
A Meta-Programming Approach to Realizing
Dependently Typed Logic Programming

Zach Snow
Computer Science and Eng.

University of Minnesota
snow@cs.umn.edu

David Baelde
Computer Science and Eng.

University of Minnesota
dbaelde@cs.umn.edu

Gopalan Nadathur
Computer Science and Eng.

University of Minnesota
gopalan@cs.umn.edu

ABSTRACT
Dependently typed lambda calculi such as the Logical Frame-
work (LF) can encode relationships between terms in types
and can naturally capture correspondences between formu-
las and their proofs. Such calculi can also be given a logic
programming interpretation: the Twelf system is based on
such an interpretation of LF. We consider here whether a
conventional logic programming language can provide the
benefits of a Twelf-like system for encoding type and proof-
and-formula dependencies. In particular, we present a sim-
ple mapping from LF specifications to a set of formulas in
the higher-order hereditary Harrop (hohh) language, that
relates derivations and proof-search between the two frame-
works. We then show that this encoding can be improved by
exploiting knowledge of the well-formedness of the original
LF specifications to elide much redundant type-checking in-
formation. The resulting logic program has a structure that
closely resembles the original specification, thereby allow-
ing LF specifications to be viewed as hohh meta-programs.
Using the Teyjus implementation of λProlog, we show that
our translation provides an efficient means for executing LF
specifications, complementing the ability that the Twelf sys-
tem provides for reasoning about them.

Keywords
logical frameworks, dependently typed lambda calculi, higher-
order logic programming, translation

1. INTRODUCTION
There is a significant, and growing interest in mechanisms

for specifying, prototyping and reasoning about formal sys-
tems that are described by syntax-directed rules. Depen-
dently typed lambda calculi such as the Logical Framework
(LF) [11] provide many conveniences from a specification
perspective in this context: such calculi facilitate the use of a
higher-order approach to describing the syntax of formal ob-
jects, they allow relationships between terms to be captured

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP 2010
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

in an elegant way through type dependencies, and they for-
malize the authentication of proofs through type-checking.
Such calculi can also be assigned a logic programming in-
terpretation by exploiting the well-known isomorphism be-
tween formulas and types [12]. The Twelf system [17] that
we consider in this paper exploits this possibility relative
to LF. As such, it has been used successfully in specifying
and prototyping varied formal systems and mechanisms have
also been built into it to reason about these specifications.

Predicate logics provide the basis for logic programming
languages that are also capable of encoding rule-based spec-
ifications. Within this framework, the logic of higher-order
hereditary Harrop (hohh) formulas [13] that underlies the
language λProlog [15] provides a builtin ability to treat bind-
ing notions in syntax and thus has particular usefulness in
representing formal systems. However, unlike LF, this logic
cannot reflect dependencies between objects into types and
also does not directly represent the relationship between for-
mulas and their proofs. While such correspondences can
always be encoded in auxiliary predicate definitions, it is
of interest to understand if a more systematic treatment is
possible. A specific form to this question is if Twelf speci-
fications can be viewed as λProlog “meta-programs.” There
are benefits to such a possibility: the convenience of writing
specifications using dependent types can be combined with
the ability to execute them via an efficient λProlog imple-
mentation as well as perhaps to reason about them using
logics and systems meant for analyzing hohh descriptions
[2, 7, 10, 14].

A partial answer to the question raised above has been
provided by Felty, who described a translation of LF speci-
fications to hohh formulas and then showed that LF deriva-
tions correspond exactly to hohh derivations of the trans-
lated LF judgment [5, 6]. The focus on matching derivations
allows Felty to assume the existence of a complete LF judg-
ment, and, in particular, of an LF object in her translation.
However, this assumption is inappropriate in our context,
given that we are interested in constructing proof terms that
show particular types are inhabited, i.e., in proof search that
plays a fundamental role in the logic programming setting.
We therefore refine the earlier mapping to remove this as-
sumption and show that the resulting translation preserves
derivability in a sense relevant to the logic programming in-
terpretation; an important part of our proof is showing how
to extract an LF object satisfying a type from a derivation
constructed using the hohh version of the specification. Our
first encoding may include redundant type-checking judg-
ments which obscure the translated specification and can

result in poor execution behavior. We design conditions for
eliminating some of these judgments, resulting in an im-
proved translation that corresponds closely to the intention
of the orginal LF specification. This part of our work relies
on an analysis of the structure of LF expressions and also
has relevance, for example, to providing compact represen-
tations of proof terms. Finally, we demonstrate that the
execution of the translated form by means of the Teyjus im-
plementation [9] of λProlog [15] provides an effective means
for animating Twelf programs.

In the next two sections, we describe a relevant fragment
of the hohh logic and the Twelf specification language. Sec-
tion 4 then presents our first translation; a full proof of its
correctness appears in Appendix A. In the following sec-
tion, we describe and exploit a property of LF expressions
and type-checking to refine the earlier translation to pro-
duce a more efficient and transparent version. Section 6
provides experimental data towards supporting the use of
this translation as a means for executing Twelf programs.
We conclude the paper with a discussion of related work
and possible future directions.

2. A HIGHER-ORDER PREDICATE LOGIC
FOR DESCRIBING COMPUTATIONS

The logic of hohh formulas is based on an intuitionistic
version of Church’s simple theory of types [4]. Both log-
ics are built over a typed form of the λ-calculus. The types
are constructed using→, the infix, right associative function
type constructor, starting from a finite collection of atomic
types that includes o, the type of propositions, and at least
one other type.1 We assume that we are given sets of vari-
ables and constants, each with an associated type. The full
collection of (typed) terms is generated from these by the
usual abstraction and (left associative) application opera-
tors. Terms that differ only in the names of their bound
variables are not distinguished. We further assume a no-
tion of equality between terms that is generated by β- and
η-reduction. It is well-known that every term has a unique
normal form under these reduction operations in this simply-
typed setting. All terms are to be converted into such a
form prior to their consideration in any context. We write
t[s1/x1, . . . , sn/xn] to denote the result of simultaneously
replacing the variables x1, . . . , xn with the terms s1, . . . , sn
in the term t, renaming bound variables as needed to avoid
accidental capture. This substitution operation is defined
only when si and xi are of the same type for 1 ≤ i ≤ n.

We will use only a fragment of the full hohh logic here;
this fragment still possesses the proof-theoretic properties
that are fundamental to the logic programming interpreta-
tion of the hohh logic. The constants from which terms are
constructed are differentiated into nonlogical ones that con-
stitute a signature and logical ones. We do not permit o to
appear in the type of the arguments of nonlogical constants
and variables. The logical constants are restricted to > of
type o, ⊃ of type o→ o→ o that is written in the custom-
ary infix form and, for each type α, Π of type (α→ o)→ o.
Π represents the universal quantifier as a function over sets.
We abbreviate Π (λx.F) by ∀x.F . An atomic formula, de-
noted by A, is a term of type o of the form p t1 . . . tn where
p is a nonlogical constant. The logic of interest is character-

1Other, non-interpreted type constructors can be added but
are not discussed here for simplicity.

ized by two collections of terms called G- and D-formulas
that are defined mutually recursively by the following syntax
rules:

G := > | A | D ⊃ G | ∀x.G
D := A | G ⊃ D | ∀x.D

A specification or logic program is a finite collection of closed
D-formulas that are also called program clauses and a goal
or a query is a closed G-formula.

Computation corresponds to searching for a derivation of
a sequent of the form Σ; Γ −→ G where Σ is the initial
(language) signature, Γ is a logic program and G is a goal.
Figure 1 presents the rules for constructing such a derivation.
Read in a proof search direction, the ∀R rule leads to an
expansion of the signature in the sequent whose derivation
is sought and the ⊃ R rule similarly causes an addition to
the logic program. The expression “t is a Σ-term” in the ∀L
rule means that t is a closed term all of whose nonlogical
constants are contained in Σ. The derivation rules manifest
a goal-directed character: to find a derivation for Σ; Γ −→
G, we simplify G based on its logical structure and then use
the decide rule to select a formula from the logic program
for solving an atomic goal. Notice also that the decide rule
initiates the consideration of a focused sequence of rules that
is similar to backchaining.2 In particular, if the formula
selected from Γ has the structure

(∀x1.F1 ⊃ . . . ⊃ ∀xn.(Fn ⊃ A′) . . .)

then this sequence is equivalent to the rule

Σ; Γ −→ F ′1 . . . Σ; Γ −→ F ′n
backchain

Σ; Γ −→ A

which has the proviso that for some Σ-terms t1, . . . , tn that
have the same types as x1, . . . , xn, respectively, it is the case
that A is equal to A′[t1/x1, . . . tn/xn] and, for 1 ≤ i ≤ n, F ′i
is equal to Fi[t1/x1, . . . , ti/xi].

