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Abstract

This paper addresses the longstanding problem of the recognition lim-
itations of classical LALR(1) parser generators by proposing the usage of
noncanonical parsers. To this end, we present a definition of noncanon-
ical LALR(1) parsers, NLALR(1). The class of grammars accepted by
NLALR(1) parsers is a proper superclass of the NSLR(1) and LALR(1)
grammar classes. Among the recognized languages are some nondeter-
ministic languages. The proposed parsers retain many of the qualities of
canonical LALR(1) parsers: they are deterministic, easy to construct, and
run in linear time. We argue that they could provide the basis for a range
of powerful noncanonical parsers.

Key words: Noncanonical parser, deterministic parser, LALR, two-stack
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1 Introduction

Testimonies abound on the shortcomings of classical LALR(1) parser generators
like YACC [9]. The problem lies in the large expressivity gap between what can
be specified using the context-free grammar they are fed with, and what can
actually be parsed by the LALR(1) automaton they produce. Transforming a
grammar until its LALR(1) parser becomes deterministic is arduous, and can
obfuscate the attached semantics; moreover, some languages are simply not
deterministic.

The expressivity gap vanishes when general parsers [6, 15] are preferred.
Such a choice is however done at the expense of the detection of ambiguities.
While this might seem acceptable for well established languages, for which the
scrutiny of many implementors has pinpointed all ambiguous constructs, there
always remains a risk of runtime problems if an unexpected ambiguity appears.
The avoidance of such problems is clearly a desirable guarantee, thus motivating
our option of restricting to some subclass of the unambiguous grammars.
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This paper advocates an almost forgotten way of diminishing the expressivity
gap: the usage of noncanonical parsers. We apply it to LALR(1) parsing by
means of a generic construction. Therefore, we also allow immediate application
to other LR-based parsing methods.

Noncanonical parsers have been thoroughly investigated on a theoretical
level [12]. Surprisingly, there are very few practical noncanonical parsing meth-
ods, and their formal study remains largely unexplored. Indeed, the only one
of clear practical interest is an extension to SLR(1) parsing [13]. Noncanonical
parsers are however a powerful means of reducing the expressivity gap, while
still rejecting any ambiguous syntax. In this they can be compared to LALR(k)
parsers with k > 1 [3], or, to a larger extent, to parsers allowing unbounded
regular lookaheads [4, 2, 7]. Like the latter, noncanonical parsers can recog-
nize nondeterministic languages. The classes of grammars accepted by both
methods are incomparable in general, but the class of languages accepted by
noncanonical parsers is strictly wider than the one accepted by regular looka-
head parsers [12]. And there is a winning argument in favor of noncanonical
parsers: they can also increase the size of their lookahead window, possibly to an
unbounded length [8]. This point motivates our study of noncanonical LALR(1)
parsers, since NSLR(1) parsers are unfit for such extensions: their lookahead
computation is not contextual.

Also in contrast with NSLR(1), our definitions rely on a prefix equiva-
lence relation: we use the LR(0) equivalence so that the resulting parsers are
LALR(1), but finer equivalences could just as easily be used. Our specific choice
of LALR(1) parsers can be explained by their wide adoption, their practical
relevance, and the existence of efficient and broadly used algorithms for their
generation [5]. We express our computations in the same framework and obtain
a simple and efficient practical construction. The additional complexity of gen-
erating a NLALR(1) parser instead of a LALR(1) or a NSLR(1) one, as well as
the increase of the parser size and the overhead on parsing performances are all
quite small. Therefore, the improved parsing power comes at a fairly reasonable
price.

The paper is organized as follows: Section 2 briefly introduces noncanonical
parsing; Section 3 recalls the formal details of the canonical LALR(1) definition,
which will be extended for its noncanonical counterpart in Section 4. We refer
the interested reader to a separate research report [10] for a complete study,
including grammar classes comparisons, alternative definitions for noncanonical
LALR-based parsers, a concrete example of application, and omitted proofs.

