
COMPLEXITY BOUNDS

FOR ORDINAL-BASED TERMINATION

SYLVAIN SCHMITZ

Abstract. ‘What more than its truth do we know if we have a proof
of a theorem in a given formal system?’ We examine Kreisel’s question
in the particular context of program termination proofs, with an eye to
deriving complexity bounds on program running times.

Our main tool for this are length function theorems, which provide
complexity bounds on the use of well quasi orders. We illustrate how
to prove such theorems in the simple yet until now untreated case of
ordinals. We show how to apply this new theorem to derive complexity
bounds on programs when they are proven to terminate thanks to a
ranking function into some ordinal.

1998 ACM Subject Classification. F.2.0 Analysis of Algorithms
and Problem Complexity; F.3.1 Logics and Meanings of Programs

Keywords. Fast-growing complexity, length function theorem, Ramsey-
based termination, ranking function, well quasi order

1. Introduction

Whenever we prove the termination of a program, we might also expect
to gain some information on its complexity. The jump from termination to
complexity analysis is however often involved. The question has already been
studied for many termination techniques, e.g. termination orderings [23, 39,
40, 10, 26], polynomial interpretations [8], dependency pairs [22], size-change
abstractions [5, 14], abstract interpretation [21], or ranking functions [2] to
cite a few.

The purpose of this paper is to present the complexity bounds one can
similarly derive from termination proofs relying on well quasi orders (wqo).
There are already some accessible introductions to the subject [34, 35], with
applications to algorithms for so-called ‘well-structured systems.’ Our em-
phasis here is however on the particular case of well orders, i.e. of ranking
functions into ordinal numbers. Although this is arguably the oldest and
best-understood termination proof technique, which can be tracked back for
instance to works by Turing [37] or Floyd [20], deriving complexity bounds
for well orders has only been considered in restricted cases in the wqo lit-
erature [1]. As we shall see, by revisiting ideas by Buchholz, Cichoń, and
Weiermann [11, 9] and the framework of [33], the case of well orders turns
out to be fairly simple, and provides an introduction to the definitions and
techniques employed for more complex wqos.

Invited talk at the 8th International Workshop on Reachability Problems (RP 2014,
22–24 September 2014, Oxford). Work funded in part by the ANR grant 11-BS02-001-01
ReacHard.

1

ar
X

iv
:1

40
7.

58
96

v1
 [

cs
.L

O
]

 2
2

Ju
l 2

01
4

2 S. SCHMITZ

Contents. After setting the stage in Section 2 by recalling the definitions
of well quasi orders, ranking functions, and order types, we work out the
details of the proof of a length function theorem for ordinals below ε0 in
Section 3. Such combinatorial statements provide bounds on the length of
so-called bad sequences of elements taken from a wqo—i.e. of descending
sequences in the case of a well-order—, and thus on the running time of
programs proved to terminate using the same wqos.

More precisely, we first recall in Section 3.1 the main notions employed
in the proofs of such theorems in [33, 34], and apply them to the ordinal
case in Section 3.3. This yields a new length function theorem, this time for
ordinals (Theorem 3.3). As far as we know, this is an original contribution,
which relies on ideas developed by Cichoń and others in the 1990’s [11, 9]
on the use of ordinal norms for substructural hierarchies (recalled in Sec-
tion 3.2). Unlike the length function theorems for other wqos found in the
literature [29, 13, 39, 12, 19, 33, 34, 1], Theorem 3.3 does not just provide
an upper bound on the maximal length of bad sequences, but offers instead
an exact explicit formulation for such lengths using Cichoń’s hierarchy of
functions.

Those bounds are often more precise than actually needed, and we show
in Section 4 how to classify them into suitable fast-growing complexity
classes [32]. We also zoom in on the bounds for lexicographic ranking func-
tions in Section 5, and relate them to the bounds obtained in [19] for the
Ramsey-based termination technique of Podelski and Rybalchenko [31].

2. Well Quasi Orders and Termination

In terms of operational semantics, a termination proof establishes that the
relation between successive program configurations is well founded. Rather
than proving well foundedness from first principles, it is much easier to
rely on existing well founded relations, whether we are attempting to prove
termination with pen and paper or using an automatic tool. Well quasi
orders and well orders are in this regard very well studied and well behaved
classes of well founded relations.

2.1. Well Quasi Orders. A quasi order (qo) 〈A,≤〉 consists of a support
set A along with a transitive reflexive relation ≤ ⊆ A× A. We call a finite
or infinite sequence x0, x1, x2, . . . over A good if there exist two indices i < j
such that xi ≤ xj , and bad otherwise.

Definition 2.1. A well quasi order (wqo) is a qo 〈A,≤〉 such that any
infinite sequence x0, x1, x2, . . . of elements over A is good. Equivalently, any
bad sequence over A is finite.

There are many equivalent definitions for wqos [see e.g. 34, Chapter 1].
Notably, 〈A,≤〉 is a wqo if and only if

(1) ≤ is well-founded, i.e. there does not exist any infinite decreasing

sequence x0 > x1 > x2 > · · · of elements in A, where <
def
= ≤ \ ≥,

and
(2) there are no infinite antichains over A, i.e. infinite sets of mutually

incomparable elements for ≤.

COMPLEXITY BOUNDS FOR ORDINAL-BASED TERMINATION 3

2.1.1. Well (Partial) Orders. A wqo where ≤ is antisymmetric is called a
well partial order (wpo). Note that quotienting a wqo by the equivalence

≡ def
= ≤∩≥, i.e. equating elements x and y whenever x ≤ y and y ≤ x, yields

a wpo.
A wpo 〈A,≤〉 where ≤ is linear (aka total), is a well order (wo). Because

a wo has antichains of cardinal at most 1, this coincides with the usual
definition as a well-founded linear order. Finally, any linearisation of a wpo
〈A,≤〉, i.e. any linear order � ⊇ ≤ defines a wo 〈A,�〉. One can think of
the linearisation process as one of ‘orienting’ pairs of incomparable elements;
such a linearisation always exists thanks to the order-extension principle.

2.1.2. Examples. For a basic example, consider any finite set Q along with
the equality relation, which is a wqo 〈Q,=〉 (even a wpo) by the pigeonhole
principle. As explained above, any wo is a wqo, which provides us with
another basic example: the set of natural numbers along with its natural
ordering 〈N,≤〉.

Many more examples can be constructed using algebraic operations: for
instance, if 〈A,≤A〉 and 〈B,≤B〉 are wqos (resp. wpos), then so is their
Cartesian product 〈A×B,≤×〉, where (x, y) ≤× (x′, y′) if and only if x ≤A x′
and y ≤B y′ is the product ordering ; in the case of 〈Nd,≤×〉 this result is also
known as Dickson’s Lemma. Some further popular examples of operations
that preserve wqos include the set of finite sequences over A with subword
embedding 〈A∗,≤∗〉 (a result better known as Higman’s Lemma), finite trees
labelled by A with the homeomorphic embedding 〈T (A),≤T 〉 (aka Kruskal’s
Tree Theorem), and finite graphs labelled by A with the minor ordering
〈G(A),≤minor〉 (aka Robertson and Seymour’s Graph Minor Theorem).

