Director Strings Revisited

A generic approach to the efficient representation of

free variables in higher-order rewriting
Francois-Régis Sinot*

LIX, Ecole Polytechnique, 91128 Palaiseau, France
frs@lix.polytechnique.fr

Abstract

The representation of free variables is crucial for the efficiency of the implementation of vari-
ous kinds of rewrite systems. We give an innovative, although very natural, representation of
variables abstract enough to fit in many different frameworks and more satisfactory from an
operational perspective than usual representations. This work also provides a generalisation
of director strings for the A-calculus [17].

1 Introduction

Many fields in computer science make use of a notion of variable and substitution.
Such fields include (all sorts of) rewriting, the A-calculus, programming languages,
natural language processing, etc. Substitution is often the éminence grise, quoting
Abadi et al. [1], of these formalisms because the intuitive meaning of it (replace a
variable by “something”) often hides potential problems, like name capture in presence
of binders, and some intrinsic computational cost. To make the process of substitution
explicit is then a natural alternative in order to put the computational cost of the
substitution in the system itself [1]. But explicit substitutions are only half of the way
and some complexity may still be hidden in the rules. In particular the representation
of variables is of a crucial importance for the efficiency of the process of substitution
as we will show in Section 2, and this is the topic we address here. More precisely, we
propose a representation which is both efficient in the sense that it allows the usual
operations in constant time and very natural since it is the dual (in a sense that will
be made precise) of the usual representation. The first premises of this idea are due to
Kennaway and Sleep [13], where director strings were used for combinatory reduction.
This idea was then recently extended to closed reduction (cf. [10]) in [9] and to the
full A-calculus in [17, 11].

*Projet Logical, Péle Commun de Recherche en Informatique du plateau de Saclay, CNRS, Ecole
Polytechnique, INRIA, Université Paris-Sud.

Overview. The question we address will be introduced more precisely in Section 2,
then Section 3 will be devoted to presenting the notion of directors, which is the
representation of free variables we propose. The reduction then has to take these
directors into account, we will see how in the cases of term rewrite systems (TRSs,
Section 4) and combinatory reduction systems (CRSs, Section 5). Some more involved
examples will be developed in Sections 6 and 7 and we will conclude in Section 8.

2 Position of the Problem

Term rewriting systems, higher-order rewriting systems, the A-calculus and many
other frameworks allow to express some kind of computation in a rather abstract
way (as opposed to e.g. Turing machines). Abstraction is a pleasant feature of these
systems, however the real cost of the computation may then be very difficult to
estimate and may depend on the way the abstract system is implemented concretely.

There are some results about the intrinsic (i.e. implementation independent) com-
putational complexity of some systems. For instance, a classical theorem of Statman
states that the cost of a single §-step in any implementation of the A-calculus may be
non-clementary [18]. Hence S-reduction cannot be considered as an atomic step (as
opposed to e.g. a single transition in a Turing machine), and this motivates a search
for more atomic steps. In the case of the A-calculus, a very natural idea introduced by
Abadi et al. [1] is to put the implicit extensional notion of substitution in the system
itself, hence making some choices about its definition and being more concrete, more
explicit about the way things are done computationally. This has motivated a wide
variety of work in the so-called field of explicit substitutions (for instance [1, 16, 6]
without any pretension to be exhaustive).

More precisely, in the (traditional, implicit) A-calculus, substitution is defined with
definitional equalities such as [2]:

(t u){z — v} 2 (tH{a — v}) (ufz — v}).

This is really an extensional definition: it is not intended to tell the way to compute
the substitution, but only to define it. In particular, the expression t{z < v} is not
at all in the syntax of terms: the substitution and its evaluation are both outside
of the system. However, the misleading point is that this definition is constructive
in the sense that it also gives an (intentional) algorithm, by simply orienting these
equalities (from left to right) as rewrite rules on terms with explicit substitutions,
in the following way (where t[z « v] is part of the syntax of terms with explicit
substitutions):

(t Wz —v] = (te — v]) (ulz — v]).

This is the most natural (not to say naive) way to make substitution explicit in the
A-calculus. However, this approach may be unsatisfactory for the following reason:
assume x appears free only in ¢ and not in u, then we are probably making some
useless work:

e to copy v;

e to propagate the substitution in ulx — v];

e to finally erase v when we realise it is not needed.

We say “probably” because what will really be computationally costly is still
unclear in this (less, but still) abstract framework. For instance, with a call-by-name
strategy, no reduction will be performed inside v hence there is no need to actually
perform the duplication at this point, but only to duplicate a pointer to v (assuming
such an artifact is available in the concrete framework).

This motivates to express the previous rewrite rule as a bunch of conditional
rewrite rules (as in [10]) of the following flavour (where fv(¢) denotes the set of free
variables of ¢ in the usual sense of the A-calculus [2]):

(tu)fx —v] — (tfr —v]) u if z€fv(t) and x & fv(u).

This solution avoids the previous defects, but now some computational cost may
be hidden in the conditions on free variables. For instance, to compute the sets of
free variables from scratch each time has a cost linear in the size of the terms. This
is clearly too expensive for a single rewrite step. We hence have to be more clever
about the representation of free variables, and this is the subject of this paper.

