flaws, as well as positive results of assurance of the absence of certain
classes of attack on revised designs [4, 6, 10]. In this paper, we describe the first results
of the application of our techniques to the Sevecom API. In doing so, we aim to make
clear the security policy the device is intended to implement, and to investigate the extent
to which it achieves this. We find that some, but not all, of the stated security goals are
achieved by the design, and we show how the shortcomings can be exploited. We discuss
changes to the API which prevent the exploit.

The paper is structured as follows: first we describe the operation of the Sevecom API
and the goals it sets out to achieve, in section 2. Then we describe our formal modelling
approach in section 3, showing how we formalised the goals and the threat model, and
explaining our abstractions. We give our results obtained using the SAT-based model
checker SATMC in section 4. We describe our plans for further analysis and conclude in
section 5.

2 The Sevecom API

The design of the Sevecom is described in the ‘Baseline Architecture’ document [8]. The
Sevecom TRD is assumed to support random number generation, asymmetric cryptogra-

1http://www.sevecom.org/

phy and hashing. The API of the TRD provides a variety of services. Primarily it provides
a decryption, signing and timestamping service. The API also provides key management
services to back up these functions. This includes key generation, and revocation and
update of keys based on messages received from a trusted authority. We summarise the
specification below, concentrating on the aspects we have covered in our security analysis.
We will first describe the data stored by the TRD, then the commands of the API, and
then the protocols these API functions are designed to support.

2.1 Data Stored by the TRD

Cryptographic keys stored in the TRD are divided into five types based on their roles.

1. Short term signature generation keys, used to authenticate short-term pseudonyms
used by applications running on the vehicle

2. Short term decryption keys, used to decrypt messages intended for applications
running on the vehicle

3. A long-term signature generation key, used to authenticate the true identity of vehicle

4. A long-term decryption key, used to decrypt encrypted messages intended for the
vehicle

5. Two-long term public root keys used to verify the authenticity of commands sent by
the authorities to the TRD.

Each key is stored in memory along with the following data

1. The key identifier

2. The key value

3. A reference to the associated cryptographic algorithm and associated parameters for
the key

4. Key flags: key type (one of the five above), whether the key is removable (i.e.
deletable, not exportable) from the TRD, and whether the key is currently under
update.

5. Lock counter

In addition to the keys, the TRD also stores a 128 bit device identifier, that is intended
to be set e.g. by the vehicle manufacturer during the initialisation of the unit. This value
is used later used during long term key update or to disable the TRD.

2.2 API Commands

The API contains a single command for decryption, and a single command for signing. To
use the commands, the application program provides the key identifier, and the data to be
signed or decrypted. The command succeeds only if the key referenced is of a suitable type.
Apart from this, the API is agnostic about what it signs or attempts to decrypt. However,
during signing, a timestamp is appended to all messages using the TRD’s realtime clock.

2

The private keys used for decryption and signing never leave the device - the keypairs
are generated by the TRD, and the public halves are exported to the host OBU. There is a
single generation command, to which the application supplies parameters which implicitly
specify the type.

In addition to these commands, the API offers commands supporting protocols for
updating the long term keys. We describe these in the relevant sections below.

2.3 Pseudonym Update Protocol

The main intended use of the short-term signature generation keys is to authenticate the
privacy-preserving pseudonyms used by the vehicle in its beacon signals. To obtain a
new set of pseudonyms, software running on the vehicle calls the TRD API to ask that
new short-term signing key pairs are generated. The private halves are stored on the
TRD, and the public halves are sent to the OBU. The OBU contacts the pseudonym
provider (PP) to obtain a certificate for each pseudonym. Some details of the protocol
are given in the specification [8, §4.2.4]: it should be executed on an ‘authenticated and
confidential’ communication link. A clue as to how this link can be established is given
[8, §7.3.4]: “certificate requests can be passed back to the TRD for being authenticated,
typically with the long-term master signature generation key of the TRD. But again, this
is transparent to the TRD, because certificate requests are treated as any other data to
be signed by the TRD.”

Once the authenticated and confidential channel is established, the protocol includes
a simple challenge-response from the PP to the OBU - the PP sends a fresh nonce to the
OBU, which must response by signing each nonce with the private half of the pseudonym
key stored in the TRD. Once these responses have been checked, the PP replies with the
certificates for the pseudonyms.