Turning to well orders, an operation that preserves wos is the lexicographic
product 〈A×B,≤lex〉 where (x, y) ≤lex (x′, y′) if and only if x <A x

′, or x = x′

and y ≤B y′. This is typically employed in d-tuples of natural numbers
ordered lexicographically 〈Nd,≤lex〉: observe that this is a linearisation of
〈Nd,≤×〉. Another classical well order employed in termination proofs is
the multiset order 〈M(A),≤mset〉 of Dershowitz and Manna [17]. There,
M(A) denotes the set of finite multisets over the wo 〈A,≤〉, i.e. of functions
m:A → N with finitely many x in A such that m(x) > 0, and m ≤mset m

′

if and only if for all x in A, if m(x) > m′(x), then there exists y >A x such
that m(y) < m′(y) [see also 24].

2.2. Termination. We illustrate the main ideas in this paper using a very
simple program, given in pseudo-code in Figure 1a. Formally, we see the
operational semantics of a program as the one in Figure 1a as a transition
system S = 〈Conf ,→S〉 where Conf denotes the set of program configura-
tions and →S ⊆ Conf × Conf a transition relation. In such a simple non-
recursive program, the set of configurations is a variable valuation, including
a program counter pc ranging over the finite set of program locations. For
our simple program a single location suffices and we set

Conf = {`0} × Z× Z× Z , (1)

where the last three components provide the values of x, y, and n, and
the first component the value of pc. The corresponding transition relation

4 S. SCHMITZ

`0 : while x >= 0 and y > 0 do

i f x > 0 then

a : x := x−1; n := 2n ;

else

b : x := n ; y := y−1; n := 2n ;

done

(a) A program over integer variables.

`0

a:

assume(x>0);
assume(y>0);

x := x−1;
n := 2n;

b:
assume(x=0);

assume(y>0);

x := n;
y := y−1;
n := 2n;

(b)The associated control-flow graph.

Figure 1. A simple terminating program.

contains for instance

(`0, 3, 1, 4)→S (`0, 2, 1, 8) (2)

using transition a in Figure 1b.

2.2.1. Proving Termination. We say that a transition system S = 〈Conf ,→S〉
terminates if every execution c0 →S c1 →S · · · is finite. For instance, in or-
der to prove the termination of the program of Figure 1 by a wqo argument,
consider some (possibly infinite) execution

(`0, x0, y0, n0)→S (`0, x1, y1, n1)→S (`0, x2, y2, n2)→S · · · (3)

over Conf . Because a negative value for x or y would lead to immediate
termination, the associated sequence of pairs

(x0, y0), (x1, y1), (x2, y2), . . . (4)

is actually over N2. Consider now two indices i < j:

• either b is never fired throughout the execution between steps i and j,
and then yi = · · · = yj and xi > xj ,
• or b is fired at least once, and yi > yj .

In both cases (xi, yi) 6≤× (xj , yj), i.e. the sequence (4) is bad for the product
ordering. Since 〈N2,≤×〉 is a wqo, this sequence is necessarily finite, and
so is the original sequence (3): the program of Figure 1 terminates on all
inputs.

2.2.2. Quasi-Ranking Functions. The above termination argument for our
example program easily generalises:

Definition 2.2. Given a transition system S = 〈Conf ,→S〉, a quasi-ranking
function is a map f : Conf → A into a wqo 〈A,≤〉 such that, whenever
c→+

S c
′ is a non-empty sequence of transitions of S, f(c) 6≤ f(c′).

In our treatment of the program of Figure 1 above, we picked f(`0, x, y, z) =
(x, y) and 〈A,≤〉 = 〈N2,≤×〉. The existence of a quasi-ranking function
always yields termination:

Proposition 2.3. Given a transition system S = 〈Conf ,→S〉, if there exists
a quasi-ranking function for S, then S terminates.

Proof. Let f be a quasi-ranking function of S into a wqo 〈A,≤〉. Any se-
quence of configurations c0 →S c1 →S · · · of S is associated by f to a bad
sequence f(c0), f(c1), . . . over A and is therefore finite. �

Note that the converse statement also holds; see Remark 2.4 below.

COMPLEXITY BOUNDS FOR ORDINAL-BASED TERMINATION 5

2.2.3. Ranking Functions. The most typical method in order to prove that a
program terminates for all inputs is to exhibit a ranking function f into some
well-order, such that →S-related configurations have decreasing rank [37,
20]. Note that this is a particular instance of quasi-ranking functions: a
ranking function can be seen as a quasi-ranking function into a wo 〈A,≤〉.
Indeed, if c →S c′, then the condition f(c) 6≤ f(c′) of Definition 2.2 over a
wo is equivalent to requiring f(c) > f(c′), and then implies by transitivity
f(c) > f(c′) whenever c→+

S c
′.

The program of Figure 1 can easily be given a ranking function: define
for this f(`0, x, y, n) = (y, x) ranging over the wo 〈N2,≤lex〉. Cook, See,
and Zuleger [15] and Ben-Amram and Genaim [4] consider for instance the
automatic synthesis of such lexicographic linear ranking functions for integer
loops like Figure 1a. Such ranking functions into 〈Nd,≤lex〉 are described
there by d functions f1, f2, . . . , fd : Conf → N such that, whenever c→S c′,
then (f1(c), f2(c), . . . , fd(c)) >lex (f1(c

′), f2(c
′), . . . , fd(c

′)); in our example
f1(c) = y and f2(c) = x. Linearity means that each function fi is a linear
affine function of the values of the program variables.

Remark 2.4. Observe that any deterministic terminating program can be
associated to a (quasi-)ranking function into N, which maps each configura-
tion to the number of steps before termination. We leave it as an exercise
to the reader to figure out such a ranking function for Figure 1—the answer
can be found in Section 3. There are at least two motivations for considering
other wqos:

• Programs can be nondeterministic, for instance due to interactions
with an environment. Then the supremum of the number of steps
along all the possible paths can be used as the range for a ranking
function; this is a countable well-order.
• Whether by automated means or by manual means, such monolithic

ranking functions are often too hard to synthesise and to check once
found or guessed—note that the canonical ‘number of steps’ function
is not recursive in general. This motivates employing more complex
well (quasi-)orders in exchange for simpler ranking functions.

2.3. Ordinals. Write 〈[d],≤〉 for the initial segment of the naturals [d] =
{0, . . . , d−1}; this is a finite linear order for each d. We can then replace our
previous lexicographic ranking function for Figure 1 with a multiset ranking
function into 〈M([2]),≤mset〉: f(`0, x, y,m) = {1y, 0x} is a ranking function
that associates a multiset containing y copies of the element ‘1’ and x copies
of ‘0’ to the configuration (`0, x, y, n).

This might seem like a rather artificial example of a multiset ranking
function, and indeed more generally 〈Nd,≤lex〉 and 〈M([d]),≤mset〉 are order-
isomorphic for every dimension d: indeed, r(n1, . . . , nd) = {(d−1)n1 , . . . , 0nd}
is a bijection satisfying (n1, . . . , nd) ≤lex (n′1, . . . , n

′
d) in if 〈Nd,≤lex〉and only

if r(n1, . . . , nd) ≤mset r(n
′
1, . . . , n

′
d) in 〈M([d]),≤mset〉.

In order to pick a unique representative for each isomorphism class of
(simple enough) well orders, we are going to employ their order types, pre-
sented as ordinal terms in Cantor normal form. For instance ωd is the order
type of both 〈Nd,≤lex〉 and 〈M([d]),≤mset〉.