3 From Variables to Directors

In this section, we introduce the notion of directors as a representation of free vari-
ables. We will deal with reduction in Section 4 (TRSs) and 5 (CRSs), so we are mainly
concerned with terms here. To make our point more concrete and easy to grasp, we
consider terms as found in term rewriting systems (TRSs), although the ideas apply
abstractly to any term algebra, and in particular to higher-order rewriting as will be
shown in Section 5 for combinatory reduction systems.

Terms. Given a signature (S,F) and a set of variables V, we consider the algebra
of terms T = T (F,V) defined by [8, 19]:

tu=a| f(t1,...,t,) where x € V and f € F of arity n

Free variables. The set of free variables of a term is usually defined in the following
inductive way, as a function 7 — P(V) (where P(X) stands for the powerset of any
set X):

fv(z) = {«}
F(f(tr, - tn)) = Fu(t) U ... Ufv(ty)

This is a definition, but this also gives a (naive) algorithm to compute the set of
free variables of a term in a bottom-up fashion: start from the leaves of the syntax
tree representing the term (the variables) and, at each node, take the union of the
sets of free variables in all the children (subterms) of the node.

However, this algorithm is linear in the size of the term which is the best we can
hope without prior information, but this is still costly. If the information about free
variables is of importance (as in the example of Section 2), it would certainly not be

a good idea to perform the computation over and over again after each rewrite step.
A Dbetter solution would be to keep the term together with its set of free variables,
as a pair (¢,fv(t)), and ensure that reduction preserves that information i.e. define
a reduction ~» on pairs of terms and sets of free variables such that if ¢ — u then
(£A(1)) ~ (u, ().

In general, if ¢ — u, the information on fv(t) is not enough to compute fv(u): we
thus need a richer representation. Knowing the rule ! — r used and fv(¢') for every
t' subterm of ¢, the information will be easy to maintain, because a rewrite step is
local in the sense that it does not alter deep enough subterms. The next candidate
to represent terms is thus pairs (¢, {fv(t'),t’ subterm of t}).

Now this is slightly too much: in fact only the information about immediate
subterms is necessary. If t = f(¢1,...,t,), we need fv(t;) for 1 <1i < n. If we define
v {1,...,n} = P(V) by v (i) = fv(t;), then (¢,v,) is a good representation because
Ui<icn ve(i) = fu(t) (vt is enough to recover fv(t)), and vi(i) = U, <<, vt (4) (for
the right m), so v is also inductive. Note that v; is a function (in the mathematical
sense), and we say that it a good representation because its domain is finite (and
usually small) hence it can be efficiently represented by an array. We will usually
assume that and omit the final step towards implementation.

The other way around. We now have a nice representation of the sets of free
variables of a term. That means that, at each step of the substitution, we will still
have to go through (some datatype representing) sets to test for membership. This
is not what we want. For every position ¢ in a symbol f of arity n, we have the
information about the corresponding sets of free variables (of the subterm ¢;), but
what we indeed want is exactly the opposite: for each free variable = in the term
f(t1,...,tn), we want to know the (maximal) set of positions ¢ such that x is also free
in t;, so that we may propagate a substitution for = in these subterms only.

Let us write £,, = P({1,...,n}), and £ = I,,enL,,, where II denotes the disjoint
union. L is called the set of immediate positions or locations. If S € L, we allow
ourselves to be explicit about the n such that S € £,, by subscripting it as S,,. We
abbreviate {1} to I. Then we have: {1,...,n} — P(V) ~ {1,....,n} xV — 2 ~
Vx{l,...,n} -2~V — P{l,...,n}) =V — L, (where 2 is the set with two
elements), i.e. vy in fact defines a relation between {1,...,n} and V and we may take
the dual relation. Then it is only a matter of convenience (again, think of it as an
array) to orient it as a function V — L,,, that we denote oy and call the director of
t (note that this corresponds to director strings in [17]). More formally, let’s define
the relation R by iRx < x € v;(i) and R~ by 2R & iRx. Then o; is the
function V — £, such that x R™1i < i € oy(x). Hence if x € V, o4(z) gives the set
of immediate positions of ¢ where the variable x occurs free, and in particular where
a substitution for x should be propagated.

Compilation. Given a (usual) term ¢, we call compilation the initial computation
of o i.e. oy (x) for every subterm t' of ¢ and every variable x (note that oy (x) # 0
only for finitely many x’s). The compilation is done once, then o is assumed to be
recomputed incrementally (i.e. not by compiling the term again) during the reduction
process; this topic is discussed in Sections 4 and 5. We denote the compilation function
by [-], so that [¢] = (¢,0). The intended low-level meaning is the following: at each

node of the syntax tree of the term ¢, we attach an array indexed on (a finite subset
of) V of lists of integers (positions). The compilation can be done by computing the
sets of free variables of each subterm and taking the dual relation corresponding to
v. Thinking of it as a matrix in {0,1} indexed on {1,...,n} and V, it is clear that
no extra cost is introduced: one simply has to read the columns first instead of the
rows. The whole process of compilation thus has a linear complexity, which is very
acceptable since this is supposed to be done only once.

