
LABORATOIRE

INFORMATIQUE, SIGNAUX ET SYSTÈMES
DE SOPHIA ANTIPOLIS

UMR 6070

MODULAR SYNTAX DEMANDS VERIFICATION

Sylvain Schmitz

Projet LANGAGES

Rapport de recherche
ISRN I3S/RR–2006-32–FR

Octobre 2006

LABORATOIRE I3S: Les Algorithmes / Euclide B – 2000 route des Lucioles – B.P. 121 –
06903 Sophia-Antipolis Cedex, France – Tél. (33) 492 942 701 – Télécopie : (33) 492 942 898

http://www.i3s.unice.fr/I3S/FR/

RÉSUMÉ :
Les formalismes grammaticaux modulaires sont un pas essentiel vers de meilleures pratiques en ingénierie des grammaires.

Cependant, en nous éloignant des modèles déterministes traditionnels, certaines vérifications statiques intrinsèques sont perdues.
L’article montre pourquoi une vérification des grammaires est nécessaire pour une utilisation robuste des grammaires algébriques
ou des grammaires d’expressions recognitives comme formalismes syntaxiques modulaires. Des procédures de vérification
simples sont présentées pour chacun de ces formalismes.

MOTS CLÉS :
Ingénierie des gammaires, vérification, modules, grammaire algébrique, grammaire d’expressions recognitives, désambigua-

tion

ABSTRACT:
Modular grammatical formalisms provide an essential step towards improved grammar engineering practices. However, as

we depart from traditional deterministic models, some intrinsic static checks are lost. The paper shows why grammar verification
is necessary for reliable uses of context-free grammars (CFGs) and parsing expression grammars (PEGs) as modular syntax
definitions. Simple conservative verification procedures are presented for each formalism.

KEY WORDS :
Grammar engineering, verification, module system, context-free grammar, parsing expression grammar, disambiguation

Modular Syntax Demands Verification

Sylvain Schmitz

Laboratoire I3S, Université de Nice - Sophia Antipolis, France

schmitz@i3s.unice.fr

Abstract

Modular grammatical formalisms provide an essential step towards
improved grammar engineering practices. However, as we depart from
traditional deterministic models, some intrinsic static checks are lost. The
paper shows why grammar verification is necessary for reliable uses of
context-free grammars (CFGs) and parsing expression grammars (PEGs)
as modular syntax definitions. Simple conservative verification procedures
are presented for each formalism.

Key words: Grammar engineering, verification, module system, context-
free grammar, parsing expression grammar, disambiguation

ACM categories: D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Modules ; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs; F.4.2 [Mathematical Logic

and Formal Languages]: Grammars and Other Rewriting Systems

1 Introduction

New techniques, like Generalized LR [32] and packrat [9] parsing, have opened
new opportunities for grammar engineering, notably by accepting modular syn-
tactic descriptions. While modularity allows a rational development of gram-
mars and grammar-related software, some reliability issues with the underlying
formalisms have been overlooked. The services of modularity are indeed so great
that many practitioners prefer to ignore the risk of something going wrong rather
than to let go of their improved condition.

In this paper, we argue that we can keep the best of two worlds, by enforcing
the use of grammar verification tools. Our position is that the introduction of
engineering practice in grammatical development is logically followed by the
design of adapted tools, including formal verification ones. We make the need
for such tools clear by exhibiting two representative decision issues faced by two
modern grammatical formalisms, and we shed light on some possible approaches
to the problems by providing some simple resolutions.

In more details, after a few words on the newly-born field of grammar en-
gineering, we motivate the use of modular syntax formalisms by means of a
concrete parsing application (Section 2.1). We then implement our example
in two modular syntax formalisms, namely context-free grammars with disam-
biguation filters and parsing expression grammars (Section 2.2), and exhibit two

ISRN I3S/RR-2006-32-FR

mailto:schmitz@i3s.unice.fr

2 S. Schmitz

decidability issues that burden them (Section 2.3). The first undecidable prob-
lem is well known as the ambiguity problem in context-free grammars [4, 6].
The second problem is a contribution of the article: it is the semi disjointness
of two parsing expressions; we show its undecidability in Section 4.1.

Having identified two verification problems, we propose checking procedures
based on grammar graph quotienting (Sections 3 and 4). For the sake of sim-
plicity, we describe rather conservative approaches. We hope that they will be
taken as incentives for future study over the verification problems that are put
forward in this paper.

Omitted implementation and proof details are given in Appendices B and C.
Formal definitions and notational conventions for context-free grammars and
parsing expression grammars are given in Appendices A.1 and A.2 respectively.
The reader unfamiliar with these two syntax formalisms might need to read
them in order to follow the arguments of forthcoming Section 2.

2 Modular Grammar Engineering

Grammars hold an uncomfortable position in software engineering. They are at
the same time

1. specifications of languages and structures manipulated by the software,
and

2. portions of the source code in their own right.

In their first role, they represent some sort of an ideal in engineering practice,
where specifications are automatically derived into correct code by tools like
YACC [17]. In their second role, they did not gather enough attention when
one considers the difficulty of grammar development. A new field of software
methodology dedicated to grammar engineering is now emerging, supported by
the seminal work of Klint et al. [20] and a few success stories in its application,
notably a COBOL grammar recovery [22] and a C# parser development [23].1

One of the challenges for grammar engineering is the modularity of gram-
matical definitions, which would foster both easy prototyping and a better reuse
of grammar fragments. The issue can be illustrated in the case of parser gen-
erators. Classical parser generators are usually restricted to subclasses (LL(1),
LALR(1), up to LR(k)) of the context-free grammars, classes that do not enjoy
good closure properties: new conflicts can be introduced when modifying the
grammar. Several attempts to address this issue are given in the literature,
most often by using the whole class of context-free grammars. Employing gen-
eral [8, 32] or backtracking parsing methods is considered there as a trade of
performance for flexibility.

2.1 Modularity in Practice

Let us give a practical account of how modularity can assist in writing a parser
for a programming language. We consider a very small and very simple portion

1The field of natural language processing has encouraged engineering practice in grammar
development for much longer; the sheer complexity of natural languages does not leave much
room for hackery.

ISRN I3S/RR-2006-32-FR

Modular Syntax Demands Verification 3

of the syntax of Standard ML [24, Appendix B], more precisely of the pattern
syntax.

The context-free rules we are interested in for our exposition are

〈pat〉 −→ 〈atpat〉 | 〈pat〉 : 〈ty〉
〈atpat〉 −→ vid | | (〈pats〉) | ()
〈pats〉 −→ 〈pat〉 | 〈pats〉 , 〈pat〉

(G1)

For instance, using these rules, we can generate the pattern “(x,y,): int∗int∗int”
where “(x,y,)” is an atomic pattern 〈atpat〉 further decomposable as a tuple
with the value identifiers vid “x” and “y” and the wildcard “ ” as individual
patterns, while “int∗int∗int” is a type 〈ty〉.