Notation The basic terminology, definitions, and notational conventions used
in this paper are classical [1, 11]. Our context-free grammars are reduced and
augmented to G′ = 〈N ′, T ′, P ′, S′〉 = 〈N ∪ {S′}, T ∪ {$}, P ∪ {S′→S$}, S′〉.
As usual, A,B,C, . . . denote nonterminals in N ′; a, b, c, . . . denote terminals in
T ′; u, v, w, . . . denote strings in T ′∗; X,Y,Z denote symbols in V ′; α, β, γ, . . .
denote strings in V ′∗; ε is the empty string or empty sequence; k :α is the
prefix of length k of string α. Rightmost derivations are denoted by ⇒

rm
, whereas

leftmost derivations are denoted by ⇒
lm

.
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Figure 1: The conflict position in state q1 for G1.

2 Noncanonical Parsing

A bottom-up parser reverses the derivation steps which lead to the terminal
string it parses. For most bottom-up parsers, including LALR ones, these deriva-
tions are rightmost, and therefore the reduced phrase is the leftmost one, called
the handle of the sentential form.

Noncanonical parsers allow the reduction of phrases which may not be han-
dles [1]. A noncanonical parser is able to suspend a reduction decision where its
canonical counterpart would not be deterministic, explore the remaining input,
perform some reductions, resume to the conflict point and use nonterminals—
resulting from the reduction of a possibly unbounded amount of input—in its
lookahead window to infer its parsing decisions.

2.1 Parsing Example

Consider for instance grammar G1 with rules S→BC |AD, A→a, B→a, C→CA |
A, D→aD |b, generating the language LG1

= aa+ | aa∗b.
The state q1 in the automaton of Figure 1a is inadequate: the parser is

unable to decide between reductions A→a and B→a when the lookahead is a.
We see on the derivation trees of Figure 1b that, in order to choose between
the two reductions, the parser has to know if there is a b at the very end of the
input. This need for an unbounded lookahead makes G1 non-LR. A parser using
a regular lookahead would solve the conflict by associating the distinct regular
lookaheads a∗b and a+$ with the reductions to A and B respectively.

However, we notice that a single lookahead symbol (D or C) is enough: if
the parser is able to explore the context on the right of the conflict, and to
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parsing stack input stack actions
q0 aaa$ shift

q0q1 aa$ shift
The inadequate state q1 is reached with lookahead a. The decision of reducing to A or B

can be restated as the decision of reducing the right context to D or C. In order to perform

the latter decision, we shift a and reach a state s1 where we now expect a∗b and a∗$. We

are pretty much in the same situation as before: s1 is also inadequate. But we know that

in front of b or $ a decision can be made:

q0q1s1 a$ shift
There is a new conflict between the reduction A→a and the shift of a to a position D→a·D.

We also shift this a. The expected right contexts are still a∗b and a∗$, so the shift brings

us again to s1:

q0q1s1s1 $ reduce using A→a

The decision is made in front of $. We reduce the a represented by s1 on top of the parsing

stack, and push the reduced symbol A on top of the input stack:

q0q1s1 A$ reduce using A→a

Using this new lookahead, the parser is able to decide another reduction to A:

q0q1 AA$ reduce using B→a

We are now back in state q1. Clearly, there is no need to wait until we see a completely

reduced symbol C in the lookahead window: A is already a symbol specific to the reduction

to B:

q0 BAA$ shift
q0q3 AA$ shift

q0q3q7 A$ reduce using C→A

q0q3 CA$ shift
q0q3q6 A$ shift

q0q3q6q11 $ reduce using C→CA

q0q3 C$ shift
q0q3q6 $ reduce using S→BC

q0 S$ shift, and then accept

Table 1: The parse of the string aaa by the NLALR(1) parser for G1.

reduce some other phrases, then, it will reduce this context to a D or a C.
When coming back to the conflict point, it will see a D or a C in the lookahead
window.