6 S. SCHMITZ

2.3.1. Ordinals in ε0 can be canonically represented as ordinal terms α in
Cantor normal form

α = ωα1 + · · ·+ ωαp (CNF)

with exponents α > α1 ≥ · · · ≥ αp. We write as usual 1 for the term ω0 and
ω for the term ω1. Grouping equal exponents yields the strict form

α = ωα1 · c1 + · · ·+ ωαp · cp
with α > α1 > · · · > αp and coefficients 0 < c1, . . . , cp < ω. The ordinal ε0,
i.e. the least solution of ωx = x, is the supremum of the ordinals presentable
in this manner.

2.3.2. Computing Order Types. The order types o(A,≤A) of the well orders
〈A,≤A〉 we already mentioned in this paper are well-known: o([d],≤) = d,
o(N,≤) = ω, o(A × B,≤lex) = o(A,≤A) · o(B,≤B), and o(M(A),≤mset) =

ωo(A,≤A). The ranking function for the program in Figure 1 can now be
written as f(`0, x, y, n) = ω · y + x and ranges over the set of ordinal terms
below ω2. Note that we will identify the latter set with ω2 itself as in the
usual set-theoretic definition of ordinals; thus β < α if and only if β ∈ α.

By extension, we also write o(x) for the ordinal term in o(A) associated
to an element x in A; for instance in 〈Nd,≤lex〉, o(n1, . . . , nd) = ωd−1 · n1 +
· · ·+ nd.

3. Complexity Bounds

We aim to provide complexity upper bounds for programs proven to ter-
minate thanks to some (quasi-)ranking function. There are several results of
this kind in the literature [29, 13, 39, 12, 19, 33, 1], which are well-suited for
algorithms manipulating complex data structures—for which we can employ
the rich wqo toolkit.

A major drawback of all these complexity bounds is that they are very
high—i.e., non-elementary except in trivial cases—, whereas practitioners
are mostly interested in polynomial bounds. Such high complexities are
however unavoidable, because the class of programs terminating thanks to a
quasi-ranking function encompasses programs with matching complexities.
For instance, even integer loops can be deceivingly simple: recall that the
program of Figure 1 terminated using a straightforward ranking function
into ω2. Although this is just one notch above a ranking function into ω, we
can already witness fairly complex computations. Observe indeed that the
following are some execution steps of our program:

(`0, x, y, 1)
axb−−→S (`0, 2

x, y − 1, 2x+1)

a2
x
b−−−→S (`0, 2

2x+x+1, y − 2, 22
x+x+2)

a2
2x+x+1

b−−−−−−→S (`0, 2
22
x+x+1+2x+x+2, y − 3, 22

2x+x+1+2x+x+3) .

Continuing this execution, we see that our simple program exhibits exe-
cutions of length greater than a tower of exponentials in y, i.e. it is non
elementary.

COMPLEXITY BOUNDS FOR ORDINAL-BASED TERMINATION 7

3.1. Controlled Ranking Functions. By Definition 2.1, bad sequences in
a wqo are always finite—which in turn yields the termination of programs
with quasi-ranking functions—, but no statement is made regarding how
long they can be. This is for a very good reason: they can be arbitrarily
long.

For instance, over the wo 〈N,≤〉,

n, n− 1, . . . , 1, 0 (5)

is a bad sequence of length n+ 1 for every n. Arguably, this is not so much
of an issue, since what we are really interested in is the length as a function
of the initial configuration—which includes the inputs to the program. Thus
(5) is the maximal bad sequence over 〈N,≤〉 with initial element of ‘size n.’

However, as soon as we move to more complex wqos, we can exhibit
arbitrary bad sequence lengths even with fixed initial configurations. For
instance, over 〈N2,≤lex〉,

(1, 0), (0, n), (0, n− 1), . . . , (0, 1), (0, 0) (6)

is a bad sequence of length n + 2 for every n starting from the fixed (1, 0).
Nonetheless, the behaviour of a program exhibiting such a sequence of ranks
is rather unusual: such a sudden ‘jump’ from (1, 0) to an arbitrary (0, n)
is not possible in a deterministic program once the user inputs have been
provided.

3.1.1. Controlled Sequences. In the following, we will assume that no such
arbitrary jump can occur. This comes at the price of some loss of generality
in the context of termination analysis, where nondeterministic assignments
of arbitrary values are typically employed to model values provided by the
environment—for instance interactive user inputs or concurrently running
programs—, or because of abstracted operations. Thankfully, in most cases
it is easy to control how large the program variables can grow during the
course of an execution.

Formally, given a wqo 〈A,≤A〉, we posit a norm function |.|A:A→ N on
the elements of A. In order to be able to derive combinatorial statements,
we require

A≤n
def
= {x ∈ A | |x|A ≤ n} (7)

to be finite for every n. We will use the following norms on the wqos defined
earlier: in a finite Q, all the elements have the same norm 0; in N or [d],
n has norm |n|N = n; for Cartesian or lexicographic products with support
A × B, (x, y) has the infinite norm max(|x|A, |y|B); finally, for multisets
M(A), m has norm maxx∈A,m(x)>0(m(x), |x|A).

Let g:N→ N be a monotone and expansive function: for all x, x′, x ≤ x′
implies g(x) ≤ g(x′) and x ≤ g(x). We say that a sequence x0, x1, x2, . . . of
elements in A is (g, n0)-controlled for some n0 in N if

|xi|A ≤ gi(n0) (8)

for all i, where gi denotes the ith iterate of g. In particular |x0|A ≤ g0(n0) =
n0, which prompts the name of initial norm for n0, and amortised steps
cannot grow faster than g the control function.

8 S. SCHMITZ

By extension, a quasi-ranking function f : Conf → A for a transition sys-
tem S = 〈Conf ,→S〉 and a normed wqo 〈A,≤A, |.|A〉 is g-controlled if,
whenever c→S c′ is a transition in S,

|f(c′)|A ≤ g(|f(c)|A) . (9)

This ensures that any sequence f(c0), f(c1), . . . of ranks associated to an
execution c0 →S c1 →S · · · of S is (g, |f(c0)|A)-controlled. For instance,
our ranking function f(`0, x, y, n) = (y, x) for the program of Figure 1 into
〈N2,≤lex〉 is g-controlled for g(x) = 2x.

3.1.2. Length Functions. The motivation for controlled sequences is that
their length can be bounded. Consider for this the tree one obtains by
sharing common prefixes of all the (g, n0)-controlled bad sequences over a
normed wqo (A,≤A, |.|A). This tree has

• finite branching by (7) and (8), more precisely branching degree
bounded by the cardinal of A≤gi(n0) for a node at depth i, and
• no infinite branches thanks to the wqo property.

By Kőnig’s Lemma, this tree of bad sequences is therefore finite, of some
height Lg,n0,A representing the length of the maximal (g, n0)-controlled bad
sequence(s) over A. In the following, since we are mostly interested in this
length as a function of the initial norm n0, we will see this as a length
function Lg,A(n0).

3.1.3. Length Function Theorems. Observe that Lg,A also bounds the as-
ymptotic execution length in a program endowed with a g-controlled quasi-
ranking function into 〈A,≤A, |.|A〉. Our purpose will thus be to obtain ex-
plicit complexity bounds on Lg,A depending on g and A. We call such com-
binatorial statements length function theorems; see [29, 13, 39, 12, 19, 33, 1]
for some examples.

For applications to termination analysis, we are especially interested in
the case of well orders. Somewhat oddly, this particular case has seldom been
considered; to our knowledge the only instance is due to Abriola, Figueira,
and Senno [1] who derive upper bounds for multisets of tuples of naturals or-
dered lexicographically, i.e. for Lg,M(Nd) (beware that their notion of control

is defined slightly differently).