An additional possibility offered by Standard ML is the syntax of layered
patterns, following the context-free rules

〈pat〉 −→ vid : 〈ty〉 as 〈pat〉 | vid as 〈pat〉 (G2)

The syntax of layered patterns is notoriously difficult to parse [18]. Upon reading
the partial input

val f = fn t r i p l e

a deterministic parser cannot distinguish whether the vid “ triple ” is an atomic
pattern 〈atpat〉, potentially with an associated type “int∗int∗int”, as in

val f = fn t r i p l e : i n t ∗ i n t ∗ i n t => t r i p l e

or is the start of a more complex layered pattern as in

val f = fn t r i p l e : i n t ∗ i n t ∗ i n t as (, , z) => z + 1

Types 〈ty〉 in Standard ML can be quite complex expressions, of arbitrary
length. The inconclusive lookahead string “int∗int∗int” can be longer than
the fixed k of a LR(k) parser. Adding the rules of G2 to G1 yields a non-LR(k)
grammar: LR(k) grammars are not closed under union. The construction of a
Standard ML compiler that used to work flawlessly for the pattern syntax of G1

would break upon addition of G2. A modular syntax formalism should allow to
generate a parser for the union of G1 and G2.

2.2 Implementation

We have implemented G1 and G1 ∪ G2
2 in two different modular formalisms,

namely the Modular Syntax Definition Formalism (SDF2) [35] and Parsing Ex-
pression Grammars (PEG) [10]. The two formalisms present further advantages
for the modular development of grammars: both integrate the lexical aspects
of the syntax seamlessly, and use so-called scannerless parsing techniques [28].
They are good representatives of the state of the art in grammatical formalisms
for computer languages.

It is worth noting that we are merely scratching the possibilities of these
formalisms and of their associated tools in our implementations, for we are
only interested in the cases that we identified as deserving a verification. The
reader is warmly encouraged to consider these tools for any future grammar
developments.

2Actually, we implemented augmented versions of G1 and G1 ∪ G2, with a rule
〈start〉−→〈pat〉 ; from the start symbol 〈start〉.

ISRN I3S/RR-2006-32-FR

4 S. Schmitz

2.2.1 SDF2: Modular Syntax Definition Formalism

The Modular Syntax Formalism SDF2 [35] is a concise syntax description lan-
guage used in the ASF+SDF meta-environment. The syntax descriptions of
SDF2 are compiled to generate scannerless Generalized LR parsers [36].

The grammars in SDF2 are CFGs with additional regular constructs as in
Extended BNF notation, with modular capabilities, and with disambiguation
filters [19] as functions from sets of parse trees to smaller sets of parse trees.
The set of syntax filters already implemented in SDF2 is described by van den
Brand et al. [33], and more possibilities are opened by semantic filters [34].

Implementation in SDF2 We have implemented G1 and G1 ∪ G2 using the
SDF2 bundle 2.3.3;3 the definition corresponding to G1 is given in Appendix B.1.
The syntax of Standard ML patterns 〈pat〉, types 〈ty〉 and identifiers vid is de-
scribed in the modules MLPatterns, MLTypes and MLIdentifiers respectively.
We show here how we added the rules of G2 in the Main module.

module Main

imports

MLPatterns MLTypes MLIdentifiers Layout

exports

context-free start-symbols START

sorts START

context-free syntax

PAT ";" -> START

VID (":" TY)? "as" PAT -> PAT

This last line is all what we needed in order to add the rules of G2.

2.2.2 PEG: Parsing Expression Grammar

Parsing expression grammars were “rediscovered” by Ford [10] from an earlier
formalism called TS [2]. In contrast with CFGs, PEGs are a recognitive for-
malism: they act as recognizers for the language they describe, and thus the
rules are denoted by A ← α. Another difference with CFGs is that PEGs use
a ordered choice operator / instead of |. The alternative rules of a nonterminal
are tested in order, and the first successful match is employed. While the rules
A−→ab | a and A−→a | ab are equivalent in a CFG and generate the language
{a, ab}, the PEG rules A← ab/a and A← a/ab are not: they recognize {ab, a}
and {a} respectively.

Parsing expression grammars are thus an extreme variant of the ordered
context-free grammars used in first-match backtracking parsing methods. In-
deed, the parsers for PEGs, called packrat parsers [9], belong to the family of
recursive descent parsers, and use memoization techniques to obtain a linear
time complexity bound in the length of the input.

The excellent modularity of PEGs stems from the fact that the class of
languages defined by PEGs is closed by union, intersection and complement.

3The SDF2 homepage can be reached at http://www.syntax-definition.org/.

ISRN I3S/RR-2006-32-FR

http://www.syntax-definition.org/

Modular Syntax Demands Verification 5

Implementation in Rats! We have implemented G1 and G1∪G2 in Rats! [12]
version 1.9.3,4 a PEG parser generator for Java that takes advantage of the clo-
sure properties of PEGs. As with SDF2, we have used its modular possibilities to
separate the lexing and type syntax concerns in two different modules MLLexing
and MLTypes. The code for G1 is in a module SimpleMLPatterns and is given
in Appendix B.2. We show here the module MLPatterns that adds the rules of
G2 from which we hope to produce a parser for G1 ∪ G2:

module MLPatterns;

import MLLexing;

modify SimpleMLPatterns;

public generic Start = Pattern void:’;’ ;

generic Pattern +=

<Atomic> ...

/ <Layered> ValueID TypeOp void:"as":Keyword Pattern TypeOp

;

The += operator of Rats! allows to add a new alternative to an existing nonter-
minal, and we use it to add the rules of G2.

2.3 Tests

Testing is an unavoidable part of any software development. The emerging
grammar engineering field has already produced testing tools for grammars and
grammar-based software [26, 21, 13]. Our case does not deserve very sophis-
ticated tests, and we are simply going to attempt to parse a correct Standard
ML pattern with our implementations. The implementations of G1 in SDF2 and
Rats! work flawlessly, and our next step is to test our implementations of G1∪G2

on the valid input sentence “t as (x,y,): triple ;”. Our implementations and
our example are of course carefully chosen in order to unveil issues with the
formalisms. Let us see what problems can appear at run-time with our parsers.

2.3.1 Testing with SDF2

sglr:error: Ambiguity in input, line 1, col 0:

PAT ":" TY -> PAT;VID (":" TY)? "as" PAT -> PAT

This error message issued by the scannerless GLR parser of the SDF2 tools
simply states that the sentence “t as (x,y,): triple ;” is ambiguous. This is
a classical dangling ambiguity, where the type specification can be attached at
a high or a low level. Figure 1 shows the two different possibilities for our test
sentence. The general rule given in the Standard ML definition is that low
attachments should be preferred, and thus that we should obtain the parse tree
of Figure 1b. This rule can be enforced by using one of the predefined syntax
filters of SDF2:

VID (":" TY)? "as" PAT -> PAT {prefer}

4The Rats! parser generator can be found at http://cs.nyu.edu/rgrimm/xtc/rats.html.

ISRN I3S/RR-2006-32-FR

http://cs.nyu.edu/rgrimm/xtc/rats.html

6 S. Schmitz

t as (x,y,) : triple ;

〈pat 〉

〈pat 〉 〈ty〉

〈pat 〉

〈start〉

(a) High attachment

t as (x,y,) : triple ;

〈pat 〉 〈ty〉

〈pat 〉

〈pat 〉

〈start〉

(b) Low attachment

Figure 1: An ambiguity in G1 ∪ G2.