The logic that we have described has been given an effi-
cient implementation in the Teyjus system [9]. It is possi-
ble also to reason in sophisticated ways about specifications
that are constructed using it. To begin with, the logic has
strong meta-theoretic properties arising from the fact that
derivability in it corresponds exactly to intuitionistic prov-
ability. Moreover, it is possible to construct logics incorpo-
rating mechanisms such as induction to reason powerfully
about what does and does not follow from a given specifi-
cation [1, 8, 10, 14]. In fact, systems such as Abella [7] and
Tac [2] have been constructed to provide computer support
for such reasoning.

3. LOGIC PROGRAMMING USING THE
TWELF SPECIFICATION LANGUAGE

There are three categories of expressions in LF: kinds,
types or type families that are classified by kinds and objects

2For the reader unfamiliar with such presentations, the ex-

pression Σ; Γ
D−→ A corresponds essentially to the selection

of the program clause D as the one to backchain on. This
then leads to instantiations of universally quantified vari-
ables and to the solution of the “body” goals of the clause
using the rules ∀L and ⊃L, culminating eventually in solving
the atomic goal by matching it with the head of the clause
using the init rule.

>R
Σ; Γ −→ >

Σ; Γ ∪ {D} −→ G
⊃R

Σ; Γ −→ D ⊃ G
c /∈ Σ Σ ∪ {c}; Γ −→ G[c/x]

∀R
Σ; Γ −→ ∀x.G

D ∈ Γ Σ; Γ
D−→ A

decide
Σ; Γ −→ A

init
Σ; Γ

A−→ A

t is a Σ-term Σ; Γ
D[t/x]−→ A

∀L
Σ; Γ

∀x.D−→ A

Σ; Γ −→ G Σ; Γ
D−→ A

⊃L
Σ; Γ

G⊃D−→ A

Figure 1: Derivation rules for the hohh logic

or terms that are classified by types. We assume two denu-
merable sets of variables, one for objects and the other for
types. We use x and y to denote object variables, u and v
to denote type variables and w to denote either. Letting K
range over kinds, A and B over types, and M and N over
object terms, the syntax of LF expressions is given by the
following rules:

K := Type | Πx:A.K
A := u | Πx:A.B | λx:A.B | A M
M := x | λx:A.M | M N

Expressions of any of these kinds will be denoted by P and
Q. Here, Π and λ are operators that associate a type with
a variable and bind its free occurrences over the expression
after the period. Terms that differ only in the names of
bound variables are identified. As with the hohh logic,
P [N1/x1, . . . , Nn/xn] denotes a simultaneous substitution
with renaming to avoid variable capture. We write A → P
for Πx:A.P when x does not appear free in P . We abbreviate

Πx1:A1. . . .Πxn:An.P by Π
−−→
x:A.P .

LF expressions are equipped with a notion of β-reduction
defined through the rule (λx:A.P) N →β P [N/x]. All LF
expressions that are well-formed in the sense formalized be-
low are strongly normalizing under this reduction relation
[11]. Moreover any well-typed expression P has a unique
normal form up to changes in bound variable names. We
denote this normal form by P β .

The type correctness of LF expressions is assessed relative
to contexts that are finite collections of assignments of types
and kinds to variables. Formally, contexts, denoted by Γ, are
given by the rule

Γ := · | Γ, u : K | Γ, x : A

Here, · denotes the empty collection. We write dom(Γ) to
denote the variables with assignments in Γ, and we write Γ\y
to indicate the context Γ with the binding for y removed.
We are concerned with assertions of the following four forms:

` Γ ctx Γ ` K kind Γ ` A : K Γ ` M : A

The first assertion signifies that Γ is a well-formed context.
The remaining assertions mean respectively that, relative to
a (well-formed) context Γ, K is a well-formed kind, A is a
well-formed type of kind K and M is a well-formed object
of type A. Figure 2 presents the rules for deriving such
assertions. Notice that for a context to be well-formed it
must not contain multiple assignments to the same variable.
To adhere to this requirement, bound variable renaming may
be entailed in the use of the pi-kind, pi-fam, abs-fam and
abs-obj rules. The inference rules allow for the derivation
of an assertion of the form Γ ` M : A only when A is in

normal form. To verify such an assertion when A is not in
normal form, we first derive Γ ` A : Type and then verify
Γ ` M : Aβ . A similar observation applies to Γ ` A : K.

A variable w that appears in an LF expression P that is
well-formed with respect to a context Γ has a kind or type of
kind Type associated with it through either an assignment
in Γ or a binding operator. Moreover, the normal form of
this kind or type must have a prefix of Πs. If the length of
this prefix is n, then an occurrence of w is fully applied if it
appears in a subterm of the form w M1 . . . Mn. Further,
P is canonical with respect to Γ if it is in normal form and
if every variable occurrence in it is fully applied. A well-
formed context Γ is canonical if the type or kind it assigns
to each variable is canonical relative to Γ. A well-formed
type of the form u M1 . . . Mn that is fully applied is called
a base type. The LF system admits a notion of η-expansion
using which any well-formed expression can be converted
into a canonical form.

In later sections we shall consider LF derivations in which
all expressions in the end assertion are in normal form. No-
tice that every expression in the entire derivation must then
also be in such a form. This in turn means that in judg-
ments of the forms (λx:A.B) : (Πx:A′.K) and (λx:A.M) :
(Πx:A′.B) it must be the case that A and A′ are identical.
Finally, normalization need not be considered in the use of
the var-fam and var-obj rules.

The following “transitivity” property for LF derivations
that follows easily from the results in [11] will be useful
later; here α stands for any judgment, and substitution and
normalization over α and Γ corresponds to distributing these
operations to the expressions appearing in them.

Proposition 1 (Substitution). Let Γ1, Γ2 be canon-
ical contexts, and A be a type in canonical form. If Γ1 `M :
A has a derivation, and Γ1, x : A,Γ2 ` α has a derivation,
then Γ1, (Γ2[M/x])β ` (α[M/x])β has a derivation as well.

Additionally we will use a second property of LF deriva-
tions, which follows from Proposition 1.

Proposition 2 (Renaming). Let P be a canonical type
or kind, Γ = Γ1, x : P,Γ2 be a canonical context, and α a
canonical judgment. Let y be a variable not bound in Γ, and
not occurring in α. Then Γ1, x : P,Γ2 ` α has a derivation
if and only if Γ1, y : P,Γ2[y/x] ` α[y/x] has one.

The logic programming interpretation of LF is based on
viewing types as formulas. More specifically, a specification
or program in this setting is given by a context. This start-
ing context, also called a signature, essentially describes the
vocabulary for constructing types and asserts the existence

null-ctx` · ctx
Γ ` K kind ` Γ ctx u /∈ dom(Γ)

kind-ctx` Γ, u : K ctx

Γ ` A : Type ` Γ ctx x /∈ dom(Γ)
type-ctx

` Γ, x : A ctx

` Γ ctx type-kind
Γ ` Type kind

Γ ` A : Type Γ, x : A ` K kind
pi-kind

Γ ` Πx:A.K kind

` Γ ctx u : K ∈ Γ
var-fam

Γ ` u : Kβ

` Γ ctx x : A ∈ Γ
var-obj

Γ ` x : Aβ

Γ ` A : Type Γ, x : A ` B : Type
pi-fam

Γ ` (Πx:A.B) : Type

Γ ` A : Type Γ, x : A ` B : K
abs-fam

Γ ` (λx:A.B) : (Πx:Aβ .K)

Γ ` A : Πx:B.K Γ ` M : B app-fam
Γ ` (A M) : (K[M/x])β

Γ ` A : Type Γ, x : A ` M : B
abs-obj

Γ ` (λx:A.M) : (Πx:Aβ .B)

Γ ` M : Πx:A.B Γ ` N : A app-obj
Γ ` (M N) : (B[N/x])β

Figure 2: Rules for Inferring LF Assertions

of particular inhabitants for some of these types. Against
this backdrop, questions can be asked about the existence of
inhabitants for certain other types. Formally, this amounts
to asking if an assertion of the form Γ ` M : A has a deriva-
tion. However, the object M is left unspecified—it is to be
extracted from a successful derivation. Thus, the search for
a derivation of the assertion is driven by the structure of A
and the types available from the context.