3.2. Hardy and Cichoń Hierarchies. As we saw with the example of
Figure 1, even simple terminating programs can have a very high complex-
ity. In order to express such high bounds, a convenient tool is found in
subrecursive hierarchies, which employ recursion over ordinal indices to de-
fine faster and faster growing functions. We define in this section two such
hierarchies.

3.2.1. Fundamental Sequences and Predecessors. Let us first introduce some
additional notions on ordinal terms. Consider an ordinal term α in Cantor
normal form ωα1 + · · · + ωαp . In this representation, α = 0 if and only if
p = 0. An ordinal α of the form α′+ 1 (i.e. with p > 0 and αp = 0) is called
a successor ordinal, and otherwise if α > 0 it is called a limit ordinal, and
can be written as γ + ωβ by setting γ = ωα1 + · · ·+ ωαp−1 and β = αp. We
usually write ‘λ’ to denote a limit ordinal.

COMPLEXITY BOUNDS FOR ORDINAL-BASED TERMINATION 9

A fundamental sequence for a limit ordinal λ is a sequence (λ(x))x<ω
of ordinal terms with supremum λ. We use the standard assignment of
fundamental sequences to limit ordinals defined inductively by

(γ + ωβ+1)(x)
def
= γ + ωβ · (x+ 1) , (γ + ωλ)(x)

def
= γ + ωλ(x) . (10)

This particular assignment satisfies e.g. 0 < λ(x) < λ(y) for all x < y. For

instance, ω(x) = x+ 1, (ωω
4

+ ωω
3+ω2

)(x) = ωω
4

+ ωω
3+ω·(x+1).

The predecessor Px(α) of an ordinal term α > 0 at a value x in N is
defined inductively by

Px(α+ 1)
def
= α , Px(λ)

def
= Px(λ(x)) . (11)

In essence, the predecessor of an ordinal is obtained by repeatedly taking
the xth element in the fundamental sequence of limit ordinals, until we
finally reach a successor ordinal and remove 1. For instance, Px(ω2) =
Px(ω · (x+ 1)) = Px(ω · x+ x+ 1) = ω · x+ x.

3.2.2. Subrecursive Hierarchies. In the context of controlled sequences, the
hierarchies of Hardy and Cichoń turn out to be especially well-suited [12].
Let h:N→ N be a function. The Hardy hierarchy (hα)α∈ε0 is defined for all
0 < α < ε0 by1

h0(x)
def
= x , hα(x)

def
= hPx(α)(h(x)) , (12)

and the Cichoń hierarchy (hα)α∈ε0 is similarly defined for all 0 < α < ε0 by

h0(x)
def
= 0 , hα(x)

def
= 1 + hPx(α)(h(x)) . (13)

Observe that hk for some finite k is the kth iterate of h. This intuition carries
over: hα is a transfinite iteration of the function h, using diagonalisation in
the fundamental sequences to handle limit ordinals.

For instance, starting with the successor function H(x)
def
= x + 1, we

see that a first diagonalisation yields Hω(x) = Hx(x + 1) = 2x + 1. The
next diagonalisation occurs at Hω·2(x) = Hω+x(x + 1) = Hω(2x + 1) =
4x + 3. Fast-forwarding a bit, we get for instance a function of exponen-

tial growth Hω2
(x) = 2x+1(x + 1) − 1, and later a non-elementary func-

tion Hω3
, an ‘Ackermannian’ non primitive-recursive function Hωω , and a

‘hyper-Ackermannian’ non multiply recursive-function Hωω
ω

. Regarding the
Cichoń functions, an easy induction on α shows that Hα(x) = Hα(x) + x.

On the one hand, Hardy functions are well-suited for expressing large
iterates of a control function, and therefore for bounding the norms of el-
ements in a controlled sequence. For instance, the program in Figure 1
computes gω·y+x(n) for the function g(x) = 2x when run on non-negative
inputs x, y, n. On the other hand, Cichoń functions are well-suited for ex-
pressing the length of controlled sequences. For instance, gω·y+x(n) is the
length of the execution of the program. This relation is a general one: we
can compute how many times we should iterate h in order to compute hα(x)
using the corresponding Cichoń function:

hα(x) = hhα(x)(x) . (14)

1Note that this is equivalent to defining hα+1(x)
def
= hα(h(x)) and hλ(x)

def
= hλ(x)(x).

10 S. SCHMITZ

3.2.3. Monotonicity Properties. Assume h is monotone and expansive. Then
both hα and hα are monotone and expansive [see 12, 34, 36]. However, those
hierarchies are not monotone in the ordinal indices: for instance, Hω(x) =
2x+ 1 < 2x+ 2 = Hx+2(x) although ω > x+ 2.

Some refinement of the ordinal ordering is needed in order to obtain mono-
tonicity of the hierarchies. Define for this the pointwise ordering ≺x at some
x in N as the smallest transitive relation such that

α ≺x α+ 1 , λ(x) ≺x λ . (15)

The relation ‘β ≺x α’ is also noted ‘β ∈ α[x]’ in [36, pp. 158–163]. The ≺x
relations form a strict hierarchy of refinements of the ordinal ordering <:

≺0 (≺1 (· · · (≺x (· · · (< . (16)

As desired, our hierarchies are monotone for the pointwise ordering [12, 34,
36]:

β ≺x α implies hβ(x) ≤ hα(x) . (17)

3.2.4. Ordinal Norms. As a first application of the pointwise ordering, de-
fine the norm of an ordinal as the maximal coefficient that appears in its
associated CNF: if α = ωα1 · c1 + · · · + ωαp · cp with α1 > · · · > αp and
c1, . . . , cp > 0, then

Nα
def
= max{c1, . . . , cp, Nα1, . . . , Nαp} . (18)

Observe that this definition essentially matches the previously defined norms
over multisets and tuples of vectors: e.g. in 〈Nd,≤lex〉, the ordinal norm
satisfies No(n1, . . . , nd) = max(d, |(n1, . . . , nd)|Nd), and in 〈M(Nd),≤mset〉,
No(m) = max(d, |m|M(Nd)). The relation between ordinal norms and the

pointwise ordering is that [34, 36, p. 158]

β < α implies β ≺Nβ α . (19)

Together with (16) and (17), this entails that for all x ≥ Nβ, hβ(x) ≤ hα(x).

3.3. A Length Function Theorem for ε0. We are now equipped to prove
a length function theorem for all ordinals α below ε0, i.e. an explicit expres-
sion for Lg,α for the wo 〈α,≤, N〉. This proof relies on two main ingredients:
a descent equation established in [33] for all normed wqos, and an alternative
characterisation of the Cichoń hierarchy in terms of maximisations inspired
by [11, 9].

3.3.1. Residuals and a Descent Equation. Let 〈A,≤, |.|A〉 be a normed wqo
and x be an element of A. We write

A/x
def
= {y ∈ A | x 6≤ y} (20)

for the residual of A in x. Observe that by the wqo property, there cannot
be infinite sequences of residuations A/x0/x1/x2/ · · · since xi 6≤ xj for all
i < j.