2.4 Long Term Key Update Protocol

This protocol is used to update the long term signing or long term decryption key. First,
the application programme calls the API command ‘InitLongTermKeyUpdate’, giving the
handle of one of the long term keys. This results in the generation of a new keypair,
the private half of which is stored, and the public half of which is send as output. The
application software sends the public key off to be stored by the operator. The returned
package contains a signed hash of a tag specifying the purpose of the message (long term
key update), the public key, the device identifier, and a timestamp. This is given as input
to the FinaliseLTKUpdateCommand, which builds its own hash and checks it against the
signed one. If it is correct, the new private key is activated and the old one expelled.

2.5 Root Key Update

A new root key is only accepted when one of the two existing keys has been revoked. The
decision to revoke a key is taken by the operator. First, a revocation message is sent to
the vehicle. This consists of one of the root public keys signed by its own private half,
along with a command tag giving the purpose of the message. This is given as input to the
revokeRootKey command. The TRD checks that it has two unrevoked root keys, checks
the signature, and if it verifies ok, it revokes the corresponding public key, and moves into
a ‘one key’ state. To insert a new key, the operator sends the public half of the new key
signed by the private half of the unrevoked root key. This the vehicle gives to the TRD

3

as input to the setRootKey command. The TRD checks the signature, checks that it is in
a ‘one key’ state, i.e. that it has revoked the other root key, and then stores the new root
key and returns to its ‘two keys’ state.

2.6 Other Protocols

There are several other protocols proposed in the Sevecom specification, including pro-
tocols for initialising the TRD, disabling the TRD, and updating the real time clock
embedded in the TRD. Each has associated with it specific commands in the API. We
have not yet modelled these protocols, hence we omit the details.

2.7 Summary of Security Goals

There is no explicit statement of a security policy for the API in the specification. How-
ever, there are several properties that we can straightforwardly infer, and in addition, the
sections describing protocols often list security goals that the protocol coupled with the
API should achieve. From these we extracted the following security properties that we
investigated in our formal work. We will show how we specified them formally in section 3.

P1: Private key halves unknown For all asymmetric keypairs managed by the device,
the private half remains unknown to the intruder.

P2: Authenticity of pseudonyms If the device receives a certificate for a pseudonym,
then the private half of that pseudonym remains unknown to the intruder.

Property P1 may at first seem trivial, since when a key is generated, only the public
halves are exported, and there is no command to allow a private half to be exported.
However, this property also covers attacks whereby the intruder is able to inject a key of
his own into the device, for example by abusing the long-term key update protocol.

Property P2 is inferred from the description of the use of pseudonyms in the beaconing
protocol [8, 5.2.1]: ‘we infer the sender is actually a valid participant of the network (e.g.,
a vehicle, RSU, traffic sign, etc.)’ and ‘the identified sender has sent the message, not
another one’. Both these properties are asserted to be a consequence of the use of a valid
certified pseudonym.

3 Formal Modelling

Our modelling of the API follows the approach we used for the widely-used RSA standard
API PKCS#11 [6]. The idea is to model the device as being under the complete control of
an intruder, representing a malicious piece of software running on the OBU. The intruder
can call the commands of the API in any order he likes using any values that he knows.
We abstract away details of the cryptographic algorithms in use, following the classical
approach of Dolev and Yao [7]. Bitstrings are abstracted to terms in an abstract algebra
and the rules of the API and the abilities of an attacker are written as deduction rules in
the algebra. The intruder is assumed not to be able to crack the encryption algorithm by
brute-force search or similar means, thus he can only read an encrypted message if he has
the correct key.

The language we use for the model is the ‘intermediate format’ which stems from the
AVISPA security protocol analysis research project. It is based on multiset rewriting and

4

defined formally in a project deliverable [11]. We give just the basic notions here. Terms
in the model are built from variables x, y, z and function symbols {| . |}. ({|x |}y represents
asymmetric encryption of plaintext x under key y), inv(.) (inv(x) is used to model the other
half of the asymmetric keypair x, inv(x)) and a set of function symbols of arity zero, which
we will call constants, ki, sign1, This includes the Boolean constants true (>) and false
(⊥).