A concrete illustration of the paradigm is useful for later
discussions.3 Consider a signature or context Γ comprising
the following assignments in sequence:

nat : Type
z : nat
s : nat→ nat
list : Type
nil : list
cons : nat→ list→ list
append : list→ list→ list→ Type
appNil : ΠK:list.append nil K K
appCons : ΠX:nat.ΠL:list.ΠK:list.ΠM :list.

(append L K M)→
(append (cons X L) K (cons X M))

We can ask if there is some term M such that the judgment

Γ ` M : append (cons z nil)
(cons (s z) nil)
(cons z (cons (s z) nil))

is derivable. Assuming that Γ is given by the ambient en-
vironment, such a query can be posed in Twelf simply by
presenting the type expression. The logic programming in-
terpreter of Twelf will find that the proof term
3The example of appending lists has been chosen here for its
conciseness and because it allows for an easy connection with
more traditional forms of logic programming. The primary
application domain of Twelf is in specifying (and reasoning
about) formal systems such as evaluators and interpreters
for languages, type assignment calculi and proof systems.
This orientation informs the choice of benchmarks used in
Section 6.

(appCons z nil (cons (s z) nil)
(cons (s z) nil)
(appNil (cons (s z) nil)))

inhabits this type and hence will succeed on the query. In
reaching this conclusion, the interpreter will use the types
involving append that are present in Γ. Further it will do
this in a way that bears a close resemblance to the use of
clauses in a Prolog-like setting, interpreting Π like a univer-
sal quantifier and → like an implication.

The simple example we have considered here will suffice
to illustrate most of the later ideas in this paper but it does
not bring out the richness of dependent types in specifica-
tions. We leave this demonstration to the many discussions
already in the literature. We also note that Twelf has many
additional features like allowing Π quantification in types
to be left implicit and permitting instantiatable variables
in queries whose values are to be found through unifica-
tion. While these aspects are treated in our implementa-
tion, to keep the theoretical discussions focused, we shall as-
sume that the only capability that is to be emulated is that
of determining the derivability of an assertion of the form
Γ ` M : A in which Γ and A are in canonical form (and M
is left unspecified). This assumption is easily justified: these
will be “type-checked” prior to conducting a search and the
Twelf system assumes equality under η-conversion.

4. FROM TWELF SPECIFICATIONS TO
PREDICATE FORMULAS

Felty has previously shown how to translate LF specifica-
tions and judgments into hohh formulas [5, 6]. Her transla-
tion proceeds in two steps. First, she describes a coarse map-
ping of LF expressions into (simply typed) λ-terms. This
mapping loses information about dependencies in types and
kinds and also does not reflect the correspondences between
objects and types and types and kinds. These relationships
are encoded later through binary predicates over λ-terms.

The general structure of Felty’s translation is applicable
in the context of interest to us. However, the details of her

φ(A) := lf-obj when A is a base type
φ(Πx:A.P) := φ(A)→ φ(P) φ(Type) := lf-type

〈u M1 . . .Mn〉 := u 〈M1〉 . . . 〈Mn〉
〈x M1 . . .Mn〉 := x 〈M1〉 . . . 〈Mn〉 〈λx:A.M〉 := λφ(A)x.〈M〉

{{Πx:A.B}} := λM. ∀x. ({{A}} x) ⊃ ({{B}} (M x))

{{A}} := λM. hastype M 〈A〉 where A is a base type

Figure 3: Encoding of types, objects, and simplified translation of LF judgments to hohh

hastype z nat
∀n. hastype n nat ⊃ hastype (s n) nat
hastype nil list
∀n. hastype n nat ⊃ ∀l. hastype l list ⊃ hastype (cons n l) list
∀l. hastype l list ⊃ hastype (appNil l) (append nil l l)
∀x. hastype x nat ⊃ ∀l. hastype l list ⊃ ∀k. hastype k list ⊃ ∀m. hastype m list ⊃
∀a. hastype a (append l k m) ⊃ hastype (appCons x l k m a) (append (cons x l) k (cons x m))

Figure 4: Simple translation of the LF specification for append

mapping do not quite fit our needs because of her focus on
derivations in the LF and hohh logics. One manifestation of
this is that her translation is not based exclusively on types,
but assumes also the availability of the objects they are in-
tended to qualify. This is not acceptable in the context of
proof search where the task is precisely to determine the ex-
istence of those objects: we need a translation that is only
based on the type, and which can be applied to an hohh
metavariable to correspond to an LF query whose object is
left unspecified as a metavariable. Second, the correctness
result only states an equivalence between LF derivability and
hohh derivability for known LF assertions, and does not con-
sider, for example, whether it is possible for non-canonical
or ill-formed objects to be produced in the course of search-
ing for proofs from the hohh specification. In contrast, our
completeness result will guarantee that after running a query
with a metavariable standing for the (encoding of the) ob-
ject, the only possible instantiations of that metavariable are
actual encodings of terms.

The first step towards producing a translation into hohh
that can be used to interpret Twelf specifications is to adapt
Felty’s translation in a way that makes it acceptable in logic
programming discussions. Our translation shall only ac-
count for judgments of the form Γ ` M : A since these
are the only ones of interest in the logic programming set-
ting described in the previous section. The adequacy of this
restriction actually relies on an auxiliary, easily verified, ob-
servation: if Γ ` A : Type is known to have a derivation
and the last rule in a purported derivation of Γ ` M : A
is an abs-obj, then the left premise for the latter derivation
must have a proof and hence does not need to be encoded
by the translation.

Our translation is presented in Figure 3. This transla-
tion first encodes LF objects and types in hohh terms by
dropping a lot of typing information; as mentioned already,
this information will be recovered later in the encoding of
LF judgments. Under this translation, an object (type) of
type (kind) P is represented by an hohh term of simple type
φ(P), built from the atomic types lf-type and lf-obj. The en-

coding of an object or base type Q is then given by 〈Q〉;
note that in the process we assume a reuse of (LF) variable
names with an appropriate type as part of the correspond-
ing hohh signature. As an example, the LF signature at the
end of the last section leads to the following hohh signature:

nat : lf-type
z : lf-obj
s : lf-obj→ lf-obj
list : lf-type
nil : lf-obj
cons : lf-obj→ lf-obj→ lf-obj
append : lf-obj→ lf-obj→ lf-obj→ lf-type
appNil : lf-obj→ lf-obj
appCons : lf-obj→ lf-obj→

lf-obj→ lf-obj→ lf-obj→ lf-obj

Further, the LF type append nil nil nil gets translated to
the same term in hohh, where it has type lf-type. This
translation behaves well with respect to substitution and
β-conversion, and is injective for objects (types) of the same
type (kind). Finally, we take up the translation of LF type
assignments and judgments in the last two clauses in Fig-
ure 3. To emphasize reliance only on the structure of types,
these clauses describe explicitly only the translation of an
LF type A. Such a type is mapped into an hohh predicate
denoted by {{A}} that, intuitively, codifies the property of
being a translation of an LF object of type A. This trans-
lation is defined on all canonical types and uses the hohh
predicate hastype of type lf-obj → lf-type → o. If A is a
base type, {{Πx1:B1. . . .Πxn:Bn.A}} has type τ → o where τ
is lf-obj→ . . .→ lf-obj→ lf-obj with n negative occurrences
of lf-obj. Once the translation of LF types is in place, we
define {{M : A}} derivatively to be ({{A}} 〈M〉).