Consider now a (g, n0)-controlled bad sequence x0, x1, x2, . . . over 〈A,≤, |.|A〉.
Assuming the sequence is not empty, then because this is a bad sequence
we see that for all i > 0, x0 6≤ xi, i.e. that the suffix x1, x2, . . . is actu-
ally a bad sequence over A/x0. This suffix is now (g(n), n0)-controlled, and

COMPLEXITY BOUNDS FOR ORDINAL-BASED TERMINATION 11

thus of length bounded by Lg,A/x0(g(n0)). This yields the following descent
equation when considering all the possible (g, n)-controlled bad sequences:

Lg,A(n) = max
x∈A≤n

1 + Lg,A/x(g(n)) . (21)

In the case of a wo 〈α,≤, N〉, residuals can be expressed more simply for
β ∈ α as

α/β = {γ ∈ α | β > γ} = β . (22)

Thus the descent equation simplifies into

Lg,α(n) = max
β<α,Nβ≤n

1 + Lg,β(g(n)) . (23)

3.3.2. Norm Maximisation. The reader might have noticed a slight resem-
blance between the ordinal descent equation (23) and the definition of the
Cichoń hierarchy (13). It turns out that they are essentially the same func-
tions: indeed, we are going to show in Proposition 3.2 that if Nα ≤ x, then
choosing β = Px(α) maximises hβ(h(x)) among those β < α with Nβ ≤ x;
we follow in this [11, 9]. This is a somewhat technical proof, so the reader
might want to skip the details and jump directly to Theorem 3.3.

Lemma 3.1. Let α < ε0 and x ≥ Nα. Then Px(α) = maxβ<α,Nβ≤x β.

Proof. We prove the lemma through a sequence of claims.

Claim 3.1.1. Px(α) < α.

We show for this first claim that, by transfinite induction over α > 0, for all
x

Px(α) ≺x α (24)

Indeed, Px(α + 1) = α ≺x α + 1 for the successor case, and Px(λ) =
Px(λ(x)) ≺x λ(x) ≺x by induction hypothesis on λ(x) < λ for the limit
case. Then (16) allows to conclude.

Let us introduce a variant of the ordinal norm. Let α = ωα1 ·c1+· · ·+ωαp ·
cp be an ordinal in CNF with α > α1 > · · · > αp and ω > c1, . . . , cp > 0. We
say that α is almost x-lean if either (i) cp = x+ 1 and both N

∑
i<p ω

αi ≤ x
and Nαp ≤ x, or (ii) cp ≤ x, N

∑
i<m ω

αi ≤ x, and αp is almost x-lean.
Note that an almost x-lean ordinal α has not norm x; it has however norm
x+ 1. Here are several properties of note for almost x-lean ordinals:

Claim 3.1.2. If Nλ ≤ x, then λ(x) is almost x-lean.

We prove this claim by induction on λ, letting λ = ωλ1 · c1 + · · · + ωλp · cp
as above, where necessarily Nλp ≤ x. If λp is a successor ordinal β+ 1 (and

thus Nβ ≤ x), λ(x) = ωλ1 ·c1+· · ·+ωλp ·(cp−1)+ωβ ·(x+1) is almost x-lean

by case (i). If λp is a limit ordinal, λ(x) = ωλ1 ·c1+ · · ·+ωλp ·(cp−1)+ωλp(x)

is x-lean by case (ii) and the induction hypothesis on λp < λ.

Claim 3.1.3. If α+ 1 is almost x-lean, then Nα ≤ x.

Let α + 1 = ωα1 · c1 + · · · + ωαp · cp with αp = 0. We must be in case (i)
since αp = 0 cannot be x-lean, thus cp = x+ 1 and Nα = Nωα1 · c1 + · · ·+
ωαp · (cp − 1) ≤ x.

12 S. SCHMITZ

Claim 3.1.4. If λ is almost x-lean, then λ(x) is almost x-lean.

We prove the claim by induction on λ, letting λ = ωλ1 · c1 + · · ·+ ωλp · cp:
If λp is a successor ordinal β + 1: λ(x) = ωλ1 ·c1+ · · ·+ωλp ·(cp−

1)+ωβ ·(x+1), and either (i) cp = x+1 and Nλp ≤ x, and then λ(x)
also verifies (i), or (ii) cp ≤ x and β + 1 is almost x-lean and thus
Nβ ≤ x by Claim 3.1.3, and λ(x) is again almost x-lean verifying
condition (i).

If λp is a limit ordinal: then λ(x) = ωλ1 · c1 + · · ·+ ωλp · (cp − 1) +

ωλp(x). Either (i) cp = x+ 1 and Nλp ≤ x, and by Claim 3.1.2 λp(x)
is almost x-lean and thus λ(x) is almost x-lean by condition (ii),
or (ii) cp ≤ x and λp is almost x-lean, and by induction hypothesis
λp(x) is almost x-lean, and therefore λ(x) is again almost x-lean by
condition (ii).

Claim 3.1.5. If α is almost x-lean, then NPx(α) ≤ x.

By induction over α > 0: we see for the successor case that NPx(α + 1) =
Nα ≤ x by Claim 3.1.3, and for the limit case that λ(x) is almost x-lean by
Claim 3.1.4 and thus Px(λ(x)) ≤ x by induction hypothesis.

Claim 3.1.6. If Nα ≤ x, then NPx(α) ≤ x.

Indeed, either α is a successor and this is immediate, or it is a limit λ
and then λ(x) is almost x-lean by Claim 3.1.2 and therefore NPx(λ) =
NPx(λ(x)) ≤ x by Claim 3.1.5.

Claim 3.1.7. If β < α and Nβ ≤ x, then β �x Px(α).

Because the hypotheses entail β ≺x α by (19), we can consider a sequence
of atomic steps according to (15) for the pointwise ordering: β = βn ≺x
· · · ≺x β1 ≺x α. If α is a successor, then β �x β1 = Px(α). Otherwise β1 is
almost x-lean by Claim 3.1.2. Because Nβ ≤ x, β is not almost x-lean, and
by Claim 3.1.3 and Claim 3.1.4 there must be a greatest index 1 ≤ i < n
such that all the βj ’s for 1 ≤ j < i are almost x-lean limit ordinals and βi is
a successor almost x-lean ordinal. Thus β �x βi+1 = Px(α).

To conclude the proof, Px(α) < α by Claim 3.1.1, NPx(α) ≤ x by
Claim 3.1.6, and if β < α is such that Nβ ≤ x, then β ≤ Px(α) by
Claim 3.1.7 and (16), which together prove the lemma. �

Proposition 3.2. Let α < ε0 and x ≥ Nα. Then hα(x) = maxβ<α,Nβ≤x 1+
hβ(h(x)).

Proof. If α = 0 then there are no β < α and maxβ<α,Nβ≤x 1 + hβ(h(x)) =
0 = h0(x).

Otherwise by Lemma 3.1, since Px(α) < α and NPx(α) ≤ x, hα(x) = 1 +
hPx(α)(h(x)) ≤ maxβ<α,Nβ≤x 1+hβ(h(x)). Conversely, let β < α with Nβ ≤
x be such that maxβ<α,Nβ≤x 1 + hβ(h(x)) = 1 + hβ(h(x)). By Lemma 3.1,
β ≤ Px(α) and therefore by (19) β �x Px(α). Since h is expansive, by
(16), β �h(x) Px(α). Therefore by (17), 1 + hβ(h(x)) ≤ 1 + hPx(α)(h(x)) =
hα(x). �

Theorem 3.3 (Length Function Theorem for Ordinals). Let α < ε0 and
x ≥ Nα. Then Lg,α(x) = gα(x).

COMPLEXITY BOUNDS FOR ORDINAL-BASED TERMINATION 13

Elementary

F3 = Tower

Primitive Recursive Fω = Ack

Multiply Recursive

Fωω = HAck

· · ·

Figure 2. Some complexity classes beyond Elementary.