Example 1 To illustrate the idea, assume f and g are functional symbols, and z, v,
z are variables. Let t = f(x,y,g(z, 2)), then its director o is given by (we omit o,
and o,):

Ty : v {13} y—{2} 2z~ {3}
Tg(a,2) x— {1} y—0 2z {2}
Oyt z—A{l} y—0 20

Readback. At the end of the reduction of an annotated term, we want to be able to
read back the result as a standard term. We write this function of readback (). In our
case, we preserve the structure of terms and the names of variables so the readback is
cheap and easy: simply forget o, hence ((¢,0)) = t. Operationally speaking, we just
ignore the extra information attached at each node.

Abstractly. For the sake of clarity, we considered some concrete term algebra along
this section. However, very little depends on that concrete structure. In fact, our
reasoning is general enough to fit with any framework equipped with an algebra of
term defined in an inductive way with a notion of position and a notion of variables
and of sets of free variables (defined in an inductive way on terms).

Alternative presentation. An alternative presentation, which is the one adopted
in [17], consists in putting the directors directly in the syntax of terms, in the following
way (pursuing with the same example):

ta=a| f(t1,...,t,)7 where 0: V — L,,.

This has the advantage of being explicit both about what part of (i.e. on which
terms) o has been computed and about where the information is located. For conve-
nience, we prefer to leave that aspect implicit in the sequel, although this is exactly
what we have in mind when we speak about (¢, o).

4 Maintaining Directors

In the previous section, we have obtained a representation of free variables suitable
for the kind of problems exposed in Section 2. This would be of very little interest
if this representation could not be maintained through reduction at a relatively low
cost. We demonstrate in this section that it is not the case.

For the sake of clarity, we pursue the example of term rewrite systems (TRSs) [8,
19], although the results of this section will be subsumed in the next section dealing
with combinatory reduction systems.

We consider already annotated terms (e.g. obtained from compilation, but not
necessarily) and explain how to modify the reduction relation to preserve the correct
directors.

Syntax. Terms are defined by:

tu=a| f(t1,...,t,) where x € V, f € F of arity n

Annotated terms are then pairs (¢,0) (sometimes simply written t) where o is a
partial function of type 7 — V — L (we write o; instead of o(t)) such that:

. ifxEV,Uz(y){l ify=u,

() otherwise;
o if f(t1,...,tn) €T, Vi, 1 <i<nVrxeV,o,(x)#0D=1€ 054, 1,)(T)

Remark 2 A more restrictive definition is given by replacing = above by <. This
alternative definition allows to recover exactly the set of free variables and gives a
unique representation of terms. But on the other hand, this is more difficult to
preserve by reduction. The definition chosen is some kind of abstract interpretation:
a variable may suddenly disappear when traversing down a term, but at least, we are
sure to reach them all. We discuss this point in more details below.

Lemma 3 Compilation as explained in the previous section gives (valid) annotated
terms (even in the strong sense).

Reduction. In a term rewrite system, a rewrite rule is a pair [— r of terms, a
rewrite system a set of rewrite rules, and we say that ¢ rewrites to w if there is a rule
I — r, a position p in the syntax tree of t and a substitution ¢ such that ¢|, = l¢ and
u = t[rg], i.e. such that the subterm of ¢ at position p is | (modulo a substitution)
and such that w is ¢t where the subterm at position p is replaced by r (modulo the
same substitution).

In other words, rewriting is just a local replacement of [by r in ¢, without altering
the context surrounding /. This is best seen graphically: on Figure 1, the only part
of the term that changes is the middle one: the context and the substitution are
the same. Note however that three types of things might happen in the box labelled
w— 0 —e€. The variables that are both free in [and in the support (see below) of ¢ may
appear in 7 at different places (rearrangement), several times (duplication), or not at
all (erasure). This observation will be of crucial importance, as will be explained
later.

In a setting with directors, we first need to adapt the notion of substitution.

Definition 4 (Substitution) An (annotated) substitution ¢ is a total application
from the set of variables to the set of (annotated) terms. We usually define a substi-
tution on some variables only, with the convention that it is extended identically to
V (i.e. ¢(x) = z by default). The support of < is the set of x such that ¢(z) # x.

Figure 1: Reduction in a TRS

Then we would like to define a rewrite rule as a pair 1 — r of annotated terms,
and say that t rewrites to u if there is a rule 1 — r, a position p in the syntax tree of
t and an annotated substitution ¢ such that t|, = I and u = t[r],.

We thus need to define the result of the substitution t¢ of t with the substitution
¢ in presence of directors. We obviously want the following specification:

te = [(t)<]

where the substitution is done on the usual unlabelled terms, then the term is compiled
again. This is clearly not satisfactory from an operational perspective, since we have
to compile the term again and compilation is a rather costly operation.

Definition 5 Substitution on terms with directors can be defined by (¢, 0)s = (ts,0”’)
such that:

!