Twelf specifications are encoded by dropping all kind as-
signments and translating each type assignment they con-
tain. As an example, the Twelf specification of append
translates into the clauses in Figure 4. From these clauses,
we can, for example, derive the goal

hastype (cons (s z) nil) list

and we could search for terms X satisfying the goal

hastype X (append (cons z nil)
(cons (s z) nil)
(cons z (cons (s z) nil))).

Let Γ′ be the translation of an LF context Γ and α′ be
the translation of the LF judgment α. These translations
are based on an implicit hohh signature Σ. In the case
that all the free variables in α belong to dom(Γ), then, in
fact, Σ consists of an isomorphic copy of the symbols in
dom(Γ). Henceforth, we shall assume Σ to be just such an
hohh signature and we shall write Γ′ −→ α′ as a shorthand
for Σ; Γ′ −→ α′. The correctness of the (simple) translation
is then the content of the following theorem.

Theorem 1. Let Γ be a well-formed canonical LF context
and let A be a canonical LF type such that Γ ` A : Type has
a derivation. If Γ ` M : A has a derivation for a canonical
object M , then there is a derivation of {{Γ}} −→ {{M : A}}.
Conversely, if {{Γ}} −→ ({{A}} M) has a derivation for any
hohh term M of appropriate type, then there is a canonical
LF object M ′ such that M = 〈M ′〉 and Γ ` M ′ : A has a
derivation.

Proof outline.
Completeness can be proved by a simple induction on the

LF derivation, building an hohh derivation that mimics its
structure. Soundness is more involved: we proceed by induc-
tion on the hohh derivation, gradually recovering the struc-
ture of M ′, maintaining the derivability of Γ ` A : Type
that allows us to build an LF derivation even in the case
that abs-obj was the last rule used. The detailed proof is
presented in Appendix A.

The simple translation presented in this section cannot
be the basis of a practical implementation of logic program-
ming in LF. Proof search using a program it produces may
involve repeatedly proving goals of the form hastype M A
for (encodings of) the same object M and type A. This
can be seen from the example in Figure 4: at every step of
deriving an instance of append, the lists must be checked
to be well-typed, which artificially introduces a quadratic
complexity. An important point to note, however, is that
this redundancy in “type-checking” is not easily detectable
from the hohh program that is generated. Rather, it must
be determined, and shown to be safely eliminable, based on
deeper properties of LF terms. It is this issue that we take
up in the next section.

5. AN IMPROVED TRANSLATION OF
TWELF SPECIFICATIONS

In order to make the translation of LF specifications into
hohh, and, in particular, into λProlog, practical from an
implementation standpoint, we make two optimizations.

The main optimization exploits the fact that we are con-
sidering derivations of the form Γ ` M : A where Γ and A
have already been type-checked. For example, suppose we
are trying to determine whether the LF type

append (cons z nil) nil (cons z nil)

is inhabited. Before we embark on this task, we would have
already determined that append (cons z nil) nil (cons z nil)
is a valid type, which means, for instance, that we would

Γ; ·;x <o Ai for some Ai
APPt

Γ;x <t c
−→
A

yi ∈ δ for each yi yi distinct
INITo

Γ; δ;x <o x
−→y

Γ, y;x <t B
PIt

Γ;x <t Πy:A.B

y /∈ Γ and Γ; δ;x <o Mi for some i
APPo

Γ; δ;x <o y
−→
M

Γ; δ, y;x <o M
ABSo

Γ; δ;x <o λy:A.M

Figure 5: Rigidly occurring variables in types and
objects

have checked that (cons z nil) is a valid object of type list.
Therefore, there is no need to show again that (cons z nil)
has this property in the course of searching for an inhabi-
tant of the displayed type. Our optimized translation tries
to take advantage of this kind of observation to remove
some checks of well-typedness in the translation of LF types.
More specifically, our optimization is based on the following
idea. Suppose that for any instantiation t1, . . . , tn of the
type Πx1:A1. . . .Πxn:An.B we can determine that a partic-
ular ti must always appear in the type B[t1/x1, . . . , tn/xn].
Then, the translation of this type need not include explicit
type-checking over the instantiation of xi. Now, one way
to determine the requisite property of instantiations of xi is
to look at the occurrences of xi in B. Formally, we use the
notion of a rigid occurrence that is expressed by the judg-
ment −→x ;xi <t B defined in Figure 5 to characterize some
of these cases; the rules APPt and PIt in this figure act on
LF types, and the rules INITo, APPo, and ABSo act on LF
objects. By allowing some type checking to be elided, this
enhancement to the earlier simple translation does not only
yield an efficiency benefit, but also makes the specification
more readable, and effectively makes the intended logic pro-
gramming behavior of the produced hohh formula similar to
the original LF type.

The second optimization is more transparent, not depend-
ing on deeper properties of dependent types. The essential
observation is the following. Instead of producing predicates
of the form hastype X (append L K M) and hastype L list,
we can specialize them to append X L K M and list L.
This results in a hohh program that is much clearer, and
more closely related to the original LF specification. More-
over, this simple transformation can also lead to better per-
formance in a logic programming setting because it allows
for the exploitation of a common optimization, namely, the
indexing on a predicate name that speeds up the determi-
nation of candidate clauses on which to backchain.

The resulting optimized translation is presented on Fig-
ure 6. The J•K+ translation is used on type assignments
appearing negatively (notably context items) and J•K− on
positive typing judgments (notably the conclusion of LF as-
sertions). As before, that translation is entirely guided by
the type, and defined for all canonical types. We shall use
the notation JM : AK+

· for (JAK+
· 〈M〉) and JM : AK− for

(JAK−〈M〉), and define JΓK+ as the result of applying the
translation to each context item, dropping kind assignments.
Note that instead of replacing unnecessary typing judgments
with > we could simply elide them all together; we use > as
a placeholder because it simplifies later proofs. This trans-
lation is illustrated by its application to the example Twelf
specification considered in Section 3 that yields the clauses
shown in Figure 7. These clauses should be contrasted with
the ones in Figure 4 that are produced by the earlier, naive
translation.

We shall now establish the correctness of the optimized
translation, by relating it to the simple translation. We first
prove a fundamental lemma concerning the type checking
of instantiations of rigidly occurring variables. In order to
be able to use this observation in our correctness argument,
we formulate the lemma in a rather technical way, talking
about encoded types that are the result of instantiations
of (a priori) arbitrary hohh terms in encoded types. We
stress that these technical details concerning encodings are
shallow, and that the real result is one about type checking
and redundancy concerning LF expressions that the reader
may find informative to extract.

Definition 1. Let
−→
t be a vector of hohh terms, and −→x

a vector of variables of the same length. If M and N are
LF objects, then we write (M ∼ N)[t1/x1 . . . tn/xn] when
〈M〉 = 〈N〉[t1/x1 . . . tn/xn]. For LF types A and B, we
write (A ∼ B)[t1/x1 . . . tn/xn] when the two types are equal
up to (• ∼ •)[t1/x1 . . . tn/xn] on objects within. Finally we
extend this notion to contexts of the same length by pushing
it down to the types bound by the context. We shall omit−→
t and −→x when they are obvious from the context, simply

writing P ∼ Q.

Lemma 1. Let
−→
t be a vector of hohh terms, −→x a vector

of variables, and
−→
B of canonical LF types, all of same length,

such that tj = 〈t′j〉 for j < i. Let Γ0 = x1 : B1, . . . , xn : Bn.

1. Let Γ and ∆ be LF contexts, M an LF object and A
a type, all being assumed canonical. Let δ be dom(∆).
Suppose that there are derivations of −→x ; δ;xi <o M ,
Γ,Γ0,∆ ` M : A and Γ,∆′ ` M ′ : A′, with A′ ∼ A,
M ′ ∼M and ∆′ ∼ ∆. Then ti is of the form 〈t′i〉 and
there is a derivation of Γ ` t′i : Bi[t

′
1/x1, . . . , t

′
i−1/xi−1].

2. Let Π
−−→
x:B.A be a canonical type, where A is a base type.

Suppose that there are derivation of Γ ` Π
−−→
x:B.A :

Type, −→x ;xi <t A, and Γ ` A′ : Type for A′ ∼ A.
Then ti = 〈t′i〉 and there is a derivation of Γ ` t′i :
Bi[t

′
1/x1, . . . , t

′
i−1/xi−1].