Proof. We use the ordinal descent equation (23) and Proposition 3.2. �

As an immediate corollary, we can bound the asymptotic complexity of
programs proven to terminate through a g-controlled ranking function:

Corollary 3.4. Given a transition system S = 〈Conf ,→S〉, if there exists
a g-controlled ranking function into α < ε0, then S runs in time O(gα(n)).

As an illustration, a program proven to terminate thanks to a g-controlled
ranking function into 〈Nd,≤lex, |.|Nd〉 has therefore an O(gωd(n)) bound on
its worst-case asymptotic complexity. In the case of the program of Figure 1,
this yields an upper bound of gω2(m) = 1 + gω·m+m(m) on its complexity

for g(x)
def
= 2x and m

def
= max(x, y, n). This matches its actual complexity.

4. Complexity Classification

As already mentioned, the complexity bounds provided by Theorem 3.3
are so high that they are only of interest for algorithms of very high complex-
ity. Rather than obtaining precise complexity statements as in Theorem 3.3,
the purpose is then to classify the complexity in rather broad terms: e.g., is
the algorithm elementary? primitive-recursive? multiply-recursive?

4.1. Fast-Growing Classes. In order to tackle the complexities derived
from Theorem 3.3, we need to employ complexity classes for very high com-
plexity problems. For α > 2, we define respectively the fast-growing function
classes (Fα)α of Löb and Wainer [28] and the fast-growing complexity classes
(Fα)α of [32] by

F<α
def
=

⋃
β<ωα

FDTime
(
Hβ(n)

)
, Fα

def
=

⋃
p∈F<α

DTime
(
Hωα(p(n))

)
. (25)

Recall that Hα denotes the αth function in the Hardy hierarchy with gener-

ative function H(x)
def
= x+ 1, and that FDTime(t(n)) (resp. DTime(t(n)))

denotes the set of functions computable (resp. problems decidable) in deter-
ministic time O(t(n)).

Some important complexity milestones can be characterised through these
classes. Regarding the function classes, F<3 is the class of elementary

14 S. SCHMITZ

functions, F<ω the class of primitive-recursive functions, F<ωω the class
of multiply-recursive functions, and F<ε0 the class of ordinal-recursive func-
tions. Turning to the complexity classes, F3 = Tower is the class of prob-
lems with complexity bounded by a tower of exponentials of height bounded
by an elementary function of the input, Fω = Ack the class of problems
with complexity bounded by the Ackermann function of some primitive-
recursive function of the input, and Fω

ω = HAck of problems with complex-

ity bounded by the hyper-Ackermann function Hωω
ω

composed with some
multiply-recursive function. In other words, F3 (resp. Fω and Fωω) is the
smallest complexity class Fα which contains non elementary problems (resp.
non primitive recursive and non multiply recursive problems); see Figure 2.

4.2. Classification. The explicit formulation for the length function pro-
vided by Theorem 3.3 yields upper bounds in the (Fα)α complexity classes.
Assume that g belongs to the function class F<γ for some γ. Then, by [32,
Theorem 4.2], an algorithm with a gωα complexity yields an upper bound
in Fγ+α. In particular, a decision procedure terminating thanks to a lexi-

cographic ranking function into 〈Nd,≤lex, |.|Nd〉 with a linear control yields
an Fd+1 complexity upper bound. At greater complexities, if g is primitive
recursive—i.e. is in F<ω—and α ≥ ω, then we obtain an upper bound in Fα
[32, Corollary 4.3].

5. Product vs. Lexicographic Orderings

Although we focus in this paper on ranking functions, automated termina-
tion provers employ many different techniques. While lexicographic ranking
functions are fairly common [e.g. 15, 4, 38, for recent references], disjunctive
termination arguments (aka Ramsey-based termination proofs) [31] are also
a popular alternative.

5.1. Disjunctive Termination Arguments. In order to prove a pro-
gram transition relation →S to be well-founded, Podelski and Rybalchenko
[31] show that it suffices to exhibit a finite set of well-founded relations
T1, . . . , Td ⊆ Conf × Conf and prove that the transitive closure →+

S is in-
cluded in the union T1 ∪ · · · ∪ Td. In practice, we can assume each of the Tj
for 1 ≤ j ≤ d to be proved well-founded through a quasi-ranking function
fj into a wqo 〈Aj ,≤j〉. In the case of the program in Figure 1, choosing

T1 = {((`0, x, y, n), (`0, x
′, y′, n′)) | x > 0 ∧ x′ < x} (26)

T2 = {((`0, x, y, n), (`0, x
′, y′, n′)) | y > 0 ∧ y′ < y} (27)

yields such a disjunctive termination argument, with A1 = A2 = N.
Another way of understanding disjunctive termination arguments is that

they define a quasi-ranking function f into the product wqo 〈A1 × · · · ×
Ad,≤×〉, which maps a configuration c to the tuple 〈f1(c), . . . , fd(c)〉, c.f.
[19, Section 7.1].

5.2. A Comparison. Let us consider disjunctive termination arguments
where each of the d relations Tj has a ranking function into N, i.e. defining a

quasi-ranking function into 〈Nd,≤×〉. A natural question at this point is how

COMPLEXITY BOUNDS FOR ORDINAL-BASED TERMINATION 15

does it compare with a ranking function into 〈Nd,≤lex〉, which seems fairly
similar? Which programs can be shown to terminate with either method?

We might attempt to differentiate them through their maximal order
types [16, 7]. In general, this is the supremum of the order types of all
the linearisations of a wqo:

o(A,≤)
def
= sup{o(A,�) | � is a linearisation of ≤} . (28)

However, in the case of 〈Nd,≤×〉, this maximal order type is ωd, matching
the order type of 〈Nd,≤lex〉.

We can consider instead the maximal length of their controlled bad se-
quences. Those are different: the following example taken from [19, Re-
mark 6.2] is a (g, 1)-controlled bad sequence over 〈N2,≤×〉, which is good

for 〈N2,≤lex〉, where g(x)
def
= x+ 2:

(1, 1), (3, 0), (2, 0), (1, 0), (0, 9), (0, 8), . . . , (0, 1), (0, 0) (29)

This sequence has length 14 whereas the maximal (g, 1)-controlled bad se-
quence for 〈N2,≤lex〉 is of length gω2(1) = 8:

(1, 1), (1, 0), (0, 5), (0, 4), . . . , (0, 1), (0, 0) . (30)

5.3. Length Functions for the Product Ordering. More generally, the
length function theorems for 〈Nd,≤×〉 [29, 13, 19, 34, 1] provide larger up-
per bounds than the gωd bound of Theorem 3.3. Berardi, Oliva, and Steila
[6] also recently derived complexity bounds for disjunctive termination ar-
guments, based instead on a constructive termination proof. The following
bounds from [34, Chapter 2] are the easiest to compare with Theorem 3.3:

Fact 5.1 ([34]). Let d ≥ 0 and h(x)
def
= d · g(x). Then Lg,Nd(x) ≤ hωd(dx).

Fact 5.1 allows to bound the running time of programs proven to terminate
with d transition invariants Tj , each shown well-founded through some g-
controlled ranking function into N. In particular, for linearly controlled
ranking functions, d-dimensional transition invariants entail again upper
bounds in Fd+1, just like linearly controlled ranking functions into 〈Nd,≤lex〉
do. Thus, at the coarse-grained level of the fast-growing complexity classes,
the differences between Theorem 3.3 and Fact 5.1 disappear.