0'93 = Ug(z)
U}(tl,..,tn)(x) = U Of(tr,entn) (Y)
yvag(y)(m)7ﬁ@

Proof This definition is valid since it fulfils the specification t¢ = [(t])<]:
0’$ = Og¢ = O’C(I)

Thttrrtn) (@) =0ty) (T) = Of(tag,t6) (T)

= U vewm®= U 0w

y,x€fv(ys) Y,06(y) (%) #0

Locality. At a given node, the recomputation of the attached director is thus fea-
sible, according to the expression above. Having another glance at Figure 1, it is
clear that we have to recompute the directors everywhere in the image of r in u, but
this is independent from the size of the term. But do we also have to perform that
recomputation everywhere else in the term ?

The free variables of a term depend only on the free variables of its subterms, and
so is it for o. Our first observation is thus that the subterms of r that are in the image
of ¢ (at the bottom of the figure) keep the same directors, hence no recomputation is
needed. The same argument also holds for any node in the upper part of the term
(the context) which is not on the path towards p.

Now imagine that only rearrangement or duplication occur in the box w —d — €
(no erasing). Then at position p, the set of free variables is the same in u than in ¢
(because the union is associative, commutative and idempotent). In other words, the
directors also remain unchanged even on the path towards p, except maybe at position
exactly p (because directors give information about the children of the corresponding
node).

In case of erasing, the nodes above p (i.e. on the path towards p) should of course
be updated if we want to keep the exact information about free variables up-to-date.
This cost is proportional to the depth of p, which seems acceptable.

However, we may also take a slightly different approach, following [17]: we may
restore the locality of rewriting by giving up the update along the path to p, at the
price of uselessly propagating some substitutions that will be erased later. This is
roughly not any more or less efficient, but it allows to count this cost at the top-
level, and not to hide it in the reduction. In other words, the cost of a single step of
reduction is independent of the size of the term, which is usually desirable; but some
extra reductions may be needed.

Conditional TRSs. There is a slight paradox in our presentation. The introduc-
tion of directors is motivated by the need to have rewrite rules under certain conditions
on the free variables of some subterms. Then the development is done for plain TRSs,
that do not allow to express that kind of rules. But the paradox is only superficial: it
is clear that adding such conditions does not lead to any problem, and that directors
allow to resolve these conditions in constant time.

5 Combinatory Reduction Systems with Directors

We generalise the work done in previous sections to higher-order rewriting, thus taking
into account the eventuality of binders. We adapt our formalism to that of combina-
tory reduction systems (CRSs) [15]. We define the notion of directors in full generality
in CRSs and also in the particular case of explicit substitutions combinatory reduc-
tion systems (ESCRSs) [3], which are a better framework to fulfil our motivation to
give a more realistic cost to the computation.

5.1 CRSs

We refer the reader to [14, 15] for a full presentation of CRSs. The important ideas
are the use of metavariables with arity and of a generic abstraction. We give a

short presentation of combinatory reduction systems in order to make the paper self-
contained. The presentation is mostly taken from Klop et al. [15].

Term formation. Given a set of variables V = {z,y, ...}, a set of functional sym-
bols F = {f", g™,...}, a set of metavariables (also with arity) MV = {Z™, Y™ ...},
then the set of metaterms MT is defined by the following BNF-style grammar rule:

tuo=a|[x]t| [Pt tn) | 27 (1, tn).

The superscript n on functional symbols and metavariables is called the arity of
that symbol and is often omitted when it is clear from the context. We say that
the construct [z]¢ abstracts x in t, and the notions of free and bound variables are
defined as usual according to this notion of abstraction (an occurrence of a variable
x is bound if it is in the scope of an abstractor [x] and free otherwise). A metaterm
without any free variable is said to be closed (and open otherwise). Metaterms are
considered equal modulo renaming of bound variables (a-conversion) and we will work
under Barendregt’s convention [2]. A term is a metaterm without any occurrence of
a metavariable.

Rewrite rules. A rewrite rule is a pair [— r of closed metaterms where [is a
constructed term (i.e. begins by a functional symbol) and such that the metavariables
that occur in r also occur in [and the metavariables in [only occur in the form
Z(x1,...,2,) where the x; are pairwise distinct variables.

Reduction relation. Some care has to be taken to avoid name capture in the
substitution, like in the A-calculus and in contrast with TRSs. As usual, we say that
t rewrites to u using rule [— r, if there is a position p in the syntax tree of ¢ and
a substitution ¢ such that t[, = I¢ and u = t[rc],. Following Klop [15], we define
substitutions as mappings assigning to an n-ary metavariable an n-ary substitute:

g(Zn) = A(xla s axn)'t'

Substitutions are homomorphically extended to metaterms as follows (also recall that
n-ary metavariables are not metaterms unless n = 0, they need arguments):

==z
([z]t)e = [](t<)
Flt1, oy tn)s = f(t16, ..., tns)

Z(t, . tn)s = (Z) (416, - . -, tns)

Substitutes immediately generate a simultaneous substitution in the following way:
if ¢(Z) = May,...,2n).t, then ¢(Z)(t1,...,tn) = t{z1 «— t1,..., 2, — t,} (with the
usual implicit notion of substitution modulo a-conversion).