Table 1 presents a noncanonical parse for a string in LG1
. The noncanonical

machine is not very different from the canonical one, except that it uses two
stacks. The additional stack, the input stack, contains the (possibly reduced)
right context, whereas the other stack is the classical parsing stack. Reductions
push the reduced nonterminal on top of the input stack. There is no goto
operation per se: the nonterminal on top of the input stack either allows a
parsing decision which had been delayed, or is simply shifted.

We will now see how to transform and extend the canonical LALR(1) parser
of Figure 1a to perform these parsing steps.

2.2 Construction Principles

The LALR(1) construction relies heavily on the LR(0) automaton. This au-
tomaton provides a nice explanation for LALR lookahead sets: the symbols
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q1: A→a·{A, $}
D→a·D
D→·aD

D→·b

Figure 2: State q1 extended for noncanonical parsing.

in the lookahead set for some reduction are the symbols expected next by the
LR(0) parser, should it really perform this reduction.

Let us compute the lookahead set for the reduction A→a in state q1. Should
the LR(0) parser decide to reduce A→a, it would pop q1 from the parsing stack
(thus be in state q0), and then push q4. We read directly on Figure 1a that
three symbols are acceptable in q4: D, a and b. Similarly, the reduction B→a

in q1 has {C,A, a} for lookahead set, read directly from state q3.
The intersection of the lookahead sets for the reductions in q1 is not empty:

a appears in both, which means a conflict. Luckily enough, a is not a totally
reduced symbol : D and C are reduced symbols, read from kernel items in q4
and q3. The conflicting lookahead symbol a could be reduced, and later we
might see a symbol on which we can make a decision instead. Thus, we shift
the lookahead symbol a in order to reduce it and solve the conflict later. All
the other symbols in the computed lookaheads allow to make a decision, so we
leave them in the lookaheads sets, but we remove a from both sets.

Shifting a puts us in the same situation we would have been in if we had
followed the transitions on a from both q3 and q4, since the noncanonical gener-
ation simulates both reductions in q1. We create a noncanonical transition from
q1 on a to a noncanonical state s1 = {q5, q8}, which will behave as the union
of states q5 and q8. State s1 will thus allow a reduction using A→a inherited
from q5, and the shifts of a, b and D inherited from q8. We therefore need to
compute the lookaheads for reduction using A→a in q5. Using again the LR(0)
simulation technique, we see on Figure 1a that this reduction would lead us
to either q7 or to q11. In both cases, the LR(0) automaton would perform a
reduction to C that would lead next to q6. At this point, the LR(0) automaton
expects either the end of file symbol $, should a reduction to S occur, or an A or
an a. The complete lookahead set for the reduction A→a in q8 is thus {A, a, $}.

The new state s1 is also inadequate: with an a in the lookahead window,
we cannot choose between the shift of a and the reduction A→a. As before, we
create a new transition on a from s1 to a noncanonical state s′1 = {q5, q8}. State
q5 is the state accessed on a from q6. State q8 is the state accessed from q8 if
we simulate a shift of symbol a.

State s′1 is the same as state s1, and we merge them. The noncanonical com-
putation is now finished. Figure 2 sums up how state q1 has been transformed
and extended. Note that we just use the set {q5, q8} in a noncanonical LALR(1)
automaton; items represented in Figure 2 are only there to ease understanding.

3 LALR(1) Parsers

LALR parsers were introduced as practical parsers for deterministic languages.
Rather than building an exponential number of LR(k) states, LALR(k) parsers
add lookahead sets to the actions of the small LR(0) parser. We briefly recall
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some important definitions and results on LR(0) and LALR(1) parsers.