5.4. Controlling Abstractions. The previous classifications into primi-
tive recursive complexity classes Fd+1 might be taken to imply that non-
primitive recursive programs are beyond the reach of the current automated
termination methods, which usually rely on the synthesis of affine ranking
functions. This is not the case, as we can better see with the example of
size-change termination proofs: Lee, Jones, and Ben-Amram [25] consider
as their Example 3 the two-arguments Ackermann function:

a (m, n) = i f m = 0 then n + 1 else

i f n = 0 then a (m−1, 1)

else a (m−1, a (m, n−1))

They construct a size-change graph on two variables to prove its termina-
tion. The longest decreasing sequence in such a graph is of length O(n2);
more generally, Colcombet, Daviaud, and Zuleger [14] recently showed that

16 S. SCHMITZ

the asymptotic worst-case complexity of a size-change graph is Θ(nr) for
a computable rational r. Here we witness an even larger gap between the
actual program complexity and the complexity derived from its termination
argument: the Ackermann function vs. an O(n2) bound.

The source of this apparent paradox is abstraction: the size-change graph
for a(m, n) terminates if and only if the original program does, but its com-
plexity is ‘lost’ during this abstraction. In the example of the Ackermann
function, the call stack is abstracted away, whereas we should include it
for Theorem 3.3 to apply. This is done by Dershowitz and Manna [17,
Example 3], who prove the termination of the Ackermann function by ex-
hibiting an H-controlled ranking function into 〈M(N2),≤mset〉, for which
Theorem 3.3 yields an O(H

ωω2
(n)) complexity upper bound—this is pretty

much optimal.
The question at this point is how to deal with abstractions. For size-

change abstractions, Ben-Amram [3] shows for instance that the programs
provable to terminate are always multiply recursive, but this type of analysis
is missing for other abstraction techniques, e.g. for abstract interpretation
ones [38].

6. Concluding Remarks

Length function theorems often seem to relate the length function Lg,A
for (g, n)-controlled bad sequences over a wqo 〈A,≤〉 with a Cichoń function
ho(A,≤) indexed by the maximal order type o(A,≤) (recall Eq. (28)) for
some ‘reasonable’ generative function h. This is certainly the case of e.g.
Theorem 3.3, where h(x) = g(x), but also of Fact 5.1 where h(x) = d · g(x),
and of the corresponding theorem in [33] for Higman’s Lemma, where h(x) =
x · g(x).

This is a relaxation of Cichoń’s Principle [11], who observed that rewrit-
ing systems with a termination ordering of order type α [18] often had a
complexity bounded by the slow-growing function Gα (defined by choosing

G(x)
def
= x as generative function in Cichoń’s hierarchy). A counter-example

to the principle was given by Lepper [27] using the Knuth-Bendix order;
however it did not disprove the relaxed version of Cichoń’s Principle, where
the generative function h can be chosen more freely. A recent analysis of
generalised Knuth-Bendix orders by Moser [30] exhibits a counter-example
to the relaxed version. An open question at the moment is therefore to find
general conditions which ensure that this relaxed Cichoń Principle holds.

Acknowledgements. The author thanks Christoph Haase, Georg Moser, and
Philippe Schnoebelen for helpful discussions.

References

[1] S. Abriola, S. Figueira, and G. Senno. Linearizing bad sequences: upper bounds for
the product and majoring well quasi-orders. In L. Ong and R. de Queiroz, editors,
WoLLIC 2012, volume 7456 of LNCS, pages 110–126. Springer, 2012. doi:10.1007/
978-3-642-32621-9 9.

[2] C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In R. Cousot and

http://dx.doi.org/10.1007/978-3-642-32621-9_9
http://dx.doi.org/10.1007/978-3-642-32621-9_9

COMPLEXITY BOUNDS FOR ORDINAL-BASED TERMINATION 17

M. Martel, editors, SAS 2010, volume 6337 of LNCS, pages 117–133. Springer, 2010.
doi:10.1007/978-3-642-15769-1 8.

[3] A. M. Ben-Amram. General size-change termination and lexicographic descent.
In T. A. Mogensen, D. A. Schmidt, and I. H. Sudborough, editors, The Essence
of Computation, volume 2566 of LNCS, pages 3–17. Springer, 2002. doi:10.1007/
3-540-36377-7 1.

[4] A. M. Ben-Amram and S. Genaim. Ranking functions for linear-constraint loops.
Preprint, 2013. URL http://arxiv.org/abs/1208.4041.

[5] A. M. Ben-Amram and M. Vainer. Bounded termination of monotonicity-constraint
transition systems. Preprint, 2014. URL http://arxiv.org/abs/1202.4281.

[6] S. Berardi, P. Oliva, and S. Steila. Proving termination with transition invariants of
height omega. Preprint, 2014. URL http://arxiv.org/abs/1407.4692.

[7] A. Blass and Y. Gurevich. Program termination and well partial orderings. ACM
Trans. Comput. Logic, 9(3), 2008. doi:10.1145/1352582.1352586.

[8] G. Bonfante, A. E. Cichoń, J.-Y. Marion, and H. Touzet. Algorithms with polynomial
interpretation termination proof. J. Funct. Programming, 11:33–53, 2001.

[9] W. Buchholz, E. A. Cichoń, and A. Weiermann. A uniform approach to fundamental
sequences and hierarchies. Math. Logic Quart., 40(2):273–286, 1994. doi:10.1002/
malq.19940400212.

[10] W. Bucholz. Proof-theoretic analysis of termination proofs. Ann. Pure App. Logic,
75(1–2):57–65, 1995. doi:10.1016/0168-0072(94)00056-9.

[11] E. A. Cichoń. Termination orderings and complexity characterisations. In P. Aczel,
H. Simmons, and S. S. Wainer, editors, Proof Theory, pages 171–194. Cambridge
University Press, 1993. doi:10.1017/CBO9780511896262.008.

[12] E. A. Cichoń and E. Tahhan Bittar. Ordinal recursive bounds for Higman’s Theorem.
Theor. Comput. Sci., 201(1–2):63–84, 1998. doi:10.1016/S0304-3975(97)00009-1.

[13] P. Clote. On the finite containment problem for Petri nets. Theor. Comput. Sci., 43:
99–105, 1986. doi:10.1016/0304-3975(86)90169-6.

[14] T. Colcombet, L. Daviaud, and F. Zuleger. Size-change abstraction and max-plus

automata. In E. Csuhaj-Varjú, M. Dietzfelbinger, and Z. Ésik, editors, MFCS 2014,
volume 8634 of LNCS. Springer, 2014. To appear.

[15] B. Cook, A. See, and F. Zuleger. Ramsey vs. lexicographic termination proving. In
N. Piterman and S. A. Smolka, editors, TACAS 2013, volume 7795 of LNCS, pages
47–61, 2013. doi:10.1007/978-3-642-36742-7 4.

[16] D. H. J. de Jongh and R. Parikh. Well-partial orderings and hierarchies. Indag.
Math., 39(3):195–207, 1977. doi:10.1016/1385-7258(77)90067-1.

[17] N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Commun.
ACM, 22(8):465–476, 1979. doi:10.1145/359138.359142.

[18] N. Dershowitz and M. Okada. Proof-theoretic techniques for term rewriting theory.
In LICS ’88, pages 104–111, 1988. doi:10.1109/LICS.1988.5108.

[19] D. Figueira, S. Figueira, S. Schmitz, and Ph. Schnoebelen. Ackermannian and
primitive-recursive bounds with Dickson’s Lemma. In LICS 2011, pages 269–278.
IEEE, 2011. doi:10.1109/LICS.2011.39.