With substitutes, we are close to the familiar ground of A-calculus, hence to
avoid variable clashes, we may just say that we rename enough both substitutes and
metaterms appearing in the rewrite rule in the usual way. See [15] for more details.

5.2 CRSs with Directors

Overview. To lift the work done on TRSs to CRSs, we have to take care of two
new features:

e the abstraction [z]t;
e the distinction between variables and metavariables.

The first one is easily dealt with: we simply have to modify the conditions required
on directors such that in an annotated term of,);(x) = () while o;(2) may be different
from @ (recall that we work under Barendregt’s convention).

The second point is more subtle. First notice that only directors on variables are
needed to represent terms. Terms with metavariables only make sense in rewrite rules,
so the best choice is to annotate metavariables in a way that makes the substitution
uniform when a rule is applied to a term. Metaterms of the form Z(¢4,...,t,) are
thus considered unary and for instance Z(z,y) is annotated by {Z —1,z — 1,y —1}.
Notice that directors for metaterms mix information about ground variables and
metavariables; however, after instantiation, there will be only information about
ground variables.

Terms. An annotated metaterm is a pair (t,0) where t is a metaterm and o :
MT — (VIIMV) — L is called a director. Again, we write o;(x) instead of o(t)(x).
We say that o; has rank n if for every variable or metavariable «, o(a) € £,,. The
director o has to satisfy the following requirements (« represents any variable or
metavariable):

e Variables:

— oy is of rank 1
— o.(x) =1
— oz(a)=0for a #zx

e Abstractions:
— O[q)¢ is of rank 1

— Opage(z) =0
— oy(a) #0 = op(a) =1 for a #

e Functional symbols:

— Of(ty,..,t,,) is of rank n
_ VZ, 1 < 1 < n, (Uti (Oé) 7& @ =1 € 0f(t1,..4,tn)(a))

e Metavariables:

— OZ(t,....t,) 18 of rank 1 (notice that it is not of rank n)

= 0Z(ty,..tn)(Z) =1
— (F,1<i<n,o(a) #0) = 0z,,...1.) () =1

10

- (Vi,1<i<n,on(0) =0) = 0z0,,..1,) () =0 for a # Z.

The very last condition ensures that e.g. 0z(;)(y) = 0 whereas we could have
0¢()(y) =1 and y being erased somewhere below (arriving at z in that case).
Compilation and readback are similar to Section 3 and omitted.

Reduction relation. Rewrite rules are of the form (I,0) — (r,0"). The reduction
relation is defined as in the previous section with the difference that substitution is
extended to annotated terms by (t,0)s = (fs,0’) where:

l ifa=ux,
0 otherwise.

Lif 38,04(8) # 0 A ogey(a) # 0,

(® otherwise.

/ /
0, = Oyc = 04, hence o, (a) = {

Olaje = O([]t)s = Olal(ts), hence of,p (@) = {

Note that we disallow variable capture by implicit safeness conditions, hence o (q)(z) =
() for every a. Also note that the existential quantifier is a lot more operational than
it seems, since the search is bounded both by the size of the domain of o, (i.e. the
number of free variables of ¢) and the size of the support of .

Of(tiyeestn) = OF(t1sestn)s = Tf(E16,0tn<)s

hence o, 4 y(a) = U Ti(trtn)(B)-
0‘«5)(0&)#@

Again, the union is of a very finite kind so that computation is indeed easy.
For metavariables, there are three cases depending on the substitution . If ¢(Z) = Z,
then:
U/Z(tl,...,tn) = 0Z(t1,.0rtn)s — OZ(t16,...,tn<)
hence o7, () = {i if o = Z or if 3, 5,01, (8) # 0 A ogpy(e) # 0,

® otherwise.

If ¢(Z) is a (meta)-projection, i.e. if ¢(Z) = A(z1 ... xy,).x; for some j, then Z(¢1,...,t,) =
t; and:

] if a = x;, for some &,

U/Z(f,l,...,tn)(a) = {

oy, () otherwise.

Finally, in the general case, <(Z) = A(z1 .. .x,).t (provided the two previous cases do
not apply), so that Z(t1,...,t,) = t{z1—t1,...,Tn—1tn}.

) if @ = xj, for some k,
; therwise.
J/Z(tl,...,tn)(a) _Jo(a) U U oi(x;) otherwise
1<j<n,
Ot () #0

11

It is clear that only local knowledge of the term and substitution is needed to
compute ¢’, and the number of elementary computations required is bounded inde-
pendently of the size of the term (for the computation of a single director).

Properties. We have defined the result of substitution on directors, hence we have
also defined reduction on terms with directors. By construction, the new directors
correspond to the old ones, hence the information about free variables is maintained
by reduction. This can be formalised in the following way.

Proposition 6 Substitution as defined above is correct with respect to the sub-
stitution on (meta)terms without directors (i.e. t¢ = [(t)s] with the notations of
Section 3).

Proof It is easy to check that the intermediate steps in the derivations above are
correct.

Definition 7 o is said to be strongly correct for ¢ if x € fv(¥') & oy (x) # () for every
subterm ¢’ of .