The semantics of the model is defined in terms of a transition system. Each state in
the model consists of a set of terms in the intruder’s knowledge, and a set of global state
predicates. The intruder’s knowledge increases monotonically with each transition, but
the global state is non-monotonic. The transition system may contain loops in the global
state.

Example 1 As a first simple example, we give the transition rules for the intruder’s
abilities to encrypt and decrypt

x, y → {|x|}y encryption
{|x|}y, y → x decryption

Note that there are no global state facts in these rules - the intruder can carry out these
operations no matter what the state of the device.

We use the global state facts to model the key storage of the TRD. For each key stored,
the global state contains a keyrec fact with the following format:

keyrec(ID,Value, decrypt, sign, verify, removable, under update)

The fields ID and Value are of type message, i.e. they range over all the terms in the
model. The other fields are Boolean: decrypt, sign, verify indicate the permissions set on
the key, removable indicates whether a key is a long term (non-removable) key or a short
term (removable) one, and the under update field indicates whether a particular key in
undergoing update (in the case of the root signing keys, it models the fact that the key
has been revoked).

Example 2 To see how the global state facts work, consider the rule below, which models
the decrypt command. The rule fires only when there is a global state fact matching the fact
on the left hand side of the rule. We use a semi-colon to separate the intruder knowledge
part from the global state part in our rules.

Decrypt : {|x|}y; keyrec(z1, y,>,⊥,⊥, z2,⊥) → x

Some rules in the model allow the TRD to generate fresh keys. These are modelled
by a finite pool of available fresh terms. Our model also contains a global counter time
that is used to count the number of fresh keys that have been generated. This allows us
to select a fresh name each time using the predicate fresh, as illustrated in the example
below.

Example 3

GenerateSign ; time(x), fresh(x, y) → y; keyrec(s(x), inv(y),⊥,>,⊥,>,⊥), time(s(x)),
¬fresh(x, y)

Note that the global time is advanced using the successor function s().

5

The goals of section 2.7 are specified in the model as reachability queries.

Definition 1 A query is a pair (T,L) where T is a set of terms and L a set of global
facts, either of which may contain variables.

Intuitively, a query (T,L) is satisfied if there exists a substitution θ such that we can reach a
state where the adversary knows all terms in Tθ and all literals in Lθ are evaluated to true.
For example, to model the property P1, we use the query (x, keyrec(y, x, z1, z2,⊥,⊥, z4),
i.e. we demand whether it is possible for the intruder to know the value of a private key
which is stored on the device.

In Figure 1 we give the full set of rules we used to model the API. To model the storage
of a candidate key during long term key update, we use the predicate ready. In addition,
our model contains the rule in Figure 2 for modelling the response from the pseudonym
provider. We have simplified the protocols in this initial version of our model, removing
the nonce handshake from the pseudonym protocol. The PP simply provides a response
for any request signed by the TRD’s long term key.

4 Results

We now give our results obtained using the SAT-based model checker SATMC [1]. We took
each of the properties from section 2.7 and investigated them with a variety of scenarios
in terms of intruder knowledge. Our results are summarised in Table 1. All model files
are available for download2. We will explain each experiment in turn:

Experiment 1 In a scenario where the intruder starts with only his own public-private
keypair, we test to see if he is able to obtain the value of a key stored on the device.
We limit the number of fresh keypairs the device will generate to 3. After about
5000 seconds, SATMC terminates indicating no attack is possible in this scenario.

Experiment 2 We repeat experiment 1 and additionally give the intruder the private
value half of one of the root keys stored on the device. Again no attack is possible.

Experiment 3 We give the intruder the private half of both root keys, and he is finally
able to inject his own key onto the device. This is not a worrisome attack, since it is
considered ‘out of scope’ by the designers. They recommend strong steps to prevent
this scenario from occurring, e.g. storing the two private halves in different locations
in secure TRDs. We include this experiment only to validate our model.

Experiment 4 We attempt to verify property 2, that is that a valid pseudonym certificate
indicates that the private half of the key is stored on the device. This turns out no
to be true: an intruder can obtain a certificate for an arbitrary public key for which
he has the private half, since the sign command allows him to sign anything with
the device’s long term signing key, making it appear authentic to the PP. Note this
is not due to the simplifications to the pseudonym protocol we made for our model
(Figure 2) - the result would be the same with the full protocol implemented.