[20] R. W. Floyd. Assigning meaning to programs. In J. T. Schwartz, editor, Mathemat-
ical Aspects of Computer Science, volume 19 of Proceedings of Symposia in Applied
Mathematics, pages 19–32. AMS, 1967.

[21] S. Gulwani. SPEED: Symbolic complexity bound analysis. In A. Bouajjani and
O. Maler, editors, CAV 2009, volume 5643 of LNCS, pages 51–62. Springer, 2009.
doi:10.1007/978-3-642-02658-4 7.

[22] N. Hirokawa and G. Moser. Automated complexity analysis based on the de-
pendency pair method. In A. Armando, P. Baumgartner, and G. Dowek, edi-
tors, IJCAR 2008, volume 5195 of LNCS, pages 364–379. Springer, 2008. doi:
10.1007/978-3-540-71070-7 32.

[23] D. Hofbauer. Termination proofs by multiset path orderings imply primitive recur-
sive derivation lengths. Theor. Comput. Sci., 105(1):129–140, 1992. doi:10.1016/
0304-3975(92)90289-R.

http://dx.doi.org/10.1007/978-3-642-15769-1_8
http://dx.doi.org/10.1007/3-540-36377-7_1
http://dx.doi.org/10.1007/3-540-36377-7_1
http://arxiv.org/abs/1208.4041
http://arxiv.org/abs/1202.4281
http://arxiv.org/abs/1407.4692
http://dx.doi.org/10.1145/1352582.1352586
http://dx.doi.org/10.1002/malq.19940400212
http://dx.doi.org/10.1002/malq.19940400212
http://dx.doi.org/10.1016/0168-0072(94)00056-9
http://dx.doi.org/10.1017/CBO9780511896262.008
http://dx.doi.org/10.1016/S0304-3975(97)00009-1
http://dx.doi.org/10.1016/0304-3975(86)90169-6
http://dx.doi.org/10.1007/978-3-642-36742-7_4
http://dx.doi.org/10.1016/1385-7258(77)90067-1
http://dx.doi.org/10.1145/359138.359142
http://dx.doi.org/10.1109/LICS.1988.5108
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.1007/978-3-642-02658-4_7
http://dx.doi.org/10.1007/978-3-540-71070-7_32
http://dx.doi.org/10.1007/978-3-540-71070-7_32
http://dx.doi.org/10.1016/0304-3975(92)90289-R
http://dx.doi.org/10.1016/0304-3975(92)90289-R

18 S. SCHMITZ

[24] J.-P. Jouannaud and P. Lescanne. On multiset orderings. Inf. Process. Lett., 15(2):
57–63, 1982. doi:10.1016/0020-0190(82)90107-7.

[25] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program
termination. In POPL 2001, pages 81–92. ACM, 2001. doi:10.1145/360204.360210.

[26] I. Lepper. Derivation lengths and order types of Knuth-Bendix orders. Theor. Com-
put. Sci., 269(1–2):433–450, 2001. doi:10.1016/S0304-3975(01)00015-9.

[27] I. Lepper. Simply terminating rewrite systems with long derivations. Arch. Math.
Logic, 43(1):1–18, 2004. doi:10.1007/s00153-003-0190-2.

[28] M. H. Löb and S. S. Wainer. Hierarchies of number theoretic functions, I. Arch.
Math. Logic, 13:39–51, 1970. doi:10.1007/BF01967649.

[29] K. McAloon. Petri nets and large finite sets. Theor. Comput. Sci., 32(1–2):173–183,
1984. doi:10.1016/0304-3975(84)90029-X.

[30] G. Moser. KBOs, ordinals, subrecursive hierarchies and all that. J. Logic Comput.,
2014. To appear.

[31] A. Podelski and A. Rybalchenko. Transition invariants. In LICS 2004, pages 32–41.
IEEE, 2004. doi:10.1109/LICS.2004.1319598.

[32] S. Schmitz. Complexity hierarchies beyond Elementary. Preprint, 2013. URL http:
//arxiv.org/abs/1312.5686.

[33] S. Schmitz and Ph. Schnoebelen. Multiply-recursive upper bounds with Higman’s
Lemma. In ICALP 2011, volume 6756 of LNCS, pages 441–452. Springer, 2011.
doi:10.1007/978-3-642-22012-8 35.

[34] S. Schmitz and Ph. Schnoebelen. Algorithmic aspects of wqo theory. Lecture notes,
2012. URL http://cel.archives-ouvertes.fr/cel-00727025.

[35] S. Schmitz and Ph. Schnoebelen. The power of well-structured systems. In P. R.
D’Argenio and H. Melgratti, editors, Concur 2013, volume 8052 of LNCS, pages
5–24. Springer, 2013. doi:10.1007/978-3-642-40184-8 2. URL http://arxiv.org/abs/
1402.2908.

[36] H. Schwichtenberg and S. S. Wainer. Proofs and Computation. Perspectives in Logic.
Cambridge University Press, 2012.

[37] A. M. Turing. Checking a large routine. In EDSAC 1949, pages 67–69, 1949.
[38] C. Urban and A. Miné. An abstract domain to infer ordinal-valued ranking functions.

In Z. Shao, editor, ESOP 2014, volume 8410 of LNCS, pages 412–431. Springer, 2014.
doi:10.1007/978-3-642-54833-8 22.

[39] A. Weiermann. Complexity bounds for some finite forms of Kruskal’s Theorem.
J. Symb. Comput., 18(5):463–488, 1994. doi:10.1006/jsco.1994.1059.

[40] A. Weiermann. Termination proofs for term rewriting systems by lexicographic path
orderings imply multiply recursive derivation lengths. Theor. Comput. Sci., 139(1–2):
355–362, 1995. doi:10.1016/0304-3975(94)00135-6.

ENS Cachan & INRIA, France
E-mail address: schmitz@lsv.ens-cachan.fr

http://dx.doi.org/10.1016/0020-0190(82)90107-7
http://dx.doi.org/10.1145/360204.360210
http://dx.doi.org/10.1016/S0304-3975(01)00015-9
http://dx.doi.org/10.1007/s00153-003-0190-2
http://dx.doi.org/10.1007/BF01967649
http://dx.doi.org/10.1016/0304-3975(84)90029-X
http://dx.doi.org/10.1109/LICS.2004.1319598
http://arxiv.org/abs/1312.5686
http://arxiv.org/abs/1312.5686
http://dx.doi.org/10.1007/978-3-642-22012-8_35
http://cel.archives-ouvertes.fr/cel-00727025
http://dx.doi.org/10.1007/978-3-642-40184-8_2
http://arxiv.org/abs/1402.2908
http://arxiv.org/abs/1402.2908
http://dx.doi.org/10.1007/978-3-642-54833-8_22
http://dx.doi.org/10.1006/jsco.1994.1059
http://dx.doi.org/10.1016/0304-3975(94)00135-6

	1. Introduction
	2. Well Quasi Orders and Termination
	2.1. Well Quasi Orders
	2.2. Termination
	2.3. Ordinals

	3. Complexity Bounds
	3.1. Controlled Ranking Functions
	3.2. Hardy and Cichon Hierarchies
	3.3. A Length Function Theorem for 0

	4. Complexity Classification
	4.1. Fast-Growing Classes
	4.2. Classification

	5. Product vs. Lexicographic Orderings
	5.1. Disjunctive Termination Arguments
	5.2. A Comparison
	5.3. Length Functions for the Product Ordering
	5.4. Controlling Abstractions

	6. Concluding Remarks
	References