Lemma 8 e If o is strongly correct for ¢, then o’ (as given above) is strongly
correct for tg.

e If o is strongly correct for ¢ and ¢ — w, then ¢’ is strongly correct for u, where o’
is defined as above with the substitution ¢ corresponding to the rewrite t — u.

Proof Easy consequences of Proposition 6.

Theorem 9 (Correctness) If t — u on annotated terms, then (t) — (u) on stan-
dard terms.

R

Proof First recall that () only erases information, so this is immediate if the rewrite
rules do not have conditions about free variables. If they do, then it follows from
Lemma 8.

Theorem 10 (Completeness) If ¢ — u on standard terms, then there exists an
annotated term u such that [t] — u on annotated terms and (u) = w.

t--->u

Proof Again a consequence of Lemma 8.

12

Figure 2: A typical B-reduction

Locality. Contrary to the case of TRSs, we cannot guarantee in this case that only
few directors need to be updated. This is due to the mechanism of substitution
implicit in CRSs, and this property is thus recovered in the subset of CRSs with
explicit substitutions (ESCRSs, see below).

We may see the situation more precisely on a typical example. The A-calculus
is an instance of a CRS (see [15]), with symbols A (of arity 1) and @ (of arity 2),
and only rewrite rule (3) given by Q(A\([z]Z(z)),Y) — Z(Y). A typical reduction
is shown on Figure 2. All directors on the path from the root of the term to w (in
the term to the right of the figure) should be modified to take into account the free
variables of w. This induces a cost linear in the height of the context plus the height
of ¢, and is not restricted to the case of erasing (as opposed to the situation with
TRSs).

It is thus not realistic to use directors with general CRSs, but this is neither a
surprise nor a disappointment: directors are intended to give information to direct
substitutions, so they are only meaningful in a context where the substitutions are
explicit. However, although without any practical use, it is nice from a theoretical
point of view to be able to define directors in the very general context of CRSs.

Conditional CRSs. Again, we may add explicit conditions in the rewrite rules
about the free variables of subterms, without any trouble and so that directors allow
to resolve these conditions in constant time. Note that some conditions are already
implicit in CRSs (e.g. in [z]Z, we know that z is not free in any term substituted for
Z; but in [z]Z(x), we cannot be sure that « € fv(t) if Z is substituted by ¢). Maybe
this is to be taken as a hint that a better framework should be designed to integrate
in a more homogeneous way rewriting and directors.

13

5.3 ESCRSs with Directors

ESCRSs. A reduction step in a CRS is not a good unit of computational complexity,
because of the implicit notion of substitution which is allowed arbitrarily deep in a
term. Moreover, we do not have good properties of locality, which makes it unrealistic
to maintain directors during reduction. We thus need a better framework for our
purpose, namely CRSs with explicit substitutions. The pleasant feature of CRSs
in this respect is that, following Bloo and Rose [3], so-called CRSs with explicit
substitutions (or ESCRSs) are a subclass of CRSs. More precisely, a CRS is an
ESCRS if all metavariable applications in the right hand side of every rewrite rule
occur in the form Z(z1,...,z,) such that Z(z1,...,2,) also occurs in the left hand
side of that same rule. ESCRSs thus avoid using the strong tool of substitution of
CRSs and only local knowledge of the term is needed at each step. Moreover, there
is a systematic way to ezplicify (borrowing the formulation of [3]) a CRS, that is to
give an ESCRS with satisfactory properties of simulation, preservation of confluence
and preservation of strong normalisation (with some restrictions) (see [3] for details).

Explicitation of the reduction relation. ESCRSs do not use all the power of
CRSs, thus we may simplify the definition of the reduction relation for this subclass.
In fact, we do not use the A-calculus-like substitution, hence we do not need substitutes
at all. We say that substitutions associate a term to a metavariable application of the
form Z(x1,...,z,) and we no longer have to deal with cases of the form Z(t1,...,t,):

c(Z(x1,...,xy)) =t

and ¢ is homomorphically extended to metaterms (with the previous restriction) in
the usual way.

Of course, care should still be taken to avoid name clashes, but only with respect
to abstractions and no longer to substitutes (the closedness condition ensures that
the variables appearing in a metavariable application are bound by an abstraction).

Reduction in ESCRSs with directors. The substitution is now simpler because
metaterms of the form Z(t1,...,t,) do not exist any more. There is only one case
here. Assume ¢(Z(x1,...,2,)) = t, then, very simply:

/ _ _
O'Z(acl,...,acn) = 0Z(z1,....xn)s — Ot-

Locality. Since the mechanism of substitution of CRSs is forbidden in ESCRSs, we
are in a case very similar to that of TRSs concerning locality: directors need to be
recomputed only in the image of the right hand side of the rule and, in case of erasing,
on the path from the root of the term to the position of the rewrite. Again, this last
part may be omitted at the price of performing some extra (explicit) substitutions
later.