Proof. We prove part (1) by induction on the struc-
ture of the derivation of −→x ; δ;xi <o M . We let D be the
derivation of Γ,Γ0,∆ ` M : A, and D′ be the derivation of
Γ,∆′ ` M ′ : A′.

• In the base case of INITo, M = xi
−→y where −→y are

distinct bound variables from δ. The derivation D
must consist of n app-obj rules and a var-obj rule on

xi, whose type Bi must be of the form Π
−−→
z:C.D, with

A = D[−→y /−→z]. Note that, because the variables yi are
distinct bound variables that are fresh with respect to
D, this substitution can be inverted, and we thus have

A[−→z /−→y] = D. The other subderivations of the chain
of app-obj applications establish

Γ,Γ0,∆ ` yi : Ci[y1/z1 . . . yi−1/zi−1];

In fact, those subderivations must end with var-obj on
(yi : Ci[

−→y /−→z]) ∈ ∆ and hence (yi : C′i[
−→y /−→z]) ∈ ∆′

for C′i ∼ Ci.
We next determine t′i. By η-equivalence we can assume
that ti is of the form λz1 . . . λzn.u. We have

〈M ′〉 = ti
−→y = u[−→y /−→z],

hence u = 〈M ′〉[−→z /−→y] = 〈M ′[−→z /−→y]〉 (by first invert-
ing the substitution, as it is injective, and then pushing
it inside the encoding, as the encoding is the identity
on variables). Let

t′i = λ
−−→
z:C′.u′ where u′ = M ′[−→z /−→y]

We have

〈t′i〉 = λz1 . . . λzn. 〈M ′〉[−→z /−→y]

= λz1 . . . λzn. u = ti.

We also have M ′ = t′i y1 . . . yn = u′[−→y /−→z].

We know that D′ derives Γ,∆′ ` M ′ : A′. From this
we obtain a derivation of

Γ,∆′[−→z /−→y] ` u′ : A′[−→z /−→y]

by renaming variables −→y into −→z , employing Propo-
sition 2. The context ∆′[−→z /−→y] contains assignments
(zi : C′i) and the other variables in its domain do not
occur in u′ nor A′[−→z /−→y] (since A′ ∼ A, A = D[−→y /−→z]
and D is a subterm of Bi which cannot contain any
yi). We then have

Γ ` (λ
−−→
z:C′.u′) : (Π

−−→
z:C′.A′[−→z /−→y])

by weakening unused variables and using abs-obj to
introduce the variables −→z . This is a typing derivation
for t′i; we must now show that the associated type is
actually

Bi[t
′
1/x1 . . . t

′
i−1/xi−1].

Since Bi = Π
−−→
z:C.A[−→z /−→y], we have

〈A〉[t1/x1 . . . tn/xn] = 〈A[t′1/x1 . . . t
′
i−1/xi−1]〉.

From A′ ∼ A we thus obtain, by injectivity of 〈•〉,
that A′ = A[t′1/x

′
1 . . . t

′
i−1/xi−1]. From this we obtain

that A′[−→z /−→y] = A[t′1/x
′
1 . . . t

′
i−1/xi−1][−→z /−→y]. We

permute these substitutions, and hence Π
−−→
z:C′.A′[−→z /−→y]

is indeed Bi[t
′
1/x
′
1 . . . t

′
i−1/xi−1].

• In the ABSo case, we have M = λy:A1.N and D ends
with the abs-obj rule as follows:

Γ,Γ0,∆ ` A1 : Type Γ,Γ0,∆, y : A1 ` N : A2

Γ,Γ0,∆ ` (λy:A1.N) : (Πy:A1.A2)

Then A′ ∼ Πy:A1.A2, and so A′ must be of the form
Πy:A′1.A

′
2 where A′i ∼ Ai. Similarly, we have M ′ =

λy:A′1.N
′ with N ′ ∼ N . Then, D′ must contain a

derivation of Γ,∆′, y : A′1 ` N ′ : A′2, and we conclude
by inductive hypothesis.

JΠx:A.BK+
Γ :=

(
λM. ∀x. > ⊃ JBK+

Γ,x(M x) if Γ;x <t B

λM. ∀x. JAK−(x) ⊃ JBK+
Γ,x(M x) otherwise

Ju
−→
N K+

Γ := λM. u M
−−→
〈N〉

JΠx:A.BK− := λM. ∀x. JAK+
· (x) ⊃ JBK−(M x)

Ju
−→
N K− := λM. u M

−−→
〈N〉

Figure 6: Optimized translation of LF specifications and judgments to hohh

nat z
∀n. nat n ⊃ nat (s n)
list nil
∀n. nat n ⊃ ∀l. list l ⊃ list (cons n l)
∀l. > ⊃ append (appNil l) nil l l
∀x. > ⊃ ∀l. > ⊃ ∀k. > ⊃ ∀m. > ⊃

∀a. append a l k m ⊃ append (appCons x l k m a) (cons x l) k (cons x m)

Figure 7: Optimized translation of the LF specification for append

• In the APPo case, we have M = y
−→
N , y 6∈ −→x and

−→x ; δ;xi <o Nj . The derivation D starts with a chain
of app-obj applications, followed by var-obj on some

y : Π
−−→
y:C.A1, with A = A1[

−−→
N/y]. The premise corre-

sponding to Nj establishes that

Γ,Γ0,∆ ` Nj : Cj [N1/y1, . . . , Nj−1/yj−1]

Since A′ ∼ Π
−−→
y:C.A1, A′ is of the form Π

−−→
y:C′.A′1 with

C′j ∼ Cj . Since M ′ ∼ y
−→
N and since y is not af-

fected by the instantiation of −→x , it must be that M ′

is of the form y
−→
N ′ with all N ′j ∼ Nj . The deriva-

tion D′ must proceed in a similar fashion, namely a
chain of app-obj applications followed by var-obj on
y. Therefore we have a derivation of Γ,∆′ ` N ′j :
C′j [N

′
1/y1, . . . , N

′
j−1/yj−1]. We can conclude by the

inductive hypothesis because

C′j [N
′
1/y1, . . . , N

′
j−1/yj−1] ∼ Cj [N1/y1, . . . , Nj−1/yj−1]

(which relies on the disjointness of −→x and −→y).

The proof of (2) follows similar mechanisms. First, by a
straightforward inspection of the first rules of the derivation

of Γ ` Π
−−→
x:B.A : Type we extract a derivation of Γ,Γ0 `

A : Type. Then, since A is a base type, it must be (by
rule APPt) that xi rigidly occurs in one of its arguments M .
Note that A and A′ have the same structure on the path
leading to M , since no object is involved there. Hence, a
simultaneous inspection of the first rules of the derivations
of Γ,Γ0 ` A : Type and Γ ` A′ : Type, yields derivations
of Γ,Γ0 ` M : T and Γ ` M ′ : T ′ for M ′ ∼M and T ′ ∼ T .
We can conclude using part (1).

The definition of rigidity described above might seem re-
strictive. In particular, one might want to allow

Γ; δ;x <o x
−→
N

in INITo. However, with such a rule the rigidity lemma de-
scribed above is no longer true. For example, in a signature
with num : nat → Type and numn : Πn:nat.(num n), the

object t = numn provides a counter-example to Lemma 1,
part (1): we have Γ ` (t z) : (num z) and

Γ, x : (nat→ num z) ` (x z) : (num z)

but not Γ ` t : nat→ num z.

Theorem 2. Let Γ be an LF context, A an LF type, both
canonical, such that ` Γ ctx and Γ ` A : Type are deriv-
able. Then when M is an arbitrary hohh term, {{Γ}} −→
{{A}}(M) has a derivation if and only if JΓK+ −→ JAK−(M)
has a derivation.

Proof. We establish the soundness direction by induc-
tion on the derivation of the optimized translation, main-
taining the assumptions about Γ and A.

If A is of the form Πx:B.A′ our derivation ends as follows:

JΓ, x : BK+ −→ JA′K−(M x)
∀R, ⊃R

JΓK+ −→ JΠx:B.A′K−(M)

First, Γ ` B : Type, ` (Γ, x : B) ctx and Γ, x : B ` A′ :
Type must have derivations since Γ and A are well-formed.
We can thus apply the inductive hypothesis, obtaining that
{{Γ, x : B}} −→ {{A′}}(M x) has a derivation. By ∀R and
⊃R, {{Γ}} −→ {{Πx:B.A′}}(M) has one as well.