Valid Items and Prefixes A dotted production A→α·β of G is a valid LR(0)
item for string γ in V ′∗ if

S′⇒
rm

∗δAz⇒
rm
δαβz = γβz. (1)

If such a derivation holds in G, then γ in V ′∗ is a valid prefix.
The set of valid items for a given string γ in V ′∗ is denoted by Valid(γ). Two

strings δ and γ are equivalent if and only if they have the same valid items.
The valid item sets are obtained through the following computations:

Kernel(ε)={S′→·S$}, (2)

Kernel(γX)={A→αX·β | A→α·Xβ ∈ Valid(γ)}, (3)

Valid(γ)=Kernel(γ) ∪ {B→·ω | A→α·Bβ ∈ Valid(γ)}. (4)

LR(0) States LR automata are pushdown automata that use equivalence
classes on valid prefixes as their stack alphabetQ. We therefore denote explicitly
states of a LR parser as q = [δ], where δ is some valid prefix in q the state reached
upon reading this prefix. For instance, in the automaton of Figure 1a, state q2
is the equivalence class {S}, while state q8 is the equivalence class described by
the regular language Aa∗a.

A pair ([δ],X) in Q × V is a transition if and only if δX is a valid prefix.
If this is the case, then [δX] is the state accessed upon reading δX, thus the
notation [δX] also implies1 a transition from [δ] on X, and [δα] a path on α.

LALR(1) Automata The LALR(1) lookahead set of a reduction using A→α

in state q is
LA(q,A→α) = {1:z | S′⇒

rm

∗δAz and q = [δα]}. (5)

4 NLALR(1) Parsers

There is a number of differences between the LALR(1) and NLALR(1) defini-
tions. The most visible one is that we accept nonterminals in our lookahead sets.
We also want to know which lookahead symbols are totally reduced. Finally, we
are adding new states, which are sets of LR(0) states. Therefore, the objects in
most of our computations will be LR(0) states.

4.1 Valid Covers

We have recalled in the previous section that LR(0) states can be viewed as
collections of valid prefixes. A similar definition for NLALR(1) states would
be nice. However, due to the suspended parsing actions, the language of all
prefixes accepted by a noncanonical parser is no longer a regular language. This
means the parser will only have a regular approximation of the exact parsing
stack language. The noncanonical states, being sets of LR(0) states (i.e., sets of
equivalence classes on valid prefixes), provide this approximation. We therefore
define valid covers as valid prefixes covering the parsing stack language.

1We always assume when writing [δX] that Valid(δX) is not the empty set.
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Definition 1 String γ is a valid cover in G for string δ if and only if γ is a
valid prefix and γ⇒∗δ. We write δ̂ to denote some cover of δ and Cover(L) to
denote the set of all valid covers for the set of strings L.

Remember for instance configuration q0q1‖aa$ from Table 1. This configu-
ration leads to pushing state s1 = {q5, q8}, where both valid prefixes (B|BC)a
and Aa∗a of q5 and q8 are valid covers for the actual parsing stack prefix aa.
Thus in s1 we cover the parsing stack prefix by (B | BC | Aa∗)a.

4.2 Noncanonical Lookaheads

Noncanonical lookaheads are symbols in V ′. Adapting the computation of the
LALR(1) lookahead sets is simple, but a few points deserve some explanations.

First of all, noncanonical lookahead symbols have to be non null, i.e. X is
non null if X⇒∗ax. Indeed, null symbols do not provide any additional right
context information—worse, they can hide it. If we consider that we always
perform a reduction at the earliest parsing stage possible, then they will never
appear in a lookahead window.

Totally Reduced Lookaheads Totally reduced lookaheads form a subset of
the noncanonical lookahead set such that none of its elements can be further
reduced. A conflict with a totally reduced symbol as lookahead of a reduction
cannot be solved by a noncanonical exploration of the right context, since there
is no hope of ever reducing it any further.

We define here totally reduced lookaheads as non null symbols which can
follow the right part of the offending rule in a leftmost derivation.