6 Lambda-Calculus with Explicit Substitutions

Generalities. We may now present in this formalism director strings for the A-
calculus (with explicit substitutions) as described in [17]. Motivation for this is of

14

course to improve the efficiency of evaluators or compilers of functional languages,
which are based on the A-calculus. The work done in [17] also includes the presentation
of a particular strategy of reduction that takes advantage of directors and proves very
efficient on experimental results.

First, since in pure A-calculus functional symbols are only unary or binary, we use
the following abbreviations, which give a better intuition of directors:

e unary symbols (variable and abstraction): — = 0, 1={1}; € £,

e binary symbols (application and substitution):

— =0a, = {1}2,~= {2}, A= {1,2}2 € Lo

For instance, the intuition behind a director v is: the corresponding variable
occurs only in the left subterm of a binary construct; or equivalently: a substitution
for this variable should be propagated only to the left.

In this context, following the notations of [17], elements of £ are called directors
and ordered lists of elements of L are called director strings and are used instead
of functions from V to £. This can be thought of as using a variant of de Bruijn
indices [7] instead of names thus avoiding problems of capture due to A-binders. This
is only a variant because in [17] a new variable introduced by a A-binder appears
last (and not first) in the strings; this is reminiscent of Crégut’s reversed de Bruijn
indexing [5].

Notice that the use of lists also makes a difference for the erasing process, because
when a variable is erased, it does not have any corresponding director in the strings
of the subterms. This can be understood in the following way: we extend directors
to £U L and impose the following condition on all terms: o, 4y (x) € {0, L} =
Vi.oy, () = L. Then, when writing directors as lists, we simply erase every occurrence
of L.

This present work may be seen as a way to quotient director strings of [17] by
the order of the elements of the lists. The rewrite rules given in [17] are then just a
particular case of ESCRS with directors as in Section 5.

Remark 11 Note that from an implementation point of view, the use of names and
functions here corresponds to an implementation in terms of arrays, instead of lists.

The system. As a typical example, we will develop a bit more the example of the
A-calculus. We first make explicit the underlying conditional ESCRS. The functional
symbols (with their arity) are: A! (abstraction), @* (application) and %? (explicit
substitution). The rewrite rules are as follows.

15

(b) a([#Z(@),Y) — S(alZ(),Y)
(v) N([2]zY) — ¥V
(@) S(@QZ). 2).Y) — QE(alZi().Y).Z)
if x € fv(Z1(z))
(a2) X([2](Q(Z1, 22(2))),Y) — Q(Z1,5([2]Z2(x),Y))
if x € fv(Za(z))
(05) S(a)(@(Zi(2), Z2(a))).Y) — Q(S(]Ze), ¥), B[] Zo(r), ¥))
it x € fv(Z1(z)) Nfv(Za(x))
(@) (M) 2(2,9)),Y) — M=) Z(z,y),Y))

if x € fv(Z(x,y))
(@ (=2 Z2(y), Y (2), X) — Z([y]Z(y), ([z]Y (), X))
it x € fv(Y (2))
(e) S(#]2,Y) — Z
As an illustration, we may give the reduction relation induced by the rule (a;) in

a fully explicit way, as in [17]. From now one, we allow the usual readable notation
for this ESCRS. The rule (a;) now looks like:

(a1) (Zi(z) Z2)[x)Y] — Zi(x)[z/Y] Zo if v € fv(Z,(x))
And with directors:

(all) (((Zl(x)){zl,zw} Zézzii}){Zl,m:n;Zym}[I/Y{Y:i}]){Zl,Zgzn;Y:m}
N (((Zl(:L,)){Zl,zzl}[x/y{Y:i}]){len;Y:m} Z2{Z2:l}){21,YZf\;Z2:f-\/}

Note that the condition = € fv(Zi(x)) is enforced by the directors for x (two
occurrences).

Now consider an annotated term t = (¢,0) where t = (u v)[z/w] and u, v, w
are terms (not metaterms). Assume that o, (x) # 0 and o,(z) = 0. The term t
then rewrites using (a}) (in the annotated terms) with the substitution ¢ = {Z; —
Ax.u, Zos — 0, Y — w} to (',0') with ¢/ = (u]z/w]) v and o’ is as follows (where r is
the right hand side of (a}) and « # x):

U£'<a): U o.(8) = U or(Z1) U U o (Za) U U ar(Y)

oc(p) (@) #0 ou(a)#0 oy (a)#0 ow(a)#0
= U AU U %

ou(@)#0V oy, ()0 oy (a)#0
— ifadfv(u) Aagfviw) Aa e fv(v),
A i (a e fv(u) Va € fv(w)) A a & fu(v),
~ i (a g fv(u) Aa & fv(w)) Aa € fv(v),
A if (o e fv(u) Va e fviw)) Aa e fv(v).

This is exactly the reduction of [17]. The very good news is that we are now allowed

to be implicit about this reduction relation since we can generate it “automatically”,
which was not the case in [17].