IfA is a base type, then our derivation starts with a backchain-
ing on the encoding of some (y : Π

−−→
x:B.A′) ∈ Γ, i.e., on

∀x1. (JB1K−(x1) ⊃ . . . ⊃
∀xn. (JBnK−(xn) ⊃ (u (y −→x)

−−→
〈N〉))).

In particular, this rule application has the form

JΓK+ −→ F1 . . . JΓK+ −→ Fn
backchain

JΓK+ −→ (u(y−→x)
−−→
〈N〉)[

−→
t/x]

where Fi is either (JBiK−(xi))[t1/x1, . . . , ti/xi] or >. We
perform an inner induction on i ≤ n, showing that for all
j ≤ i, tj = 〈t′j〉 for some LF object t′j , and that we have
derivations of {{Γ}} −→ ({{Bj [t′1/x1, . . . , t

′
j−1/xj−1]}} t′j) and

Γ ` t′j : Bj [t
′
1/x1, . . . , t

′
j−1/xj−1].

• We first treat the case where Fi = >, i.e., there is
a derivation of −→x ;xi <t A

′. We assumed that Γ `
A : Type, and since Γ is valid we also have a deriva-

tion of Γ ` Π
−−→
x:B.A′ : Type. We can thus apply

Lemma 1, to obtain t′i and a derivation of Γ ` t′i :
Bi[t

′
1/x1, . . . , t

′
i−1/xi−1], and we conclude by Theo-

rem 1.

• When Fi 6= >, we can see that within the deriva-

tion of Γ ` Π
−−→
x:B.A′ : Type there is a derivation of

Γ, x1 : B1, . . . , xi−1 : Bi−1 ` Bi : Type. By substitut-
ing (Proposition 1) the derivations provided by the in-
ner inductive hypothesis on this formula we construct a
derivation of Γ ` Bi[t′1/x1, . . . , t

′
i−1/xi−1] : Type. We

can now apply the outer inductive hypothesis on Fi, to
conclude that {{Γ}} −→ ({{Bi[t′1/x1, . . . , t

′
i−1/xi−1]}} ti)

has a derivation. By Theorem 1, we finally obtain that
ti is of the form 〈t′i〉.

We compose all derivations

{{Γ}} −→ {{Bi[t′1/x1, . . . , t
′
i−1/xi−1]}} ti

by backchain on the encoding of (y : Π
−−→
x:B.A′) ∈ Γ, obtain-

ing the expected derivation of

{{Γ}} −→ hastype (y
−→
t) (u

−−→
〈N〉)[

−→
t/x]

Completeness is proved by an induction on the derivation
of the simple translation. This direction is rather straight-
forward as it consists only of dropping information. Details
can be found in Appendix A.

Therefore, by Theorems 1 and 2, intuitionistic provability
under the optimized translation is equivalent to provability
in LF, and the following is a theorem.

Theorem 3 (Optimized translation correctness).
Let Γ be an LF specification such that ` Γ ctx has a deriva-
tion, A an LF type such that Γ ` A : Type has a deriva-
tion. Then, for any LF object M such that Γ ` M : A has
a derivation, JΓK+ −→ JM : AK− is derivable. Moreover, if
JΓK+ −→ JAK−(M) for an arbitrary hohh term M , then it
must be that M = 〈M ′〉 for some canonical LF object such
that Γ ` M ′ : A has a derivation.

6. PERFORMANCE COMPARISONS
We have claimed two properties for our translation: that it

produces an hohh program which corresponds closely to the
original LF specification, and that this program provides an
effective means for executing the specification. Evidence for
the first claim is provided by the translation of the append
specification presented in Figure 7, especially when one uses
the easily applied simplification of a formula of the form
> ⊃ F to F . Notice also the correspondence of the defini-
tion of the append predicate to the one that one might in,
e.g., Prolog, if one drops the first “proof term” argument of
the predicate. To fully appreciate this benefit, it is necessary
to consider larger examples that space does not allow us to
do in this paper. However, such examples are available with
the implementation [21]. We suggest that the reader look
especially at the example of the evaluator for Mini-ML with
terms that are not indexed by their type that is described
below in the collection of benchmarks: the translation re-
sults in an hohh program that is what one might write in
hohh directly.

To test the second claim, we have carried out performance
comparisons between the Twelf implementation that inter-
prets LF specifications directly via a Standard ML program
and an implementation obtained by translating these speci-
fications into hohh programs and then executing these using
the Teyjus system. We present results here over programs
that have a few different characteristics:

• First, as we are interested in logic programming in LF,
the traditional logic program for naively reversing a list
a n times is included.

• The encoding of evaluators for various languages is a
common usage of LF. We have therefore used an en-
coding of Mini-ML along with an encoding of addition
as another sample program. This benchmark, referred
to as miniml, consists of adding n to 10 using the en-
coding.

• The miniml specification does not make essential use of
dependent types. The typed miniml benchmark, which
consists of an evaluator for Mini-ML in which terms
are indexed by their type, uses dependent types to en-
sure that terms are well-formed. The Mini-ML pro-
gram that was run is a typed version of the encoding
of addition.

• An implementation of a meta-interpreter for intuition-
istic non-commutative linear logic, INCLL, has been
proposed as a test program by [19]. This benchmark,
called perm, tests list permutation encoded in INCLL
and run using the meta-interpreter for lists of length
n.

• The last benchmark, referred to as num, involves rewrit-
ing arithmetic expressions into an equivalent normal
form. This example again makes essential use of de-
pendent types by associating with each equivalence
of two such terms a proof of their equivalence. The
benchmark tests rewriting expressions of size n.

The third through fifth columns of Figure 8 present data
comparing the simple translation, the translation with re-
dundant typing judgments removed, and the fully optimized
translation against the standard of Twelf with default opti-
mizations on these benchmarks.4 As described in Figure 6,
the fully optimized translation inserts the proof term as the
first argument of the predicate generated. Since this term
is to be determined by proof search, advantage cannot be
taken of the capability Teyjus possesses of indexing on the
first argument. The last column presents data for the case
where we make the proof term the last argument instead.
In the data presented, overflow indicates a heap overflow in
the Teyjus simulator, and ∞ means that the program ran
more than 1000 times longer than Twelf.

The most optimized translation leads to better perfor-
mance in most cases, often significantly so. On the other
hand, the simple translation yields a program that is gener-
ally slower than Twelf. In particular, performance tends to
deteriorate with larger problems sizes, in keeping with the
difficulty that we noted with this translation. However, the
simple translation is still comparable to Twelf on the first

4This setting with Twelf leads to the best performance on
these examples.

Example Twelf Simple Optimized Typed Optimized Indexing
reverse(10) 1.0 0.40 0.14 0.07 0.08
reverse(20) 1.0 0.57 0.19 0.12 0.11
reverse(30) 1.0 0.63 0.20 0.14 0.11
reverse(40) 1.0 0.41 0.13 0.10 0.07
reverse(50) 1.0 0.46 0.15 0.10 0.08
miniml(50) 1.0 0.74 0.25 0.18 0.08
miniml(100) 1.0 1.25 0.44 0.30 0.17
miniml(150) 1.0 1.75 0.56 0.41 0.25
miniml(200) 1.0 2.89 0.83 0.62 0.41
typed miniml(50) 1.0 2.27 1.07 0.57 0.48
typed miniml(100) 1.0 2.22 0.76 0.49 0.38
typed miniml(150) 1.0 3.49 1.44 0.67 0.55
typed miniml(200) 1.0 3.70 0.92 0.67 0.55
perm(10) 1.0 overflow 3.13 0.94 0.72
perm(20) 1.0 overflow 1.75 0.78 0.44
perm(30) 1.0 overflow 3.05 1.52 0.81
perm(40) 1.0 overflow 3.95 2.15 1.14
perm(50) 1.0 overflow 5.05 2.88 1.59
num(64) 1.0 158.19 0.25 0.23 0.21
num(128) 1.0 ∞ 0.10 0.10 0.07
num(256) 1.0 ∞ 0.15 0.14 0.13
num(512) 1.0 ∞ 0.003 0.003 0.003

Figure 8: Performance comparison results

three benchmarks. On the perm benchmark, Twelf does
quite well and even out-performs Teyjus with the optimized
translation on problems of large size. We have yet to pin-
point the reason for this—the program is large and difficult
to analyze in detail—but we suspect that the linear head op-
timization that delays expensive unification computation till
after simpler checks have been made may have something to
do with this. The fact that term indexing causes significant
improvement with Teyjus gives credence to this observation.