Definition 2 The set of totally reduced lookaheads for a reduction A→α in
LR(0) state q is defined by

RLA(q,A→α) = {X | S′⇒
lm

∗zAγXω, γ⇒∗ε,X⇒∗ax, and q = [ẑα]}.

Derived Lookaheads The derived lookahead symbols are simply defined by
extending (5) to the set of all non null symbols in V .

Definition 3 The set of derived lookaheads for a reduction A→α in LR(0)
state q is defined by

DLA(q,A→α) = {X | S′⇒∗δAXω,X⇒∗ax, and q = [δ̂α]}.

We obviously have that

LA(q,A→α) = DLA(q,A→α) ∩ T ′. (6)

Conflicting Lookahead Symbols Last, we need to compute which looka-
head symbols would make the state inadequate. A noncanonical exploration
of the right context is required for these symbols. They appear in the derived
lookahead sets of several reductions and/or are transition labels. However, the
totally reduced lookaheads of a reduction are not part of this lookahead set, for
if they are involved in a conflict, then there is no hope of being able to solve it.
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Definition 4 Conflicts lookahead set for a reduction using A→α in set s of
LR(0) states is defined as

CLA(s,A→α) = {X ∈ DLA(q,A→α) | q ∈ s,X 6∈ RLA(q,A→α),
(q,X) or (∃p ∈ s,∃B→β 6= A→α ∈ P,X ∈ DLA(p,B→β))}.

We then define the noncanonical lookahead set for a reduction using A→α

in set s of LR(0) states as

NLA(s,A→α) =
(

⋃

q∈s

DLA(q,A→α)
)

− CLA(s,A→α).

We illustrate these definitions by computing the lookahead sets for the reduc-
tion using A→a in state s1 = {q5, q8} as in Section 2.2: RLA(q5, A→a) = {A, $},
DLA(q5, A→a) = {A, a, $}, CLA(s1, A→a) = {a} and NLA(s1, A→a) = {A, $}.

4.3 Noncanonical States

We said at the beginning of this section that states in the NLALR(1) automaton
were in fact sets of LR(0) states. We denote by JδK the noncanonical state
accessed upon reading string δ in V ′∗.

Definition 5 Noncanonical state JδK is the set of LR(0) states defined by

JεK ={[ε]} and

JδXK = {[ ̂̂γAX] | X ∈ CLA(JδK, A→α), [γ̂α] ∈ JδK} ∪ {[ϕX] | [ϕ] ∈ JδK}.

Noncanonical transition from JδK to JδXK on symbol X, denoted by (JδK,X),
exists if and only if JδXK 6= ∅. Reduction (JδK, A→α) exists if and only if there
exists a reduction (q,A→α) and q is in JδK.

Note that these definitions remain valid for plain LALR(1) states since, in
absence of a conflict, a noncanonical state is a singleton set containing the
corresponding LR(0) state.

A simple induction on the length of δ shows that the LR(0) states considered
in the noncanonical state JδK provide a valid cover for any accessing string of
the noncanonical state. It basically means that the actions decided in a given
noncanonical state make sense at least for a cover of the real sentential form
prefix that is read.

The approximations done when covering the actual sentential form prefix
are made on top of the previous approximations: with each new conflict, we
need to find a new set of LR(0) states covering the parsing stack contents. This

stacking is made obvious in the above definition when we write ̂̂γAX. It means
that NLALR(1) parsers are not prefix valid, but prefix cover valid.

Throughout this paper, we use the LR(0) automaton to approximate the
prefix read so far. We could use more powerful methods—but it would not really
be in the spirit of LALR parsing any longer; see [10] for alternative methods.

4.4 NLALR(1) Automata

Here we formalize noncanonical LALR(1) parsing machines. They are a special
case of two-stack pushdown automata (2PDA). As said before, the additional
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stack serves as an input for the parser, and reductions push the reduced nonter-
minal on top of this stack. This behavior of reductions excepted, the definition
of a NLALR(1) automaton is similar to the LALR(1) one.