2.3.2 Testing with Rats!

xtc.parser.ParseException:

input:1:2: error: symbol characters expected

t as (x,y,_): triple;

^

The error message of Rats! stems from the way PEGs are recognized: as we
want to recognize 〈start〉, we first need to recognize 〈pat〉, and the first rule to
use in this is 〈pat〉 ← 〈atpat〉 〈tyop〉. The attempt is fruitful: “t” is an atomic
pattern, and we recognize a 〈tyop〉 as the empty string. Since the first rule of
〈pat〉 was successfully matched, we now attempt to read the “;” symbol of the
〈start〉 rule, which fails. In the absence of any other alternative rule for 〈start〉,
the sentence is rejected.

Our implementation of G1 ∪ G2 does not recognize the expected language:
we did not notice that the language recognized by rule 〈pat〉 ← 〈atpat〉 〈tyop〉
could be a prefix of the one recognized by 〈pat〉 ← vid 〈tyop〉 as 〈pat〉 〈tyop〉.
The order then ruled out the possibility for the second choice to be explored.
The fix is obvious: we should add the layered pattern rule as a first choice:

generic Pattern +=

<Layered> ValueID TypeOp void:"as":Keyword Pattern TypeOp

/ <Atomic> ...

;

2.4 Why Verify?

Our tests revealed two issues with our implementations in SDF2 and Rats! .
The issues are not in the way the tools handled their input grammars, but in
the grammatical specifications themselves. Our example is very simple, and the
solutions were obvious; with some experience with the formalisms, we could have
identified and avoided the problems from the start. Nevertheless, the issues we
found in our grammars by testing are quite serious: in general, it is undecidable
whether they arise in a given SDF2 or PEG specification.

Classical deterministic parser generators give more guarantees than just per-
formance: they also warrant that the syntax is unambiguous. Ambiguity is un-
desirable in most computer languages, which are mediums for communicating
with quite a finicky and unforgiving entity, the computer. When moving from

ISRN I3S/RR-2006-32-FR

Modular Syntax Demands Verification 7

classical parser generators to the new parsing techniques, this static check is
lost.

The two formalisms presented in this paper use very different approaches to
ambiguity:

• The disambiguation filters of SDF2 are added to the context-free gram-
mar, without any guarantee that all the ambiguous cases will disappear:
ambiguity detection in context-free grammars is a classical undecidable
problem in formal language theory [4, 6].

• The ordering is inherent to the PEG specification, and rules out ambigu-
ities. Unfortunately, it might give unexpected results: the disjointness
problem becomes undecidable with parsing expression grammars (Sec-
tion 4.1).

Of course, over-zealous filters could be as bad as ordering, and relaxed ordering
schemes might also fall prey to incomplete disambiguation. From a reliability
standpoint, both disambiguation strategies have their flaws.

Testing is an important part of the solution, but we believe that the famous
quote by Dijkstra [7] applies for grammars as well as it does for programs:

Program testing can be a very effective way to show the presence of
bugs, but is hopelessly inadequate for showing their absence. The
only effective way to raise the confidence level of a program signifi-
cantly is to give a convincing proof of its correctness.

The following Sections 3 and 4 thus present conservative verification algorithms
for the two decision problems we just witnessed.

3 Ambiguity in SDF2

3.1 Nondeterministic Automaton

In order to look for ambiguities in our grammar, we need a finite structure
abstracting the full graph of all grammar developments. The nondeterministic
LR(0) [14] automaton is one such abstraction. We consider a variant constructed
as a quotient of the full grammar graph Γ using a local (rule-based) equivalence
relation item0 [29].

Rather than directly building the nondeterministic automaton for the CFG
G at hand, we build it for a bracketed version Gb of G, where rules i = A−→α
of G are surrounded by di and ri. Formally, our bracketed grammar of a con-
text-free grammar G is the context-free grammar Gb = 〈N,Tb, Pb, S〉 where
Tb = T∪{di | i ∈ P}∪{ri | i ∈ P} and Pb = {ib = A−→diαri | i = A−→α ∈ P}. A
sentence of Gb represents a single parse tree of G. We define the homomorphism
h from V ∗

b to V ∗ by h(di) = h(ri) = ε for all i in P , and h(X) = X otherwise.
We sometimes write δb to denote a bracketed string in V ∗

b such that h(δb) = δ.

Definition 1 The nondeterministic automaton Γ/item0 of a context-free gram-
mar G is a tuple 〈Q,Vb, R, qs, Qf 〉 where

• Q = {[·A] | A ∈ N} ∪ {[A·] | A ∈ N} ∪ {[A−→α·α′] | A−→αα′ ∈ P} is the
state alphabet, where [A−→α·α′] is called a LR(0) item,

ISRN I3S/RR-2006-32-FR

8 S. Schmitz

〈pat〉−→·〈pat 〉 : 〈ty〉
〈pat〉−→〈pat 〉· : 〈ty〉
〈pat〉−→〈pat 〉 : ·〈ty〉
〈pat〉−→〈pat 〉 : 〈ty〉·

〈ty〉

〈pat〉

:

〈pat 〉−→·〈atpat〉

〈pat 〉−→〈atpat〉·
〈atpat〉

·〈start〉

〈start〉·

·〈pat〉

〈pat〉·

〈start〉−→·〈pat 〉 ;
〈start〉−→〈pat 〉·;
〈start〉−→〈pat 〉 ;·

;

〈pat 〉
·〈atpat〉

〈atpat〉−→·vid
〈atpat〉−→vid·
〈atpat〉·

〈pat〉−→vid·〈tyop〉 as 〈pat 〉
〈pat〉−→·vid 〈tyop〉 as 〈pat〉

〈pat〉−→vid 〈tyop〉·as 〈pat 〉
〈pat〉−→vid 〈tyop〉 as·〈pat 〉
〈pat〉−→vid 〈tyop〉 as 〈pat〉·

〈tyop〉

〈pat〉

vid

as

vid

d1

r1

d2

r3

r4

r5

ε

ε

ε

ε

d3d5

ε

r2

ε

d4

ε

ε

Figure 2: A portion of the nondeterministic automaton for our SDF2 imple-
mentation of G1 ∪ G2.

• Vb is the input alphabet,

• R is the set of rules

{[A−→α·Xα′]X ⊢ [A−→αX·α′]}

∪{[A−→α·Bα′]ε ⊢ [·B]}

∪{[·B]di ⊢ [B−→·β] | i = B−→β ∈ P}

∪{[B−→β·]ri ⊢ [B·] | i = B−→β ∈ P}

∪{[B·]ε ⊢ [A−→αB·α′]},

• qs = [·S] is the initial state, and

• Qf = {qf = [S·]} is the set of final states.

Figure 2 presents a portion of the nondeterministic automaton for the aug-
mented union G1 ∪ G2.

Theorem 1 The language generated by Gb is included in the terminal language
recognized by Γ/item0: L(Gb) ⊆ L(Γ/item0) ∩ T ∗

b .

