
ENSC-2013/001

THÈSE DE DOCTORAT
DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

présentée par

Ocan SANKUR

pour obtenir le grade de

DOCTEUR DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

Domaine :

Informatique

Sujet de la thèse :

Robustness in Timed Automata: Analysis, Synthesis,
Implementation

Thèse présentée et soutenue à Cachan le 24 Mai 2013 devant le jury composé de :

Rajeev Alur Professeur des universités Rapporteur
Eugène Asarin Professeur des universités Rapporteur
Patricia Bouyer Directrice de recherche Directrice de thèse
Krishnendu Chatterjee Assistant Professor Examinateur
Claude Jard Professeur Examinateur
Kim G. Larsen Professeur des universités Examinateur
Nicolas Markey Chargé de recherche Directeur de thèse
Jean-François Raskin Professeur des universités Rapporteur

LSV – ENS Cachan
61 avenue du président Wilson – F-94230 Cachan

Résumé

Les automates temporisés sont un formalisme qui permet de modéliser, vérifier, et
synthétiser des systèmes temps-réels. Ils sont dotés d’une sémantique abstraite et mathé-
matique, qui permet de formaliser et résoudre plusieurs problèmes de vérification et de
synthèse. Cependant, les automates temporisés sont utilisés pour concevoir des modèles,
plutôt que décrire des systèmes temps-réels entiers. Ainsi, une fois la phase de conception
terminée, il reste à déterminer si les comportements du modèle correspondent à ceux
d’un vrai système. Une étape importante de l’implémentation consiste à s’assurer de la
robustesse du système. On considère une notion de robustesse sur les automates tem-
porisés qui exige que les comportements soient préservés quand le modèle est sujet à
des perturbations bornées. Dans cette thèse, plusieurs approches sont étudiées : Dans
l’analyse de robustesse, on se demande si un automate temporisés donné préserve ses com-
portements sous divers types de perturbations, et on cherche à calculer un majorant sur les
perturbations tolérées. La synthèse robuste s’intéresse au calcul d’une loi de contrôle (ou
une stratégie) qui guide le système, et tolère des perturbations d’une magnitude calculable.
Enfin, dans l’implémentation robuste, on s’intéresse à transformer automatiquement un
modèle donné pour le rendre robuste, tout en préservant ses comportements.

Plusieurs modèles de perturbations sont considérés : erreurs de mesure de temps
(élargissement de gardes), élimination des comportements limites (contraction de gardes),
et la restriction du domaine du temps aux valeurs discrètes. On formalise également les
problèmes de synthèse robuste comme des jeux entre le contrôleur et un environnement
qui perturbe systèmatiquement tout délai choisi par une quantité bornée. Ces problèmes
sont étudiés pour les automates temporisés, ainsi que leurs extensions; les jeux temporisés,
et les automates et jeux temporisés pondérés.

Plusieurs algorithmes d’analyse de robustesse parametrée contre l’élargissement de
gardes et la contraction de gardes sont proposés. Deux variantes de la sémantique de jeu
pour le problème de synthèse robuste sont également étudiées pour les automates temporisés
et leurs extensions. Un logiciel d’analyse de robustesse contre la contraction de gardes,
ainsi que des résultats expérimentaux sont présentés. Le problème de l’implémentation
robuste est étudié dans deux contextes différents. Tous les algorithmes calculent également
un majorant sur les perturbations que le modèle donné est capable de tolérer.

2

Özet

Zamanlı otomatlar, gerçek zamanlı sistemlerin modellenmesi, doğrulanması, ve sen-
tezlenmesine olanak sağlayan bir formalizmdir. Bu modelin soyut matematiksel bir
semantiğe sahip olması, bu sistemler üzerinde birçok problemin biçimsel olarak tanımlanıp
bilgisayarla çözülmesini olanaklı kılar. Öte yandan, zamanlı otomatlar sistemin kendisinden
ziyade soyut bir modelini ifade etmek için kullanılır. Dolayısıyla, doğrulama süreci
bittiğinde, soyut modelin gerçekleştiriminin ne derece model ile aynı davranışlara sahip
olduğunun saptanması gerekir. Bir modelin gerçekleştirilmesi sürecinde önemli bir adım
dayanıklılığının sağlanmasıdır. Gerçek zamanlı sistemler bağlamında dayanıklılık, sistemin
zamanlaması gürültüye maruz kaldığında, sistemin davranışının korunmasını gerektirir.
Dayanıklılığın incelenmesinde birçok yaklaşım ele alınmıştır: Dayanıklılık çözümlemesinde
amaç, verilen bir sistemin gürültü altında davranışlar kümesinin değişip değişmediğinin
saptanması, ve mümkünse sistemin dayandığı ençok gürültü miktarının hesaplanmasıdır.
Dayanıklı sentez, verilen bir sistemi yöneten ve gürültüye dayanıklı bir kontrol yasası (veya
strateji) hesaplanmasıyla ilgilenir. Dayanıklı gerçekleştirimde ise amaç, verilen bir zamanlı
sistemi otomatik olarak, davranışlarını değiştirmeden gürültüye dayanıklı hale getirmektir.

Bu tezde birçok parametreli gürültü modeli ele alınmıştır. Bu modeller arasında,
zaman ölçümüne belirsizlik eklenmesi (önkoşul genişlemesi), zaman koşullarının sınırında
bulunan davranışların göz ardı edilmesi (önkoşul daraltması), zaman kümesinin örneklem
ile kısıtlanması vardır. Ayrıca, dayanıklı sentez problemi, kontrol yasası ile, yasanın
seçtiği girdileri sistematik olarak değiştiren bir ortam arasında oynanan bir oyun olarak
modellenip incelenmiştir. Bu gürültü modelleri zamanlı otomatlar, ve bu formalizmin
uzantıları olan zamanlı oyunlar, ve ağırlıklı zamanlı otomat ve oyunlara uygulanmıştır.

Bu çalışmada sunulan sonuçlar, önkoşul genişlemesi ve daraltması modelleri için
parametrik dayanıklılık çözümlemesi algoritmaları, dayanıklı sentez probleminin iki çeşit
oyun semantiğinde, zamanlı otomatlar, oyunlar, ve ağırlıklı uzantıları için çözümleridir.
Ayrıca, iki değişik bağlamda dayanıklı gerçekleştirim sorunu ele alınmıştır. İşlenen tüm
algoritmalar verilen zamanlı otomatın dayandığı gürültü miktarının bir üstsınırını hesaplar.
Önerilen önkoşul daraltmasına karşı dayanıklılık çözümlemesini gerçekleştiren bir yazılım
hazırlanmış, bilimsel yazında ele alınmış olan birçok model üzerinde sınanmıştır.

3

Abstract

Timed automata are a formalism to model, verify, and synthesize real-time systems.
They have the advantage of having an abstract mathematical semantics, which allow
formalizing and solving several verification and synthesis problems. However, timed
automata are intended to design models, rather than completely describe real systems.
Therefore, once the design phase is over, it remains to check whether the behavior of an
actual implementation corresponds to that of the timed automaton model. An important
step before implementing a system design is ensuring its robustness. This thesis considers
a notion of robustness that asks whether the behavior of a given timed automaton is
preserved, or can be made so, when it is subject to small perturbations. Several approaches
are considered: Robustness analysis seeks to decide whether a given timed automaton
tolerates perturbations, and in that case to compute the (maximum) amount of tolerated
perturbations. In robust synthesis, a given system needs to be controlled by a law
(or strategy) which tolerates perturbations upto some computable amount. In robust
implementation, one seeks to automatically transform a given timed automaton model so
that it tolerates perturbations by construction.

Several perturbation models are considered, ranging from introducing error in time
measures (guard enlargement), forbidding behaviors that are too close to boundaries (guard
shrinking), and restricting the time domain to a discrete sampling. We also formalize
robust synthesis problems as games, where the control law plays against the environment
which can systematically perturb the chosen moves, by some bounded amount. These
problems are studied on timed automata and their variants, namely, timed games, and
weighted timed automata and games.

Algorithms for the parameterized robustness analysis against guard enlargements, and
guard shrinkings are presented. The robust synthesis problem is studied for two variants of
the game semantics, for timed automata, games, and their weighted extensions. A software
tool for robustness analysis against guard shrinkings is presented, and experimental results
are discussed. The robust implementation problem is also studied in two different settings.
In all algorithms, an upper bound on perturbations that the given timed automaton
tolerates can be computed.

4

Contents

1 Introduction 9
1.1 Real-time systems . 9
1.2 Formal Verification and Timed Automata . 10
1.3 Robustness . 11
1.4 Previous Work on Robustness . 13
1.5 Contributions of This Thesis . 16
1.6 Outline . 18

I Preliminaries 20

2 Timed Automata and Their Semantics 21
2.1 Timed Transition Systems and Timed Game Structures 21
2.2 Timed Automata and Games . 23
2.3 Examples . 25
2.4 Perturbation Models . 28

2.4.1 Enlargement . 29
2.4.2 Shrinking . 30
2.4.3 Sampling . 31
2.4.4 Game Semantics: Excess-Perturbation Game 31
2.4.5 Game Semantics: Conservative-Perturbation Game 33

3 Data Structures 35
3.1 Regions . 35
3.2 Orbit graphs . 36
3.3 Difference-Bound Matrices . 38
3.4 Shrunk Difference-Bound Matrices . 39

3.4.1 Motivation . 39
3.4.2 Non-parameterized Shrunk DBMs . 40
3.4.3 Parameterized Shrunk DBMs . 44

II Robustness Analysis 49

4 Untimed Language Preservation 51
4.1 Introduction . 51
4.2 Restrictions on Timed Automata . 52
4.3 Main Result . 52
4.4 Timed Automata Under Enlargement . 53
4.5 Some Combinatorial Tools . 55

4.5.1 A Ramsey-like Theorem for Directed Paths 55
4.5.2 Ultimately Universal Languages . 56

5

6 CONTENTS

4.6 Proof of the theorem . 56
4.7 Another simple but expensive algorithm . 58
4.8 Conclusion . 59

5 Shrinkability 61
5.1 Introduction . 61
5.2 Robustness and Shrinkability . 61

5.2.1 Shrinkability . 61
5.2.2 Shrinking as a Remedy to Unrealistic Behaviour 62
5.2.3 Decidability of Shrinkability . 63

5.3 Equations on shrunk DBMs . 64
5.4 Max-Plus Algebra . 67

5.4.1 Max-plus equations . 67
5.4.2 Max-Plus Graphs . 68

5.5 Deciding shrinkability . 71
5.5.1 Simulation-Shrinkability . 71
5.5.2 Non-blocking-Shrinkability . 72

5.6 Conclusion . 74

6 The Shrinktech tool 75
6.1 Introduction . 75
6.2 Shrinktech . 75
6.3 Experimental Results . 76
6.4 Related Work . 76
6.5 Example: Non-shrinkability . 77
6.6 Using shrinktech . 79

6.6.1 Command-line Options and Additional Tools 81
6.7 Conclusion . 82

III Robust Controller Synthesis 82

7 Reachability in Excess Semantics 85
7.1 Introduction . 85
7.2 Shrinking constraints . 86
7.3 Neighborhoods . 92
7.4 Controllable Predecessors . 95
7.5 A Finite Game Abstraction . 98

7.5.1 Proof of Proposition 7.5.1 . 99
7.6 Extension to Turn-based Timed Games . 105
7.7 Hardness Result . 112
7.8 Conclusion . 116

CONTENTS 7

8 Büchi in Conservative Semantics 117
8.1 Introduction . 117
8.2 Robust Büchi Objectives . 117
8.3 Regions, Orbit Graphs, Algebra, Topology . 118
8.4 Main Lemma . 120
8.5 No Aperiodic Lassos Implies No Robustness . 120

8.5.1 Reachability Relations . 121
8.5.2 A global strategy for Perturbator . 122
8.5.3 Decreasing Lyapunov function . 127

8.6 Aperiodic Lassos Implies Robustness . 130
8.6.1 Controllable Predecessors . 130
8.6.2 Winning Under Perturbations . 131

8.7 Algorithm . 132
8.8 PSPACE-hardness of robust synthesis . 133
8.9 Conclusion . 135

9 Weighted Timed Games 137
9.1 Introduction . 137
9.2 Cost-Optimal Reachability . 137
9.3 Robust Cost-Optimal Reachability . 139
9.4 Encoding Minsky Machines . 140
9.5 Lim-OptReach Under Excess Perturbation . 141
9.6 Lim-OptReach Under Conservative Perturbation . 147

9.6.1 Algorithm for Weighted Timed Automata . 147
9.6.2 Undecidability on Weighted Timed Games . 150

9.7 Conclusion . 153

IV Robust Implementation 154

10 Approximate Implementation 157
10.1 Introduction . 157
10.2 Preliminaries . 157

10.2.1 Behaviourial Relations . 157
10.2.2 Refined Regions . 158

10.3 Implementability . 159
10.3.1 Robustness . 159
10.3.2 Samplability . 161
10.3.3 Constructions . 161

10.4 Proof of Correctness . 163
10.4.1 Properties of regions . 163
10.4.2 Proof of Robustness . 165
10.4.3 Proof of Samplability . 169
10.4.4 Proof of Safety Preservation (Ready Simulation) 170

10.5 Application to Robust Undecidability . 171
10.6 Conclusion . 172

8 CONTENTS

11 Implementation by Shrinking 173
11.1 Introduction . 173
11.2 Implementation Semantics . 173
11.3 Proof of Proposition 11.2.2 . 175
11.4 Comparison with [DDR05a] . 179

V Conclusion 181

12 Conclusion and Perspectives 183

Chapter 1

Introduction

1.1 Real-time systems
Digital systems have become a part of our lives: personal computers, smartphones, even espresso
machines, but also parts of cars, trains, and airplanes. In fact, thanks to the wide availability
of microprocessors, many physical systems are today controlled by computers. For instance, the
automotive and the aerospace industries have long been turned to X-by-wire systems, where the
control mechanism is ensured by electronic components. Among these systems, real-time systems are
of particular interest. These are heterogeneous systems made of physical machines and software parts,
and are moreover subject to real-time constraints such as response times and operational deadlines.
Thus, designing such systems not only involves developing correct software in the classical sense,
but also requires ensuring task execution times, response time guarantees, and other quantitative
constraints such as low energy consumption. As real-time systems have gained in complexity, the
correctness of critical systems (e.g. airplanes, nuclear plants), and consequently the safety of people
involved in these systems have become an issue. In complex real-time systems, small design errors
can stay unnoticed during the development and testing phase and have serious consequences. While
some of these errors are implementation errors that are introduced during development, some others
are design errors that could be corrected before manufacturing even begins. Some publicly known
examples to such errors is the Toyota Prius brake system software error1, which caused a reaction
delay of the braking system of almost one second, and the priority inversion bug in the NASA Mars
Pathfinder2, which required restarting the system, thus reducing precious cruise time.

Why are some serious errors not detected? One reason is perhaps the difficulty of applying
techniques from software engineering to real-time systems. For instance, the classical testing and
debugging of real-time systems is often difficult, since reproducing a physical state of the environment
and of the system is often impossible. Also, one cannot simply stop time while debugging and
analyze the system. Another source of complexity is due to the distributed nature of some real-time
systems, which is already a known issue for concurrent software systems. Most importantly, usual
techniques for software development do not take into account non-functional properties such as
timing constraints in the executions of the system and physical quantities on which the behavior
of the system may depend. Classical control theory does not provide a solution neither since it is
not well suited for systems with a software control structure. A comparison between developing
systems with classical control theory and developing embedded software systems is given in [CM05].
In fact, real-time systems require specialized techniques, depending on the application area; see
e.g. [Kop11]. Finding design methods and techniques to ensure the correctness of various kinds of
real-time systems is largely an open research problem today. In [HS06], the authors identify the
design of embedded systems as an important challenge, and suggest research directions to develop
theories and tools for the development of reliable embedded systems.

1 http://www.reuters.com/article/2010/02/09/toyota-recall-announcement-idAFTKG00664220100209
2 http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html

9

10 CHAPTER 1. INTRODUCTION

1.2 Formal Verification and Timed Automata

Formal verification consists in proving or disproving the correctness of the design of a system
described in a mathematical formalism. Several techniques have been developped for formal
verification. Among these, model-checking has an important place. It consists in an exhaustive
exploration of the mathematical model of a system, in order to prove or disprove that it satisfies a
given property. Model-checking has first been applied to verify finite-state models against properties
expressed in temporal logic; see [GV08] for the first applications of model-checking and the history
of its development. Richer formalisms have then been considered in order to apply model-checking
on infinite-state systems that have unbounded data, communication, probabilities, and time.

In this thesis, we concentrate on model-checking timed automata [AD90, AD94], an extension of
finite automata with analog clock variables. This is an abstract and convenient formalism to express
several kinds of systems with timing constraints. Several model-checking tools are available for timed
automata such as Uppaal [BDL+06], Kronos [BDM+98], RED [Wan06], Rabbit [BLN03]. The timed
automata technology has been used to prove the correctness of communication protocols [DY00],
clock synchronization algorithms [RNPH05], audio/video protocols [HSLL97], and tool support is
available specifically for scheduling analysis of real-time tasks, see e.g. the Times Tool [AFM+02].

We will explain timed automata on an example. We consider a simple model of a computer
mouse controller whose aim is to distinguish between simple and double clicks. We would like any
click to be interpreted as a double click whenever it is preceeded by a simple click in less than 100
milliseconds. The timed automaton is given in Fig. 1.1. The underlying finite automaton is simple:
it has two locations, and three transitions labelled by click. Notice that the system does not make
much sense if we do not take into account time delays between actions: seen as a finite automaton,
the system can generate any sequence of clicks, while it can return to location double only after
going through location simple. Timing constraints are ensured by the clock x. In timed automata,
clocks always grow at a constant rate, and cannot be stopped; they can only be reset (to 0) during
transitions. Here, the clock x is reset during clicks. Furthermore, the transition from simple to double
is guarded by x < 100, which means that a double click is realizable only if x < 100. A simple click
is realizable after a previous click if x ≥ 100, that is, at least 100 milliseconds has elapsed since the
latest click.

double simple
click, x := 0

x ≥ 100, click, x := 0

x < 100, click

Figure 1.1: A timed automaton specifying a simple mouse controller detecting simple and double
clicks. The clock x is reset when a simple click is realized. After that, any click event received in
less than 100 time units gives rise to a double click. Otherwise it is another simple click.

Model-checking algorithms for timed automata allow one to exhaustively verify whether all runs
satisfy a property. The problem was shown to be decidable; for instance, PSPACE-complete for
location-based Büchi properties [AD94], and for timed properties expressed in the timed computation-
tree logic [ACD93]. For example, on the timed automaton of Fig. 1.1, one could check whether

1.3. ROBUSTNESS 11

two consecutive visits to double are possible (it is not), or whether two consecutive visits to simple
separated by more than 100 milliseconds are possible (it is).

1.3 Robustness

In this thesis, we are interested in extending model-checking algorithms to take into account
robustness constraints, that is, not only checking the correctness of the behaviors in the standard
semantics, but also checking for vulnerabilities of a given timed automaton to small perturbations in
timings. Robustness is a crucial property of hard real-time systems, requiring them to resist to errors
or failures, such as unexpected input; the behavior of a good real-time system should not change
drastically if a small error occurs. In control theory, robustness is expressed in terms of continuity:
The response of a system should be a continuous function of its input, thus small variations in the
input should cause small variations in the output. It is difficult to define such a continuity notion in
real-time systems taking into account errors in discrete behavior, since the correctness of software
is rather a boolean value. Thus, there is a need to define an appropriate theory of robustness for
real-time systems; this was identified as an important challenge in [Hen08, HS06].

frame1 frame2 frame3 frame4 frame5 frame6 frame7 frame8

encode1 encode2 encode3 encode4 encode5 encode6 encode7 encode8

τ

τ

. . .

Figure 1.2: The scheduling of the tasks of a camera-recoder system. The period of the generation of
the frames is the same as the encoding of the frames. The system can run for an arbitrarily long
time.

Let us illustrate robustness on a simple real-time system. We consider a camera that captures a
frame every τ time units, while an encoder treats a frame with the same period. We assume that
the camera sends a frame to the encoder through a digital communication medium, and that the
encoder has a bounded buffer which it uses to store incoming frames. The expected behavior of
the system is illustrated in Fig. 1.2. We abstract away the computations and only concentrate on
execution times. Thus, we are interested in the schedulability of these tasks. We would like the
system to be able to treat an infinite number of tasks. This means that the encoder should not be
too late treating the frames since it has only a finite buffer. Since both periods are the same, the
present system is clearly capable of realizing this specification.

Now that we assessed that the “exact” behavior of the system is correct, the next step should be
to check for robustness. Does the system still satisfy the specification under small perturbations?
Let us consider a simple perturbation which consists in increasing or decreasing by a small amount
the execution times. For instance, assume that the camera works slightly faster than expected, e.g.
it sends frames with a period of τ − ε, while the encoder treats each frame in τ time units. The
scheduling of the tasks is shown in Fig. 1.3. Since the encoder is now slower than the camera, it will

12 CHAPTER 1. INTRODUCTION

eventually skip frames or have a buffer overflow. The system no longer satisfies the specification
(being able to run indefinitely) however small ε > 0 may be. The system is, therefore, not robust.

frame1 frame2 frame3 frame4 frame5 frame6 frame7 frame8

encode1 encode2 encode3 encode4 encode5 encode6 encode7 encode8

τ − ε

τ

. . .

Figure 1.3: The scheduling of the tasks of a camera-recoder system of Fig. 1.2, where the execution
times are slightly changed. The period of the generation of the frames, τ − ε, is shorter than the
period of encoding. For any value of ε > 0, the encoder will have an overflow or it will skip frames
eventually.

The reason behind non-robustness phenomena is that the mathematical model is often an
idealization of a physical system. For instance, in the above example, we have summarized the
behavior of a complex system as a simple periodic event of duration τ . Clearly, no such physical
system can be guaranteed to perform a complex task in exactly τ time units. Often, one can only
compute or estimate lower and upper bounds on the execution times, and even that is a challenging
problem [Kop11]. Nevertheless, modelling with logical execution times as in Fig. 1.2 is useful for a
first check of whether the abstract design is correct, and has the advantage of being simple (see e.g.
[HHK01]). When modelling at such a high level of abstraction, the system designer knows that she
will have to make sure that timing errors are indeed negligible, before actually implementing the
system. Similar ideas appear in synchronous programming paradigm [Ber00], where communications
between components are assumed to be instantaneous.

Timed automata are a generic tool that allows modelling systems at various levels of abstractions.
They allow modelling scheduling systems as the one described above, but also systems where time
has a different scale: one time unit can represent nanoseconds when analyzing stabilization times
for asynchronous circuits; it can represent one second in a train-gate controller, where significant
events are separated by delays of higher order of magnitude. Thus, timed automata are equipped
with a general-purpose idealized mathematical semantics: Time delays can be arbitrarily small and
precise, actions (location changes) are instantaneous, and when there are several clocks, these grow
at the same rate. This semantics has the advantage of being formal, simple and easy to analyze.

Consequently, robustness problems as in Fig. 1.3 are an issue for timed automata models. This
advocates for the development of formal techniques for ensuring the robustness of timed automata.
The main objectives in the study of robustness in timed automata can be summarized as follows:

1. Robustness analysis, where one checks whether a given timed automaton satisfies its specifica-
tion when it is subject to perturbations.

2. Robust synthesis, where one synthesizes a controller given as a timed automaton, which can
enforce a correct behavior under perturbations.

1.4. PREVIOUS WORK ON ROBUSTNESS 13

3. Robust implementation, where one seeks to (automatically) transform a timed automaton into
an equivalent one whose behavior respects the specification under perturbations.

4. Language theory, where the goal is to understand to what extent the idealistic semantics of
timed automata correspond to that of real-time systems.

We will address all four questions in this thesis. Let us first summarize previous work on
robustness in timed automata.

1.4 Previous Work on Robustness

We overview several perturbation models considered in the timed automata literature to study
robustness. Because timed automata are a general-purpose formalism, several perturbation models
have been considered. In fact, whether the idealistic assumptions behind the semantics are justified
or not depends on a given application. For instance, if clocks model several time measures done by a
single processor, then assuming they are synchronous is harmless. However, if the timed automaton
represents the global behavior of a distributed system, say, with several processes each having an
independent clock, then one should verify that the specification is satisfied when these clocks are
subject to drift. Hence, the study of robustness calls for specific theories for each application area.

In [Pur00], Puri studies the semantics of closed timed automata where the clocks are subject to
a drift bounded by some ε > 0. More precisely, the semantics is modified by allowing the clocks to
grow with independent rates from [1− ε, 1 + ε]. The robustness question asks whether for some ε > 0,
the semantics is safe with respect to a given set of states. The timed automaton of Fig. 2.3 appears
in [Pur00] as an example of non-robust timed automaton. It is shown that one can compute the set⋂
ε>0 Reachε(A) for any timed automaton A, where Reachε(A) denotes the set of states reachable

under drifts bounded by ε > 0. Hence, one can decide whether safety can be ensured for some ε > 0.
Robustness analysis against clock drifts was studied for more general timed automata in [Dim07].
Clock drifts yield decidability in some cases: Timed language inclusion becomes decidable if the
right-hand side system is a product of one-clock timed automata under clock drifts [ALM05]. It was
shown that under an external clock synchronization mechanism, closed timed automata are robust
against clock drifts [SFK08]. Clock drifts were considered in [Kri00] in the context of asynchronous
distributed timed automata, where clocks evolve independently in each component. Components
can read each other’s clocks, but cannot reset them. See also [DL07] for a variant of the model. The
resulting model is more expressive than timed automata; [OLS11] suggests a model that has the
same expressive power as event clock automata of [AFH99]. In [ABG+08], the authors concentrate
on the untimed language of distributed timed automata. They distinguish the existential and the
universal (untimed) languages recognized by distributed timed automata. The existential language
consists in the possible behaviors of a DTA under some evolution of time, where the universal
language is the set of behaviors that can arise under any evolution of time. The former is interesting
for checking safety properties and has a decidable emptiness problem. The problem is similar to
that of [Pur00] except that there is no upper bound on the magnitude of the drifts. The universal
semantics is useful for checking positive specifications, but emptiness is undecidable.

Another perturbation model for timed automata that appears in [Pur00] is that of guard
enlargement. Here, the timed automaton is syntactically modified by relaxing the guards. For
some parameter δ > 0, enlargement consists in modifying a guard a ≤ x ≤ b, to a− δ ≤ x ≤ b+ δ.
In this setting, the robustness question asks whether for some δ > 0, the timed automaton is

14 CHAPTER 1. INTRODUCTION

safe with respect to a set of states. Puri states the decidability of this question. These ideas are
revisited in [DDMR08], both for clock drifts and guard enlargement, where detailed proofs are
given. It turns out that the same algorithm decides the robustness against guard enlargement
and clock drifts for safety objectives. Several model-checking algorithms for timed automata were
re-visited in the setting of guard enlargement. More precisely, the parameterized robust model-
checking asks whether given a timed automaton A, there exists δ > 0 such that Aδ, the timed
automaton A whose all guards are enlarged by δ, satisfies a given property. For safety properties,
[DDMR08] shows PSPACE-completeness, which is the complexity of the problem in the exact setting.
Richer specifications were also studied: Parameterized robust model-checking against co-Büchi
properties (including LTL) is PSPACE-complete [BMR06, BMS11]. For a fragment of the metric
temporal logic, called coFlat-MTL, the problem is EXPSPACE-complete [BMR08] (this logic was
identified earlier in [BMOW07] as a fragment of the logic MTL of [Koy90] for which model-checking
is EXPSPACE-complete). Notice that the complexity of all parameterized robust model-checking
algorithms is the same of the corresponding standard model-checking algorithm on timed automata.
Symbolic algorithms were also studied for the subclass of timed automata without nested cycles
in [DK06, JR11]. The guard enlargement approach was recently applied to time Petri nets [AHJR12].

A different line of works considers the semantics of timed automata under a sampling of time with
unknown (parameterized) sampling period. More precisely, the semantics is obtained by replacing
the continuous time by the multiples of a sampling period. In this setting, the emphasis is on the
loss of behavior, since restricting the time domain cannot add new behaviors. Examples of timed
automata whose behaviors are disabled under any sampling period appear in [CHR02]. The authors
show the undecidability of the parameterized reachability problem, that is, deciding whether for
some sampling period, some state is reachable, under the assumption that an action must be taken
at each sampling point. Decidability is reported in [KP05] when this condition is relaxed, allowing
time to elapse until any sampling point. Untimed language equivalence for some sampling period is
also decidable [AKY10].

The above works concentrate on developing specific algorithms for the modified semantics of
timed automata and games, in order to synthesize the parameters ε or δ. A different approach
consists in incorporating these perturbations for some fixed values of ε or δ, by encoding as timed
automata. This is easy to do for enlargement since, for a fixed parameter, it consists in syntactically
modifying the timed automaton. One can also encode clock drifts, and synchronization delays as
suggested in [AT05]. The advantage is that one can rely on existing tools to verify the resulting
system. On the other hand, such an encoding generally requires using several clocks, and increases
the size of the state space.

In [ACS10], robustness against changes in task execution times was investigated in real-time
applications. In fact, a known phenomenon in real-time systems is that reducing execution times,
for instance, by replacing the hardware by a faster one, does not always preserve correctness since
the behavior of the system may depend on expected execution times. The authors describe a
methodology to check, using simulation, whether reducing task execution times yield any errors.

Similar notions of robustness were considered in timed games. In [CHP11], the authors consider
two-player timed games, where Player 2 can perturb the delays chosen by Player 1 by a bounded
amount δ. In order to win, Player 1 is required to have a strategy that is valid under any move of
Player 2, ensures a parity condition while not blocking time. The problem is studied for a fixed δ,
by encoding the semantics as a regular timed game. They also give algorithms to decide the winner
in this model where Player 1 is only required to play positive delays, and is subject to perturbations.
This encoding in timed games were applied to robustness in interface theories in [LLTW11].

1.4. PREVIOUS WORK ON ROBUSTNESS 15

Some attempts have been made to study the semantics of timed automata models when these
are implemented on physical hardware. In [DDR05a], a simple micro-processor model with a
discrete clock, reaction times, and imprecisions was studied. The resulting semantics, called program
semantics, is very detailed and is somewhat difficult to work with. The authors also give a simpler
semantics, similar to the enlargement mentioned above, which over-approximates the program
semantics. This gives precise motivation for the study of the enlargement in timed automata,
since robustness against guard enlargement implies that the semantics of the implemented system
is correct. Some case studies using this approach are reported in [DDR05b]. In [BKW12], the
implementation problem of timed automata specifications is studied for commercial microcontrollers,
with application on PIC microchips. In [Die01], the author defines a semantics based on timed
automata for programmable logic controllers, but the resulting model is less expressive than timed
automata. A related line of work is interested in code generation from timed automata models. The
Times tool is capable of checking schedulability of real-time tasks and generating code [AFM+02].
Code generation from a more powerful formalism using hybrid automata is considered in [AIK+03].

Another reason for studying robustness is decidability. In fact, it is believed that the undecidability
of some problems in formal verification (such as, timed language inclusion [AD94]) is due to the
excessive expressive power of the formalism, e.g. the ability of timed automata to express complex
languages using too much precision. One hope is that by introducing fuzziness in the semantics, thus
excluding such unrealistic behaviors, one might obtain decidability. Several researchers argue in this
direction. In [AB01] Turing machines and other hybrid systems were studied under infinitesimal
perturbations. The results indicate that the languages defined by these systems become decidable in
the class of robust systems, that is, those systems whose languages are unchanged under infinitesimal
perturbation. Similarly, reachability becomes decidable in hybrid automata where activities are
subject to small drifts, and under some conditions on the target set [Frä99]. In timed automata,
an early attempt to define robustness with this idea is based on a topology defined on timed
traces [GHJ97]. A run is accepted in this semantics if, and only if it has a neighborhood in which
the runs of the standard semantics are dense. This allows one to introduce continuity in the
semantics: any accepted run is still accepting under any small modification of the delays. Language
emptiness is PSPACE-complete, which is the complexity of the problem in the standard semantics.
Unfortunately, timed automata can still not be determinized under this semantics, and timed
language inclusion is still undecidable [HR00, OW03a]. The authors of [OW03a] conclude that this
semantics is counterproductive for obtaining decidable verification problems.

The work on digitization, initiated in [HMP92], seeks to simplify the verification procedure by
means of restricting the domain to timed automata whose languages are stable under discretization.
The paper defines a timed language to be closed under digitization if, roughly, all its runs executed
under a periodic clock with any offset are still valid runs. Closure under inverse digitization
requires that if all such executions yield valid runs, then the original run should be a valid one.
The main result of [HMP92] is that given two timed languages A and B, if A is closed under
digitization, and B is closed under inverse digitization, then checking timed language inclusion is
equivalent to checking timed language inclusion in discrete semantics, thus decidable. An important
result derived from [HMP92] is the decidability of the inclusion of the timed language of a closed
timed automaton in that of an open timed automaton, in the weakly monotonic time (that is, 0
time delays are allowed) [OW03b]. Some results of similar nature on discrete time were reported
in [AMP98]. Specialized model-checkers were developed for verifying timed automata in discrete
time [BMPY97, BLN03].

16 CHAPTER 1. INTRODUCTION

Table 1.1: Results on robustness analysis. Contributions are shown in shaded area.

Objective Safety Büchi coFlat-MTL Lang. Equiv.

Standard PSPACE-c
[AD94]

PSPACE-c
[AD94]

EXPSPACE-c
[BMOW07]

EXPSPACE-c
[BGS12]

Robust
PSPACE-c

[Pur00,
DDMR08]

PSPACE-c
[BMR06,
BMS11]

EXPSPACE-c
[BMR08] EXPSPACE

1.5 Contributions of This Thesis

In this thesis, we present several results that extend the understanding of robustness in timed
automata, and suggest new robustness notions. We summarize our results in four parts.

We consider the problem of robustness analysis, by studying the untimed language of timed
automata under guard enlargement. Our result, presented in Chapter 4, is an EXPSPACEalgorithm
for checking whether for some enlargement parameter, the enlarged timed automaton has the same
untimed language as the original one. Table 1.1 summarizes the complexity of robustness analysis
problems against guard enlargement. We then consider robustness analysis against guard shrinkings,
which is the inverse of enlargement. In Chapter 5, we show how infinitesimal shrinkings can disable
behaviors in timed automata. We give algorithms to synthesize possibly different shrinking values
for each guard of a given timed automaton, so that the resulting timed automaton is non-blocking,
and is able to time-abstract simulate the original one. Our algorithms are in PSPACEand EXPTIME.
Chapter 6 reports on a software tool implementing these algorithms, and presents experimental
results.

In the second part of this thesis, we consider the problem of robust synthesis. In this part, we
are no more interested in verifying all behaviors of a given system, but we rather want to robustly
control a given system, so that, even under perturbations, a desired property is ensured. We consider
two perturbation game models, where a second player systematically perturbs the delays chosen
by the controller. In the first one, studied in Chapter 8, the control strategy is obliged to satisfy
the guards whatever perturbations are, and the goal is to synthesize strategies to ensure infinite
runs satisfying a Büchi condition. This is the conservative perturbation game model. We prove
PSPACE-completeness, and show that the problem is closely related to convergence phenomena
in timed automata. In the second perturbation model, studied in Chapter 7, the control strategy
only needs to suggest moves that satisfy the guards, but the perturbed moves may not satisfy
these. This is the excess perturbation game model. The resulting semantics is different from the
previous one. We prove EXPTIME-completeness for the reachability objectives on timed automata
and turn-based timed games. In Chapter 9, we consider weighted timed games, for which the
cost-optimal reachability problem is known to be undecidable [BBM06, BBR05a]. We prove that
the undecidability “robustly” holds; in fact, the problem remains undecidable for weighted timed
games in the conservative perturbation model, and it even becomes undecidable for weighted timed
automata under the excess perturbation model. The latter is result is rather surprising, since it goes
against the common belief that introducing perturbations can render problems more tractable. Thus,
these semantics do not allow to obtain decidability for weighted timed games. On the positive side,
we prove the PSPACE-completeness of the cost-optimal reachability in weighted timed automata
under the conservative perturbation game semantics. Table 1.2 summarizes the results of this part.

In the third part, we study the robust implementability problem. The goal here is to transform

1.5. CONTRIBUTIONS OF THIS THESIS 17

Table 1.2: Results on robust synthesis. TA stands for timed automata, TTG for turn-based timed
games, WTA for weighted timed automata, and WTG for weighted timed games. Empty boxes
indicate open problems.

Problem Reach TA Büchi TA Reach TTG OptReach
WTA

OptReach
WTG

Conserv. PSPACE-c PSPACE-c PSPACE-c undec.
Excess EXPTIME-c EXPTIME-c undec. undec.

given timed automata into ones that are robust by construction, yet behaviorally equivalent. We
consider two approaches. In the first one, studied in Chapter 10, we show how to transform any
timed automaton into one that is strongly bisimilar and whose behavior under enlargement (resp.
sampling) is preserved in terms of approximate bisimilarity for any desired precision. This allows one
to design using the exact semantics and then to automatically refine the system to ensure robustness
with respect to guard enlargement or sampling. In a second approach, studied in Chapter 11, we
use shrinking as a technique to implement timed automata on hardware. The main idea is that
if all guards are shrunk, then no new behavior is present under small enough imprecisions (i.e.
enlargement). We define a concrete implementation semantics for timed automata, similar to that
of [DDR05a], including a periodic clock and communication delays, and show that the shrinkability
of timed automata, in the sense of Chapter 5, implies that the implementation semantics preserves
time-abstract behavior, and is non-blocking.

A fourth kind of results are more of theoretical interest, and ask whether the perturbation
models considered here simplify the complexity of the verification problems on timed automata.
As mentioned above, Chapter 9 presents undecidability results for the cost-optimal reachability in
weighted timed games under perturbations, showing that the perturbation game semantics do not
yield decidability, and can even render the problems more difficult. A second result, given at the end
of Chapter 10, is a powerful one: we show that all undecidable problems on timed automata remain
undecidable when restricted to the class of timed automata that are robust to guard enlargements,
for any precise definition studied in the literature. Hence, perhaps counterintuitively, perturbation
models based on enlargement do not decrease the expressive power of timed automata. Consequently,
they do not yield the decidability of the hard verification problems.

Most of the results of this thesis have been published, with the exception of Chapters 8 and 9;
the former is under submission, the latter in preparation. The publications partially containing the
results are following.

[BLM+11] Patricia Bouyer, Kim G. Larsen, Nicolas Markey, Ocan Sankur, and Claus Thrane. Timed
automata can always be made implementable. In Joost-Pieter Katoen and Barbara
König, editors, Proceedings of the 22nd International Conference on Concurrency Theory
(CONCUR’11), volume 6901 of Lecture Notes in Computer Science, pages 76–91, Aachen,
Germany, September 2011. Springer.

[BMS12] Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robust reachability in timed
automata: A game-based approach. In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts,
and Roger Wattenhofer, editors, Proceedings of the 39th International Colloquium on
Automata, Languages and Programming (ICALP’12) – Part II, volume 7392 of Lecture
Notes in Computer Science, pages 128–140, Warwick, UK, July 2012. Springer.

18 CHAPTER 1. INTRODUCTION

[San11] Ocan Sankur. Untimed language preservation in timed systems. In Filip Murlak and Piotr
Sankowski, editors, Proceedings of the 36th International Symposium on Mathematical
Foundations of Computer Science (MFCS’11), volume 6907 of Lecture Notes in Computer
Science, pages 556–567, Warsaw, Poland, August 2011. Springer.

[San13] Ocan Sankur. Shrinktech: A tool for the robustness analysis of timed automata.
In Proceedings of the 25th International Conference on Computer Aided Verification
(CAV’13). To appear, 2013.

[SBM11] Ocan Sankur, Patricia Bouyer, and Nicolas Markey. Shrinking timed automata. In
Supratik Chakraborty and Amit Kumar, editors, Proceedings of the 31st Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS’11),
Leibniz International Proceedings in Informatics, pages 90–102, Mumbai, India, December
2011. Leibniz-Zentrum für Informatik.

The following ones are under submission / preparation at the time of submission of this thesis.

[BMS13] Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Weighted timed games under
perturbations. In In preparation, 2013.

[SBMR13] Ocan Sankur, Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier. Robust
controller synthesis in timed automata. In In submission, 2013.

The contents of the following publications are related to the results presented in this thesis. We
do not include the details here in order to keep the presentation more coherent. Some of these
results will however be briefly mentioned in subsequent chapters.

[BGS12] Romain Brenguier, Stefan Göller, and Ocan Sankur. A comparison of succinctly represented
finite-state systems. In Maciej Koutny and Irek Ulidowski, editors, Proceedings of the 23rd
International Conference on Concurrency Theory (CONCUR’12), volume 7454 of Lecture
Notes in Computer Science, pages 147–161, Newcastle, UK, September 2012. Springer.

[BMS11] Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robust model-checking of timed
automata via pumping in channel machines. In Uli Fahrenberg and Stavros Tripakis,
editors, Proceedings of the 9th International Conference on Formal Modelling and Analysis
of Timed Systems (FORMATS’11), volume 6919 of Lecture Notes in Computer Science,
pages 97–112, Aalborg, Denmark, September 2011. Springer.

1.6 Outline

Part I contains the preliminaries: In Chapter 2, we give formal definitions, examples, and present
the perturbation models we consider in this thesis. Some important data structures used in following
chapters are presented in Chapter 3. The main results are presented in three parts. Part II is on
robustness analysis, and contains results on untimed language preservation under guard enlargement
(Chapter 4), shrinkability (Chapter 5), and the software tool Shrinktech (Chapter 6). Part III is
about robust synthesis. Chapters 7 and 8 present synthesis algorithms for, respectively, the excess
perturbation game and the conservative perturbation game semantics. These semantics are applied
to weighted timed games in Chapter 9. Part IV focuses on the robust implementation problem:

1.6. OUTLINE 19

Chapter 10 considers approximately implementing timed automata under guard enlargement and
sampling. Chapter 11 considers a more concrete model of an execution platform and studies
implementation by shrinking.

Part I

Preliminaries

In this part, we give definitions and results that will be used in subsequent chapters. Chapter 2
contains formal definitions of timed automata, its variants, and their semantics. It also gives
examples, and define different perturbatuion models studied in this thesis. Chapter 3 is devoted to
different data structures used throughout this thesis; we also prove some technical results.

20

Chapter 2

Timed Automata and Their
Semantics

2.1 Timed Transition Systems and Timed Game Structures

One convenient way of modelling systems is to define a state space whose elements describe all
relevant information about the system at a given instant, and transitions between states, which
model the evolution of the system. Formally, a system can be described by a transition system
which is a tuple T = (S, s0,Σ,→) where S is an arbitrary set of states, s0 ∈ S is a distinguished
initial state, Σ an arbitrary set of labels, and → ⊆ S×Σ×S is the transition relation. We will write
transitions as s σ−→ s′ instead of (s, σ, s′) ∈ →.

Since we are interested in timed systems in this thesis, we will consider transition systems in
which time is explicitly modelled. We use timed transition systems (TTS) as a low-level formalism to
describe timed systems. Formally, a TTS is a tuple T = (S, s0,Σ,K,→) such that (S, s0,Σ ∪̇ K,→)
is a transition system, where ∪̇ denotes disjoint union. We distinguish two types of transitions: A
transition σ−→ with σ ∈ Σ is an action, while a transition d−→ with d ∈ K is a delay. We will write
s
d,σ−−→ s′ if there exists s′′ ∈ S such that s d−→ s′′

σ−→ s′. Let us also denote s σ
=⇒ s′ if there exists d ∈ K

such that s d,σ−−→ s′.
A run of T is a sequence ρ = q1e1q2e2 . . . of states and transitions alternating between delays

and actions: we have qi ∈ S, and qi
ei−→ qi+1 for all i ≥ 1, with ei ∈ K for odd i, and ei ∈ Σ for

even i. The run is initialized if q1 = s0. Let us denote by Runs(T) the set of initialized runs of T .
We denote by statei(ρ) = qi the i-th state of the run ρ, by first(ρ) its first state, and, if ρ is finite,
last(ρ) denotes the last state of ρ. We also write transi(ρ) = ei. Let |ρ| denote the length of ρ, the
number of states visited by ρ. For any 0 < i < j ≤ |ρ|, we denote by ρi...j the subrun from statei(ρ)
to statej(ρ). The timed trace of ρ, denoted ttrace(ρ), is the sequence (di, σi)i of consecutive delay
and actions of ρ. The untimed trace of ρ, denoted utrace(ρ), is the projection of its timed trace to
the actions. We denote by L(T) the set of untimed traces of the initialized runs of T , called the
language of T . For any state s ∈ S, let L(T , s) denote the set of untimed traces starting at s.

A TTS T = (S, s0,Σ,K,→) is said to be non-blocking if for any action s
σ−→ s′, there exists

σ′ ∈ Σ such that s′ σ
′

=⇒ s′′. In other terms, any action can be followed, possibly after a delay, by
another action. The set of reachable states, denoted Reach(T), is defined as those states that appear
along initialized runs of T .

The notions of simulation and bisimulation can be defined naturally on timed transition
systems [HLY92], as follows.

Definition 2.1.1. Given a TTS (S, s0,Σ,K,→), a relation R ⊆ S × S is a timed simulation if for
any (s, t) ∈ R, and any α ∈ Σ ∪K, s α−→ s′ implies that t α−→ t′ for some t′ ∈ S with (t, t′) ∈ R. If

21

22 CHAPTER 2. TIMED AUTOMATA AND THEIR SEMANTICS

there is such a relation, we say that s is simulated by t. A timed bisimulation is a symmetric timed
simulation.

Given two TTS T and T ′, we say that T is timed-simulated by T ′, denoted T v T ′, if the
initial state of T is simulated by the initial state of T ′ in the disjoint union of these.

The notion of time-abstract simulation has been defined [LY94], in order to compare the qualitative
behavior of timed automata, without requiring that the delays be matched exactly.

Definition 2.1.2. Given a TTS (S, s0,Σ,K,→), a relation R ⊆ S×S is a time-abstract simulation
if for any (s, t) ∈ R, and any σ ∈ Σ, s σ−→ s′ implies that t σ−→ t′ for some t′ ∈ S with (t, t′) ∈ R, and
for any d ∈ K, s d−→ s′ implies that t d′−→ t′ for some d′ ∈ K and t′ ∈ S with (s′, t′) ∈ R. If there is
such a relation, we say that s is time-abstract-simulated by t. A time-abstract bisimulation is a
symmetric time-abstract simulation.

Given two TTSs T and T ′, we say that T is time-abstract-simulated by T ′, denoted T vt.a. T ′,
if the initial state of T is time-abstract-simulated by the initial state of T ′ in the disjoint union of
these.

In Chapter 11, we will introduce finer notions of simulation and bisimulation, that quantify the
differences between the delays of two systems.

Transition systems have generalizations to two-player games, where actions are jointly determined
by both players. A game structure is a tuple T = (S, s0,Σ1,Σ2, T1, T2, jt), where S is a set of states,
s0 ∈ S is the initial state, Σi the set of labels of Player i, Ti ⊆ S × Σi is the enabling condition for
Player i, and jt : S ×Σ1 ×Σ2 → S the joint transition function. We assume that each Σi contains a
distinguished element ⊥ called the empty action, and that jt(s,⊥,⊥) = s for any s ∈ S. A game

structure induces a transition system (S, s0,Σ1 × Σ2,→) defined by s
(σ1,σ2)−−−−→ s′ if, and only if

(s, σi) ∈ Ti for each i ∈ {1, 2}, and s′ = jt(s, σ1, σ2). Runs of a game structure are the runs of this
transition system. Let HT denote the set of finite runs of T . A strategy for Player i is a function
f that maps each h ∈ HT to an action Σi, such that (last(h), f(h)) ∈ Ti. A run is maximal if it
is infinite (notice that a finite run can always be extended by (⊥,⊥)). A run ρ is compatible with
strategies f and g of Players 1 and 2, if statei+1(ρ) = jt(ρ1...i, f(ρ1...i), g(ρ1...i)) for all i ≥ 1. Given
strategies f and g, respectively, for Players 1 and 2, the outcome of the pair (f, g) in T , denoted
by OutcomeT (f, g) is the unique maximal run that is compatible with both strategies. We denote
by OutcomeT (f, ·) all maximal runs compatible with f and some g, and OutcomeT (·, g) all maximal
runs that are compatible with g and some f .

A game structure T = (S, s0,Σ1,Σ2, T1, T2, jt) is turn-based if S can be partitioned as S = S1∪̇S2

such that for any s ∈ S1, σ1 ∈ Σ1, and σ2 ∈ Σ2, jt(s, σ1, σ2) = jt(s, σ1,⊥), and symmetrically for
any s ∈ S2, σ1 ∈ Σ1, and σ2 ∈ Σ2, we have jt(s, σ1, σ2) = jt(s,⊥, σ2). Moreover, we require that
for any s ∈ Si, (s, σ) ∈ T3−i if and only if σ = ⊥. In other terms, in turn-based game structures,
Player i determines alone the move at states Si. We will often define turn-based game structures
directly as their transition systems (S1∪̇S2, s0,Σ,→).

A reachability objective is a subset of states B ⊆ S. Player 1 has a winning strategy for a
reachability objective B if he has a strategy f such that all runs of OutcomeT (f, ·) visit B. The
definition is symmetric for Player 2. A Büchi objective is also defined as a subset B of states.
Player 1 has a winning strategy for a Büchi objective B, if she has a strategy f such that all runs
of OutcomeT (f, ·) visit B infinitely often.

2.2. TIMED AUTOMATA AND GAMES 23

2.2 Timed Automata and Games
Timed automata [AD90, AD92, AD94] are an extension of finite automata with analog clock variables,
and are a convenient formalism to define timed transition systems. In this thesis, we adopt timed
automata as the main formalism to model systems. We also consider their extensions two-player
timed games [AMPS98, AMP95], which define games structures.

Given a finite set of clocks C, we call valuations the elements of RC≥0. For a subset R ⊆ C
and a valuation ν, ν[R← 0] is the valuation defined by ν[R← 0](x) = ν(x) for x ∈ C \ R and
ν[R← 0](x) = 0 for x ∈ R. Given d ∈ R≥0 and a valuation v, the valuation ν + d is defined by
(ν + d)(x) = ν(x) + d for all x ∈ C. We write 0 for the valuation that assigns 0 to every clock.

An atomic guard is a formula of the form k � x �′ l or k � x − y �′ l where x, y ∈ C,
k, l ∈ Q ∪ {−∞,∞} and �,�′ ∈ {<,≤}. A guard is a conjunction of atomic guards. A valuation ν
satisfies a guard g, denoted ν |= g, if all constraints are satisfied when each x ∈ C is replaced
with ν(x). We denote by JφK the set of valuations satisfying φ. We write ΦC for the set of guards
built on C. We also define Φ≤,≥C (resp. Φ<,>C) as the set of guards using only non-strict inequalities
(resp. only strict equalities).

A timed automaton is a finite automaton whose edges contain guards and a clock-reset set:

Definition 2.2.1. A timed automaton A is a tuple (L, `0, C,Σ, E), where

• L is a finite set of locations, and `0 ∈ L is the initial location,

• C is a finite set of clocks,

• Σ is a finite set of labels,

• E ⊆ L× ΦC × Σ× 2C × L is a finite set of edges.

An edge e = (`, g, σ,R, `′) is also written as ` g,σ,R−−−→ `′. We say that g is the guard of the edge e, σ
its label, and R its reset set.

An open timed automaton is a timed automaton that only uses guards in Φ<,>C . A closed timed
automatonis one that only uses guards in Φ≤,≥C . We do not include for now any accepting condition
in the definition of timed automata, but these will be considered in following chapters. A timed
automatin is integral if its guards only have integer constants.

We will first present the standard semantics of timed automata, which we call the exact semantics.
Here, clock valuations and delays are arbitrary real numbers. We will later consider different
semantics, for instance, by restricting the time domain. The exact semantics of a timed automaton
A = (L, `0, C,Σ, E) is given as a timed transition system, denoted by JAK, whose state space is
L × RC≥0, i.e. pairs of locations and valuations. The initial state is (`0,0); the labels are Σ, and

the time domain is R≥0. There is a transition (`, ν)
d−→ (`, ν + d), for any (`, ν) ∈ L × RC≥0, and

any d ≥ 0, and (`, ν)
σ−→ (`′, ν′), for σ ∈ Σ, whenever A has an edge (`, g, σ,R, `′) with ν |= g and

ν′ = ν[R ← 0]. Hence, a run in a timed automaton consists in choosing delays, and edges whose
guards are satisfied at current valuation. The next state is then given by resetting the designated
clocks and changing location.

As an example, consider the following run of the timed automaton of Fig.1.1.

(double, x = 0)
20.5−−→ (simple, x = 20.5)

click−−→ (simple, x = 0)
117.8−−−→

(simple, x = 117.8)
click−−→ (simple, x = 0)

78−→ (simple, x = 78)
click−−→ (double, 78)

24 CHAPTER 2. TIMED AUTOMATA AND THEIR SEMANTICS

Hence, the run starts at the initial state (double,0), and is an alternation of delays and actions.

Definition 2.2.2. A timed game is a tuple (L, `0, C,Σ, E1, E2) such that
(L, `0, C,Σ, E1∪E2) is a timed automaton. A turn-based timed game is a timed game (L, `0, C,Σ, E1, E2)
such that L is partitioned as L = L1 ∪ L2 with L1 ∩ L2 = ∅, and Ei ⊆ {(`, g, σ,R, `′) | ` ∈ Li} for
each i ∈ {1, 2}.

The semantics of a timed game A is given as a game structure
(L × RC≥0,Σ

′
1,Σ

′
2, T1, T2, jt), also denoted by JAK. The labels are Σ′i = R≥0 × Ei ∪ {⊥}, that

is tuples of delays and edges. The enabling conditions are defined as Ti = (s, (d, ei)) with s ∈ S and
(d, ei) ∈ Σ′i if and only if ei = (`, g, σ,R, `1) ∈ Ei such that s+ d |= g. The joint transition function
jt obeys to the shortest delay, breaking ties in favor of Player 1. Formally, for ((`, ν), (d, e1)) ∈ T1

and ((`, ν), (d′, e2)) ∈ T2, with e1 = (`, g, σ1, R, `1), and e2 = (`, g′, σ2, R
′, `2), we let

jt(s, (d, e1), (d′, e2)) =

{
(`1, (ν + d)[R← 0]) if d ≤ d′,
(`2, (ν + d′)[R′ ← 0]) if d > d′.

Furthermore, we define jt((`, ν),⊥, e2) = (`2, (ν + d′)[R′ ← 0]) and jt((`, ν), e1,⊥) = (`1, (ν + d)[R← 0]).
The initial state is (`0,0).

Notice that the semantics of a turn-based timed game is a turn-based game structure. A timed
automaton can be seen as a timed game: in this case, Player 2 have no effect on the runs.

The models of timed automata and games were extended with a single cost variable, which can
have different constant derivative in each location. The resulting model is called weighted timed
game (or automaton) and was first studied in [ATP01, BFH+01].

Definition 2.2.3. A weighted timed game A is a tuple
(L, `0, C,Σ, E1, E2,S) such that (L, `0, C,Σ, E1, E2) is a timed game, and S : L → Z is a slope
function.

The semantics of a weighted timed game is defined as that of a timed game, except that the state
space also contains the value of the cost variable. We will denote the cost variable by c. Notice that
this variable only “observes” the runs, and does not appear, for instance, in the guards. The slope
function maps each location to an integer, which is the derivative of the cost variable when the run
is at that location. Formally, the semantics of a weighted timed game A is given as a game structure
JAK = (L × RC≥0 × R,Σ′1,Σ′2, T1, T2, jt), defined as for timed games. The only difference is that the
states are now tuples (`, ν, c), where (`, ν) is a state of the underlying timed game, and c is the value
of the cost variable. The joint transition function is defined as follows. For ((`, ν), (d, e1)) ∈ T1 and
((`, ν), (d′, e2)) ∈ T2, with e1 = (`, g, σ1, R, `1), and e2 = (`, g′, σ2, R

′, `2), we let

jt((`, ν, c), (d, e1), (d′, e2)) =

{
(`1, (ν + d)[R← 0], c+ S(`) · d) if d ≤ d′,
(`2, (ν + d′)[R′ ← 0], c+ S(`) · d) if d > d′.

Furthermore, we define jt((`, ν, c),⊥, e2) = (`2, (ν + d′)[R′ ← 0], c+ S(`) · d′) and jt((`, ν), e1,⊥) =
(`1, (ν + d)[R← 0], c+ S(`) · d).

Notice that a weighted timed automaton can be seen as a weighted timed game in which Player 2
has no effect on the runs.

For any state (`, ν) (resp. (`, ν, c)) of a (weighted) timed game, let us define the projection
loc((`, ν)) = ` (resp. loc((`, ν, c)) = `).

2.3. EXAMPLES 25

2.3 Examples

Producer-Consumer We define a simple producer-consumer system. The producer generates
an event every 2 time units, and the consumer treats an event with the same period. The two
components communicate through a bounded channel, modelled as an automaton. A high-level
description of the system is shown in Fig. 2.1, where the buffer size is a parameter N . The system
enters an error state (location err) in case of a buffer overflow.

The timed automaton A1 of Fig. 2.2 is the instantiation of this system for N = 1, where in
addition, the system starts at a state x = 1 ∧ y = 0, which means that the consumer has an offset
of 1. We also consider the timed automaton A2 of Fig. 2.3, where the requirements on the event
periods are relaxed: at least one event is generated every 2 time units, and at most one event is
consumed every 2 time units, while these two events must alternate. The timed automaton A2 can
be seen as a more abstract specification for a system like A1.

`1 `2 `3

err

x = 2, gen, x := 0 y = 2, con, y := 0

i > 0, con, i--

i < N, gen, i++

i = N, gen

Figure 2.1: A timed automaton modelling a producer-consumer system, given as a network of timed
automata with a bounded integer variable i which is initially 0. Here, each component is a separate
timed automaton. Time progresses globally, and any action shared between two components is only
possible if both components move simultaneously. Networks of timed automata, and finite variables
allow a more compact representation. We did not formally define these, but they can be easily
encoded in the underlying finite automaton. In our discussion, we concentrate on an instantiation
for N = 1, given explicitly as a timed automaton in Fig. 2.2.

`0 `1 `2 err
x = 1, y := 0

x = 2, gen, x := 0

y = 2, con, y := 0

x = 2 ∧ y ≤ 2, gen

Figure 2.2: The timed automaton A1 modelling the producer-consumer system of Fig. 2.1 instantiated
for N = 1. The transition from `0 to `1 models an offset of 1 time unit given for the consumer.

Scheduling An application of timed automata is the synthesis of schedulers in various con-
texts [AAM06]. Let us give here an encoding of an instance of the job-shop scheduling problem.

Consider the scheduling problem instance described in Fig. 2.4, which is a variant of an example
of [RWT+06]. Assume that we look for a work-conserving scheduler, that will immediately start
executing a task if a machine is free for execution and a task is available. What execution time can

26 CHAPTER 2. TIMED AUTOMATA AND THEIR SEMANTICS

`0 `1 `2 err
x = 1, y := 0

x ≤ 2, gen, x := 0

y ≥ 2, con, y := 0

x = 2 ∧ y ≤ 2, gen

Figure 2.3: A timed automaton A2 specifying the behavior of the producer-consumer system of
Fig. 2.2. Here, the specification is more abstract: an allowed behavior consists in generating at least
an event every 2 time units, and consuming at most one every 2 time units, while alternating between
generation and consumption. This automaton coincides with the example given by Puri [Pur00].

a work-conserving scheduling policy guarantee on this instance? One can model this problem as a
timed automaton, and prove, by reachability analysis, that these tasks can be scheduled using a
work-conserving policy within six time units. In fact, the scheduling given in Fig. 2.4 is a feasible
instance.

The dependences, the work-conserving policy and other constraints can be encoded as a timed
automaton, where clocks are used to count execution time. To check whether tasks can be scheduled
in c time units, one can use an additional clock t that measures the time elapsed from the beginning,
and require t ≤ c at every edge. Let us describe the timed automaton encoding this problem.
For convenience, we define the system as a network of timed automata with synchronization on
shared actions, and we use boolean variables. As previously, the corresponding timed automaton
(conforming to Definition 2.2.1) can be deduced easily.

The system contains two processes: Process 1 executing A and B, and Process 2 executing C,
D, and E. Both processes need the same resources (machines M1 and M2), which can only be used
exclusively. This system can be modelled by a network of timed automata, as follows. We define a
timed automaton P1 corresponding to Process 1, and P2 corresponding to Process 2. A third timed
automatonM enforces the mutual exclusion for both machines: no more than one task is executed
on a machine at any time. Moreover, we will also useM to impose a work-conserving scheduling:
this automaton will block any action if some task is waiting for execution on a machine that is free
(more details follow below). Each automaton Pi makes sure that its tasks are executed respecting
the dependences and timing constraints. All three components are given in Figures 2.5–2.7. For
instance, in automaton P1, the task A can be executed on M1 (first edge), only if lock1 can be
taken. The lock is released upon the termination of the task (second edge). Automaton M has
two boolean variables b1, b2, where bi is set to true if machine Mi is busy. The two self-loops are

0 1 2 3 4 5 6 7 8

M2

M1 A
C B

D E

Figure 2.4: Consider tasks A,B,C of duration 2 and D,E of duration 1. Dependences between
tasks are as follows: A→ B and C → D,E, meaning e.g. that A must be completed before B can
start. Task A must be executed on machine M1 and tasks B,C on machine M2. Moreover, task C
cannot be scheduled before 2 time units (which could be modelled using an extra task). The figure
shows an optimal work-conserving schedule for these tasks under these constraints.