Experiment 5 We propose a change to the API whereby when a short-term key is gen-
erated, the device additionally gives an HMAC of the public key and the device’s

2http://www.lsv.ens-cachan.fr/∼steel/sevecom

6

GenerateSign :
; time(x), fresh(x, y) → y; keyrec(s(x), inv(y),⊥,>,⊥,>,⊥), time(s(x)),¬fresh(x, y)
GenerateDecrypt :
; time(x), fresh(x, y) → y; keyrec(s(x), inv(y),>,⊥,⊥,>,⊥), time(s(x)),¬fresh(x, y)

Decrypt : {|x|}y; keyrec(z1, inv(y),>,⊥,⊥, z2,⊥) → x
Sign : x; keyrec(z1, inv(y),⊥,>,⊥, z2,⊥) → {|x|}inv(y)

RevokeRootKey1 : {|x|}inv(x); keyrec(1, x,⊥,⊥,>,⊥,⊥), → keyrec(1, x,⊥,⊥,>,⊥,>)
keyrec(2, y,⊥,⊥,>,⊥,⊥)

RevokeRootKey2 : {|y|}inv(y); keyrec(1, x,⊥,⊥,>,⊥,⊥), → keyrec(2, x,⊥,⊥,>,⊥,>)
keyrec(2, y,⊥,⊥,>,⊥,⊥)

UpdateRootKey1 : {|z|}inv(x); keyrec(2, x,⊥,⊥,>,⊥,⊥), → keyrec(1, z,⊥,⊥,>,⊥,⊥)
keyrec(1, y,⊥,⊥,>,⊥,>)

UpdateRootKey2 : {|z|}inv(x); keyrec(1, x,⊥,⊥,>,⊥,⊥), → keyrec(2, z,⊥,⊥,>,⊥,⊥)
keyrec(2, y,⊥,⊥,>,⊥,>)

InitialiseLTKUpdate :
time(xt); fresh(xk2), → xk2; ready(x, inv(xk2)), time(s(xt))

keyrec(x, inv(xk1), y, x,⊥,⊥,⊥) keyrec(x, inv(xk1), y, x,⊥,⊥,>)

FinaliseLTKUpdate :
{|xk2|}inv(xk3); keyrec(x, inv(xk1), y, z,⊥,⊥,>) → keyrec(x, inv(xk2), y, z,⊥,⊥,⊥)

ready(x, inv(xk2)), keyrec(x1, xk3,⊥,⊥,>,⊥,⊥)

Figure 1: Rules modelling the Sevecom API

CertifyPseudonym :
{|xk2|}inv(xk1; keyrec(x, inv(xk1),⊥,>,⊥,⊥,⊥), → {|xk2|}inv(xk3)

keyrec(z, xk3,⊥,⊥,>,⊥,⊥)

Figure 2: Rule modelling pseudonym certification

7

Experiment Property Scenario Attack? Time
1 P1 Intruder has his own keypair No 5000s
2 P1 Intruder has own keypair No 5000s

and one root private key
3 P1 Intruder has own keypair Yes 5sec

and both root keys
4 P2 Intruder has own keypair Yes 1.1sec
5 P2 Intruder has own keypair, No 68s

API patched (see text)

Table 1: Summary of results

GenerateSign :
; time(x), fresh(x, y) → y, h(id, y); keyrec(s(x), inv(y),⊥,>,⊥,>,⊥), time(s(x))
GenerateDecrypt :
; time(x), fresh(x, y) → y, h(id, y); keyrec(s(x), inv(y),>,⊥,⊥,>,⊥), time(s(x))

Figure 3: Modified Generation Rules, using hash function h() and unique device identifi-
cation number id to model the use of an HMAC.

unique identifier, which was set at initialisation time (see Figure 3). This id is secret,
hence hence be used to construct a MAC. We alter the pseudonym protocol so that
the PP will only provide certificates for keys which arrive along with a correspond-
ing HMAC (this requires the pseudonym provider to have a list of valid vehicle IDs,
which it must keep secret). The property P2 is now verified in our model.