3.2 An Ambiguity Detection Algorithm

Since a derivation tree for G is uniquely identified by a sentence of Gb, the
existence of an ambiguity in G implies the existence of two sentences wb and
w′

b in L(Gb) such that w = w′. By Theorem 1, if such two sentences exist in
L(Gb), they also do in L(Γ/item0)∩T ∗

b , and thus we can look for their existence
in Γ/item0. In order to find such sentences in Γ/item0, we use an accessibility
relation between couples of states.

Definition 2 The mutual accessibility relation ma is defined over Q2 as the
union mal ∪ mar ∪ maa, where

(q1, q2) mal (q3, q2) iff q1ε ⊢ q3, or ∃i ∈ P, q1di ⊢ q3 or q1ri ⊢ q3,

(q1, q2) mar (q1, q4) iff q2ε ⊢ q4, or ∃i ∈ P, q2di ⊢ q4 or q2ri ⊢ q4,

(q1, q2) maa (q3, q4) iff ∃a ∈ T, q1a ⊢ q3 and q2a ⊢ q4.

ISRN I3S/RR-2006-32-FR

Modular Syntax Demands Verification 9

〈pat 〉 〈ty〉

〈pat 〉

〈start〉

tyvar

:

;

〈pat 〉as〈tyop〉

ε

vid

〈pat 〉

as〈tyop〉

ε

vid 〈pat 〉

:〈pat 〉 〈ty〉

tyvar〈atpat〉

vid

〈atpat〉

vid

〈start〉

;

Figure 3: An ambiguity in our SDF2 implementation of G1 ∪ G2.

Proposition 1 Let q1, q2, q3, q4 be states in Q, and ub and vb strings in T ∗

b

such that q1ub �
∗ q3, q2vb �

∗ q4. The relation (q1, q2) ma
∗ (q3, q4) holds if and

only if u = v.

Let us now consider two different parse trees in G represented by two different
strings wb and w′

b in V ∗

b with w = w′. The sentences wb and w′

b share a longest
common suffix vb, such that wb = ubrivb and w′

b = u′

brjvb with i 6= j. There are
thus three states qi, qj and q in Q such that qsubrivb �

∗ qirivb � qvb �
∗ qf and

qsu
′

brjvb �
∗ qjrjvb � qvb �

∗ qf . By Proposition 1, (qs, qs) ma
∗ (qi, qj).

Our algorithm for finding all the ambiguities in a given grammar G is there-
fore

1. Construct Γ/item0: this automaton is of size |Γ/item0| = O(|G|) and can
be constructed in time linear with its size.

2. Compute the (symmetric and reflexive) image ma
∗ ({(qs, qs)}); this com-

putation costs at worst O(|Γ/item0|
2) [31].

3. Explore this image and find all couples (qi, qj) such that i 6= j, qiri ⊢ q
and qjrj ⊢ q; a state in Q has at most one transition on a ri symbol, thus
this search costs at worst O(|Γ/item0|

2).

The overall complexity is thus O(|G|2).
As an illustration, assuming production 6 is 〈ty〉−→tyvar and production 7

〈tyop〉−→ε, two bracketed sentences representing the trees shown in Figure 3 are

d1d3d5 vid d7r7 as d2d4 vid r4r2r5 : d6 tyvar r6r3 ; r1

d1d5 vid d7r7 as d3d2d4 vid r4r2 : d6 tyvar r6r3r5 ; r1

We can follow the paths in Figure 2 and see that

([·〈start〉], [·〈start〉]) ma
∗ ([〈pat〉−→〈pat〉 〈ty〉·], [〈pat〉−→vid 〈tyop〉 as 〈pat〉·]).

Since furthermore [〈pat〉−→〈pat〉 〈ty〉·] and [〈pat〉−→vid 〈tyop〉 as 〈pat〉·] have
transitions to [〈pat〉·] on r3 and r5 respectively, we can conclude that it is
possible to have an ambiguity arising from the use of productions 3 and 5.
Figure 3 confirms this potential ambiguity to be very real.

ISRN I3S/RR-2006-32-FR

10 S. Schmitz

3.3 Integrating Filters

Disambiguation filters are often defined by specifying which trees in a set of pos-
sible parse trees are “wrong” and removing them from the set of trees returned
by the parser [19]. Depending on the amount of context needed by a filter to
decide whether a tree is acceptable or not, we can implement the result of the
filter a priori in our ambiguity detection algorithm.

For instance, the preference attribute prefer filter [33] does not depend on
much context and can be implemented directly in our scheme. In case of an
ambiguity, two (sub)trees yielding the same terminal language share a single
root node, but then differ on which rule to follow first. If one of the two rules
is marked as preferred, it will be chosen over the other, thus resolving the
ambiguity. We can emulate this strategy at the last step of our algorithm and
not report ambiguities on a pair (qi, qj) if one of i and j is marked as preferred.
The dual avoid filter can be implemented similarly. This will successfully avoid
reporting the ambiguity shown in Figure 3 in presence of a prefer directive.

Some other default filters, like follow restrictions or associativity and priority
rules, can be implemented provided we use a nondeterministic LR(1) automaton
instead of the nondeterministic LR(0) one. In general, the quotienting equiva-
lence relation on the full grammar graph should not allow a “wrong” tree to be
equivalent to a “correct” one.

4 Disjointness in PEGs

4.1 The Semi Disjointness Problem

A choice expression e1/e2 is commutative if e1 and e2 are disjoint : their recog-
nized languagesM(e1) andM(e2) are disjoint sets. As seen with our example in
Section 2.3, the question we would like to answer to is not whether two parsing
expression are disjoint (which is undecidable [10]), but more precisely whether
the second choice will be considered during parsing.

For this, we need a stronger notion of the language recognized by a PEG. As
recalled in Appendix A.2, if the languageM(e) matched by a parsing expression
e contains the string x, then it also contains the string xy for any y in T ∗.

Definition 3 The minimal matching set of a parsing expression e is L(e) =
{y ∈ T ∗ | (x, e)=⇒+y}. Then, M(e) = L(e) · T ∗.

Let the prefix language of a language L be Prefix(L) = {x | xy ∈ L}. Then
M(e1) ∩M(e2) = ∅ can be rewritten as (L(e1) · T

∗) ∩ (L(e2) · T
∗) = ∅, also

equivalent to (L(e1) ∩ Prefix(L(e2))) ∪ (L(e2) ∩ Prefix(L(e1))) = ∅ by factoring
out T ∗.

Definition 4 The parsing expressions e1 and e2 are semi disjoint if and only
if L(e1) ∩ Prefix(L(e2)) = ∅.

The decomposition of the disjoint problem as the union of two instances of the
semi disjoint problem shows that any algorithm solving the semi disjoint problem
could be used to solve the disjoint problem, hence the following proposition.

Proposition 2 The semi disjointness of two parsing expressions is undecidable.

ISRN I3S/RR-2006-32-FR

Modular Syntax Demands Verification 11

The notions of minimal matching set and of semi disjointness are directly
connected to the issue at hand, as shown by the following characterization.

Theorem 2 Two parsing expressions e1 and e2 are semi disjoint if and only if
L(e1/e2) = L(e1) ∪ L(e2) and L(e1) ∩ L(e2) = ∅.