2.3. EXAMPLES 27

p1 p2 p3 p4 p5

lock1

x1:=0

x1=2,unlock1 lock2

x1:=0

x1=2,unlock2

Figure 2.5: Timed automaton P1 modeling Process 1.

q1 q2 q3

q4

q′4

q5

q6

q′6

q7
t≥2,lock2

x2:=0

x2=2,unlock2

loc
k1

x2
:=

0

lock
2x

2 :=
0

unlock
1

x
2=

1

un
loc
k2

x2
=
1

loc
k1

x2
:=

0

lock
2x

2 :=
0

unlock
1

x
2=

1

un
loc
k2

x2
=
1

Figure 2.6: Timed automaton P2 modeling Process 2.

r

WC ∧ ¬bi, locki, bi := true, u := 0

WC ∧ bi, unlocki, bi := false, u := 0
u := 0, t := 0

Figure 2.7: Timed automatonM ensuring mutual exclusion and greedy scheduling. The guard WC
ensures the work-conserving property: WC = (∀i ∈ {1, 2},¬bi ∧Waitingi ⇒ u = 0) ∧ t ≤ c. Here t
is a clock that is never reset. The constraint t ≤ c ensures that we only consider schedules that
terminate in c time units.

defined for i = 1, 2. For instance, the automatonM synchronizes with action locki only if bi is not
set to true. It has the guard ∀i ∈ {1, 2},¬bi ∧Waitingi ⇒ u = 0 and t ≤ c (the universal quantifier
and implication are only used here to obtain a compact representation; an equivalent guard can be
obtained without difficulty). The first one ensures work-conserving scheduling, while the second one
blocks any action after c time units. Here, c needs to be instantiated for the timed automaton to
be defined; one could choose c = 6 for our purpose. Here, Waitingi is a formula stating that some
task is ready for execution on machine i. We omit the definition of Waitingi here but it can be
easily defined using the locations of components P1 and P2. AutomatonM blocks any action in the
whole system if time has elapsed while some task was ready for execution on a machine that is free.
Notice also that we marked some locations as final in each component. This means that we are only
interested in runs that end in final locations in all components as these correspond to successful
scheduling of all tasks.

Scheduling with Interruption Timed games can be used to model scheduling instances where
scheduled tasks are cancelled by an external event. A simple example is given in Fig. 2.8. In this
example, the location p1 represents the scheduling of a task that takes 3 time units to execute, and
the objective of Player 1 is to reach the location p2 in at most 4 time units. However, before the
guard x = 3 is enabled, Player 2 can “interrupt” the execution and move the system to p3. Here, the
task needs to be scheduled once again, but the objective is only reached if there remains enough

28 CHAPTER 2. TIMED AUTOMATA AND THEIR SEMANTICS

p1

p3

p2

p4

a,t:=0 x=3,b,x:=0

x≤2,cancel,x:=0 t≤4∧x=3,c

t>4∧x≥3,d

Figure 2.8: A timed game. Player 1’s edges are represented as straight edges, while Player 2’s edges
are dashed.

p1

p2

ċ=3

p3

p4

ċ=2

p5

ċ=1

p6

t:=
0,a

t:=0,b

t≥1,c

t≤2,d
t≤3,e t≥3,f

Figure 2.9: A weighted timed game.

time (if t ≤ 4 ∧ x = 3 is reachable). Otherwise, the system is stuck at p3 or p4.

Weighted Timed Games A cost variable can be added to timed automata and games to express
varying amounts of resource. A scheduling problem similar to ones above is given in Fig. 2.9, where,
moreover, several executions with different costs are possible. In this weighted timed game, the goal
of Player 1 is to reach the location p6. Roughly, two kinds of strategies allow reaching p6: one can
first go either to p2 or to p4. In the former case, the cost grows with derivative 3 at location p2 where
at least one time unit must be spend. In the latter case, the cost grows with a smaller derivative
(namely, 2) in location p4; however the time spent there is determined by Player 2. In either case,
the play must stay at p5 where the cost grows with derivative 1, until t ≥ 3. Here, the least cost
that Player 1 can guarantee while reaching p6 is 4. In fact, she can go to p2 and spend exactly one
time unit, while the cost grows by 3, then, spend one time unit in p3, and one time unit in p5, where
the grows by 1. The path through p4 does not yield a better cost, since Player 2 can wait 3 time
units in location p4, which yields a cost of at least 6.

2.4 Perturbation Models

In order to study robustness in timed automata, one first needs to define a perturbation model
against which a given model is to be checked. We present and compare several perturbed semantics
we study in this thesis, and illustrate these on the examples of the previous section. A common
feature of all semantics is that we consider that the bound on the imprecisions (denoted by δ below),
or the sampling period (denoted 1

k) are seen as unknown parameters to be synthesized by robustness
analysis. In fact, if an exact value for this parameter is known, one can often encode the resulting
semantics by a timed automaton, although such an encoding often increases the size of the model.
Here, we are rather interested in understanding the timed automata that are robust for all values of

2.4. PERTURBATION MODELS 29

1

1

2

2

`1

`2

x
0

0

y

Reach(JAK)

1

1

2

2

`1

`2

err

x
0

0

y

⋂
δ>0

Reach(JAδK)

Figure 2.10: The set of reachable states of A2 (on the left) and A2
δ for an arbitrary δ > 0 (on the

right). The location err is not reachable in A2 but becomes reachable in A2
δ .

the parameter under some bound, and in synthesizing this bound to ensure correctness.
Note that some of the following semantics are only defined for timed automata, since we do not

study all semantics in (weighted) timed games.

2.4.1 Enlargement
Given a parameter δ > 0, enlargement consists in replacing each guard of the form x ∈ [a, b] by
x ∈ [a − δ, b + δ]. Formally, given a clock set C, we define the enlargement of an atomic guard g
by δ, denoted 〈g〉δ, as follows.

〈k � x− y �′ l〉δ = k − δ � x− y �′ l + δ,
and 〈k � x �′ l〉δ = k − δ � x �′ l + δ.

for any x, y ∈ C, k, l ∈ Q and �,�′∈ {<,≤}. The enlargement of a guard is obtained by enlarging
its atomic guards. Given a timed automaton A, let us denote by Aδ the timed automaton obtained
from A by enlarging by δ all its guards.

It is easy to show that any behavior of A is still present in Aδ for any δ > 0, in the sense that
JAK v JAδK, where the identity relation can be used to show that simulation holds. Hence, the
enlargement consists in adding new behaviors by means of relaxing the guards by some parameterized
amount. Robustness in this context means that a timed automaton should satisfy a specification
even if the guards are enlarged by a small δ > 0. In other terms, a slight error in the timings
should not lead the system to an error. It was shown in [DDMR08] that the timed automaton A2

of Fig. 2.2 is not robust to guard enlargements, for any value of δ > 0, in the following sense. While
the location err is not reachable in the exact semantics, it becomes reachable in A2

δ for all δ > 0.
Hence, the slightest enlargement changes the qualitative behavior of the timed automaton. The
sets of reachable states, for δ = 0 and δ > 0, are illustrated in Fig. 2.10. Note that the timed
automaton A1 also suffers from the same robustness problem: the location err becomes reachable
under any positive enlargement.

Enlargement has also implications in implementability of timed automata, that is, whether one
can make sure that the implemented system preserves the exact semantics of the model. In [DDR05a],
the authors define a program semantics, corresponding to the execution of timed automata by a
simple model of microprocessor with an imprecise clock, a buffer and a positive reaction time. It was

30 CHAPTER 2. TIMED AUTOMATA AND THEIR SEMANTICS

shown that when parameters are chosen appropriately, the enlargement yields an overapproximation
of the program semantics. This motivates the study of enlargement in timed automata since one
can prove the correctness of a system executed on a microprocessor, in this framework.

Chapter 4 treats the robustness analysis against guard enlargements, while Chapter 11 presents
a variant of the program semantics. Enlargement is considered throughout this thesis as a general
technique.

2.4.2 Shrinking

One might also be interested in the dual notion of enlargement, that is checking whether the semantics
of a given timed automaton is vulnerable to guard shrinkings , which consists in transforming a guard
x ∈ [a, b] into x ∈ [a+ δ, b− δ′]. More precisely, we will be interested in checking whether the guards
of a given timed automaton can be shrunk so that the resulting timed automaton time-abstract
simulates the original timed automaton, and is non-blocking. So, we are asking whether the behavior
of the timed automaton depends on the system’s ability to take transitions at the borders of the
guards (i.e. at the last moment, or immediately after enablement). We believe that the behavior of
a good timed automaton design should not change when one forbids such “limit” behavior.

Formally, we define the shrinking of an atomic guard g as its enlargement by a negative amount.
We will consider possibly different shrinking parameters for each atomic guard in a timed automaton.
So for any timed automaton A, let I denote the set of its atomic guards. Given a vector δ of
nonnegative rational numbers indexed by I, let us denote by A−δ the timed automaton obtained
from A by shrinking each atomic guard i ∈ I by δi. We will rather choose these parameters as kδ,
where k is a set of natural numbers, and δ is a rational. Note that any finite vector of nonnegative
rational numbers can be written in this form.

We will be interested in the synthesis of these parameters kδ so as to ensure time-abstract
simulation and non-blockingness of the resulting timed automaton. Let us show that the timed
automaton A2 of Fig. 2.3 is not shrinkable, in the sense that any shrinking yields a timed automaton
that cannot time-abstract simulate A2. The cycle (gen·con)ω is a possible behavior of JA2K. However,
if one of the guards is shrunk, say, if we replace x ≤ 2 by x ≤ 2− δ, then, such a cycle can only be
taken at most 1

δ times. In fact, one can show that the value of x is increased by at least δ at each
iteration, so any run will eventually reach a deadlock. This means that the behavior (gen · con)ω is
only possible if the system takes each action “at the last moment”, right before the guard is disabled.
This behavior is therefore not “robustly realizable”.

Shrinking is also a natural method for refining or implementing a timed automaton under
imprecisions. In fact, if one “implements” a guard x ∈ [a, b] as x ∈ [a + δ, b − δ], then, under
imprecisions bounded by some ∆, the system guarantees that x ∈ [a+ δ −∆, b− δ + ∆]. Provided
that 0 ≤ ∆ < δ, the resulting behavior conforms to the initial model since

[a+ δ −∆, b− δ + ∆] ⊆ [a, b].

Thus, no new behavior is present in the implemented system under imprecisions. Formally, one can
show that JA−kδ+∆K v JAK for appropriately chosen k, δ and ∆.

Shrinkability analysis is studied in Chapter 5. We discuss the technique of implementation by
shrinking in Chapter 11.

2.4. PERTURBATION MODELS 31

2.4.3 Sampling
Timed automata are a generic formalism that allows the design of various systems. It is sometimes
convenient to use timed automata, and its continuous time semantics, to model a system that is
intended to be implemented under sampled time. The sampled semantics of a timed automaton A
consists in defining the TTS as in the exact semantics, except that the time domain is 1

kN for
some k ≥ 1. This semantics is denoted by JAK

1
k .

It should be clear that any behavior of the sampled semantics is a behavior of the (continuous-
time) exact semantics. The converse does not always hold, since some infinite runs may require
delays with arbitrary precisions [CHR02]. For instace, in timed automaton A2, if we replace the
guards by strict counterparts, that is x ≤ 2 by x < 2, and y ≥ 2 by y > 2, then the cycle (gen · con)ω

cannot be repeated infinitely often under any sampling. Robustness against sampling consists in
checking whether the sampled semantics preserves some aspects of the exact semantics.

When the sampling period is seen as a parameter, the parameterized safety problem is unde-
cidable [CHR02], while the parameterized reachability problem is decidable [AKY07]. Untimed
language equivalence was shown decidable in [AKY10].

In Chapter 10, we give a construction to systematically implement a given timed automaton
under the sampled semantics, while the behavior is approximately preserved.

2.4.4 Game Semantics: Excess-Perturbation Game
The semantics we defined above are interesting for worst-case analysis. For instance, when checking
safety properties under guard enlargement, one seeks to make sure that a bad behavior is not possible
under any scenario, given this perturbation. However, such an analysis does not take into account
the fact that a real-time controller can observe the perturbations happened in the past, and try to
adapt its behavior to reach a desired state or avoid a bad state. We define here a game semantics to
model robustness while capturing the possible reaction of the system.

Given a timed game A = (L, `0, C,Σ1,Σ2, E1, E2) and a parameter δ > 0, we define the excess-
perturbation game of A w.r.t. δ as a game structure Gexsδ (A) between players Controller and
Perturbator. Intuitively the semantics is the following: At any location, Controller and Perturbator
both suggest an action, which is either a delay and an edge, or the empty action ⊥. If Perturbator’s
delay is shorter, the suggested delay and action are taken. Otherwise, the play moves to an
intermediate state where Perturbator chooses a perturbation among [−δ, δ]. Then, the delay and
the edge suggested by Controller are taken after this perturbation. Formally, the state space
of Gexsδ (A) is S = L × RC≥0 ∪ L × RC≥0 × R≥0 × E, and the initial state is (`0,0). The labels
are Σ′1 = R≥0 × E1 ∪ {⊥} and Σ′2 = R≥0 × E2 ∪ [−δ, δ] ∪ {⊥}. The enabling condition T1 for
Controller is as follows. From any state (`, ν) ∈ S, we have ((`, ν), d, e1) ∈ T1 for any d ≥ δ and
e1 ∈ E1 such that if we write e1 = (`, g, σ1, R, `1), then ν + d |= g. For states (`, ν, d, e) ∈ S,
we have ((`, ν, d, e),⊥) ∈ T1. For Perturbator, the enabling condition T2 are as follows. From
any state (`, ν) ∈ S, we have ((`, ν), d, e2) ∈ T2 for any d ≥ δ and e2 ∈ E2 such that if we write
e2 = (`, g′, σ2, R

′, `2), then ν + d |= g1 For states (`, ν, d, e) ∈ S, we have ((`, ν, d, e), ε) ∈ T2 for any
ε ∈ [−δ, δ]. The joint transition function δ respects the shorter delay, as in timed games. We let

jt((`, ν), (d, e1), (d′, e2)) =

{
(`, ν, d, e1) if d ≤ d′,
(`2, (ν + d′)[R′ ← 0]) if d > d′.

1In Chapter 7, we will consider a variant which does not impose a lower bound on Perturbator’s delays. This
choice corresponds to different assumptions on the environment.

32 CHAPTER 2. TIMED AUTOMATA AND THEIR SEMANTICS

0 1 2 3 4 5 6 7 8

M2

M1 A
B C

D E

Figure 2.11: The scheduling instance of Fig. 2.4 where the duration of task A is reduced to 2− δ.
Because of the work-conserving policy, the optimal scheduling is now as shown in this figure, and
takes 8 − δ time units. This is a timing anomaly that is captured by the excess-perturbation
semantics.

We define jt((`, ν), (d, e1),⊥) = (`, ν, d, e1) and jt((`, ν),⊥, (d′, e2)) = (`2, (ν + d′)[R′ ← 0]), using
the same notations as above. Last, we let jt((`, ν, d, e1),⊥, ε) = (`1, (ν + d+ ε)[R← 0]).

The semantics for a weighted timed game A = (L, `0, C,Σ1,Σ2, E1, E2,S) is very similar. The
state space now contains, in addition, a real value for the cost variable. We only need to define the
change in the cost variable. At any state (`, ν, c), given two actions (d, e1) ∈ Σ′1 and (d′, e2) ∈ Σ′2,
with e1 = (`, g, σ1, R, `1) and e2 = (`, g′, σ2, R

′, `2), we let

jt((`, ν, c), (d, e1), (d′, e2)) =

{
(`1, ν, c, d, e1) if d ≤ d′,
(`2, (ν + d′)[R′ ← 0], c+ d′ · S(`)) if d > d′.

Further, for any state (`, ν, d, e1), we have

jt((`, ν, d, e1),⊥, ε) = (ν + d)[R← 0], c+ (d+ ε) · S(`)).

Hence the cost has derivative S(`) at location ` during the perturbed delay.
In this definition, we restrict Controller to play delays that are at least δ. This models the fact

that consecutive actions must be separated by a positive amount of time. We assume for simplicity
that this lower bound and the magnitude of the perturbation are both δ. They could be chosen as
different parameters; our results presented in Part III would hold. The name excess-perturbation
comes from the fact that although Controller is required to suggest delays and edges that satisfy the
guard, Perturbator’s moves are not required to respect the guards. We also consider a conservative
variant of this semantics where guards must be satisfied under any perturbation. See below for a
comparison of the two semantics.

Let us consider the scheduling example of Figures 2.5–2.7. If we consider the excess-perturbation
semantics, then, while Controller can only suggest a delay of 2 for the termination of task A (between
locations p2 and p3), the actual delay could be shorter or longer by δ. Assume Perturbator chooses
to delay 2 − δ. Then, Figure 2.11 shows the optimal scheduling (that is, with least completion
time) after the termination of task A, which takes 8− δ time units. Thus, any small decrease in the
execution time of A increses the completion time by almost 2 time units. This is a timing anomaly,
a well-known phenomenon in scheduling [RWT+06].

The excess-perturbation semantics can capture such timing anomalies in scheduling applications,
and ensure robust control in other applications. In fact, here, Controller doesn’t have a strategy to
reach the final location under the constraint t ≤ 6, for any δ > 0. But one can show that for any
c > 8, it has a strategy under the constraint t ≤ c, for small enough δ > 0.

We consider the parameterized robust reachability problem in this semantics in Chapter 7.

2.4. PERTURBATION MODELS 33

2.4.5 Game Semantics: Conservative-Perturbation Game
Another possibility when defining a game semantics to capture robustness is to require that Controller
should suggest moves that satisfy the guard of the chosen edge under any move of Perturbator.
This means restricting Controller to play far from the borders of the guard. In particular, equality
constraints are never enabled in such a semantics. This semantics is useful if one already accounts
for imprecisions in the model, by providing time intervals for each action. Then, the designer
is interested in staying strictly inside the guards, rather than analyzing additional runs. This
corresponds to a different design approach (see below for a comparison with the previous semantics).

Formally, we define the conservative perturbation game for a given weighted timed game A,
denoted by Gconsδ (A), similarly to Gexsδ (A) with only the following difference. The enabling condition T1

for Controller is modified as ((`, ν), d, e1) ∈ T1 for any d ≥ δ and e1 ∈ E1 such that if we write
e1 = (`, g, σ1, R, `1), then ν + d+ ε |= g for all ε ∈ [−δ, δ].

When studying the behavior under this semantics, the emphasis is no more on the newly appeared
behaviors, as this is the case in the excess-perturbation game semantics. In fact, it follows from the
definition that any outcome of this game is a run of the exact semantics of the timed automaton.
One is rather interested in the loss of behaviors. For instance, equality constraints or combination
of other guards that imply such a constraint are never enabled. But what is more interesting is that
some infinite runs may be disabled under this semantics. For instance, the cycle (gen · con)ω cannot
be repeated an infinite number of times under some strategy of Perturbator. In chapter 8, we will
be interested in deciding whether one can ensure infinite runs satisfying some Büchi conditions, for
some value of δ.

This semantics with a known value for δ was studied in [CHP11] for timed games with parity
conditions. In this case, using an appropriate encoding, the problem can be reduced to solving usual
timed games. The results of this thesis also shows that this semantics is related to recent work on
convergence phenomena on timed automata runs [CHR02, BA11, Sta12].

Excess or Conservation? We defined here two very similar game semantics. We believe both
are meaningful and can appear naturally at different levels of abstraction. For instance, the excess-
perturbation game semantics is a natural choice when modelling a real-time system with fixed task
execution times, if we also know that these execution times will be subject to perturbation whose
magnitude is unknown in advance, which may depend on the implementation platform to be chosen
later. Incorporating these perturbations in the model, for instance, by replacing equality constraints
by non-punctual intervals, requires a choice of a suitable interval length which may not be known.
Moreover this will increase the state space in general. Hence, as in the scheduling example of
Section 2.3, the excess-perturbation game semantics allows one to keep the design abstract and still
apply robustness analysis.

On the other hand, in some applications, specifying distinct lower and upper bounds in timings
may be natural. For instance, if one is interested in modelling an embedded system that should
send a signal to another component which accepts input signals in a time interval [l, u], then it is
natural to look for a controller that strictly respects this interval. Such a model and its semantics
would be closer to the actual program. In this case, the conservative-perturbation game semantics is
the natural choice.

34 CHAPTER 2. TIMED AUTOMATA AND THEIR SEMANTICS

Chapter 3

Data Structures

In this chapter, we present several data structures and some technical results used throughout this
thesis. We start by defining regions and region automata, which are well known notions in the timed
automata literature [AD94], upon which several results have been built. Among these, we define
here orbit graphs, which are graphs that summarize the reachability relations between the vertices
of regions [Pur00]. Then, we introduce an original data structure, called shrunk DBM, which is an
extension of difference-bound matrices used to represent “shrunk zones”. We give a parameterized
and a non-parameterized version of this data structure.

3.1 Regions
The decidability of several verification problems in timed automata relies on the fact that a finite-
index quotient of the state space can be defined while preserving the important behaviors. Formally,
given a timed automaton A = (L, `0, C,Σ, E), let M denote the largest constant that appears in
its guards in absolute value. We define an equivalence relation 'M on valuations as follows. For
any ν, ν′ ∈ RC≥0, we let ν 'M ν′ if, and only if the following conditions are satisfied, for all pairs of
clocks x, y ∈ C.

1. either bν(x)c = bν′(x)c or ν(x), ν′(x) > M ,

2. if frac(ν(x)), frac(ν′(x)) ≤M, then frac(ν(x)) = 0 ⇔ frac(ν(x)′) = 0,

3. if frac(ν(x)), frac(ν(y)) ≤M , then

frac(ν(x)) ≤ frac(ν(y)) ⇔ frac(ν′(x)) ≤ frac(ν′(y)),

4. for any interval I among (−∞,−M), [−M,M], (−M,−M + 1), . . . ,
(−1, 0), [0, 0], (0, 1), . . . , [M,M], (M,∞), we have,

ν(x)− ν(y) ∈ I ⇔ ν′(x)− ν′(y) ∈ I.

where frac(·) denotes the fractional part. The equivalence class of a valuation ν for the relation
' is denoted by reg(ν) = {ν′ | ν 'M ν′}, and called a M-region of A. When M is clear from
context, these are simply called regions. It is known that 'M has finite index [AD94], which can be
exponential in the size of A.

Our definition differs from the first definition of regions of [AD94]; the fourth condition appears
later in [BDFP00]. In most chapters, we will assume that clocks do not go above the maximum
constant. Under this assumption, both definitions are equivalent. We only need the fourth condition
in Chapter 10, where we also give a more refined definition of regions using arbitrary granularity for
the constants of the guards.

35

36 CHAPTER 3. DATA STRUCTURES

Assuming that clocks do not go above some constant means that we discard all runs containing
too long delays, or along which some clocks are not reset. This assumption appears in several
works e.g. [Pur00, DDMR08]. Let us call bounded regions, those regions where all clocks are below
the constant M . Any bounded region r is defined by fixing the integer parts of the clocks, and
giving a partition X0, X1, . . . , Xm of the clocks, ordered according to their fractional values: for
any ν ∈ r, 0 = frac(ν(x0)) < frac(ν(x1)) < . . . < frac(ν(xm)) for any x0 ∈ X0, . . . , xm ∈ Xm, and
frac(ν(x)) = frac(ν(y)) for any x, y ∈ Xi. Here, Xi 6= ∅ for all 1 ≤ i ≤ m but X0 can be empty. We
will refer to this partition by the partition according to the fractional ordering. Figure 3.1 contains
examples of regions with two clocks.

The region automaton of A is a finite automaton with alphabet Σ ∪̇ {delay}, denoted by R(A),
defined as follows [AD94]. The states are pairs (`, r) where ` ∈ L and r is a region. There is a
transition (`, r)

delay−−−→ (`, r′) if, and only if, ν′ = ν + d for some ν ∈ r, ν′ ∈ r′ and d ≥ 0. There
is a transition (`, r)

σ−→ (`′, r′) if, and only if A has an edge (`, g, σ,R, `′), and for some ν ∈ r,
writing ν′ = ν[R ← 0], we have r′ = reg(ν′). A region automaton is thus a finite transition
system over alphabet E ∪ {delay}. We will call paths the runs of this transition system. Given a
run ρ, its projection on regions is the path π in the region automaton s.t. statei(ρ) ∈ statei(π) for
all 1 ≤ i ≤ n, and either transi(ρ) = transi(π) or transi(π) = delay and transi(ρ) ∈ R≥0. In this case,
we write first(ρ)

π−→ last(ρ) (and say that ρ is along π). A lasso is a path π0π1 where π1 is a cycle, i.e.
first(π1) = last(π1). A cycle of R(A) is a progress cycle if it resets all clocks at least once [Pur00].

We define the timed-action region automaton Rta(A), similarly to the region automaton, on the
set of pairs (`, r) of locations and regions, with the difference that there is a transition (`, r)

σ−→ (`′, r′)
if, and only if for some ν ∈ r, and ν′ ∈ r′, d ≥ 0 and an edge (`, g, σ,R, `′), ν′ = (ν + d)[R ← 0].
Hence, delays are now hidden inside actions. We define the paths of Rta(A) similarly to R(A). Given
a run ρ of A, its timed-action projection on regions is the path π in the timed-action region automaton
s.t. statei(ρ) ∈ statei(π) for all odd 1 ≤ i ≤ n, and transi(ρ) = transi(π) for even 1 ≤ i ≤ n.

It is known that R(A) is time-abstract bisimilar to A, whereas Rta(A) is weakly time-abstract
bisimilar (weak bisimulation simply does not observe delays). Hence, any time-abstract property
on A can be checked on R(A) or Rta(A). These automata have exponential size. Some minimization
algorithms have been studied in order to construct a minimized version of R(A) [TY01].

3.2 Orbit graphs
A vertex of a region r is any point of r̄ ∩ NC, where r̄ denotes the topological closure of r. For
any region r, and any clock x, let us denote by rx,0 the upper bound (by −r0,x the lower bound)
on clock x inside region r. Consider the partition of the clocks X0, X1, . . . , Xm according to their
fractional parts in r. Any vertex v of r is defined by the choice of an index 1 ≤ i ≤ m such that for
all x ∈ X1, . . . , Xi, we have v(x) = −r0,x and for all x ∈ Xi+1, . . . , Xm, we have v(x) = rx,0. Hence,
any region has at most |C|+ 1 vertices (See also [DDMR08]). Let V(r) denote the set of vertices
of r. We also extend this definiton to V((`, r)) = V(r). It has been shown that all valuations in r
are convex combinations of V(r) [Pur00].

To any path π of the region automaton, we associate a |π| + 1-partite graph γ(π) called the
orbit graph of π [Pur00]. Intuitively, the orbit graph of a path gives the reachability relation
between the vertices of the regions visited along the path. Formally, for a transition τ = q1e1q2,
γ(τ) = (V1∪V2, fG, E) is a bipartite graph where V1 = {(1, v)}v∈V(q1), and V2 = {(2, v)}v∈V(q2). For
any

(
(1, u), (2, v)

)
∈ V1 × V2, we have an edge (u, v) ∈ E, if, and only if u ē1−→ v, where e1 = delay if

3.2. ORBIT GRAPHS 37

e1 = delay, and otherwise e1 is obtained by replacing the guard by its closed counterpart. Note that
each vertex has at least one successor through e1 since the guard is closed; this follows from the
properties of regions [AD94]. The labelling function fG maps each vertex of Vi to qi. In order to
extend γ(·) to paths, we use a composition operator ⊕ between orbit graphs, defined as follows. If G =
(V1∪ . . .∪Vn, fG, E) and G′ = (V ′1 ∪ . . .∪V ′m, fG′ , E′) denote two orbit graphs, then G⊕G′ is defined
if, and only if fG(Vn) = fG′(V

′
1). In this case, the graph G′′ = G⊕G′ = (V ′′1 ∪. . . V ′′n+m−1, fG′′ , E

′′) is
defined by taking the disjoint union of G and G′, merging each node (n, v) of Vn with the node (1, v)
of V ′1 , and renaming any node (i, v) ∈ V ′i by (i+n− 1, v), so that we get a (n+n′− 1)-partite graph.
Formally, we let Vi = V ′′i for all 1 ≤ i ≤ n, and the subgraph of G′′ induced on these nodes is equal
to G. For any n+ 1 ≤ i ≤ n+m− 1, we have V ′′i = {(i, v)}(i−n+1,v)∈V ′i−n+1

, and there is an edge(
(i, v), (i+ 1, w)

)
∈ E′′ if, and only if

(
(i− n+ 1, v), (i− n,w)

)
∈ E′. Now, we extend γ(·) to paths

by induction, as follows. Consider any π = q1e1 . . . qn−1en−1qn, and let G = (V1 ∪ . . . ∪ Vn, fG, E)
be the n-partite graph γ(q1e1 . . . qn−1), given by induction. Let G′ = (U ∪ U ′, fG′ , E′) denote the
bipartite graph of qn−1en−1qn. Then, we let γ(π) = G⊕G′.

We define the folded orbit graph Γ(π) for any path π that is not a cycle, as a bipartite graph on
node set {1} × V(first(π)) ∪ {2} × V(last(π)). There is an edge

(
(1, v), (2, w)

)
in Γ(π) if, and only if

there is a path from (1, v) to (n,w) in γ(π), where n = |π|+ 1. Nodes are labelled by the regions
they belong to. For any cycle π, we define Γ(π) similarly on the node set V(first(π)). Thus Γ(π)
may contain cycles. We extend the operator ⊕ to folded orbit graphs. Figure 3.1 gives an example.

y

0
x

1

1

2

2

`1

e1

y

0
x

1

1

2

2

`2

∆

y

0
x

1

1

2

2

`2

e2

y

0
x

1

1

2

2

`1

∆

y

0
x

1

1

2

2

`1

Figure 3.1: The orbit graph (at the middle) and folded orbit graph (at the bottom) of a cycle (on
top) in the region automaton of A2 of Fig. 2.3.

38 CHAPTER 3. DATA STRUCTURES

3.3 Difference-Bound Matrices
Although the region automaton defined previously suffices to obtain the decidability of verification
problems, exploring all regions is impractical due to their large number. In fact, the region abstraction
(that is, the region automaton) is often too refined, in the sense that it distinguishes too many states.
A more clever way of exploring the state space of timed automata is to use zones, which are arbitrary
subsets of the state space definable by guards. Zones can be represented using difference-bound
matrices (DBM). These matrices were used in [BM83, Dil90] in the context of state space exploration
in timed systems.

LetMn(K) denote the set of square matrices of size n×n with elements in K. Given a clock set C,
let C0 denote the set C ∪ {0}. A difference-bound matrix (DBM) is an element ofM|C0|(R×{<,≤}).
We adopt the following notation: for any DBM M , we write M = (M,≺M), where M is the matrix
made of the first components, with elements in R ∪ {∞}, while ≺M is the matrix of the second
components, with elements in {<,≤}. A DBM M naturally represents a zone, denoted JMK (which
we may also abusively write M), defined as the set of valuations ν ∈ RC≥0 such that, for all x, y ∈ C0,
it holds ν(x)− ν(y) ≺Mx,y Mx,y, where we set ν(0) = 0. We will sometimes use the notation [M]i,j to
write Mi,j to ease reading.

We define a total order on (R× {<,≤}) ∪ {(∞, <)} as follows. We let

(a,≺) ≤ (b,≺′)⇔

 a < b
or
a = b and either ≺ = ≺′ or ≺′ = ≤.

The addition is defined by (a,≺) + (b,≺′) = (a + b,≺′′), where ≺′′ = ≤ if ≺ = ≺′ = ≤, and <
otherwise. We also let (a,≺) + b = (a+ b,≺).

For any DBM M , let G(M) denote the constraint graph, defined over nodes C0, which has an
edge (x, y) ∈ C2

0 of weight Mx,y if Mx,y < (∞, <). The normalization of M corresponds to assigning
to each edge (x, y) the weight of the shortest path in G(M). This can be done in polynomial time
using an all-pairs shortest path algorithm. We say that M is normalized when it is stable under
normalization.

When exploring the state space of timed automata, several operations on DBMs are used. We
recall here some of these that will be used in following chapters.

Definition 3.3.1. Given normalized DBMs M and N , we let

• Pretime (M) is a DBM defining the set {ν ∈ RC≥0 | ∃d ≥ 0, ν + d ∈M},

• Posttime(M) is a DBM defining the set {ν ∈ RC≥0 | ∃d ≥ 0, ν − d ∈M},

• M ∩N is a DBM defining the set {ν ∈ RC≥0 | ν ∈M,ν ∈ N},

• UnresetR(M) is a DBM defining the set {ν ∈ RC≥0 | ν[R← 0] ∈M}.

These operations can be computed in polynomial time. The computations are summarized in
the following lemma; we refer to [BY04] for proofs.

Lemma 3.3.2. Given normalized DBMs M and N ,

• Pretime (M) is computed by setting the first row to (0,≤) and applying normalization.

3.4. SHRUNK DIFFERENCE-BOUND MATRICES 39

• Posttime(M) is computed by setting the first column to (∞, <).

• M ∩ N is computed by assigning min(Mi,j , Ni,j) to each component (i, j), and applying
normalization.

• UnresetR(M) is computed by first intersecting M with the DBM defining
∧
x∈R(x = 0), then

replacing each component (i, j) with i ∈ R or j ∈ R by (∞, <), and applying normalization.

We note the following folklore result, see e.g. [HKSW11, Lemma 1].

Lemma 3.3.3. For any normalized DBM M , and x, y ∈ C0, and α ∈ (−My,x,Mx,y), there exists a
valuation ν such that ν(x)− ν(y) = α.

3.4 Shrunk Difference-Bound Matrices

3.4.1 Motivation
To adapt the computation of the state space timed automata to perturbed semantics, we introduce
an extension of the DBM data structure, called shrunk difference-bound matrices (shrunk DBM in
short). The developments of this section were published in [SBM11, BMS12].

Let us first explain the idea on an example.

`1 `2 `3
x≤2

y:=0

x=2
∧1≤x−y

Figure 3.2: A Timed automaton.

x

y

x

y

Figure 3.3: Winning states in `2 (left) and in `1 (right).

Consider the timed automaton of Fig. 3.2 under the excess-perturbation game semantics, with the
objective of reaching `3. If there is no perturbation or lower bound on the delays between transitions
(i.e., δ = 0), then the states from which Controller can reach location `3 can be computed backwards.
One can reach `3 from location `2 and any state in the zone X = (x ≤ 2) ∧ (y ≤ 1) ∧ (1 ≤ x− y),
shown by (the union of the light and dark) gray areas on Fig. 3.3 (left); this is the set of time-
predecessors of the corresponding guard. The set of winning states from location `1 is the zone
Y = (x ≤ 2), shown in Fig. 3.3 (right), which is simply the set of predecessors of X at `2. When
δ > 0 however, the set of winning states at `2 is a “shrinking” of X, shown by the dark gray area.
If the value of the clock x is too close to 2 upon arrival in `2, Controller will fail to satisfy the
guard x = 2 due to the lower bound δ on the delays. Thus, the winning states from `2 are described
by X ∧ (x ≤ 2 − δ). Then, this shrinking is backward propagated to `1: the winning states are
(x ≤ 2− 2δ), where we “shrink” Y by 2δ in order to compensate for a possible perturbation.

40 CHAPTER 3. DATA STRUCTURES

An important observation here is that when δ > 0 is small enough, so that both X ∧ (x ≤ 2− δ)
and (x ≤ 2− 2δ) are non-empty, these sets precisely describe the winning states. Thus, we have a
uniform description of the winning states for “all small enough δ > 0”.

3.4.2 Non-parameterized Shrunk DBMs
The idea behind shrunk DBMs is to represent zones whose facets are shrunk by infinitesimal
amounts. Given a clock set C, we define a shrinking matrix (SM), as a nonnegative integer matrix
of size |C0| × |C0|. A shrunk DBM is written in the form M − δP , where M is a DBM, P a SM and δ
is a fresh parameter. Let us explain how “shrunk zones”, as in the above example, can be expressed
using shrunk DBMs. Let M be a DBM, P a shrinking matrix, and δ > 0. Suppose for example that
for some i, Mi,0 = α, M0,i = β, Pi,0 = k and P0,i = l. Then, M defines the constraint “−β ≤ x ≤ α”
for some clock x, whereas M − δP defines “−β + lδ ≤ x ≤ α− kδ”. Furthermore, if M represents a
guard g, the shrunk guard 〈g〉−δ (obtained by shrinking all atomic guards) can be represented by
the shrunk DBM M − 1δ, where matrix 1 has 0’s on the diagonal and 1’s everywhere else.

When manipulating shrunk DBMs, we will often be interested in the properties of shrunk
DBMs M − δP for “small enough δ > 0”, which means for all δ ∈ [0, δ0), for some δ0 > 0. We
will use the notation (M,P), which means that we consider M − δP for small enough δ > 0. For
instance, when we write Pretime ((M,P)) = (N,Q), we mean that there exists δ0 > 0 such that
Pretime (M − δP) = N − δQ holds for all δ ∈ [0, δ0). In all the operations, an upper bound on δ0
will be computable.

In order to define operations on shrunk DBMs, we need to define a suitable algebra on the set of
elements of the form ((α,≺), k) with α ∈ Q, ≺ ∈ {<,≤} and k ∈ N. We define addition as,

((α,≺), k) + ((β,≺′), l) = ((α+ β,≺′′), k + l),

where ≺′′ = < if, and only if ≺ = < or ≺′ = <. We also define the following order.

((α,≺), k) � ((β,≺′), l) ⇔

 α < β or
α = β and k > l, or
α = β and k = l and ≺′ = < ⇒ ≺ = <.

(3.1)

Minimum is then defined as follows.

min (((α,≺), k), ((β,≺′), l)) =

{
((α,≺), k) if ((α,≺), k) � ((β,≺′), l),
((β,≺′), l) otherwise. (3.2)

Notice that these operations make sense when we see the elements ((α,≺), k) as the right hand
sides of inequalities of the form x− y ≺ α− kδ for small enough δ > 0. For instance, the addition
corresponds to summing two inequalities, while the minimum corresponds to the conjunction of two
inequalities.

Thus, the order � and the minimum make sense for small enough δ > 0. One can easily compute
the maximum δ0 > 0 such that the desired inequality holds for all δ ∈ [0, δ0):

Lemma 3.4.1. If ((α,≺), k) � ((β,≺′), l), then one can compute the greatest δ0 > 0 such that

∀x ∈ R, x ≺ α− kδ ⇒ x ≺′ β − lδ,

for all δ ∈ [0, δ0).

Proof. If k = l, then the inequality holds for all δ > 0, so one can set δ0 = ∞. Otherwise one
sets δ0 = α−β

k−l .

3.4. SHRUNK DIFFERENCE-BOUND MATRICES 41

Normal forms As DBMs, shrunk DBMs have normal forms, which can be computed considering
the shortest paths of the graph G(M) of a given DBM M . For a matrix A, we define the A-weight
of a path x1, . . . , xn of G(M) as

∑n−1
i=1 Axi,xi+1

.

Definition 3.4.2. Let M be a normalized DBM. For any x, y ∈ C0, we define Πx,y(G(M)) as the
set of paths with least and finite M-weight from x to y in G(M).

Notice that the shortest paths are defined with respect to weights in M and not M ; we ignore the
type of the inequalities. The M -sign of a path π, written signM (π) is < if ≺Mπi,πi+1

=< for some i,
and ≤ otherwise.

Now, normalization consists in computing shortest paths in this algebra: Given a shrunk DBM
(M,P) we define norm((M,P)) = (M ′, P ′) as follows: for each (x, y) ∈ C0, let P ′x,y be the largest
P -weight of the paths in Πx,y(G(M)). We let M ′x,y = (Mx,y,≺M

′

x,y) where ≺M ′x,y=< if some path of
Πx,y(G(M)) of P -weight P ′x,y has sign <, and ≤ otherwise.

Lemma 3.4.3. Let M be a normalized non-empty DBM and P be a shrinking matrix. Then, (M,P)
is non-empty if, and only if, for all x ∈ C0, there is no path in Πx,x(G(M)) with positive P -weight.
Moreover, if (M,P) is not empty, then, writing (M ′, P ′) = norm((M,P)), there exists δ0 > 0 such
that M ′ − δP ′ is normalized and defines the same set as M − δP for all δ ∈ [0, δ0). The greatest
such δ0 is computable.

Proof. First, note that norm((M,P)) defines the same set as (M,P). In fact, we replace each
component with the sum of other constraints of (M,P), which is already implied in (M,P).

Now, (M ′, P ′) satisfies the following, for all x, y, z ∈ C0,

M′x,y = M′x,z + M′z,y ⇒ (M ′x,y, P
′
x,y) � (M ′x,z, P

′
x,z) + (M ′z,y, P

′
z,y). (3.3)

In fact, the condition means (x, z, y) ∈ Πx,y(G(M)), so, by definition of P ′, P ′x,y ≥ P ′x,z + P ′z,y,
where in case of equality, signM ′(x, z, y) =< implies ≺M ′x,y=< by construction.

Now, let δ0 > 0 be small enough so that (3.3) hold for all x, y, z ∈ C0. Then, for all δ ∈ [0, δ0),
(3.3) means M ′x,y − δP ′x,y �M ′x,z − δP ′x,z +M ′z,y − δP ′z,y, which implies that the DBM M ′ − δP ′ is
normalized. Now, a normalized DBM is non-empty if, and only if all its diagonal entries are (0,≤).
Therefore, (M,P) is empty whenever Πx,x(G(M)) has a path with positive P -weight, for some
x ∈ C0. If any such path has P -weight equal to 0, then ≺Mx,y=≤ since M is non-empty.

To compute the greatest δ0 > 0 for which the statement holds, it suffices to apply Lemma 3.4.1
to (3.3) for all x, y, z ∈ C0.

Remark 3.4.4. Consider a normalized DBM M and any SM P . If (M ′, P ′) = norm((M,P)),
then M′ = M, M ⊆ M ′ and P ≤ P ′. This follows from the definition of normalization. In fact,
normalization does not change the values M, and if ≺M ′x,y= <, then Πx,y(G(M)) has a path with
sign <, so ≺Mx,y= <. That P ≤ P ′ follows from the fact that for all x, y, P ′x,y is the greatest P -weight
of the shortest paths from x to y, so it is at least Px,y.

Here is an example where the signs of the inequalities change due to normalization: Consider
(x ≤ 1) ∧ (1 ≤ y) ∧ (x − y < 1), which is normalized (seen as a DBM over two clocks). However
the shrinking (x ≤ 1 − δ) ∧ (1 ≤ y) ∧ (x − y < 1), yields, after normalization (x ≤ 1 − δ) ∧ (1 ≤
y) ∧ (x− y ≤ 1− δ), where the last inequality becomes large.

42 CHAPTER 3. DATA STRUCTURES

Operations For any interval [a, b], we define the shrinking operator as

shrink[a,b](Z) = {v | v + [a, b] ⊆ Z},

for any set Z. For a zone Z represented as a DBM, shrink[0,δ](Z) is the DBM Z − δ · 1C×{0} and
shrink[−δ,δ](Z) is the DBM Z − δ · 1C×{0}∪{0}×C , for any δ > 0.

A crucical property of shrunk DBMs is that they are closed under standard operations used for
exploring the state space of timed automata. The following lemma summarizes the computations.

Lemma 3.4.5. Let M,M ′, N be normalized non-empty DBMs.

1. If N = Pretime (M), then for all SMs P , there exists a shrunk DBM (N ′, Q) such that N = N′,
N ⊆ N ′ and (N ′, Q) = Pretime ((M,P)). Moreover, Q is obtained from P , by setting Q0,x = 0
for all x ∈ C and applying normalization.

2. If N = M ∩ O, then for all SMs P and P ′, there exists a shrunk DBM (N ′, Q) such that
N′ = N, N ⊆ N ′ and (N ′, Q) = (M,P) ∩ (O,P ′). Moreover, (N ′, Q) is given by setting

(N ′x,y, Qx,y) = min((Mx,y, Px,y), (Ox,y, P
′
x,y)),

and applying normalization.

3. If N = UnresetR(M) for some R ⊆ C, then for all SMs P , there exists a shrunk (N ′, Q) such
that N′ = N, N ⊆ N ′ and (N ′, Q) = UnresetR((M,P)). To obtain (N ′, Q), first compute
(N ′′, Q′) such that (N ′′, Q′) = (M,P) ∩ (R = 0) by previous case, then set all components
(x, y) with x ∈ R or y ∈ R, to (N ′′, Q′)x,y = ((∞, <), 0) and apply normalization.

4. If N = Posttime(M), then for all SMs P , there exists a shrunk DBM (N,Q) such that
(N,Q) = Posttime((M,P)). Q can be obtained from P by setting Qx,0 = 0 for all x ∈ C.

5. If (N,Q) = shrink[−δ,δ]((M,P)), then N = M and Q is obtained from P by incrementing all
Px,0 and P0,x for x ∈ C. For shrink+, one only increments Px,0.

One can compute the greatest δ0 > 0 such that the given property holds for all δ ∈ [0, δ0).

Proof. Let us assume that (M,P) is normalized. All operations are defined following corresponding
ones for usual DBMs. For instance, to compute Pretime ((M,P)), one sets the first row to ((0,≤), 0).
In fact, for any δ > 0, this is precisely the computation of Pretime on the DBM M − δP (see
Lemma 3.3.2). We then apply Lemma 3.4.3 to obtain a normalized shrunk DBM. The rest of the
statement follows from Remark 3.4.4.

If (M,P) is not normalized, then we first normalization on (M,P) before applying the operations.
If N = f(M) denotes one of the equations in this lemma, because all operations are non-decreasing,
if (M ′, P ′) = norm((M,P)), then N ′′ = f(M ′) satisfies N ⊆ N ′′, and moreover N = N′′. The latter
equality follows from N ⊆ N ′′ and the fact that any shortest path of N is also a shortest path
of N ′′, though possibly with a different sign. Thus, by Remark 3.4.4, the lemma yields a shrunk
DBM (N ′, Q) = f((M ′, P ′)) = f((M,P)) with N ⊆ N ′ and N = N′, as desired.

A function f : M|C0|(Q∞)n →M|C0|(Q∞) (for some n > 0), is said elementary if it combines its
arguments using operators Pretime, Posttime, UnresetR, ∩, shrink and shrink+.

3.4. SHRUNK DIFFERENCE-BOUND MATRICES 43

Proposition 3.4.6. Let f : M|C0|(Q∞)n →M|C0|(Q∞) be an elementary function and M0,M1, . . . ,
Mn DBMs satisfying M0 = f(M1, . . . ,Mn), and let P1, . . . , Pn be SMs. Then, there exists a shrunk
DBM (M ′, Q) with M′ = M, M ⊆M ′ and (M ′, Q) = f

(
(N1, P1), . . . , (Nk, Pk)

)
. The shrunk DBM

(M ′, Q) and the largest δ0 > 0 can be computed in polynomial time.

Proposition 3.4.6 shows that shrinking matrices are propagated when usual operations are applied
on DBMs. Using this, one can also compute an upper bound on δ, under which a given equation
between shrunk DBMs hold. Figure 3.4 illustrates some of these operations. Notice also that the
lemma always gives normalized shrunk DBMs (M ′, Q).

= Pretime

(a) (M,Q) = Pretime ((N1, P))

= ∩

(b) (M,Q) = (N1, P1) ∩ (N2, P2)

= shrink+

(c) (M,Q) = shrink+((M,P))

= shrink

(d) (M,Q) = shrink[−δ,δ]((M,P))

Figure 3.4: On the right of Fig. 3.4(a), the whole gray area represents a zone N1, while the dark
gray area is some shrinking (N1, P). On the left, the dark area is the shrunk zone (M ′, Q) where
M = Pretime (N1), M = M′, and M ⊆M ′. Similarly, Fig. 3.4(b) to 3.4(d) illustrate the intersection
of two shrunk zones and the shrinking of zones.

We define Pre≥δ(M) = shrink[0,δ](Pretime (M)). It is easily observed that this is the set of states
that can reachM after a delay of length at least δ: shrink[0,δ](Pretime (M)) = {v | ∃d ≥ δ, v+d ∈M}.
We also define Pre>δ(M) = {v | ∃d > δ, v + d ∈M}. The latter can be obtained from Pre≥δ(M) by
changing all upper bounds to strict inequalities.

Let us extend the computation of upper bounds on δ in Lemma 3.4.6 for an inclusion relation,
which will be useful in Chapter 7.

Lemma 3.4.7. Assume the equation (M,P)∩N ⊆ (N,Q) between normalized shrunk DBMs (M,P)
and (N,Q). One can compute the greatest δ0 > 0, in polynomial time, such that (M − δP) ∩N ⊆
N − δQ for all δ ∈ [0, δ0).

Proof. Let N ′ = M ∩N . Let Q′ be the SM given by Lemma 3.4.5 such that (N ′, Q′) = (M,P) ∩N
and δ′0 > 0 the corresponding bound on δ. Then, the inclusion is equivalent to (N ′, Q′) ⊆ (N,Q).
Since both shrunk DBMs are normalized, holds if for all x, y ∈ C0, ((N ′x,y,≺N

′

x,y), Q′x,y) ≺ ((Nx,y,≺Nx,y
), Qx,y). Thus, if δ1 > 0 denotes the minimum of the upper bounds given by Lemma 3.4.1 for each
x, y, we choose δ0 = min(δ′0, δ1).

Remark 3.4.8. Although the results above allow one to compute the greatest δ0 > 0 satisfying all
inequalities, one can obtain an easy upper bound, as follows. If the equation of Proposition 3.4.6 has
a non-empty solution, then one can choose δ0 = 1

3m , where m is the maximum of all components of
the shrinking matrices that appear in the computations.

44 CHAPTER 3. DATA STRUCTURES

Proof. Assume that for some valuation ν, Mi − δQi satisfies the equation for small enough δ > 0.
We show that the equation is satisfied for all δ ∈ [0, 1

3m). To prove this, we need to show for all
δ ∈ [0, δ0) that all shrunk DBMs are non-empty and satisfy the equations they are involved in.

Since all shrunk DBMs are non-empty (for small enough δ > 0), all diagonals of the shrinking
matrices are equal to 0. Thus, it suffices to show that all shrunk DBMs M − δQ are normalized.
Normalization condition requires

∀i, j, k ∈ C3
0 , Mi,j − δQi,j �Mi,k − δQi,k +Mk,j − δQk,j ,

for all δ ∈ [0, δ0). If Mi,j = Mi,k + Mk,j , then we must have Qi,j ≥ Qi,k + Qk,j . So, for these
components, the condition holds for all δ > 0. If Mi,j < Mi,k + Mk,j , then the condition holds if
δ0 < |Mi,k+Mk,j−Mi,j

Qi,k+Qk,j−Qi,j |, but this is already the case since δ0 ≤ 1
3m (the upper bound is infinity if the

denominator is 0).
It remains to show that all equations that appear in the computations hold. For an equation of the

form (M,Q) = (N1, R1)∩(N2, R2), we have either (N1)i,j = (N2)i,j and Qi,j = max((R1)i,j , (R2)i,j),
or for example (N1)i,j < (N2)i,j and (Mi,j , Qi,j) = ((N1)i,j , (Q1)i,j). In the former case, the equation
holds for all δ > 0. In the latter case, it holds for all δ < | (N2)i,j−(N1)i,j

(Q2)i,j−(Q1)i,j
|. This is already the case

since δ < 1
3m . For equations of the form (M,Q) = Pretime ((N,R)), it suffices to choose δ small

enough to ensure that normalization holds. For (M,Q) = Unresetr((N,R)), one only needs to ensure
that the intersection with r = 0 and normalization holds. Both conditions were already shown to
hold.

How much can m grow? A rough estimation shows that it is at most exponential in the size
of the equation. We haven’t observed such a growth in practice; See Chapter 6 for experimental
results.

3.4.3 Parameterized Shrunk DBMs
We now extend the shrunk DBM data structure to parameters. More precisely, we will consider
shrinking matrices whose components are expressions with parameters. When studying shrinkability
in Chapter 5, this will allow us to explore the state space of timed automata in a parameterized
manner.

We only develop this data structure for closed sets. Since all operations we consider preserve
closed sets, all DBMs in this section are assumed to use only closed inequalities. To simplify the
presentation, we will drop the inequality types when writing the DBMs; a DBM M will be simply a
matrix of real numbers.

We fix a tuple of parameters k = (ki)i∈I , which will take nonnegative integer values. The
max-plus polynomials over k, denoted by G(k), are generated by the following grammar.

φ ::= l ∈ N | ki, i ∈ I | φ+ φ | max(φ, φ).

A parameter valuation is a function that assigns a natural number to each parameter ki. By a slight
abuse of notation, we denote parameter valuations as v : k −→ N. For any max-plus polynomial φ and
parameter valuation v : k −→ N, we denote by φ[v] the value of formula φ replacing each parameter k
by v(k). A parameterized shrinking matrix (PSM) is an element ofM|C0|(G(k)). If P is a PSM and
v is a parameter valuation, then P [v] is the shrinking matrix defined by replacing each parameter ki
by v(ki), and evaluating the resulting expression.

3.4. SHRUNK DIFFERENCE-BOUND MATRICES 45

As for non-parameterized shrunk DBMs, we need to provide an algebra in order to define our
operations. We define symbolic operations on expressions of the form α− k · δ, where α ∈ Q, k is
an expression in G(k) (bound to take values in N). As before, δ is seen as a positive parameter to
be chosen small enough. More precisely, given two pairs (α, k) and (β, l) in Q × G(k), we define
the addition (α, k) + (β, l) = (α+ β, k + l), where (k + l)[v] = k[v] + l[v] for all v : k→ N. We also
define the following relation:

(α, k) � (β, l) ⇔ α < β or (α = β and k[v] ≥ l[v] for all v : k→ N).

An important (but quite straightforward) property of this definition is the following. Notice that we
are again interested in comparing (α, k) and (β, l) for small positive values of δ. Since all constraints
are closed, we can compute the upper bounds δ0 such that a given property holds for all δ ∈ [0, δ0].

Lemma 3.4.9. For all (α, k) and (β, l) in Q× G(k), the following two statements are equivalent:

• (α, k) � (β, l)

• for all v : k→ N, there exists δ0 > 0 s.t. for all 0 ≤ δ ≤ δ0, it holds α− k[v] · δ ≤ β − l[v] · δ.
Moreover, one can compute the greatest δ0 > 0 with this property.

Proof. Assume that the second statement holds. In particular when δ = 0, we get α ≤ β. Hence
either α < β, and we are done, or α = β. In the latter case, we get that for all v, it holds
k[v] · δ ≥ l[v] · δ for small positive values of δ. Hence for all v, k[v] ≥ l[v].

Conversely, we consider several cases:

• if α < β: then for all v : k→ N,

– either k[v] = l[v] and any non-negative δ satisfies α− k[v] · δ ≤ β − l[v] · δ (so that δ0 can
be any positive real);

– or |k[v] − l[v]| ≥ 1, in which case we let δ0 = β−α
|k[v]−l[v]| . Then any nonnegative δ ≤ δ0

satisfies |k[v]− l[v]| · δ ≤ β − α. In particular, (l[v]− k[v]) · δ ≤ β − α, as required.

• if α = β and k[v] ≥ l[v] for all v: then for any non-negative δ, k[v] · δ ≥ l[v] · δ, and the result
follows.

Notice that � is not an ordering relation: indeed, (α, k) � (β, l) � (α, k) implies α = β and
k[v] = l[v] for all v, but the latter does not imply equality of k and l (syntactically). In the sequel, we
(silently) consider the quotient of G(k) by this equivalence relation, so that � is a partial order. To
see that not all elements are comparable, consider (1, k1δ) and (1, (k2 + k3)δ). For some parameter
valuations, the former is smaller than the latter, and for some others the inverse is true.

We now define the minimum of two elements of Q× G(k):

min((α, k), (β, l)) =

(α, k) if α < β,
(β, l) if β < α,
(α,max(k, l)) otherwise.

This definition enjoys the following property:

46 CHAPTER 3. DATA STRUCTURES

Lemma 3.4.10. For all (α, k) and (β, l) in Q× G(k), min((α, k), (β, l)) belongs to Q× G(k) and
is the greatest lower bound of (α, k) and (β, l) in that set.

Proof. The first statement is obvious, since max(k, l) belongs to G(k) as soon as k and l do. That
min((α, k), (β, l)) � (α, k) is easily obtained by considering three cases:

• if α < β, then min((α, k), (β, l)) = (α, k), which implies our result;

• if β < α, then min((α, k), (β, l)) = (β, l), and (β, l) � (α, k) since β < α;

• if α = β, then min((α, k), (β, l)) = (α,max(k, l)), and (α,max(k, l)) � (α, k) since (max(k, l))[v] ≥
k[v] for all v (by definition of max).

Symmetrically, min((α, k), (β, l)) � (β, l).
Now, consider any (γ,m) s.t. (γ,m) � (α, k) and (γ,m) � (β, l). We show that then either

min((α, k), (β, l)) = (γ,m), or min((α, k), (β, l)) 6� (γ,m).

• When α < β, assume min((α, k), (β, l)) � (γ,m). This means (α, k) � (γ,m) � (α, k), which
entails equality. The case where β < α is symmetric.

• When α = β, assume again that min((α, k), (β, l)) = (α,max(k, l)) � (γ,m). This is easily
seen to entail γ = α, as we must also have (γ,m) � (α, k). Moreover, for all v, it must
hold (max(k, l))[v] ≥ m[v], as well as m[v] ≥ k[v] and m[v] ≥ l[v]. When k[v] ≥ l[v], we get
m[v] = k[v] = (max(k, l))[v]; when l[v] > k[v], then we have m[v] = l[v] = (max(k, l))[v], so
that finally m = max(k, l).

Normal forms We first show that shrunk DBMs also have a normal form in the following
sense. Just like for DBMs, and non-parameterized shrunk DBMs, the normalization of a shrunk
DBM (M,P) is obtained simply by computing the shortest path between all indices i and j, by
interpreting (M,P) as the adjacency matrix of a directed graph. The algorithm for normalization is
the Floyd-Warshall all-pairs shortest path algorithm applied to regular DBMs, but we apply it in
our algebra over Q× G(k) where the sum, the order � and min are defined as above. We explicitly
give the algorithm this time, in Algorithm 1, since the computation of shortest paths are now less
obvious; they consist in building max-plus polynomials that encode these.

Algorithm 1 Normalization procedure for shrunk DBMs.
Given a shrunk DBM (M,P),
for i = 0..n do
for j = 0..n do
for k = 0..n do

(Mi,j , Pi,j)← min
(
(Mi,j , Pi,j), (Mi,k, Pi,k) + (Mk,j , Pk,j)

)
.

end for
end for

end for

3.4. SHRUNK DIFFERENCE-BOUND MATRICES 47

Operations The following set of lemmas explains how elementary operations can be computed on
shrunk DBMs. In particular, it shows how shrinking parameters (i.e., the PSMs) can be propagated
in a backward analysis while staying in the max-plus theory. In all the lemmas below, the resulting
parameterized shrunk DBMs, and the greatest δ0 with the stated property are computable in
polynomial time (see also Proposition 3.4.15).

Lemma 3.4.11. Let M be any DBM and P be a PSM. Then, there exists a PSM P ′ such that for
all parameter valuations v : k −→ N, there exists δ0 > 0 for which norm(M − δ ·P [v]) = M ′− δ ·P ′[v]
for all δ ∈ [0, δ0], where M ′ = norm(M).

Proof. We initialize the matrix (N,Q) as the matrix ofM|C0|(Q× G(k)) whose element in cell (i, j)
is (Mi,j , Pi,j). We first prove that each step of the normalization algorithm applied to R = (N,Q)
in M|C0|(Q × G(k)) yields a matrix in M|C0|(Q × G(k)). More precisely, given R = (N,Q) and
integers i, j and k less than or equal to C, we prove that the matrix R′ obtained from R by replacing
Ri,j with min(Ri,j , Ri,k +Rk,j) can be written as (N ′, Q′) for some DBM N ′ and Q′ ∈M|C0|(G(k)).

Assume that Ni,j ≤ Ni,k+Nk,j . If the inequality is strict, then (Ni,j , Qi,j) equals min(Ri,j , Ri,k+
Rk,j). Otherwise Ni,j = Ni,k + Nk,j : then R′i,j is set to
(Ni,j ,max(Qi,j , Qi,k +Qk,j)), which satisfies our requirement. Assume now that Ni,k +Nk,j < Ni,j .
In this case, R′i,j = Ri,k +Rk,j , and the result follows from Lemma 3.4.10. The upper bound on δ,
under which the inequalities hold can be computed using Lemma 3.4.10.

Let us write (M ′, P ′) the shrunk DBM returned by the normalization algorithm. By the
definition of the minimum on pairs (Ni,j , Qi,j), the algorithm applies normalization on the DBM N ,
so M ′ = norm(M). Pick any parameter valuation v : k → N. We define a negative cycle of a
shrunk DBM (M,P [v]) as i1, i2, . . . , ik ∈ C0, where i1 = ik, and (Mi1,i2 , Pi1,i2) + (Mi2,i3 , Pi2,i3 [v]) +
. . . + (Mik−1,ik , Pik−1,ik [v]) ≺ (0, 0). if (M,P [v]) contains a negative cycle, then for any δ > 0,
M − δP [v] is empty since this would imply the constraint x− x ≤M ′i1,i1 − δP

′
i1,i1

[v] < 0, for some
clock x. Otherwise, we have norm(M − δ · P [v]) = M ′ − δ · P ′[v] for all small enough δ > 0. In
fact the operations performed on the parameterized expressions during the normalization algorithm
correspond to the normalization algorithm applied on the DBM M − δP , by Lemma 3.4.10. Last, by
applying Lemmas 3.4.9 and 3.4.10 to the (finitely many) cells of the matrix (M ′, P ′) we get δ0 > 0
such that such that for all δ ∈ [0, δ0] and for all indices i, j and k,

Mi,j − P ′i,j [v] · δ ≤Mi,k − P ′i,k[v] · δ +Mk,j − P ′k,j [v] · δ,

so that M − P ′[v] · δ is in normal form. Also, quite obviously, for any v and δ as above, the DBM
obtained at each step of the normalization algorithm defines the same set of parameter valuations
as the original DBM.

Note that even if a DBM M is not empty, a shrunk DBM (M,P) can be empty. For instance,
the shrunk DBM corresponding to constraints 1 + δ ≤ x ≤ 1− δ is empty for all δ > 0, although the
set J1 ≤ x ≤ 1K is not. The emptiness of a shrunk DBM (M,P), i.e. whether M − δP is empty for
all δ > 0, can be determined by first applying normalization, then checking whether all diagonal
components are 0.

The intersection of two shrunk DBMs can also be written as a shrunk DBM:

Lemma 3.4.12. Let M,N1, N2 be normalized DBMs such that M = N1 ∩N2. Then, for all PSMs
P 1 and P 2, there exists a PSM P ′ such that for all parameter valuations v : k → N, there exists
δ0 > 0 for which M − δ · P ′[v] = (N1 − δ · P 1[v]) ∩ (N2 − δ · P 2[v]) for all δ ∈ [0, δ0].