16

7 Calculus of Inductive Constructions

The previous section gives the basis for an efficient implementation of functional
languages. We now illustrate how the same approach could be used for the imple-
mentation of functional proof assistants like Coq [20]. Coq is a proof assistant based
on the calculus of inductive constructions [4], which is a rich type theory. However,
from an implementation point of view, we only have to deal with type-erased terms
(as in [12], in a different context), which are nothing more than A-terms with a case
construct:

tu=x|dxt|tity|C(t) | case t of (Ci(a}) — ai)ier

Every constructor C(+) is considered an n-ary symbol of the right arity. Every
branch in the case construct should have the same variables, so the case is actually
considered as a binary symbol. A case branch construct of the form (C;(z;) —)
acts as a binder i.e. fv(C;(2;) — a;) = fv(a;) \ ;. Reduction is defined in the intuitive
way. Unfortunately, this system is not exactly an instance of a CRS. However, it fits
very well in the abstract framework of Section 3 and there is no technical difficulty to
apply directly the previously exposed techniques. This may again be a hint that this
work should also be valid in a more general framework. However, we would have to
do all the work again from the beginning to be formal about this case. This is clearly
out of the scope of this paper, especially since there is no technical difficulty.

Moreover, we exposed in [17] an efficient way to reduce annotated terms to normal
form and to compare them for S-equality using a variant of the closed reduction strat-
egy. The two preliminary steps necessary to use our work in an actual implementation
of a theorem proving tool are thus almost completed.

8 Conclusion

The director strings of [17] proved very useful to express in a more concrete way, closer
to implementation, efficient strategies of the A-calculus such as those of [10], but were
somewhat ad hoc for that particular case. We have provided here a generalisation
of this work that extends the interest of these techniques to higher-order rewriting,
with potential applications in the implementation of functional languages and proof
assistants. While doing so, we also hope to have brought a better understanding
to the concepts of directors and free variables, in particular it is now clear why the
information can be maintained locally in a framework with explicit substitutions.
Explicit substitutions are the right framework for director strings, and director strings
are the right implementation technique for explicit substitutions systems (of course
depending on the motivations).

Acknowledgements

The author is grateful to Maribel Ferndndez, Paul-André Mellieés and the anonymous
referees for their comments.

17

References

[1]

[2]

M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Jour-
nal of Functional Programming, 1(4):375-416, October 1991.

H. P. Barendregt. The Lambda Calculus: Its Syntar and Semantics. North-
Holland, revised edition, 1984.

R. Bloo and K. H. Rose. Combinatory reduction systems with explicit substitu-
tion that preserve strong normalisation. In Proceedings of Rewriting Techniques
and Applications (RTA’96), volume 1103 of Lecture Notes in Computer Science,
pages 169-183, 1996.

Th. Coquand and C. Paulin-Mohring. Inductively defined types. In P. Martin-
Lof and G. Mints, editors, Proceedings of Colog’88, volume 417 of Lecture Notes
in Computer Science. Springer-Verlag, 1990.

P. Crégut. An abstract machine for lambda-terms normalization. In Lisp and
Functional Programming 1990, pages 333—-340. ACM Press, 1990.

R. David and B. Guillaume. A A-calculus with explicit weakening and explicit
substitution. Mathematical Structures in Computer Science, 11(1):169-206, 2001.

N. G. de Bruijn. Lambda calculus notation with nameless dummies. Indagationes
Mathematicae, 34:381-392, 1972.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook of theoretical
computer science (vol. B): formal models and semantics, pages 243-320. MIT
Press, 1990.

M. Fernandez and 1. Mackie. Director strings and explicit substitutions. WEST-
APP’01, Utrecht, 2001.

M. Fernandez, I. Mackie, and F-R. Sinot. Closed reduction: Explicit substitutions
without alpha-conversion. Mathematical Structures in Computer Science, 2005.
to appear.

M. Fernandez, I. Mackie, and F-R. Sinot. Lambda-calculus with director strings.
Applicable Algebra in Engineering, Communication and Computing, 2005. to
appear.

B. Grégoire and X. Leroy. A compiled implementation of strong reduction. In
Proceedings of ICFP’02, Pittsburgh, Pennsylvania, USA, 2002.

J.R. Kennaway and M.R. Sleep. Director strings as combinators. ACM Trans-
actions on Programming Languages and Systems, 10(4):602—626, 1988.

J. W. Klop. Combinatory reduction systems. Mathematical Centre Tracts 127,
Centre for Mathematics and Computer Science, Amsterdam, 1980. PhD thesis.

J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction
systems: introduction and survey. Theoretical Computer Science, 121(1-2):279—
308, December 1993.

18

[16] P. Lescanne and J. Rouyer-Degli. The calculus of explicit substitutions lambda-
upsilon. Technical Report RR-2222, INRIA, 1995.

[17] F.-R. Sinot, M. Ferndndez, and I. Mackie. Efficient reductions with director
strings. In R. Nieuwenhuis, editor, Proceedings of Rewriting Techniques and
Applications (RTA’03), volume 2706 of Lecture Notes in Computer Science, pages
46-60. Springer-Verlag, 2003.

[18] R. Statman. The typed A-calculus is not elementary recursive. Theoretical Com-
puter Science, 9:73-81, 1979.

[19] Terese. Term Reuwriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

[20] The Coq Development Team. The Coq Proof Assistant Reference Manual —
Version V8.0, 2004. http://coq.inria.fr.

19