The seriousness of the attack discovered in experiment 4 depends of course on the
details of the deployment. The specification states explicitly the properties required of
the pseudonym by the beaconing protocol, including the fact that the pseudonym should
guarantee that ‘the sender is actually a valid participant of the network’. It further
mentions that details of the owners of pseudonyms could be turned over e.g. to law
enforcement agencies. An attacker might exploit this vulnerability by e.g. obtaining a
set of certificates for a stolen vehicle for which he knows the private half of the keys, and
then using these pseudonyms in another vehicle, impersonating the first one. It seems
interesting at least to consider how to patch the API to avoid this.

The practicality of our particular proposal for a fix depends on the pseudonym providers
being able to securely manage the vehicle IDs. In the original design, they only need to
store the public keys (and certificates) of valid vehicles, in order to establish an authenti-
cated channel.

5 Conclusions

The first results of our formal analysis of the Sevecom API are already intriguing: the
long term key update commands seem to keep the private keys secure, but it is possible
for attacker able to introduce malicious code running on to the OBU to obtain certificates
for pseudonyms for which he holds the private halves, allowing impersonation or cloning

8

of a vehicle’s identity. We have suggested a change to the API that prevents this, but it
places heavier demands on the pseudonym provider. We feel that our results validate the
approach of using Dolev-Yao style models to analyse proposals for on-vehicle TRD APIs,
even if the Sevecom API design is not taken forward into future projects.

These are preliminary results, and at present our model has many limitations. These
will be the focus of our immediate further work. First, we are using an abstract represen-
tation of cryptography, which ignores fine details of the cryptographic algorithms, though
there has been much recent work in relating these abstract models to real cryptographic
algorithms (e.g. [5]). Additionally, we are assuming that only a small number of fresh
keys are generated by the device. To be able to conclude that security in this small model
implies security in a model with unbounded number of fresh keys will require more theo-
retical work, though we are hopeful that the approach we developed for RSA PKCS#11
will apply [10]. Our model only accounts for one vehicle, so we cannot investigate a class
of attacks where an intruder obtains signals from more than one vehicle. Furthermore, we
have investigated only two security properties of the API. More subtle properties based,
for example, on the correctness of the timestamps given in the signatures, remain to be in-
vestigated. Finally, we need to analyse the remaining protocols for intialisation, disabling,
and clock synchronisation, and their associated API commands.

References

[1] A. Armando and L. Compagna. SAT-based model-checking for security proto-
cols analysis. Int. J. Inf. Sec., 7(1):3–32, 2008. Software available at http:
//www.ai-lab.it/satmc. Currently developed under the AVANTSSAR project,
http://www.avantssar.eu.

[2] M. Bond and R. Anderson. API level attacks on embedded systems. IEEE Computer
Magazine, pages 67–75, October 2001.

[3] J. Clulow. On the security of PKCS#11. In Proceedings of CHES 2003, pages 411–
425, 2003.

[4] V. Cortier, G. Keighren, and G. Steel. Automatic analysis of the security of XOR-
based key management schemes. In O. Grumberg and M. Huth, editors, Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), number 4424 in
LNCS, pages 538–552, 2007.

[5] V. Cortier and B. Warinschi. Computationally sound, automated proofs for security
protocols. In 14th European Symposium on Programming (ESOP’05), volume 3444
of LNCS, pages 157–171, Edinburgh, UK, 2005. Springer.

[6] S. Delaune, S. Kremer, and G. Steel. Formal analysis of PKCS#11. In Proceedings of
the 21st IEEE Computer Security Foundations Symposium (CSF’08), pages 331–344,
Pittsburgh, PA, USA, June 2008. IEEE Computer Society Press.

[7] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions in
Information Theory, 2(29):198–208, March 1983.

[8] F. Kargl (Ed). Sevecom baseline architecture. Deliverable for EU Project Sevecom,
2009. D2.1-App.A.

9

[9] Cryptographic hardware for cars. ESCAR Panel Discussion, November 2007.

[10] S. Fröschle and G. Steel. Analysing PKCS#11 key management APIs with unbounded
fresh data. In P. Degano and L. Viganò, editors, Preliminary Proceedings of the Joint
Workshop on Automated Reasoning for Security Protocol Analysis and Issues in the
Theory of Security (ARSPA-WITS’09), volume 5511 of Lecture Notes in Computer
Science, pages 92–106, York, UK, 2009. Springer. To appear.

[11] AVISPA Project. Deliverable 2.3: The intermediate format. Available from http:
//www.avispa-project.org/delivs/2.3.

10