48 CHAPTER 3. DATA STRUCTURES

Proof. For all i, j, define (Ni,j , Pi,j) = min((N1
i,j , P

1
i,j), (N

2
i,j , P

2
i,j)). Then by definition, Ni,j =

min(N1
i,j , N

2
i,j), so that JNK = JMK. Applying Lemma 3.4.9 (several times), for any parameter

valuation v, there is a positive δ0 for which Ni,j−Pi,j [v]·δ = min(N1
i,j−P 1

i,j [v]·δ,N2
i,j−P 2

i,j [v]·δ),
for all 0 ≤ δ < δ0, so that the DBM N − P [v] · δ corresponds to the intersection of N1 − P 2[v] · δ
and N2 − P 2[v] · δ.

To conclude, it suffices to apply Prop. 3.4.11 to turn the resulting shrunk DBM in normal
form.

We now describe how we compute the shrinking matrix for the unreset operation: given a
DBM M and a set of clocks Z, UnresetZ(M) is the (normal-form) DBM defining all clock parameter
valuations v s.t. v[Z := 0] belongs to M . It is obtained by intersecting with the DBM representing
the set Z = 0, and removing contraints involving clocks in Z.

Lemma 3.4.13. Let M and N be two normalized DBMs with M = UnresetZ(N) for some Z ⊆ C.
Then, for any PSM P , there exists a PSM P ′ such that for all parameter valuations v : k→ N, there
exists δ0 > 0 for which M − P ′[v] · δ = UnresetZ(N − P [v] · δ) for all δ ∈ [0, δ0].

Proof. We first consider the intersection of the shrunk DBM (N,P) and the DBM representing
the set Z = 0. From Prop. 3.4.12, this can be written as a shrunk DBM (N ′, P ′), where N ′ is the
normalized DBM obtained after intersecting N with the DBM for Z = 0. The second step consists
in removing the constraints involving clocks of Z. This is achieved on DBMs by turning all the
values in the corresponding columns to ∞; for shrunk DBMs, we change (Mi,j , Pi,j) into (∞, 0)
whenever i ∈ Z or j ∈ Z except when i 6= j, the value of Pi,j being actually not relevant in that
case. This results in a shrunk DBM (M,Q) with the required properties.

Note that if (N,P) is empty, then so is (M,Q) since we did not change the diagonal, and that
the components of the shrinking matrix can only increase during normalization.

Finally, we compute the time-predecessor set of a DBM by dropping the lower-bound constraints
on single clocks (i.e., the first row of the DBM), while preserving all other constraints.

Lemma 3.4.14. Let M and N be two normalized DBMs with M = Pretime (N). Then for any PSM
P , there exists a PSM P ′ such that for all parameter valuations v : k→ N, there exists δ0 > 0 for
which M − δ · P ′[v] = Pretime (N − δ · P [v]) for all δ ∈ [0, δ0].

Proof. P ′ is obtained from P by also changing all the elements of the first row into 0 (except for
the component (0, 0)), and applying normalization. Note that if (N,P) is empty, so is (M,Q), as in
the previous lemma, since the diagonal of the shrinking matrix can only increase.

By combining the previous lemmas, and Lemma 3.4.9, we immediately get the following
proposition.

Proposition 3.4.15. Let f : M|C0|(Q∞)n → M|C0|(Q∞) be an elementary function and
M0,M1, . . . ,Mn DBMs satisfyingM0 = f(M1, . . . ,Mn). For any PSMs P1, . . . , Pn, one can compute
a PSM P0 s.t. for all v : k→ N, there exists a greatest (computable) δ0 > 0 such that

(M0, P0[v]) = f
(
(M1, P1[v]), . . . , (Mn, Pn[v])

)
,

for all δ ∈ [0, δ0]. These computations can be carried out in polynomial time, and in particular P0

has size polynomial in the size of P1, . . . , Pn and f .

49

Observe that in the above equation, for any parameter valuation v, (M,P ′[v]) is empty whenever
some (Mi, Pi[v]) is empty.

Proposition 3.4.15 gives a polynomial-size PSM P ′ provided that we represent the max-plus
polynomials by sharing subexpressions. For instance, we assume that if we have max-plus polynomials
φ1 and φ2 in memory, then the expression max(φ1, φ2) is represented by a new node max() that
point to φ1 and φ2. More precisely, these expressions can be given as max-plus graphs defined in
Section 5.4.2. Then, each elementary operation adds a polynomial number of nodes (in the number
of clocks), thus yielding a polynomial-size representation.

The bound δ0 can be computed when successively applying Lemmas 3.4.11–3.4.14, using
Lemma 3.4.9. In fact, such a choice of δ ensures that all shrunk DBMs encountered in the
computations are non-empty and normalized or δ ∈ [0, δ0]. By Remark 3.4.8, δ0 can also be chosen
as, roughly, the inverse of the maximal component of all SMs that appear in computations.

Our definition of PSM is different from parametric DBMs considered for instance in [HRSV01],
since we use max-plus polynomials instead of linear expressions and only consider natural number
valuations. A related parameterized extension of DBMs was used in [DDMR08] for the forward
computation of the state space of enlarged timed automata. The emphasis in [DDMR08] was,
however, on computing over-approximations on reachables states; (fixpoint) equations between sets
were not studied.

Part II

Robustness Analysis

This part is devoted to the contributions on robustness analysis algorithms. In robustness
analysis, the goal is to check whether a given system satisfies its specification when its semantics is
perturbed. If this is the case, one is interested in synthesizing an upper bound on the magnitude of
perturbations under which the specification is satisfied. We consider, in this part, two perturbation
models, namely, enlargement and shrinking. Chapter 4 shows the decidability of the untimed language
preservation under parameterized guard enlargements; while Chapter 5 shows the decidability of
behavior preservation in terms of time-abstract simulation and non-blockingness under parameterized
guard shrinkings. A software tool that can check the shrinkability of a given timed automaton, and
some experimental results are presented in Chapter 6.

50

Chapter 4

Untimed Language Preservation

4.1 Introduction

Parameterized robust model-checking for timed automata, that is, deciding the existence of δ > 0 for
which a given property holds on the timed automaton enlarged by δ, has been shown to be decidable
for several classes of properties. The problem has no complexity cost over the standard model-
checking for timed automata: it was shown to be PSPACE-complete for safety [Pur00, DDMR08],
and for ω-regular properties [BMR06, BMS11], and EXPSPACE-complete for a fragment of the metric
temporal logic [BMR08]. In this chapter, we are interested in a stronger notion of robustness, asking
for the preservation of the untimed language of the exact semantics in the enlarged timed automaton,
for some value of the enlargement parameter δ > 0. We call such timed automata language robust.
In particular, if a timed automaton is language robust, then any (untimed) language based property
(such as linear-time properties) proven for JAK are preserved in JAδK for small enough δ.

Remember that, given a timed automaton A, L(A) denote the set of the untimed traces of
the runs of A. By definition of the enlargement, we have L(Aδ) ⊆ L(Aδ′) for any δ ≤ δ′, and in
particular L(A) ⊆ L(Aδ) for any δ ≥ 0. We are interested in the inverse inclusion, which does not
always hold. In fact, one can show that in the automaton A1 of Figure 2.2, for all δ > 0, all long
enough words in (gen · con)∗ · gen2 belong to L(A1

δ) but not to L(A1) (since location err is reachable
in JA1

δK if, and only if δ > 0).

Definition 4.1.1 (Language-robustness). A timed automaton A is language-robust if there exists
δ > 0 such that L(A) = L(Aδ).

Informally, A is language-robust if JAδK has no extra behavior than JAK for some δ > 0, in terms
of untimed language. Observe that whenever L(Aδ) ⊆ L(A), we also have L(A′δ) ⊆ L(A) for any
0 < δ′ < δ. This is a desirable property, called “faster is better” [DDR05a, AT05], which means that
once we prove the correctness of the system for some δ, it remains correct on any faster platform.

The main result of this chapter is that language robustness is in EXPSPACE. We also note a
class for which it can be decided in PSPACE. The high complexity of the algorithm in the general
case is not surprising, since deciding untimed language inclusion for timed automata is already
EXPSPACE-complete [BGS12]. We do not have a lower bound result, but this algorithm conforms
with other parameterized robust model-checking algorithms that have the same complexity as the
corresponding exact cases.

In order to establish our algorithm, we revisit some results of [Pur00, DDMR08] and extend
these to take into account the untimed languages (Section 4.4). Then, we prove a Ramsey-like
combinatorial theorem on directed paths, which has an independent interest (Section 4.5). The
proof of the main result (Section 4.6) combines these results.

The results of this chapter were published in [San11].

51

52 CHAPTER 4. UNTIMED LANGUAGE PRESERVATION

4.2 Restrictions on Timed Automata
Following [DDMR08, Pur00], we only consider closed timed automata and rectangular guards (that
is, we do not have diagonal constraints such as k ≤ x− y ≤ l). We also assume that all clocks are
bounded above by some constant M . Considering closed guards is natural in our setting, since we
are interested in the behavior of the systems under positive enlargement. Assuming rectangular
guards and bounded clocks is not restrictive in terms of expressiveness, but has an effect on the size
of the models [BC05]. As in [DDMR08, Pur00, AMPS98], the only real restriction is the following.
We consider timed automata where all clocks are reset at least once along any cycle of the region
automaton; these are called progress cycles. A sufficient condition for a timed automaton to have
only progress cycles is that any cycle of the underlying finite automaton resets all clocks at least
once [AMPS98].

Although we prove our results for general timed automata with progress cycles, we also note a
subclass for which we improve the complexity of the problem we study. We call a timed automaton
region-deterministic if its timed-action region automaton is deterministic (that is, from all states of
the region automaton, there is at most one outgoing edge per label)1.

Note that we will mostly use region automata in the proofs of this chapter. Timed-action region
automata will be useful only in the proof of Theorem 4.3.1

4.3 Main Result
Theorem 4.3.1. Let A be any closed timed automaton with progress cycles, and W the size of its
region automaton. Let K = W if A is region-deterministic, and K = 2W otherwise, and fix any
N0 ≥ 15 ·W · |C|2 · 2(|C|+1)2 · (K + 1)2. Then, there exists δ > 0 such that L(Aδ) = L(A) if and only
if L(A 1

N0

) = L(A).

Our main result, that is, the decidability of language-robustness is a direct corollary of the
previous theorem. In fact, A 1

N0

can be transformed into a (language-)equivalent integral automaton
by multiplying all constants by N0. We will denote by R(A 1

N0

) the region automaton of the
corresponding integral timed automaton. We can then check whether R(A 1

N0

) and R(A) recognize
the same untimed language. We obtain the following complexity results.

Corollary 4.3.2. For region-deterministic timed automata with progress cycles, language robustness
can be decided in PSPACE. For general timed automata with progress cycles, language robustness
can be decided in EXPSPACE.

Proof. Consider a region-deterministic timed automatonA, and letR(A) denote its region automaton.
Let R(A)c denote the complement of R(A), which has thus the same size as R(A). One can decide
whether L(A 1

N0

) ∩ L(R(A)c) 6= ∅ in polynomial space. In fact, the states of both R(A 1
N0

) and

R(A)c can be encoded in polynomial space (for 1
N0

given by the theorem for region-deterministic
A). Then, the usual non-deterministic procedure (see [AD94]) that guesses an accepting path in the
product of these can be carried out in polynomial space.

1One could extend the definition of region-determinism by requiring that all states that satisfy the guards of edges
with the same label to be untimed language-equivalent (that the same untimed language is recognized from those
states). In fact, in this case, the region automaton can be made deterministic by leaving one (arbitrary) edge per
label at each state.

4.4. TIMED AUTOMATA UNDER ENLARGEMENT 53

For general timed automata, we describe a non-deterministic exponential space algorithm
to decide L(R(A 1

N0

)) 6⊆ L(R(A)). Observe that R(A) can be complemented using the subset
construction, and that each state in the complemented automaton has exponential size (since there
are exponentially many regions). Let us call the deterministic complement automaton R(A)c.
Thus, one can guess a path in R(A)c in exponential space. The algorithm consists in guessing
a path in R(A 1

N0

) while, in parallel, simulating the corresponding path in R(A)c. This can be
done in exponential space since states of R(A 1

N0

) and R(A)c can be represented and explored
in exponential space, The algorithm accepts if the simulating set becomes empty, and otherwise
rejects after a doubly exponential number of steps. In fact, L(R(A 1

N0

)) 6⊆ L(R(A)) is equivalent
to L(R(A 1

N0

)) ∩ L(R(A)c) 6= ∅, and in this case, the intersection contains a word of size at most
doubly exponential, since the product automaton has this size.

In the rest of this chapter, we present the proof of Theorem 4.3.1. We start with a study of the
properties of enlarged timed automata (Section 4.4), and some combinatorial results (Section 4.5),
then give the proof (Section 4.6).

4.4 Timed Automata Under Enlargement
Let us fix a timed automaton A with C > 0 clocks. We start with the following result, which is a
direct corollary of [San10, Lemma 3.14]. It states that for any δ > 0, the trace of any run of JAδK
of length O(b 1

δ c) can be followed in R(A) too. An immediate implication is that if the length of
the runs are fixed a priori, then a small enough enlargement has no effect on the behavior of timed
automata (in terms of untimed language). Figure 4.1 illustrates the construction of the following
lemma.

Lemma 4.4.1 ([San10]). Fix any n ∈ N and δ > 0 such that δ ≤ 1
5nC2 . Let ρ be any run

of JAδK. Then, for all 1 ≤ i0 ≤ |ρ|, there exists a region, denoted by H(ρ, i0, n), included in
reg(statei0(ρ)), such that for all regions r ⊆ H(ρ, i0, n), there is a path π of R(A) over the trace
utrace(ρi0...min(i0+n,|ρ|)), with state1(π) = r and statej(π)∩H(ρ, i0 + j − 1, n) 6= ∅ for all 1 ≤ j ≤ |π|.

We are now interested in “long” or infinite runs. We saw that for some timed automaton A1

(e.g. Fig. 2.2) some regions that are not reachable in JA1K become entirely reachable in JA1
δK, for

any δ > 0. An analysis of the behavior of JA1
δK shows that this is due to the accumulation of

the “error” of δ along some cycles of the region automaton, as shown in Fig. 2.10. Puri gives a
characterization of those cycles of R(A) which cause this behavior and obtain a decision procedure
for safety properties [Pur00]; these proofs are revisited in [DDMR08]. In this section, we revisit the
analysis of the cycles of R(A) under enlargement, and extend these results to a slightly more general
setting. Roughly, we show that, the states that are reachable in JAδK by repeating a single cycle are
also reachable by repeating particular sets of cycles in any order. Our proofs follow [DDMR08].

We say that two cycles π1 and π2 are equivalent if first(π1) = first(π2) and Γ(π1) = Γ(π2).
Let π be a cycle of R(A) starting at some state (`, r). For any k > 0, we let

Vπ,k = {(`, v) | v ∈ V(r), (v, v) ∈ Γ(π)k}.

This is the set of vertices q ∈ first(π) for which there are runs following πk that start and end at q.
We define the convex hull of the union of these sets as Limπ = convex-hull(

⋃
k>0 Vπ,k). It is clear

from the definition of Limπ that Limπ = Limπ′ for any equivalent cycles π and π′.

54 CHAPTER 4. UNTIMED LANGUAGE PRESERVATION

H(ρ, 1, n)

(ρ)1

H(ρ, j, n)

(ρ)j

ρ′

π

Figure 4.1: A run ρ of JAδK. The leftmost triangle represents reg(state1(ρ)), and the rightmost one
reg(statej(ρ)) (their corners, edges and interiors are subregions). By Lemma 4.4.1, there is a region
H(ρ, 1, n) such that starting from any region in H(ρ, 1, n), one can construct a path π of length n
(the red dashed curve) such that (π)j intersects H(ρ, j, n) for all j.

The main result of this section is the following lemma, which generalizes Theorem 23 of [DDMR08]
(see also Lemma 7.10 in [Pur00]). We adopt the following notation: when we write q ∈ (`, r), we
mean that q = (`, ν) for some ν ∈ r. We also write λ(`, ν) = (`, λν) where λ ∈ R≥0, ν is a valuation
and ` a location.

Lemma 4.4.2. Let π1, . . . , πp be equivalent cycles of R(A) that start in state (`, r), and consider
any δ > 0. Then, there exists k > 0 such that for any q, q′ ∈ (`, r), and any word w ∈ {π1, . . . , πp}k
there is a run in JAδK from q to q′ on word w.

To prove this lemma, we first show that Limπ1 is backward and forward reachable in JAK, from
any point of r, by iterating at least C times any of the equivalent cycles in any order (Lemma 4.4.5),
and that any pair of points in Lπ1

can be connected by a run of JAδK, again by iterating these
cycles (Lemma 4.4.7).

A natural property of runs of timed automata is that convex combinations of two runs yield a
run over the same word, as shown in the following lemma.

Lemma 4.4.3 ([DDMR08, Lemma 24], and [Pur00, Lemma 7.1]). Let π be a path in R(A), and
let ρ and ρ′ be runs in JAK that follow π. Then for all λ ∈ [0, 1], there exists a run ρ′′ of JAK
following π, such that statei(ρ′′) = λstatei(ρ) + (1− λ)statei(ρ′) for all 1 ≤ i ≤ n.

The following proposition provides a bound on the number of vertices of regions. It also implies
that from each region, there is a finite number of cycles with pairwise distinct vertex maps. Remember
that all clocks are bounded above by some constant, so we only need to consider bounded regions.

Lemma 4.4.4 ([DDMR08, Lemma 14]). Any bounded region has at most C + 1 vertices. Any point
ν ∈ RC≥0 is a convex combination of the vertices of reg(ν).

The following lemma states that, Limπ is backward and forward reachable from any state of
first(π), by repeating at least C times cycles equivalent to π.

Lemma 4.4.5. Let π1, . . . , πp be equivalent cycles of R(A), that all start in state (`, r), and fix
any q ∈ (`, r). Then, for any k ≥ C and any path w ∈ {π1, . . . , πp}k, there exists q1, q2 ∈ Limπ1

and
runs ρ1 and ρ2 of JAK that follow w, such that first(ρ1) = q and last(ρ1) = q1; and first(ρ2) = q2 and
last(ρ2) = q.

Proof. We first prove the statement for q = (`, v) with v a vertex. Remember that for all v ∈ V(r),
there exists at least one v′ ∈ V(r) such that (v, v′) ∈ Γ(π1), and the number of vertices is at
most C+ 1 by Lemma 4.4.4, so by repeating C times any cycles among π1, . . . , πp, we get a sequence

4.5. SOME COMBINATORIAL TOOLS 55

of vertices v1, . . . , vC+1 such that (vi, vi+1) ∈ Γ(π1). But then, vi = vj for some i < j, thus we
have vi, vi+1, . . . , vj ∈ Limπ1 . Now, we can extend the sequence v1 . . . vj to the length k elements by
repeating the cycle vivi+1 . . . vj . Clearly, this run can be constructed following any path w since
πi’s are equivalent.

Consider now an arbitrary point q in (`, r). By Lemma 4.4.4, q can be written as a convex
combination of the vertices of r. Let v1, . . . , vm denote the vertices of r, and λ1, . . . , λm ≥ 0 be such
that λ1 + . . .+ λm = 1 and q = λ1(`, v1) + . . .+ λm(`, vm). As we showed above, for any vi, there
is a run in JAK that follows w, from vi to some vertex v′i ∈ Limπ1 . Lemma 4.4.3 yields the desired
run.

Lemma 4.4.6. Let π1, . . . , πp be equivalent cycles in R(A). Then there exists m > 0 such that for
all paths w ∈ {π1, . . . , πp}m, and for all q ∈ Limπ1

, there is a run ρ in JAK from q to q, following w.

Proof. By definition of Limπ1
, any z ∈ Limπ1

is a convex combination of a set of vertices vi in Limπ1
.

But, for any vertex vi ∈ Limπ1 , there exists mi > 0 such that (vi, vi) ∈ ν(π1)mi . So, there exists
m > 0 such that (vi, vi) ∈ ν(π1)m for all 1 ≤ i ≤ k (Consider for instance the least commun multiple).
Now, the convex combination of these runs yield the desired run from q to q, by Lemma 4.4.3.

The following lemma shows that any pair of states in Lπ can be connected by a run in JAδK.

Lemma 4.4.7 ([DDMR08, Lemma 29]). Let π be a cycle of R(A) that starts in (`, r) and let
q ∈ Limπ. Then for any δ > 0, and any q′ ∈ (`, r) such that d∞(q, q′) ≤ δ

2 , there is a run, in JAδK,
from q to q′ following π.

Proof of Lemma 4.4.2. By Lemma 4.4.5, repeating at least C times the cycles π1, . . . , πp suffices
to reach some point q1 ∈ Limπ1

. The same lemma provides a point q2 ∈ Limπ1
which is backward

reachable from q′ by repeating C times any of these cycles. Because regions are convex, for any
pair of points q1, q2 that belong to a same region, one can find points q1 = u0, u1, . . . , uN = q2

in r where N = d 1
δ e such that d∞(ui, ui+1) ≤ δ

2 for all 0 ≤ i ≤ N − 1. Let m > 0 be the bound
provided by Lemma 4.4.6. Now, q2 can be reached from q1, by a run over any word {π1, . . . , πp}mN
by Lemma 4.4.7 (applied N times to pairs (ui, ui+1)).

4.5 Some Combinatorial Tools
In this section, we prove a Ramsey-like theorem for colored directed paths, which gives a lower bound
on the length of monochromatic subpaths contained in these (Subsection 4.5.1). This improves,
by an exponential, the result provided by a direct application of Ramsey’s theorem [Ram30]. In
Subsection 4.5.2, we give a simple property on untimed finite automata accepting ultimately universal
languages.

4.5.1 A Ramsey-like Theorem for Directed Paths
A directed graph is a pair G = (V,E) where V is a finite set of nodes and E ⊆ V × V , is the set
of edges. A graph G is complete if for all i, j ∈ V either (i, j) ∈ E or (j, i) ∈ E. A graph is a
linearly-ordered complete graph, if for some (strict) linear order ≺ on V , (i, j) ∈ E iff i ≺ j. The
degree of a node v is d(v) = |{u | (v, u) ∈ E or (u, v) ∈ E}|. Two nodes u and v are connected in
the graph G if there exists a sequence u = s0, s1, . . . , sk = v of nodes such that (si, si+1) ∈ E or
(si+1, si) ∈ E for all 0 ≤ i ≤ k− 1. A graph is connected if all its nodes are connected. A subgraph of

56 CHAPTER 4. UNTIMED LANGUAGE PRESERVATION

G = (V,E) is a graph (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. A connected component is a maximal
connected subgraph. A directed path of G is a sequence of nodes v1, . . . , vn such that (vi, vi+1) ∈ E
for all 1 ≤ i ≤ n − 1, and its length is n. A r-coloring of a graph G = (V,E) is a function
E → {1, . . . , r} that associates to each edge a color from {1, . . . , r}. A path is monochromatic if all
its edges are assigned the same color.

Our result is based on the following theorem from [BGHS81].

Theorem 4.5.1 ([BGHS81]). Let G be a connected directed graph over n nodes such that, for some
h, every node v satisfies d(v) ≥ h. Then G contains a directed path of length min(n, h+ 1).

The main result of this subsection is the following theorem.

Theorem 4.5.2. Let G = (V,E) be a linearly-ordered complete graph over n nodes given with an
r-coloring of its edges. Then G contains a monochromatic directed path of length b

√
n/r − 2c − 1.

Proof. Fix h = b
√
n/r − 2c − 1. For each 1 ≤ i ≤ r, define subgraph Gi which contains exactly the

edges colored by i. Then, for each Gi, define G′i by removing any node v (and any edge containing
v) whose degree in Gi is less than h. In G′i, any node has either none or at least h edges of color
i. Let G′ be the union of all G′i’s. To define G′, we remove at most (h− 1)rn edges (h− 1 edges
per color and node). Thus, G′ has at least

(
n
2

)
− (h − 1)rn edges. Then, one of the G′i’s has at

least
(
n
2

)
/r − (h − 1)n edges, say G′i0 . We show that G′i0 has a connected component C with at

least
√

(n− 1)/r − 2(h− 1) nodes. In fact, consider a graph with N nodes and M edges. Let
K denote the number of nodes of the largest connected component. Since there are at most N
connected components, each of them containing at most

(
K
2

)
edges, we get that M ≤ N

(
K
2

)
, which

implies
√

2M/N ≤ K. Applying this to G′i0 , we get the desired connected component C. Now, by
construction of G′i0 , all nodes of C have degree at least h in C (in fact, by maximality, all edges
of G′i0 adjacent to the nodes of C are also included in C). Then, by Theorem 4.5.1, C contains
a directed path of length at least min(

√
(n− 1)/r − 2(h− 1), h). But the first term of the min

is greater than or equal to h by the choice of h. So, there is a directed path of length at least
b
√
n/r − 2c − 1 in G′i0 , and this is a monochromatic path in G.

4.5.2 Ultimately Universal Languages
Let Σ denote a finite alphabet. We define a finite automaton as a timed automaton without clocks.
We call a regular language L ⊆ Σ∗ ultimately universal if there exists k ≥ 0 such that

⋃
l≥k Σl ⊆ L.

Lemma 4.5.3. Let L be an ultimately universal language recognized by a deterministic finite
automaton with n locations. Then

⋃
l≥n−1 Σl ⊆ L.

Proof. Let A be a deterministic automaton that recognizes L. Suppose there is a word w of length
at least n not recognized by A. Let l be the location reached in A by reading w. Since at least
n locations are visited when reading w, we get that w = tuv for some words t, u, v where u is
non-empty, such that all words of tu∗v leads to location l in A. Because A is deterministic, no word
of this set is recognized by A, contradicting the fact that L is ultimately universal.

4.6 Proof of the theorem
Fix any timed automaton A with C ≥ 1 clocks. Let W denote the number of regions of A. Let
D denote a deterministic finite automaton such that L(D) = L(R(A)) = L(Rta(A)) (say, obtained

4.6. PROOF OF THE THEOREM 57

Aδ0 : ρ
1 αi αi+1

D : γ
αi1

Aδ : ρ′

1 βi

π1 τ1 τ2 . . . τK-1

(ρ′)βi+1

(γ)αi+1

π1 τ1 τ2 . . . τK-1

Figure 4.2: An induction step in the proof of Theorem 4.3.1. First, ρ′ is extended following path
π1τ1τ2 . . . (shown in red dashed line), and for any long enough repetition of cycles τ1, . . . , τK ,
H(ρ, αi+1, n) (shown in pink filled circle) can be reached. Then, γ is extended to (γ)αi+1 (shown in
green loosely dotted line).

by minimization), and let K denote the size of D, which is at most 2W (K ≤ W if A is region-
deterministic). We let M = 2(C+1)2(

(K + 1)2 + 2
)
, n ≥WM and fix any δ0 ≤ 1

5nC2 . The theorem
states that if L(A) = L(Aδ) for some δ > 0, then L(A) = L(Aδ0). The only interesting case is when
δ < δ0 since otherwise L(A) ⊆ L(Aδ0) ⊆ L(Aδ) and the theorem follows. So let us suppose that
L(A) = L(Aδ) for some δ < δ0. Let ρ be a run of JAδ0K. We will show that utrace(ρ) ∈ L(D) = L(A),
which will prove the theorem.

Lemma 4.6.1. Any path π of R(A) of length at least n can be factorized as π = π1τ1τ2 . . . τK−1π2

where π1, π2 are paths, and τi’s are equivalent cycles.

Proof. Since n ≥ W ·M , by the Pigeon-hole principle, π contains a factor t = t1 . . . tM such that
first(t1) = first(tj) for all j. We apply Theorem 4.5.2 to get a further factorization of t. Consider
a directed graph of the usual linear order < over {1, . . . ,M}. To each edge (j, k) of the graph,
where j < k, we assign as color, the vertex map Γ(tjtj+1 . . . tk). The number of colors is then
bounded by 2(C+1)2

. Applying Theorem 4.5.2, we get that t contains a factor τ1 . . . τK−1, where
τ1 = tj1tj1+1 . . . tj2 , τ2 = tj2tj2+1 . . . tj3 , . . . , τK−1 = tjK−1

. . . tjK , for some j1 < j2 < . . . < jK , such
that Γ(τ1) = Γ(τj) for all 1 ≤ j ≤ K.

Lemma 4.6.2. Let π = π1τ1τ2 . . . τK−1π2 be a path of R(A) where π1 and π2 are paths and τi’s
are equivalent cycles. Then, there exists k0 > 0 such that for all q ∈ first(π), q′ ∈ last(τK−1), k ≥ k0,
and any word w ∈ utrace(π1) · (utrace(τ1) + . . .+ utrace(τK−1))k, there is a run ρ′ of JAδK over w
with first(ρ) = q and last(ρ) = q′.

Proof. There is a run in JAK, from q to some q1 ∈ first(τ1) following π1 since π1 is a path of the
region automaton of A. This is also a run of JAδK. The rest follows from Lemma 4.4.7 since
first(τ1) = last(τK−1).

We are now ready to prove our main theorem. The reader may follow the proof in Figure 4.2.

Proof of Theorem 4.3.1. Consider ρ and the constants as defined above, and notice that δ0 ≤ 1
N0

. Let
H(ρ, i, n) be the regions given by Lemma 4.4.1 for all i ≥ 0. We will inductively construct the desired
run γ of D with utrace(γ) = utrace(ρ). At step i of the induction, we will define γαi...αi+1

for some
increasing sequence (αi)i≥0 with α0 = 1. When constructing γ, we will also construct an auxiliary
run ρ′ of JAδK in parallel, defining ρ′βi...βi+1

at each step i, for some increasing sequence (βi)i≥0 with

58 CHAPTER 4. UNTIMED LANGUAGE PRESERVATION

β0 = 1, and ensuring that stateβi(ρ′) ∈ H(ρ, αi, n) and L(JAδK, stateβi(ρ′)) ⊆ L(D, stateαi(γ)) for
all i ≥ 0.

– For i = 0, since ρ is an initialized run, we have state1(ρ) = (l0,0) so H(ρ, 1, n) = reg(l0,0).
We have α0 = β0 = 1, state1(ρ′) = (l0,0) and state1(γ) is the initial state of D. We have
L(JAδK, ρ′1) ⊆ L(D, γ1) by hypothesis.

– For any i ≥ 1, suppose by induction that γ is defined between indices 1 and αi and that
ρ′βi ∈ H(ρ, αi, n). We will choose αi+1 > αi and βi+1 > βi, and first define ρ′βi...βi+1

such that
stateβi+1

(ρ′) ∈ H(ρ, αi+1, n), then define γαi...αi+1
. Let π be the path of Rta(A) which starts at

reg(stateβi(ρ
′)), given by Lemma 4.4.1 for the run ραi...|ρ|. If ρ is finite and |ρ| −αi ≤ n, then D has

a run from γαi on word utrace(π) (since L(JAδK, ρ′αi) ⊆ L(D, γαi)) and we are done. Suppose now
that ρ is either infinite, or |ρ| − αi > n. Then |π| = n, and by Lemma 4.6.1, π can be decomposed
into π = π1τ1 . . . τK−1π2 where τi’s are equivalent cycles. We let αi+1 > αi such that last(τK−1) is
the (αi+1 − αi)-th state of π. JAδK has a run from stateβi(ρ

′) to some z ∈ first(τ1) following π1 (in
fact, stateβi(ρ′) ∈ first(π1)). By construction of π, there exists z′ ∈ H(ρ, αi+1, n) ∩ last(τK−1) 6= ∅,
and by Lemma 4.6.2, for any k ≥ k0 and any word w ∈ (utrace(τ1) + . . . + utrace(τK−1))k, there
is a run, in JAδK, from z to z′ following trace w. Let ρ′′(w) denote the run thus constructed from
stateβi(ρ

′) to z′ on utrace(π1) · w. We let βi+1 s.t. ρ′βi...βi+1
(w) = ρ′′(w) for an arbitrary w.

Now, D has a run from stateαi(γ) to some state q0 over trace utrace(π1) because
L(JAδK, stateβi(ρ′)) ⊆ L(D, stateαi(γ)). Let D′ denote the finite untimed automaton obtained from
D by designating q0 as the initial state, and all states qf such that L(JAδK, z′) ⊆ L(D, qf) for some
w ∈ (utrace(τ1)+ . . .+utrace(τK−1))k, k ≥ k0, as final states. There is at least one final state because
L(D) = L(Aδ) and D is deterministic. Let there be an edge in D′ with label utrace(τi) from state q to
q′ whenever there is a path inD from q to q′ over word utrace(τi). Observe thatD′ is still deterministic.
Since ρ′′(w) is defined for any w ∈ (utrace(τ1)+. . .+utrace(τK−1))k, k ≥ k0, D′, defined over alphabet
{utrace(τ1), . . . , utrace(τK−1)}, is ultimately universal. But then, by Lemma 4.5.3, D′ accepts any
word in {utrace(τ1), . . . , utrace(τK−1)}K−1, and in particular utrace(τ1 . . . τK−1). Therefore, there
is a run in D from stateαi(γ) to some state stateαi+1

(γ) following utrace(τ1 . . . τK−1), which satisfies
L(JAδK, stateβi+1

(ρ′)) ⊆ L(JAK, stateαi+1
(γ)).

4.7 Another simple but expensive algorithm
In [BMS11], we gave a PSPACE algorithm for parameterized robust model-checking of timed automata
against Büchi properties. The algorithm consists in model-checking Aδ0 for some fixed δ0 depending
on A. This can be used to deduce a 2EXPSPACE algorithm for language robustness.

The main result of [BMS11] is the following.

Lemma 4.7.1 ([BMS11]). For any a timed automaton A, and state-based Büchi property B, there
exists δ > 0 such that Aδ satisfies B, if, and only if Aδ0 satisfies B, where δ0 = O(2−|A|).

We show how this lemma can be used to derive a 2EXPSPACE algorithm for deciding language
robustness. Consider the deterministic finite automaton F , obtained from Rta(A) by the subset
construction. Since all states of Rta(A) are accepting (the language L(A) is prefix-closed by
definition), only the emptyset is accepting in F , which is the complement of the subset construction.
Note that this accepting state is a sink state; let us denote it ⊥. We consider the timed automaton
B = A×F . Let B denote the set of all states of B but those having ⊥ as the second component.
Let δ0 = O(2−|B|). Then, Bδ satisfies B for some δ > 0 if, and only if Bδ0 does so. But satisfying B

4.8. CONCLUSION 59

means that all runs of Bδ visit infinitely often states of B, hence do not visit ⊥. This is equivalent
to saying that L(Aδ) ⊆ L(A), hence A is language robust.

Now, F can have doubly exponential size, so according to the above lemma, 1/δ0 is triply
exponentially large. This suggests a triply exponential-time algorithm. But one can improve the
complexity as follows. Instead of explicitly computing the product B, one can explore Aδ0 and F
on-the-fly, in doubly exponential space. In fact, regions of Aδ0 can be represented and explored in
doubly exponential space, while a state of F only requires exponential state (since it is a subset of
states of Rta(A)). Then, it suffices to guess a lasso, of length at most triply exponential, visiting
the states of B in these two automata in parallel.

4.8 Conclusion
We presented an EXPSPACE algorithm for deciding language robustness in timed automata, requiring
the untimed language to be preserved under some enlargement. This is a strong notion, implying
that for language-robust timed automata, all untimed trace-based properties proven for the exact
semantics hold under enlargement. In particular, for such timed automata, one does not need to
apply robust model-checking algorithms for untimed specifications.

A drawback of our algorithm is its high complexity. Although untimed language inclusion
in timed automata is also EXPSPACE-complete [BGS12], this does not imply a lower bound for
language robustness. Whether the problem is EXPSPACE-hard remains open. One hope to reduce
complexity would be to consider the problem of (bi)simulation robustness, that is, checking whether
a given timed automaton is similar or bisimilar to its enlargement, for some enlargement parameter.
The complexity might be lower, as it is already the case for timed automata and finite-state systems
(see e.g. [BGS12]).

60 CHAPTER 4. UNTIMED LANGUAGE PRESERVATION

Chapter 5

Shrinkability

5.1 Introduction
In this chapter, we study robustness in timed automata against guard shrinkings. The robustness
notion we consider requires timed automata to preserve some time-abstract behaviors, and not to
become blocking, when their guards are shrunk by a parameterized amount.

Shrinking the guards corresponds to disallowing time delays that are too close to the boundaries of
the guards. Some timed automata are vulnerable to such restrictions, and do loose some time-abstract
behaviors. We will see in the next section examples of timed automata that cannot repeat infinitely
some of their cycles under shrinkings. Similar phenomena were reported in [CHR02, ACS10].

Our goal is to develop algorithms to decide whether all guards can be shrunk –by possibly
different amounts, so that the resulting timed automaton can still time-abstract simulate the original
automaton, and is non-blocking. By this robustness check, one ensures that the behavior of the
automaton does not depend on exact timings, more precisely, on its ability to take the transitions
on the boundaries of the guards. A shrinkable timed automaton preserves all its behaviors when, for
instance, task execution times are shorter than the worst-case, and waiting times are longer than the
best-case. One can also detect unrealistic runs, including Zeno runs (Section 5.2.2). Shrinkability
analysis complements the robustness approach based on guard enlargement considered in Chapter 4.

The results of this chapter were published in [SBM11].

5.2 Robustness and Shrinkability

5.2.1 Shrinkability
Formally, a shrinking of a timed automaton A is A−kδ, where k ∈ NI>0 and δ > 0, I denoting the
set of all atomic clock constraints of A. We are interested in deciding the existence of shrinking
parameters k and δ > 0, and in their computation, for which the shrunk timed automaton is
non-blocking, or able to time-abstract simulate a given automaton, or both.

The formal definition of non-blocking-shrinkability is the following.

Definition 5.2.1. Let A be a timed automaton, and I the set of its atomic guards. A is non-
blocking-shrinkable if there exists k ∈ NI>0 and δ0 ∈ Q>0 such that for all δ ∈ [0, δ0], JA−kδK is
non-blocking.

We now define shrinkability. Ideally, we would like the shrunk timed automaton to be able
to time-abstract simulate the original timed automaton, which would mean that all time-abstract
behaviours present in the original timed automaton are preserved. But we give a more general
definition, which allows us to define shrinkings that contain some part of the time-abstract behaviour
of the original automaton. Given a timed automaton A, and some finite automaton F such that

61

62 CHAPTER 5. SHRINKABILITY

JFK vt.a. JAK, A is said to be simulation-shrinkable with respect to F , if some shrinking A−kδ
simulates F . Notice that F can be chosen as the region automaton of A [AD94] or a smaller
bisimulation quotient [TY01], in which case a shrinking is required to time-abstract simulate A
entirely. Otherwise, simulation-shrinkability guarantees that the shrunk automaton contains some
relevant behaviour, given as F , of the original timed automaton.

We need the following notation. Given TTSs S and T , and a state s of S, we denote by
ta-simT (s) the set of states of T that time-abstract simulates the state s of S. The formal definition
of simulation-shrinkability is the following.

Definition 5.2.2. Let A be a timed automaton, and I the set of its atomic guards. Consider any
finite automaton F such that JFK vt.a. JAK. A is simulation-shrinkable w.r.t. F if there exists
k ∈ NI>0 and δ0 ∈ Q>0 such that for all δ ∈ [0, δ0],

JFK vt.a. JA−kδK

with the following additional requirement: for each state f of F , there exists a guard g and h ∈ N|C0|2

such that for all δ ∈ [0, δ0], ta-simJA−kδK(f) equals J〈g〉−hδK.

We say that a timed automaton is strongly shrinkable w.r.t. F if it has a shrinking witnessing
both its non-blocking-shrinkability and its simulation-shrinkability w.r.t. F . The above k and δ0
are called the shrinking parameters of A.

We now comment on the above definitions. We define shrinkability “for all δ ∈ [0, δ0]”, so if an
automaton is shrinkable, we require it to remain correct when imprecisions are reduced, that is when
δ is chosen smaller. In fact, the shrunk automaton can be seen as an underapproximation of the
initial automaton, and we would like to be able to obtain arbitrarily close correct approximations
by only adjusting δ. Notice also that when a timed automaton is simulation-shrinkable, then we
require that for all small enough δ, each simulator set can be expressed as shrinkings 〈g〉−hδ where
h is the same for all δ (that is, parameters h are uniform). If this is the case, then when we change
slightly the parameter δ > 0, the simulator sets also change slightly. Moreover, simulator sets have
a uniform expression, where δ is only a parameter. When one uses the simulator sets to control
the original system, this property yields a uniform representation for the constraints to add to the
system. Thus, the controlled system can still be represented as a timed automaton, where the guards
contain the parameter δ. Note however that we do not know whether there exist timed automata
that are shrinkable but violate the technical requirement of Definition 5.2.2.

Example 5.2.3. We illustrate shrinkability on the timed automaton A of
Fig. 5.1. This timed automaton is shrinkable both for non-blockingness and for simulation. One
can check that A−kδ, shown in Fig. 5.2 is non-blocking, and can time-abstract simulate A for all
δ ∈ [0, 1

6]. One can also see that the simulator sets are uniform. For instance, the set of states of
A−kδ that simulate the initial state of A is Jδ ≤ x ≤ 3− δ ∧ y ≤ 3− 2δ ∧ δ ≤ x− y ≤ 2− 2δK for all
δ ∈ [0, 1

6]. The computation of these parameters, and that of the simulator sets of this example are
explained in Example 5.3.1.

5.2.2 Shrinking as a Remedy to Unrealistic Behaviour
Shrinkability also excludes unrealistic timing constraints, such as those requiring Zeno behaviours.
In fact, for any timed automaton A, consider the automaton A′ obtained from A by adding a new
clock u, the constraint u ≥ 0 and the reset u := 0 at every edge. Clearly, A and A′ are isomorphic.

5.2. ROBUSTNESS AND SHRINKABILITY 63

`1 `2 `3
1≤x,y≤3 ∧ 0≤x−y≤2, y:=0

a

1≤x≤4 ∧ x−y≤3

b

c

Figure 5.1: Timed automaton A. Atomic clock constraints of the form y <∞, 0 ≤ y or −∞ < x− y
are omitted.

`1 `2 `3

1+2δ≤x≤3−δ ∧ 1+δ≤y≤3−2δ
δ≤x−y≤2−2δ, y:=0

a

1+δ≤x≤4−δ ∧ δ≤y
∧ x−y≤3−δ

b

c

Figure 5.2: A shrunk timed automaton A−kδ of timed automaton A defined in Fig. 5.1.

If automaton A′ is, say, simulation-shrinkable, then A does not need Zeno strategies to satisfy the
properties proven for the exact semantics and preserved by time-abstract similarity. In fact, each
u ≥ 0 is shrunk to some u ≥ δi with δi > 0, so time diverges in any infinite run.

But unrealistic timing constraints are not limited to Zeno behaviours. The automaton in Fig. 5.3
provides an example of a timed automaton which is non-blocking for δ1 = δ2 = δ3 = 0, and lets the
time diverge but it becomes blocking whenever δ2 > 0 or δ3 > 0, so it is not shrinkable.

`1 `2

y≤1−δ1 ∧ 1+δ2≤x
x:=0

y≤1−δ3, y:=0

Figure 5.3: A shrunk timed automaton that is blocking whenever δ2 > 0 or δ3 > 0. To see this,
consider any infinite execution and let d1, d3, . . . denote the delays at location l1, and d2, d4, . . .
those at l2. One can show that 1 ≤ d2i−1 + d2i for all i ≥ 1, which means that time diverges, but
also δ2 + δ3 ≤ d2i+2 − d2i and d2i ≤ 1. The latter means that the sequence (d2i)i increases at least
by δ2 + δ3 at each step and is bounded above by 1, which is possible only when δ2 = δ3 = 0. Note
that even if δ2 = δ3 = 0, non-blockingness requires consecutive delays to be equal, which is not
realistic for digital systems.

A similar example appears in [CHR02] with equality constraints. The above example shows that
such phenomena can occur even without the use of equality.

5.2.3 Decidability of Shrinkability

The main result of this chapter is the decidability of the shrinkability problems. A timed automaton
is non-blocking if its TTS is. A timed automaton with distinct labels is a timed automaton in which
all edges have distinct labels.

64 CHAPTER 5. SHRINKABILITY

Theorem 5.2.4. The following results hold:

• For closed non-blocking timed automata, non-blocking-shrinkability is in PSPACE, and in NP
if the number of outgoing transitions from each location is bounded.

• For closed timed automata A with distinct labels, simulation-shrinkability w.r.t. any F is
decidable in pseudo-polynomial time in the sizes of A and F .

• For closed non-blocking timed automata with distinct labels, strong shrinkability w.r.t. F is
decidable in time exponential in A, and polynomial in F , more precisely, in time O(2|A| +
p(|F|, |A|,M)), where M is the largest constant of A, and p some polynomial.

In each case, the largest δ0 > 0 satisfying the property can be computed.

Moreover, we will show that when a given timed automaton is shrinkable, the least shrinking
parameters can be computed (in a sense defined in Section 5.5). We assume distinct labels for
simulation-shrinkability, mainly for technical reasons. Nevertheless, it is also meaningful for our
purpose. In fact, we compare A with its shrinking and require these to have approximately the same
behaviour. Checking simulation between these systems under this assumption not only requires
“observational” equivalence but also a structural one. In fact, if a shrinking simulates F , it should do
so by following exactly the same edges as A does when simulating F . Thus, we require the shrunk
automaton and the initial automaton to have the same internal behaviour.

In the rest of this chapter, we present the proof of this result. We will use parameterized shrunk
DBMs, presented in Chapter 3, give tools for solving fixpoint equations between parameterized
shrunk DBMs by reduction to fixpoint equations in the max-plus algebra. We then explain how these
results can be used to solve the shrinkability problems, by expressing them as fixpoint equations.

5.3 Equations on shrunk DBMs
Let us give an insight into the use of operations on shrunk DBMs to treat shrinkability problems.
The following example explains the computation of the shrinking parameters on the timed automata
of Fig. 5.1 and 5.2.

Example 5.3.1. We consider the timed automaton of Fig. 5.1, with g1 = 1 ≤ x, y ≤ 3∧ 0 ≤ x− y ≤ 3 the
guard of the edge from `1 to `2, R1 = {y} its reset set, and g2 = 1 ≤ x ≤ 4 ∧ x− y ≤ 3 the guard of the edge
from `2 to `3. We shrink the guard g1 into

g′1 = 1 + k1δ ≤ x ≤ 3− k2δ ∧ 1 + k3δ ≤ y ≤ 3− k4δ ∧ k5δ ≤ x− y ≤ 2− k6δ,

and g2 into
g′2 = 1 + k7δ ≤ x ≤ 4− k8δ ∧ k9δ ≤ y ∧ x− y ≤ 3− k10δ.

Assume that we are looking for a valuation of k = (ki)1≤i≤10 in N>0 for which the resulting shrunk automaton
A−kδ witnesses the simulation-shrinkability, i.e. it can time-abstract simulate A for small enough δ > 0.
According to our definition of shrinkability, the simulator sets of A−kδ must be shrinkings of the simulator sets
of A. Let us concentrate on three interesting simulation classes: all states `3×RC≥0 are simulation-equivalent
and can be extended to an infinite run, the set of states X = Jx ≤ 4∧ 0 ≤ x− y ≤ 3K at location `2 are those
that can go to `3 by a b action, and the set of states Y = Jx, y ≤ 3 ∧ 0 ≤ x− y ≤ 3K at location `1 can go to
X by an a action. One can see that X is precisely the time-predecessors of g2, that is

X = Pretime (g2) (5.1)

5.3. EQUATIONS ON SHRUNK DBMS 65

Further,
Y = Pretime (g1 ∩ Unresety(X)) (5.2)

expresses the fact that some point of `2 × JXK can be reached in one step starting from `1 × JY K, and
this defines Y . Now, we use these equations to compute the simulator sets when guards are shrunk. Let
X ′ denote the shrunk DBM describing time-predecessors of g′2, as given by Lemma 3.4.14. We have
X ′ = Jx ≤ 4− k8δ ∧ x− y ≤ 3− k10δK, and `2 ×X ′ is indeed the set of states of A−kδ that can simulate the
states `2 ×X of A, for any given valuation and small enough δ > 0. Let us now compute Y ′, the simulator
set in A−kδ of the states Y of A, applying Lemmas 3.4.11–3.4.14 to the equation relating Y to X. In the
figure below, the union of dark gray and light gray areas illustrate this equation for δ = 0, while the dark
gray areas illustrate the equation between shrunk zones, i.e. between X ′ and Y ′. We have:

Unresety(X ′) = Jx ≤ 3− k10δK,

Jg′1K ∩ Unresety(X ′) = J1 + max(k1, k3 + k5)δ ≤ x ≤ 3−max(k2, k10)δ
∧1 + k3δ ≤ y ≤ 3−max(k4, k5 +max(k2, k10))δ
∧k5δ ≤ x− y ≤ 2−max(k6, k3 +max(k2, k10))δK,

Y ′ = Pretime (Jg′1K ∩ Unresety(X ′)) = Jk5δ ≤ x ≤ 3−max(k2, k10)δ
∧y ≤ 3−max(k4, k5 +max(k2, k10))δ
∧k5δ ≤ x− y ≤ 2−max(k6, k3 +max(k2, k10))δK.

The calculations are illustrated in Fig. 5.3.1. We now have at hand both parameterized expressions for the
simulator sets X ′ and Y ′, given parameterized shrunk guards g′1 and g′2. It remains to choose a valuation,
and check that X ′ and Y ′ are non-empty for small enough δ > 0. We choose the valuation that sets
k1 = k4 = k6 = 2 and other parameters to 1. Note here that some parameters are set to 2 so that the
shrunk guards are normalized.1 We get that under this valuation, X ′ = Jx ≤ 4 − δ ∧ x − y ≤ 3 − δK and
Y ′ = Jδ ≤ x ≤ 3 − δ ∧ y ≤ 3 − 2δ ∧ δ ≤ x − y ≤ 2 − 2δK. These sets and the guards are non-empty,
and all equations above hold for all δ ∈ [0, 1

6
]. This bound can be derived by looking at each application of

Lemma 3.4.11–3.4.14 in our computations. Hence, we obtained a shrunk timed automaton A−kδ that can
time-abstract simulate A, and expressions for the simulator sets parameterized by δ. 2

x

y

= Pretime

x

y

∩Unresety

x

y

Figure 5.4: The calculations of Example 5.3.1. The light and dark gray areas combined describe
the equation Y = Pretime (g1 ∩ Unresety(X)), while the dark areas describe the shrunk version:
Y ′ = Pretime (g′1 ∩ Unresety(X ′)).

In Example 5.3.1, we guessed a valuation k that witnessed the shrinkability of the considered timed
automaton. The fact that the timed automaton did not contain cycles simplified the constraints on
this valuation. The aim of the next section is to express systematically all constraints on parameters

1We could instead apply normalization to g′1 and g′2 and set all parameters to 1.
2Note that the initial state `1 × 0 is not included in X′ unless we set k5 = 0. This can be tested easily and we let

the user decide whether simulation is considered to hold or not in this case.

66 CHAPTER 5. SHRINKABILITY

k induced by the given equations, even in presence of cyclic dependencies, and provide an algorithm
to compute a valuation satisfying these constraints.

We consider fixpoint equations on DBMs and study whether by “shrinking” a given solution, one
can still satisfy the equation. Our goal is to generalize the arguments of Example 5.3.1 where we
were able to compute a shrinking of the solutions to Equations (5.1) and (5.2). We consider fixpoint
equations of the following form.

Mi = fi(M1, . . . ,Mn,Mn+1, . . . ,Mn+n′), ∀1 ≤ i ≤ n, (5.3)

where M1, . . . ,Mn+n′ are unknown normalized DBMs and fi’s are elementary functions. Notice that
Mn+1, . . . ,Mn+n′ are unconstrained, i.e. they do not appear in the left hand side of the equation.
Let us write m = n+ n′. We assume we are given a solution (Mi)1≤i≤m to Equation (5.3), and we
are interested in shrunk solutions defined as follows.

Definition 5.3.2. Consider a solution (Mi)1≤i≤m of (5.3). A shrunk solution of (5.3) w.r.t.
(Mi)1≤i≤m is a triple (

(Mi)1≤i≤m, (Qi)1≤i≤m, δ0
)
,

where δ0 > 0 and Qi’s are shrinking matrices such that for all δ ∈ [0, δ0], (Mi − δQi)1≤i≤m is a
solution of (5.3). A shrunk solution is called the greatest shrunk solution if (Qi)1≤i≤m are the least
shrinking matrices that define a shrunk solution w.r.t. (Mi)1≤i≤m.

Notice that we define shrunk solutions with shrinking matrices, not with parameterized ones.
Here, the “least shrinking matrices” refer to the order on Nk defined by a ≤ b if, and only if ai ≤ bi
for all 1 ≤ i ≤ k. Clearly, the sets X ′ and Y ′ we computed in Example 5.3.1 are a shrunk solution
(and in fact the least one) with respect to the solution (X,Y). A non-empty shrunk solution is a
shrunk solution whose all shrunk DBMs are non-empty.

We now show how one can reduce the problem of finding shrunk solutions to that of solving
simpler fixpoint equations in the max-plus algebra. For a non-empty solution (Mi)1≤i≤m of (5.3),
consider parameterized shrinking matrices Pi, for all 1 ≤ i ≤ m, where each cell of each Pi is a unique
parameter in k. By Proposition 3.4.15, there exist matrices (φi)1≤i≤n of max-plus polynomials such
that (

Mi, φi(P1, . . . , Pm)[v]
)

= fi
(
(M1, P1[v]), . . . , (Mm, Pm[v])),

for all 1 ≤ i ≤ n, and any parameter valuation v. Here, φi(P1, . . . , Pm) denotes a matrix whose
components are max-plus polynomials that combine the components of matrices Pj . The above
equation suggests that we study the following fixpoint equation on PSMs Pi’s:

Pi = φi(P1, . . . , Pm), ∀1 ≤ i ≤ n,
[Pi]j,j = 0, ∀1 ≤ i ≤ m, 1 ≤ j ≤ |C0|.

(5.4)

If some parameter valuation v satisfies (5.4), then if we denote by Qi = Pi[v] for all i, we get that(
(Mi)1≤i≤m, (Qi)1≤i≤m, δ0

)
is a shrunk solution of (5.3), for some δ0 > 0. In fact, the first line

means that the fixpoint equation holds (by Prop. 3.4.15), and the second line means that this is
a non-empty shrunk solution. Note that requiring the diagonals to be zero is sufficient since we
assume all shrunk DBMs to be normalized. The converse also holds: the shrinking matrices of any
shrunk solution of (5.3) satisfies (5.4). By Prop. 3.4.15, the size of the equation (5.4) is polynomial
in the size of (5.3).

5.4. MAX-PLUS ALGEBRA 67

Note that we will be often interested in solutions of (5.4) where some parameters are positive.
These parameters will, for instance, correspond to the shrinking of the guards. In order to enforce
positive values to some parameters, one can augment Equation (5.4) with the following constraint,
for any matrix cell [Pi]j,k that is to be positive:

[Pi]j,k = max(1, [Pi]j,k). (5.5)

The choice of the positive parameters depend on the application. For instance, in Section 5.5, we
will shrink all the atomic constraints of given timed automata by positive amounts.

Let us define the positivity function as P(x) = 0 if x = 0 and P(x) =∞ otherwise. We extend
P(·) to matrices, by componentwise application. The correspondance between shrunk solutions and
max-plus equations is formally stated in the following lemma.

Lemma 5.3.3. Consider any non-empty solution (Mi)1≤i≤m of (5.3), and the max-plus polynomial
matrices (φi)1≤i≤n as defined above. Then,

• For all shrinking matrices (Qi)1≤i≤m, there exists δ0 > 0 such that(
(Mi)1≤i≤m, (Qi)1≤i≤m, δ0

)
is a non-empty shrunk solution of (5.3) if, and only if, (Qi)1≤i≤m

is a solution of (5.4) in N. Given (Mi)1≤i≤m and (Qi)1≤i≤m, one can compute the maxi-
mum δ0 > 0 to satisfy this property.

•
(
(Mi)1≤i≤m, (Qi)1≤i≤m, δ0) is the greatest shrunk solution of (5.3) if, and only if (Qi)1≤i≤m
is the least solution of (5.4) in N.

• If (5.4) has a solution (Qi)1≤i≤m, then for any shrinking matrices
Rn+1, . . . , Rm such that P(Rj) ≥ P(Qj) for n + 1 ≤ j ≤ m, there exist R1, . . . , Rn such
that (Ri)1≤i≤m is the least shrunk solution of (5.4), computable in polynomial time.

The first two statements follow directly from the previous paragraph and Corollary 3.4.15.
The computation of δ0 > 0 is explained in Section 3.4. The third statement follows easily from
Theorem 5.4.1 given in the next section, where we study the efficient computation of the solutions
to fixpoint equations in the max-plus algebra, as in Equation (5.4).

5.4 Max-Plus Algebra

5.4.1 Max-plus equations
In PSMs, formal expressions using maximization and sum are manipulated. The set R≥0 endowed
with these operations is called the max-plus algebra. There is a well-established theory on solving
equations in this algebra, with applications to discrete-event systems [BCOQ92]. The purpose of
this section is to show how to solve polynomial fixpoint equations in the max-plus algebra.

Let k1, . . . , kn, kn+1, . . . , kn+n′ be parameters, and φ1, . . . , φn be max-plus polynomials. We are
interested in computing solutions of fixpoint equations of the following form:

ki = φi(k1, . . . , kn, kn+1, . . . , kn+n′), ∀1 ≤ i ≤ n. (5.6)

Notice that variables kn+1, . . . , kn+n′ only appear at the right hand side of the equation. Equa-
tion (5.6) defines a non-linear equation (polynomials φi have arbitrary degrees). We call these
equations max-plus polynomial fixpoint equations. The equations between parameters that we derived

68 CHAPTER 5. SHRINKABILITY

in the previous section fall into this category. Although Tarski’s Theorem [Tar55] guarantees the
existence of fixpoint solutions in N ∪ {∞}, we are interested in finite solutions, i.e., solutions in N
which is not a complete lattice.

Theorem 5.4.1. The existence of a solution of a given max-plus polynomial fixpoint equation is
decidable in polynomial time in the size of the equation.

Moreover, if there is a solution v in N to a given equation E, then for any values v′n+1, . . . , v
′
n+n′ ∈

N where vn+i > 0 ⇒ v′n+i > 0 for all 1 ≤ i ≤ n′, equation E with the additional constraints
{kn+i = vn+i}1≤i≤n′ has a least solution, computable in polynomial time.

As in the previous section, we assume that expressions can be shared in equations given as input
to the above theorem. Such a data structure is detailed in the next subsection. The second point
of the theorem states that the existence of solutions does not depend on the exact values of the
unconstrained variables, but only on their positiveness.

These results rely on an analysis of max-plus graphs, that we associate to max-plus equations.
The rest of this section defines these graphs and gives an algorithm to solve these equations.

5.4.2 Max-Plus Graphs

Let k be a set of parameters. A max-plus graph G with parameters k is a directed graph (V,E),
where V is the set of nodes, and E ⊆ V × V the set of arcs. The node set V is partitioned into
V = k ∪N ∪Max ∪Plus. There is one node for each parameter, and also some additional nodes
labelled by natural numbers, and others labelled either by max or by plus. The arcs satisfy the
constraints that each node labelled by max or plus has exactly two incoming arcs and one outgoing
arc; each (directed) cycle contains at least one node in k; and the nodes N do not have incoming
arcs. We identify nodes n ∈ N with the natural number they represent. We will have at most one
node labelled by each natural number.

Intuitively, a max-plus graph encodes the relations between the parameters k, where a directed
path from parameter k to k′ means that k′ is greater than or equal to k in any solution. An extended
valuation v is the extension of a parameter valuation v to all nodes of G.

Definition 5.4.2. A valuation v : k→ N is a solution of a max-plus graph G with parameters k if
there exists some extended valuation v, that satisfies the following conditions.

• For all k ∈ k, v(k) = max(v(k′)) where the max is over all predecessors k′ of k,

• For all n ∈ N, v(n) = n.

• For all p ∈ Plus, v(p) = v(p′) + v(p′′), where p′ and p′′ are the (unique) predecessors of p,

• For all m ∈Max, v(m) = max(v(m′), v(m′′)) where m′ and m′′ are the (unique) predecessors
of m.

Note that if we are interested in a positive integer solution of a max-plus graph, we can simply
add one edge from each parameter k to the node 1. We extend the order ≤ to vector of numbers as
(ai)i∈I ≤ (bi)i∈I iff ai ≤ bi for all i ∈ I.

Given a graph G = (V,E), a path from node v1 to node vk is a sequence v1v2 . . . vk of nodes
where (vi, vi+1) ∈ E for all 1 ≤ i ≤ k − 1. A simple cycle is a path v1 . . . vk such that v1 = vk
and nodes v1, . . . , vk−1 are pairwise distinct. A node v′ is reachable from a node v if there is a

5.4. MAX-PLUS ALGEBRA 69

path starting at v and ending at v′. For two nodes v, v′ ∈ V , we write v +−→ v′, if there is a path
v = v1 . . . vk = v′ such that k ≥ 2, and vi ∈ Plus for some i ∈ {1, . . . , k}.

The following lemma gives a graph theoretical characterization of max-plus graphs that have
solutions. A simple cycle of a max-plus graph is a bad cycle if it contains at least one Plus node,
and at least one node that is reachable from a node n ∈ N with n ≥ 1. A contradicting path is a
path from k to l, for some k, l ∈ N with k > l.

Lemma 5.4.3. A max-plus graph G with parameters k has a solution if and only if it has no bad
cycle or contradicting path. Moreover, if G has a solution, then it has a least solution which can be
computed in polynomial time in the size of G.

Proof. Clearly, if G has contradicting paths, it has no solution. Let us show that if G has a bad
cycle, then it does not have any solution.

Consider a simple bad cycle c in G that contains a plus node p, and suppose there is an extended
solution v. We know that p has one predecessor in p′ in c, and another one outside, let us call it p′′.
By hypothesis, all nodes of c are reachable from a node n ≥ 1, which implies v(p′′) ≥ 1. We have
v(p) ≥ v(p′) + v(p′′) ≥ v(p′) + 1. But since c is a cycle, combining inequalities satisfied by v along c,
we get v(p′) ≥ v(p), therefore v(p′) ≥ v(p′) + 1, which is a contradiction.