Definition 6 Let M = (Q ∪ V ∪ {$, ‖}, R) be a rewriting system. A configura-
tion of M is a string of the form

JεKJX1K . . . JX1 . . . XnK‖ω$

where X1 . . . Xn and ω are strings in V ∗. We say that M is a NLALR(1)
automaton if its initial configuration is JεK‖w$ with w the input string in T ∗,
its final configuration is JεKJSK‖$, and if each rewriting rule in R is of the form

• shift X in state JδK, defined if there is a transition (JδK,X)

JδK‖X ⊢
shift

JδKJδXK‖,

• or reduce by rule A→X1 . . . Xn of P in state JδX1 . . . XnK with lookahead
X, defined if A→X1 . . . Xn is a reduction in JδX1 . . . XnK and lookahead
X is in NLA(JδX1 . . . XnK, A→X1 . . . Xn)

JδX1K . . . JδX1 . . . XnK‖X ⊢
A→X1 . . . Xn

‖AX.

The following rules illustrate Definition 6 on state s1 of the NLALR(1)
automaton for G1: s1‖a ⊢

shift
s1s1‖, s1‖b ⊢

shift
s1{q9}‖, s1‖D ⊢

shift
s1{q12}‖, s1‖A ⊢

A→a
‖AA and s1‖$ ⊢

A→a
‖A$.

According to Definition 6, NLALR(1) automata are able to backtrack by a
limited amount, corresponding to the length of their window, at reduction time
only. We know that noncanonical parsers using a bounded lookahead window
operate in linear time [12]; the following theorem precisely shows that the total
number of rules involved in the parsing of an input string is linear in respect
with the number of reductions performed, which itself is linear with the input
string length. This theorem uses an output effect τ which outputs the rules used
for each reduction performed by M ; we then call (M, τ) a NLALR(1) parser.

Theorem 1 Let G be a grammar and (M, τ) its NLALR(1) parser. If π is a
parse of w in M , then the number of parsing steps |π| is related to the number
|τ(π)| of derivations producing w in G and to the length |w| of w by

|π| = 2|τ(π)| + |w|.

Since all the conflict lookahead symbols are removed from the noncanoni-
cal lookahead sets NLA, the only possibility for the noncanonical automaton
to be nondeterministic would be to have a totally reduced symbol causing a
conflict. A context-free grammar G is NLALR(1) if its NLALR(1) automaton
is deterministic, and thus if no totally reduced symbol can cause a conflict.

4.5 Computing the Lookaheads and Covers

The LALR(1) lookahead sets that are defined in Equation (5) can be expressed
using the following definitions [5], where lookback is a relation between re-
ductions and nonterminal LR(0) transitions, includes and reads are relations
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between nonterminal LR(0) transitions, and DR—standing for directly reads—is
a function from nonterminal LR(0) transitions to sets of lookahead symbols.

([δα], A→α) lookback ([δ], A), (7)

([δβ], A) includes ([δ], B) iff B→βAγ and γ⇒∗ε, (8)

([δ], A) reads ([δA], C) iff ([δA], C) and C⇒∗ε, (9)

DR([δ], A) = {a | ([δA], a)}. (10)

Using the above definitions, we can rewrite Equation (5) as

LA(q,A→α) =
⋃

(q,A→α) lookback ◦ includes∗◦ reads∗(r,C)

DR(r, C). (11)

This computation for LALR(1) lookahead sets is highly efficient. It can
entirely be performed on the LR(0) automaton, and the union can be interleaved
with a fast transitive closure algorithm [14] on the includes and reads relations.

Since we have a very efficient and widely adopted computation for the canon-
ical LALR(1) lookahead sets, why not try to use it for the noncanonical ones?

Theorem 2

RLA(q,A→α) = {X | X⇒∗ax, ψ⇒∗ε, C⇒ρB·ψXσ ∈ Kernel(δρB) and
(q,A→α) lookback ◦ includes

∗([δρ], B)}.