4.2 General Semi Disjointness

Semi disjointness does not encompass all the issues created by the ordered choice
operator in PEGs. Let us consider for instance the parsing expression (aa/a)a.
The expressions aa and a are semi disjoint, and the language L(aa/a) is clearly
{aa, a}. However, the language L((aa/a)a) is {aaa} and not {aaa, aa}: an input
string aa is always matched by the first alternative aa, after which another a is
expected but not found, and the input is rejected.

For the general semi disjointness problem, we consider a parsing expression e
that has an ordered choice e1/e2 as a prefix subexpression,5 denoted by e[e1/e2].
If we replace this ordered choice by e2 alone, we obtain an expression e[e2]. The
general semi disjointness problem is thus to verify that L(e1)∩Prefix(L(e[e2])) =
∅ in all the possible e[e1/e2] of a PEG. The previous example was an instance
of the problem with e[e1/e2] = (aa/a)a and e[e2] = aa, and e1 and e2 were not
generally semi disjoint since L(e1) ∩ Prefix(L(e[e2])) = {aa}.

4.3 Checking a PEG for General Semi Disjointness

Repetition-free and predicate-free PEGs are equivalent to CFGs with a total
order < on the rules sharing the same left-hand side: a parsing expression
e = α1/α2/ . . . /αn can be represented by a set of CFG productions 1 = A← α1,
2 = A← α2, . . . , n = A← αn with the ordering 1 < 2 < · · · < n. We call such
a CFG the ordered context-free form of the PEG.

We can apply the construction of Section 3.1 on this CFG to obtain a nonde-
terministic automaton, and use the mutual accessibility relation of Definition 2
on couples of states in Q. Figure 4 shows a portion of the nondeterministic au-
tomaton in the case of our Rats! grammar; we had to convert 〈tyop〉 ← (: 〈ty〉)?
into 〈tyop〉 ←: 〈ty〉/ε in order to obtain its ordered context-free form.

Our algorithm for finding all the potential disjointness issues in a given PEG
G in ordered context-free form is therefore

1. Construct Γ/item0 as in the case of ambiguity checking.

2. For all the couples of productions i and j in P sharing the same left-hand
side A with i < j, compute the image ma

∗ ({(qi, qj)}) where [·A]di ⊢ qi

and [·A]dj ⊢ qj ; this computation costs at worst O(|Γ/item0|
2|P |2).

3. Explore each of these images and find all couples (q′i, q) such that q′iri ⊢
[A·]; this search costs at worst O(|Γ/item0|

2|P |2).

The overall complexity is thus O(|G|2|P |2).
We can illustrate this process by examining the couple

([〈pat〉 ← ·〈atpat〉 〈tyop〉], [〈pat〉 ← ·vid 〈tyop〉 as 〈pat〉 〈tyop〉])
5The parsing expression e1 is a prefix subexpression of e1e2, and both e1 and e2 are prefix

subexpressions of e1/e2.

ISRN I3S/RR-2006-32-FR

12 S. Schmitz

〈pat 〉 ← ·vid 〈tyop〉 as 〈pat 〉 〈tyop〉

〈pat 〉 ← vid 〈tyop〉·as 〈pat 〉 〈tyop〉
〈pat 〉 ← vid 〈tyop〉 as·〈pat 〉 〈tyop〉
〈pat 〉 ← vid 〈tyop〉 as 〈pat 〉·〈tyop〉

〈tyop〉

〈pat〉

vid

as

〈tyop〉

〈pat 〉 ← vid 〈tyop〉 as 〈pat 〉 〈tyop〉·

〈pat 〉 ← vid·〈tyop〉 as 〈pat 〉 〈tyop〉

〈tyop〉 ←: ·〈ty〉〈tyop〉 ← · : 〈ty〉 〈tyop〉 ←: 〈ty〉·: 〈ty〉

·〈tyop〉
〈tyop〉 ← ·

〈tyop〉·

·〈start〉 〈start〉 ← ·〈pat〉 ; 〈start〉 ← 〈pat〉·; 〈start〉 ← 〈pat 〉 ;· 〈start〉·d1 〈pat 〉 ; r1

〈pat〉··〈pat 〉

〈pat〉 ← ·〈atpat〉 〈tyop〉
〈atpat〉

〈pat 〉 ← 〈atpat〉·〈tyop〉
〈tyop〉

〈pat〉 ← 〈atpat〉 〈tyop〉·

ε

·〈atpat〉
〈atpat〉 ← ·vid
〈atpat〉 ← vid·
〈atpat〉·

vid

r4

d4

d6

d5

r5

r6

ε

ε

ε

ε

ε

ε
ε

r2

ε
d3

d2 ε

r3

εε

Figure 4: A portion of the nondeterministic automaton for our Rats! imple-
mentation of G1 ∪ G2.

that matches the requirements of step 2 above, and by observing on Figure 4
that it reaches by ma

∗ the couple

([〈pat〉 ← 〈atpat〉 〈tyop〉·], [〈pat〉 ← vid 〈tyop〉·as 〈pat〉 〈tyop〉])
that matches the requirements of step 3 above. This indicates that it is possible
to see some of the language of production 3, starting in

[〈pat〉 ← vid 〈tyop〉·as 〈pat〉 〈tyop〉],
unused because of the priority given to production 2. Exchanging the priorities
of productions 2 and 3 would make this particular issue disappear.

5 Related Work

The verification of grammars has been approached in the past: common checks
look for nonterminating grammar rules (including cycles) or left or hidden left
recursions. These verifications are all decidable.

Ambiguity Detection To the best of our knowledge, almost all the algo-
rithms that have been specifically designed so far for ambiguity detection look
for ambiguities in all sentences up to some length [11, 5, 30, 16]. As such,
they do not qualify as verification tools since ambiguities can appear after this
preset length. On the other hand, testing that a deterministic parser could be
constructed for a given grammar [15] vouches for its unambiguity, and indi-
cates where probable ambiguities are [27]. Nevertheless, conflicts in a negative
LR(k) test do not necessarily stem from real ambiguities, but from the need of
a longer, if not unbounded, lookahead in the conflict resolution; such cases are
not so uncommon, as seen in Section 2.1.

ISRN I3S/RR-2006-32-FR

Modular Syntax Demands Verification 13

Two better unambiguity checks have been recently published, by Brabrand
et al. [3] and by the author [29].

Disjointness Although Ford hinted that verification tools for PEGs could
find their uses [10], we are not aware of any such tools.

Others The quotienting approach used in this paper is reminiscent of the ap-
proaches used to build regular approximations of context-free languages [25].
The nondeterministic automata are akin to Transition Networks [37] and Re-
cursive State Machines [1].

6 Conclusion

While modular syntax formalisms encourage good engineering practices in gram-
mar and grammar-related software development, their use is not without risk.
Indeed, we have been able to exhibit two potential issues when using two mod-
ern syntax formalisms: SDF2 definitions and PEGs. Meanwhile, testing gram-
mars and grammar-related software is not entirely satisfactory since it cannot
guarantee the absence of an issue. We have thus advocated in this paper the
introduction of verification tools in the future Computer-Aided Grammarware
Engineering (CAGE) environments foreseen by Klint et al. [20].