We now prove that if no such cycle exists, then G has a solution, which we will construct explicitly.
Consider first all nodes W of G that are not reachable from any node n ∈ N with n ≥ 1. We can
safely assign the value 0 to all the nodes of W (this doesn’t contradict the max-plus graph since
none of these nodes are reachable from a positive number). Then, we replace all nodes of W by
the node 0 ∈ Nat. Let us call G′ the graph obtained from G in this manner. Clearly, if G′ has a
solution, so does G, by extending the solution with W ∩ k 7→ 0. Moreover, G′ can be computed in
polynomial time.

If k ⊆ W then we are done. Otherwise, let us assume w.l.o.g. that all the nodes of G are
reachable from a positive number. We are now looking for a solution in N>0. Then, by hypothesis,
the relation +−→ is anti-symmetric. We partition the set of nodes of G into C0, C1, . . . , Cm such that
C0 is the minimum for the relation +−→, and each Ci is the set of nodes whose all +−→-predecessors
are in C0 ∪ . . . ∪ Ci−1 and that has at least one +−→-predecessor in Ci−1. This partition can be seen
as a topological sort for the relation +−→.

Observe that C0 is not empty by hypothesis (in fact, there is at least one node that is reachable
from a positive integer and there is no bad cycle) and that any plus node of Ci have both its
predecessors in C0 ∪ . . . ∪ Ci−1. Also, there is no path in G from Ci to Cj for j < i by construction.
Let G[Ci] denote the graph G restricted to nodes of Ci. For all 1 ≤ i ≤ m, given a lower bound
ιi : Ci −→ N>0, there is a unique solution vi of G[Ci] such that ιi(v) ≤ vi(v) for all v ∈ Ci. In fact,
the solutions of G[Ci] which respect ιi are exactly the solutions of the max-plus linear equation
x = Ax ⊕ b, defined by Ak,l = 0 if there is an arc (l, k) in G[Ci] and Ak,l = −∞ otherwise; and
vector b is defined as bk = ιi(k) for all k. 3 Solutions to this linear fixpoint equations exist in N>0,
and A∗b is one, and is in fact the least solution, where A∗ is defined as A∗k,l = 0 if there is path
from l to k in G[Ci], and −∞ otherwise. This can be computed in polynomial time (see Section 3
of [BCOQ92]).

We will define v iteratively for each Ci, i ≥ 0. For i = 0, we let v0 be the least solution of
G[C0] for ι0 defined by ι0(n) = n for n ∈ N ∩ C0 and ι0(v) = 1 for all v ∈ C0 \N. At step i ≥ 0,

3In max-plus algebra, max is the addition and is denoted by ⊕, whereas the sum is the multiplication and is
denoted by ⊗. The product of a matrix and a vector is defined as usual, where multiplication is ⊗ and addition is ⊕.

70 CHAPTER 5. SHRINKABILITY

suppose we are given valuations v0, . . . , vi−1 and a lower bound ιi. We compute vi as the least
solution of G[Ci] that respects ιi, and we define ιi+1 on Ci+1 as follows. For all u ∈ Ci+1 ∩ k, we let
ιi+1(u) = maxv:(v,u)∈E∧v∈C0∪...∪Ci v(v); for all u ∈ Ci+1 ∩Max, we let ιi+1(u) = max(v(v1), v(v2))
where v1, v2 ∈ C0∪. . .∪Ci by construction; and for all u ∈ Ci+1∩Plus, we let ιi+1(u) = v(v1)+v(v2)
where v1, v2 ∈ C0 ∪ . . .∪Ci. (Note that N ⊆ C0). Clearly, any solution of G that extends v|C0∪...∪Ci
must satisfy this lower bound.

By construction, v defines a solution. Moreover, we show that this is the least solution. In fact,
since this is a finite solution, the least solution v′ given by Tarski’s theorem is also finite. But we
defined v0 as the least solution in C0, so that there is no solution of G whose values in C0 is less
than v0. This means v′|C0

≥ v0. We show by induction that the lower bound ιi is satisfied by v′|Ci ,
for all i, so that we get v′|Ci ≥ vi by construction of vi. Hence, v′ = v.

We now define max-plus graphs that encode the solutions of equations of the form (5.6). First,
for a max-plus polynomial φ, let us define graph G(φ) associated to φ, as follows. Graph G(φ) is
the syntactic binary tree of the expression φ, where the leaves are either constants or elements
of k, and each internal node corresponds to either plus or max, and joins the subtrees of the
corresponding subexpressions. The root corresponds to the whole expression φ. We direct the edges
of the tree bottom up. Now, define the max-plus graph G associated to equation (5.6) as the union of
graphs G(φi) associated to each φi, where all nodes corresponding to same parameters are merged
together. Moreover, an arc is added from the root node of each G(φi) to node ki, and from ki to the
root. Notice that any cycle we create in this manner contains a parameter node. Observe that in
our construction, each max- or plus-node of G corresponds to a unique subexpression in one of the
φi’s. The following lemma states that this graph encodes precisely the solutions of equation (5.6).

Lemma 5.4.4. Let G be the max-plus graph associated to Equation (5.6). A valuation v : k −→ N is
a solution of G if, and only if it is a solution of (5.6). Therefore, v is the least solution of G if, and
only if it is the least finite solution of (5.6).

Proof. As noted above, there is a correspondence between the nodes labelled max or plus with the
subexpressions. We use this to show how a solution of G can be seen as a solution of (5.6) and
vice versa. Suppose v is an extended solution that proves that v is a solution of G. Then, this
defines a solution of (5.6) where v(k) is the values given to k, and v(V \ k) define the values of the
subexpressions in φi’s. In fact, by construction, these are the “intermediate” values calculated in
the subexpressions when one evaluates each φi. Using the same correspondence, one can see that a
solution of (5.6) yields a solution of G whose extension correspond to these intermediate values.

Proof of Theorem 5.4.1. The first statement of Theorem 5.4.1 now follows directly from Lemmas
5.4.3 and 5.4.4. For the second statement, define equation (E) from equation (5.6) by adding equality
constraints kn+i = vn+i for all 1 ≤ i ≤ n′, for any vn+1, . . . , vn+n′ ∈ N>0. Assume that (5.6) has a
solution where kn+1, . . . , kn+n′ are given positive values. We show that then, the max-plus graph G′
associated with equation (E), does not have bad cycles or contradicting paths, which means that it
has a solution by above lemmas. In fact, in the max-plus graph G of (5.6), no cycle that is reachable
from a node kn+i contains a plus node, since this would contradict the existence of a solution with a
positive value for kn+i. Therefore, when we add the additional constraint kn+i = vn+i we do not
create any new bad cycles or contradicting paths. The result follows.

5.5. DECIDING SHRINKABILITY 71

5.5 Deciding shrinkability
We now apply the results we developed in previous sections to shrinkability.

5.5.1 Simulation-Shrinkability
We fix a closed timed automaton A = (L, l0, C,Σ, E) with distinct labels, and a finite automaton F
on the same alphabet Σ such that JFK vt.a. JAK. For any edge with label σ ∈ Σ and guard gσ,
let Gσ be the DBM that represents JgσK, and Rσ be the reset set.

Computation of the Simulator Sets Since all edge labels are distinct, the simulator set of
each state f of F in JAK can be expressed as the greatest fixpoint of the following equation:

Sf =
⋂
σ∈Σ

⋂
f
σ−→f ′

Pretime (UnresetRσ (Sf ′) ∩ JGσK) , (5.7)

for all states f of F , where (Sf)f∈F are unknown sets of states of A. The greatest fixpoint is
well-defined since the operator on the right, denoted Ω, is non-decreasing.

We will use properties of the region equivalence in a timed automaton without formalizing
this well-known construction (for that, we refer to [AD94]). Regions refine the largest time-
abstract bisimulation in a timed automaton; therefore, if (Sf)f are finite unions of regions, then
(S′f)f = Ω((Sf)f) are also finite unions of regions. In particular, the largest fixpoint of (5.7) can be
computed by a finite number of iterations of operator Ω, after having initialized all sets with the full
set of states of A. We also notice that if (Sf)f are convex sets, then so are (S′f)f = Ω((Sf)f).

For every i, we write (Sif)f for the sets of states obtained after i iterations of Ω in the above-
mentioned iterative computation. From the above discussion, the two following properties hold:

• for every state f of F , ta-simJAK(f) = limi→∞ Sif = Si0f for some i0;

• for every i, for every f , Sif is a finite convex union of regions.

We therefore deduce that the simulator set of each state f of F in JAK can be expressed as the
greatest fixpoint of the following equation on DBMs:

JMf K =
⋂
σ∈Σ

⋂
f
σ−→f ′

Pretime (UnresetRσ (JMf ′K) ∩ JGσK) , (5.8)

for all states f of F , where (Mf)f are unknown DBMs.
We now argue that the simulator sets can be computed in time pseudo-polynomial in A and F . As

argued above, one can compute this greatest fixpoint by initializing all Mf to unconstrained DBMs,
and then iteratively computing approximations applying (5.8) until a fixpoint is reached. IfM i

f is the
i-th iterative DBM for state f , we obviously have that JM i

f K = Sif . As each computed DBM represents
a finite union of regions, it can be defined with constraints using integer constants between −C and C,
and all the computed normalized DBMs only use integer constants in [−C · |C0|, C · |C0|]∪ {−∞,∞}.

So, at each iteration, either the Mf ’s do not change, in which case the fixpoint has been
reached, or some constant is decreased by at least one. Thus, fixpoint must be reached in at most
O((C · |C0|) · |F| · |C0|2) iterations, and each computation takes time O(|F| · |C0|3), since the expression
inside the intersection in (5.8) is computed, and all DBMs need be normalized for each edge of F .

72 CHAPTER 5. SHRINKABILITY

Globally, the simulator sets for all f ’s can therefore be computed in time O(C · |F|2 · |C0|6),
which is then pseudo-polynomial.

Computing Shrunk Simulator Sets When They Exist Consider the greatest solution (Mf)f
of (5.8). Including the Gσ’s in the unknown DBMs, Equation (5.8) can be seen as an instantiation
of Equation (5.3) (page 66) over DBMs (Mf)f ∪ (Gσ)σ.

Solving simulation-shrinkability w.r.t. F consists in deciding if for some shrinking of the
guards Gσ, there exist simulator sets that are shrinkings of the sets Mf ’s. So, solving simulation-
shrinkability w.r.t. F means deciding whether (5.8) has a shrunk solution with respect to (Mf)f ∪
(Gσ)σ where the shrinking matrices of Gσ’s are positive.4 This can be decided by Lemma 5.3.3.

Simulation-shrinkability does not depend on how much the guards are shrunk. In fact, since Gσ’s
are unconstrained in (5.7), if there is a shrunk solution to (5.7) with positive shrinking matrices for
Gσ’s, then for any shrinking matrices (Kσ)σ, Lemma 5.3.3 provides a (greatest) shrunk solution
where the shrinking matrices for (Gσ)σ are fixed to (Kσ)σ. Therefore, either all positive integer
vectors k, which yield normalized guards, witness the shrinkability of A (into A−kδ), or A is not
simulation-shrinkable w.r.t. F for any value of k.

Furthermore, one can also require initial simulation between F and a shrinking of A, i.e. the
initial state of A−kδ should simulate the initial state f0 of F . In this case, it suffices to compute the
shrunk simulator sets as above (if these exist), and then check whether the shrinking of the set Mf0

contains the valuation 0. This can be done efficiently, since it suffices to intersect the shrinking with
this valuation and check for emptiness.

Now, solving simulation-shrinkability w.r.t. F only takes time polynomial in the size of the
equation. So the overall complexity is pseudo-polynomial in A and F . Note that, one can check
simulation-shrinkability w.r.t. A, which requires the shrinking to time-abstract simulate A, by
chosing F as a time-abstract bisimulation quotient of A. In this case, F has exponential size, so the
procedure takes exponential time. Nevertheless, minimization can be used to compute the coarsest
bisimulation quotient as in [TY01], which yields small equations in practice (See Chapter 6).

5.5.2 Non-blocking-Shrinkability
We fix a closed non-blocking timed automaton A = (L, l0, C,Σ, E). For any edge with label σ ∈ Σ
and guard gσ, let Gσ be the DBM that represents JgσK, and Rσ be the reset set. The following
equation characterizes non-blockingness:

∀σ ∈ Σ, JGσK ⊆
⋃

σ′:(σ,σ′)∈ΣE◦E

UnresetRσ (Pretime (JGσ′K)), (5.9)

where we let ΣE◦E = {(σ, σ′) | ∃l, l′, l′′ ∈ L, l gσ,σ,Rσ−−−−−→ l′
gσ′ ,σ

′,Rσ′−−−−−−−→ l′′ ∈ E}, that is the set of pairs
of labels of consecutive transitions in A. We rewrite this equivalently as follows.

∀σ ∈ Σ, JGσK =
⋃

σ′:(σ,σ′)∈ΣE◦E

UnresetRσ (Pretime (JGσ′K)) ∩ JGσK, (5.10)

Now, A is shrinkable w.r.t. non-blockingness if, and only if, this equation has a shrunk solution
w.r.t. (Gσ)σ. We can unfortunately not directly use our general results on shrunk solutions since our

4Let us call a shrinking matrix positive, if all its off-diagonal components are positive.

5.5. DECIDING SHRINKABILITY 73

equation contains a union. We instead apply transformations to this equation in order to remove
the union. We start by rewriting the above equation as follows:

∀σ ∈ Σ, JGσK =
⋃

σ′:(σ,σ′)∈ΣE◦E

JMσ,σ′K

∀σ, σ′ ∈ Σ, JMσ,σ′K = UnresetRσ (Pretime (JGσ′K)) ∩ JGσK
(5.11)

Fix a solution (Gσ)σ ∪ (Mσ,σ′)σ,σ′ , which exists again by the non-blockingness assumption. We will
solve the max-plus equation corresponding to the second part of (5.11) by Lemma 5.3.3, but we first
add to this equation some inequalities which “encode" the first part of (5.11). We use the following
technical lemma to choose these inequalities.

Lemma 5.5.1. Let C1, . . . , Cb and D be normalized DBMs satisfying JDK =
⋃

1≤i≤bJCiK and
P1, . . . , Pb and Q shrinking matrices s.t. for some δ0 > 0, D − δQ and Ci − δPi are normalized
for all δ ∈ [0, δ0]. Then, one can decide the existence of (and compute the maximum) δ1 > 0
s.t. JD − δQK =

⋃
1≤i≤bJCi − δPiK for all 0 < δ ≤ min(δ0, δ1), in polynomial space and in time

O(|C0|2bp(|A|)), where p(·) is a polynomial.
Moreover, in this case, for all shrinking matrices Q′, P ′1, . . . , P ′b s.t. Qx,y ./ (Pi)x,y ⇔ Q′x,y ./

(P ′i)x,y and (Pi)x,y ./ (Pj)x,y ⇔ (P ′i)x,y ./ (P ′j)x,y for all i, j ∈ {1, . . . , b}, x, y ∈ C0 and ./ ∈ {<,=},
it holds

JD − δQ′K =
⋃

1≤i≤b

JCi − δP ′i K,

for all small enough δ > 0.

Proof. One can verify in polynomial time, whether for all i ∈ {1, . . . , b},
JCi − δPiK ⊆ JD − δQK for all small enough δ ≥ 0: It suffices to check, for all x, y, whether
(Ci − δPi)x,y ≤ (D − δQ)x,y for small enough δ ≥ 0, which holds if either (Ci)x,y < Dx,y

or (Ci)x,y = Dx,y and (Pi)x,y ≥ Qx,y. In the former case, we need to choose δ1 so that
δ(Qx,y − (Pi)x,y) ≤ Dx,y − (Ci)x,y for all 0 ≤ δ ≤ δ1, whereas the latter always holds.

It remains to verify that JD − δQK ⊆
⋃

1≤i≤nJCi − δPiK. This holds if and only if(⋃
1≤i≤b

JCi − δPiK
)c
∩ JD − δQK =

⋂
1≤i≤b

⋃
(x,y)∈(C∪{0})2

Jx− y > (Ci − δPi)x,yK ∩ JD − δQK = ∅.

which is true if and only if for all (x(1), y(1)), . . . , (x(b), y(b)) ∈ (C ∪ {0})2,
⋂

1≤i≤b(Jx
(i) − y(i) >

(Ci−δPi)x(i),y(i)K∩JD−δQK) = ∅. But there are less than (|C0|)2b such terms, which are conjunctions
of b + 1 DBMs, so the emptiness of each term can be checked in polynomial time, as described
above. The overall time complexity is then O((|C0|)2bp(|A|)). But this verification can be carried
out in polynomial space since each term can be checked independently. Note that each term gives
an upper bound on δ1, so the equality holds choosing δ1 as the minimum of these.

The last statement follows from the fact that the emptiness, for all small enough δ ≥ 0, of the
disjuncts above only depends on the order between the parameters.

Note that checking equality between a zone and a union of zones is a difficult problem in general;
some heuristics were suggested in [DHLP06].

74 CHAPTER 5. SHRINKABILITY

The second point of the lemma says that the satisfaction of the first part of (5.11) by a shrunk
solution only depends on the relative ordering of the components of the shrinking matrices. Therefore,
we only need to guess the ordering between all parameters (there is at least one if there exists a
shrunk solution), and solve the second part of (5.11) augmented with these guessed (in)equalities.

Formally, let Φ be the max-plus equation corresponding to the second part of (5.11), as defined
in Section 5.3. Let k′ denote the set of all parameters that appear in Φ (there is one parameter
per element of each matrix Gσ and Mσ,σ′). Notice that k′ has size O

(
(|C0| · |L| · b)2

)
, where b is

the maximal number of outgoing edges in A, and that Φ has size polynomial in the size of A. Φ
is a conjunction of equations k = φk(k′) for all k ∈ k′. For all pairs k, l ∈ k′, we guess a relation
among {<,=, >}, and define equation Φ′ by adding these relations to Φ. This can be done, for
the case k = l, by replacing the constraints on k and l respectively by k = max(φk(k′), l) and
l = max(φk(k′), k), and in the case k > l, by replacing the constraint on k by k = max(φk(k′), l+ 1).
Notice that Φ′ is obtained from Φ in polynomial time and with a polynomial number of guesses.
We then solve Φ′ using Theorem 5.4.1. If we find a solution, say (Pσ)σ ∪ (Pσ,σ′)σ,σ′ , we verify that
JGσ − δPσK =

⋃
σ′JMσ,σ′ − δPσ,σ′K for small δ, for all pairs (σ, σ′) ∈ ΣE◦E , in time O(|C0|2bp(|A|))

and in polynomial space by Lemma 5.5.1. We accept if all verifications succeed and reject otherwise.
If accepted, any solution provides a shrunk solution of (5.11), by Lemma 5.3.3. Conversely, if there
is a shrunk solution of (5.11), then, Φ′ can be constructed for the guesses corresponding to this
solution, and by Lemma 5.5.1, Φ′ has a solution. If b is fixed, this procedure is in NP. Otherwise,
instead of making guesses, we can deterministically try all possible guesses (the number of possible
guesses is O(2(|C|·|L|·b)2

) and verify in polynomial space, so the procedure is then in PSPACE.
Finally, to decide strong shrinkability, one can first compute the least parameters k and δ0 for

non-blocking-shrinking, then check simulation-shrinkability since the latter does not depend on exact
values of k and δ0.

5.6 Conclusion
In this chapter, we proposed a new framework for robustness analysis against guard shrinkings, that
can detect timed automata whose behaviours depend on the ability of the system to act at the
boundaries of the guards. Such timed automata are vulnerable to loss of time-abstract behaviour
when implemented. Theoretically, shrinkability analysis is formulated as a parameter synthesis
problem. We showed how the fixpoint equations between DBMs that encode the desired properties
are reduced to fixpoint equations in the max-plus algebra between the parameters. Despite the
relative complexity of the proofs and algorithms, the simulation-shrinkability works well in practice;
the next chapter presents a tool and experimental results.

An important future work is the study of arbitrary fixpoint equations between shrunk DBMs,
such as those including arbitrary use of unions. If we are able to treat such equations, then
simulation-shrinkability without the distinct edge labels hypothesis could be solved. This would
allow one to write more abstract specifications, and ease the complexity. In fact, as our experimental
results indicate, the bottleneck is the size of the finite automaton (denoted F) with respect to which
simulation-shrinkability is checked. One could also check shrinkability w.r.t. a (timed) temporal
logic formula.

We believe the shrunk DBMs we introduced can be useful in solving other problems in timed
automata, involving small imprecisions. We indeed re-use this data structure to solve the robust
controller synthesis problem in two differents settings; these are studied in Part III of this thesis.

Chapter 6

The Shrinktech tool

6.1 Introduction
Chapter 5 presented algorithms and theoretical results on shrinkability analysis on timed automata.
This chapter presents the tool shrinktech, in which the simulation-shrinkability algorithm is
implemented, and reports experimental results.

The contents of this chapter will appear in [San13].

6.2 Shrinktech

Given a timed automaton, the tool shrinktech either finds a counter-example to simulation-
shrinkability, such as a path or a cycle that cannot be executed by any shrinking of the automaton,
whatever the value of δ’s are, or outputs a shrinking of the timed automaton that witnesses the
shrinkability.

The input to the tool is Kronos timed automata format1. The format allows one to either specify
a timed automaton directly (as in Definition 2.2.1), or to describe a network of timed automata,
that is, several timed automata synchronizing on common actions. Figure 6.2 shows an overview
of the tool. To check the shrinkability of a timed automaton, the user can either provide a finite
automaton F , or let shrinktech compute the full finite bisimilarity graph using Kronos2. Note that
if the full bisimilarity graph is too big, one can also try to shrink with respect to a portion of it, or
with respect to a randomly generated trace. This is to be compared with bounded model-checking,
which is useful for detecting bugs, but also for “partially” proving the correctness of a system. The
tool comes with scripts to compute the bisimilarity graph, extract some (random) portion of it, and
generate random executions.

The tool shrinktech can be used for several kinds of systems modelled by timed automata. We
believe it can be used mainly for two purposes:

1. Robustness analysis, to find out whether the behaviour of the system is preserved when the
time bounds are disturbed (shrunk).

2. Deriving implementations from timed automata. In fact, the behaviour of a shrunk timed
automaton is included in that of the initial model in presence of imprecisions. So lower and
upper bounds on the delays can be “shrunk” in the implementation to guarantee that these
will be respected despite imprecisions. This approach will be detailed in Chapter 11.

Implementation details and availability. The tool is implemented in C++ and the source code has
about 5Klocs. It uses the Uppaal DBM library 3, and extends it to shrunk DBMs presented in

1Kronos is a model-checker for timed automata [BDM+98].
2Kronos can minimize the region graph of a timed automaton, as described in [TY01].
3http://people.cs.aau.dk/~adavid/UDBM/

75

76 CHAPTER 6. THE SHRINKTECH TOOL

Network of
timed automata
(Kronos format)

shrinktech

Finite automaton F
(Aldebaran format)

Shrunk timed automata
Parameter δ

Parameterized simulator sets

Counter-example:
path or cycle

Visualization
(graphviz)

option
al

(kro
nos)

shrinkable

not shrinkable

Figure 6.1: Overview of shrinktech.

Chapter 5. The input formats are (networks of) timed automata in the Kronos format, and finite
automata in the Aldebaran format4. The tool Kronos can be plugged in the tool-chain in order
to compute the finite time-abstract bisimilarity graph of a given timed automaton, to be used as
the finite automaton F . Shrinktech is open source software and is distributed under GNU General
Public Licence 3.0. It is freely available at:

http://www.lsv.ens-cachan.fr/Software/shrinktech/

6.3 Experimental Results
We used shrinktech on several case studies found in the literature. The table 6.1 summarizes the
results. The Lip Synchronization Protocol has been the subject of robustness analysis (by guard
enlargement) before [KLP09]. This is an algorithm that synchronizes video and sound streams that
arrive in different frequencies. The model is not shrinkable neither for video frames arriving in exact
frequency, nor for those arriving within a bounded interval. Observe that the model is shrinkable
w.r.t. a small subgraph with 501 nodes, but it is not shrinkable w.r.t. the whole graph which has
4484 nodes. Shrinkable models include Philips Audio Retransmission protocol [DY95], and some
asynchronous circuit models. We were able to analyze Fischer’s Mutual Exclusion Protocol upto 4
agents; while for 5 agents we could only partially analyze w.r.t. a randomly generated trace. The
non-shrinkability of most models is due to equality constraints. In fact, although we only shrink
non-punctual guards, some behaviours may still disappear immediately, however small the shrinking
parameter is.

Note that some of these models were designed at a level of abstraction where imprecisions were
not taken into account. So, our results do not necessarily imply that these systems are not robust,
but rather that the present models are not good for direct implementation. This is best illustrated
in the Latch Circuit models, where the exact model that extensively uses equalities is not shrinkable,
but its relaxation to intervals is. Notice also how most of the circuit models, which define bounds
on stabilization times are shrinkable.

6.4 Related Work
Existing verification tools for timed automata may be used for non-parameterized robustness checking
by modeling explicitly the imprecisions, although this increases the size of the models [AT05]. The
semi-algorithm of HyTech was used to synthesize guard enlargement parameters in timed automata

4This is a graph description format of the CADP tool suite, also used by Kronos.
See http://www.inrialpes.fr/vasy/cadp/

6.5. EXAMPLE: NON-SHRINKABILITY 77

Table 6.1: The column sim-graph is the number of states and the number of transitions of the finite
automaton F w.r.t. which the shrinkability is checked. L, E, and C denote, respectively, the number
of locations, edges, and clocks. The last column is the shrinkability of the given model, as reported
by the tool. An asterisk indicates bounded shrinkability, where only a subgraph of the time-abstract
bisimulation graph (given by a BFS) or a random trace was used. The tests were performed on an
Intel Xeon 2.67 GHz. All models are available on the tool’s website.

Model |L| |E| |C| sim-graph time shr
Lip-Sync Prot. (Exact) 230 680 5 4000/8350* (subgraph) 9s No
Lip-Sync Prot. (Interval) 230 680 5 501/1282* (subgraph) 9s Yes*
Lip-Sync Prot. (Interval) 230 680 5 4484/48049 28s No
Philips Audio Prot. 446 2097 2 437/2734 46s Yes
Root Contention Prot. 65 138 6 500/3455* (subgraph) 7s No
Train Gate Controller 68 199 11 952/8540 34s No
Fischer’s Protocol 3 152 464 3 472/4321 20s Yes
Fischer’s Protocol 4 752 2864 4 4382/65821 310min Yes
Fischer’s Protocol 5 3552 16192 5 10000/10000* (trace) 42s Yes*
And-Or Circuit 12 20 4 80/497 1.3s Yes
Flip-Flop Circuit 22 34 5 30/64 0.9s Yes
Latch Circuit (Interval) 32 77 7 105/364 1.6s Yes
Latch Circuit (Exact) 32 77 7 100/331 0.6s No

in [DDR05a]. An extension of Uppaal for robustness against guard enlargement was used in [KLP09];
this feature is no longer available in Uppaal. Note that shrinkability cannot be solved by existing
model-checkers for timed automata since we are interested in parameter synthesis so as to ensure
time-abstract simulation. Other similar work includes (the undecidable problem of) parameter
synthesis in timed automata, where guards are written using parameters, and one tries to find the
valuations for which the system satisfies some specification, e.g. [AFKS12]. This is difficult to realize
due to the large number of parameters (upto millions) and the time-abstract simulation condition we
consider. Robustness against large decreases in task execution times using simulation was considered
in [ACS10].

6.5 Example: Non-shrinkability

Non-shrinkability of timed automata can be due either to the disappearance of a finite behaviour, or
that of an infinite behaviour. We illustrate the first kind of non-shrinkability here; the next section
gives an example of the second one.

We consider the timed automaton A3 of Fig. 6.2. This timed automaton describes a system,
which, upon arrival to location A, activates an external device, and then sends a message to the
device (at location S). At location A, the device can be activated in two modes: a simple mode
renders the device ready for execution immediately, but it requires a (slow) buffered communication.
An advanced mode requires at least one time unit of activation, but has the advantage of supporting
direct (and fast) communication. We assume that the device is activated by maintaining a signal
long enough on some port: If the signal is maintained long enough (at least 1 time unit), the device
switches to advanced mode; otherwise it falls back to the simple mode. Let us further assume that
the buffer is active by default, but it is automatically deactivated when (strictly) more than 1 time
unit has been spent at A.

The system sends either a direct or a buffered message at location S following the above constraints.
Let us assume that the system needs to send the direct message while x ≤ 3, and that there is no

78 CHAPTER 6. THE SHRINKTECH TOOL

such constraint for the buffered message.
One may not want to maintain signal that is too long at A; this may be costly, or may consume

computation time. On the other hand, if one wants to make sure that the device is activated in the
advanced mode, then the signal should be maintained for at least 1 + δ, for a suitable δ. Hence,
shrinkability analysis makes sense here: e.g. the shrunk guard x− y ≥ 1 + δ means exactly that
1 + δ time units have been spent at A.

... A S
x,y:=0 x≤2,sig,y:=0

x−y≥
1,dire

ct

x−y≤1,buffered

Figure 6.2: Timed automaton A3.

x

y

0 1 2 3

1

2

3
buffered

direct
x

y

0 1 2 3

1

2

3

direct

buffered

Figure 6.3: The state space of the timed automaton A3 (on the left), and its shrinking (on the right).
The red area is the guard of the edge buffered, while the blue area is that of direct. The initial timed
automaton has a branching: from point x = 1, y = 0 at location S, the automaton can realize either
of the actions. However, this branching is no more possible in the shrunk timed automaton.

Figure 6.3 shows the state space of this timed automaton with and without shrinking. In the
original timed automaton, one can see that there is a branching : for appropriately chosen delays, after
the sig action, both direct and buffered actions are available. In fact, upon arrival to S with x = 1,
the device is in the advanced mode, and the buffer has not been deactivated. On the other hand, the
slightest shrinking of the guards disables such a branching. In any shrunk timed automaton, neither
of the actions are enabled if the action sig is taken at x = 1. In fact, taking into consideration
imprecise measure of time, one cannot be sure, in this case, that the device is in advance mode or
the buffer is still active. The safest option would be to realize sig while x ≤ 1 − δ (the buffer is
active for sure), or when x ≥ 1 + δ (the device is in advanced mode for sure). Consequently, there is
no possible behavior that realizes sig first, and then “decides” whether to choose direct or buffered.

On the other hand, the behaviors sig · direct and sig · buffered are still available in the shrunk
timed automaton. So, A3 is shrinkable w.r.t. these separate paths.

Non-shrinkability is not always due to a finite path that is disabled because of shrinkings. In the

6.6. USING SHRINKTECH 79

next section, we give an example of a timed automaton whose shrinkings cannot simulate a cycle of
the bisimilarity graph, but can simulate any finite unfolding of it.

6.6 Using shrinktech

Simple usage We explain here how to use the shrinktech tool on a simple example. We would
like to check whether the timed automaton A5 of Fig. 6.4 is shrinkable.

This automaton can be described in Kronos timed automaton format as given in Fig. 6.5.
Assuming Kronos is installed on the system, the simplest way to check shrinkability is the following:

> shrinktech automaton.tg
[...]
Starting shrinkability analysis on files automaton.tg and automaton.aut
Warning: Some edges have equality constraints and will not be shrunk (see log file)

Timed automaton is NOT SHRINKABLE. Counter-example generated in automaton.log and automaton.png

Shrinktech first calls kronos (the output is omitted) to compute the time-abstract bisimulation
graph of the timed automaton into automaton.aut. It then answers that the automaton is not
shrinkable. Note also that a warning is generated since not all guards were shrunk (shrinktech
shrinks all the guards but equality constraints). The counter-example, that is a subgraph of
automaton.aut that cannot be simulated by any shrinking of automaton.tg is generated and it is
shown in Fig. 6.5 (this is the file automaton.png). The analysis reveals that the cycle BC cannot
be simulated in the shrunk automaton, whatever the values of the shrinkings are. In fact, for any
shrinking, the cycle can be taken only a finite number of times after which the automaton is blocked.

When the program terminates, the file automaton.log contains the text representation of the
counter-example, also other useful information such as the shrunk guards and the parameterized
simulation sets. The counter-example is also generated as a dot file in automaton.dot, and a PNG
image is generated in automaton.png provided that Graphviz is installed on the system.

Note that shrinktech works (when necessary) on a copy of the given timed automaton (the
default value is ta.tg) because it adds annotations to the edge labels. One can change this file
name by passing -out myfile.tg as argument to the program.

With a custom finite automaton One can also give a custom finite automaton automaton1.aut
as an input to the program. For instance, one can try to unfold the loop BC several times to check
whether some shrinking of A5 can at least simulate a finite number of iterations. Consider the finite
automaton of Fig. 6.6. This automaton can be simulated by automaton.aut, thus also by A5 (note
that the timed automaton must be able to simulate the given finite automaton; an error will be
generated otherwise). See also the –gentrace option in Section 6.6.1 to randomly generate such a
trace.

`0 `1 `2
x=1

A,y:=0

y≥2,y:=0
B

x≤2,x:=0
C

Figure 6.4: Timed automaton A5.

80 CHAPTER 6. THE SHRINKTECH TOOL

#states 3
#trans 2
#clocks 2
X
Y

state: 0
invar: TRUE
trans:
X = 1 => A; RESET{Y}; goto 1

state: 1
invar: TRUE
trans:
X <= 2 => B; RESET{X}; goto 2

state: 2
invar: TRUE
trans:
Y >= 2 => C; RESET{Y}; goto 1

des(0,10,6)
(0, "A",1)
(0, "A",2)
(1, "B",3)
(1, "B",4)
(1, "B",5)
(3, "C",1)
(3, "C",2)
(4, "C",2)
(5, "C",1)
(5, "C",2)

Figure 6.5: The Kronos timed automaton file automaton.tg (on the left), the time-abstract
bisimulation graph automaton.aut generated with Kronos, and the counter-example generated
by shrinktech (on the right). Nodes are labelled by i(Loc: j) where i is the node of the given
automaton F and j is the unique location of the timed automaton that corresponds to this node i.
Edges are labelled by the edge labels of the timed automaton.

des(0,7,8)
(0, "A",1)
(1, "B",2)
(2, "C",3)
(3, "B",4)
(4, "C",5)
(5, "B",6)
(6, "C",7)

Figure 6.6: Finite automaton automaton1.aut

One can run shrinktech providing both the timed automaton and the finite automaton:

> shrinktech automaton.tg automaton1.aut
Starting shrinkability analysis on files automaton.tg and automaton1.aut
Warning: Some edges have equality constraints and will not be shrunk (see log file)

Timed automaton is SHRINKABLE.

Run again with --simulator_sets option to compute solution.
See automaton.log for details.

This time the automaton is shrinkable with respect to the given finite automaton. By default,
shrinktech does not compute the simulator sets of the shrunk automaton, i.e. the set of states of
the shrunk timed automaton that can simulate each state of the finite automaton. But this can be
done using the –simulator_sets option. In this case, the log file will contain the description of the
simulator sets. The log file will also report an upper bound on δ below which the simulation holds.
Furthermore, a shrinking of the given timed automaton is generated in a local folder named shrunk.

Here is an excerpt from the log file.

6.6. USING SHRINKTECH 81

------------------ PARAMETERIZED SHRUNK SIMULATOR SETS ----------------------
-- Substituting delta = 0 gives the simulator sets of the original automaton

Simulator set of the finite automaton node(0)
0 +(p[0])delta <= X <= 1 -(p[2])delta and
0 +(p[1])delta <= Y and
X - Y <= 1 -(p[3])delta

Simulator set of the finite automaton node(1)
0 +(p[4])delta <= X <= 2 -(p[6])delta and
0 +(p[5])delta <= Y and
X - Y <= 2 -(p[7])delta

[...]

These describe the set of (parameterized) states that can simulate the nodes 0 and 1 of the finite
automaton. Here, p[i]’s are positive integers to be determined by shrinkability analysis. The log
file also contains an instantiation of these simulator sets for the parameter values computed by
shrinktech and for the largest possible δ:

------------------------- DISCRETE SOLUTION --------------------------
-- Scaling factor: 100
--
Discrete simulator set of the finite automaton node(0)
X <= 100 and
X - Y <= 99

Discrete simulator set of the finite automaton node(1)
X <= 199 and
X - Y <= 194

[...]

Note that we scale here the constants so that we only have to deal with integers, instead of
floating point numbers.

See also Section 6.6.1 for additional tools and scripts that can be helpful to extract a finite
automaton.

Using multiple files In Kronos timed automaton format, several components communicating
by synchronization can be given to describe one large system. In this case, one can simply give
shrinktech the list of all the components:

> shrinktech component1.tg component2.tg componentK.tg

In this case, shrinktech will invoke Kronos to compute the product, and then to compute the
bisimulation graph. By default, the product automaton will be written in ta.tg and shrinkability
analysis will be run on this file. One can modify this target file using the option -out target.tg.

6.6.1 Command-line Options and Additional Tools

–aut When run with this option, shrinktech will only compute the product of the given timed
automata (if more than one is given), and output the time-abstract bisimilarity graph. The output
file can be specified using -out target.aut; the default is ta.aut. This feature uses Kronos.

–simulator_sets This option tells shrinktech to compute all simulator sets of the shrunk timed
automaton, if the given timed automaton is shrinkable. The shrunk timed automata will also be

82

written in a local directory ‘shrunk’ in case of shrinkability. This option is disabled by default since
it is not always needed.

–shrink This option is used to syntactically shrink a given timed automaton. When called
shrinktech –shrink automaton.tg 100, the program will multiply all constants by 100 and
shrink the guards by 1. This is equivalent to shrinking by 1/100; but the time scale is changed so
that all constants are integers. By default, the file is output as automaton-shrunk.tg, but another
target file can be specified with -out automaton2.tg.

–gentrace Generates a trace, in form of a finite automaton, by a random simulation of the given
timed automaton. When called with shrinktech –gentrace automaton.tg 1000, this option will
output in standard output a random trace of length 1000. One can then either direct this to a file,
or specify an output file by -out automaton.aut.

graph_extractor This is a Python script that can extract a subgraph of a given graph, using
DFS or BFS, either deterministically or randomly. The options -dfs, -randdfs and -bfs can be
used for this purpose. Run the program without arguments for usage.

Note that CADP can also be useful for instance to check bisimulation, minimize or visualize finite
automata (http://www.inrialpes.fr/vasy/cadp/).

6.7 Conclusion
We presented shrinktech, a software tool compatible with the Kronos model-checker. The tool allows
to check the simulation-shrinkability with respect to a given finite automaton. The experimental
results show that the tool is capable of treating several case studies found from the literature.
The bottleneck is the size of the finite automaton F : the full bisimilarity graph is often costly to
compute, and too large graphs require long computation times for the shrinkability analysis. We
were nevertheless capable of treating the shrinkability of timed automata with thousands of edges,
with respect to graphs with more than sixty thousand transitions.

An important future work will be about computing smaller finite automata F . In fact, often,
the full bisimilarity graph is not of interest for the verification purposes, but only a “significant”
part of it is needed. The present tool either computes the full bisimilarity graph, or requires a
finite automaton to be given manually. In order to simplify the finite automaton, the user often
has to work on the full bisimilarity graph, which can be too large to process (and understand).
Further tool support is needed to automatically generate some parts of the bisimilarity graph, and
to simplify these graphs. This will help the user concentrate on important properties to be verified,
but also reduce running time. Moreover, if the timed automaton is not shrinkable with respect to a
given finite automaton, the tool could also inform the user about the possibilities of eliminating
from the finite automaton those behaviors absent from the shrunk timed automaton. In fact, the
counter-examples found by the tool needs to be interpreted by the user, who also decides whether
they are important or not.

Part III

Robust Controller Synthesis

This part contains contributions on robust controller synthesis algorithms. In the controller
synthesis approach, a given model is no longer seen as a final design; but the goal is to compute
a strategy to resolve the non-determinism while satisfying a given objective. The subsequent
chapters studies this problem under parameterized perturbation models. Hence, we are interested
in synthesizing strategies that are correct even when the moves they prescribe are perturbed by a
bounded amount. Chapter 7 considers the problem under the excess perturbation game semantics
for reachability objectives on timed automata and turn-based timed games. Chapter 8 considers the
conservative perturbation game semantics for Büchi objectives on timed automata. Both semantics
are applied to weighted timed automata and games in Chapter 9

83

84

Chapter 7

Reachability in Excess Semantics

7.1 Introduction
In this chapter, we study the synthesis of robust controllers in timed automata and games under the
excess-perturbation game semantics. The main result of this chapter is the following: We show that
deciding the existence of δ > 0, and of a strategy for the controller so as to ensure reachability of a
given location in a turn-based timed game (whatever the imprecision, up to δ), is EXPTIME-complete.
Moreover, if there is a strategy, we can compute a uniform one, which is parameterized by δ, using
shrunk difference bound matrices (shrunk DBMs) seen in Chapter 5. In this case, our algorithm
provides a bound δ0 > 0 such that the strategy is correct for all δ ∈ [0, δ0]. Our strategies also give
quantitative information on how perturbations accumulate or can compensate. Technically, the
results require extending shrunk DBMs by constraints, and establishes new algebraic properties of
this data structure (Chapter 3). The main result is then obtained by transforming the infinite-state
game into a finite abstraction, which we prove can be used to symbolically compute a winning
strategy, if any (Section 7.5).

The results presented in this chapter were published in [BMS12].
Formally, we are interested in the following problem, called parameterized robust reachability in

the excess perturbation game semantics.

Definition 7.1.1. The parameterized robust reachability in the excess perturbation game semantics
asks, given a turn-based timed game A and a target location `, whether there exists δ > 0 such that
Controller has a winning strategy in Gexs

δ (A) for the reachability objective `.

Notice that we are interested in the parameterized problem: δ is not fixed in advance. When δ is
fixed, the problem can be formulated and solved as a usual timed game (see [CHP11] for such an
encoding). The parameterized version is important since one does not necessarily have a precise
estimation for perturbations at the design phase. It is also interesting to directly synthesize δ and a
uniform strategy, as described above, rather than finding one by trial-and-error.

Our main result is the EXPTIME-completeness of this problem:

Theorem 7.1.2. Parameterized robust reachability in the excess perturbation game semantics is
EXPTIME-complete both for timed automata and turn-based timed games.

Checking parameterized robust reachability is different from usual reachability checking in the
exact semantics mainly for two reasons. First, in order to reach a given location, Controller has to
choose the delays along a run, in such a way that uncontrollable perturbations do not accumulate and
block the run. In particular, it shouldn’t play too close to the borders of the guards (see Fig. 3.3).
Second, due to these uncontrollable perturbations, some regions that are not reachable in the
absence of perturbation can become reachable (see Fig. 7.1). So, Controller must also be able to
win from these newly reachable regions. The regions that become reachable in our semantics are
those neighboring reachable regions.

85

86 CHAPTER 7. REACHABILITY IN EXCESS SEMANTICS

x=y=1

y:=0

r1 r3r0

r′0

r2

Figure 7.1: Perturbing one transition.

In all timed automata and games we consider, we assume that all clocks are bounded above by a
constant. We do not lose generality with this hypothesis since reachability objectives are preserved
by choosing a constant large enough, and requiring that all clocks stay below it at any transition.

The chapter is organized as follows. In Section 7.2, we introduce constraints on shrunk DBMs,
and study neighborhoods of shrunk DBMs. For the sake of readability, we first present and prove
the algorithm for timed automata, in Section 7.5, then explain how to extend the algorithm to
turn-based timed games in Section 7.6. The EXPTIME-hardness result is given in Section 7.7 and
holds already for timed automata.

7.2 Shrinking constraints

Consider a transition of a timed automaton, as depicted on Fig. 7.1. From region r0, the game can
reach regions r1, r2, r3, depending on the move of Perturbator. Therefore, in order to win, Controller
needs a winning strategy from all three regions. One can then inductively look for winning strategies
from these regions; this will generally require shrinking, as exemplified in Fig. 3.3. However, not
all shrinkings of these regions provide a winning strategy from r0. In fact, r1 (resp. r3) should
not shrink from the right (resp. left) side: their union should include the shaded area, thus points
that are arbitrarily close to r2. In order to define the shrinkings that are useful to us, we introduce
shrinking constraints.

Definition 7.2.1. Let M be a DBM. A shrinking constraint for M is a |C0| × |C0| matrix over
{0,∞}. A shrinking matrix P is said to respect a shrinking constraint S if P ≤ S, where the
comparison is component-wise. A pair 〈M,S〉 of a DBM and a shrinking constraint is called a
constrained DBM.

Shrinking constraints specify which facets of a given zone one is (not) allowed to shrink
(see Fig. 7.2).

We will focus our attention to well shrinking constraints defined below, show that shrinking
constraints have a normal form (Subsection 7.2), and then show how shrinking constraints can be
propagated in order to deduce new shrinking constraints as in the example of Fig. 7.1 (Subsection 7.2).

Normalization and Well-Shrinking Constraints.

A shrinking constraint S for a DBM M is said to be well if for any SM P ≤ S, (M,P) is non-empty.
A well constrained DBM is a constrained DBM given with a well shrinking constraint. We say that
a shrinking constraint S for a DBM M is normalized if it is the minimum among all equivalent
shrinking constraints: for any shrinking constraint S′ if for all SMs P , P ≤ S ⇔ P ≤ S′, then
S ≤ S′. Similarly to the normalization of DBMs or SMs, normalized shrinking constraints contain

7.2. SHRINKING CONSTRAINTS 87

0 x y

0 (0,≤), 0 (0, <),∞ (0, <), 0
x (3, <),∞ (0,≤), 0 (2, <), 0
y (3, <),∞ (0, <),∞ (0,≤), 0

(a) A constrained DBM 〈M,S〉 and its representation (b) A shrinking of 〈M,S〉

Figure 7.2: Consider a zone defined by 0 < x < 3, 0 < y < 3, and 0 < x− y < 2. Let the shrinking
constraint S be defined by S0,y = 0, Sx,y = 0, and Sz,z′ =∞ for other components. The resulting
〈M,S〉 is depicted on the left, as a matrix (where, for convenience, we merged both matrices into a
single one) and as a constrained zone (where a thick segment is drawn for any boundary that is not
“shrinkable”, i.e., with Sz,z′ = 0). On the right, the dark gray area represents a shrinking of M that
satisfies S.

the tightest constraints implied by the original shrinking constraint. They can be normalized by a
procedure that is slightly different from the one used for the normalization of DBMs. This is defined
formally in the following lemma.

Lemma 7.2.2. Let M be a normalized DBM. For any shrinking constraint S for M , there exists
a minimum shrinking constraint S′ for M such that S′ ≤ S, and for any normalized non-empty
shrunk zone (M,P), P ≤ S if, and only if, P ≤ S′.

Moreover, S′ can be obtained as follows. Start with S′ = S. For every pair x, y ∈ C0, if Sx,y = 0,
then set S′z,z′ to 0 for all edges (z, z′) of all paths in Πx,y(G(M)). Also assign S′x,y = 0 whenever
Mx,y =∞. If S = S′, then S is said to be normalized.

Proof. Consider S′ obtained from S by the above procedure. Obviously, S′ ≤ S, so that for any
SM P ≤ S′, we have also P ≤ S. Conversely, consider any normalized non-empty shrunk DBM
(M,P) with P 6≤ S′, for instance Px,y ≥ 1 for some x, y where S′x,y = 0. If Sx,y = 0, then clearly,
Px,y 6≤ Sx,y. Otherwise, Sx,y = ∞ and S′x,y = 0 indicate that there exists z1, z2 ∈ C0 such that
Sz1,z2 = 0 and there is a path in Πz1,z2(G(M)) that goes through edge (x, y). Let us denote this
path with π. Then since P is normalized, Pz1,z2 ≥ w(π), and since π contains the edge (x, y), we
have Pz1,z2 ≥ Px,y ≥ 1, therefore P 6≤ S.

For any pair x, y ∈ C0 with S′x,y =∞ let P be the matrix with 0’s on all components except for
Px,y = 1. Let P ′ be the SM such that (M,P ′) = norm((M,P)). The normalization procedure can
only increase the components so P ′x,y ≥ 1. We have P ′ ≤ S′, since for any z1, z2 such that S′z1,z2 = 0,
(x, y) is not on a path of Πz1,z2(G(M)). So, for any shrinking constraint S′′ such that S′′x,y < Sx,y
for some x, y, there exists a SM P with P ≤ S′ and P 6≤ S′′. Therefore, S′ is minimal.

Clearly, the normalization of a shrinking constraint depends on the DBM M , since Πx,y(G(M))
depends on G(M); this is also the case for SMs (Lemma 3.4.3). In the sequel, unless otherwise
stated, all shrinking constraints are assumed to be normalized.

The following property of normalized shrinking constraints is easy to prove, using the previous
lemma. Given a shrinking constraint S and a SM P , it will allow us to consider that S is normalized,
instead of requiring that P is.

Lemma 7.2.3. Let M be a normalized DBM and S a normalized shrinking constraint. Let P be
any SM such that (M,P) is non-empty, and let (M ′, P ′) = norm((M,P)). Then, P ≤ S if, and
only if, P ′ ≤ S.

88 CHAPTER 7. REACHABILITY IN EXCESS SEMANTICS

Proof. Since the normalization procedure for computing P ′ increases the components, the reverse
implication holds. Conversely, assume that P ≤ S, and pick x, y ∈ C0 such that Sx,y = 0 (for the
other entries, there is nothing to be checked on P ′). Then Px,y = 0. From Lemma 7.2.2, Sz,z′ = 0 for
all edges of all paths in Πx,y(G(M)), so that also Pz,z′ = 0 for these edges. Applying the definition
of P ′x,y from Lemma 3.4.3, we get P ′x,y = 0.

Propagating Shrinking Constraints.

Lemma 7.2.4 shows that shrinking constraints can be propagated along operations on DBMs. Each
item is illustrated in Fig. 7.3; some comments are given after the proof.

Lemma 7.2.4. Let M,N,O be normalized non-empty DBMs.

1. Assume that M = Pretime (N). For any normalized well shrinking constraint S for M ,
there exists a normalized well shrinking constraint S′ for N such that for any shrunk DBM
(N ′, Q) with N′ = N, the following holds: Q ≤ S′ if, and only if, the SM P s.t. (M ′, P) =
Pretime ((N ′, Q)) satisfies P ≤ S.

2. Assume that M = N ∩O 6= ∅.

(a) For any normalized well shrinking constraint S for M , there exists a normalized well
shrinking constraint S′ for N such that for any shrunk DBM (N ′, Q) with N′ = N and
N ′∩O 6= ∅, the following holds: Q ≤ S′ if, and only if the SM P s.t. (M ′, P) = (N ′, Q)∩O
satisfies P ≤ S.

(b) For any normalized well shrinking constraint S for N , there exists a normalized well
shrinking constraint S′ for M such that for any shrunk DBM (M ′, Q) with M = M′ and
M ⊆M ′, the following holds: Q ≤ S′ if, and only if there exists an SM P ≤ S such that
(N,P) ∩O ⊆ (M ′, Q). Moreover, if (N,P) ∩O 6= ∅ for all SMs P ≤ S, then S′ is a well
shrinking constraint.

3. Assume that M = UnresetR(N). For any normalized well shrinking constraint S for M , there
exists a normalized well shrinking constraint S′ for N such that for any SM Q, the following
holds: Q ≤ S′ if, and only if the SM P s.t. (M ′, P) = UnresetR((N,Q)) satisfies P ≤ S.

All shrinking constraints S′ can be computed in polynomial time.

Proof. I Pretime. Observe that M is obtained from N by first setting the first row of N
to (0,≤) (write N ′ for this intermediary DBM) and then applying normalization. Since N is
normalized, and we only consider valuations with non-negative values, we have N0,y ≤ 0 for all
y ∈ C. Consider (x, y) ∈ C × C0, and a path in Πx,y(N). If that path does not visit the state 0,
then it has the same weight in N ′ as in N . Otherwise, its weight in N ′ is larger than in N , thus
it is larger than N ′x,y. In both cases, N ′x,y will not change during the normalization phase. So the
normalization of N can only change the first row.

Let S′x,y = Sx,y for (x, y) ∈ C × C0, S′0,y =∞ for y ∈ C, and S′0,0 = 0. We show that S′ satisfies
the desired property. Consider a shrunk DBM (N ′, Q) with Q ≤ S′ and N = N′, and let P be the
shrinking matrix such that (M ′, P) = Pretime ((N ′, Q)). Let us write M ′′ = Pretime (N ′). The shrunk
DBM (M ′, P) is obtained by normalizing the shrunk DBM (M ′′, Q′) where Q′ is derived from Q by
setting the first row to 0 (Lemma 3.4.5).

7.2. SHRINKING CONSTRAINTS 89

We show that P ≤ S. Observe that M = M′ = M′′ so the graphs these DBMs define are the
same. First suppose that Sx,y = 0 for some x, y ∈ C × C0. For such x, y, we have Nx,y = Mx,y, and
since N ′ ⊆M ′′, we have Πx,y(G(M)) ⊆ Πx,y(G(N)). Now, we have Px,y > 0 if, and only if there is
a path in the former set with positive weight in Q′ (Lemma 3.4.3). But this would imply that the
same path has positive weight in Q since Q′ ≤ Q, and moreover this path belongs to Πx,y(G(N)).
This would in turn imply that Qx,y > 0, but we have Sx,y = S′x,y = 0, which contradicts Q ≤ S′. It
follows that Px,y ≤ Sx,y.

Now suppose that S0,y = 0 for some y ∈ C. Since S is assumed to be normalized, along all paths
of Π0,y(G(M)), all edges (z, z′) satisfy Sz,z′ = 0 (Lemma 7.2.2). Since Q′0,z = 0 for all z, and that
Q′z,z′ = Qz,z′ = 0 for all z, z′ 6= 0, we get P0,y = 0 (Lemma 3.4.3). Hence P ≤ S.

We now show that for any SMs P and Q s.t. Q 6≤ S′ and (M ′, P) = Pretime ((N ′, Q)), it holds
P 6≤ S. Consider any SM Q 6≤ S′ such that (w.l.o.g.) (N ′, Q) is normalized. Then S′x,y = 0 and
Qx,y ≥ 1 for some x, y. By construction of S′, we have x 6= 0, and Sx,y = 0. Moreover, since x 6= 0,
we have Mx,y = Nx,y, and Nx,y <∞ since Qx,y ≥ 1 and (N ′, Q) is normalized. Let P denote the
normalized SM such that (M ′, P) = Pretime ((N ′′, Q)). P is obtained by letting the first row of Q
to zero and applying normalization. We get Px,y ≥ Qx,y ≥ 1, therefore P 6≤ S.

To show that S′ is a well shrinking constraint, assume that for some Q ≤ S′, (N ′, Q) is empty.
By definition of S′, there exists P ≤ S such that (M ′, P) = Pretime ((N ′, Q)), so (M ′, P) is also
empty, which contradicts the fact that S is a well shrinking constraint for M .
I Intersection (a). For any SMs P,Q, we have (M,P) = (N,Q) ∩O if, and only if (M ′, P) =
(N,Q) ∩M for some M′ = M. So it suffices to consider the equation M = N ∩M with M ⊆ N .
Moreover, notice that ∅ 6= M = M ∩N ′ for any N ⊆ N ′.

We let S′x,y = Sx,y for any x, y ∈ C0 such that Mx,y = Nx,y and S′x,y =∞ otherwise, and make
S′ normalized. Observe that the weight of any path is smaller or equal in G(M) than in G(N),
since M ⊆ N and both DBMs are normalized. Consider any shrunk DBM (N ′, Q) with N = N′,
N ⊆ N ′ and Q ≤ S′ and let P such that (M ′, P) = (N ′, Q) ∩M . Let us write M ′′ = N ′ ∩M .
Again, G(M) = G(M ′) = G(M ′′). Here, P is obtained from Q by first defining Q′ as Q′x,y = 0 if
Mx,y < Nx,y and Q′x,y = Qx,y otherwise. Then P is the normalization of Q′. We show, by induction
on n ≥ 2, that for any pair x, y ∈ C0 with Sx,y = 0, any path of Πx,y(G(M)) visiting at most n
states have weight 0 in Q′. This entails that Px,y = 0 whenever Sx,y = 0.

• When n = 2, if Mx,y = Nx,y, then S′x,y = 0 by definition of S′, so Qx,y = 0, and Q′x,y = 0. If
Mx,y < Nx,y, we have Q′x,y = 0 by the definition of Q′.

• Consider n ≥ 3. Let π = x1x2 . . . xn be a path in Πx,y(G(M)). Since Sx,y = Sx1,xn = 0, we
also have Sx1,x2 = 0 and Sx2,xn = 0 By induction, Q′x1,x2

= 0 and all paths of Πx2,xn(G(M))
of length at most n− 1 have weight 0 in Q′. Hence, π has weight 0 in Q′.

Assume now Q 6≤ S′, i.e., Qx,y ≥ 1 and S′x,y = 0 for some x, y ∈ C0. Then we must have
Mx,y = Nx,y and Sx,y = 0. Let (M ′, P) = (N ′, Q) ∩M . We know that P is the normalization of Q′,
and that Q′x,y = Qx,y ≥ 1. So Px,y ≥ Q′x,y ≥ 1. Hence Px,y 6≤ Sx,y.

We have that S′ is a well shrinking constraint for N , since otherwise this would imply that S is
not a well shrinking constraint for M , as in the previous case.
I Intersection (b). Using the same argument as in the previous case, we can assume that
O = M ⊆ N . Since M and N are normalized and non-empty, we have Mx,y ≤ Nx,y for all x, y ∈ C0.
We define S′1 by S′1x,y = Sx,y if Mx,y = Nx,y and S′1x,y = 0 otherwise. Let S′ be defined as
S′x,y = maxπ∈Πx,y(G(M)) S

′
1(π).

90 CHAPTER 7. REACHABILITY IN EXCESS SEMANTICS

Consider any shrunk DBM (M ′, Q) with M′ = M, (M ′, Q) ⊆M , and Q ≤ S′. Let us show that
there is (N,P) with P ≤ S with the desired property. Let us first define Q′ as follows:

Q′x,y =

 0 if Mx,y < Nx,y or Sx,y = 0

max
z,z′:(x,y)∈Πz,z′ (G(M))

Qz,z′ if Mx,y = Nx,y and Sx,y =∞.

Let us write (N ′, P) = norm((N,Q′)). If Sx,y = 0 for some x, y ∈ C0, then along all edges
(z, z′) ∈ Πx,y(G(N)), we have Sz,z′ = 0, therefore Q′z,z′ = 0. Thus, Px,y = 0 (from Lemma 3.4.3)
and we get P ≤ S.

Let (M ′′, Q′′) denote the shrunk DBM defined by (M ′′, Q′′) = (N ′, P) ∩ M with M′′ = M
(Lemma 3.4.5). Let us show that Q ≤ Q′′, which implies, together with M ′′ ⊆ M ⊆ M ′ that
(M ′′, Q′′) ⊆ (M ′, Q) as desired. Q′′ is the normalization of the SM P ′ defined as follows: P ′x,y = Px,y
if Mx,y = Nx,y and P ′x,y = 0 otherwise. Let x, y ∈ C0.

• Assume that Mx,y = Nx,y. If S′x,y = 0, then Qx,y = 0 so clearly Q′′x,y ≥ Qx,y. Otherwise, there
exists a path π ∈ Πx,y(G(M)) such that for some edge (z, z′) ∈ π, Mz,z′ = Nz,z′ and Sz,z′ =∞.
By definition of Q′, we have Q′z,z′ ≥ Qx,y. Moreover P ′z,z′ = Pz,z′ ≥ Qz,z′ . The normalization
of P ′ then yields Q′′x,y ≥ P ′z,z′ = Pz,z′ ≥ Qz,z′ ≥ Qx,y.

• Otherwise, Mx,y < Nx,y. If S′x,y = 0, the result is clear. If S′x,y =∞, then there must be a path
in Πx,y(G(M)) with an edge (z, z′) with Mz,z′ = Nz,z′ and Sz,z′ =∞. Then, Q′z,z′ ≥ Qx,y. So
the normalization of P ′ yields Q′′x,y ≥ P ′z,z′ = Pz,z′ ≥ Q′z,z′ ≥ Qx,y.

We now show the converse direction. Consider any x, y ∈ C0 such that S′x,y = 0. Let us show that
for any (N,P) with P ≤ S, if (M ′, Q′′) denotes the shrunk DBM such that (M ′, Q′′) = M ∩ (N,P),
then Q′′x,y = 0. This proves that if Qx,y ≥ 1 for some SM Q, then there is no matching P ≤ S that
satisfies the property.

We show, by induction on n ≥ 2, that if S′x,y = 0, then all paths of Πx,y(G(M)) of length at
most n have weight zero in P ′.

• Let n = 2. If Mx,y = Nx,y, then P ′x,y = Px,y. But we have Sx,y = 0, so Px,y = 0. If
Mx,y < Nx,y, then P ′x,y = 0 by definition.

• If n ≥ 3, consider any path π = x1x2 . . . xn in Πx,y(G(M)). Suppose that Mxj ,xj+1 = Nxj ,xj+1

for all 1 ≤ j ≤ n − 1. Then π is also a shortest path in G(N), hence Mx,y = Nx,y, and
Sxj ,xj+1

= 0 for all 1 ≤ j ≤ n− 1, as S is normalized. It follows that Pxj ,xj+1
= 0, hence also

P ′xj ,xj+1
= 0.

Suppose now that for some 1 ≤ j ≤ n− 1, Mxj ,xj+1
< Nxj ,xj+1

. We have P ′xj ,xj+1
= 0. On the

other hand, S′x1,xj = S′xj+1,xn = 0 since otherwise we would get S′x,y =∞. By induction, all
paths of length at most n− 1 in Πx1,xj (G(M)) and Πxj+1,xn(G(M)) have weight 0 in P ′. So π
has weight 0 in P ′.

We now show that S′ is a well shrinking constraint forM , given the hypothesis that (N,P)∩M 6= ∅
for all SMs P ≤ S. But this immediately implies that S′ is a well shrinking constraint, since for any
Q ≤ S′ there exists P ≤ S with ∅ ((N,P) ∩M ⊆ (M,Q).
I Unreset. Let NR denote the DBM that defines the (largest) zone satisfying ∧x∈Rx = 0. Since
we have M = UnresetR(N ∩NR), by the previous case, we may assume that N ⊆ NR. The DBM M
is obtained from N by replacing each component (x, y) with x ∈ R by ∞. For any y ∈ C0, we

7.2. SHRINKING CONSTRAINTS 91

define S′′x,y = Sx,y if x ∈ C \ R, and S′′0,y = 0, and S′′x,y = ∞ if x ∈ R. Then S′ is obtained by
normalizing S′′.