For problems of very large size with all the benchmarks,
the performance of Twelf deteriorates quite dramatically;
this is seen, for example, in the case of num(n) for a prob-
lem of size 512. This phenomenon is linked to the fact that
Twelf consumes excessive amounts of memory. The ulti-
mate source of this problem is perhaps the fact that Twelf
is implemented in SML: it has been argued that realizing
a logic programming language in a functional programming
setting can lead to poor memory reclamation and eventually
to shortage of space [3].

7. CONCLUSION AND FUTURE WORK
We have considered in this paper a translation of Twelf

specifications into logic programs in the hohh language. An
important part of our ideas is the recognition of certain situ-
ations in which type information is redundant in LF expres-
sions and hence its checking can be avoided. Our eventual
translation produces a program that corresponds closely to
the original specification and we have argued that it can be
the basis for an effective animation of Twelf descriptions.

The specific work undertaken here can be extended in a
few different ways. As an extension to our notion of rigid-
ity, we might observe that, when applying a variable of type

Π
−−→
x:B.A, we could identify redundant type information, not

only between a Bi and A, but also between a Bi and a dif-
ferent Bj . It would also be interesting to relate our work to
the ideas of Reed [20] who describes a notion of strictness

similar to rigidity, used for the different purpose of identify-
ing sub-terms of LF objects that could be reconstructed if
elided – in contrast, we avoid redundant type checking but
still generate a complete LF object. Such an understanding
might lead both to an improvement of our translation and
to the ability to shorten LF terms that are needed in ap-
plications such as that of proof-carrying-code [16]. From an
implementation perspective, another possible optimization
is to avoid constructing an LF object explicitly when the
task has been identified as that of only determining whether
a type has an inhabitant: experiments in this direction indi-
cate in some cases a ten-fold performance improvement over
the optimized translation.

We have focused here on realizing Twelf through a trans-
lation to λProlog. A different approach, worthy of inves-
tigation, is that of compiling Twelf specifications directly
to bytecode for the virtual machine underlying the Teyjus
system. Such an approach would make it possible to real-
ize optimizations that have been developed for the direct
implementation of Twelf [18, 19]. Of special note here are
optimizations like the linear heads treatment of unification
described by Pientka and Pfenning [19] for minimizing oc-
curs checking, that could make a difference in examples such
as the perm program considered in the previous section: di-
rect compilation would allow us to regain opportunities for
such improvements that might be lost by translating first to
λProlog and then relying on its implementation that is not
specially optimized to treat Twelf-specific programs.

A more ambitious line of development concerns meta-
reasoning over specifications. Existing tools might be used
to reason about LF programs via the translation, the trans-
parency of the translation becoming essential. Anecdotal ev-
idence suggests that this transparency is not only enabling,
it is also elucidating: that the generated hohh program is
easier to reason about because it highlights those types that
could have logical importance, and elides those that do not.

8. ACKNOWLEDGEMENTS
This work has been supported by the NSF grants CCR-

0429572 and CCF-0917140. Opinions, findings, and conclu-
sions or recommendations expressed in this papers are those
of the authors and do not necessarily reflect the views of the
National Science Foundation.

9. REFERENCES
[1] D. Baelde. A linear approach to the proof-theory of

least and greatest fixed points. PhD thesis, Ecole
Polytechnique, Dec. 2008.

[2] D. Baelde, D. Miller, and Z. Snow. Focused inductive
theorem proving. Accepted for publication at
IJCAR’10, 2010.

[3] P. Brisset and O. Ridoux. The architecture of an
implementation of lambda-prolog: Prolog/mali. In
ILPS Workshop: Implementation Techniques for Logic
Programming Languages, 1994.

[4] A. Church. A formulation of the simple theory of
types. J. of Symbolic Logic, 5:56–68, 1940.

[5] A. Felty. Specifying and Implementing Theorem
Provers in a Higher-Order Logic Programming
Language. PhD thesis, University of Pennsylvania,
Aug. 1989.

[6] A. Felty and D. Miller. Encoding a dependent-type
λ-calculus in a logic programming language. In
M. Stickel, editor, Proceedings of the 1990 Conference
on Automated Deduction, volume 449 of LNAI, pages
221–235. Springer, 1990.

[7] A. Gacek. The Abella interactive theorem prover
(system description). In A. Armando, P. Baumgartner,
and G. Dowek, editors, Fourth International Joint
Conference on Automated Reasoning, volume 5195 of
LNCS, pages 154–161. Springer, 2008.

[8] A. Gacek. A Framework for Specifying, Prototyping,
and Reasoning about Computational Systems. PhD
thesis, University of Minnesota, 2009.

[9] A. Gacek, S. Holte, G. Nadathur, X. Qi, and Z. Snow.
The Teyjus system – version 2, Mar. 2008. Available
from http://teyjus.cs.umn.edu/.

[10] A. Gacek, D. Miller, and G. Nadathur. Combining
generic judgments with recursive definitions. In
F. Pfenning, editor, 23th Symp. on Logic in Computer
Science, pages 33–44. IEEE Computer Society Press,
2008.

[11] R. Harper, F. Honsell, and G. Plotkin. A framework
for defining logics. Journal of the ACM,
40(1):143–184, 1993.

[12] W. A. Howard. The formulae-as-type notion of
construction. In J. P. Seldin and R. Hindley, editors,
To H. B. Curry: Essays in Combinatory Logic,
Lambda Calculus, and Formalism, pages 479–490.
Academic Press, New York, 1980.

[13] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov.
Uniform proofs as a foundation for logic programming.
Annals of Pure and Applied Logic, 51:125–157, 1991.

[14] D. Miller and A. Tiu. A proof theory for generic
judgments. ACM Trans. on Computational Logic,
6(4):749–783, Oct. 2005.

[15] G. Nadathur and D. Miller. An Overview of λProlog.
In Fifth International Logic Programming Conference,
pages 810–827, Seattle, Aug. 1988. MIT Press.

[16] G. C. Necula. Proof-carrying code. In Conference
Record of the 24th Symposium on Principles of
Programming Languages 97, pages 106–119, Paris,
France, 1997. ACM Press.

[17] F. Pfenning and C. Schürmann. System description:
Twelf — A meta-logical framework for deductive
systems. In H. Ganzinger, editor, 16th Conference on
Automated Deduction (CADE), number 1632 in LNAI,
pages 202–206, Trento, 1999. Springer.

[18] B. Pientka. Eliminating redundancy in higher-order
unification: A lightweight approach. In U. Furbach
and N. Shankar, editors, IJCAR, volume 4130 of
Lecture Notes in Computer Science, pages 362–376.
Springer, 2006.

[19] B. Pientka and F. Pfenning. Optimizing higher-order
pattern unification. In 19th International Conference
on Automated Deduction, pages 473–487.
Springer-Verlag, 2003.

[20] J. Reed. Redundancy elimination for LF. Electron.
Notes Theor. Comput. Sci., 199:89–106, 2008.

[21] Z. Snow. Parinati.
http://www.cs.umn.edu/~snow/parinati, 2010.

APPENDIX
A. PROOFS OF THEOREMS

A.1 Correctness of the simplified encoding
(Theorem 1)

A.1.1 Completeness
We use induction on the derivation of Γ ` M : A to build

one for {{Γ}} −→ {{M : A}}. We proceed by case analysis on
the canonical type A.

If A is of the form Πx:B.A′ then M must be of the form
λx:B.M ′ and the LF derivation must end with an abs-obj
rule, i.e., a rule of the form

Γ ` A′ : Type Γ, x : B ` M :′ A′
abs-obj

Γ ` (λx:B.M ′) : (Πx:B.A′)

The induction hypothesis gives us a derivation for

{{Γ, x : B}} −→ {{M ′ : A′}}.