The SDF2 and PEGs formalisms are representative of two very different
approaches to modular syntax. Nevertheless, we are inclined to explain the
ambiguity and disjointness problems that hamper their use as two instances of
a single disambiguation issue that would be faced by all modular formalisms.
This vue is supported by the blatant similarities between the solutions we have
provided for their verification problems.

We hope that, in the future, more work will be dedicated to the verification
of grammatical descriptions, and to more elaborate verification algorithms for
the problems exposed here in particular.

Acknowledgements The author is highly grateful to Jacques Farré, Ana
Almeida Matos and Jan Cederquist for their help in the preparation of this
work.

References

[1] Rajeev Alur, Michael Benedikt, Kousha Etessami, Patrice Godefroid,
Thomas Reps, and Mihalis Yannakakis. Analysis of recursive state ma-
chines. ACM Transactions on Programming Languages and Systems, 27
(4):786–818, 2005. ISSN 0164-0925. doi: 10.1145/1075382.1075387.

[2] Alexander Birman and Jeffrey D. Ullman. Parsing algorithms with back-
track. Information and Control, 23(1):1–34, 1973. ISSN 0019-9958.
doi: 10.1016/S0019-9958(73)90851-6.

[3] Claus Brabrand, Robert Giegerich, and Anders Møller. An-
alyzing ambiguity of context-free grammars. Technical Re-
port RS-06-09, BRICS, University of Aarhus, May 2006. URL
http://www.brics.dk/∼brabrand/grambiguity/.

ISRN I3S/RR-2006-32-FR

http://dx.doi.org/10.1145/1075382.1075387
http://dx.doi.org/10.1016/S0019-9958(73)90851-6
http://www.brics.dk/~brabrand/grambiguity/

14 S. Schmitz

[4] David G. Cantor. On the ambiguity problem of Backus sys-
tems. Journal of the ACM, 9(4):477–479, 1962. ISSN 0004-5411.
doi: 10.1145/321138.321145.

[5] Bruce S. N. Cheung and Robert C. Uzgalis. Ambiguity in context-free
grammars. In SAC’95, pages 272–276. ACM Press, 1995. ISBN 0-89791-
658-1. doi: 10.1145/315891.315991.

[6] Noam Chomsky and Marcel Paul Schützenberger. The algebraic theory of
context-free languages. In P. Braffort and D. Hirshberg, editors, Computer
Programming and Formal Systems, Studies in Logic, pages 118–161. North-
Holland Publishing, 1963.

[7] Edsger W. Dijkstra. The humble programmer. Communications of the
ACM, 15(10):859–866, 1972. ISSN 0001-0782. doi: 10.1145/355604.361591.
ACM Turing Award Lecture.

[8] Jay Earley. An efficient context-free parsing algorithm. Com-
munications of the ACM, 13(2):94–102, 1970. ISSN 0001-0782.
doi: 10.1145/362007.362035.

[9] Bryan Ford. Packrat parsing: simple, powerful, lazy, linear time.
In ICFP ’02, pages 36–47. ACM Press, 2002. ISBN 1-58113-487-8.
doi: 10.1145/581478.581483.

[10] Bryan Ford. Parsing expression grammars: a recognition-based syntactic
foundation. In POPL ’04, pages 111–122. ACM Press, 2004. ISBN 1-58113-
729-X. doi: 10.1145/964001.964011.

[11] Saul Gorn. Detection of generative ambiguities in context-free mechanical
languages. Journal of the ACM, 10(2):196–208, 1963. ISSN 0004-5411.
doi: 10.1145/321160.321168.

[12] Robert Grimm. Better extensibility through modular syntax. In
PLDI ’06, pages 38–51. ACM Press, 2006. ISBN 1-59593-320-4.
doi: 10.1145/1133981.1133987.

[13] Mark Hennessy and James F. Power. An analysis of rule coverage as
a criterion in generating minimal test suites for grammar-based soft-
ware. In ASE’05, pages 104–113. ACM Press, 2005. ISBN 1-59593-993-4.
doi: 10.1145/1101908.1101926.

[14] Harry B. Hunt III, Thomas G. Szymanski, and Jeffrey D. Ullman. Opera-
tions on sparse relations and efficient algorithms for grammar problems. In
15th Annual Symposium on Switching and Automata Theory, pages 127–
132. IEEE Computer Society, 1974.

[15] Harry B. Hunt III, Thomas G. Szymanski, and Jeffrey D. Ullman. On the
complexity of LR(k) testing. Communications of the ACM, 18(12):707–716,
1975. ISSN 0001-0782. doi: 10.1145/361227.361232.

[16] Saichaitanya Jampana. Exploring the problem of ambiguity in context-free
grammars. Master’s thesis, Oklahoma State University, July 2005. URL
http://e-archive.library.okstate.edu/dissertations/AAI1427836/.

ISRN I3S/RR-2006-32-FR

http://dx.doi.org/10.1145/321138.321145
http://dx.doi.org/10.1145/315891.315991
http://dx.doi.org/10.1145/355604.361591
http://dx.doi.org/10.1145/362007.362035
http://dx.doi.org/10.1145/581478.581483
http://dx.doi.org/10.1145/964001.964011
http://dx.doi.org/10.1145/321160.321168
http://dx.doi.org/10.1145/1133981.1133987
http://dx.doi.org/10.1145/1101908.1101926
http://dx.doi.org/10.1145/361227.361232
http://e-archive.library.okstate.edu/dissertations/AAI1427836/

Modular Syntax Demands Verification 15

[17] Stephen C. Johnson. YACC — yet another compiler compiler. Computing
science technical report 32, AT&T Bell Laboratories, Murray Hill, New
Jersey, July 1975.

[18] Stefan Kahrs. Mistakes and ambiguities in the definition of Standard ML.
Technical Report ECS-LFCS-93-257, University of Edinburgh, LFCS, 1993.
URL http://www.lfcs.inf.ed.ac.uk/reports/93/ECS-LFCS-93-257/.

[19] Paul Klint and Eelco Visser. Using filters for the disambiguation
of context-free grammars. In G. Pighizzini and P. San Pietro,
editors, ASMICS Workshop on Parsing Theory, Technical Re-
port 126-1994, pages 89–100. Università di Milano, 1994. URL
http://citeseer.ist.psu.edu/klint94using.html.

[20] Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an engineer-
ing discipline for grammarware. ACM Transactions on Software En-
gineering and Methodology, 14(3):331–380, 2005. ISSN 1049-331X.
doi: 10.1145/1072997.1073000.

[21] Ralf Lämmel. Grammar testing. In Heinrich Hussmann, ed-
itor, FASE’01, volume 2029 of Lecture Notes in Computer Sci-
ence, pages 201–216. Springer, 2001. ISBN 3-540-41863-6. URL
http://www.springerlink.com/content/a799v1rfled2hd2y/.

[22] Ralf Lämmel and Chris Verhoef. Semi-automatic grammar recovery. Soft-
ware: Practice & Experience, 31:1395–1438, 2001. doi: 10.1002/spe.423.