Let Q be any normalized SM with Q ≤ S′, and P be the (normalized) SM such that (M ′, P) =
UnresetR((N,Q)). Let Q′ denote the SM obtained from Q by setting each component (x, y), with
x ∈ R, to zero. Then, P is the normalization of Q′. Let us show that P ≤ S. Consider any x, y ∈ C0
with Sx,y = 0.

• If x ∈ C \R then S′x,y = Sx,y = 0 and Qx,y = 0. So, along all paths Πx,y(G(N)), S′ is zero, and
so are the weights in Q, and also the weights in Q′. Now, clearly, Πx,y(G(M)) ⊆ Πx,y(G(N)).
So after normalization of Q′, we have Px,y = 0.

• If x = 0, then S′x,y = 0 and Qx,y = 0. The argument is then similar.

• If x ∈ R, then Mx,y =∞. Thus Πx,y(G(M)) = ∅, so the normalization of Q′ yields Px,y = 0.

Consider a normalized SM Q with Q 6≤ S′. We must have Qx,y ≥ 1 and S′′x,y = 0 for some
x, y ∈ C0, by Lemma 7.2.2. The latter condition entails that x /∈ R. Let Q′ denote the DBM
obtained from Q by replacing all components (x, y) where x ∈ R with 0. Then the normalization
of Q′ yields the SM P such that (M ′, P) = UnresetR((N,Q)). Since x ∈ C0 \R, then Sx,y = S′x,y = 0
and Q′x,y = Qx,y ≥ 1. The normalization of Q′ can only increase its components, so Px,y ≥ 1, hence
P 6≤ S.

We show that S′ is a well shrinking constraint for N as in the previous cases.

= Pretime

(a) (M ′, P) = Pretime ((N,Q))

= ∩

(b) (M ′, P) = (N,Q) ∩N ′

∩ ⊆

(c) (N,P) ∩N ′ ⊆ (M,Q)

= UnresetR

(d) (M ′, P) = UnresetR((N,Q))

Figure 7.3: Each of the figures illustrates one item in Lemma 7.2.4. In each case, DBMs M , N
and N ′ are fixed and satisfy the “unshrunk" equation (that is, when P = Q = 0). The thick plain
segments represent the fixed shrinking constraint S. The thick dashed segments represent the
shrinking constraint S′ that is constructed. In each case, if a SM Q is chosen, it holds that Q ≤ S′
iff there is an SM P ≤ S that satisfies the equation. For instance, if Qx,0 ≥ 1 in (a), then the DBM
describing the time predecessors of (N,Q) shrinks the diagonal component (x, y), which violates S.

We now extend the previous lemma to the operator shrink+. In this case, the existence of a
shrinking constraint depends on the given constrained DBM. The lemma is illustrated in Fig. 7.4.

Lemma 7.2.5. Let M be a normalized non-empty DBM and S be a normalized shrinking constraint.

• If Mx,0 <∞ and Sx,0 = 0 for some x ∈ C, then for all SMs Q, the shrunk DBM (M ′, P) =
shrink+((M,Q)) does not satisfy P ≤ S.

92 CHAPTER 7. REACHABILITY IN EXCESS SEMANTICS

• Otherwise, for all SMs Q, the following holds: Q ≤ S if, and only if, the shrunk DBM
(M ′, P) = shrink+((M,Q)) satisfies P ≤ S.

Proof. If Sx,0 = 0 and Mx,0 <∞ for some x ∈ C, since shrink+ increases each (but one) component
of the first column of the SM by one, and since the normalization can only increase components for
which Mx,0 <∞, there is no P ≤ S such that (M ′, P) = shrink+((M,Q)).

Assume that Sx,0 =∞ for all x ∈ C with Mx,0 <∞. Consider any Q 6≤ S. The operator shrink+

increments all components (x, 0) of the SM by one, and applies normalization. So if Qx,y > Sx,y = 0
for some x, y ∈ C, we know that if P denotes the SM such that (M ′, P) = shrink+((M,Q)), then
Px,y ≥ Qx,y > 0, since shrink+ only increases the components of the SM. Thus, for SMs Q 6≤ S,
there is no corresponding P ≤ S with the desired property. Consider now any Q ≤ S, and P such
that (M ′, P) = shrink+((M,Q)). Assume that Px,y ≥ 1 for some Sx,y = 0. We have Mx,y <∞ since
(M ′, P) is normalized. Since Qx,y = 0, there exists a path in Πx,y(G(M)) that contains an edge
(z, 0) such that Qz,0 = 0, and Pz,0 ≥ 1. But then Sz,0 = 0, which contradicts our assumption.

= shrink+

(a) (M ′, P) = shrink+((M,Q)) but P 6≤ S

= shrink+

(b) (M ′, P) = shrink+((M,Q)) with P ≤ S.

Figure 7.4: Examples for both cases of Lemma 7.2.5

Let us comment on Fig. 7.3, the figure about Pretime (), and how it can be used for our purpose.
Assume there is an edge guarded by N (the whole gray area in the right) without resets. In the
non-robust setting, this guard can be reached from any point of M (the whole gray area in the left).
If we have a shrinking constraint S on M , and we want to synthesize a winning strategy from a
shrinking of M satisfying S, then Lemma 7.2.4 gives the shrinking constraint S′ for N , with the
following property: given any shrinking (N,Q), we can find P ≤ S with (M,P) = Pretime ((N,Q))
(hence, we can delay into (N,Q)), if, and only if Q satisfies Q ≤ S′. The problem is now “reduced” to
finding a winning strategy from 〈N,S′〉. However, forward-propagating these shrinking constraints
is not always that easy. We also need to deal with resets, with the fact that Controller has to choose
a delay greater than δ > 0, and also with the case where there are several edges leaving a location.
This is the aim of the following developments.

7.3 Neighborhoods

We now consider constrained regions, which are constrained DBMs in which the DBM represents a
region. Fig. 7.1 shows that if Controller plays to a region, then Perturbator can reach some of the
surrounding regions, shown by the arrows. To characterize these, we define the set of neighboring
regions of 〈r, S〉 as,

Nr,S =
{
s
∣∣∣ sl∗ r or r l+ s, and ∀Q ≤ S. s ∩ enlarge((r,Q)) 6= ∅

}

7.3. NEIGHBORHOODS 93

where enlarge((r,Q)) is the shrunk DBM (M,P) such that v+[−δ, δ] ⊆M −δP for every v ∈ r−δQ.
This is the set of regions that have “distance” at most δ to any shrinking of the constrained
region (r, S). We write neighbor〈r, S〉 =

⋃
s∈Nr,S s.

Lemma 7.3.1 (Neighborhood). Let 〈r, S〉 be a well constrained region. Then neighbor〈r, S〉 is a
zone. If N is the corresponding normalized DBM, there exists a well shrinking constraint S′ such that
for every SM Q, Q ≤ S′ iff the SM P defined by (r′, P) = r ∩ shrink[−δ,δ]((N,Q)), satisfies P ≤ S.
The pair 〈N,S′〉 is the constrained neighborhood of 〈r, S〉, and it can be computed in polynomial
time. Moreover, the constraint S′ is such that S′x,y = Sx,y for every x, y ∈ C, and S′x,0 = S′0,x =∞
for every x ∈ C.

Constrained neighborhoods are illustrated in Fig. 7.5.

neighbor

 = neighbor

 =

Figure 7.5: Constrained neighborhood of two constrained regions. Notice that inside any shrinking
of the constrained region, there is always a valuation such that a perturbation of [−δ, δ] moves the
valuation to any region of the neighborhood.

To prove Lemma 7.3.1 which states the properties of the neighborhoods of constrained regions,
we first need to introduce some notations and simple facts about constrained regions.

Lemma 7.3.2. Let 〈r, S〉 be a constrained region and consider the partition X1, . . . , Xn of clocks
according to their fractional values. Then, for all x, y ∈ Xi for any 1 ≤ i ≤ n, we have Sx,y = 0,
and for all x ∈ X1, we have Sx,0 = S0,x = 0. Moreover,

• There exists 2 ≤ i0 ≤ n + 1 such that for any x ∈ Xi with i0 ≤ i ≤ n, Sx,0 = 0, for any
y ∈ Xi′ with i ≤ i′ ≤ n, Sx,y = 0, and for any x ∈ X1 ∪ . . . ∪Xi0−1, Sx,0 =∞.

• There exists 1 ≤ j0 ≤ n such that for any x ∈ Xj with 1 ≤ j ≤ j0, S0,x = 0, for any y ∈ Xj′

with 1 ≤ j′ < j, Sy,x = 0, and for any x ∈ Xj with j0 + 1 ≤ j ≤ n, S0,x =∞.

Proof. This follows from the normalization of S. In fact, suppose Sx,0 = 0 for some x ∈ Xi with
i ≥ 2, and consider y ∈ Xj for any i < j ≤ n. Then (x, y, 0) is a shortest path in G(r). Therefore,
we must have Sx,y = Sy,0 = 0. One can then choose i0 as minimal to satisfy this statement, and j0
maximal.

Let us make some remarks about the graphs of regions and their shrinking constraints. Consider a
region r. For any x ∈ Xi, y ∈ Xj and z ∈ Xk with i < j < k, (x, y, z) and (z, x, y) are shortest paths
in G(r). In fact, rx,z = rx,y + ry,z since rx,y = rx,0 − ry,0, ry,z = ry,0 − rz,0, and rx,z = rx,0 − rz,0.
Similarly, rz,x = rz,0 − rx,0 + 1 and rz,y = rz,0 − ry,0 + 1 yield rz,y = rz,x + rx,y. A shrinking
constraint S with Sx,y = 0 means that a shrinking of r satisfying S, contains valuations ν with
frac(ν(y)) − frac(ν(x)) ≤ ε for any ε > 0. If Sy,x = 0, this means that some valuations ν satisfy
frac(ν(y))− frac(ν(x)) ≥ 1− ε.

94 CHAPTER 7. REACHABILITY IN EXCESS SEMANTICS

Proof of Lemma 7.3.1. Let us prove that the neighborhood is a zone, and show how to compute it.
We characterize the successor regions of r that belong to the neighborhood of 〈r, S〉. The predecessor
regions can be charaterized similarly. Consider the partition of clocks in r ordered according to their
fractional parts:

0 = frac(X1) < frac(X2) < . . . < frac(Xm) < 1,

where Xi’s are subsets of clocks having the same fractional part, and X1 is possibly empty.

• First, assume that Sx,0 = ∞ for x ∈ Xm. Consider the case X1 = ∅. Consider any SM
Q ≤ S such that Qx,0 ≥ 2 for all clocks x ∈ X2 ∪ . . . Xm. Then for all ν ∈ (r − δQ), we have
frac(ν(x)) ≤ 1 − 2δ for all clocks x. We have, for any t ∈ [0, δ], frac(ν(x) + t) < 1. So no
region s with r l s is included in the neighborhood. If Sx,0 = ∞ for x ∈ Xm but X1 6= ∅,
then necessarily Sx,0 = S0,x = 0 for x ∈ X1 since S is a well shrinking constraint. Then, the
neighborhood contains the region s with r l s but no successor of s, which is shown as above.

• Assume that Sx,0 = 0 for x ∈ Xm. Let i ∈ {1, . . . ,m} be minimum such that Xi is non-empty
and Sx,0 = 0 for all x ∈ Xj and i ≤ j ≤ m. 1 Then, for any 1 ≤ j ≤ i − 1 and x ∈ Xj

Sx,0 =∞ by Lemma 7.3.2. Let s be the unique region that satisfies rl+ s, sx,0 = rx,0 + 1 and
≺sx,0=< for all x ∈ Xi, and sx,0 = rx,0 for all x ∈ Xi−1. We show that the neighborhood of
〈r, S〉 contains all regions t such that rl∗ tl∗ s, but no region t such that sl+ t. Let (r,Q, δ0)
be a well-shrinking and consider any δ ∈ [0, δ0). For any x ∈ Xj for max(2, i) ≤ j ≤ m,
we have rx,0 − δQx,0 = rx,0, and −r0,x + δQ0,x < rx,0 (in fact ≺rx,0=< for these clocks).
Let ε < min(δ/2, rx,0 − (−r0,x + δQ0,x)) for all x ∈ Xj and max(2, i) ≤ j ≤ m, so that
−r0,x + δQ0,x < rx,0 − ε < rx,0. By Lemma 3.3.3, there exists a valuation ν ∈ (r − δQ) such
that rx,0 − ε < ν(x) < rx,0 for x ∈ Xmax(2,i). Define dj = 1 − frac(ν(x)) for x ∈ Xj for all
i ≤ j ≤ m. We know by the fractional ordering that 0 < dm < dm−1 < . . . < di < δ/2. Define
also d′j =

dj+dj−1

2 for all i+ 1 ≤ j ≤ m, and dm+1 = dm
2 . If i = 1, then we have

reg(ν) l reg(ν + dm+1) l reg(ν + dm) l reg(ν + d′m)

l reg(ν + dm−1) l . . . l reg(ν + di),

and for ε′ > 0 small enough, reg(ν+di)l reg(ν+di+ε
′) = s. If i > 1, we remove reg(ν+dm+1)

since this is equal to reg(ν). Let us show now that the time-successor of s is not included in the
neighborhood. In fact, if i = 1, then, the immediate time successor of s is the unique region
r l+ t such that −t0,x = tx,0 = rx,0 + 1 and ≺tx,0=≤ for x ∈ X1. But for all ν ∈ (r − δQ), we
have ν(x) = rx,0, so ν(x) + δ < tx,0. If i = 2 and X1 = ∅, then the immediate time successor t
of s satisfies −t0,x = tx,0 = rx,0 + 1 for x ∈ Xm. But since for any ν ∈ r, ν(x) + δ < tx,0,
t is not in the neighborhood. If i ≥ 2 and Xi−1 6= ∅, then the proof is similar since the
immediate time successor of s is the region where clocks in Xi−1 become integer. The case of
the time-predecessors of r is treated similarly.

From the proof above we can directly define the DBM N that represents the neighborhood of
r, as follows. N has the same diagonal constraints as r, so Nx,y = rx,y for all x, y ∈ C. For all
x ∈ X1, we let Nx,0 = rx,0 + 1 and ≺Nx,0=<, and if r0,x < 0, we let N0,x = r0,x + 1 and ≺N0,x=<,
otherwise N0,x = r0,x = 0 and ≺N0,x=≤. If Sx,0 =∞ for all x ∈ X2 ∪ . . . ∪Xm, then rx,0 = Nx,0 for
all x. Otherwise, let i ∈ {2, . . . ,m} minimum such that Sx,0 = 0 for all x ∈ Xj for all i ≤ j ≤ m.

1Here, the non-emptiness hypothesis in only significant for i = 1.

7.4. CONTROLLABLE PREDECESSORS 95

We let Nx,0 = rx,0 + 1 and ≺Nx,0=< for all x ∈ Xi ∪Xi+1 ∪ . . .∪Xm, and Nx,0 = rx,0, ≺Nx,0=≺rx,0 for
all x ∈ X2 ∪ . . . ∪Xi−1. Symmetrically, if S0,x = ∞ for all x ∈ X2 ∪ . . . ∪Xm, we let N0,x = r0,x
and ≺r0,x=≺N0,x. Otherwise, let i′ ∈ {2 . . . ,m} be maximum such that S0,x = 0 for all x ∈ Xj for
all 2 ≤ j ≤ i′. For all x ∈ Xj and 1 ≤ j ≤ i′, if r0,x < 0, we let N0,x = r0,x + 1 and ≺N0,x=<, and
otherwise N0,x = 0 and ≺N0,x=≤. We let N0,x = r0,x, ≺N0,x=≺r0,x for all x ∈ Xi′+1 ∪ . . . ∪Xm.

Let S′ be the shrinking constraint given by Lemma 7.2.4, for which for all SMs Q, Q ≤ S′

if, and only if there exists P ≤ S with (r′, P) = r ∩ (N,Q) with r′ = r. From the proof of this
lemma, S′ is the normalization of the following shrinking constraint: we let S′x,y = Sx,y for all
x, y ∈ C, since rx,y = Nx,y. For all x ∈ C, S′x,0 = Sx,0 if rx,0 = Nx,0 and S′x,0 = ∞ otherwise. But
by construction of N , rx,0 = Nx,0 only if S′x,0 = ∞ so we get S′x,0 = ∞ for all clocks. Similarly,
we get S′0,x =∞ for all x ∈ C. We are going to show that S′ is already normalized. Consider any
x ∈ C. To get a contradiction, suppose that there exists z, z′ ∈ C with S′z,z′ = Sz,z′ = 0 and a
path x1 . . . xn in Πz,z′(G(N)) that contains the edge (x, 0) – which would imply that S′x,0 becomes
0. Since rz,z′ = Nz,z′ , we have Πz,z′(G(N)) ⊆ Πz,z′(G(r)). Then, Sx,0 = 0 since S is normalized.
But this means Nx,0 = rx,0 + 1 by definition of N , and this path cannot be a shortest path in
G(N) (in fact, Nz,z′ = rz,z′ =

∑n−1
k=1 rxi,xi+1

). Consider now x, y ∈ C such that Sx,y = ∞ and let
us show that S′x,y = ∞ after normalization. Suppose there exists a path π ∈ Πz,z′(G(N)) where
z, z′ 6= 0, Sz,z′ = S′z,z′ = 0 and the edge (x, y) belongs to π. If 0 does not appear in π, then
this path also belongs to Πz,z′(G(r)), since rz,z′ = Nz,z′ and all edges have the same weight in
both graphs, so we would have Sx,y = 0. So, assume that some edges (w, 0) and (0, w′) belong to
π. If Sw,0 = S0,w = ∞, then rw,0 = Nw,0 and r0,w = N0,w by definition of N , so π is a shortest
path in G(r), which contradicts Sx,y = ∞. But, if Sw,0 = 0 or S0,w = 0 then Nw,0 = rw,0 + 1 or
N0,w = r0,w + 1, and in this case π is not a shortest path in G(N) since Nz,z′ = rz,z′ . Hence, there is
no such path π, and we get S′x,y =∞ after normalization.

Now, let Q′ be such that (N ′, Q′) = shrink[−δ,δ]((N,Q)). If Q′′ denotes the SM obtained from Q′

by incrementing by one each component of the first row and the first column (but the (0, 0)), then
(N ′, Q′) = norm((N,Q′′)). Moreover, because S′x,0 = S′0,x =∞ for all x ∈ C, we have Q′, Q′′ ≤ S′′.
Then, by definition of S′, there exists P ≤ S such that (r′, P) = r ∩ (N,Q′). Conversely, if Q 6≤ S′,
then Q′ 6≤ S′. So, if there exists P such that (r′, P) = r ∩ (N,Q′), then P 6≤ S, by definition of S′.

The fact that S′ is a well shrinking constraint for N follows from the fact that S is a well shrinking
constraint for r. In fact, for any Q ≤ S′, there exists P ≤ S such that (r′, P) = r∩shrink[−δ,δ]((N,Q))
and (r′, P) is non-empty by hypothesis, so (N,Q) cannot be empty.

7.4 Controllable Predecessors

The following lemma characterizes, given a constrained region 〈r, S〉, the set of constrained regions
〈s, Ss〉 such that any shrunk region satisying 〈s, Ss〉 can be reached by delaying from some shrunk
region satisfying 〈r, S〉. These are the sets whose reachability can be ensured by Controller by a
delay.

Lemma 7.4.1. Let 〈r, S〉 be a well constrained region, and s be a region such that rl∗ s. Then the
following properties are equivalent:

1. there exists a well shrinking constraint S′ (which can be computed in polynomial time) such
that for every SM Q, Q ≤ S′ iff the SM P such that (r′, P) = r ∩ shrink+(Pretime ((s,Q))) for
some r′ = r satisfies P ≤ S;

96 CHAPTER 7. REACHABILITY IN EXCESS SEMANTICS

2. neighbor〈r, S〉 ⊆ Pretime (s);

3. define N = Pretime (s), and SN such that for all SM Q, Q ≤ SN iff the SM P defined by
(r′, P) = r ∩ (N,Q) with r′ = r satisfies P ≤ S. Then (SN)x,0 =∞ for all x ∈ C.

Proof. I 3⇒ 1. Let S′ be such that for all SMs Q, Q ≤ S′ if, and only if there is Q′ ≤ SN
with (N ′, Q′) = Pretime ((s,Q)) and N′ = N. We will show that S′ satisfies the required condition.
We first assume that Q ≤ S′. By Lemma 7.2.5, there exists Q′′ ≤ SN such that (N ′′, Q′′) =
shrink+((N ′, Q′)) = shrink+(Pretime ((s,Q))) for N′′ = N. And by definition of SN , there exists
P ≤ S such that (r′, P) = r ∩ (N ′′, Q′′) for some r′ = r.

Conversely, if Q 6≤ S′, then if Q′ denotes the SM such that (N ′, Q′) = Pretime ((s,Q)), then
Q′ 6≤ SN . By Lemma 7.2.5, if Q′′ denotes the SM such that (N ′′, Q′′) = shrink+((N ′, Q′)), then
Q′′ 6≤ SN . Therefore, there is no SM P such that (r′, P) = r ∩ shrink+(Pretime ((s,Q))).
I not 2⇒ not 1. Let 〈V, S′〉 = neighbor〈r, S〉. We assume that V 6⊆ N . Then, if t denotes the
region sl t, we have s, t ⊆ V . By definition of the neighborhood, for any SM P ≤ Sr, when δ is
small enough, there exists a valuation v ∈ r− δP such that v+ d′ ∈ t for some 0 ≤ d′ ≤ δ. But since
sl t, v+d′ ∈ s for some d′ ≥ 0 implies that 0 ≤ d′ < δ (and there exists 0 ≤ d′ < δ with v+d′ ∈ r′).
Therefore, for any SM Q, if P denotes the SM such that (r′, P) = r ∩ shrink+(Pretime ((s,Q))) with
r′ = r, then P 6≤ S: indeed, if P ≤ S, then for small enough δ > 0, v+[0, δ] ⊆ Pretime (s− δQ) and in
particular v+δ ∈ Pretime (s− δQ), which implies that there is d′′ ≥ 0 such that v+δ+d′′ ∈ s−δQ ⊆ s,
contradicting the above remark.
I 2⇒ 3. Let (V, S′) = neighbor〈r, S〉. We have r ⊆ V ⊆ N . Let (N ′, Q) be a normalized shrunk
DBM with N = N′, obtained by setting Qx,0 = 1 for all x ∈ C and 0 all other components. Let Q′
be the SM such that (V ′, Q′) = V ∩ (N ′, Q), for some V′ = V.

• We show that Q′ ≤ S′. Define (Q1)x,y = Qx,y if Vx,y = Nx,y and (Q1)x,y = 0 otherwise.
Q′ is the normalization of Q1. We have S′x,0 = S′0,x = ∞ by Lemma 7.3.1, so Q′x,0 ≤ S′x,0
and Q′0,x ≤ S′0,x. For any x, y ∈ C, we assume S′x,y = 0. It implies (S)x,y = 0. To get
a contradiction, assume that there is a path in Πx,y(G(V)) with an edge (z, z′) such that
Vz,z′ = Nz,z′ and Qz,z′ ≥ 1. Since Qz,z′ ≥ 1, there must be a path in Πz,z′(G(N)) that
contains an edge (α, 0). But since Πz,z′(G(N)) ⊆ Πz,z′(G(V)), there is a path in Πx,y(G(V))
that contains the edge (α, 0). This contradicts S′x,y = 0 since we know, by Lemma 7.3.1 that
S′α,0 =∞.

• We now show that Q ≤ SN , which implies the desired result. By Lemma 7.3.1, there exists
P ≤ S such that (r′, P) = r ∩ shrink[−δ,δ]((V

′, Q′)), for some r′ = r. But, if P ′ denotes the
SM such that (r′′, P ′) = r ∩ (V ′, Q′), then P ′ ≤ P ≤ S because shrink can only increase
the components of the SM. Therefore, (r′′, P ′) = r ∩ V ∩ (N,Q) = r ∩ (N,Q). Thus, by
Lemma 7.2.4, we must have Q ≤ SN , which implies (SN)x,0 =∞ for all x ∈ C.

We now assume that the above conditions hold, and prove that S′ (of item 1) has the same
diagonal constraints as S. By Lemma 7.2.4, SN is computed as the normalization of S′, which is
defined for every x, y ∈ C0 as (S′)x,y = (S)x,y if Nx,y = rx,y and∞ otherwise. Since N and r have the
same diagonal constraints, (S)x,y = 0 for x, y ∈ C implies (SN)x,y = 0. If (S)x,y =∞, suppose that
(SN)x,y = 0. There exists z, z′ such that (x, y) belongs to a path in Πz,z′(G(N)), and (S′)z,z′ = 0. But
this implies that rz,z′ = Nz,z′ and (S)z,z′ = 0. We have then Πz,z′(G(N)) ⊆ Πz,z′(G(r)) since r ⊆ N ,
and this contradicts that (S)x,y =∞. We now show that S′ has the same diagonal components as SN .
In fact, S′ is the normalization of S′N defined by (S′N)0,x =∞ for all x ∈ C and (S′N)x,y = (SN)x,y for

7.4. CONTROLLABLE PREDECESSORS 97

other x, y ∈ C0. Clearly, (SN)x,y = 0 for any x, y ∈ C implies (S′)x,y = 0. Assume that (S′)x,y = 0
with x, y ∈ C. Then (x, y) belongs to a path π ∈ Πz,z′(G(s)) with (S′N)z,z′ = 0, so necessarily z 6= 0
and sz,z′ = Nz,z′ . If π does not contain the node 0, then π ∈ Πz,z′(G(N)) since all other weights
are the same in G(s) and G(N). If it contains node 0, then π still must be in Πz,z′(G(N)). In fact,
(S′N)z,z′ = 0 means that Nz,z′ <∞ and since all weights are the same in G(s) and G(N) except for
the edges (0, z) which can only decrease in s, π is a shortest path in both graphs. In both cases, we
get (SN)x,y = 0.

That S′ is a well shrinking constraint for s follows from the hypothesis that S is a well shrinking
constraint for r. In fact, if for some Q ≤ S′, (s,Q) is empty, then the corresponding (r, P) (defined
in item 1) is empty, which is a contradiction.

Note that this lemma may not hold for all s with r l s. Consider the constrained region 〈r, S〉
on the right of Fig. 7.5, and let s be the first triangle region above r: any valuation arbitrarily close
to the thick segments will be in r − δP for any P ≤ S, but it can only reach s by delaying less than
δ time units.

The following lemma describes sets of states from where Controller can ensure reaching a given
set, through an action.

Lemma 7.4.2. Let 〈r, S〉 be a well constrained region, and let R ⊆ C. Let N = {s1, . . . , sm} be the
set of neighboring regions of 〈r, S〉, and define ti = s[R← 0] for each 1 ≤ i ≤ m. Then, there exist
well shrinking constraints Sti for all ti such that for any set of shrunk DBMs

(
(t′i, Qt′i)

)
1≤i≤m with

ti = t′i , we have that Qt′i ≤ Sti for all 1 ≤ i ≤ m if, and only if there exists P ≤ S such that

(r′, P) ⊆ r ∩ shrink[−δ,δ](
⋃

1≤i≤m

(s ∩ UnresetR((t′i, Qt′i)))).

for some r′ = r. Moreover, all the 〈ti, Sti〉 can be computed in polynomial time.

Proof. It is useful to remember in this proof that ti = t′i implies ti ⊆ t′i since ti is a region.
Let 〈N,S′〉 be the (well) constrained neighborhood of 〈r, S〉, given by

Lemma 7.3.1. For any region s ∈ N , let Ss be the well shrinking constraint given by Lemma 7.2.4,
such that for all shrunk DBMs (s′, Q) with s′ = s and s ⊆ s′, Q ≤ Ss if, and only if there exists P ≤ S′
with s ∩ (N,P) ⊆ (s′, Q). Here, Ss is in fact a well shrinking constraint since s ∩ (N,P) 6= ∅ for all
P ≤ S′, by the construction of the neighborhood. Then, let us write t = s[R← 0], and let S′s be the
well shrinking constraint given by Lemma 7.2.4, such that for any shrunk DBM (t′, Qt) with t = t′

and t ⊆ t′, Qt ≤ S′s if, and only if there exists Ps ≤ Ss with (s′, Ps) = s∩UnresetR((t′, Qt)) for some
s′ = s with s ⊆ s′. We let St = mins∈N :t=s[R←0] S

′
s, where the minimum is taken componentwise.

Then St is still a well shrinking constraint. Now, St satisfies the following property: for any shrunk
DBM (t′, Qt) with t′ = t and t ⊆ t′, Qt ≤ St if, and only if for all regions s ∈ N with t = s[R← 0],
there exists Ps ≤ Ss such that (s′, Ps) = s ∩ UnresetR((t′, Qt)) for some s′ with s′ = s and s ⊆ s′.
Combining this and S′ defined above, we get that St has the property that for any shrunk DBMs
(t′, Qt) with t′ = t and t ⊆ t′, Qt ≤ St if, and only if for all s ∈ N with t = s[R← 0], there exists
Ps ≤ S′ such that s ∩ (N,Ps) ⊆ s ∩ UnresetR((t′, Qt)).

For any family of shrunk DBMs {(t′i, Qt′i)}1≤i≤m with ti ⊆ t′i, ti = t′i and Qt′i ≤ Sti , consider the
set {Ps}s∈N as defined above. Let P ′ = maxs∈N (Ps), where the max is componentwise. We have
P ′ ≤ S′ since Ps ≤ S′ for all s ∈ N . We have s ∩ (N,P ′) ⊆ s ∩ UnresetR((t′i, Qt′i)) for all s ∈ N ,

98 CHAPTER 7. REACHABILITY IN EXCESS SEMANTICS

since Ps ≤ P ′. So,

(N,P ′) =
⋃
s∈N

s ∩ (N,P ′) ⊆
⋃
s∈N

s ∩ UnresetR((t′i, Qt′i)).

By Lemma 7.3.1, there exists P ≤ S such that

(r′, P) = r ∩ shrink[−δ,δ]((N,P
′)) ⊆

⋃
s∈N

s ∩ UnresetR((t′i, Qt′i)).

This proves the first direction of the lemma.
Consider any SMs {Qti}1≤i≤m such that (Qti)x,y ≥ 1 and (St)x,y = 0 for some i and x, y ∈ C0.

Then there exists r0 ∈ N with r0[R ← 0] = t, such that if Qr0 denotes the SM that satisfies
(r′0, Qr0) = r0 ∩ UnresetR((t′i, Qti)) with r′0 = r0 and r0 ⊆ r′0, we have Qr0 6≤ Sr0 . So, there is no SM
Pr0 such that r0 ∩ (N,Pr0) ⊆ (r′0, Qr0) and Pr0 ≤ S′. It follows that there is no P ′ ≤ S′ satisfying
(N,P ′) ⊆

⋃
s∈N (s′, Qs) where (s′, Qs) = s ∩ UnresetR((t, Qt)). In fact, if this would imply that

(N,P ′) ∩ r0 ⊆ (r′0, Qr0), since the regions in N are pairwise disjoint. Therefore, if (N,P ′) satisfies
the above inclusion, then P ′ 6≤ S′, so there is no P ≤ S such that (r′, P) satisfies the statement of
the lemma for some r′ = r.

This lemma gives for instance the shrinking constraints that should be satisfied in r1, r2 and r3,
in Fig. 7.1, once shrinking constraint in r′0 is known. In this case, the constraint in r′0 is 0 everywhere
since it is a punctual region. The neighborhood N of r′0 is composed of r′0 and two extra regions
(defined by (0 < x < 1) ∧ (x = y) and (1 < x < 2) ∧ (x = y)). If there are shrinkings of regions
r1, r2, r3 satisfying the corresponding shrinking constraints (given in the lemma), and from which
Controller wins, then one can derive a shrinking of r′0, satisfying its constraint, and from which
Controller wins.

Note that, in the proof of Lemma 7.4.2, the shrinking matrix P is chosen so as to guarantee the
stated inclusion, but it is not always minimal. In some cases, one can still satisfy the inclusion while
chosing some components smaller. Consequently, for a different choice of P , one could also obtain
a smaller δ0. In general, there may be no minimum P : Consider a region r defined by 1 < x < 2,
1 < y < 2, and x < y. Given two shrinkings Q0,x = 1, Qy,0 = 2, and Q′0,x = 2, Q′y,0 = 1, the
union (r − δQ) ∪ (r − δQ′) is not convex. Then both Q and Q′ are minimal choices for P such that
(r, P) ⊆ (r,Q) ∪ (r,Q′).

In the next section, we define the game RG(A) following this idea, and explain how it captures
the game semantics for robustness.

7.5 A Finite Game Abstraction

Let A = (L, `0, C,Σ, E) be a timed automaton. We define a finite turn-based game RG(A) on a
graph whose nodes are of two sorts: square nodes labelled by (`, r, Sr), where ` is a location, r a
region, Sr is a well shrinking constraint for r; diamond nodes labelled similarly by (`, r, Sr, e) where
moreover e is an edge leaving `. Square nodes belong to Controller, while diamond nodes belong to
Perturbator. Transitions are defined as follows:

(a) From each square node (`, r, Sr), for any edge e = (`, g, σ,R, `′) of A, there is a transition to
the diamond node (`, s, Ss, e) if the following conditions hold:

7.5. A FINITE GAME ABSTRACTION 99

(i) r l∗ s and s ⊆ g;
(ii) Ss is such that for all SMs Q, Q ≤ Ss iff there exists P ≤ Sr with

(r′, P) = r ∩ shrink+(Pretime ((s,Q))),

for some r′ = r.

(b) From each diamond node (`, r, Sr, e), where e = (`, g, σ,R, `′) is an edge of A, writing N for the
set of regions in the neighborhood of (r, Sr) and N ′ = {s[R← 0] | s ∈ N}, there are transitions
to all square nodes (`′, t, St) with t ∈ N ′, and (St)t∈N ′ are such that for all shrunk DBMs
((t′, Qt))t∈N ′ with t′ = t, it holds Qt ≤ St for every t ∈ N ′ iff there exists P ≤ Sr such that

(r′, P) ⊆ r ∩ shrink[−δ,δ](
⋃
s∈N

(s ∩ UnresetR((t′, Qt))), where t = s[R← 0],

for some r′ = r.

Intuitively, the transitions from the square nodes are the decisions of Controller. In fact, it has to
select a delay and a transition whose guard is satisfied. Then Perturbator can choose any region in
the neighborhood of the current region, and, after reset, this determines the next state.

Note that RG(A) can be computed, thanks to Lemmas 7.4.1 and 7.4.2, and has exponential-size.
Observe also that RG(A) is constructed in a forward manner: we start by the initial constrained
region (i.e. the region of valuation 0 with the zero matrix as shrinking constraint), and compute its
successors in RG(A). Then, if Controller has a winning strategy in RG(A), we construct a winning
strategy for Gexsδ (A) by a backward traversal of RG(A), using Lemmas 7.4.1 and 7.4.2. Thus, we
construct RG(A) by propagating shrinking constraints forward, but later do a backward traversal in
it. The correctness of the construction is stated as follows.

Proposition 7.5.1. For any timed automaton A, Controller has a winning strategy in RG(A) if,
and only if there exists δ0 > 0 such that Controller wins Gexs

δ (A) for all δ ∈ [0, δ0).

Note that as we compute a winning strategy for Controller (if any) by Proposition 7.5.1, we can
also compute a corresponding δ0. The upper bound of Theorem 7.1.2 is a consequence of the above
proposition, since RG(A) has exponential size and finite reachability games can be solved in time
polynomial in the size of the game.

Changing the perturbation parameters. Consider the semantics where Controller’s delays
are bounded below by kδ, and the perturbations belong to [lδ,mδ] with lδ+kδ ≥ 0, for some rational
number δ > 0 and integers k, l,m (Observe that any choice of these rational parameters can be
written in this manner). The abstract game construction can then be adapted to this case. In fact,
it suffices to replace the operator shrink+ by shrink[0,kδ], and the operator shrink by shrink[lδ,mδ] in
the construction.

7.5.1 Proof of Proposition 7.5.1
Controller wins RG(A) ⇒ Controller wins Gexs

δ (A) for small enough δ > 0.

Assume we are given a reachability objective defined by ` ¨̂ ∈ L, and let f be a memoryless winning
strategy for Controller in RG(A) for reaching ` ¨̂ . Consider the execution tree Tf of RG(A), where

100 CHAPTER 7. REACHABILITY IN EXCESS SEMANTICS

Controller plays with f . Tf is finite by Koenig’s Lemma since all branches are winning, thus finite,
and all branches end in the target state.

To any square node n of Tf labelled by (`, r, Sr), we will assign a shrunk DBM
(
r′, Pn

)
and

δn > 0 with Pn ≤ Sr and r = r′, such that Controller wins the game Gexsδ (A) from any state of
{`} × (r′ − δPn) for all δ ∈ [0, δn). Remember that r′ = r implies r ⊆ r′ since r is a region. We will
define these by a bottom up traversal of Tf . We start by assigning Pn = 0 and δn =∞ to all nodes
with loc(n) = ` ¨̂ (which are leaves of Tf). These are trivially winning for Controller.

Consider now a square node n of Tf labelled by (`, r, Sr) whose all square successors have been
treated. Then, n has only one successor which is given by f , we assume it is the diamond node
n′ labelled by (`, s, Ss, e). We write e = (`, g, σ,R, `′). Let N be the set of neighboring regions of
〈s, Ss〉 given by Lemma 7.3.1. Let s1, . . . , sm be the regions composing N , and let n′1, . . . , n′m denote
the successors of n′ in Tf , where n′i is labelled by (`′, ti, Sti), and such that ti = si[R ← 0]. By
construction, shrinking constraints Sti are given by Lemma 7.4.2 applied to 〈s, Ss〉. By induction,
for each 1 ≤ i ≤ m there is a shrunk DBM (t′i, Pn′i) and δn′i > 0 with t′i = ti and Pn′i ≤ Sti , such
that Controller wins the game Gexsδ (A) from {`′}× (t′i − δPn′i) for all δ ≤ δn′i . Now, by Lemma 7.4.2,
there exists a shrunk DBM (s′, Q) with s′ = s and Q ≤ Ss such that

s′ − δQ ⊆ s ∩ shrink[−δ,δ](
⋃

1≤i≤m

si ∩ UnresetR(t′i − δPn′i)),

for all 0 ≤ δ ≤ δn′ , where δn′ ≤ mini(δti) is computed by Lemma 3.4.7. Then, by construction of
the game, there exists Pn ≤ Sr and 0 < δn ≤ δn′ such that r′ − δPn = r ∩ shrink+(Pretime (s′ − δQ))
for all 0 ≤ δ ≤ δn, for some r′ = r (Remember that Lemma 7.4.1 applies here on s′ since s = s′ and
s ⊆ s′). Here, δn can be computed using Lemma 3.4.5. Controller wins from these states: in fact, it
can delay into s′ − δQ, where, after Perturbator’s any move, and the clock resets, the next state
belongs to one of the states t′i − δPn′i , which are all winning by induction.

Notice that at each step of the computation, we get non-empty shrunk DBMs satisfying the
corresponding shrinking constraints. By construction of RG(A), we have only well shrinking
constraints in all nodes, so the computed shrunk DBMs (r′, Pn) are always non-empty. The
procedure ends in the initial state (`0,0,0), so Controller wins Gexsδ (A) by projecting the play to
RG(A) and always staying inside set r′ − δPn at any node n, which is possible by construction.

Upper bound on δ0.

We now assume that Controller has a winning strategy and give an upper bound on δ0 computed by
the algorithm. Consider the setM of all shrunk DBMs that appear when we construct the winning
strategy in the proof above, including the shrunk DBMs corresponding to intermediary results. For
instance, in the computation above, given the edge (`i, ri, Sri)→ (`i, r

′
i, Sr′i , e) and Pr′i , we compute

Pri such that
(ri, Pri) = r ∩ shrink+(Pretime

(
(r′i, Pr′i)

)
).

Then,M contains the shrunk DBMs (ri, Pri) and (r′i, Pr′i), but also (M1, Q1) such that (M1, Q1) =

Pretime ((ri, Pri)), and (M2, Q2) such that (M2, Q2) = shrink+((M1, Q1)). Now, δ0 is chosen by the
algorithm small enough so that all shrunk DBMs ofM are non-empty and normalized, and all such
equations that appear in the construction of a winning strategy above hold, for all δ ∈ [0, δ0). Using
Proposition 3.4.6, one can compute the greatest δ0 > 0 for which the symbolic strategies encoded by
(ri, Pri) hold. An upper bound can be also chosen by Remark 3.4.8. In this case, the upper bound
could be doubly exponential since the size of the equation is exponential.

7.5. A FINITE GAME ABSTRACTION 101

Controller loses RG(A) ⇒ Controller loses Gexs
δ (A) for any δ > 0.

To prove the theorem, we will assume the Controller loses in RG(A), and we will construct a winning
strategy for the δ-Perturbator in Gδ(A) by looking at the projection of the plays in RG(A), and by
imitating the moves of a winning strategy for the Perturbator in RG(A). The core idea is to show
that the Perturbator can always force the game to be close, by some chosen ε, to all boundaries
of the current region for which the shrinking constraint is 0. This will ensure that from any state
of the play, for any move of Controller, Perturbator can force the game to some state inside any
successor in RG(A).

Let us first formalize what we mean by being close to boundaries.

Definition 7.5.2. Let 〈M,S〉 any constrained DBM. For any ε ≥ 0, we say that a valuation ν is
ε-tight in M w.r.t. S if ν ∈M , and,

∀x, y ∈ C0, Sx,y = 0 ⇒ Mx,y − ε ≤ ν(x)− ν(y). (7.1)

We say that M admits tight valuations w.r.t. S if it admits ε-tight valuations for any ε > 0.
We say that 〈M,S〉 admits tight valuations if for any P ≤ S, and for all small enough δ > 0,

M − δP admits tight valuations w.r.t. S.

In the proofs, we will also say that ν is ε-tight in M for a component (x, y) ∈ C2
0 when

Mx,y − ε ≤ ν(x)− ν(y).
We show that for any move of Controller in Gexsδ (A) from an ε-tight valuation, the corresponding

edge exists in RG(A):

Lemma 7.5.3. Fix δ > 0 and 0 ≤ ε ≤ δ/2. Assume ν is ε-tight in r w.r.t. S, and let ν′ = (ν + d)
for some d ≥ δ, and some edge e = (`, g, σ,R, `′) with ν′ |= g. Then, RG(A) has an edge from
(`, r, Sr) to (`, r′, Sr′ , e) for r′ = reg(ν′) and for some Sr′ .

Proof. Let N = Pretime (r′), and consider, by Lemma 7.2.4, the shrinking constraint SN such that for
any SM Q, Q ≤ SN if, and only if the SM P such that (r, P) = r ∩ (N,Q) satisfies P ≤ Sr. Thanks
to Lemma 7.4.1, it is sufficient to show that (SN)x,0 = ∞ for all x ∈ C. To get a contradiction,
assume that (SN)x,0 = 0 for some x ∈ C. By (the proof of) Lemma 7.2.4, SN is the normalization
of S′r defined by (S′r)x,y = (Sr)x,y if rx,y = Nx,y and (S′r)x,y = ∞ otherwise. So, (SN)x,0 = 0
means that there exists (z, z′) such that (x, 0) is on some path π of Πz,z′(G(N)), rz,z′ = Nz,z′ and
(Sr)z,z′ = 0. But since r ⊆ N and rz,z′ = Nz,z′ we have Πz,z′(G(N)) ⊆ Πz,z′(G(r)). Moreover, all
weights along π are the same in r and N . We get (Sr)x,0 = 0. On the other hand, since r′ ⊆ N and
r l∗ r′, we have rx,0 ≤ r′x,0 ≤ Nx,0. So rx,0 = r′x,0. By hypothesis, we have rx,0 − ε ≤ ν(x) ≤ rx,0.
But ε ≤ δ/2 and d ≥ δ, so ν(x) + d > rx,0 = r′x,0, a contradiction.

The following lemma shows that ε-tightness is preserved by resets.

Lemma 7.5.4. Let r, r′ be regions such that r′ = r[R ← 0] for some R ⊆ C. Consider shrinking
constraints Sr and Sr′ given by Lemma 7.2.4, such that for any SM Q, Q ≤ Sr′ iff there the SM P
such that (r, P) = r ∩ UnresetR((r′, Q)) satisfies P ≤ Sr. Let δ > 0 small enough so that these
equations hold for given P and Q. For any ε > 0, and any ν that is ε-tight in r − δP w.r.t. Sr, we
have that ν′ = ν[R← 0] is ε-tight in r′ − δQ w.r.t. Sr′ .

Proof. Let N = UnresetR(r′) and SN be the shrinking constraints such that for any SM Q, Q ≤ SN
if and only if the SM P such that r− δP = r ∩ (N − δQ) satisfies P ≤ Sr. Then Sr′ is such that for

102 CHAPTER 7. REACHABILITY IN EXCESS SEMANTICS

any SM Q, Q ≤ Sr′ if and only if there the SM P such that N − δP = UnresetR(r′ − δQ) satisfies
P ≤ SN . By definition of the reset operation, we have r′x,y = rx,y for all x, y 6∈ R, and r′x,y = 0 for
all x, y ∈ R (we assume 0 ∈ R). For any x ∈ R and y 6∈ R, r′x,y = r0,y and r′y,x = ry,0.

It suffices to assume that ν is ε-tight in 〈r, Sr〉 and show that ν′ = ν[R ← 0] is ε-tight in
〈r′, Sr′〉. For all x, y 6∈ R or x, y ∈ R, it is clear that ν′ satisfies the ε-tightness for these components.
Consider x ∈ R and y 6∈ R such that (Sr′)x,y = 0. Then (Sr′)0,y = 0, and it suffices to show that
−ν′(y) ≥ r′0,y − ε since ν′(x) = 0 and r0,y = r′0,y. We are going to show that (Sr)0,y = 0. If S′N
denotes the shrinking constraint defined by (S′N)x,0 = (S′N)0,x = 0 for all x ∈ R, (S′N)x,y = ∞
whenever x ∈ R and y ∈ C or inversely, and (S′N)x,y = (SN)x,y for x, y ∈ C0 \ R. Then Sr′ is the
normalization of S′N . Then, (Sr′)0,y = 0, for y 6∈ R, means that there is z, z′ ∈ C0 such that for some
path π ∈ Πz,z′(G(r′)), (0, y) belongs to π and (S′N)z,z′ = 0. Then either z, z′ 6∈ R and (SN)z,z′ = 0,
or z = 0 and z′ ∈ R.

• Consider the first case. We have r′z,z′ = Nz,z′ (by definition of unreset). We show that there
is a path π′ ∈ Πz,z′(G(N)) that contains (0, y) and whose all nodes are outside R. In fact,
r′z,0 = Nz,0 and r′y,z′ = Ny,z′ since z, z′, y 6∈ R, and these have finite weights (since π is a
shortest path). But N is obtained from r′ by setting to ∞ edges with an endpoint in R,
and applying normalization. So there must be shortest paths from z to 0, and from y to
z′ in G(N). Now, since (SN)z,z′ = 0, (z, z′) belongs to some path π′′ ∈ Πα,β(G(N)) where
rαβ = Nα,β and (Sr)α,β = 0. Moreover, from r ⊆ N , rα,β = Nα,β and rz,z′ = Nz,z′ , it follows
that π′, π′′ ∈ Πz,z′(G(N)) ⊆ Πz,z′(G(r)). Then, replacing the edge (z, z′) in π′′ by the path π′,
we still get a shortest path in G(r), that contains (0, y). Therefore, we must have (Sr)0,y = 0.

• Assume now that z = 0 and z′ ∈ R. Assume that π does not contain nodes in R other than
z′ (if it does, we can shorten π and change z′). Let us write π = z1z2 . . . zm where z1 = z
and zm = z′. Since r′0,zm = r′zm,0 = 0, π′ = z1 . . . zm−1 is a cycle with weight 0. But since all
nodes in π′ are outside R, this is also a path in G(r). Therefore (Sr)zi,zi+1

= 0 along all edges,
and in particular (Sr)0,y = 0.

By hypothesis, we have −ν(y) ≥ r0,y − ε, and since r′0,y = r0,y, we get −ν′(y) ≥ r′0,y − ε. The proof
of the symmetric case x 6∈ R and y ∈ R is similar.

The next lemma is the main lemma of the proof of the second direction of the theorem. It shows
that, starting from an ε-tight valuation of 〈r, S〉, and given a Controller’s move, Perturbator can,
not only choose any successor available in RG(A) but also make sure that the resulting valuation is
(ε+ ε′)-tight, for arbitrary ε′ > 0.

Lemma 7.5.5. Consider a valuation ν that is ε-tight in r w.r.t. S. Let ν′ = (ν + d) for some
d ≥ δ, let e = (`, g, R, `′) an edge of A with ν′ |= g. Consider the edge of RG(A) from (`, r, Sr)
to (`, r′, Sr′ , e) for r′ = reg(ν′) and for some Sr′ , from Lemma 7.5.3. Then, for any region s in
the 〈N,SN 〉 = neighbor〈r′, Sr′〉, and any ε′ > 0, there exists d′ ∈ [d − δ, d + δ] such that ν + d′ is
(ε + ε′)-tight in s w.r.t. Ss where Ss is such that for all SMs Q, Q ≤ Ss if, and only if there is
P ≤ SN with (N,P) ∩ s ⊆ (s,Q).

Before proving Lemma 7.5.5, let us first prove the second direction of Proposition 7.5.1.

Proof of Proposition 7.5.1 (Second direction). We fix δ > 0, and consider an arbitrary strategy f
for Controller in Gexsδ (A). We are going to define an infinite play π, where Controller follows strategy

7.5. A FINITE GAME ABSTRACTION 103

f , and the target location is not reached. This proves that Perturbator wins Gexsδ (A) against any
strategy of Controller since f is chosen arbitrarily.

By hypothesis, Perturbator has a winning strategy γ in RG(A). We fix ε ∈ [0, δ/2], and we define
the sequence εi =

∑
1≤j≤i

ε
2j for i ≥ 1, which is positive and bounded above by ε. We construct in

parallel a play
(
(`i, ri, Sri), (`i, r

′
i, Sr′i , ei)

)
i≥1

of RG(A) where Perturbator plays with strategy γ.
The play π = (`i, νi)i≥1 will satisfy the following invariant:

For each state (`i, νi), we have νi ∈ ri and νi is εi-tight in ri w.r.t. Sri .

Initially, we have (`1, ν1) with ν1 = 0, and the initial state (`1,0,0) of RG(A) satisfies the
invariant. For i ≥ 2, let us assume that state (`i, νi) of the play satisfies the invariant for the state
(`i, ri, Sri) of RG(A). Let d ≥ δ be the delay and ei = (`i, gi, σi, Ri, `i+1) the edge prescribed by f
from state (`i, νi) given the current history. Let ν′i = νi + d and r′i be the region of ν′i. Lemma 7.5.3
shows thatRG(A) has the corresponding edge. Let (`i+1, ri+1, Sri+1) be the successor of (`i, r

′
i, Sr′i , ei)

in RG(A), given by γ. Let s be a region in N = neighbor〈r′i, S′〉 such that s[R← 0] = ri+1. From
Lemmas 7.5.5 and 7.5.4, it follows that first s, then ri+1 are reachable from ν′i by Perturbator’s
move, and that the resulting valuation is εi+1-tight in ri+1 w.r.t. Sri+1

by choosing ε′ = ε/2i+1

Proof of Prop. 7.5.5. Consider such valuations ν ∈ r and ν′ ∈ r′. For any x, y ∈ C, (Sr′)x,y = 0
implies that r′x,y − ε ≤ ν′(x)− ν′(y) ≤ r′x,y, since Sr and Sr′ have the same diagonal components
and time delays do not change the quantities ν(x)− ν(y). Hence, ν′ is ε-tight in r′ w.r.t. Sr′ for
all diagonal components. Assume that r′ l∗ s. The other case is similar. Let Ss be the shrinking
constraint such that for all SMs Q, Q ≤ Ss if and only if there is P ≤ SN with (N,P) ∩ s ⊆ (s,Q).
Let us write the clocks ordered according to their fractional values in r′:

0 = frac(X1) < frac(X2) < . . . < frac(Xm) < 1,

where each Xi is a set of clocks having the same fractional value, and X1 can be empty.

1. Assume that (Sr′)x,0 =∞ for all x ∈ X2 ∪ . . . ∪Xm. Then, by definition of the neighborhood,
either r′ = s or r′ l s, where the latter case is possible if X1 6= ∅.

• If r′ = s, then Perturbator perturbs by 0. Since (Ss)x,0 =∞ and (Ss)x,y = (Sr′)x,y for
all x, y ∈ C, by Lemma 7.5.6, the valuation ν′ is ε-tight (s, Ss) for these components. If
(Ss)0,x = 0 for some x ∈ C, then N0,x < r′0,x by Lemma 7.5.6 since s0,x = r0,x, so we must
have (Sr′)0,x = 0, and ν′ is also ε-tight for components (0, x). Note that the ε-tightness
of diagonal components follow from the ε-tightness of ν in r′ w.r.t. Sr′ .

• If r′ls, we let Perturbator perturb by a positive amount 0 < d′ < ε′, so that the valuation
is in s. Since (Ss)x,0 = ∞ and (Ss)x,y = (Sr′)x,y for all x, y ∈ C, by Lemma 7.5.6, for
these components, ν′ + d′ is ε-tight in (s, Ss). If (Ss)0,x = 0 for some x ∈ C, then
N0,x < r′0,x by Lemma 7.5.6, so we must have (Sr′)0,x = 0. We have, by hypothesis,
−ν′(x) ≥ r′0,x = s0,x− ε, so −(ν′(x)+d′) ≥ s0,x− ε− ε′. ν′+d′ is also ε-tight for diagonal
components since ν′ is.

2. Otherwise, consider the minimum k ∈ {2, . . . ,m} such that (Sr′)x,0 = 0 for all x ∈ Xk∪. . .∪Xm.
Since s is a successor region of r′, there exists k′ ∈ {k, . . . ,m} such that either clocks in Xk′

are integers, or all clocks Xk′+1 ∪ . . . ∪Xm have changed their integer parts and only these.
We treat each case separately:

104 CHAPTER 7. REACHABILITY IN EXCESS SEMANTICS

(a) Assume sx,0 = r′x,0, ≺sx,0=≤ for x ∈ Xk′ ; sx,0 = r′x,0 + 1 and ≺sx,0=< for all x ∈
Xk′+1 ∪ . . . ∪Xm; sx,0 = r′x,0 for all x ∈ X1 ∪ . . . ∪Xk′−1. We define Perturbator’s move
as d′ = 1− frac(ν′i(x)) for x ∈ Xk′ . It is clear that ν′ + d′ ∈ s, and that d′ ≤ ε since ν′ is
ε-tight. Let us show that the ν′+d′ is ε-tight in s w.r.t. Ss. By Lemma 7.5.6, all diagonal
constraints in Ss are the same as in Sr′ so the property is satisfied for these components.
- Let us show ε-tightness for components (x, 0) (upper bounds). For all x ∈ Xk′+1 ∪
. . . Xm, we have (Ss)x,0 = ∞ by Lemma 7.5.6, since sx,0 = r′x,0 + 1 = Nx,0. We have
(ν′ + d′)(x) = sx,0 = −s0,x for x ∈ Xk′ , so ν′ + d′ is ε-tight for component (x, 0). For
all x ∈ Xk ∪ . . . ∪ Xk′−1, we have sx,0 = r′x,0, and ν′(x) ≥ r′x,0 − ε, which implies
ν′(x) + d′ ≥ sx,0 − ε as required. For all x ∈ X1 ∪ . . . ∪ Xk−1, we have (Ss)x,0 = ∞.
In fact, (Ss)x,0 = 0 means, by Lemma 7.5.6 that sx,0 < Nx,0. But since r′ l∗ s, we
would have r′ ≤ sx,0 < Nx,0, and this implies that (Sr′)x,0 = 0 by definition of N and
Lemma 7.5.6. But by the choice of k, and by Proposition 7.3.2, this is a contradiction.
- We now show ε-tightness for components (0, x) (lower bounds). For all x ∈ Xk′+1 ∪ . . .∪
Xm, we have, −(ν′(x) + d) ≥ s0,x − ε since d′ ≤ ε. The property is again clearly satisfied
by ν′(x) + d′ for x ∈ Xk′ since ν′(x) + d′ = sx,0. Consider now x ∈ X1 ∪ . . .∪Xk′−1 such
that (Ss)0,x = 0. We have (Ss)0,y = 0 for y ∈ Xk′ , and (Ss)0,x = 0, which implies that
(Ss)y,x = 0 since paths 0, y, x and 0, x belong to G(s), and Ss is normalized. Then, we
also have (Sr′)y,x = 0, so ν′(y)− ν′(x) ≥ sy,x − ε. means that frac(ν′(x)) + d′ ≤ ε. The
following figure illustrates this, assuming x ∈ Xi.

0 < X1 < . . . < Xi︸ ︷︷ ︸
frac(ν′(x))

< Xi+1 < . . . < Xk′︸ ︷︷ ︸
≥1−ε

< . . . < 1︸ ︷︷ ︸
=d′

Therefore ν′ + d′ satisfies ν′(x) + d′ ≤ −s0,x + ε, for all x ∈ C such that (Ss)0,x = 0.

(b) sx,0 = r′x,0 + 1 and ≺sx,0=< for all x ∈ Xk′ ∪ . . . ∪Xm; sx,0 = r′x,0 and ≺sx,0=< for all
x ∈ X1 ∪ . . . ∪Xk′−1. In this case, we first delay to the immediate time predecessor of
s as in the previous case, then add a positive delay d′ of at most ε′. Then, ν′ + d′ is
(ε+ ε′)-tight in s w.r.t. Ss.

The following technical lemma is used in the proof of Lemma 7.5.5 above.

Lemma 7.5.6. Let 〈N,SN 〉 denote the constrained neighborhood of some constrained region. Let r
be any region included in N . Let Sr denote the shrinking constraint such that for all SMs Q, Q ≤ Sr
if, and only if there is P ≤ SN with (N,P) ∩ r ⊆ (r,Q) for all small δ > 0. Then, for all x, y ∈ C,
(Sr)x,y = 0 implies that (SN)x,y = 0; for all x ∈ C, (Sr)x,0 = 0 implies rx,0 < Nx,0 and (Sr)0,x = 0
implies r0,x < N0,x.

Proof. By Lemma 7.2.4, Sr is defined as follows. Let S1 obtained by (S1)x,y = Sx,y if rx,y = Nx,y
and 0 otherwise. Then, Sr is the normalization (in the sense of SMs) of S1, so S1 ≤ Sr. But all
diagonal constraints are the same in r and N , and rx,0 = Nx,0 implies (S1)0,x = Sx,0 = ∞, and
similarly r0,x = N0,x implies (S1)0,x = S0,x =∞. The result follows.

We also note the following corollary of Lemma 7.5.5 and Lemma 7.5.4, which will be used in
Section 7.6.

7.6. EXTENSION TO TURN-BASED TIMED GAMES 105

Corollary 7.5.7. Let (`, r, Sr) be a square node of RG(A). Then 〈r, Sr〉 admits tight valuations.

Proof. We prove this for each node n = (`, r, Sr) by induction on the shortest path from the initial
node of RG(A) to n. It is true for the initial node (`0,0,0). Assume it is the case for n = (`, r, Sr),
and pick any square node n′′ = (`′, t, St) reached via a diamond node n′ = (`, s, Ss, e). For all
successor (`′, t′, St′) of n′, pick any SM Qt′ ≤ St′ , and consider P ′ ≤ Ss given by Lemma 7.4.2 such
that

(s, P ′) ⊆ s ∩ shrink[−δ,δ](
⋃
s′∈N

(s′ ∩ UnresetR((t′, Qt′)))),

where N is the neighborhood of 〈s, Ss〉, and we write t′ = s′[R ← 0] for any s′ ∈ N . Further, let
Pr ≤ Sr such that

(r′, Pr) = r ∩ shrink+(Pretime ((s, P ′))).

Choose δ > 0 small enough so that all equations hold. Let ν be any ε-tight valuation in r′ − δP . By
the above equations, by a joint move of Controller and Perturbator, the game can proceed to any of
the set t′ − δQt′ . In particular, by Lemmas 7.5.5 and 7.5.4, the resulting valuation can be chosen by
Perturbator to be inside t − δQt as (ε + ε′)-tight for any ε′ > 0. Since Qt was chosen arbitrarily,
〈t, St〉 admits tight valuations.

7.6 Extension to Turn-based Timed Games
In this section, we extend the reachability algorithm to turn-based timed games. We consider the
excess perturbation game semantics, where Perturbator can suggest any delay, including 0.

The correctness of the abstract game for timed automata (Proposition 7.5.1) was based on 1) the
ability of the controller to always delay inside shrinkings of regions it visits, 2) while not being able
to avoid visiting tight valuations. While the former ensured Controller to win Gexsδ (A) if a winning
strategy of the abstract is given, the latter ensured the symmetric property for Perturbator.

The situation is different in a game setting since from locations LP , Perturbator has no reason
to delay into particular shrinkings. In fact, consider Fig. 7.6 which shows the states that can be
reached by a delay inside region r′, at a location LP , starting from a shrinking of r, with r l+ r′.
Perturbator can thus delay to valuations close to borders. In fact, if the play arrives to LP inside
r − δP , then r′ ∩ Posttime(r − δP) is the set of valuations that that can be reached inside r′ after
a delay. While this can still be expressed as a shrunk region (by Lemma 3.4.5), this set does not
admit tight valuations. We will show however that this set is always included in the union of at
most two shrunk regions that admit tight valuations (See Fig. 7.6(b)). This property will allow us
to adapt the abstract game construction and prove its correctness following the same proof as for
timed automata.

For the proofs, we first need the following characterization of constrained regions that admit
tight valuations.

Lemma 7.6.1. Let 〈r, Sr〉 be a constrained region. Then, 〈r, Sr〉 admits tight valuations if, and
only if the two following conditions hold:

1. For any x, y ∈ C0, if rx,y 6= −ry,x and (Sr)x,y = 0, then (Sr)y,x =∞,

2. For any x, y ∈ C0, if there is x1x2 . . . xn ∈ Πx,y(G(r)) with (Sr)xi,xi+1
= 0 for 1 ≤ i ≤ n− 1,

then (Sr)x,y = 0.