This theorem is consistent with the description of Section 2.2, where we said
that C was a totally reduced lookahead for reduction B→a in q1: item S→B·C
is in the kernel of state q3 accessed by (q0, B), and (q1, B→a) lookback (q0, B).

Theorem 3 Let us extend the directly reads function of (10) to

DR([δ], A) = {X | ([δA],X) and X⇒∗ax}; then

DLA(q,A→α) =
⋃

(q,A→α) lookback ◦ includes∗◦ reads∗(r,C)

DR(r, C).

We are still consistent with the description of Section 2.2 since, using this
new definition of the DR function, DR(q0, B) is {a,C,A}.

To find the valid covers that approximate a sentential form prefix using the
LR(0) automaton and to find the LALR lookahead sets wind up being very
similar operations. This allows us to reuse our relational computations for the
automaton construction itself, as illustrated by the following theorem.

Theorem 4 Noncanonical state JδK is the set of LR(0) states defined by

JεK ={[ε]} and

JδXK = {[γCX] | X ∈ CLA(JδK, A→α), q ∈ JδK and
(q,A→α) lookback ◦ includes

∗◦ reads
∗([γ], C)}

∪ {[ϕX] | [ϕ] ∈ JδK}.
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4.6 Practical Construction Steps

We present here a more informal construction, with the main steps leading to
the construction of a NLALR(1) parser, given the LR(0) automaton.

1. Associate a noncanonical state s={q} with each LR(0) state q.

2. Iterate while there exists an inadequate2 state s:

(a) if it has not been done before, compute the RLA and DLA lookahead
sets for the reductions involved in the conflict; save their values for
the reduction and LR(0) state involved;

(b) compute the CLA and NLA lookahead sets for s;

(c) set the lookaheads to NLA for the reduction actions in s;

(d) • if the NLA lookahead sets leave the state inadequate, meaning
there is a conflict on a totally reduced lookahead, then report the
conflict, and use a conflict resolution policy or terminate with an
error;

• if CLA is not empty, create transitions on its symbols and create
new states if no fusion occurs. New states get new transition and
reduction sets computed from the LR(0) states they contain. If
these new states result from shift/reduce conflicts, the transitions
from s on the conflicting lookahead symbol now lead to the new
states.

This process always terminates since there is a bounded number of LR(0)
states and thus a bounded number of noncanonical states.

Let us conclude this section with a few words on the size of the generated
parsers. Since NLALR(1) states are sets of LR(0) states, we find an exponential
function of the size of the LR(0) automaton as an upper bound on the size of the
NLALR(1) automaton. This bound seems however pretty irrelevant in practice.
The NLALR(1) parser generator needs to create a new state for each lookahead
causing a conflict, which does not happen so often. All the grammars we studied
created transitions to canonical states very quickly afterwards. Experimental
results with NSLR(1) parsers show that the increase in size is negligible in
practice [13].

5 Conclusion

We have presented a construction for noncanonical LALR(1) parsers. Such
parsers are practical for some difficult syntax problems. They improve on both
noncanonical SLR(1) parsers and canonical LALR(1) parsers, and their gener-
ation is only slightly more complex while their size and their performances are
comparable.

For practical uses, we feel we would need an unbounded lookahead version
of NLALR parsers. Though the cost to pay might be a quadratic parsing time
in the worst case, the freedom offered to the grammar writer would probably be

2We mean here inadequate in the LR(0) sense, thus no lookaheads need to be computed
yet.
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worth it. The ability to specify finer equivalence relations instead of the LR(0)
one would prove its usefulness in this setting where precision becomes critical.

In complement to previous theoretical work on noncanonical parsing [12], it
would be interesting to formally study practical noncanonical parsers. To this
end, we expect the concept of valid covers modulo an equivalence relation to be
a good starting point.
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