[23] Brian A. Malloy, James F. Power, and John T. Waldron. Applying software
engineering techniques to parser design: the development of a C# parser.
In SAICSIT’02, pages 75–82. SAICSIT, 2002. ISBN 1-58113-596-3. URL
http://www.cs.nuim.ie/∼jpower/Research/Papers/2002/saicsit02.pdf.

[24] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
definition of Standard ML. MIT Press, revised edition, 1997. ISBN 0-262-
63181-4.

[25] Mark-Jan Nederhof. Regular approximation of CFLs: a grammati-
cal view. In H. Bunt and A. Nijholt, editors, Advances in Prob-
abilistic and other Parsing Technologies, chapter 12, pages 221–241.
Kluwer Academic Publishers, 2000. ISBN 0-7923-6616-6. URL
http://odur.let.rug.nl/∼markjan/publications/2000d.pdf.

[26] Paul Purdom. A sentence generator for testing parsers. BIT
Numerical Mathematics, 12(3):366–375, 1972. ISSN 0006-3835.
doi: 10.1007/BF01932308.

[27] Janina Reeder, Peter Steffen, and Robert Giegerich. Effective ambiguity
checking in biosequence analysis. BMC Bioinformatics, 6:153, 2005. ISSN
1471-2105. doi: 10.1186/1471-2105-6-153.

[28] Daniel J. Salomon and Gordon V. Cormack. Scannerless NSLR(1) parsing
of programming languages. In PLDI’89, pages 170–178. ACM Press, 1989.
ISBN 0-89791-306-X. doi: 10.1145/73141.74833.

ISRN I3S/RR-2006-32-FR

http://www.lfcs.inf.ed.ac.uk/reports/93/ECS-LFCS-93-257/
http://citeseer.ist.psu.edu/klint94using.html
http://dx.doi.org/10.1145/1072997.1073000
http://www.springerlink.com/content/a799v1rfled2hd2y/
http://dx.doi.org/10.1002/spe.423
http://www.cs.nuim.ie/~jpower/Research/Papers/2002/saicsit02.pdf
http://odur.let.rug.nl/~markjan/publications/2000d.pdf
http://dx.doi.org/10.1007/BF01932308
http://dx.doi.org/10.1186/1471-2105-6-153
http://dx.doi.org/10.1145/73141.74833

16 S. Schmitz

[29] Sylvain Schmitz. Conservative ambiguity detection in context-free
grammars. Technical Report I3S/RR-2006-30-FR, Laboratoire I3S,
Université de Nice - Sophia Antipolis, September 2006. URL
http://www.i3s.unice.fr/∼mh/RR/2006/RR-06.30-S.SCHMITZ.pdf.

[30] Friedrich Wilhelm Schröer. AMBER, an ambiguity checker for context-
free grammars. Technical report, compilertools.net, 2001. URL
http://accent.compilertools.net/Amber.html.

[31] Robert E. Tarjan. Depth first search and linear graph algorithms.
SIAM Journal on Computing, 1(2):146–160, 1972. ISSN 0097-5397.
doi: 10.1137/0201010.

[32] Masaru Tomita. Efficient Parsing for Natural Language. Kluwer Academic
Publishers, 1986. ISBN 0-89838-202-5.

[33] Mark van den Brand, Jeroen Scheerder, Jurgen J. Vinju, and Eelco
Visser. Disambiguation filters for scannerless generalized LR parsers. In
R. Nigel Horspool, editor, CC’02, volume 2304 of Lecture Notes in Com-
puter Science, pages 143–158. Springer, 2002. ISBN 3-540-43369-4. URL
http://www.springerlink.com/content/03359k0cerupftfh/.

[34] Mark van den Brand, Steven Klusener, Leon Moonen, and Jurgen J. Vinju.
Generalized parsing and term rewriting: Semantics driven disambiguation.
Electronic Notes in Theoretical Computer Science, 82(3):575–591, 2003.
doi: 10.1016/S1571-0661(05)82629-5.

[35] Eelco Visser. Syntax Definition for Language Prototyping. PhD thesis,
1997. URL http://citeseer.ist.psu.edu/visser97syntax.html.

[36] Eelco Visser. Scannerless generalized-LR parsing. Techni-
cal Report P9707, University of Amsterdam, July 1997. URL
http://citeseer.ist.psu.edu/visser97scannerles.html.

[37] W. A. Woods. Transition network grammars for natural language analy-
sis. Communications of the ACM, 13(10):591–606, 1970. ISSN 0001-0782.
doi: 10.1145/355598.362773.

ISRN I3S/RR-2006-32-FR

http://www.i3s.unice.fr/~mh/RR/2006/RR-06.30-S.SCHMITZ.pdf
http://accent.compilertools.net/Amber.html
http://dx.doi.org/10.1137/0201010
http://www.springerlink.com/content/03359k0cerupftfh/
http://dx.doi.org/10.1016/S1571-0661(05)82629-5
http://citeseer.ist.psu.edu/visser97syntax.html
http://citeseer.ist.psu.edu/visser97scannerles.html
http://dx.doi.org/10.1145/355598.362773

Modular Syntax Demands Verification 17

A Definitions

A.1 Context-Free Grammars

We quickly recall the formal definition of context-free grammars. They are
tuples G = 〈N,T, P, S〉 where N is the nonterminal alphabet, T the terminal
one—V = N ∪ T being the vocabulary—, P is a finite set of rules i in N × V ∗

denoted by A−→α, and S is the start symbol in N . The derivation relation =⇒

in (V ∗)2 is defined by δAσ
i
=⇒δασ if and only if i = A−→α is a rule of P .

The language generated by G is the set of sentences L(G) = {w | S=⇒∗w}.
A grammar G is reduced if all the symbols X in V are such that S=⇒∗δXσ=⇒∗w
for some δ, σ in V ∗ and w in T ∗. We always assume our context-free grammars
to be reduced. A grammar G = 〈N,T, P, S〉 can be augmented to a grammar

G′ = 〈N ′, T ′, P ′, S′〉 where N ′ = N∪{S′}, T ′ = T∪{$} and P ′ = P∪{S′
1
−→S}.

The traditional notation uses the first capital Latin letters A, B, C for
nonterminals in N , the first small-case Latin letters a, b, c for terminal symbols
in T , the last capital Latin letters X, Y , Z for symbols in V , the last small-
case Latin letters u . . . z for strings in T ∗, and Greek letters α, β and so on
for strings in V ∗. The empty string is denoted by ε. For practical computer
languages grammars as given in Section 2, long names are more readable, and
thus 〈nonterminals〉 are given between angle brackets while terminals are simply
written as such. Context-free rules with the same nonterminal as left part are
often associated with a union operator |, so that A−→α | β stands for the two
rules A−→α and A−→β.

A.2 Parsing Expression Grammars

PEGs A parsing expression grammar is a tuple G = 〈N,T,R, eS〉, where N
is the nonterminal alphabet, T the terminal alphabet, R a mapping from non-
terminal symbols in N to expressions in E and eS is a distinguished expression.
An expression in E is inductively defined as ε the empty string, or a a terminal
in T , or A a nonterminal in N , or e1e2 a concatenation of two expressions,
or e1/e2 an ordered choice between two expressions. Expressions using the
Kleene star, negations or conjunctions can be rewritten in terms of primitive
expressions, provided the grammar does not recognize the empty string—using
an augmented grammar, this concern can be avoided. Left recursions can be
conservatively avoided as well. We thus consider our PEGs to be well-formed,
repetition-free and predicate-free.