106 CHAPTER 7. REACHABILITY IN EXCESS SEMANTICS

r

r′

(a) A region r and
its time successors in-
side r′.

⊆
⋃

(b) The shrinking of r′ on the
left can be decomposed as two
shrinkings that admit tight val-
uations. Any actual delay of
Perturbator will belong to one
of these two shrinkings.

Figure 7.6: At Perturbator’s locations, the delays cannot be expected to end in shrinkings of a
particular form. In this example, if Perturbator delays in region r′ from r, the valuation can be
closed to the borders of the region, and the shrinking expressing the reachable valuations do not
admit tight valuations (on the left). We will rather decompose this shrunk region into two shrunk
regions that do admit tight valuations (on the right).

Proof. Assume that the first condition is not satisfied. If rx,y 6= −rx,y and (Sr)x,y = (Sr)y,x = 0,
then for any ν ∈ r, ν(x)−ν(y) > rx,y− ε implies ν(x)−ν(y) > −rx,y + ε, for small enough ε > 0. So
no valuation ν is tight in r. Assume now that the second condition is not satisfied. If (Sr)xi,xi+1

= 0
for all 1 ≤ i ≤ n− 1 and (Sr)x1,xn = ∞, then consider any SM P with Px1,xn = 1. If ν is ε-tight
in r − δP , then we have rxi,xi+1 − ε ≤ ν(xi) − ν(xi+1) for all 1 ≤ i ≤ n − 1. Summing these
yield

∑n−1
i=1 rxi,xi+1

− nε ≤ ν(x1)− ν(xn). We have
∑n−1
i=1 rxi,xi+1

= rx1,xn by hypothesis, and also
ν(x1)− ν(xn) ≤ r − δ. Now, this means rx1,xn − εn ≤ rx1,xn − δ, which is a contradiction for small
enough ε > 0.

Consider the fractional ordering of the clocks in r: X1, . . . , Xn and let 2 ≤ i0 ≤ n + 1 and
1 ≤ j0 ≤ n be the indices given by Lemma 7.3.2. By hypothesis, we must have j0 < i0, since
otherwise j0 ≥ 2, and rx,0 6= −r0,x for x ∈ Xj0 , but (Sr)x,0 = (Sr)0,x = 0, contradicting the
hypothesis.

Observe that if x ∈ Xk and y ∈ Xl with j0 < k < l < i0, then (Sr)y,x = ∞, since (y, 0, x) ∈
Πy,x(G(r)) and (Sr)y,0 =∞. Furthermore, unless i0 = j0 + 1, there exists

j0 + 1 = α1 ≤ α′1 < α2 ≤ α′2 < . . . < αm ≤ α′m = i0 − 1,

such that for all x ∈ Xk and y ∈ Xl with αi ≤ k < l ≤ α′i, we have (Sr)x,y = 0, and if αi ≤ k ≤ α′i
and l > α′i then (Sr)x,y = ∞. In fact, for any pair x ∈ Xk and y ∈ Xl with j0 < k < l < i0,
(Sr)x,y = 0 implies that (Sr)x′,y′ = 0 for all x′ ∈ Xk′ and y′ ∈ Xl′ with k ≤ k′ < l′ ≤ l, because
Sr is normalized. Moreover, for such a pair x, y, if for z ∈ Xl+1, we have (Sr)y,z = 0, then also
(Sr)x,z = 0. This follows from the hypothesis since x, y, z ∈ Πx,z(G(r)) and has Sr-weight equal to
0. Thus, the sequence (αi, α

′
i)i is well-defined. Consider x ∈ Xk and y ∈ Xl for k ∈ [αi, α

′
i] and

y ∈ [αj , α
′
j] with i < j, then (Sr)x,y = ∞. In fact, for any clock z ∈ Xα′i

and z′ ∈ Xαj , we have
x, z, z′, y ∈ Πx,y(G(r)), and (Sr)z,z′ =∞ by definition of the sequence α, α′.

We now show that (r, Sr) has ε-tight valuations. Consider any normalized SM P ≤ Sr and
1/δ > 2(|C|+ 2) maxx,y∈C0(Px,y).

Fix any 0 < ε < δ/2. We define a valuation ν as follows. We let ν(x) = rx,0 for x ∈ X1.

7.6. EXTENSION TO TURN-BASED TIMED GAMES 107

We choose the values ν(x) for x ∈ X2 ∪ . . . ∪Xj0 as −r0,x < ν(x) < −r0,x + ε/2, such that they
respect the fractional ordering. Similarly, we choose rx,0 − ε/2 < ν(x) < rx,0 for x ∈ Xi0 ∪ . . . ∪Xn,
respecting the fractional ordering. Define Ai = i

|C|+2 for 1 ≤ i ≤ m. Define Xi,j = Xi∪Xi+1∪ . . . Xj .
For each set Xαi,α′i

for 1 ≤ i ≤ m, we choose values in the interval [Ai − ε/2, Ai + ε/2] respecting
the fractional orderings. The valuation is illustrated in the following figure.

0 X2 ··· Xj0

≤ε/2

Xα1
Xα′1

≤ε

Xα2
Xα′2

≤ε

··· Xi0 ··· Xn 1

≤ε/2

We show that ν is ε-tight in r − δP . We verify at the same time that ν belongs to r − δP , and
that it is ε-tight. We first consider the constraints between clocks X2 ∪ . . . Xj0 and Xi0 ∪ . . . ∪Xn,
then between clocks in xj0+1 ∪ . . . ∪Xi0−1, and finally for pairs between the two sets.

1. For all x ∈ X2 ∪ . . . ∪Xj0 , we have, by definition (Sr)0,x = 0 and −r0,x < ν(x) < −r0,x + ε/2,
and (Sr)x,0 =∞. By the choice of δ, ν(x) < −r0,x + ε/2 < rx,0 − δQx,0. For any pair x ∈ Xk

and y ∈ Xl with 1 ≤ k < l ≤ j0, we have (Sr)x,y = 0 by normalization since 0, x, y is in
Π0,y(G(r)), but the previous inequality implies that rx,y − ε/2 < ν(x)− ν(y) < rx,y. We have,
therefore, (Sr)y,x =∞, and ν(y)− ν(x) < −rx,y + ε/2 < ry,x − δPx,y by the choice of δ.

2. Similarly, for all x ∈ Xi0 ∪ . . .∪Xn, we have (Sr)0,x =∞, (Sr)x,0 = 0 and rx,0− ε/2 < ν(x) <
rx,0. For any pair x ∈ Xk and y ∈ Xl with i0 ≤ k < l ≤ n, we have (Sr)x,y = 0 as before,
and rx,y − ε/2 < ν(x)− ν(y) < rx,y. We have (Sr)y,x =∞, and ν(y)− ν(x) < −rx,y + ε/2 <
ry,x − δPy,x by the choice of δ and ε.

3. For any pair x ∈ X2∪ . . .∪Xj0 and y ∈ Xi0 ∪ . . .∪Xn, we have (Sr)y,x = 0 by hypothesis, since
y, 0, x is in Πy,x(G(r)) and all edges have Sr-weight 0. Thus, ν(y)− ν(x) < ry,x − δPy,x, and
we have ry,x − ε < ν(y)− ν(x) since ν(x) > rx,0 − ε/2 and ν(y) < −r0,y + ε/2. Furthermore,
−rx,y + δPx,y < ν(y)− ν(x) since −rx,y + δPx,y < ry,x − ε by the choice of δ and ε.

4. Let us now consider constraints between clocks inXj0+1∪. . . Xi0−1. For any x ∈ Xk and y ∈ Xl

with j0 < k < l < i0, we have (Sr)y,x =∞ since (y, 0, x) belongs to Πy,x(G(r)) and (Sr)y,0 =∞.
We have ν(y)− ν(x) < ry,x − δPy,x since frac(frac(ν(y))− frac(ν(x))) ≤ m−1

|C|+2 + ε ≤ 1− δPy,x.
Assume that αi ≤ k < l ≤ α′i, for some i. We have (Sr)x,y = 0 and rx,y−ε < ν(x)−ν(y) < rx,y
by definition of ν. If k ∈ [αi, α

′
i] and l ∈ [αj , α

′
j] for i < j, then (Sr)x,y = ∞. Since

1
|C|+2 + ε > δPx,y, we have ν(x)− ν(y) < rx,y − δPx,y.

5. Consider now clock x ∈ X2 ∪ . . . ∪Xj0 and y ∈ Xj0+1 ∪ . . . ∪Xi0−1. We have (Sr)x,y = ∞
by hypothesis. In fact, (0, x, y) ∈ Π0,y(G(r)) and (Sr)x,y = 0 would imply (Sr)0,y = 0. Also,
(Sr)y,x = ∞ because (Sr)y,0 = ∞. We have −ry,x + δPy,x < ν(x) − ν(y) < rx,y − δPx,y by

1
|C|+2 + ε > δmaxx,y Px,y.

We extend Lemma 7.2.4 to the Posttime() operation.

Lemma 7.6.2. Let M , N be normalized non-empty DBMs such that
N = Posttime(M) and S ≤ Well(M). There exists a shrinking constraint S′ for N such that
for all SMs Q, Q ≤ S′ if, and only if there exists P ≤ S with Posttime((M,P)) = (N ′, Q) with
N′ = N.

108 CHAPTER 7. REACHABILITY IN EXCESS SEMANTICS

Proof. Recall that N is obtained from M by setting all components (x, 0) to (∞, <) and that the
resulting DBM is already normalized. Define (S1)x,0 =∞ for all x ∈ C and (S1)x,y = Sx,y for all
(x, y) ∈ C0 × C. We define S′ as the normalization of S1.

For any P ≤ S, let (N,Q) denote the shrunk DBM such that (N,Q) = Posttime((M,P)). Let us
show that Q ≤ S′. Here, Q is the normalization of Q′ defined by Q′x,y = Px,y if y 6= 0 and Q′x,y = 0
if y = 0. Since Nx,0 = ∞ for all x ∈ C, we only need to verify that Q′x,y ≤ S′x,y when y 6= 0. For
these components, we have Nx,y = Mx,y and M ⊆ N , therefore Πx,y(G(N)) ⊆ Πx,y(G(M)). So Q′
is already normalized because P is, and Q = Q′. By definition of S1 above, we have Q ≤ S1, which
implies Q ≤ S′ (since Q is normalized). This also shows that if Q 6≤ S′, then for all P ≤ S, we have
Posttime(M − δP) 6⊆ N − δQ. In fact, for any such P , as we just showed, there exists Q′ ≤ S′ such
that Posttime(M − δP) = N − δQ′. But N − δQ′ ⊆ N − δQ if, and only if Q ≤ Q′, and Q′ ≤ S′

implies Q ≤ S.
For any Q ≤ S′, let us define P such that (M,P) = M ∩ (N,Q). We have Posttime((M,P)) =

(N,Q), since Posttime(M ∩ (N,Q)) = (N,Q). Let us show that P ≤ S. P is the normalization of P ′
defined by P ′x,y = Qx,y if y 6= 0 and P ′x,y = 0 otherwise. Consider (x, y) such that Sx,y = 0.

- If y 6= 0, then S′x,y = 0, by definition of S′. Consider any path x1 . . . xn in Πx,y(G(M)). We
have Sxj ,xj+1

= 0 for all 1 ≤ j ≤ n − 1. But, if xj+1 = 0, then P ′xj ,xj+1
= 0 by definition, and

otherwise P ′xj ,xj+1
= 0 because S′xj ,xj+1

≤ Sxj ,xj+1
= 0. Therefore, Px,y ≤ Sx,y.

- For the case y = 0, one can notice that since Nx,0 =∞ for all x ∈ C, for all normalized SMs P ,
we have Px,0 = 0 by definition.

The following lemma gives the construction illustrated in Fig. 7.6.

Lemma 7.6.3. Let 〈r, Sr〉 be any constrained region that admit tight valuations, and r′ such that
r l∗ r′. There exist, and one can compute, S1, . . . , Sm with m ∈ {1, 2}, such that each 〈r′, Si〉
admits tight valuations and for any SMs (Qi)1≤i≤m, we have Qi ≤ Si for all 1 ≤ i ≤ m, if, and
only if there exists an SM P ≤ Sr with

Posttime(r − δP) ∩ r′ ⊆
m⋃
i=1

(r′ − δQi),

for all small δ > 0. Moreover, in this case, for any ε-tight valuation v ∈ (r, P) and any i ∈ {1, 2}
and ε′ > 0, there exists d ≥ 0 such that v + d is (ε+ ε′)-tight in (r′, Qi).

Proof. Consider the clock ordering of a constrained region with tight valuations as in the proof of
Lemma 7.6.1. We assume the indices 1 ≤ i0, j0 ≤ n and αi, α′i’s are defined (see figure below). We
distinguish cases according to the last clock that crosses an integer value during the delay from r
to r′: There exists 1 ≤ k0 ≤ n and m ∈ N such that for all x ∈ X1 ∪ . . . ∪Xk0

, −r′0,x = −r0,x +m,
while for all x ∈ Xk0+1 ∪ . . . ∪Xn, we have −r′0,x = −r0,x +m+ 1. Notice that −r0,x is the integer
part of the clock x in region r. If all integer parts have grown by m, then we let k0 = 1. In the
following figure, we represent by a vertical gray line some possible values of the index k0.

We distinguish several cases according to the relative position of k0.

1. Assume that 1 ≤ k0 ≤ j0− 1. The clock ordering before the delay is illustrated in the following
figure in black, whereas the ordering after the delay is given between the gray 0 and 1.

0 X2 ···

0 1

Xj0

≤ε/2

Xα1
Xα′1

≤ε

Xα2
Xα′2

≤ε

··· Xi0···Xn 1X1...Xk0

≤ε/2

7.6. EXTENSION TO TURN-BASED TIMED GAMES 109

Let us consider the shrinking constraint Sr′ given by Lemmas 7.2.4 and 7.6.2, so that for
all SMs Q, we have Q ≤ Sr′ iff there is P ≤ S with Posttime(r − δP) ∩ r′ ⊆ r′ − δQ. The
constraint Sr′ can be obtained from Sr by only changing the following components: for all
x ∈ X1 ∪ . . . ∪Xk0

(Sr′)x,0 = 0, and either r′x,0 = −r′x,0 and (Sr′)0,x = 0 or (Sr′)0,x =∞. In
fact, since r′ − δQ contains the successors of r − δP , the diagonal constraints are the same.
Moreover, the partition of the clocks given by i0, j0 and αi, α′i’s are preserved by delays; while
time is only translated. So the clocks X0, . . . , Xk0 will be mixed with Xi0 , . . . , Xn but the
constraints on the rest of the clocks will remain. By Lemma 7.6.1, (r′, Sr′) has tight valuations.

Consider SMs Q and P such that Posttime(r − δP) ∩ r′ ⊆ r′ − δQ for all small enough δ > 0.
Let ν ∈ r − δP be an ε-tight valuation in (r, Sr). Define d = m + 1 − ν(xk0+1) if xk0+1

has integer value in r′ and d = m + 1 − ν(xk0
)+ν(xk0+1)

2 otherwise (if k0 = n, then let us
assume xn+1 = 1). Then, according to the definition of k0 and m, ν + d belongs to r′.
Therefore, also ν+d ∈ r − δQ. We show that ν+d is ε-tight in (r′, Sr′). Diagonal components
stay unchanged both in shrinking constraints and in valuations, so we only need to verify
the constraints (Sr′)x,0 and (Sr′)0,x. Since the distances between the first j0 clocks are at
most ε in ν (i.e. ν(xj0) − (−r0,xj0

) ≤ ε), we have that r′x,0 − ε ≤ ν(x) + d ≤ r′x,0 for all
x ∈ X1 ∪ . . .∪Xk0 , and −r′0,x ≤ ν(x) + d ≤ −r′0,x + ε for all x ∈ Xk0+1 ∪ . . .∪Xj0 . It remains
to verify that r′y,0 − ε ≤ ν(y) + d ≤ r′y,0 for y ∈ Xi0 ∪ . . .∪Xn. This follows from the fact that
ry,x − ε ≤ ν(y)− ν(x) ≤ ry,x (which holds by hypothesis on (r, Sr)).

The case where k0 ≥ i0 + 1 is symmetric.

2. Assume that j0 ≤ k0 < α1. Note that we may have Xj0 = ∅ or Xi0 = ∅, or both. We define two
shrinking constraints S1

r′ and S
2
r′ , such that (r, Sir′) admits tight valuations for both i = 1, 2.

Both have the same diagonal components as Sr, since these do not change along delays. The
first one corresponds to delaying to points where clocks Xk0

can be very close to their upper
integer values (Fig. 7.7(a)), and the second one to points where clocks Xα1 are very close to
their integer parts (Fig. 7.7(b)). We will show that for any pair Q1 ≤ S1

r′ and Q
2 ≤ S2

r′ , there
is a corresponding P ≤ Sr such that any valuation obtained by delaying from r − δP inside r′
lies either in (r′ − δQ1) or (r′ − δQ2), and moreover ε-tight valuations are reached in these
shrunk regions if one starts at an ε-tight valuation in (r, Sr).

To define (Sir′), we modify Sr as follows. We let (S1
r′)x,0 = 0 and (S1

r′)0,x = ∞ for all
x ∈ X1 ∪ . . . ∪Xj0 . Then (S1

r′) admits ε-tight valuations by Lemma 7.6.1. We let (S2
r′)x,0 =

(S2
r′)0,x =∞ for all x ∈ X1∪. . .∪Xj0 and x ∈ Xi0∪. . .∪Xn, and (S2

r′)0,x = 0 and (S2
r′)x,0 =∞

for all x ∈ Xαi ∪ . . . ∪Xα′i
. Then, similarly, (S2

r′) admits ε-tight valuations. The definitions
are illustrated in Figure 7.7.

S1
r′ :

0 Xj0

0

Xα1
Xα′1 Xi0Xn

1 Xj0

1

(S1
r′)x,0=0

(a) S1
r′

S2
r′ :

0 Xj0

0

Xα1
Xα′1 Xi0Xn

1 Xj0

1

(S2
r′)0,x=0

(b) S2
r′

Figure 7.7: The ordering of the clock partition X1, . . . , Xn in region r is shown in black in both
figures. The new ordering inside r′ is shown in gray.

110 CHAPTER 7. REACHABILITY IN EXCESS SEMANTICS

Consider any pair of SMs Qi ≤ (Sir′) for i ∈ {1, 2}. We define P satisfying Sr as follows. We
let Px,0 = 0 whenever (Sr)x,0 = 0 or (Sr′)x,0 = 0, and P0,x = 0 whenever (Sr)0,x = 0. We
choose arbitrary values for other components satisfying Sr and the following constraints:

(a) Px,y ≥ max(Q1
x,y, Q

2
x,y) for all x, y ∈ C. Notice here that Q1

x,y = Q2
x,y = 0 whenever

(Sr)x,y = 0 by definition of S1
r′ and S

2
r′ .

(b) For all x ∈ Xα1 ∪ . . .∪Xi0−1, Px,0 ≥ max(Q1
x,0, Q

2
x,0). Notice that (Sr)x,0 =∞ for these

components.
(c) For all x ∈ C \ (Xα1 ∪ . . . ∪ Xα′1

), Pα1,x ≥ Q2
0,x. Notice that (Sr)x,α1 = ∞ for these

components.
(d) For all x ∈ C \ (Xα1

∪ . . .∪Xα′1
), and y ∈ Xα1

∪ . . .∪Xα′1
, Px,α1

≥ max(Q1
0,x, Q

2
x,0 +Q1

0,y).
We have again (Sr)x,α1 =∞.

This shows that one can choose values for P while satisfying Sr. Note also that normalization
of P can only increase its components, so all lower bounds given above will still be satisfied.

Consider any ν ∈ r − δP . Let us show that for any d ≥ 0 with ν + d ∈ r′, we have
ν + d ∈ r′ − δQi for i = 1 or i = 2. For diagonal components (x, y) ∈ C2, we have −r′y,x +

δ(Qi)y,x ≺r
′

y,x ν(x) + d− (ν(y) + d) ≺r′x,y r′x,y − δ(Qi)x,y for small enough δ > 0. In fact, either
(Sr′)x,y = 0 and (Qi)x,y = 0 for i = 1, 2, since Sir′ has the same diagonal components as Sr, or
Px,y ≥ max((Q1)x,y, (Q2)x,y).

It remains to choose i ∈ {1, 2} such that the constraints on the components (x, 0) and (0, x)
are satisfied. Let us write ν′ = ν + d.

(a) Assume that for all x ∈ X1∪. . . Xn, −r′0,x+δQ1
0,x ≺r

′

0,x ν
′(x). For all x ∈ Xi0∪. . .∪Xn and

x ∈ X1∪. . .∪Xj0 , we have Q1
x,0 = 0 so ν(x) ≺r′x,0 r′x,0−δQ1

x,0. For any x ∈ Xα1∪. . . Xi0−1,
we have Px,0 ≥ Q1

x,0, so ν′(x) ≺r′x,0 r′x,0 − δQ1
x,0.

(b) Assume that for some 1 ≤ i ≤ n, for clocks x ∈ Xi, −r′0,x + δQ1
0,x 6≺r

′

0,x ν
′(x). We show

that ν′ ∈ r′ − δQ2. Let us first show that we have i ∈ {α1, . . . , α
′
1}. This follows from

the fact that Px,α1 ≥ Q1
0,x for all clocks x ∈ C \ (Xα1 ∪ . . . ∪Xα′1

). In fact, this ensures
that the constraint −r′0,x + δQ1

0,x ≺r
′

0,x ν
′(x) is always satisfied for these clocks, hence

i ∈ {α1, . . . , α
′
1}.

We first show that the upper bounds hold. Let y ∈ Xα1
and y′ ∈ Xi. We have ν′(y) ≤

−r′0,y+δQ1
0,y′ since ν

′(y′) ≤ −r′0,y′+δQ1
0,y′ by definition of i, and frac(ν(y)) ≤ frac(ν(y′)).

For any x ∈ Xi0 ∪ . . .∪Xn ∪X1 ∪ . . .∪Xj0 , we also have ν′(x)− ν′(y) ≺r′x,y r′x,y − δPx,y,
which together yields ν′(x) ≺r′x,0 r′x,0 − δ(Px,y −Q1

0,y′). This implies the desired bound
since Px,y ≥ Q2

x,0 + Q1
0,y′ . For any clock x ∈ Xα1

∪ . . . ∪ Xi0−1, we have Px,0 ≥ Q2
x,0,

which yields ν′(x) ≺r′x,0 −δQ2
x,0.

It remains to show the lower bounds. We have Q2
0,x = 0 for all x ∈ Xα1

∪ . . . ∪ Xα′1

so −r′0,x + δQ2
0,x ≺r

′

0,x ν
′(x). For all x ∈ C \ (Xα1 ∪ . . . ∪ Xα′1

), we have by definition
Pα1,x ≥ Q2

0,x. Then, −r′α1,x + δPα1,x ≺r
′

α1,x ν
′(x)− ν′(α1). Combining with the fact that

ν′(α1) ≥ −r′0,α1
we get −r′0,x + δQ2

0,x ≺r
′

0,x ν
′(x).

It is now easy to see that from ε-tight valuations in (r, Sr), one can reach (ε+ ε′)-tight
valuations in both (r′, S1

r′) and (r, S2
r′). In fact, for any ε′ > 0, the delay d ≥ 0 can be

7.6. EXTENSION TO TURN-BASED TIMED GAMES 111

chosen such that r′x,0 − ν′(x) ≤ ε′, for x ∈ Xj0 , but also such that ν′(x) + r′0,x ≤ ε′ for
x ∈ Xα1 . In the former case, ν′ is (ε+ ε′)-tight in (r′, S1

r′), and in the latter case, ν′ is
(ε+ ε′)-tight in (r′, S2

r′).

3. The cases where α′i ≤ k0 < αi+1 for i > 1 or α′m ≤ k0 < i0 are treated similarly to the previous
case: Here α′i has the role of j0, and αi+1 has the role of α1.

4. Assume that αi ≤ k0 < α′i. Then Sr′ has the same diagonal components as Sr, and for any
x ∈ Xαi ∪ . . . ∪ Xk0 , (Sr′)x,0 = 0 and (Sr′)0,x = ∞, while for any x ∈ Xk0+1 ∪ . . . ∪ Xα′i

,
(Sr′)x,0 =∞ and (Sr′)0,x = 0. Furthermore, for any other clock x ∈ C, (Sr′)x,0 = (Sr′)0,x =∞.

If we fix SMs P and Q such that Posttime(r− δP)∩ r′ ⊆ r′− δQ, then for any ε-tight valuation
ν ∈ r − δP , any delay d with ν + d ∈ r′ is ε-tight in (r′, Sr′). In fact, the diagonal components
stay unchanged during delays, and the fractional values of clocks Xαi ∪ . . . ∪Xα′i

differ by at
most ε in ν.

5. Assume that j0 +1 = i0 (there is no αi, α′i). Consider the case k0 = j0. The proof follows again
the same ideas as before, but is simpler. We give the details. We define (S1

r′)x,y = (S2
r′)x,y =

(Sr)x,y for all x, y ∈ C. We let (S1
r′)x,0 = 0 and (Sr′)0,x =∞ for all x ∈ C, and (S2

r′)0,x =∞
and (Sr′)0,x = 0 for all x ∈ C. S1

r′ is represented in Figure 7.7(a) (with the difference that
there is no αi’s).

Let Qi ≤ Sir′ for i = 1, 2. Let j′0 = min{j | 1 ≤ j ≤ j0, Xj 6= ∅}. Define P , where Px,y ≥ Q1
0,x

for all x ∈ Xi0 ∪ . . . ∪Xn and y ∈ Xj′0
. Let Px,i0 ≥ Q1

0,y +Q2
x,0 for all x ∈ C \Xi0 and y ∈ C.

Consider ν ∈ r − δP . Let ν′ = ν + d such that ν′ ∈ r′. If −r′0,x + δ ≺r′0,x ν′(x) for all x ∈ C,
then ν′ ∈ r′ − δQ1 since (Q1)x,0 = 0 and Px,y ≥ Q1

x,y for all x, y ∈ C.
Otherwise, we have ν′(y′) ≤ −r′0,y′ + δQ1

0,y′ for some y′ ∈ C, so ν′(i0) ≤ −r′0,i0 + δQ1
0,y′ since

frac(ν′(i0)) ≤ frac(ν′(y′)). This means that ν′(i0) ≺r′i0,0 r
′
i0,0
− δQ2

x,0 for small enough δ > 0.
For all x ∈ C \ Xi0 , we have ν′(x) − ν′(i0) ≺r′x,i0 r

′
x,i0
− δPx,i0 . This implies, by the above

constraint on ν′(i0) that ν′(x) ≺r′x,0 r′x,0− δ(Px,i0 +Q1
0,y′). This implies ν′(x) ≺r′x,0 r′x,0− δQ2

x,0

since Px,i0 ≥ Q1
0,y′ +Q2

x,0. We are done since Q2
0,x = 0 for all x ∈ C.

It is clear that from ε-tight valuations in r − δP , one can delay to (ε + ε′)-tight valuations
both in r′ − δQ1 and r′ − δQ2, for any ε′ > 0.

We can now generalize the abstract game to turn-based timed games, and prove the main theorem
for these games.

Let us fix a timed game A = (LC ∪ LP , `0, C,Σ, EC , EP). We define RG(A) as follows. The
states of RG(A) is again given as a set of square nodes (`, r, Sr), where ` ∈ LC and 〈r, Sr〉 is a well
constrained region. The diamond nodes are now either of the form (`, r, Sr, e) with ` ∈ LC and e
is an edge leaving `, or (`, r, Sr) with ` ∈ LP . As before, square nodes belong to Controller, and
diamond nodes belong to Perturbator. The edges leaving square nodes and the diamond nodes
of the form (`, r, Sr, e) are defined as for timed automata. There is an edge from a diamond node
(`, r, Sr) to (`′, t, St), if there is an edge e = (`, g, σ,R, `′) in A, and the following conditions hold:

i) There is a region s with r l∗ s and t = s[R← 0],

112 CHAPTER 7. REACHABILITY IN EXCESS SEMANTICS

ii) Let m ∈ {1, 2} and (s, Si) for i = {1,m} be the constrained region(s) given by Lemma 7.6.3
applied to 〈r, Sr〉. There exists i ∈ {1, 2} such that for all SMs P , P ≤ St iff there exists an SM
Q ≤ Si with (s′, Q) = UnresetR((t, P)), for some s′ = s.

Notice that (t, St) can be computed in polynomial time thanks to Lemmas 7.6.3 and 7.2.4. Also,
all constrained regions of the square nodes admit tight valuations by Lemma 7.6.3 and Corollary 7.5.7.

Theorem 7.1.2, for turn-based timed games, follows from the following proposition.

Proposition 7.6.4. For any turn-based timed game A, Controller has a winning strategy in RG(A)
if, and only if there exists δ0 > 0 such that Controller wins Gexs

δ (A) for all δ ∈ [0, δ0).

Proof. Assume that Controller wins RG(A). As in the proof of Proposition 7.5.1, we assign to
nodes n = (`, r, Sr) in RG(A), shrunk DBMs (r′, Pn) with r′ = r, describing the set of winning
states from the corresponding locations in Gexsδ (A). The construction and the proof are the same
for square nodes. If n is a diamond node of the form (`, r, Sr), then fix any s with r l∗ s and
an edge e = (`, g, R, `′) from n with s ⊆ g. Assume, by induction hypothesis, that we have
shrunk DBMs (t, Pn1

) and (t, Pn2
) describing winning states from the successors n1 = (`′, t, S1

t) and
n2 = (`′, t, S2

t) of n through the edge e, where t = s[R← 0] (Assume n1 = n2 if there is only one
such successor). Consider (s, S1) and (s, S2) given by Lemma 7.6.3 applied to 〈r, Sr〉 (assume again
that S1 = S2 if there is only one such constrained region). By construction, for each i ∈ {1, 2},
〈t, Sit〉 is defined by Lemma 7.2.4, such that for all SMs Pni , Pni ≤ Sit iff there exists SM Qi ≤ Si
with (si, Q

i) = UnresetR((t, Pni)), for some si = s and s ⊆ si. Then, by Lemma 7.6.3, there exists
P se such that

Posttime((r
s
e, P

s
e)) ∩ s ⊆

m⋃
i=1

(si, Qi),

for some rse = r with r ⊆ rse. Here, (rse, P
s
e) describes a set of winning states from location ` assuming

Perturbator chooses the edge e and delays anywhere in the region s. We define (re, Pe) as the
intersection of all (rse, P

s
e) with r l∗ s, and define (r′, Pn) as the intersection of all (re, Pe) for all

edges e leaving n. This concludes one direction of the proof.
Now, assume that Perturbator wins RG(A). The proof of Proposition 7.5.1 is based on the

construction of a strategy for Gexsδ (A), that ensured that the valuation is always ε-tight inside any
visited constrained region. When one projects the play in RG(A), this property allows Perturbator
to choose valuations in Gexsδ (A) belonging to any successor it would choose in RG(A) in order to
win. Thus, Perturbator’s strategy simply consists in following in Gexsδ (A) its winning strategy in
RG(A). The same proof carries over to timed games since Lemma 7.6.3 shows that given a ε-tight
valuation of 〈r, Sr〉, there exist delays that lead to (ε+ ε′)-tight valuations inside 〈s, S1〉 and 〈s, S2〉
for any ε′ > 0.

7.7 Hardness Result

Proposition 7.7.1. The parameterized robust reachability problem is EXPTIME-hard on timed
automata.

Proof. We use a reduction from the halting problem in linear-bounded alternating Turing machines
over a two-letter alphabet Σ = {a, b}. LetM be such a Turing machine, and write n for the bound
on the tape length. We assume w.l.o.g. that n ≥ 3 and that instructions are of the form:

7.7. HARDNESS RESULT 113

• (disjunction) δ(q) = q′ ∨ q′′

• (conjunction) δ(q) = q′ ∧ q′′

• (instruction) δ(q) = (γ, γ′, dir, q′) where γ, γ′ ∈ {a, b} and dir ∈ {←,→}. Such a transition
reads a γ in the current cell, write a γ′ and follows direction given by dir.

Our encoding ofM uses the set of n+ 2 clocks X = {xi | i = 1 . . . n} ∪ {y, z}. The content of
cell i is encoded by clock xi: it is an a if the value of clock xi is n− i, and a b if the value of clock xi
is bounded below by 2n− i. Due to robustness concerns, these guards will be relaxed a bit in the
construction.

We assume the content of the tape is represented by a word w over alphabet Σ of length n.
Let k ∈ N and ε ≥ 0. We say that a valuation v over X is a k-shift encoding of w with precision ε
whenever v(y) = v(z) = 0, and for every 1 ≤ i ≤ n:

• wi = a iff −ε ≤ v(xi)− (n− i)− k ≤ ε

• wi = b iff −ε ≤ v(xi)− (2n− i)− k

We encode the instructions as follows.

I Regular instruction. A transition δ(q) = (γ, γ′, dir, q′) is mimicked thanks to modules
instri,kδ(q)=(γ,γ′,dir,q′) for every 1 ≤ i ≤ n and 0 ≤ k < n. Such a module is depicted on Fig. 7.9:
it is a sequence of n modules, the ith one being of a special shape. The initial state is (q, i, k, 1).
We write I for the interval [n− 1, n+ 1] and I ′ for the interval [2n− 1,+∞), and adopt the notation
S + k = {b+ k | b ∈ S} for any set S.

The correctness of this module is given by the following lemma:

Lemma 7.7.2. Let 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1. Let w ∈ Σn such that wi = γ. Assume module
instri,kδ(q)=(γ,γ′,dir,q′) is entered with valuation v which is a k-shift encoding of w with precision ε. The
Controller has a unique strategy in this module, and for every response of the δ-perturbator, the
valuation v′ when leaving the module is a 0-shift encoding of w[wi ← γ′] (the word obtained from w
by replacing wi with γ′) with precision 2δ.

Proof. There is a unique strategy for Controller, which is to play from state (q, i, k, j) when z
reaches j with the unique possible transition: if initially |v(xj)− (n− j)−k| ≤ ε, then he will choose
the top-most transition, and if initially v(xj) ≥ 2n− j + k − ε, then it will choose the bottom-most
transition. Indeed note that in the first case, since ε ≤ 1, the value of clock xj when z reaches j lies
within I + k. When clock xj is reset clock z is almost j (more precisely it lies between j − δ and
j + δ), whereas clock z is almost n when leaving the module (more precisely it lies between n− δ
and n + δ). In the second case, the value of xj is increased by almost n. This straightforwardly
implies the mentioned property.

Remark 7.7.3. Note that if the module above is entered while wi 6= γ, then it reaches a deadlock.
This could be avoided using extra transitions to a sink state.

I Conjunction. δ(q) = q′ ∧ q′′ is mimicked thanks to modules conji,kδ(q)=q′∧q′′ (for every 1 ≤ i ≤ n
and 0 ≤ k < n) on Figure 7.10. As in the previous module, the Controller has no other choice
that selecting the next transition when the constraint is satisfied. For the first transition, the
δ-Perturbator can choose to do it a bit earlier, or a bit later, and depending on this, the controller
will next to choose either y = 1 ∧ z ≤ 2 or y = 1 ∧ z > 2.

114 CHAPTER 7. REACHABILITY IN EXCESS SEMANTICS

q,i,k,p q,i,k,p+1

xp∈I+k∧ z=p

xp:=0

xp∈I′+k∧ z=p

module abp

q,i,k,p q,i,k,p+1

xp∈I+k∧
z=p

xp:=0

module (a→ a)p

q,i,k,p q,i,k,p+1

xp∈I′+k∧
z=p

module (b→ b)p

q,i,k,p q,i,k,p+1

xp∈I+k∧
z=p

module (a→ b)p

q,i,k,p q,i,k,p+1

xp∈I′+k∧
z=p

xp:=0

module (b→ a)p

Figure 7.8: Intermediary modules: when traversing module abp, either clock xp belongs to I + k
while z = p, corresponding to an a at position p. Clock xp is then reset, so that position p still
contains an a; or clock xp is in I ′ + k when z = p, encoding a b at position p. In that case, clock xp
is not reset, and the content of cell p is preserved. Using similar ideas, modules (γ → γ′)p, with
γ, γ′ ∈ {a, b}, check that cell p initially contains γ, and replace it with γ′.

module instri,kδ(q)=(γ,γ′,dir,q′)

ab1 ab2 (γ → γ′)i abn

q,i,k,1 q,i,k,2 q,i,k,3 q,i,k,i q,i,k,i+1 q,i,k,n q,i,k,n+1 q′,dir(i),0,1
z=n

y,z:=0

Figure 7.9: Module instri,kδ(q)=(γ,γ′,dir,q′) for the simulation of the regular instruction δ(q) =

(γ, γ′, dir, q′), and its constituent submodules. If dir = →, dir(i) = i + 1 if 1 ≤ i < n, and
undefined otherwise. If dir =←, dir(i) = i− 1 if 1 < i ≤ n, and undefined otherwise.

q,i,k,1

q′,i,k+3,1

q′′,i,k+3,1

y=1, y:=0
y=

1∧z
≤2

y=1∧z>2

z=3, y,z:=0

z=3, y,z:=0

y,z:=0

Figure 7.10: Module conji,kδ(q)=q′∧q′′ for conjunctive transition

Lemma 7.7.4. Let 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1. Let w ∈ Σn. Assume module conji,kδ(q)=q′∧q′′ is
entered with valuation v which is a k-shift encoding of w with precision ε. The Controller has a

7.7. HARDNESS RESULT 115

unique strategy in this module, and the δ-Perturbator can choose to reach either (q′, i, k + 3, 1) or
(q′′, i, k + 3, 1). In both cases, the valuation v′ when leaving the module is a (k + 3)-shift encoding of
w with precision ε+ δ.

Proof. The Controller has no other choice than satisfying the next constraint of the next transition.
On the other hand, the δ-Perturbator can either choose to postpone the first transition, or to fire it
earlier. In the first case, the Controller has then to choose the bottom-most transition, and in the
second case, the Controller has to choose the top-most transition. Globally the values of the clocks
are increased by 3 (plus or minus δ), which yields the expected property.

I Disjunction. δ(q) = q′ ∨ q′′ is mimicked thanks to modules disji,kδ(q)=q′∨q′′ (for every 1 ≤ i ≤ n
and 0 ≤ k < n) on Figure 7.11.

q,i,k,1

q′,i,k+1,1

q′′,i,k+1,1

y,z:=0
y=1, y

,z:=
0

y=1, y,z:=0

Figure 7.11: Module disji,kδ(q)=q′∧q′′ for disjunctive transition

Lemma 7.7.5. Let ε ≥ 0 and δ ≥ 0. Let w ∈ Σn. Assume module disji,kδ(q)=q′∨q′′ is entered with
valuation v which is a k-shift encoding of w with precision ε. The Controller can choose to reach
either (q′, i, k + 1, 1) or (q′′, i, k + 1, 1). In both cases, the valuation v′ when leaving the module is a
(k + 1)-shift encoding of w with precision ε+ δ.

Proof. Similar to the previous proof.

I Reset module. We fix an integer 0 ≤ k < n. Shifts encodings accumulate when stacking
disjunctive and conjunctive instructions. We present a module reseti,kq which resets the shift from
state q, position i.

module reseti,kq

ab1 ab2 abn

q,i,k,1 q,i,k,2 q,i,k,3 q,i,k,n q,i,k,n+1 q,i,0,1
z=n

y,z:=0

Figure 7.12: Module reseti,kq which resets the shift in the encoding.

116 CHAPTER 7. REACHABILITY IN EXCESS SEMANTICS

Lemma 7.7.6. Let 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1. Let w ∈ Σn. Assume module resetq,i,k is entered with
valuation v which is a k-shift encoding of w with precision ε. The Controller has a unique strategy
in this module, and for every response of the δ-Perturbator, the valuation v′ when leaving the module
is a 0-shift encoding of w with precision 2δ.

Proof. This proof is similar to the proof of Lemma 7.7.2.

I Global reduction. It remains to glue all the modules together. An easy solution is to apply
the reset module after each conjunctive or disjunctive instruction (though there are some more
thrifty solutions). The reset module allows both to reset the shift and to reinitialize the imprecision.
We write A for the resulting timed automaton. The halting location of the Turing machine is called
final in A.

One can easily check that in A, letting 0 ≤ δ < 1
2 , the Controller has a winning strategy against

the δ-Perturbator to reach location final if, and only if, the Turing machineM halts.

7.8 Conclusion
We considered a game-based approach to robust reachability in timed automata, by modelling the
semantics as a game between a controller and its environment. We proved that a bound on the
imprecisions, and a corresponding robust strategy for reachability objectives in turn-based timed
games can be synthesized, and that the existence of such a bound and a strategy is EXPTIME-
complete. The problem is thus harder than classical reachability [AD94]. We believe that the high
complexity is due to the ability of Controller to detect whether any perturbation has been observed
in a given transition, as in Fig. 7.10, which allows one to use alternation when encoding (bounded)
Turing machines. In the conservative perturbation game semantics studied in Chapter 8, Controller
will not be able to detect perturbations – at least, not immediately. The parameterized robust
reachability, and in fact, Büchi objectives then become PSPACE-complete.

A natural continuation of this work would be to look at zone-based on-the-fly algorithms, as for
usual timed games in [CDF+05]. In fact, solving usual timed games is also an EXPTIME-complete
problem and on-the-fly algorithms allowed efficient implementations.

Developing algorithms for safety objectives, that is, ensuring infinite executions that avoid some
given state would require the use of different techniques and seems to be a challenging problem. In
fact, in that setting, one has to deal with the accumulation of the imprecisions over infinite runs,
which cannot be avoided by adjusting δ.

Chapter 8

Büchi Objectives in Conservative
Semantics

8.1 Introduction

The previous chapter established the EXPTIME-completeness of the parameterized robust reachability
problem on timed automata under the excess perturbation game semantics. The hardness proof
relies on the ability of Controller to detect perturbations after a transition (this allows the encoding
of alternating linearly bounded Turing machines). A natural question is whether this complexity
blow-up, from PSPACE for the exact semantics to EXPTIME, is due to the ability of Controller to
detect perturbations. The conservative perturbation game semantics disallows such an ability, since
guards with equalities are never enabled. Under this semantics, parameterized robust reachability,
and in fact, Büchi objectives, become PSPACE-complete.

More precisely, we show that deciding the existence of δ > 0, and of a strategy for Controller in
the conservative perturbation game so as to ensure infinite runs satisfying a given Büchi condition is
PSPACE-complete. Thus, this is the complexity of the problem in the exact setting. We characterize
“robustly controllable” timed automata, i.e., those in which Controller has a winning strategy,
by showing that Controller can win precisely when the timed automaton has an accepting aperiodic
lasso. Aperiodicity [Sta12] is a variant of forgetfulness introduced in [BA11] in a different context, to
study the entropy of timed languages. Our characterisation confirms the suggestion of [BA11] that
this notion could be significant in the study of robustness. Our results rely on the combination of
various techniques used for studying timed automata: Forgetful and aperiodic cycles as considered
in [BA11, Sta12], topological semantics of [GHJ97], shrinking from Chapters 5 and 7, and reachability
relations of [Pur00].

The results presented in this chapter are under submission for publication [SBMR13].

8.2 Robust Büchi Objectives

In this chapter, we consider general timed automata with distinct labels and assume that the clocks
are bounded above by a constant. Note that assuming distinct labels is for convenience only and it
is no loss of generality since we are not interested in languages, but rather in location-based Büchi
objectives.

The problem we are addressing in this chapter is the following.

Definition 8.2.1. The parameterized robust controller synthesis in the conservative perturbation
game semantics asks, given a timed automaton A and a Büchi objective B, whether there exists
δ > 0 such that Controller has a winning strategy in Gcons

δ (A) for the objective B.

117

118 CHAPTER 8. BÜCHI IN CONSERVATIVE SEMANTICS

`0 `1 `2
x=1

y:=0
y≥2,y:=0

x≤2,x:=0

(a)

`1 `2

0<y<1,y:=0

0<x<1,x:=0

(b)

Figure 8.1: On the left, a copy of the timed automaton A2 of Chapter 2 that is not robustly
controllable for the Büchi objective {`2}. In fact, Perturbator can enforce that the value of x be
increased by δ at each arrival at `1, thus blocking the run eventually. On the right, the timed
automaton (from [BA11]) is robustly controllable for the Büchi objective {`2}. In fact, perturbations
at a given transition do not affect the rest of the run; they are forgotten.

Figure 8.1 shows examples of controllable and uncontrollable timed automata in this sense. The
main result of this paper is the following.

Theorem 8.2.2. Parameterized robust controller synthesis in the conservative perturbation game
semantics is PSPACE-complete for timed automata with Büchi objectives.

The next section introduces several notions we need to state our main lemma (Lemma 8.4.1),
which characterizes timed automata that are robustly controllable, based on the nature of the lassos
of the region automata.

8.3 Regions, Orbit Graphs, Algebra, Topology

We defined regions, region automata, and orbit graphs in Chapter 3. In this section, we give some
additional definitions and properties.

Regions and Orbit Graphs We introduce the following definitions on regions. A region r is
said non-punctual if it contains some ν ∈ r such that ν + [−ε, ε] ⊆ r for some ε > 0. It is said
punctual otherwise. A path π = q1e1q2e2 . . . qn is non-punctual if whenever ei = delay, qi+1 is a
non-punctual region.

We will use extensively the orbit graphs defined in Chapter 4. We need the following additional
definitions and properties. Any region r has at most one vertex v ∈ V(r) such that both v and v + 1
belong to V(r). If these exist, then v = inf(r) and v + 1 = sup(r). Moreover, sup(r) = inf(r) + 1 if,
and only if r is non-punctual.

Given any path π, for any node (i, v) of γ(π), let Succ((i, v)) denote the set of nodes (i+ 1, w)
with

(
(i, v), (i+ 1, w)

)
is an edge. We also extend Succ(·) to sets of nodes. A strongly connected

component (SCC) of a graph is initial if it is not reachable from any other SCC. We distinguish the
following folded orbit graphs.

Definition 8.3.1. A forgetful cycle of R(A) is a cycle whose folded orbit graph is strongly connected.
A cycle π is aperiodic if for all k ≥ 1, πk is forgetful. A lasso is said to be aperiodic if its cycle is.

Forgetfulness was recently introduced in [BA11] for studying the entropy of timed languages (note
however that their notion requires the graphs to be complete; this is not an important difference, see
Lemma 8.6.3). This was further studied in [Sta12] in the context of frequencies in timed automata,

8.3. REGIONS, ORBIT GRAPHS, ALGEBRA, TOPOLOGY 119

Figure 8.2: The (forgetful) folded orbit graph of the region automaton of the timed automaton of
Fig. 8.1(b).

where aperiodicity was defined. Already in these works, forgetful cycles are used to discard convergent
runs. As we show in this work, these notions can be used to characterize robust safety along infinite
executions in the game semantics.

An example of a non-forgetful cycle was given in Fig. 3.1 in Chapter 4. The timed automaton of
Fig. 8.1(b) contains a forgetful cycle, shown in Fig. 8.2.

v0

v1 v2

Some Linear Algebra For any set of vectors, we denote by Span(B) the
linear span of B, i.e. the set of linear combinations of B. In the proofs, we
will often use the vertices of a region to define a basis of a vector space that
contains the region.

Lemma 8.3.2. Let r be any region, and let v0 = inf(r). The set of vectors
Bv0

= {v − inf(r)}v∈V(r)\{v0} is linearly independent. Moreover, the affine
space v0 + Span(Bv0) contains r.

Proof. Recall the definition of vertices of r using the partition X0, X1, . . . , Xm

of the clocks according to their fractional parts. The vertex v0 = inf(r)
corresponds to the case where all the clocks are equal to their lower bounds. Region r has one
vertex vi for each 1 ≤ i ≤ m, in which all clocks X1, . . . , Xi are equal to their lower bounds, and the
rest of them are equal to their upper bounds. Hence, one can write vi − v0 as a column vector of
|X0|+ . . .+ |Xi| zeros, followed by |Xi+1|+ . . .+ |Xm| ones, in the orthogonal basis of RC . This set
is clearly independent.

To see that the affine space v0 + Span(Binf(r)) contains the entire region, write any ν ∈ r
as the convex combination of the vertices of r: ν =

∑
v∈V(r) λvv. We get that ν − inf(r) =∑

v∈V(r) λv(v − inf(r)), since
∑
v∈V(r) λvv − v0 =

∑
v∈V(r) λv(v − v0) =

∑
v 6=v0

λv(v − v0), using∑
v λv = 1.

Let the dimension of a subset r ⊆ RC be the least d such that a affine subspace of RC of
dimension d contains r.

Lemma 8.3.3. Let r be a region, and X0, X1, . . . , Xm the partition of the clocks according to their
fractional values in r. Then, r has dimension m.

Proof. Follows immediately from Lemma 8.3.2 since r has m+ 1 vertices.

120 CHAPTER 8. BÜCHI IN CONSERVATIVE SEMANTICS

Metric on Timed Traces Since all edge labels are distinct, we will write timed traces as sequences
(ti, ei)1≤i≤n where ti ≥ 0 and each ei is an edge. Given a path π of R(A), a valuation ν ∈ first(π),
we say that a timed trace (ti, ei)1≤i≤n is feasible for π and ν if there is a run starting at ν, along π,
whose timed trace is (ti, ei)1≤i≤n.

We define a variant of the metric of [GHJ97] on timed traces, which defines the same topology.
Given two timed traces u = (ti, ei)1≤i≤n and u′ = (t′i, e

′
i)1≤i≤n, we let

d(u, u′) =∞ if untime(u) 6= untime(u′),
d(u, u′) = max{|ti − t′i|, 1 ≤ i ≤ n} otherwise.

We define Balld(u, ε) as the open ball of radius ε around u in this metric. Note that the original metric
was defined using timestamps rather than delays, but both metrics define the same topology [GHJ97].

For a path π, let ttrace(π) denote the set of timed traces that are feasible for π and some
valuation in first(π).

Proposition 8.3.4 ([GHJ97]). If π is a non-punctual path, then ttrace(π) is an open set (for the
topology induced by d).

We will also use the usual d∞ metric on RC , defined as

d∞(ν, ν′) = max
x∈C
|ν(x)− ν′(x)|.

We denote open balls in this metric by Balld∞(ν, ε).

8.4 Main Lemma
Our main result is based on the following lemma, which gives a characterization of robust timed
automata using aperiodic lassos of region automata.

Lemma 8.4.1 (Main Lemma). For any timed automaton A and Büchi objective B, Controller has
a winning strategy for some δ > 0, if, and only if R(A) has a reachable aperiodic non-punctual
B-winning lasso.

The algorithm deciding robust safety consists in looking for such lassos. These cycles need not
be simple, but Section 8.7 shows how this can be done in polynomial space. We also describe how
winning strategies parameterized by δ can be computed. The two directions of the main lemma are
proved using different techniques; they are presented respectively in Sections 8.5 and 8.6.

8.5 No Aperiodic Lassos Implies No Robustness
In this section, we prove that Controller loses if there is no aperiodic winning lassos. The idea is
that if no accepting lasso of R(A) is aperiodic, then, as we show, the projection of any play to R(A)
eventually enters and stays in a non-forgetful cycle. Then, we choose an appropriate Lyapunov
function LI(·) defined on valuations and taking nonnegative values, and describe a strategy for
Perturbator such that the value of LI(·) is decreased by at least ε at each iteration of the cycle.
Hence, Controller cannot cycle infinitely on such cycles: either it reaches a deadlock, or it cycles
on non-accepting lassos. In the rest of this section, we describe Perturbator’s strategy, prove some
properties on its outcomes, choose a function LI(·), and finally prove the first direction of the main
lemma.

8.5. NO APERIODIC LASSOS IMPLIES NO ROBUSTNESS 121

8.5.1 Reachability Relations
We already noted that any valuation ν can be written as the convex combination of the vertices of
its region, i.e. ν =

∑
v∈V(reg(ν)) λvv for some unique coefficients λv ≥ 0 with

∑
v λv = 1. When the

region is clear from context, we will simply write ν = λv. Given a path π and a vertex v of first(π),
let us denote by RΓ(π)(v) the set of nodes w ∈ V(last(π)) such that (v, w) ∈ E(Γ(π)). Thus, this is
the “image” of v by the path π. Puri showed in [Pur00] that the reachability along paths can be
characterized using orbit graphs.

Lemma 8.5.1 ([Pur00]). Let π be a path from region r to s. Consider any ν ∈ r with ν =∑
v∈V(r) λvv for some coefficients λv ≥ 0 and

∑
λv = 1. If ν π−→ ν′, then for each v ∈ V(r), there

exists a probability distribution {pν,ν′v,w }w∈RΓ(π)(v) over RΓ(π)(v) such that

ν′ =
∑

v∈V(r)

λv
∑

w∈RΓ(π)(v)

pν,ν
′

v,ww. (8.1)

The converse holds for π̄: If there exist probability distributions pν,ν
′

v,w satisfying (8.1), then ν π̄−→ ν′.

This lemma shows that any successor of a point ν =
∑
i λivi can be obtained by distributing

each weight λi of any vertex vi to its successors following a probability distribution.

Example 8.5.2. The automaton of Fig. 8.1(a) contains a cycle on the region r = J1 < x, y <
2 ∧ 0 < x− y < 1K. The vertices of r are v1 = (1, 0), v2 = (2, 0), v3 = (2, 1). Figure 8.3 shows the
folded orbit graph given with a probability distribution on the outgoing edges of each node. Consider
a point ν = 1

3v1 + 1
3v2 + 1

3v3. Then, Lemma 8.5.1 says that ν′ =
∑

1≤i≤3 λivi is reachable from ν

along the cycle, where λ1 = 1
30.5 + 1

30.4 = 9
30 , λ2 = 1

31 + 1
30.3 = 13

30 , and λ3 = 1
30.6 + 1

30.2 = 4
15 .

Fig. 8.3 also shows in gray the strongly connected components of the graph. The component I is
an initial one. Notice that LI is indeed decreasing in this example: 1

3 + 1
3 ≥

9
30 + 4

15 .

The following lemma is a re-statement of Lemma 8.5.1 as suggested in [BA11]. For a folded orbit
graph Γ(π), M(Γ(π)) denotes the adjacency matrix, of size n× n, if the graph has n nodes, defined
as follows. (M(Γ(π)))u,v = 1 if, and only if there is an edge from v to u, and (M(Γ(π)))u,v = 0
otherwise. A stochastic matrix is a matrix in which the sum of each column equals 1. We see λ as a
column vector.

Lemma 8.5.3 ([BA11]). Let π be a path from region r to s. Let ν =
∑
v∈V(r) λvv and ν′ =∑

u∈V(s) λ
′
uu. Then, ν π̄−→ ν′ if, and only if there is a stochastic matrix P ≤ M(Γ(π)) such that

λ′ = Pλ.

In the above lemma, the inequality between matrices is to be interpreted componentwise. Thus,
the matrix P is simply (the transpose of) the matrix of the probabilities pν,ν

′

v,w of Lemma 8.5.1.
For any region r, and any subset I ⊆ V(r), we define the function LI : r̄ → R≥0 as,

LI(ν) =
∑
v∈I

λv, where ν = λv.

It is shown in [BA11] that given any cycle π, if I is chosen as the initial strongly connected component
of Γ(π), then for any run ν π−→ ν′, LI(ν′) ≤ LI(ν). We will abusively use LI(·) for a subset I of
nodes of γ(π) or Γ(π), that correspond to a same region. Notice that 0 ≤ LI(·) ≤ 1.

122 CHAPTER 8. BÜCHI IN CONSERVATIVE SEMANTICS

Initial SCC Iv3

v1 v20.5
0.3

0.2

1

0.6

0.4

Figure 8.3: The folded orbit graph of the cycle of Fig. 3.1, augmented with a probability distribution.

8.5.2 A global strategy for Perturbator
Let us call a valuation v ε-far if v+[−ε, ε] ⊆ reg(v). A run is ε-far if all delays end in ε-far valuations.
We define a global strategy σPδ for Perturbator that ensures ε-far runs, as follows. After any delay
ν

d−→ ν′, chosen by Controller, consider the regions spanned by the set ν′+ [0, δ]. It is easy to see that
this set intersects at most |C|+ 1 different regions, all of which must satisfy the guard by definition
of the game. So some region r satisfies ν′ + [α, β] ⊆ r, for some 0 ≤ α < β ≤ δ with β − α ≥ δ

|C|+1 .
The strategy σPδ consists in choosing the perturbation as 1

2 (β−α). This guarantees time progress (of
at least δ

2(|C|+1)). Moreover, the resulting valuation is always ε-far in its region, where ε = δ
2(|C|+1) .

We study the properties of the runs OutcomeδA(·, σPδ). The following proposition is a key element
of the proof. Using the ε-far property of the runs, this proposition derives a bound on the convex
combination coefficients of all visited valuations.

Proposition 8.5.4. Let ρ ∈ OutcomeA(·, σP
δ). For any i ≥ 1, if we write statei(ρ) = λv, then

λv ≥ ε for all vertices v ∈ V(reg(statei(ρ))).

We begin with simple properties of non-punctual regions.

Lemma 8.5.5. If π is a non-punctual delay from region r1 to r2, then exactly one of the following
cases must hold for the graph γ(π):

1. Exactly one vertex of r1 has outdegree 2. The successors of this vertex are inf(r2) and sup(r2).
All other vertices of r1 have outdegree 1.

2. Exactly two vertices of r1 have outdegree 2. These vertices are inf(r1) and sup(r1) and both
lead to inf(r2) and sup(r2). All other vertices of r1 have outdegree 1.

Moreover all vertices of r2 have indegree at most 2, and the predecessors of any vertex of indegree 2
are inf(r1) and sup(r1).

We note the following lemma on ε-far valuations.

Lemma 8.5.6. If ν is an ε-far valuation, then for all clock x, if lx and ux denote respectively the
lower and upper bounds on x in region reg(ν), then lx + ε ≤ ν(x) ≤ ux − ε. It follows that for all
v ∈ V(reg(ν)), d∞(v, ν) ≥ ε.

We show the proposition first for discrete transitions, then for ε-far delays. The following lemma
treats the clock resets, thus discrete transitions. We denote by min(λ) the minimum among the
components of the vector λ.

8.5. NO APERIODIC LASSOS IMPLIES NO ROBUSTNESS 123

Figure 8.4: Illustration of both cases of Lemma 8.5.5

Lemma 8.5.7. For any ν = λv and ν′ = λ′v′ with ν′ = ν[R← 0] for some R ⊆ C, min(λ′) ≥
min(λ).

Proof. The orbit graph of a clock reset has the property that all vertices of reg(ν) has outdegree 1
(since the reset defines a function). By Lemma 8.5.1, each λv′i is equal to the sum of a subset of the
components of v, namely those vertices that have an edge to vertex v′i. The inequality follows.

λ1 λ2

λ3

λ1 λ2 + λ3

Proving Proposition 8.5.4 for delays is more difficult and is dealt with
in the following lemma. We write λ ≥ ε to mean that all components of
the vector satisfy the inequality.

Lemma 8.5.8. Let ν = λv and ν′ = λ′v′ where ν′ = ν+d for some d ≥ 0
and ν′ is ε-far. If reg(ν) is a punctual region, and λ ≥ ε, then λ′ ≥ ε.

Proof. We denote r = reg(ν) and s = reg(ν′). Let γ denote the orbit graph
of the delay r → s. Because we have an ε-far delay, s must have vertices
inf(s) 6= sup(s).

We first show that λ′inf(s), λ
′
sup(s) ≥ ε. There exists a clock x such that

sup(s)(x) = v(x) + 1 for any other vertex v of region s (x is one of the first
clocks that appear in the fractional ordering of the clocks inside s). Let us denote by l = inf(s)(x)
and u = sup(s)(x). By Lemma 8.5.6, we must have

l + ε ≤ λ′sup(s) · u+
∑

v 6=sup(s)

λ′v · v(x).

Using the fact that u = l + 1, and v(x) = l for all v 6= sup(s), we get

l + ε ≤ λ′sup(s) · u+
∑
v 6=sup(s) λ

′
v · l,

l + ε ≤ λ′sup(s) + l
∑
v λ
′
v,

ε ≤ λ′sup(s).

A symmetric argument can be used to prove λ′inf(s) ≥ ε.
Consider now a vertex vi0 /∈ {sup(s), inf(s)}. We define the vector space E generated by the basis

{v − inf(s)}v 6=inf(s). We consider the linear function fi0 : E 7→ R which extracts from a point its
coefficient of the vector (vi0 − inf(s)). Write E ′ = f−1

i0
(0), a hyperplane in E . Then, H1 = inf(s) + E ′

is an affine hyperplane in inf(s) + E . Observe that for points in s, the coefficients under this basis
corresponds precisely to the coefficients of the convex combination of the vertices. Thus, the set
H1 ∩ s contains precisely those valuations of s whose convex combination assigns 0 to vertex vi0 .
In particular, E ′ contains the line of unit direction 1 since it contains [inf(s), sup(s)]. Thus, H1

124 CHAPTER 8. BÜCHI IN CONSERVATIVE SEMANTICS

w

ui0
r

ν

D

inf(s)

vi0
sup(s)

s

ν′

D′
w′

H1

H2

H3

contains all time-predecessors of all points of H1 ∩ s̄, and in particular for all vertices v 6= vi0 of s,
the predecessors of v in γ belong to H1.

Consider the unique predecessor ui0 of vi0 in γ (it is unique because reg(ν) is punctual). We know
that ui0 6∈ H1 since otherwise vi0 ∈ H1. There exist affine hyperplanes H2 and H3 parallel to H1,
containing respectively the segments [ν, ν′] and [ui0 , vi0]. In fact, both segments have direction 1, so
one can simply define H2 and H3 as translations of H1. Let D denote the line containing ν and ui0 ,
and D′ the line containing ν′ and vi0 . These lines are not parallel to H1. In fact, both ν and ν′ are
in the interior of their regions, so we have 0 < λ < 1 and 0 < λ′ < 1. Now, if D′ is parallel to H3,
because vi0 ∈ H3 ∩ D′, we would have ν′ ∈ H3. But fi0(ν′ − vi0) 6= 0 since 0 < λ′ < 1, which is a
contradiction. Similarly, if D were parallel to H3, then ν ∈ H3. In this case, for some delay d > 0,
ν + d could be in the interior of s, which would lead to a contradiction as above.