By applying the rules ∀R and ⊃R to this, we get a derivation
for {{Γ}} −→ ∀x. {{x : B}} ⊃ {{M ′ : A′}}. The righthand side
of this sequent is the expected goal:

{{(λx:B.M ′) : (Πx:B.A′)}} =
∀x. {{x : B}} ⊃ ({{A′}} (〈λx:B.M ′〉 x)),

and 〈M ′〉 = (〈λx:B.M ′〉 x) by virtue of η-conversion.

If A is a base type then M must be of the form x N1 . . . Nn
and the canonical LF derivation must end with a chain of
app-obj rules following a var-obj rule that reveals that

x : Πy1:B1. . . .Πyn:Bn.A
′ ∈ Γ.

Moreover, A must be A′[N1/y1, . . . , Nn/yn] and, from look-
ing at the right upper premise of the app-obj rules, there
must be shorter derivations of

Γ ` Ni : Bi[N1/x1, . . . , Ni−1/xi−1]

for 1 ≤ i ≤ n. By the induction hypothesis we obtain deriva-
tions Di of {{Γ}} −→ {{Ni : Bi[N1/x1, . . . , Ni−1/xi−1]}}. Fur-
ther, {{Γ}} must contain

∀y1. ({{B1}} y1) ⊃ . . . ⊃
∀yn. ({{Bn}} yn) ⊃ hastype (x y1 . . . yn) 〈A′〉,

i.e., the encoding of x : Πy1:B1. . . .Πyn:Bn.A
′. By applying

backchain on that clause, choosing 〈Ni〉 for yi and using the
derivations Di, we obtain a derivation of

{{Γ}} −→ hastype (x 〈N1〉 . . . 〈Nn〉)
(〈A′〉[〈N1〉/y1, . . . 〈Nn〉/yn]).

The right side of this sequent is precisely

{{(x N1 . . . Nn) : A′[N1/y1, . . . , Nn/yn]}}.

A.1.2 Soundness
We prove the soundness direction by induction on the

derivation of {{Γ}} −→ ({{A}} M): assuming that Γ ` A :
Type has a derivation, we establish that M = 〈M ′〉 for some
canonical object M ′ and we build a derivation of Γ ` M ′ :
A. A case analysis on the structure of the canonical type A
will guide us.

If A is of the form Πx:B.A′ then the structure of {{A}} forces
the hohh derivation to conclude as follows:

{{Γ, x : B}} −→ ({{A′}} (M x))
∀R, ⊃R

{{Γ}} −→ ∀x. ({{B}} x) ⊃ ({{A′}} (M x))

Since A is a valid Type under Γ, B must also be, and A′

must be valid under (Γ, x : B). We can thus apply the
inductive hypothesis, and we obtain that M x = 〈M ′〉 and
that Γ, x : B ` M ′ : A′ is derivable for some canonical
object M ′. Since x does not occur free in M , we conclude
that

M = (λx.〈M ′〉) = 〈λx:B.M ′〉,

and we derive Γ ` (λx:B.M ′) : (Πx:B.A′) using the abs-obj
rule and our derivation of Γ ` B : Type.

Otherwise, A is a base type, and the derivation we are con-
sidering is that of {{Γ}} −→ hastype M 〈A〉. This derivation
must end in a backchain rule that uses some clause in {{Γ}}
of the form

∀y1. ({{B1}} y1) ⊃ . . . ⊃
∀yn. ({{Bn}} yn) ⊃ hastype (x y1 . . . yn) 〈A′〉;

note that the variables y1, . . . , yi−1 can appear in {{Bi}} here.
Thus, for some hohh terms N1, . . . , Nn,

〈A〉 = 〈A′〉[N1/y1, . . . , Nn/yn],

M = (x N1 . . . Nn), and, for each i such that 1 ≤ i ≤ n,
there is a shorter derivation of

{{Γ}} −→ ({{Bi}} yi)[N1/y1, . . . , Ni/yi],

i.e., of {{Γ}} −→ ({{Bi}}[N1/y1, . . . , Ni−1/yi−1] Ni). Further,
we know that x : Πy1:B1. . . .Πyn:Bn.A

′ ∈ Γ for some x. We
now claim that, for 1 ≤ i ≤ n, Ni = 〈N ′i〉 for some canonical
LF object N ′i and that Γ ` N ′i : Bi[N

′
1/y1 . . . N

′
i−1/yi−1]

has a derivation. If this claim is true, then, we can use
the var-obj rule to derive Γ ` x : Πy1:B1. . . .Πyn:Bn.A

′

and follow this by a sequence of app-obj rule applications
to prove Γ ` (x N ′1 . . . N ′n) : A′[N ′1/y1 . . . N

′
n/yn]. Now,

evidently M = 〈x N ′1 . . . N ′n〉 and, since substitution per-
mutes with encoding, A = A′[N ′1/y1, . . . , N

′
n/yn]. Thus, the

desired result would be proven.
It only remains, then, to establish the claim. We actually

strengthen it to include also the assertion that, for 1 ≤ i ≤ n,
Γ ` Bi[N

′
1/y1 . . . N

′
i−1/yi−1] : Type has a derivation. To

prove it, we use an inner induction on i. Since Γ is a well-
formed context, and x : Πy1:B1. . . .Πyn:Bn.A

′ ∈ Γ, there
must be a derivation of

Γ, x1 : B1, . . . , xi−1 : Bi−1 ` Bi : Type

for 1 ≤ i ≤ n. Using Proposition 1 and the induction hy-
pothesis we see that there must be a derivation of

Γ ` Bi[N ′1/y1 . . . N
′
i−1/yi−1] : Type.

Noting that

{{Bi}}[N1/y1, . . . , Ni−1/yi−1] = {{Bi[N1/y1, . . . , Ni−1/yi−1]}},

the outer induction hypothesis and the shorter derivation
of {{Γ}} −→ ({{Bi}}[N1/y1, . . . , Ni−1/yi−1] Ni) allows us to
conclude that Ni = 〈N ′i〉 for some canonical LF term N ′i and
that there is a derivation of

Γ ` N ′i : Bi[N
′
1/y1 . . . N

′
i−1/yi−1],

thus verifying the claim.

A.2 Completeness of the optimized encoding
(Theorem 2)

If {{Γ}} −→ {{A}}M has a derivation, then JΓK+ −→ JAK−M
has a derivation as well. Note that for this direction of the
proof we are simply dropping information (subderivations)
and so we do not rely on Γ being a valid specification or A
being a valid type. We proceed by induction on the struc-
ture of the derivation of {{Γ}} −→ {{A}}M , followed by case
analysis on A.

If A is of the form Πx:B.A′ our derivation ends as follows:

{{Γ, x : B}} −→ {{A′}} (M x)
∀R, ⊃R

{{Γ}} −→ {{Πx:B.A′}} M

By the inductive hypothesis JΓ, x : BK+ −→ JA′K− (M x)
has a derivation, and by applying ∀R and ⊃R to this deriva-
tion we can construct a derivation of

JΓK+ −→ JΠx:B.A′K− M

Otherwise, A is a base type and our derivation proceeds

by backchaining on some (y : Π
−−→
x:B.A′) ∈ Γ, with 〈A〉 =

〈A′〉[t1/x1 . . . tn/xn]:

{{Γ}} −→ F1 . . . {{Γ}} −→ Fn
backchain

{{Γ}} −→ {{A}} (y
−→
t)

Here, Fi = ({{Bi}} xi)[t1/x1 . . . tn/xn]. As in the complete-
ness proof of the simplified encoding, we obtain by an in-
ner induction that each ti is of the form 〈t′i〉 and thus that
Fi = {{Bi[t′1/x1 . . . t

′
n/xn]}}(ti). We shall build the deriva-

tion of JΓK+ −→ JAK−(y
−→
t) by using backchain on the opti-

mized encoding of (y : Π
−−→
x:B.A′) ∈ Γ, by choosing

−→
t for −→x .

The resulting premises are either

JΓK+ −→ JBi[t′1/x1 . . . t
′
n/xn]K− ti

when xi does not occur rigidly in A′, and this case is pro-
vided for by the inductive hypothesis, or > otherwise, which
we derive using >R.