Interpretation Following the notations of Ford [10], the interpretation rela-
tion =⇒ between pairs (e, x) in E × T ∗ and pairs (n, o) in N× (T ∗ ∪ {f}) gives
the result of a recognition attempt of x by e: n is a step counter and o is the
recognized prefix of x, or f if recognition failed. Inductively,

empty (ε, x)=⇒(1, ε),

terminal (a, ax)=⇒(1, a), (a, bx)=⇒(1, f), (a, ε)=⇒(1, f),

nonterminal (A, x)=⇒(n + 1, o) if A← e and (e, x)=⇒(n, o),

ISRN I3S/RR-2006-32-FR

18 S. Schmitz

concatenation (e1e2, x1x2y)=⇒(n1 + n2 + 1, x1x2) if (e1, x1x2y)=⇒(n1, x1) and
(e2, x2y)=⇒(n2, x2), (e1e2, x)=⇒(n1+1, f) if (e1, x)=⇒(n1, f), (e1e2, x1y)=⇒(n1+
n2 + 1, f) if (e1, x1y)=⇒(n1, x1) and (e2, y)=⇒(n2, f),

choice (e1/e2, xy)=⇒(n1 + 1, x) if (e1, xy)=⇒(n1, x), (e1/e2, x)=⇒(n1 + n2 + 1, o)
if (e1, x)=⇒(n1, f) and (e2, x)=⇒(n2, o).

The relation =⇒+ disregards step counts: (e, x)=⇒+o if and only if there ex-
ists n such that (e, x)=⇒(n, o). The match set of expression e is M(e) = {x |
(e, x)=⇒+y, y ∈ T ∗}. Note that if x is inM(e), then, for any y in T ∗, xy is also.
The language recognized by G is M(eS).

B Implementations

B.1 Implementation of G1 in SDF2

We only show here the portions of the SDF file corresponding to the rules of
G1; the modularity of SDF allowed us to separate the other concerns in different
modules MLTypes, MLIdentifiers and Layout.

definition

module Main

imports

MLPatterns MLTypes MLIdentifiers Layout

exports

context-free start-symbols START

sorts START

context-free syntax

PAT ";" -> START

module MLPatterns

imports

MLTypes MLIdentifiers Layout

exports

sorts PAT ATPAT

context-free syntax

ATPAT -> PAT

PAT ":" TY -> PAT

"(" {PAT ","}* ")" -> ATPAT

"_" -> ATPAT

VID -> ATPAT

B.2 Implementation of G1 in Rats!

Packrat parsers being of the recursive descent family, we had to modify G1 in
order to remove the left recursion in 〈pat〉−→〈pat〉 : 〈ty〉. We also took advantage
of the extended regular operators ? and * offered by Rats! .

module SimpleMLPatterns;

import MLLexing;

ISRN I3S/RR-2006-32-FR

Modular Syntax Demands Verification 19

import MLTypes;

public generic Pattern =

<Atomic> AtomicPattern TypeOp

;

generic TypeOp = (void:":":Symbol Type)? ;

generic AtomicPattern =

<Tuple> void:"(":Symbol PatternList? void:")":Symbol

/ <Wildcard> "_":Symbol

/ <Variable> ValueID

;

generic PatternList = Pattern (void:",":Symbol Pattern)* ;

C Omitted Proofs

C.1 Ambiguity in SDF2

Lemma 1 Let q and q′ be two states of Γ/item0 such that qB ⊢ q′ is a rule in
R. If i = B−→β is a production in P , then qdiβri �

∗ q′.

Proof. By Definition 1, such a rule can only occur between q = [A−→α·Bα′]
and q′ = [A−→αB·α′] for some A−→αBα′ in P . Then, there also exist the
rules [A−→α·Bα′]ε ⊢ [·B], [·B]di ⊢ [B−→·β], [B−→β·]ri ⊢ [B·], and [B·]ε ⊢
[A−→αB·α′] in R, and a trivial induction on the length |β| shows that [B−→·β]β �

∗

[B−→β·], proving the lemma. �

Lemma 2 Let q and q′ be two states of Γ/item0 such that qδb �
∗ q′. If δb=⇒

∗γb

in Gb, then qγb �
∗ q′.

Proof. We proceed by induction on the number n of individual derivations in
δb=⇒

nγb. If n = 0, then δb = γb and the lemma trivially holds. We then consider

for the induction step δb=⇒
nϕbAσb

i
=⇒ϕbdiαriσb; using the induction hypothesis,

qϕbAσb �
∗ qAAσb � q′Aσb �

∗ q′. By Lemma 1, qAdiαri �
∗ q′A holds, which

concludes the proof. �

Theorem 1 The language generated by Gb is included in the terminal language
recognized by Γ/item0: L(Gb) ⊆ L(Γ/item0) ∩ T ∗

b .

Proof. Immediate application of Lemma 2 with q = [·S], q′ = [S·], δb = δ
with S−→δ in P and γb = wb any sentence in L(Gb) derived from δ. �

C.2 Disjointness in PEGs

Theorem 2 Two parsing expressions e1 and e2 are semi disjoint if and only if
L(e1/e2) = L(e1) ∪ L(e2) and L(e1) ∩ L(e2) = ∅.

Proof. Only if part: let us suppose e1 and e2 are not semi disjoint. Then, there
exist two strings x and y in T ∗ such that x is in L(e1) and xy in L(e2). Either
y = ε, but then L(e1) ∩ L(e2) 6= ∅, or y 6= ε, but then (xy, e1/e2)=⇒

+x and thus
xy would not belong to L(e1/e2).

ISRN I3S/RR-2006-32-FR

20 S. Schmitz

If part: let us consider x in L(e2); it is not in L(e1) since L(e1)∩L(e2) = ∅,
nor is any of its prefixes, since otherwise it would not be in L(e1/e2). Thus
L(e1) ∩ Prefix(L(e2)) = ∅. �

ISRN I3S/RR-2006-32-FR

	Introduction
	Modular Grammar Engineering
	Modularity in Practice
	Implementation
	SDF2: Modular Syntax Definition Formalism
	PEG: Parsing Expression Grammar

	Tests
	Testing with SDF2
	Testing with Rats!

	Why Verify?

	Ambiguity in SDF2
	Nondeterministic Automaton
	An Ambiguity Detection Algorithm
	Integrating Filters

	Disjointness in PEGs
	The Semi Disjointness Problem
	General Semi Disjointness
	Checking a PEG for General Semi Disjointness

	Related Work
	Conclusion
	Acknowledgements
	References
	Definitions
	Context-Free Grammars
	Parsing Expression Grammars

	Implementations
	Implementation of G1 in SDF2
	Implementation of G1 in Rats!

	Omitted Proofs
	Ambiguity in SDF2
	Disjointness in PEGs