Let w = H1 ∩ D and w′ = H1 ∩ D′, which are therefore points. By the Intercept Theorem
(below), we have

|ui0 − ν|
|ui0 − w|

=
|vi0 − ν′|
|vi0 − w′|

. (8.2)

On the other hand, we have
ν =

(∑
u6=ui0

λu

)
w1 + λui0ui0 ,

where w1 is defined as the convex combination of all vertices but ui0 using coefficients λu∑
u6=ui0

λu

(which is well-defined as λ ≥ ε). Let w2 be a time successor of w1 in the closure of reg(s). It can be
defined as a barycenter of all vertices of reg(s) except vi0 . It therefore holds that fi0(w2) = 0, and
hence that both w1 and w2 are in H1. Also w1 ∈ D by the above equation. Therefore w1 = w. We
have similarly that

ν′ =
(∑
v 6=vi0

λv

)
w′1 + λvi0 vi0 ,

with w′1 = w′. By (8.2) and the fact that 1 − λvi0 =
∑
v 6=vi0

λv, we have λvi0 = λui0 , therefore
λvi0 ≥ ε.

The Intercept Theorem is the generalization to arbitrary finite dimension of a simple theorem
we learned in school.

Theorem 8.5.9 (Intercept Theorem). Let d and d′ be lines in an affine space. If there are
three parallel hyperplanes intersecting d and d′ respectively at points A,A′, B,B′, C, C ′, Then,
|AB|
|AC| = |A′B′|

|A′C′| .

8.5. NO APERIODIC LASSOS IMPLIES NO ROBUSTNESS 125

Proof of Proposition 8.5.4. By induction on the length of a run under strategy σPδ . Initially, we are
in a singleton region with one vertex, so the only convex coefficient is 1. In the induction step, resets
follow from Lemma 8.5.7. Delays follow from Lemma 8.5.8 since all delays are ε-far, and by the fact
that the valuation after the latest reset lies in a punctual region.

We prove a similar proposition for the edge probabilities of Lemma 8.5.3. Proposition 8.5.10
says that all edges of the folded orbit graph receive a probability of at least Ω > 0 along ε-far delays,
according to the interpretation of Lemma 8.5.3.

Proposition 8.5.10. Let ν = λv and ν′ = λ′v′ denote two valuations satisfying λ, λ′ ≥ ε, and such
that ν π−→ ν′ is an ε-far delay of duration at least ε. Then, there exists a stochastic matrix P such
that

ΩM(Γ(π)) ≤ P ≤M(Γ(π)),

such that λ′ = Pλ, where Ω = min(1
2 ,

ε
2).

Proof. Let r and s denote the source and target regions.
Assume that both inf(s) and sup(s) have indegree 1, and let u be a predecessor. We have,

λ′inf(s) = λu · pu,inf(s),

λ′sup(s) = λu · pu,sup(s).

If u is the only vertex of r, then λu = 1, and we get that pu,inf(s), pu,sup(s) ≥ ε since λ′inf(s), λ
′
sup(s) ≥

ε. Otherwise, we must have λu ≤ 1 − ε. Again, because λ′inf(s), λ
′
sup(s) ≥ ε, we get that

pu,inf(s), pu,sup(s) ≥ ε
1−ε ≥ Ω. All other edges have outdegree 1 so the probabilities are equal

to 1.
Assume now that sup(s) has indegree 2, but inf(s) has indegree 1. We show that in this case

r = s. Observe that inf(s) cannot have indegree higher than that of sup(s) since any predecessor of
inf(s) is a predecessor of sup(s). Now, sup(s) cannot have both its predecessors outside V(s) since
otherwise these would be predecessors of inf(s). Thus, inf(s) ∈ V(r), and is a predecessor of sup(s).
In this case, inf(s) is a predecessor of itself since this is a delay transition. Furthermore, if sup(s)
has its other predecessor outside s, this would again be a predecesor of inf(s), and inf(s) would have
indegree 2. Therefore, the predecessors of sup(s) must be sup(s) and inf(s), and the predecessor of
inf(s) is itself. This is only possible when s = r.

We have,
λ′inf(s) = λinf(s) · pinf(s),inf(s),

λ′sup(s) = λinf(s) · pinf(s),sup(s) + λsup(s) · psup(s),sup(s).

We get that pinf(s),inf(s) ≥ Ω. Here, psup(s),sup(s) = 1 since sup(s) has outdegree 1 by assumption.
Let x denote the clock with the least fractional value in s. Notice that the clock x has the same
value in all vertices apart from sup(s). We have ν(x) = inf(s)(x) · (1− λsup(s)) + sup(s)(x) · λsup(s),
which gives ν(x)− inf(s)(x) = λsup(s). Similarly, we have ν′(x)− inf(s)(x) = λ′sup(s). Since the delay
is at least ε, we have

(ν′(x)− inf(s)(x))− (ν(x)− inf(s)(x)) = ν′(x)− ν(x) ≥ ε.

which is equivalent to λ′sup(s) − λsup(s) ≥ ε. By writing λ′sup(s) as above, this is equivalent to

λinf(s) · pinf(s),sup(s) + λsup(s) · (psup(s),sup(s) − 1) ≥ ε.

126 CHAPTER 8. BÜCHI IN CONSERVATIVE SEMANTICS

Thus, we must have λinf(s) · pinf(s),sup(s) ≥ ε, which means that pinf(s),sup(s) ≥ ε
1−ε ≥ ε, as required.

Let us now consider the case where two vertices of r have outdegree 2. This means that inf(r)
and sup(r) are different, and that they have an edge leading to both inf(s) and sup(s). To simplify
notations, let us write r1 = inf(r), r2 = sup(r) and similarly s1 and s2 for s. We have the following
relation.

λ′s1 = p11λr1 + p21λr2 ,
λ′s2 = p12λr1 + p22λr2 ,

(8.3)

where p11, p12, p21, p22 ≥ 0 are given by Lemma 8.5.3 and satisfy p11 + p12 = 1, p21 + p22 = 1. Now,
all pij may not be greater than Ω here. But we will show that one can then modify these to obtain
components greater than Ω. In other terms, some stochastic matrix P satisfyin P ≥ ΩM(Γ(π)) will
also satisfy Lemma 8.5.3. Without loss of generality, let us assume that p11 < Ω. We would like to
increase p11 by some α ≥ 0 and still satisfy the above equation, the stochasticity, and obtain a new
matrix of pij whose all components are in [Ω, 1− Ω]. Then, the new equation is the following:

λ′s1 = (p11 + α)λr1 + (p21 −
αλr1
λr2

)λr2 ,

λ′s2 = (p12 − α)λr1 + (p22 +
αλr1
λr2

)λr2 .
(8.4)

This equation is satisfied for any α, assuming (8.3) is satisfied. In order to obtain the matrix we are
looking for, it suffices to find α such that the following constraints are satisfied (since stochasticity
is already satisfied).

Ω ≤ p11 + α ≤ 1− Ω,

Ω ≤ p21 −
αλr1
λr2
≤ 1− Ω.

(8.5)

We now use Fourier-Motzkin elimination to show that there is always such a choice for α. Let us
rewrite the above constraints on α by separating lower bounds and upper bounds.

Ω− p11 ≤ α, (8.6)
λr2
λr1

p21 +
λr2
λr1

(1 + Ω) ≤ α, (8.7)

α ≤ 1− Ω− p11, (8.8)

α ≤ p21
λr2
λr1
− Ω

λr2
λr1

. (8.9)

It suffices to show that each pair of lower and upper bounds is satisfied by some α.
(8.6)-(8.8): holds since Ω < 1

2 .
(8.6)-(8.9): This can be written as Ω ≤ λr2

λr1+λr2
p21 +

λr1
λr1+λr2

p11. But ε ≤ λr2p21 + λr1p11 since
this is equal to λ′s1 . Since λr1 + λr2 ≤ 1 and Ω ≤ ε, the constraint holds.

(8.7)-(8.8): This is equivalent to

Ω ≤ λr1
λr1+λr2

(1− p11) +
λr2

λr1+λr2
(1− p21)

= 1−
(

λr1
λr1+λr2

p11 +
λr2

λr1+λr2
p21

)
.

We have λr1
λr1+λr2

p11 +
λr2

λr1+λr2
p21 ≤

λr1
λr1+λr2

Ω +
λr2

λr1+λr2
since p11 < Ω and p21 ≤ 1. So, it suffices

to show that Ω ≤ 1 − λr1
λr1+λr2

Ω − λr1
λr1+λr2

, i.e. Ω ≤ λr1
2λr1+λr2

. But this holds since ε ≤ λr1 and
2λr1 + λr2 ≤ 2− ε. In fact, we have Ω ≤ ε

2−ε .

(8.7)-(8.9): This is equivalent to 2
λr2
λr1

Ω ≤ λr2
λr1

and holds since Ω ≤ 1
2 .

8.5. NO APERIODIC LASSOS IMPLIES NO ROBUSTNESS 127

8.5.3 Decreasing Lyapunov function
In the previous paragraph, we established lower bounds on the convex coefficients of the visited
valuations. We use this property to find a Lyapunov function that strictly decreases at each cycle.
Let us first note the following property of the functions LI(·).

Lemma 8.5.11. Let π be a cycle, and write γ(π) = (V1 ∪ . . . ∪ Vn, fG, E) for its orbit graph, and
Γ(π) = (V, f ′G, E

′) for its folded orbit graph. Let I1 ⊆ V be any subset for which (u, v) ∈ E′ with
v ∈ I1 implies u ∈ I1. Define Ii = Succγ(π)(Ii−1) for all 2 ≤ i ≤ n. Then, for any run ρ along π,
we have LIi(statei(ρ)) = LI1(state1(ρ)) for all 1 ≤ i ≤ n.

Proof. By induction, using Lemma 8.5.1.

The following lemma shows that runs along non-punctual progress cycles can be modified so
as to reach any valuation in a ball around the target state. This gives the dimension of the set of
valuations reachable along a progress cycle starting from a given valuation. The result and its proof
are similar to [DDMR08, Lemma 29].

Lemma 8.5.12. Let π be a non-punctual progress cycle, and (`, ν)
π−→ (`, ν′) a run along π. Then,

there exists ε > 0 such that there exists a run from (`, ν), along π, to any point in {`}×(Balld∞(ν′, ε)∩
reg(ν′)).

Proof. Consider the partition of the clocks inside first(π), according to their fractional ordering.
One can factor π as π = π′πnπn−1 . . . π1, where each πi starts with the latest reset of some clocks
Yi ⊆ C, with Yi = Xj for some j, and π1 ends with a reset of the clocks X0 if this set is non-empty.
To see that for any i, there exists j such that Yi = Xj , suppose the latest resets of some clocks x
and y are at different transitions, say, statei(π) and statej(π) respectively, with i < j. Then, they
belong to the same set Xk if, and only if the total delay of any run along πi...j is an integer. But
this is only possible if equality constraints are used, which is not the case since π is non-punctual.
Moreover, we have n = m, since all clocks are reset at least once as π is a progress cycle.

Let us factorize the run ρ as ρ = ρ′ρmρm−1 . . . ρ1 where each ρi is along πi and ρ′ along π′. Then,
for each clock x ∈ Xi, ν′(x) = delay(ρiρi−1 . . . ρ1), where delay(·) denotes the sum of the delays
of a given run. Consider the timed trace (di, ei)i of ρ. We have di > 0 for all i by definition. By
Proposition 8.3.4, any timed trace (d′i, ei)i, with |di − d′i| ≤ ε for all i ≥ 1, defines a run starting at
(`, ν) along π, if ε is chosen small enough. It remains to show that any point ν′′ ∈ Balld∞(ν′, ε)∩reg(ν′)
is reachable from (`, ν) following such a “close” timed trace.

Consider such an ε, and any ν′′ ∈ reg(ν′) such that d∞(ν′, ν′′) ≤ ε
2 . Notice that we have

frac(ν′′(x)) = frac(ν′′(y)), and frac(ν′(x)) = frac(ν′(y)) for any x, y ∈ Yi, which implies ν′′(x) −
ν′(x) = ν′′(y)− ν′(y). Thus, we define (η1, . . . , ηm) ∈ [− ε

2 ,
ε
2]m such that ν′(x) + ηi = ν′′(x) for all

x ∈ Yi. A run ending in (`, ν′′) can be defined as o = o′om . . . o1, by modifying the trace (di, ei)i
so as to satisfy the following properties:

delay(o1) = delay(ρ1) + η1,
delay(o2) = delay(ρ2) + η2 − η1,
. . .
delay(om) = delay(ρm) + ηm − ηm−1,
delay(o′) = delay(ρ′).

It is possible to obtain o by modifying an arbitrary delay in each ρi since |ηi − ηi+1| ≤ ε.

128 CHAPTER 8. BÜCHI IN CONSERVATIVE SEMANTICS

We now prove that the folded orbit graphs of non-punctual progress cycles are always connected.
If the cycle is non-forgetful, there are at least two connected SCCs (Corollary 8.5.14).

Lemma 8.5.13. The folded orbit graph of any non-punctual progress cycle is connected.

Proof. Consider a non-punctual progress cycle and let us denote r = first(π). Consider the basis
Bv0 , with v0 = inf(r), defined in Lemma 8.3.2. Assume that the orbit graph has at least two disjoint
connected components G1 and G2. Note that we do not require Gi’s to be strongly connected
components. These are simply two disjoint maximal subgraphs.

Let v0 + u be a point in r, with u ∈ Span(Bv0
) and write u =

∑
v λvv. Let f denote the linear

function that associates to each element of Span(Bv0
) the sum of the coefficients of the vertices

of G1. Then f(u) =
∑
v∈G1

λv. For any run (v0 + u)
π−→ (v0 + u′), where u′ =

∑
v λ
′
vv, we have,

by Lemma 8.5.11, f(u) = f(u′). Thus, the set U ⊆ r of valuations reachable from v0 + u along π
lies in the set v0 + f−1(f(u)), which is an affine hyperplane of v0 + Span(Bv0

). So it has smaller
dimension than r. On the other hand, by Lemma 8.5.12, the set U includes the intersection of a
d-open ball intersected with r, hence have the same dimension as r. Contradiction.

Corollary 8.5.14. The folded orbit graph of a non-punctual non-forgetful
progress cycle π contains at least two strongly connected components that are connected. We
associate with each π an initial SCC of Γ(π), which we denote by I(π).

Hence, for any non-punctual non-forgetful cycle π, we consider the function LI(π). The following
lemma shows that LI(π) decreases by at least a fixed amount at each iteration of such a cycle under
Perturbator’s strategy σPδ .

Lemma 8.5.15. Let ω ∈ OutcomeδA(·, σP
δ), and ρ be a finite prefix of ω such that π, the projection

of ρ to regions, is a cycle. If π is a non-forgetful progress cycle, then, writing first(ρ) = λv and
last(ρ) = λ′v′, we have, ∑

i∈I(π)

λ′i ≤
∑
i∈I(π)

λi − ε2/2.

Proof. We know that π is non-punctual by definition of σPδ . Let us write γ(π) = (V1∪ . . .∪Vn, fG, E).
For each 1 ≤ i ≤ n, let Ii denote the set of nodes of Vi that are reachable from the nodes {1}×I(π) ⊆
V1. Observe that I1 = {1}×I(π), and {n}×I(π) ⊆ In since I(π) is a strongly connected component.
However, In 6= {n} × I(π) because of Corollary 8.5.14. Let Ji denote the set of nodes of Vi from
which the set {n} × I(π) is reachable. We have Jn = {n} × I(π) by definition. Because I(π) is
an initial component, we have Ji ⊆ Ii for all i. Indeed, assume v ∈ Ji \ Ii for some i. Then some
node of {n} × I(π) is reachable from v. Since each node has at least one predecessor in γ(π), v is
reachable from some node u of V1. We have that u 6∈ I1, since otherwise v ∈ Ii. Thus, in Γ(π), there
is an edge from the SCC of u to I(π), contradicting the fact that I(π) is an initial SCC. Moreover,
we have I1 = J1. In fact, Jn is reachable from any node of I1 since this is a strongly connected
component.

Let i0 be the least index such that Ii 6= Ji. Notice that we have LIi(statei(ρ)) = LI1(state1(ρ)) for
any 1 ≤ i ≤ i0−1, by Lemma 8.5.1 (in fact, all predecessors of Ii are in Ii−1, and all nodes of Ii−1 have
at least one successor in Ii). Moreover, for any 1 ≤ i ≤ n, we have LJi(statei(ρ)) ≥ LJn(staten(ρ)),
since all predecessors of Ji are in Ji−1 by definition. We will show that LJi0 (statei0(ρ)) ≤
LJi0−1(statei0−1(ρ))− ε2/2, which thus implies the desired inequality.

8.5. NO APERIODIC LASSOS IMPLIES NO ROBUSTNESS 129

There exists a ∈ Ji0−1 and b ∈ Ii0 \ Ji0 with (a, b) ∈ E. Let us write λv = statei0−1(ρ). By
Proposition 8.5.4, we have λa ≥ ε. Moreover, the transition from step i0 − 1 to i0 must be a delay
since vertex a has two successors; a must have a successor in Ji0 , thus different than b, since a ∈ Ji0−1.
By Proposition 8.5.10, the edge (a, b) receives a probability of at least ε/2 (in Lemma 8.5.1). The
inequality follows.

I1 I5

J5

a

b

Figure 8.5: Sets Ii and Ji for the cycle of Fig. 3.1

Let a ∈ Ji0−1 such that there exists b ∈ Ii0\Ji0 with (a, b) ∈ E(γ(π)). Let us write λv = statei0(ρ).
Then, LJi0 (statei0(ρ)) ≤ LJi0∪{b}(statei0(ρ))− ε since λb ≥ ε by Proposition 8.5.4.

The previous proposition already gives an insight into the proof, since it follows that no non-
forgetful cycle can be repeated infinitely often under strategy σPδ . However, one also needs to show
that switching between different cycles cannot lead to Controller’s winning. Thus, the last tool we
need before the proof is the following theorem, which will allow us to factor any paths into cycles
with the same folded orbit graphs.

We will use Theorem 4.5.2 as in Chapter 4 as follows. Given a cycle π factorized as π = π1π2 . . . πn,
in which all πi are cycles from the same region-states, we consider a linearly ordered complete
graph G = (V,E) with V = {1, . . . , n} and E is defined by the usual order on integers. The
coloring function f is given as follows. For all i < j, we define f((i, j)) = Γ(πiπi+1 . . . πj). Thus, a
monochromatic path given by the theorem corresponds to a factorization into π = π0 ·(πα1 . . . πα2−1)·
(πα2 . . . πα3−1) · . . . such that all Γ(παj . . . παj+1−1) define the same graph.

Note that Ramsey’s theorem would actually suffice for our proof but it would give an exponentially
larger bound than Theorem 4.5.2. Consequently, the proof below will bound by a simple exponential
the number of steps to the “failure” under any strategy in non-robust systems.

Proof: No winning aperiodic lassos implies no robust safety. To get a contradiction,
fix any winning strategy σ for Controller and let ρ be the infinite run OutcomeδA(σ, σPδ). Let π
be the projection of ρ into regions. By definition of σPδ , π is a non-punctual path. Let us
write π = π0π1 . . . πn . . . such that all πi are accepting cycles from a same state. Now, Γ(·) associates
each cycle π to its folded orbit graph. Since any such graph has |C|+ 1 nodes, and all its nodes are
labelled with the same region, the codomain of Γ has size r = 2(|C|+1)2 × |R(A)|. Let n = d2/ε2e+ 1

and N large enough so that d
√
N/r − 2e − 1 ≥ n2(|C|+1)2

. We extract π′ the prefix of π with
N factors, and apply Theorem 4.5.2 on π′ where Γ is the coloring function. This gives a factorization
π′ = π′0π

′
1 . . . π

′
n′π
′
n′+1, with n

′ = n2(|C|+1)2

, where Γ(π′1) = . . . = Γ(π′n′), and π
′
i are obtained by

concatenating one or several consecutive πi. By hypothesis, some power k of π′i is non-forgetful,
with k ≤ 2(|C|+1)2

since this is the number of folded orbit graphs for a fixed labelling function.
But since the folded orbit graphs are the same for all π′i, this power is the same for all factors.
Moreover, for the same reason, Γ(π′i

k
) = Γ(π′iπ

′
i+1 . . . π

′
i+k−1). Hence, we can factorize π′ again into

π′ = π′0π
′′
1π
′′
2 . . . π

′′
nπ
′′
n+1, where Γ(π′′1) = . . . = Γ(π′′n) and all are non-forgetful; while π′0 and π′′n+1

are arbitrary non-punctual paths. Moreover, π′′i , for 1 ≤ i ≤ n, must be progress cycles too. In
fact, otherwise there is some clock x ∈ C that is never reset along π′. But because σPδ ensures a

130 CHAPTER 8. BÜCHI IN CONSERVATIVE SEMANTICS

time progress of ε at each delay, this means that π′ contains delays of at least nε2/2 > 1, so we
cannot have first(π′1) = last(π′n) since the integer part of the clock x changes, and so does the region
since all clocks are assumed to be bounded. Now, we have I(π′′i) = I(π′′j) for any 1 ≤ i, j ≤ n, so
the functions LI(π′′i) are the same for all 1 ≤ i ≤ n. If we write ρi the state reached in ρ following
π′0π

′′
1 . . . π

′′
i , then we get, by Lemma 8.5.15, LI(π′′1)(ρn) ≤ LI(π′′1)(ρ0)−nε2/2. This is a contradiction

since 0 ≤ LI(π′1) ≤ 1 and nε2/2 > 1.

8.6 Aperiodic Lassos Implies Robustness

We now prove that if R(A) contains an aperiodic non-punctual forgetful B-winning lasso, then
there is a strategy for Controller in Gconsδ (A) ensuring robust safety. In the proof, we use shrinking
techniques from Chapters 5 and 7, and the topological semantics of [GHJ97]. The basic idea is
the following. We prove that Controller can always ensure following one iteration of a (finite)
non-punctual cycle. This ensures that the the cycle of an accepting lasso is reachable. Then, if the
cycle is aperiodic, we show that Controller can also ensure to repeatedly move inside a set at the
“middle” of the target region. This provides a winning strategy for Controller.

8.6.1 Controllable Predecessors

We will express “controllable predecessors” using shrunk DBMs without parameters from Chapter 3.
Consider an edge e = (`, g, σ,R, `′). For any set Z ⊆ RC≥0, we define the controllable predecessors

of Z as follows:
CPreδe(Z) = Pre≥δ(shrink[−δ,δ](g ∩ UnresetR(Z))).

Intuitively, CPreδe(Z) is the set of valuations from which Controller can ensure reaching Z in one
step, following the edge e. In fact, it can delay in shrink[−δ,δ](g ∩ UnresetR(Z)) with a delay of
at least than δ, where under any perturbation in [−δ, δ], the valuation satisfies the guard, and it
ends, after reset, in Z. We extend this operator to paths as expected. Note that CPre0

e is the usual
predecessor operator without perturbation: If N = CPre0

π(M) for some sets N,M and path π, then,
N is the set of all valuations that can reach some valuation in M following π.

It immediately follows from Lemma 3.4.5 that the controllable predecessors of shrunk DBMs are
shrunk DBMs, which are computable.

Lemma 8.6.1. Let e = (`, g, σ,R, `′) be an edge. Let M and N be non-empty DBMs such that N =
CPre0

e(M). Then, for any SM P , there exists an SM Q such that (N ′, Q) = CPreδe((M,P)) for some
N ⊆ N ′ and N = N′.

Notice that, the set (N ′, Q) given by the previous lemma could be empty. We show in the
following lemma, that the controllable predecessors of open sets along non-punctual paths are
non-empty for small enough δ > 0.

Lemma 8.6.2. Let π be a non-punctual path from region r to s. Let s′ ⊆ s such that there exists
ν′ ∈ s′ and ε > 0 with Balld∞(ν′, ε) ∩ s ⊆ s′. Then, CPreδπ(s′) is non-empty for small enough δ > 0.

Proof. Note that the requirement on s′ says that s′ should have non-empty interior in the d∞-topology
induced on the set s. Consider such a set s′ and a valuation ν′ ∈ s′ with B = Balld∞(ν′, ε) ∩ s ⊆ s′
for some ε > 0. Let ρ be any run along π from some ν ∈ r to ν′, and let u = (di, ei)1≤i≤n denote the

8.6. APERIODIC LASSOS IMPLIES ROBUSTNESS 131

timed trace of ρ. Assume that di > 0 for all 1 ≤ i ≤ n. Choose 0 < ε′ < ε so that di ≥ ε′ for all i,
and all timed traces in Balld(u, ε′) are lead to some point in B. This is possible since all delays are
positive, by Prop. 8.3.4 (π is non-punctual), and by the fact that the value of each clock at the last
state of a run is continuously determined by the delays in the timed trace. Let δ ≤ ε′. Now, starting
at ν, if Controller plays according to u, then the timed trace of any outcome belongs to Balld(u, ε′),
thus is feasible and ends in B. More precisely, Controller’s strategy that ensures reaching B consists
simply in playing u from ν. Therefore, ν ∈ CPreδπ(s′).

If not all delays are positive, then one can choose another run ρ′ with this property, and such
that d(u, ttrace(ρ′)) ≤ ε′ since ttrace(π) is open, and use ρ′ in the above proof.

8.6.2 Winning Under Perturbations

Let π0π denote a non-punctual aperiodic lasso, where π is the cycle. By definition, for any n ≥ 1,
Γ(πn) is strongly connected. We first show that there exists n ≥ 1 such that Γ(πn) is a complete
graph.

Lemma 8.6.3. Let π be an aperiodic cycle. Then, there exists n ≤ |C0| · |C0|! such that Γ(πn) is a
complete graph.

Proof. For any vertex v, there exists nv ≤ |V | such that (v, v) ∈ Γ(πnv) since Γ(π) is strongly
connected. Let m = lcmv∈V (nv). Then, (v, v) ∈ Γ(πm) for any vertex v ∈ V . Note that m ≤ |V |!.
Let us write π′ = πm. Consider the length nv,w of the shortest path from v to w in Γ(π′) for any
v, w ∈ V , and let m′ = maxv,w∈V nv,w, which is finite since π′ is strongly connected. We have,
(v, w) ∈ Γ(π′

m′
). In fact, (v, v) ∈ Γ(π′

m′−nv,w) since (v, v) ∈ Γ(π′) and (v, w) ∈ Γ(π′
nv,w). We have,

m′ ≤ |V |, so n can be chosen as |V | · |V |!.

ss
s′

Figure 8.6: A subregion s′ of s with smaller granularity

By the previous lemma, let us assume, in the rest of this section, that Γ(π) is a complete
graph (one can simply consider the lasso π0π

n for n large enough). Let s be a region with smaller
granularity inside r, obtained so that the Hausdorff distance between r and s is positive. The choice
of s is illustrated in Fig. 8.6. Note that s can be chosen so that it can be expressed by a DBM (with
rational components). The construction is defined in the following lemma.

Lemma 8.6.4. For any non-empty DBMM , there exists a non-empty DBM N such that Balld∞(ν, ε)∩
M ⊆ N for some ν ∈M , and for any shrinking matrix P with (M,P) 6= ∅, N ⊆ (M,P).

Proof. We define Q as follows. For any x, y ∈ C0, if Mx,y = −My,x, then Qx,y = Qy,x = 0.
Otherwise, we have Mx,y ≥ −Mx,y + 1, and in this case, we let Qx,y = Qy,x = 1. Let us show
that M − εQ 6= ∅, for small enough ε > 0. To show non-emptiness, it suffices to show that the
constraints of the DBM M − εQ do not imply a negative upper bound on zero [BY04]. For a

132 CHAPTER 8. BÜCHI IN CONSERVATIVE SEMANTICS

contradiction, assume there is a sequence of indices x1, x2, . . . , xn ∈ C0, with x1 = xn, such that∑n−1
i=0 (Mxi,xi+1 − εQxi,xi+1) < (0,≤) for all ε > 0. This means that

∑n−1
i=0 Mxi,xi+1 ≤ (0,≤),

but since M is non-empty, we have
∑n−1
i=0 Mxi,xi+1

= (0,≤). But then, for all 1 ≤ i ≤ n − 1,
we must have Mxi,xi+1

= −Mxi+1,xi , which implies Qxi,xi+1
= 0 by definition, thus we cannot

have
∑n−1
i=0 (Mxi,xi+1

− εQxi,xi+1
) < (0,≤). To see that Mxi,xi+1

= −Mxi+1,xi , observe that if
−Mxi+1,xi < Mxi,xi+1

for some i, then by Lemma 3.3.3, for any α ∈ (0, 1), there exists a valuation ν
in M , and satisfying ν(xi) − ν(xi+1) = Mxi,xi+1

− α. But since ν(xj) − ν(xj+1) ≤ Mxj ,xj+1
for

all 1 ≤ j ≤ n, this implies that ν(x1)−ν(x2) +ν(x2)−ν(x3) + . . .−ν(xn) <
∑n−1
j=1 Mxj ,xj+1

−ν < 0,
which is a contradiction.

Now, we choose ε as above, and small enough so that Mx,y 6= −My,x implies that Mx,y −
εQx,y > −My,x + εQy,x. We let N = M − εQ. Then, given any shrunk DBM (M,P), we have
Mx,y − εQx,y < Mx,y − δPx,y, for small enough δ > 0 as required. Since ε can be chosen arbitrarily
small, N also has non-empty interior in the topology induced on M .

Note that N defined here could be given by scaling r, i.e. applying a homothety as in Figure 8.6.

The following lemma states that along a cycle whose orbit graph is complete, the reachability
relation between valuations is complete.

Lemma 8.6.5 ([BA11]). Let π be a cycle of R(A) such that Γ(π) is a complete graph. Then, for
any pair ν, ν′ ∈ first(π), there exists a run ν π−→ ν′.

Proof: Winning aperiodic lassos implies robust safety. We write r = first(π). Let s ⊆ r given
by Lemma 8.6.4 applied to r. Because Γ(π) is complete, we have, by Lemma 8.6.5, r = CPre0

π(s). By
Lemma 8.6.1, there exists a SM Q such that (r,Q) = CPreδπ(s). By Lemma 8.6.2, (r,Q) is non-empty.
By definition of s, for small enough δ > 0, s ⊆ (r,Q), so Controller has a strategy to always move
inside s, at each iteration of π. Similarly, CPreδπ′((r,Q)) is also non-empty and therefore contains
the initial state. Hence, Controller has a winning strategy. The strategy and a corresponding δ can
be computed using Proposition 3.4.6, given an aperiodic lasso.

8.7 Algorithm
The algorithm for deciding robust Büchi acceptance follows from Lemma 8.4.1. It consists in looking
for aperiodic non-punctual B-winning lassos in R(A). These lassos need not be simple, but we will
bound their lengths, and give a polynomial space algorithm.

Lemma 8.7.1. Let B be a Büchi objective in a timed automaton A, and π be an aperiodic non-
punctual B-winning cycle of R(A). Then, there exists a cycle π′ with the same properties, with
length at most N = 2(|C|+1)2+1 × |R(A)|.

Proof. We label all prefixes π1...i with (Γ(π1...i), bi), where bi = > if π1...i visits a location in B, and
⊥ otherwise. The number of labels is at most N = 2(|C|+1)2+1 × |R(A)|. We argue that a cycle π′
of length less than N can be extracted from π, if |π| ≥ N . In fact, in this case, we must have i < j
such that Γ(π1...i) = Γ(π1...j) and bi = bj . But then, removing the infix πi+1...j yields a shorter cycle,
which visits B if π1...j does so, and with the same folded orbit graph. By repeating this procedure,
we obtain a path π′ of length less than N , which is non-punctual aperiodic B-winning.

8.8. PSPACE-HARDNESS OF ROBUST SYNTHESIS 133

The algorithm starts by guessing, using polynomial space, a state q1 reachable by a non-punctual
path in R(A). From q1, one can guess an aperiodic non-punctual B-winning cycle in polynomial
space as follows. We visit a path q1e1q2e2 . . . qi nondeterministically, and only keeping in memory
the graph Gi = Γ(q1e1q2e2 . . . qi) and a boolean indicating whether a winning state has been visited.
Thanks to the operator ⊕, for any transition qieiqi+1, one can compute Gi+1 using only Gi and this
transition. Whenever the state q1 is visited again, the algorithm checks whether the current graph
Gi is aperiodic, by Lemma 8.7.2. If so, it stops and accepts. Otherwise, it stops and rejects after N
steps.

Lemma 8.7.2 ([Sta12]). Given a cycle π, one can decide in polynomial space whether Γ(π) is
aperiodic.

To actually compute a winning strategy, one can find a lasso as described above, while keeping
the whole path q1e1q2 . . . qn in memory. Then, one can extract a subset as in Lemma 8.6.4, and
apply Corollary 3.4.5 to the cycle and to the prefix. This computation only takes polynomial time in
the size of the path, but since the lasso can have exponential size, the computation takes worst-case
exponential time.

8.8 PSPACE-hardness of robust synthesis
We show PSPACE-hardness of the parametrised robust controller synthesis problem, both for
reachability and safety objectives.

We reduce the halting problem for linearly-bounded deterministic Turing machines to our
synthesis problem. LetM be a linearly-bounded deterministic Turing machine, and w0 be an input
toM. Let N be the bound on the tape ofM when simulating on input word w0 (N is linear in |w0|).
We assume the alphabet is {a, b}, and we encode the content of the i-th cell Ci ofM using a clock xi
with the following convention: when the module is entered, cell Ci contains an a whenever xi < 1, and
it contains a b whenever xi > 2. To simulate a transition (q, α, q′, β, dir) ofM, where α, β ∈ {a, b}
and dir ∈ {−1, 1}, we build a module as in Fig. 8.7 for every index i such that both i and i+ dir lie
between 1 and N . Along this module, after any initial delay of duration u0 ∈ (2, 3), cell Cj contains a
iff xj < 4, and it contains b iff xj > 4. Transitions between pj and pj+1, for j 6= i, ensure preservation
of this encoding. Between pi and pi+1, the module checks that Ci = α (through guard gα,i), and
replace this content with β (through reset Yβ,i). This way, one run through the module updates
the content of the tape and the position of the tape head according to the selected transition ofM.

We complete the construction with an initialization module (encoding input w0 on the tape).
We write A for this timed automaton and write halt for the halting location (which is made a sink).

We show the following lemma:

Lemma 8.8.1. Let s0 be the initial configuration of A. The following three properties are equivalent:

1. M halts on w0;

2. Controller has a robust strategy in A to reach halt, which can be perturbed by at most δ < 1
4N ;

3. Controller has no robust strategy in A to avoid halt, whatever the value of δ > 0.

Proof. We first prove the equivalence of the two first properties.
First assume thatM halts on w0. We describe a robust winning strategy for the Controller in A.

We consider the simulation of the transition (q, α, q′, β, dir) ofM. Assume state (q, i) is entered with

134 CHAPTER 8. BÜCHI IN CONSERVATIVE SEMANTICS

q, i

p1 p3 . . . pi pi+1 . . . pN pN+1

q′, i+ dir

u:=0

2<u<3

u<3
u:=0

ga,2

x2:=0

gb,2

gα,i

Yβ,i

ga,N

xN :=0

gb,N

Figure 8.7: Simulation transition (q, α, q′, β, dir) where α, β ∈ {a, b}. Index i is such that 1 ≤ i ≤ N
and 1 ≤ i+ dir ≤ N . Guards and resets are defined as follows: ga,j is (xj < 4 ∧ u < 3) and gb,j is
(xj > 4 ∧ u < 3), while Ya,j is {xj} and Yb,j is empty.

some valuation v0 that properly encodes some content of the tape ofM: if cell Cj contains an a,
then v0(xj) < 1, and if cell Cj contains a b, then v0(xj) > 2. We describe a strategy for Controller,
and then pick a corresponding outcome (with perturbations). The candidate strategy is as follows:
leave (q, i) when u = 2.5, and in each of the pj ’s, wait for δ time units, and then takes the next
feasible transition.

Under that strategy, and assuming that Perturbator perturbs by −δ ≤ ε0 ≤ δ on transition
leaving (q, i), and by −δ ≤ εj ≤ δ on transition leaving pj , the valuation when arriving in pj is vj
(resp. in (q′, i+ dir) is v′0) such that:

• if i 6= j and cell Cj contains a b, or if i = j and β = b, then for every 1 ≤ k ≤ N + 1,
vk(xj) = v0(xj) + 2.5 + (k − 1)δ +

∑k−1
h=0 εh;

• if i 6= j and cell Cj contains an a, or if i = j and β = a, then for every 1 ≤ k ≤ j,
vk(xj) = v0(xj) + 2.5 + (k − 1)δ +

∑k−1
h=0 εh, vj+1(xj) = 0, and for every j + 2 ≤ k ≤ N + 1,

vk(xj) = (k − j − 1)δ +
∑k−1
h=j+1 εh.

Note that in all cases, since δ < 1
4N , if cell Cj contains an a, then vj + δ + εj |= ga,j , and if cell Cj

contains a b, then vj + δ + εj |= gb,j . Note also that if either i 6= j and cell Cj contains an a, or if
i = j and β = a, then v′0(xj) < 1, and if either i 6= j and cell Cj contains a b, or if i = j and β = b,
then v′0(xj) > 2. This means that whatever the perturbation, at the end of the module the clocks
properly encode the new content of the tape ofM after the mentioned transition has been taken.

We can apply this strategy in every module simulating a transition of the Turing machine.
SinceM halts on w0, the halt state can be reached by following this strategy.

Conversely, if M does not halt on w0, then when playing without perturbations, Controller
cannot reach the halting state. In particular, Controller has no robust strategy.

Now we should realize that if the Turing machine halts on w0, then every non-blocking (standard)
execution in A leads to halt. So in particular, there is no robust strategy for avoiding halt. If the
Turing machine does not halt, then the same strategy as above is robust and avoids halt. This
implies the equivalence with the third property.

In the above construction some clocks may not be bounded. However we can modify the
construction to ensure that all clocks are always bounded. We assume that an a in cell Cj is encoded
with clock constraint xj < 1, and a b with clock constraint 2 < xj < 4 when entering the module.

8.9. CONCLUSION 135

Assuming this, the previous module ensures that, when leaving the module, either xj < 1 (in case
cell Cj now contains an a), or either 2 < xj < 4 or 4 < xj < 7 (the two possible cases for cell Cj
to contain a b). It is easy to plug at the end of the module another module, which ensures that
2 < xj < 4 when cell Cj contains an a, and xj < 1 when cell Cj contains a b. Then we can plug
at the end of this second module another one which ensures that xj < 1 when cell Cj contains
an a, and 2 < xj < 4 when cell Cj contains a b, which is the initial encoding. Using this trick, the
constructed timed automata has only bounded clocks.

8.9 Conclusion
We presented an algorithm for synthesizing robust strategies for Büchi objectives under the
conservative perturbation game semantics, for an unknown perturbation parameter. Our results
make a link between controller synthesis problems and recent work on convergence phenomena and
entropy. In fact, if all locations are accepting, then a timed automaton is robustly controllable
in our sense if, and only if it is thick, or equivalently, it has finite entropy, as defined in [BA11].
Technically, the distinction between forgetful and non-forgetful cycles was made, and their relation
to characterization was already established in [BA11]. Our results show that under our perturbation
game semantics, the “convergent runs” actually become blocking. This problem has lower complexity
than the same problem for the excess perturbation game semantics, since even reachability is
EXPTIME-complete (Chapter 7).

In order to fully treat the robust controller synthesis problem, one needs to consider timed games.
We intend to investigate possible extensions of this work to timed games, starting from turn-based
timed games, where Perturbator entirely determines the move in some locations. This could require
generalizing the notion of aperiodicity from paths to trees since Controller can no more ensure to
follow a given path.

136 CHAPTER 8. BÜCHI IN CONSERVATIVE SEMANTICS

Chapter 9

Weighted Timed Games

9.1 Introduction

Weighted timed automata are an extension of timed automata, introduced in [ATP01, BFH+01],
which allow to express and solve optimization problems on timed systems. In this model, timed
automata are enriched with a special cost variable whose value grows with a given constant derivative
at each location. This variable can model, for instance, resource consumption, and one can find the
cheapest run that allows to reach a given location. In fact, it was established in [BBBR07] that the
optimal reachability problem for weighted timed automata is PSPACE-complete.

The model naturally extends to games. Some partial decidability results for weighted timed
games have been proposed in [ABM04, BCFL04]. However, the problem is undecidable in the
general case [BBR05b, BBM06] even for a fixed number of clocks.

Both undecidability results are based on encodings of the configurations of Minsky machines. In
these works, simulating the computations of these machines require distinguishing clock valuations
with arbitrary precision, and the ability of checking for equalities. This suggests that the problem
might become decidable when one introduces perturbations in the semantics, so as to disallow too
precise encodings.

The goal of this chapter is to investigate the possibility of obtaining decidability results on
weighted timed games when these are subject to perturbations. Our results are unfortunately mainly
negative: in both excess and conservative perturbation game semantics, cost optimal reachability
remains undecidable on weighted timed games. On weighted timed automata, we show that the
problem is PSPACE-complete in the conservative perturbation game semantics, and that it is
undecidable in the excess perturbation game semantics.

9.2 Cost-Optimal Reachability

Let us first present the cost-optimal reachability problems in the exact setting.
Recall that we write (`, ν, c)|c = c and (`, ν, c, d, e)|c = c for any state (`, ν, c) or (`, ν, c, d, e) of a

weighted timed game in the exact or perturbed semantics. All related definitions can be found in
Chapter 2. Given a target location `, we define the cost of a run in any semantics as follows.

cost`(ρ) = inf{statei(ρ)|c | 1 ≤ i ≤ |ρ|, loc(statei(ρ)) = `}.

Hence, if ` is never reached, then the cost is ∞. Otherwise it is the infimum of the costs observed at
location `.

We will use the terminology of the perturbation game semantics in weighted timed games:
Player 1 is called Controller, and Player 2 is called Perturbator. Given a weighted timed game A,
and a target location `, we denote by SC(JAK) the set of Controller’s strategies, and by SP (JAK) the

137

138 CHAPTER 9. WEIGHTED TIMED GAMES

set of Perturbator’s strategies in JAK. For any pair of strategies (σ, σ′) ∈ SC(JAK)× SP (JAK), we
define the cost of the outcome of (σ, σ′) as

cost`σ,σ′(JAK) = cost`(OutcomeJAK(σ, σ
′)).

We are interested in the least cost that Controller can ensure against any strategy of Perturbator.
We define, for any weighted timed game A and target location `,

value(A, `) = inf
σ∈SC(JAK)

sup
σ′∈SP (JAK)

cost`σ,σ′(JAK).

When A is a weighted timed automaton, we define value(A, `) by interpreting it as a weighted timed
game where Perturbator has no edges. Equivalently,

value(A, `) = inf
ρ∈Runs(JAK)

cost`(ρ).

We are interested in the following decision problems.

Definition 9.2.1. The OptReach strategy upper bound problem asks, given a weighted timed
game A, a target location `, and a rational λ, whether there exists a strategy σ ∈ SC(JAK) such that

sup
σ′∈SP (JAK)

cost`σ,σ′(JAK) ≤ λ.

Thus the above problem asks whether one can find a strategy that guarantees an upper bound
on the cost. In the following problem, we are interested in deciding an upper bound on the infimum
of the cost that can be guaranteed by Controller.

Definition 9.2.2. The OptReach value upper bound problem asks, given a weighted timed game A,
a target location `, and a rational λ, whether value(A, `) ≤ λ.

Clearly, a bound on the cost of some strategy implies the same bound on the value; the converse
is not true.

This problem was also considered on weighted timed automata, that is, when Player 2 has
no edges. In this case, the above problems simplify: The value upper bound problem consists in
deciding an upper bound on infρ(cost`(ρ)), where ρ ranges over all runs of the given weighted timed
automaton; while the strategy upper bound asks whether the bound is satisfied for some run.

Theorem 9.2.3 ([ATP01, BFH+01, BBBR07]). The OptReach value and strategy upper bound
problems are PSPACE-complete for weighted timed automata.

Unfortunately, the OptReach strategy upper bound problem becomes undecidable on weighted
timed games, even for a fixed number of clocks.

Theorem 9.2.4 ([BBR05b, BBM06]). The OptReach strategy upper bound problem is undecidable
for weighted timed games.

The decidability of the OptReach value upper bound problem for weighted timed games is open.

9.3. ROBUST COST-OPTIMAL REACHABILITY 139

9.3 Robust Cost-Optimal Reachability
We define variants of the OptReach problems under perturbations. We are again interested in small
values of the perturbation parameters. In fact, we will consider the limit of the cost when the
magnitude of the perturbations goes to 0.

Given a weighted timed game A, and δ > 0, let us denote by SP (Gexsδ (A)) (resp. SP (Gconsδ (A)))
the set of strategies of Perturbator in Gexsδ (A) (resp. Gconsδ (A)). We also define SC(Gexsδ (A)) (resp.
SC(Gconsδ (A))) as the set of Controller’s strategies in these semantics. Notice that SC(Gexsδ (A)) does
not depend on δ, since Controller only has to suggest moves that satisfy the guards (a winning strategy
will depend on δ though). In contrast, SC(Gcons

δ (A)) does depend on δ since Controller is required
to satisfy the guards even after perturbations. It is easy to see that SC(Gcons

δ (A)) ⊆ SC(Gcons
δ′ (A))

for any δ′ < δ.
Given δ > 0, a pair of strategies (σ, σ′) ∈ SC(Gexsδ (A))× SP (Gexsδ (A)), and location `, we define

cost`σ,σ′(Gexsδ (A)) = cost`(OutcomeGexs
δ (A)(σ, σ

′)).

We define similarly cost`σ,σ′(Gconsδ (A)), for the conservative perturbation game semantics. Given a
strategy σ ∈ SC(Gexsδ (A)), we define the limit cost of σ as follows.

lim-costexs
σ (A, `) = lim

δ→0
sup

σ′∈SP (Gexs
δ (A))

cost`σ,σ′(Gexsδ (A)).

The limit is well defined since strategy σ is valid for any δ > 0. Similarly, for σ ∈ Gconsδ0
, we let

lim-costcons
σ (A, `) = lim

δ→0
0<δ<δ0

sup
σ′∈SP (Gcons

δ (A))

cost`σ,σ′(Gconsδ (A)).

Here, we take the limit for 0 < δ < δ0, such that σ ∈ SP (Gconsδ0
(A)) so that the strategy is valid.

Thus, the limit-cost of a Controller’s strategy σ is the cost it guarantees in the limit, against any
strategy of Perturbator, when δ goes to 0.

We are interested in deciding whether Controller has a strategy that guarantees an upper bound
on the limit-cost for a reachability objective.

Definition 9.3.1 (Lim-OptReach). The Lim-OptReach strategy upper bound problem for the excess
perturbation game semantics asks, given a weighted timed game A, a target location `, and a rational
λ, whether there exists a strategy σ ∈ SC(Gexs

δ (A)) such that lim-costexsσ (A, `) ≤ λ.
The Lim-OptReach strategy strict upper bound problem for the excess perturbation game

semantics asks, given the same input, whether there exists a strategy σ ∈ SC(Gexs
δ (A)) such that

lim-costexsσ (A, `) < λ.
We define similarly the Lim-OptReach strategy (strict) upper bound problem for the conservative

perturbation game semantics.

We define the limit value as the infimum of the limit cost that can be guaranteed by Controller:

lim-valueexs(A, `) = inf
σ∈SC(Gexs

δ (A))
lim-costexs

σ (A, `),

and
lim-valuecons(A, `) = inf

σ∈
⋃
δ>0 SC(Gcons

δ (A))
lim-costcons

σ (A, `).

We also consider deciding upper bounds on values:

140 CHAPTER 9. WEIGHTED TIMED GAMES

Definition 9.3.2. The Lim-OptReach value upper bound problem for the excess (resp. conservative)
perturbation game semantics asks, given a weighted timed automaton A, a target location `, and a
rational λ, whether lim-valueexs(A, `) ≤ λ (resp. lim-valuecons(A, `) ≤ λ).

We will also consider the restriction of these problems to weighted timed automata.
Notice that the strategy strict upper bound problem is equivalent to deciding whether the strict

upper bound holds for the value, that is the infimum of the limit cost over all possible strategies.
We show that neither the excess perturbation nor the conservative perturbation game semantics

renders the Lim-OptReach problems decidable on timed games. Moreover, the problem even becomes
undecidable in weighted timed automata under the excess perturbation game semantics.

Theorem 9.3.3. The Lim-OptReach strategy upper bound problem is undecidable for weighted timed
automata under the excess perturbation game semantics, for a fixed number of clocks.

Theorem 9.3.3 is a rather surprising result. It reveals that adding perturbations can render
problems intractable, which is the opposite of a common belief [AB01, Frä99]. In this case, optimal
reachability is PSPACE-complete for weighted timed automata under the exact semantics, but
becomes undecidable under the excess perturbation game semantics.

The conservative robust semantics is more restrictive; we have already seen that reachability in
timed automata is less costly than in the excess perturbation game semantics. In fact, we show that
the Lim-OptReach value upper bound is PSPACE-complete:

Theorem 9.3.4. The Lim-OptReach value upper bound problem is PSPACE-complete on weighted
timed automata under the conservative perturbation game semantics.

However the Lim-OptReach strategy upper bound problem is also undecidable in the conservative
semantics on weighted timed games.

Theorem 9.3.5. The Lim-OptReach strategy strict upper bound problem is undecidable for weighted
timed games under the conservative perturbation game semantics, for a fixed number of clocks.

The undecidability also holds in both semantics when we consider the problem for a fixed δ:

Theorem 9.3.6. The following problem is undecidable: For any fixed 0 ≤ δ ≤ 1
3 , given a weighted

timed game A, a target location `, and rational λ, decide whether

inf
σ∈SC(G)

sup
σ′∈SP (G)

cost`σ,σ′(G) < λ,

where G denotes either Gexs
δ (A) or Gcons

δ (A).

In the rest of this chapter, we present the proofs of the above theorems. The decidability result
is obtained by adapting the corner-point abstraction [BBBR07], while the undecidability results are
based on reductions from the halting problem for Minsky machines [Min67], and on the encoding
of [BBM06].

9.4 Encoding Minsky Machines
Consider a Minsky machine with counters c1 and c2, and a list of instructions I1, . . . , In. Here, each
instruction Ii, for 1 ≤ i ≤ n− 1, is an incrementation for cb as,

cb = cb + 1; goto Ij ,

9.5. LIM-OPTREACH UNDER EXCESS PERTURBATION 141

for b = 1 or 2, or a decrementation with zero-test for cb as,

if (cb = 0) goto Ij else ci = ci − 1; goto Ij′.

The instruction In is the ending instruction, that is, the final state. The halting problem asks whether
the instruction In is reachable, starting from the configuration c1 = 0, c2 = 0, at instruction I1.

The proofs are based on the simulation of Minsky machines and the encoding of the instructions
are based on that of [BBM06]. However all constructions must be modified in order to deal with
perturbations. Our reduction uses 10 clocks x, x′, y, y′, u, u′, t, t′, z, z′. A counter of a Minsky machine
with value n will be encoded by a pair of clocks x, x′ with values kx + 1

2n and kx′ + 1
2n for some

integers kx, kx′ . Here, kx is called the shift of x. If α denotes the clock x′, we let α′ = x, and
α′′ = x′, and similarly for other clocks. A configuration of a Minsky machine with counter values
n,m ≥ 0, is entirely encoded by four clocks:

x = kx + 1
2n , x′ = kx′ + 1

2n ,
y = ky + 1

2m , y′ = ky′ + 1
2m ,

(9.1)

for some shifts kx, kx′ , ky, ky′ . The redundancy in this encoding is necessary to cope with pertur-
bations; this will be clear in the next section. We denote by k the vector of shifts, for all clocks,
and by codek(n,m) the set of valuations satisfying (9.1). We also define codeεk(n,m) the set of
valuations ν such that ν + η ∈ codek(n,m), where |η(α)| ≤ ε, η(α) = η(α′) for all clocks α, and
moreover η(x) = η(x′) = 0 whenever n = 0, and η(y) = η(y′) = 0 whenever m = 0. In other terms,
codeεk(n,m) is the set of valuations that encode a configuration with an error bounded by ε, except
that the encoding of the counter value 0 is exact. Given shifts k and a valuation ν ∈ codeεk(n,m),
we denote frac(ν) = ν − k. This gives the fractional part of the clocks, except when n = 0, in which
case the components x and x′ are equal to 1. We say that a valuation ν encodes a configuration
(n,m) of the machine if it satisfies (9.1) for some shift vector k.

9.5 Lim-OptReach Under Excess Perturbation
In this section, we reduce the halting problem on Minsky machines to the OptReach strategy upper
bound problem on a weighted timed automaton we construct, which proves Theorem 9.3.3.

We define modules for incrementation and decrementation with zero-test instructions, which
will, once combined, yield the reduction. The modules will be defined on a given list of clocks. For
instance, if we describe a module M(x, y, z, u, t) which uses the clocks x, y, z, u, t in its definition,
then M(z, y, x, t, u) is obtained simply by exchanging x and z, and u and t.

In this section, strategies and outcomes refer to the excess perturbation game semantics.

Unperturbed edges. Let us first present a construction that prevents Perturbator from perturbing
the delays along an edge. The construction only applies to deterministic transitions (with equality
constraints) and requires resetting one of the two clocks used in the encoding of a counter. Consider
the timed automaton in Fig. 9.1(a).

At `2, Controller can go to the accepting state where the cost decreases to −∞ if, and only if
Perturbator has perturbed by a nonzero amount the transition from `1 to `2. Thus, Perturbator
does not have interest in perturbing since its objective is to maximize the cost. If there has been no
perturbation, the clock values are only increased or decreased by some integers. More precisely, the
shifts of all clocks but x′ increase by 2, and the shift of x′ becomes 0. In the rest, we will use this

142 CHAPTER 9. WEIGHTED TIMED GAMES

`1 `2 ...

ċ=−1

x=kx+2,x′:=0

x=kx+3∧x′ 6=1

(a) An unperturbed edge.

`1 `2
x=kx+2,x′:=0

(b) A simpler representation of an
unperturbed edge.

Figure 9.1: Unperturbed edges. Perturbator has interest in not perturbing these transitions, since,
in presence of any perturbation, Controller immediately can go to the target location and win with
cost −∞.

trick extensively to construct our modules. For better readability, we will represent such unperturbed
edges by dashed arrows; when clear from context, we may omit the edges leading to accepting sink
states (see Fig. 9.1(b)).

Ask-Perturbator module. In weighted timed automata, unlike in weighted timed games,
Perturbator cannot suggest moves since it has no edges. However, a special construction allows
letting Perturbator decide the successor location. We describe in Fig. 9.2(a) such a construction,
which also ensures that the configuration is preserved, upto shifts.

`1

`2

`3

t,u,u′:=0 t=1

t:=0

t=
1∧u
≤2

t=1∧u>2

u=3

u′:=0

u=3

u′:=0

(a) Letting Perturbator decide.

`1
t,u,u′:=0

`2

`3

(b) Simpler representation of the
automaton on the left.

Figure 9.2: Module that lets Perturbator decide a successor among `2 and `3.

The first edge is deterministic, and Perturbator can add any perturbation. Controller then
distinguishes between positive and negative perturbations, and only has one possible move accordingly.
We disallow perturbations (using unperturbed edges) at the edges leading to `2 or `3, so that the
configuration is preserved upto shifts. More precisely, the shifts of all clocks x, x′, y, y′ increase
by 3. To simplify the presentation of more complex modules, we will represent this module more
compactly as in Fig. 9.2(b).

Reduction module. In the above modules, we have seen that configurations are preserved upto
shifts, but the shifts could grow. We present now a module that reduces the shifts of all clocks.
The module Reducek(x, y, u, t) is constructed for each shift vector k (there will be a finite number
of these), is deterministic, and contructed using unperturbed edges. Figure 9.3 defines one half of
the module (named PReducek(x, y, u, t)). Any run from `1 to `2 leaves the encoded configuration
unchanged, but only modifies the shifts. This automaton reduces the shift of the clocks x, y (to 3

9.5. LIM-OPTREACH UNDER EXCESS PERTURBATION 143

and 2, respectively) but the shifts of x′, y′ increase by 5. The whole module Reducek(x, y, u, t) is
defined by concatenating PReducek(x, y, u, t) and PReducek(x′, y′, t, u), by merging the location `2
of the former with the location `1 of the latter. Note that u and t switch roles at the end of
each PReducek(·); in fact, u, u′ are still needed at location `2 to verify that there has been no
perturbation, so they cannot both be reset. Module PReducek satisfies the following property, which
implies Lemma 9.5.2.

Lemma 9.5.1. Let δ < 1
2 . Assume PReducek(x, y, u, t) is entered with valuation ν ∈ codeεk(n,m)

for some ε < 1
2 . Controller has a strategy to either go to the target location with cost −∞ or

to reach location `2 with valuation ν′ satisfying ν′ = frac(ν) + k′ where k′ is defined as follows:
k′x = 2, k′x′ = kx′ + 2, k′y = 1, k′y = ky′ + 5.

In the above lemma, the bound on δ and ε ensure that valuations in codeεk(n,m), when perturbed
by δ differ by less than an integer from the exact valuation codek(n,m).

Lemma 9.5.2. Let δ < 1
2 . Assume Reducek(x, y, u, t) is entered with valuation ν ∈ codeεk(n,m)

for some ε < 1
2 . Controller has a strategy to either go to the target location with cost −∞ or

to reach location `2 with valuation ν′ satisfying ν′ = frac(ν) + k′ where k′ is defined as follows:
k′x = 6, k′x′ = 2, k′y = 5, k′y′ = 1.

`1

ċ=−1

`2
u,u′:=0 x=kx+2, x:=0 y=ky+3, y:=0 u=4, u:=0

t,t′:=0

x=1∧x′ 6=kx′+3

y=
1∧
y
′ 6=k y

′+
4

u=1∧u
′ 6=5

Figure 9.3: Module PReducek(x, y, u, t), reducing the shifts of x and y.

Test Module. In order to verify the incrementation and decrementation, we will use the cost
variable. We first show how one can add 1 + frac(x) and 2− frac(x) to the cost variable, without
changing the configuration. The construction is similar to [BBM06]; we adapt it using unperturbed
edges.

The module Add1+x
k (x, u, t) depicted in Fig. 9.4 adds 1 + frac(x) to the cost, leaving the

configuration unchanged (upto shifts).

`1

ċ=1

ċ=−1

`2
u,u′:=0 x=kx+2, x:=0 u=3, u,t,t′:=0

(u=1∧u′ 6=4)

∨(x=3∧x′ 6=k
x′+5)

Figure 9.4: Module Add1+x
k (x, u, t).

Lemma 9.5.3. Let δ < 1
2 . Assume module Add1+x

k (x, u, t) is entered with valuation ν ∈ codeεk(n,m)
for some ε < 1

2 . Controller has a strategy that ensures either reaching a target location with cost

144 CHAPTER 9. WEIGHTED TIMED GAMES

−∞ or location `2 with valuation ν′ satisfying ν′ = frac(ν) + k′ where k′x = 1, and k′α = kα + 3 for
all α ∈ {x′, y, y′, z, z′}, while the cost increases by 1 + frac(x).

We define similarly a module Add2−x
k (x, u, t) that adds 2 − frac(x) to the cost variable. The

module is defined as in Fig. 9.4 except that c only increases (with slope 1) at location `1.

Lemma 9.5.4. Let δ < 1
2 . Assume module Add2−x

k (x, u, t) is entered with valuation ν ∈ codeεk(n,m)
for some ε < 1

2 . Controller has a strategy that ensures either reaching a target location with cost
−∞ or location `2 with valuation ν′ satisfying ν′ = frac(ν) + k′ where k′x = 1, and k′α = kα + 3 for
all α ∈ {x′, y, y′, z, z′}, while the cost increases by 2− frac(x).

Now, concatenating modules Add1+x
k (x, u, t), Add2−x

k′ (z, t, u), and
Add2−x

k′′ (z, u, t), we obtain the module Add5+x−2z
k (x, z, u, t) that adds 5+ frac(x)−2frac(z) to the cost

and yields to a target location (we make the last location accepting). Similarly, by concatenation, we
define Add4+2z−x

k (x, z, u, t) that adds 4+2frac(z)− frac(x) to the cost. One can append at the end of
the module Add4+2z−x

k (x, z, u, t) an edge that increments the cost by 1, to define Add5+2z−x
k (x, z, u, t)

(see Fig. 9.5). Finally, the module Test2z=x(x, z, u, t) is defined by letting Perturbator choose whether
to go to Add5+2z−x

k′ (x, z, t, u) or to Add5+x−2z
k′ (x, z, t, u) (here the new shift vector k′ is due to the

shift added by the ask-Perturbator module). Note that in both cases, the run ends in a target
location. We have the following property.

Lemma 9.5.5. Let δ < 1
2 . If module Test2z=x(x, z, u, t) is entered with valuation ν ∈ codeεk(n,m)

for some ε < 1
2 , Controller has a strategy to ensure reaching a target location with cost at most

5 + |2frac(z)− frac(x)|.

Proof. Follows from Lemmas 9.5.4 and 9.5.3.

`1

Add4−x+2z

k′ (x,z,u,t)

Add5+x−2z

k′ (x,z,u,t)

ċ=1

u,u′:=0
u=1

Figure 9.5: Module Test2z=x(x, z, u, t) obtained by letting Perturbator choose between
Add5+x−2z

k′ (x, z, u, t) and Add5+2z−x
k′ (x, z, u, t). The latter module is defined by appending one

unperturbed transition with forcing the game to spend exactly one time unit at the last location of
Add4+2z−x

k′ (x, z, u, t).

Incrementation Module Autkc1,+. We now define a module Autkc1,+, given in Fig. 9.6, that
simulates the incrementation of counter c1. For the sake of discussion, let us assume first that
there is no perturbation. When the module is entered with a valuation in codek(n,m), we expect
Controller to choose the delays so that z = 1 + frac(x)

2 at location D. From this point on, the clocks
z, z′ will switch roles with x, x′. Thus, this corresponds to incrementing the counter c1 by 1. At
location D, Perturbator can either decide to “test” the incrementation has been correctly performed
by going to the test module, or to continue the simulation by first passing through the reduction
module. Here, Instrkj refers to a module among Autkcb,+, Autkcb,− for b ∈ {1, 2} (to be defined

9.5. LIM-OPTREACH UNDER EXCESS PERTURBATION 145

A B C D

Test2z=x
k′ (x,z,u,t)

Reducek′ Instrj
k′′

u,u′:=0 x=kx+2, x:=0 1≤x≤2, z,z′:=0 1≤z≤2∧u=4

u:=0

u=
5

u=5

Figure 9.6: Module Autkc1,+(x, y, z, u, t). The module Reducek′ refers to Reducek′(z, y, u, t), and
the module Instrjk′′ to Instrjk′′(z, y, x, u, t).

next) according to the instruction Ij . In an actual run, Perturbator can perturb the value of z
chosen by Controller, but only by δ. So at D, if Perturbator goes to the test module the cost is at
most 5 +O(δ), provided that Controller has played correctly. Otherwise, the simulation carries on
with z ∈ frac(x)

2 ± δ. The following lemma states this formally.

Lemma 9.5.6. Let δ < 1
2 . Assume module Autkc1,+ is entered with valuation ν ∈ codeεk(n,m) for

some ε > 0 with δ + ε/2 < 1
2 , and cost 0. Then, Controller has a strategy that ensures that either

module Instrkj is entered with a valuation ν′ ∈ codeδ+ε/2k′ (n+1,m) for some k′, or the target location
is reached with cost at most 5 + 2δ.

Proof. We let Controller go to the target location after unperturbed edges, whenever there has
been a nonzero perturbation. So, to describe Controller’s strategy, it suffices to define its delay in
location B since the other edges are deterministic. We let Controller delay 2− frac(ν(x))

2 in B. This
delay can be perturbed by δ. Then, the delay at location C must be 1 + frac((ν(x))

2 ± δ. Upon arrival
to D, Perturbator either chooses to go to the module Reducek′ and the play continues at Instrjk′′ , or
it chooses to the test module. By Lemma 9.5.5, the outcome is then at most 5 + 2δ .

Now, if the game proceeds to Instrkj , then the encoding for counter m has not changed thanks
to the unperturbed edges. For counter n, we have initially frac(x) = 1

2n + η with η ∈ [−ε, ε]. We
get that upon arrival to D, we must have frac(z) = 1

2n+1 + η/2± δ. Hence ν′ ∈ codeδ+ε/2k′ (n+ 1,m),
where ν′ denotes the valuation upon arrival to D.

Decrementation Module Autkc1,−. We now define a module that simulates the decrementation
with zero-test instruction. We explain the expected behaviour of the module. The zero-test is done
at the first location A: the counter c1 equals 0 if exactly one time unit after the arrival at A, we
have x = kx + 2. Recall that the encoding is exact for counters having the value 0. Otherwise, the
run moves to either B or C ′. In the former, Controller is to wait for 1− 2frac(x) time units, so that
z = 1 + 2frac(x) upon arrival to D. This simulates a decrementation of c1, upto an error of δ, since
the edge from B to C can be perturbed. If the decremented value of the counter c1 is 0, then the
new value for z can be chosen as exactly 2 by Controller along the path through C ′.

Lemma 9.5.7. Assume module Autkc1,− is entered with valuation ν ∈ codeεk(n,m) and cost 0.
Then,

• If n = 0, Controller has a strategy to ensure reaching either Instrkj with the same configuration
upto shifts and cost, or an accepting location with cost 0.

• If n ≥ 1, and ε < 1
2 , the play cannot reach Instrkj.

146 CHAPTER 9. WEIGHTED TIMED GAMES

A Instrjk+1(x,y,z,t,u)

B C

C′

D

Testx=2z
k′ (x,z,u,t)

Reducek′ Instrj
′

k′ (z,y,x,u,t)

u,u′:=0

x=kx+2∧u=1
t,t′:=0

u=2
x 6=kx+3

u=1∧x6=kx+2

z,z′:=0

1≤u≤2

z,z′:=0 u=4, u:=0

u=4, u:=0

Figure 9.7: Module Autkci,−(x, y, z, u, t) with zero test. The module Reducek′ refers to
Reducek′(z, y, u, t).

• If n ≥ 1, Controller has a strategy that ensures that either module Instrkj
′
is reached with a

valuation ν′ ∈ codeδ+2ε
k′ (n− 1,m) for some k′, or the target location is reached with cost at

most 5 + ε+ 2δ. Moreover, if n = 1, then Controller can ensure that ν′(x) = k′x + 1.

Proof. If n = 0, then ν(x) = kx + 1. In this case, Controller can choose to move, after a delay of 1,
to Instrkj . Controller wins by moving to a target location if Perturbator perturbs, otherwise the
play continues in Instrkj .

If n ≥ 1 and ε < 1
2 , then x ∈ kx + 1

2n ±
1
2 , which means x < kx + 1. Therefore the guards of

the edge leading to Autkj is never enabled. Controller can go to B, where it delays 1 + 2frac(ν(x)).
Due to perturbations, it will delay 1 + 2frac(ν(x))± δ at C. Thus, upon arrival to location D, the
valuation satisfies frac(z) ∈ 1

2n−1 ± 2ε± δ. By Lemma 9.5.5, the cost increases by at most 5 + 2δ
from here if the play goes into the test module. If n = 1, then Controller can go through C ′ and end
in D with frac(z) = 2. Here, the the test module can increase the cost by at most 5 + ε+ 2δ.

Complete reduction. To construct the complete reduction, we define for each instruction Ij of
the Minsky machine, a module Instrkj as one of the incrementation or decrementation modules
according to the type of Ii. We mark the first location of Instrk1 as the initial location. The halting
state Instrkn of the machine is an accepting location of the timed automaton. For machine M , let
AM denote the weighted timed automaton constructed in this manner, and let ` denote the target
location obtained by merging all target locations presented in the above construction.

Theorem 9.3.3 follows from the following proposition.

Proposition 9.5.8. Minsky machine M halts if, and only if there is a strategy σ ∈ SC(Gexs(AM))
such that lim-costexsσ (AM , `) ≤ 5.

Proof. Assume that M halts, say after N steps. Since we are interested in the limit, fix any ε > 0
and assume that 0 < 3Nδ < ε. We let Controller play respecting the encoding: In modules Autkci,+,
it applies the strategy of Lemma 9.5.6 to increment the counter ci. In modules Autkci,−, it applies
the strategy of Lemma 9.5.7 to decrement the counter ci. Note that this strategy does not depend
on δ. At most N modules Autkci,· are visited since the target location is reached afterwards. Thus,
by Lemma 9.5.9, along this play the configuration always belongs to codeε

′

k (n,m) for some k with
ε′ ≤ ε. By these lemmas, either the play simulates the whole path of M and ends in a target location,
or it reaches a target sink location (with ċ = −1) earlier. This can be due either to a perturbation
by Perturbator along unperturbed edges, or to Perturbator’s choice to go to a test module. In both
cases the cost is at most 5 + ε+ 5δ ≤ 5 + 2ε, hence the limit is 5.

9.6. LIM-OPTREACH UNDER CONSERVATIVE PERTURBATION 147

Assume now that M does not halt. Fix any strategy σ of Controller. If σ respects the encoding,
i.e. always chooses z as frac(x)

2 or 2frac(x) in Autkci,+ or Autkci,− respectively, then the cost is ∞
if Perturbator never perturbs. Suppose now that σ “cheats” during the simulation at least once.
We describe a strategy for Perturbator that leads to a limit cost greater than 5. Perturbator
does not perturb the run, and waits until the first instant where Controller does not respect the
encoding. This happens inside Autkci,+ or Autkci,− along a perturbed edge since all other edges are
deterministic. Assume for instance the run under strategy σ arrives to location D of Autkci,+ with
z = 1 + frac(x)

2 + η for some η depending on σ. Then, Perturbator chooses to go to the test module,
which accepts with cost at least 5 + η, by Lemma 9.5.5. Here, η only depends on the strategy σ, so
the limit lim-costexs

σ (AM) is at least 5 + η > 5.

The following is used in the above proof, to bound the accumulation of the error in the encoding.

Lemma 9.5.9. Consider the two functions f : x 7→ 2x + 1 and g : x 7→ x/2 + 1. For any n ≥ 1,
x > 0, and any f1, . . . , fn ∈ {f, g}, f1 ◦ f2 ◦ . . . ◦ fn(x) ≤ 3nx.

9.6 Lim-OptReach Under Conservative Perturbation

One can argue that the undecidability in the excess perturbation game semantics is due to the
ability of Controller to test clock values with precision using equality constraints, and in particular
in detecting perturbations. This allows for instance letting Perturbator make a discrete choice, as in
the above reduction. Hence, this ability and the possibility of disallowing perturbations on some
edges make the semantics of weighted timed automata somehow close to that of two-player weighted
timed games in the exact semantics for which the optimal-cost reachability is undecidable.

The conservative perturbation game semantics disallows both abilities. In fact, in this semantics,
Controller is required to suggest delays whose perturbations satisfy the guard of the chosen edge.
This automatically excludes the use of equality constraints in the guards. Therefore, one cannot
encode unperturbed edges as we did with the excess perturbation game semantics. Moreover, the
ask-Perturbator module cannot be defined, at least not as previously.

Our result confirms these intuitions: we prove that limit-optimal reachability is PSPACE-complete
for weighted timed automata. The algorithm is based on an adaptation of the corner-point abstraction
restricted to punctual regions. On the other hand, we show that on weighted timed games, Lim-
OptReach remains undecidable under the conservative perturbation game semantics. More precisely,
we show the undecidability of the Lim-OptReach value strict upper bound problem. Our reduction
uses the same encoding and similar constructions, but the players will switch roles in ensuring and
checking the encoding.

We first present the algorithm for weighted timed automata, and then the undecidability result
on weighted timed games.

9.6.1 Algorithm for Weighted Timed Automata

In this section, following [BBBR07], we assume that the clock valuations never go above a given
constant, so that all regions are bounded. This is not a loss of generality since we are interested in
reachability in weighted timed automata; see [BBBR07].

We recall the corner-point abstraction from [BBBR07], a variant of the region automaton, on
which optimal reachability problems can be solved on weighted timed automata.

148 CHAPTER 9. WEIGHTED TIMED GAMES

Definition 9.6.1. A finite weighted automaton is a tuple (S, s0,Σ, E,W), where (S, s0,Σ, E) is a
transition system, with S, Σ and E finite sets, and W : E → Z is the weight function.

We will call paths the runs of finite weighted automata, to distinguish these from timed automata
runs. A path of a finite weighted automaton is defined as a run of the underlying transition system.
Intuitively, a finite weighted automaton associates to any path the sum of the weights of the edges
it visits. Given any path π = q1e1q2 . . . qn, the weight of π is defined as W (π) =

∑
1≤i<nW (ei).

Let us consider a weighted timed automaton A = (L, `0, C,Σ, E1, ∅,S). Notice that we use
the notation for weighted timed games; the empty set here is the set of edges for Player 2. The
corner-point abstraction of A is a finite weighted automaton, denoted Rcp(A). The states of Rcp(A)
are triples (`, r, v), where ` is a location, r a region, and v ∈ V(r) a vertex of r. Edges are defined as
follows: we have (`, r, v)

delay−−−→ (`, r′, v′) if (`, r)
delay−−−→ (`, r′) in the region automaton, and v′ = v + k

for some natural number k. In other terms, v′ is a time-successor of v, and is a vertex of region r′.
The weight associated to this transition is k × S(`). Further, we have an edge (`, r, v)

σ−→ (`′, r′, v′)
if there is an edge (`, g, σ,R, `′) in A such that r |= g, and v′ = v[R← 0], r′ = r[R← 0]. Such an
edge has weight 0.

Let the non-punctual corner-point abstraction, denoted Rnp
cp(A), be the finite weighted automaton

obtained from the corner-point abstraction by removing any transition of the form (`, r, v)
delay−−−→

(`, r′, v′), where r′ is punctual. Thus, any path in the non-punctual corner-point abstraction
corresponds to a non-punctual path in the region automaton.

We define the value of a finite weighted automaton as the cost of the shortest path to a given
state. Formally, for any finite weighted automaton F = (S, s0,Σ, E,W), and state s, let us write

value(F , s) = inf
π∈Runs(F)
last(π)=s

W (π).

For corner-point abstractions, we extend this notation to locations:

value(Rcp(A), `) = inf
π∈Runs(Rcp(A))
loc(last(π))=`

W (π).

For any path π of the region automaton R(A) of A, we denote by Runs(π), the set of runs of JAK
that follow π. If π is a path of the corner-point abstraction Rcp(A), then we say that a run follows π
if it follows the path projected to R(A) (that is, obtained by removing vertices in each state). We
extend the notation Runs(π) to paths π of the corner-point abstraction.

For any path π of R(A) or Rcp(A), let us define π̄ obtained by replacing all regions by their
topological closures. We say that a run follows π̄ if all its states belong to the closure of the
corresponding region in π, and the transitions match those of π.

We recall the following result on optimal cost reachability in the exact semantics.

Lemma 9.6.2 ([BBBR07]). Let A be a weighted timed automaton, and π a path in R(A). There
exists a run ρ0 that follows π̄, such that for all 1 ≤ i ≤ |ρ|, statei(ρ) ∈ V(statei(π)), and

last(ρ0)|c = inf
ρ∈Runs(π)

(last(ρ)|c).

The previous lemma states that the infimum of the cost of the runs that follow a path of the
region automaton is reached, in the limit, by a run that only visits the vertices of the regions. Such

9.6. LIM-OPTREACH UNDER CONSERVATIVE PERTURBATION 149

a run corresponds to a path of the corner-point abstraction. In fact, the infimum of the cost of
the runs is the cost of the shortest path of the corner-point abstraction, as stated in the following
lemma.

Lemma 9.6.3 ([BBBR07]). For any weighted timed automaton A and target location `,

value(A, `) = value(Rcp(A), `).

In the perturbed case, we prove that the same algorithm can be applied, once we discard punctual
paths.

Lemma 9.6.4. Given any weighted timed automaton A and target location `,

lim-valuecons(A, `) = value(Rnp
cp(A), `).

Hence to compute the optimal cost on A, it suffices to consider the finite weighted automaton
Rnp

cp(A), and find the shortest path to location `. To decide whether the limit value is less than
some given constant λ, one can guess a path in Rnp

cp(A) in polynomial-space, and check whether its
weight is less or equal to than λ. Note that the problem is PSPACE-hard since it is already in the
unweighted case. Theorem 9.3.4 follows.

The following lemma says that paths of the corner-point abstraction can be approximated by
valid runs; this is used in the proof of Lemma 9.6.4,

Lemma 9.6.5 ([BBBR07]). Let π be a path of Rcp(A). For any ε > 0, there exists a run ρε that
follows π such that last(ρε)|c ≤W (π) + ε.

The following simple lemma states that an infinitesimal perturbation suffices to go from a
punctual region to a non-punctual one.

Lemma 9.6.6. Given any δ > 0, and ν ∈ r in a punctual region r, there exists ε ∈ [−δ, δ] such that
reg(ν + ε) is non-punctual.

We now prove Lemma 9.6.4.

Proof of Lemma 9.6.4. We will prove the two inequalities. First, it is easy to show that
lim-valuecons(A, `) ≥ value(Rnp

cp(A), `). In fact, let σ ∈ SC(Gconsδ (A)) be any strategy for Controller.
We consider some strategy σ′ for Perturbator, that perturbs so as to render the run non-punctual.
More precisely, if the delay suggested by Controller is inside a non-punctual region, Perturbator
plays 0, and otherwise it plays some small non-zero amount, by Lemma 9.6.6 below. Then the
projection of the outcome of (σ, σ′) to regions is a non-punctual initialized path π of R(A). But by
Lemma 9.6.2, the cost of this run cannot be smaller than some run along π̄ visiting vertices, and for
any such run, there is a path in Rnp

cp(A) with the same cost.
To prove the other direction, for any ε > 0, we will construct a strategy for Controller in A

that achieves cost value(Rnp
cp(A), `) + O(ε+ δ), so this will be equal to value(Rnp

cp(A), `) + O(ε) in
the limit, hence the infimum is value(Rnp

cp(A), `) as required. Assume that value(Rnp
cp(A), `) is finite.

Let π denote a non-punctual path of Rnp
cp(A) with W (π) = value(Rnp

cp(A), `). By Lemma 9.6.5, there
exists a run ρε in A that follows π, with last(ρε)|c ≤W (π) + ε. If all delays in ρε are positive, then
let ε0 > 0 smaller than any delay and such that all timed traces Balld(ttrace(ρε), ε0) induce valid
runs that follow π. Here, such an ε0 > 0 exists since ttrace(π) is an open set (Proposition 8.3.4).
Let δ ≤ ε0. Then, in Gconsδ (A), if Controller suggests the delays and actions of ttrace(π), any

150 CHAPTER 9. WEIGHTED TIMED GAMES

outcome ρ is a valid run that follows π. Moreover, since each delay can be perturbed at most by δ,
we have last(ρ)|c ≤ last(ρε)|c + δ|π|S ≤W (π) + ε+ δ|π|S, where S is the maximal slope of the cost
at locations visited by π. The lemma follows.

If not all delays of ρε are positive, then we choose another run ρ′ε with this property, such that
d(ttrace(ρε), ttrace(ρ′ε)) ≤ ε. This is possible since ttrace(π) is open. In this case, the above proof
yields a run ρ with last(ρ)|c ≤W (π) + 2ε+ δ|π|S.

If value(Rnp
cp(A), `) = ∞, then ` is not reachable by any run, so lim-valuecons(A, `) = ∞. If

value(Rnp
cp(A), `) = −∞, then one can construct the above strategy for any M < 0, considering a

path π with W (π) < M , which yields lim-valuecons(A, `) = −∞.

9.6.2 Undecidability on Weighted Timed Games

We prove Theorems 9.3.5 and 9.3.6 using a reduction similar to the one in Section 9.5. In this
section, strategies and outcomes refer to the conservative perturbation game semantics.

Test Module. We define the new module Add′1+x
k (x, u, t) depicted in Fig. 9.8. We do not have any

guards on the edges; Controller checks at the last step whether all delays were chosen as expected.
Recall that the dotted edges are uncontrollable edges, so they are taken by Perturbator. Here, there
is no upper bound on the delays that can be suggested by Perturbator, so the cost can increase
arbitrarily. However, the target sink state has a negative slope on variable c, so the cost is −∞
whenever Perturbator “cheats”.

`1

ċ=1

ċ=−1

`2
u,u′:=0 x:=0 u,t,t′:=0

u′−u6=3)

∨(x′−x 6=k
x′+2)

Figure 9.8: Module Add′
1+x
k (x, u, t).

We define similarly modules Add′2−xk (x, u, t). As previously, these modules can be combined to
define Add′

5+x−2z
k (x, z, u, t). Since it is now Perturbator’s duty to respect the encoding, Controller

will test the chosen values using the Test′x=2z
k (x, z, u, t) module, in Fig. 9.9.

`1

`2

`′2

`3

`′3

ċ=−1

Add′2z−x+5
k (x,z,u,t)

Add′x−2z+5
k (x,z,u,t)

t,u,u′:=0

t<
1

t<1

t:=0

t:=0

u−
t6=

2

u−t 6=2

Figure 9.9: Module Test′x=2z
k (x, z, u, t).

9.6. LIM-OPTREACH UNDER CONSERVATIVE PERTURBATION 151

Lemma 9.6.7. Assume that module Test′x=2z
k (x, z, u, t) is entered at `1 with valuation ν ∈ codeεk

for some 0 < ε < 1
2 . Then, Controller has a strategy to reach a target location with cost at most

5− |frac(ν(x))− 2frac(ν(z))|.

Incrementation Module Aut′k
ci,+. Now, the module Aut′k

c1,+(x, y, z, u, t) that increments
counter c1, given in Fig. 9.6, is defined similarly to the excess-perturbation case, by exchanging the
roles of the players. Along this module, if Perturbator does not get the right value for z (which is
z = 1 + frac(x)/2), then Controller can go to the test module and reach the target location with cost
5− |2frac(z)− frac(x)|; it can also continue to Instr′jk. We omit the definition of Reducek′ but it can
be adapted from Reducek without difficulty, similarly to Add′k modules: Perturbator determines
the run, and Controller checks it afterwards. The module Aut′k

c2,+(x, y, z, u, t) is defined similarly
by exchanging the roles of x and y.

We state the properties of module Aut′k
c1,+(x, y, z, u, t) more generally since we would like

Controller to tolerate a bounded error in Perturbator’s move:

A B C D

ċ=−1

Test′2z=xk′ (x,z,t,u)

Reduce′k Instr′j
k′′

u,u′:=0 x:=0 1<x<2,z,z′:=0 u,t,t′:=0

t<
1

t<
1

x′−x 6=kx′+2∨u′−u 6=4

Figure 9.10: Module Aut′k
c1,+(x, y, z, u, t). Here Reducek′ refers to Reducek′(z, y, u, t) and Instr′jk′′

to Instr′jk′′(z, y, x, u, t).

Lemma 9.6.8. Assume that module Aut′k
c1,+(x, y, z, u, t) is entered at A with valuation v ∈

codeεk(n,m) with ε < 1
4 . For any η > 0, Controller has a strategy to either reach a target location

with cost at most 5− η, or reach Instr′jk with a valuation ν′ ∈ codeε/2+η
k′ (n+ 1,m).

Proof. Fix η > 0. The strategy is the following. If upon arrival to D, the valuation ν′ satisfies
|2frac(ν′(z))− frac(ν(x))| > η, then Controller goes to the test module. Otherwise, it proceeds to
Instr′jk after going through the Reduce′k.

Decrementation Module Aut′k
c1,−. The module Aut′k

c1,−(x, y, z, u, t), given in Fig. 9.11, is also
an adaptation of Aut′k

c1,−(x, y, z, u, t) of the excess-perturbation case.

Lemma 9.6.9. Assume module Aut′k
c1,− is entered with valuation ν ∈ codeεk(n,m) and cost 0,

with ε < 1
4 . Then,

• If n = 0, then Controller has a strategy to ensure reaching either Instr′jk with the same
configuration and cost, or an accepting location with cost −∞. In this case, Controller cannot
reach Instr′j

′

k′′ .

152 CHAPTER 9. WEIGHTED TIMED GAMES

A A1

⊥

Instr′jk

B1 B2

C1 C2 C3

D

Test′x=2z
k′

Reduce′
k′ Instr′j

′

k′′

u,u′:=0

u<1 u:=0

x−u 6=kx+1

∧u<
1

x−u
<kx

+1
u<1∧x−u>kx+ 3

8
∧x−u<kx+1

1≤u≤2

z,z′:=0 u:=0

1<u<2,z,z′:=0 u:=0

z−u 6=1

u′−u 6=3

Figure 9.11: Module Aut′k
c1,−(x, y, z, u, t): decrementation with zero test.

• If n ≥ 1, then Controller cannot reach Instr′jk.

• If n ≥ 1, for any η > 0, Controller has a strategy that ensures that either Instr′j
′

k′′ is reached
with valuation ν′ ∈ code2ε+η

k′ (n− 1,m) for some k′, or the target location is reached with cost
at most 5− η.

Proof. Recall that, by definition, for any ν ∈ codeεk(0,m), ν(x) = kx. The module Instr′jk is
reachable if, and only if n = 0 since Perturbator can lead to the non-accepting sink state (⊥)
whenever Controller moves to A1 while ν(x) 6= kx; otherwise Instr′jk is reached. The guard of the
other edges from A are not satisfied since x− u = kx + 1.

If n = 1, Controller can go to C1. In fact, since ε < 1
4 , the guard x − u > kx + 3

8 is satisfied.

Then, the path from C1 to D forces Perturbator to ensure z − u = 1. If Controller goes to Instr′j
′

k′′ ,
this condition yields a valuation in codeεk′′(0,m). If n 6= 1, then the guard of the edge from A to C1

is not satisfied by the assumption on ε.
When n ≥ 1, Controller goes to B1, from where Perturbator is expected to lead to D with some

valuation ν′ satisfying ν′(z) = 2frac(ν(x))± α, for some α. Now, if |α| ≥ η, we let Controller go to
the test module, therefore, end in an accepting location with cost at most 5− η (by Lemma 9.6.7).
Otherwise, it proceeds to Instr′j

′

k′′ .

Complete Reduction. Let A′M denote the weighted timed game constructed in this manner for
a machine M . Let ` denote the target location obtained by merging all target location of the above
modules. Theorems 9.3.5 and 9.3.6 follow from the following proposition.

Proposition 9.6.10. Minsky machine M halts if, and only if

inf
σ∈SC(Gcons

δ (A))
lim-costcons

σ (A′M , `) < 5,

if, and only if for all δ ∈ [0, 1
3],

inf
σ∈SC(Gcons

δ (A))
sup

σ′∈SP (Gcons
δ (A))

cost`σ,σ′(A′M) < 5,

9.7. CONCLUSION 153

if, and only if for all δ ∈ [0, 1
3],

inf
σ∈SC(Gexs

δ (A))
sup

σ′∈SP (Gexs
δ (A))

cost`σ,σ′(A′M) < 5,

Proof. Assume that the machine halts, say in N steps. For any 0 < ε < 1
4 , we fix 0 < η < ε× 3−N ,

and assume that 0 ≤ δ ≤ η. Controller follows the strategy given by Lemmas 9.6.8 and 9.6.9,
respectively, in modules Aut′k

ci,+ and Aut′k
ci,−. Thus, Controller goes to the test module if and

only if the error in the incrementation or decrementation is more than η, otherwise it continues
the simulation. Then by Lemma 9.5.9, along any play, upon arrival to these modules the valuation
belongs to codeεk(n,m) for some n,m. Thus, Controller reaches the target location with cost at
most 5− η. Note that δ has no effect here as long as it is less than 1

2 . In fact, the only edges that
belong to Controller either yield to target locations, or the amounts of delays are irrelevant since
exact timing is ensured by Perturbator in subsequent transitions.

Assume now that the machine does not halt. In this case, for any strategy of Controller, we let
Perturbator respect the encoding exactly. The play is then either never reaches a target location, or
it goes inside a test module and ends in a target location with cost 5.

9.7 Conclusion

In this chapter, we considered perturbation game semantics in weighted timed automata and
games. The only decidable variant of the problem is the cost optimal reachability in weighted timed
automata under the conservative perturbation game semantics, where PSPACE-completeness is
established by adapting the corner-point abstraction. We also showed “robust undecidability” results
for weighted timed games: optimal reachability problems remain undecidable under perturbation
game semantics. Moreover, the problem even becomes undecidable for weighted timed automata in
the excess perturbation game semantics.

The latter result is particularly surprising. In fact, in weighted timed automata, the decidability of
the cost-optimal reachability without perturbations can be proved using the corner-point abstraction.
Lemma 9.6.5 shows that runs with (approximately) optimal costs follow the paths in this construction
by staying close, by some ε, to the vertices of a given path. In Chapter 7, we used similar ideas to
obtain the decidability of the parameterized robust reachability in the excess perturbation game
semantics. Our construction extends region automata by shrinking constraints, which mark subsets
of facets of each region (rather than marking vertices, as in the corner-point abstraction). Our
proof shows that Controller cannot avoid being close to these marked facets. Thus, although both
techniques are similar, our undecidability result shows, perhaps counterintuitively, that the two
techniques cannot be combined to construct an algorithm.

The encodings yielding undecidability are due, in both cases, to the ability of either of the players
to play precisely, and the other one to check previous delays with precision. We conclude that
game semantics do not introduce enough “fuzziness” in the semantics to avoid encoding undecidable
languages.

The problems we have studied have several variants, and we did not study all here: the strategy
upper bound problem for the conservative perturbation game semantics, and the strategy strict
upper bound for the excess perturbation game semantics remain open. Furthermore, the decidability
of the upper bounds on the value is also open for weighted timed games. We conjecture that these
problems should be undecidable on weighted timed games. On the other hand, restricting to closed

154

guards might yield to decidability, since then players would not be able to check the nonequality of
the clock values.

Part IV

Robust Implementation

In this part, we present results on the robust implementation problem. Here, the goal is to
transform a given timed automaton into one that is equivalent to the original one, in a precise sense,
but also robust. Hence, in the robust implementation approach, a timed automaton model can be
designed and checked using the exact semantics, and then (automatically) robustly implemented. We
present two kinds of results. In Chapter 10, we give procedures to transform any timed automaton
into one whose enlargement is approximately bisimilar to the original automaton. The same
result holds for the sampling semantics. In Chapter 11, we study a concrete semantics for timed
automata with a discrete clock, communication and synchronization delays. We prove that shrinkable
timed automata preserve their behaviors, in the sense of time-abstract simulation equivalence and
non-blockingness, under this semantics.

155

156

Chapter 10

Approximate Implementation

10.1 Introduction

We saw in Chapter 2 how new behaviours appear in timed automata under enlargement, while
behaviours disappear under sampling. In this chapter, we investigate the possibility of modifying
a given timed automaton so as to avoid robustness problems; we would like their enlarged and
sampled semantics to preserve their exact semantics. Given any timed automaton A, we build
another timed automaton B whose semantics under enlargement and under sampling is approximately
bisimilar to A. Approximate bisimilarity is formalized by a quantitative variant of bisimulation
from [FLT10] where the differences between the timings in two systems are bounded above by a
parameter ε. Our construction is parameterized and provides a bisimilar implementation for any
desired precision ε > 0.

Our results mean that all timed automata can be approximately implemented under guard
enlargement or sampling. This provides a robust refinement / implementation procedure: one can
design timed automata under the exact semantics, and then automatically obtain a correct-by-
construction implementation. Our results have also a theoretical implication: In Section 10.5, we
show that several undecidable problems on timed automata remain undecidable for the class of
robust timed automata.

The results of this chapter were published in [BLM+11].

10.2 Preliminaries

10.2.1 Behaviourial Relations

We consider a quantitative extension of timed bisimilarity considered in [TFL10]. This spans the gap
between timed and time-abstract bisimulations: while the former requires time delays to be matched
exactly, the latter ignores timing information altogether. Intuitively, we define two states to be
ε-bisimilar, for a given parameter ε ≥ 0, if there is a (time-abstract) bisimulation which relates these
states in such a way that, at each step, the difference between the time delays of corresponding delay
transitions is at most ε. Thus, this parameter allows one to quantify the “timing error” made during
the bisimulation. A strong and a weak variant of this notion is given in the following definition.

Definition 10.2.1. Given a TTS (S, s0,Σ,K,→), and ε ≥ 0, a symmetric relation Rε ⊆ S×S is a

• strong timed ε-bisimulation, if for any (s, t) ∈ Rε and σ ∈ Σ, d ∈ K,

– s
σ−→ s′ implies t σ−→ t′ for some t′ ∈ S with (s′, t′) ∈ Rε,

– s
d−→ s′ implies t d′−→ t′ for some t′ ∈ S and d′ ∈ K with |d− d′| ≤ ε and (s′, t′) ∈ Rε.

157

158 CHAPTER 10. APPROXIMATE IMPLEMENTATION

• timed-action ε-bisimulation, if for any (s, t) ∈ Rε, and σ ∈ Σ, d ∈ K,

– s
d,σ−−→ s′ implies t d′,σ−−→ t′ for some t′ ∈ S and d′ ∈ K with |d− d′| ≤ ε and (s′, t′) ∈ Rε.

If there exists a strong timed ε-bisimulation (resp. timed-action ε-bisimulation) Rε such that
(s, t) ∈ Rε, then we write s ∼ε t (resp. s ≈ε t). Furthermore we write s ∼ε+ t (resp. s ≈ε+ t)
whenever for every ε′ > ε, s ∼ε′ t (resp. s ≈ε′ t).

Observe that s ∼ε t implies s ∼ε′ t for every ε′ > ε. Also, s ∼ε+ t does not imply s ∼ε t in
general (see Fig. 10.1), and if s ∼ε+ t but s 6∼ε t, then ε = inf{ε′ > 0 | s ∼ε′ t}. These observations
hold true in the timed-action bisimulation setting as well. Note also that s ∼ε t implies s ≈ε t.
Finally, for ε > 0, strong timed or timed-action ε-bisimilarity relations are not equivalence relations
in general, but they are when ε = 0.

s s′ t t′
σ, x ≤ 1 σ, x < 1

Figure 10.1: An automaton in which (s, 0) ∼0+ (t, 0) but (s, 0) 6∼0 (t, 0).

Last, we define a variant of ready-simulation [LS89] for timed transition systems. For Bad ⊆ Σ,
we will write I vBad S when I is simulated by S (and time delays are matched exactly) in such a
way that at any time during the simulation, any failure (i.e., any action in Bad) enabled in S is also
enabled in I. So, if I vBad S and S is safe w.r.t. Bad (i.e., Bad actions are never enabled), then
any run of I can be executed in S (with exact timings) without enabling any of the Bad-actions.
Fig. 10.2 shows an automaton illustrating the importance of this notion. More formally:

Definition 10.2.2. Given a TTS (S, s0,Σ,K,→), and a set Bad ⊆ Σ, a relation R ⊆ S × S is a
ready-simulation w.r.t. Bad if, whenever (s, t) ∈ R:

• for all σ ∈ Σ and d ∈ K, s d,σ−−→ s′ implies t d,σ−−→ t′ for some t′ ∈ S with (s′, t′) ∈ R,

• for all σ ∈ Bad, t σ
=⇒ t′ implies s σ

=⇒ s′ for some s′ ∈ S.

We write s vBad t if (s, t) ∈ R for some ready-simulation R w.r.t. Bad.

We write JAK ∼ε JBK, JAK ≈ε JBK and JAK vBad JBK when the initial states of timed automata
A and B are related accordingly in the disjoint union of the transition systems.

10.2.2 Refined Regions
Let Q∞ = Q ∪ {−∞,∞}. For M,η ∈ Q>0 such that 1

η ∈ N, we denote by ΦC(η,M) the set of
guards on the clock set C, whose constants are either ±∞ or less than or equal to M in absolute
value and are integer multiples of η. Remember that ΦC denotes the set of all guards on clock set C.
We call the inverses of positive integers granularities. The granularity of a timed automaton is the
inverse of the least common denominator of the finite constants in its guards.

We will define a a more general version of the regions defined in Chapter 2. Observe that region
equivalence could also be defined by relating valuations that cannot be distinguished by (some subset
of) guards. In fact, all conditions defining regions, such as fractional ordering, equality of integer

10.3. IMPLEMENTABILITY 159

parts can be encoded using guards. Here, we will use this approach rather than explicitly defining
the (refined) region equivalence.

Let M be the maximum (rational) constant that appears in the guards of A, let η be the
granularity of A. Multiplying any constant in A by 1

η , we obtain an integral timed automaton.
Given valuations u, v ∈ RC≥0 and rationalsM,η, define v 'Mη u to hold if, and only if, for all formulas
φ ∈ ΦC(η,M), u |= φ if and only if v |= φ. The equivalence class of a valuation u for the relation 'Mη
is denoted by reg(u)Mη = {v | u 'Mη v}. Each such class is called an (η,M)-region. In the rest, when
constant M is (resp. M and η are) clear from context, we simply write reg(u)η (resp. reg(u)) and
call these η-regions (resp. regions). We denote by reg(u)Mη the topological closure of reg(u)Mη , for
the usual topology on RC . The number of (η,M)-regions is bounded by O(2|C||C|!(M/η)|C|) [AD94].

In our definition of regions, we thus treat 1
M as the unit value. Notice that if all constants are

integers, then we have M = 1 and our definition gives the usual notion of region equivalence. To
understand the effect ofM , consider valuations u = (0.5, 0.5) and v = (0.4, 0.4). Let K ≥ 1. We have
reg(u)1 = reg(v)1, since this is the usual notion of region equivalence. However, reg(u)2 6= reg(v)2

since the formula x < 0.5 distinguishes these valuations. It is clear that 1-regions are unions of
M -regions for any M ≥ 1.

We define tsucc∗(r) as the set of time-successor regions of r, that is, the set of η-regions r′ such
that u+ d ∈ r′ for some u ∈ r and d ∈ R≥0.

We now associate with each (η,M)-region r a guard φr in Φ(M,η) that defines r. We assume φr
to be normalized, that is, the DBM corresponding to φr is normalized (see Section 3.3).

10.3 Implementability

In this chapter, we use the term robustness to refer to behaviour preservation under guard enlargement,
while samplability refers to behaviour preservation under sampling of time. We give several definitions
which distinguish timed automata whose enlargement (resp. whose sampled semantics) is ε-bisimilar
to the original automaton, for some ε.

10.3.1 Robustness

The approach taken in Chapter 4 and earlier work [Pur00, DDMR08] concentrated on comparing
timed automata A and some enlargement A∆ with respect to untimed language equivalence, or
the satisfaction of a given logic formula. Here, we consider a stronger notion of robustness which
requires two systems to be ε-bisimilar for some ε.

Definition 10.3.1. A timed automaton A is ε-bisimulation-robust (or simply ε-robust), where
ε ≥ 0, if there exists ∆ > 0 such that JAK ≈ε JA∆K.

Clearly, not all timed automata are robust in this sense, since the timed automaton A2 of Fig. 2.2
is not robust even for location reachability.

We do not know whether a timed automaton that is robust for some ∆ is still robust for any
∆′ < ∆, that is, whether JAK ≈ε JA∆K implies JAK ≈ε JA∆′K for ∆′ < ∆, in general. This is the
so-called “faster-is-better” property [AT05, DDR05a], which means that if a property holds in some
platform, it also holds in a faster or more precise platform. This is known to be satisfied for simpler
notions of robustness mentioned above.

160 CHAPTER 10. APPROXIMATE IMPLEMENTATION

`1 `2 `3
x:=1

y:=0

y≥2, B, y:=0

x≤2, A, x:=0
x=0∧y=2

Bad

Figure 10.2: A copy of the non-robust timed
automaton A2 seen earlier in Fig. 2.2

`1 `2
x:=1

y:=0

y≥2, B, y:=0

x≤2, A, x:=0

Figure 10.3: A robust but unsafe alternative.

Bisimulation is not always sufficient for refining systems when one wants to preserve state-based
safety properties proven for A. For instance, removing edges leading to unsafe states in A may
provide us with a trivially safe automaton under any enlargement. However, edges leading to such
states are used to detect failures, so removing these will not necessarily remove the failure itself
(since the states that immediately trigger a failure may still be reachable). Fig. 10.3 gives such an
“incorrect” construction. To cope with this problem, we rely on ready-simulation and require A′ to
satisfy JA′∆K vBad JA∆K, where Bad are distinguished actions leading to unsafe states in A. This
means that any run of JA′∆K can be realized in JA∆K, and that no Bad-action is enabled in that run
in the latter (and hence no unsafe state is reached). Thus, intuitively, no state reached in JA′∆K
corresponds to an unsafe state in JA∆K, and in particular, if A∆ has unsafe runs (leading to unsafe
states), then these cannot be realized in A′∆. Clearly, the automaton in Fig. 10.3 does not satisfy
this. We formalize this idea here.

Definition 10.3.2. A timed automaton A is safe w.r.t. a set of actions Bad ⊆ Σ, if
d∞
(
Reach(JAK),Pre(Bad)

)
> 0, where d∞ is the standard infinity metric, and

Pre(Bad) =
⋃
σ∈Bad,(`,g,σ,R,`′)∈E {`} × JgK is the precondition of Bad-actions

Here, Pre(Bad) is the set of states from which a Bad action can be done. Note that
d∞(Reach(JAK),Pre(Bad)) = 0 does not imply that a state of Pre(Bad) is reachable in A. But we
still consider such an automaton as unsafe, since, intuitively, any enlargement of the guards may
lead to a state of Pre(Bad). It can be seen that automaton of Fig. 10.2 is safe w.r.t. action Bad.
Note that a closed timed automaton is safe w.r.t. Bad if, and only if Bad is not reachable, since the
state space is topologically closed [GHJ97].

We also define a robustness notion requiring only safety properties, as in [Pur00, DDMR08].

Definition 10.3.3. A timed automaton A is safety-robust (w.r.t. Bad) if there exists ∆ > 0 such
that JA∆K is safe w.r.t. Bad.

In the rest, Bad will refer to a set of actions given with the timed automaton we consider. When
we say that a timed automaton is safe, or safety-robust, these actions will sometimes be implicit.

We introduce the notion of safety-robust implementation (parameterized by a bisimilarity relation
≡, which will range over {∼0,∼0+ ,≈0,≈0+}), where we only require the alternative automaton to
preserve a given safety specification.

Definition 10.3.4 (Safety-Robust Implementation). Let A be a timed automaton which is safe
w.r.t. actions Bad, and ≡ denote any bisimilarity relation. A safety-robust implementation of A
w.r.t ≡ is a timed automaton A′ such that:

(i) A′ is safety-robust;

10.3. IMPLEMENTABILITY 161

(ii) JA′K ≡ JAK;

(iii) there exists ∆0 > 0 s.t. for all 0 < ∆′ < ∆ < ∆0, JA′∆′K vBad JA∆K.

Now we define the notion of robust implementation. We require such an implementation to be
robust and equivalent to the original automaton, and to preserve safety specifications.

Definition 10.3.5 (Robust Implementation). Let A be a timed automaton which is safe w.r.t.
actions Bad, and ≡ denote any bisimilarity. An ε-robust implementation of A w.r.t. ≡ is a timed
automaton A′ such that:

(i) A′ is ε-robust;

(ii) JA′K ≡ JAK;

(iii) there exists ∆0 > 0 s.t. for all 0 < ∆′ < ∆ < ∆0, JA′∆′K vBad JA∆K.

10.3.2 Samplability
We now consider the sampled semantics, and define samplability. Similarly to the robustness
definitions, we are interested in approximate bisimulation between the exact semantics and the
sampled one.

Definition 10.3.6. A timed automaton is said to be ε-bisimulation-samplable (or simply ε-
samplable) if there exists a granularity η such that JAK ≈ε JAKη.

Note that not all timed automata are bisimulation-samplable: [KP05] describes timed automata
A which are not (time-abstract) bisimilar to their sampled semantics for any granularity η. We
define a sampled implementation as follows.

Definition 10.3.7 (Sampled Implementation). Let A be a timed automaton, and ≡ denote any
bisimilarity relation. A ε-sampled implementation w.r.t. ≡ is a timed automaton A′ such that

(i) A′ is ε-samplable;

(ii) JA′K ≡ JAK.

Note that a similar phenomenon as in Fig. 10.2 does not occur in sampled semantics since
sampling does not add extra behaviour, but may only remove some; so we do not need the ready
simulation condition.

10.3.3 Constructions
We will present two constructions which yield an implementation for any timed automaton. In our
first construction, for any timed automaton given with a safety specification, we construct a safety
robust implementation. Our second construction is stronger: Given any timed automaton A and
any desired ε > 0, we construct a timed automaton A′ which is both an ε-robust implementation
and an ε-sampled implementation of A w.r.t. ≈0+ (we also give a variant w.r.t. ∼0 for robustness).

Since, A and A′∆ are timed-action ε-bisimilar, all standard untimed linear- and branching-time
properties (e.g. expressible in LTL, resp. CTL) proven for the original automaton are preserved in
the implementation. An example of such a property is deadlock-freedom, which is an important

162 CHAPTER 10. APPROXIMATE IMPLEMENTATION

property of programs. Moreover, respective delays are close by ε. This also implies that in a
quantitative extension of the computation tree logic studied in [FLT10], formulas approximately
preserve their satisfaction values between two ε-bisimilar systems (see [BLM+11]).

Theorem 10.3.8. Let A = (L, `0, C,Σ, E) be an integral timed automaton which is safe w.r.t. some
set Bad ⊆ Σ. Let W denote the number of regions of A. Then,

1. There exists a safety robust implementation of A w.r.t ∼0, with |L| locations, the same number
of clocks and at most |E| ·W edges.

2. For all ε > 0, there exists a timed automaton A′ which is a ε-robust implementation w.r.t. ∼0;
and a timed automaton A′′ which is both a ε-sampled and ε-robust implementation w.r.t. ≈0+ .
Both timed automata have the same number of clocks as A, and the number of their locations
and edges is bounded by O(|L| ·W · (1

ε)|C|).

We will now detail the construtions stated in Theorem 10.3.8. The proofs are given in subsequent
sections.

For any timed automaton A and any location ` of A, let Reach(JAK)|` denote the projection of
the set of reachable states at location ` to RC≥0. For any `, there exists guards φ`1, . . . , φ`nl such that⋃
iJφ

`
iK = Reach(JAK)|` (in fact, the set of reachable states at a given location is a union of regions

but not necessarily convex). We use these formulas to construct a new automaton where we restrict
all transitions to be activated only at reachable states.

Definition 10.3.9. Let A = (L, `0, C,Σ, E) be any integral timed automaton. Define timed

automaton safe(A) from A by replacing each edge `
φ,σ,R−−−→ `′, by edges `

φ∧φ`i ,σ,R−−−−−−→ `′ for all
i ∈ {1, . . . , n`}.

As stated in Theorem 10.3.8 the worst-case complexity of this construction is exponential.
However, in practice, Reach(JAK)|` may have a simple shape, which can be captured by few formulas
φ`i .

Although the above construction will be enough to obtain a safety-robust timed automaton
w.r.t. a given set Bad, it may not be bisimulation-robust. The following construction provides
bisimulation-robustness.

Definition 10.3.10. Let A = (L, `0, C,Σ, E) be an integral timed automaton. Let M be the largest
constant that appears in A, and let η be any granularity. We define implη(A) as a timed automaton
over the set of locations `r where ` is a location of A and r is an (η,M)-region, and over the same
set of clocks. Edges are defined as follows. Whenever there is an edge ` φ,σ,R−−−→ `′ in A, we let
`r

φ∧φs,σ,R−−−−−−→ `′s[R←0], for all (η,M)-regions r and s ∈ tsucc∗(r) such that JφsK ⊆ JφK.
We define implη(A) as the closed timed automaton obtained from implη(A) where each guard is

replaced by its closed counterpart1.

In this chapter, we always consider integral timed automata as input, and the only non-integer
constants are those added by our construction. Observe that the size of implη(A) depends on η,
since a smaller granularity yields a greater number of (η,M)-regions.

The main theorem is a direct corollary of the following lemma, where we state our results in
detail. The bounds on the size of the constructed implementations follow by construction.

1that is, all < are replaced by ≤, and > by ≥.

10.4. PROOF OF CORRECTNESS 163

Lemma 10.3.11. Let A = (L, `0, C,Σ, E) be an integral timed automaton and fix any ε > 0. Assume
that A is safe w.r.t. some set Bad ⊆ Σ. Then,

1. safe(A) is safety-robust, JAK ∼0 Jsafe(A)K and for any ∆ < 1
2|C| ,

Jsafe(A)∆K vBad JA∆K.
2. For any granularity η and ∆ > 0 such that 2(η + ∆) < ε, we have JAK ≈0+ Jimplη(A)K and

Jimplη(A)K ≈ε Jimplη(A)∆K. Moreover, for any 0 < ∆′ < ∆ < 1
|C| , Jimplη(A)∆′K vBad JA∆K.

3. For any granularity η and ∆ > 0 such that 2(η + ∆) < ε, we have JAK ∼0 Jimplη(A)K and
Jimplη(A)K ≈ε Jimplη(A)∆K. Moreover, whenever ∆ < 1

|C| , Jimplη(A)∆K vBad JA∆K.
4. For any granularities η and α such that η = kα for some k ∈ N>0 and η < ε/2,

Jimplη(A)K ≈ε Jimplη(A)Kα.

Note that both implη(A) and implη(A) provide the relation ≈ε+ between the specification (that
is, JAK) and the implementation (that is, JA′∆K). However, the latter has a stronger relation with
JAK, so we also study it separately.

Trading precision against complexity. The choice of the granularity in implη(A) and implη(A)
allows one to obtain an implementation of A with any desired precision. However, this comes with a
cost since the size of implη(A) is exponential in the granularity η. But it is also possible to give up on
precision in order to reduce the size of the implementation. In fact, one could define impl≡(A) where
the regions are replaced by the equivalence classes of any finite time-abstract bisimulation ≡. Then,
we get JAK ≈0 Jimpl≡(A)K and Jimpl≡(A)K is time-abstract bisimilar to Jimpl≡(A)∆K for any ∆ > 0.
In order to obtain, say Jimpl≡(A)K ≈K Jimpl≡(A)∆K, for some desired K ≥ 1, one could, roughly,
split these bisimulation classes to sets of delay-width at most O(K), that is the maximal delay
within a bounded bisimulation class (there is a subtlety with unbounded classes, where, moreover,
all states must have arbitrarily large time-successors within the class). Note however that safety
specifications are only guaranteed to be preserved for small enough K (see Lemma 10.3.11).

10.4 Proof of Correctness
This section is devoted to the proof of Lemma 10.3.11. We start with general properties of regions,
in subsection 10.4.1. In subsection 10.4.2, we prove the robustness of implη(A) and implη(A),
as stated in points 2 and 3 of Lemma 10.3.11. In subsection 10.4.3, we prove that implη(A) is
bisimulation-samplable (point 4). Last, safety preservation of all the above systems, including
safe(A), is proved in subsection 10.4.4.

10.4.1 Properties of regions
We give several properties of the enlargement of regions. Fixing constants η and M , we refer to any
(η,M)-region simply as a region.

Proposition 10.4.1. Let u ∈ RC≥0 such that u ∈ J〈φs〉∆K for some region s. Then for any subset
of clocks R ⊆ C, u[R← 0] ∈ J〈φs[R←0]〉∆K.

The following proposition shows, intuitively, that enlarged guards cannot distinguish the points
of an “enlarged region". The proof is straightforward using difference bound matrices in normal
form. Note that the property does not hold if φs is not in normal form.

164 CHAPTER 10. APPROXIMATE IMPLEMENTATION

Proposition 10.4.2. Let s denote a region, and φ a guard. If JφsK ⊆ JφK, then J〈φs〉∆K ⊆ J〈φ〉∆K.

Proposition 10.4.3. Let u ∈ RC≥0 such that u ∈ J〈φs〉∆K for some region s. Then for all s′ ∈
tsucc∗(s), there exists d ≥ 0 such that u+ d ∈ J〈φs′〉∆K.

Proof. We only need to prove the case where s′ is the immediate time-successor of s. Let A denote
the DBM that defines s, and A′ the DBM that defines s′.

Let u ∈ J〈φs〉∆K. All time-successor regions of s contain the exact same diagonal constraints
as s (since (x + d) − (y + d) = x − y.) Then all we need to show is that constraints of the form
−A′0,x −∆ ≺A′0,x x ≺A

′

x,0 A′x,0 + ∆ is satisfied by a time-successor of u.
First, assume that some clocks have integer values in s, say −A0,x = Ax,0 for x ∈ I for some

non-empty I ⊆ C, and that Ax,0 < M (the case where Ax,0 = M is similar). Then A′ is obtained by
replacing these constraints by Ax,0 < x < Ax,0 +1 for all x ∈ I. We have Ax,0−∆ ≤ u(x) ≤ Ax,0 +∆
for all x ∈ I, so the enlargement of the above constraint is satisfied by u unless u(x) = Ax,0 −∆ for
some x ∈ I. In this case, we only need to delay d > 0 so that Ax,0 −∆ < u(x) + d < Ax,0. Since any
constraint of A which is not an equality is a strict inequality, this delay can be chosen small enough
so that all other constraints are still satisfied.

Now, suppose no clock has an integer value in s. Let x denote a clock that has the largest
fractional part in s (there may be several clocks x). Then s satisfies Ax,0 − 1 < x < Ax,0. But
then A′, which describes the immediate time-successor of s, is obtained from A by replacing the
above constraint by x = Ax,0. We know that Ax,0 − 1 −∆ < u(x) < Ax,0 + ∆ by hypothesis. If
u(x) ≥ Ax,0−∆ then u ∈ J〈φs′〉∆K. Otherwise, we show that u+d ∈ J〈φs′〉∆K, where d = Ax,0−u(x).
For all clocks y, we have to verify that Ay,0 − 1 −∆ < u(y) + d < Ay,0 + ∆ for all x 6= y (these
define A′, along with the diagonal constraints which are the same as in A). We have,

Ay,0 − 1−∆ < u(y) + (Ax,0 − u(x)) < Ay,0 + ∆

⇐⇒ Ay,0 − 1− Ax,0 −∆ < u(y)− u(x) < Ay,0 − Ax,0 + ∆

⇐⇒ Ax,0 − Ay,0 −∆ < u(x)− u(y) < Ax,0 + 1− Ay,0 + ∆,

which is true by the fact that φs is normalized. and that x has the greatest fractional part in s.

The previous proposition is no longer valid if φs is not normalized. As an example, take the
region defined by x = 1 ∧ y = 0, whose immediate successor is 1 < x < 2 ∧ 0 < y < 1 ∧ x− y = 1.
The enlargement of the former formula is satisfied by valuation (x = 1−∆, y = ∆) but this has no
time-successor that satisfies the enlargement of the latter.

Last, we need the following proposition which provides a bound on the delay that it takes to go
from a region to another.

Proposition 10.4.4. Let r be a region, and s a time-successor region of r, and ∆ ≥ 0. Suppose
that u ∈ JφrK and u+ d ∈ JφsK for some d ≥ 0. Then for any v ∈ J〈φr〉∆K, there exists d′ ≥ 0 such
that v + d′ ∈ J〈φs〉∆K and |d′ − d| ≤ 2η + 2∆.

Proof. First, observe that d′ such that v + d′ ∈ J〈φ〉∆K exists by Proposition 10.4.3. We distinguish
the following cases.

If all clocks are above the maximal constant M in r, then the statement is true for d′ = d.
If all clocks are above the maximal constants only in s, then let x be the clock with the smallest

value in r. Suppose that r satisfies Ax,0−η < x < Ax,0. Then d must be greater than M −Ax,0−∆,

10.4. PROOF OF CORRECTNESS 165

whereas any d′ ≥M −Ax,0 + η+ ∆ suffices to have v+ d′ ∈ s for any v ∈ r. Hence d′ can be chosen
so that |d′ − d| ≤ η + 2∆. The situation is similar if r satisfies x = Ax,0.

Suppose now that some clock x is below the maximal constant both in r and s. Suppose
Ax,0 − η < x < Ax,0 in r and A′x,0 − η < x < A′x,0 in s, where A′x,0 > Ax,0. Then, for all v ∈ r
and v + d′ ∈ s, d′ satisfies A′x,0 − Ax,0 − η ≤ d ≤ A′x,0 − Ax,0 + η. And this also holds for u and
u+ d. Therefore we get |d′ − d| ≤ 2η. The remaining cases where x satisfies an equality in r or s
are similar.

10.4.2 Proof of Robustness

We first prove that implη(A) and implη(A) are bisimulation-robust, for an appropriate ε, that is
JA′K ≈ε JA′∆K where A′ denotes any of these (Lemma 10.4.5). Then we show “faithfulness" results:
Lemma 10.4.7 shows that JAK ∼0 Jimplη(A)K and Jsafe(A)K ∼0 JAK, and Lemma 10.4.8 shows that
JAK ≈0+ Jimplη(A)K.

Lemma 10.4.5. For any timed automaton A, any granularity η, and any ∆ > 0, we have
Jimplη(A)K ≈2∆+2η Jimplη(A)∆K.

Proof. We fix any η and ∆. We define relation R ⊆ (L × RC)× (L × RC) between Jimplη(A)K and
Jimplη(A)∆K by (`r, u)R(`′r′ , u

′) whenever `r = `′r′ and

∀s ∈ tsucc∗(r),∃d ≥ 0, u+ d ∈ JφsK ⇐⇒ ∃d′ ≥ 0, u′ + d′ ∈ J〈φs〉∆K. (10.1)

Intuitively, relation R relates states which can reach, by a delay, the same set of regions: we require
the first system to reach JφsK, while it is sufficient that the second one reaches J〈φs〉∆K, since its
guards are enlarged by ∆.

Initial states satisfy (`0,0)R(`0,0). In fact all time-successor regions of 0 are reachable by a delay
in both systems. Let (`r, u) and (`r, u

′) be two states of Jimplη(A)K and Jimplη(A)∆K respectively,

such that (`r, u)R(`r, u
′). Suppose (`r, u) delays d and takes the edge `r

φ∧φs,σ,R−−−−−−→ `′s[R←0]. By
construction, s is a time-successor of r and s ⊆ JφK. By (10.1), there exists d′ ≥ 0 such that
u′ + d′ ∈ J〈φs〉∆K. Then we also have u′ + d′ ∈ J〈φ〉∆K since JφsK ⊆ JφK by construction and by
Proposition 10.4.2. It remains to show that (`′s[R←0], (u+ d)[R← 0])R(`′s[R←0], (u

′ + d′)[R← 0]).
We have (u+ d)[R← 0] ∈ Jφs[R←0]K and (u′ + d′)[R← 0] ∈ J〈φs[R←0]〉∆K. The former follows from
the properties of regions, and the latter from Proposition 10.4.1. Then the set of time successor
regions that are reachable by a delay are exactly all time successor regions of s[R ← 0] in both
systems: in Jimplη(A)K this is obvious from the region automaton construction, and in Jimplη(A)∆K
from Proposition 10.4.3.

We now prove the symmetric case. Suppose (`r, u
′) delays d′ and takes the edge `r

φ∧φs,σ,R−−−−−−→
`′s[R←0]. By construction, s is a time-successor of r and s ⊆ JφK. By (10.1), there exists d ≥ 0 such
that u+ d ∈ JφsK. Since JφsK ⊆ JφK by construction, (`r, u+ d) satisfies the guard φ ∧ φs. Now, one
can show that (`′s[R←0], (u+ d)[R← 0])R(`′s[R←0], (u

′ + d′)[R← 0]) as in the previous case.
The index 2(η + ∆) of the bisimulation relation follows from Proposition 10.4.4.

Lemma 10.4.6. For any timed automaton A, any granularity η, and any ∆ > 0, we have
Jimplη(A)K ≈2∆+2η Jimplη(A)∆K.

166 CHAPTER 10. APPROXIMATE IMPLEMENTATION

Proof. We fix any η and ∆, and define relation R ⊆ (L × RC)× (L × RC) between Jimplη(A)K and
Jimplη(A)∆K by (`r, u)R(`′r′ , u

′) whenever `r = `′r′ and

∀s ∈ tsucc∗(r),∃d ≥ 0, u+ d ∈ JφsK ⇐⇒ ∃d′ ≥ 0, u′ + d′ ∈ J〈φs〉∆K. (10.2)

The difference with the previous lemma is that we now use the closures of formulas φr.
Initial states satisfy (`0,0)R(`0,0). In fact all closures of time-successor regions of 0 are

reachable by a delay in both systems. Let (`r, u) and (`r, u
′) be two states of Jimplη(A)K and

Jimplη(A)∆K respectively, such that (`r, u)R(`r, u
′). Suppose (`r, u) delays d and takes the edge

`r
φ∧φs,a,R−−−−−−→ `′s[R←0]. By construction, s is a time-successor of r and s ⊆ JφK. By (10.2), there exists

d′ ≥ 0 such that u′+d′ ∈ J〈φs〉∆K. Then we also have u′+d′ ∈ J〈φ〉∆K = J〈φ〉∆K since JφsK ⊆ JφK and
by Proposition 10.4.2. It remains to show that (`′s[R←0], (u+d)[R← 0])R(`′s[R←0], (u

′+d′)[R← 0]).
We have (u+ d)[R← 0] ∈ Jφs[R←0]K and (u′ + d′)[R← 0] ∈ J〈φs[R←0]〉∆K. The former follows from
the properties of regions, and the latter from Proposition 10.4.1. Then the set of time successor
regions that are reachable by a delay are exactly all time successor regions of s[R ← 0] in both
systems: in Jimplη(A)K this is obvious from the region automaton construction, and in Jimplη(A)∆K
from Proposition 10.4.3.

We now prove the symmetric case although it is similar. Suppose (`r, u
′) delays d′ and takes

the edge `r
φ∧φs,a,R−−−−−−→ `′s[R←0]. By construction, s is a time-successor of r and s ⊆ JφK. By (10.2),

there exists d ≥ 0 such that u+ d ∈ JφsK. Since JφsK ⊆ JφK by construction, (`r, u+ d) satisfies the
guard φ ∧ φs. Now, one can show that (`′s[R←0], (u+ d)[R← 0])R(`′s[R←0], (u

′ + d′)[R← 0]) as in
the previous case.

The index 2(η + ∆) of the bisimulation relation follows from Proposition 10.4.4.

The parameter which we provide for the timed-action bisimilarity is (almost) tight. In fact,
consider the automaton in Figure 10.2, where the guard of the edge entering `1 is changed to x ≤ 1.
Fix any η and ∆ and consider the following cycle in implη(A):

(`1,r1) −→ (`2,r2) −→ (`1,r1),

where r1 is the region 1− η < x < 1 ∧ y = 0, and r2 is the region x = 0 ∧ 1 < y < 1 + η. Suppose
Jimplη(A)∆K first goes to location (`1,r1) with x = 1 + ∆, y = 0, and that this is matched in
Jimplη(A)K by (`1,r′1 , (x = 1− α, y = 0)) where necessarily α ≥ 0. It is shown in [DDMR08] that in
any such cycle, the enlarged automaton can reach (by iterating the cycle) all states of the region r1 at
location `1 (See also Chapter 4). In particular, Jimplη(A)∆K can go to state (`1,r1 , (x = 1−η, y = 0)).
However, without enlargement, all states (`1, r

′
1, (v

′
x, v
′
y)) reached from a state (`1,r1 , (vx, vy)) with

vy = 0 satisfy v′x ≥ vx, that is, the value of the clock x at location `1 cannot decrease along any run.
Thus, the state (`1,r1 , (x = 1 − η, y = 0)) of Jimplη(A)∆K is matched in Jimplη(A)K by some state
(`1,r′′1 , (v

′
x, 0)) where v′x ≥ 1− α. Now, from there, Jimplη(A)∆K can delay 1 + ∆ + η and go to `2,

whereas Jimplη(A)K can delay at most 1 + α to take the same transition. The difference between the
delays at the first and the last step is then at least max

(
∆ + α, 1 + ∆ + η − (1 + α)

)
≥ ∆ + η/2.

Next, we show that safe(A) and implη(A) are strongly 0-bisimilar to A.

Lemma 10.4.7. For any timed automaton A, we have Jsafe(A)K ∼0 JAK, and JAK ∼0 Jimplη(A)K
for any granularity η.

10.4. PROOF OF CORRECTNESS 167

Proof. Fix any η. All regions in this proof will refer to (η,M)-regions where M is the maximal
constant of A. Let JAK = (S, s0,Σ, T) and Jimplη(A)K = (S′, s′0,Σ, T

′), consider relation R ⊆ S ×S′
defined by,

R = {(`, v), (`r, v) | reg(v) ∈ tsucc∗(r), (`, v) ∈ S and (`r, v) ∈ S′}.

Consider any (`, v) R (`r, v) and suppose (`, v)
a−→ (`′, v′) in JAK. Then there must be an edge

`
φ,a,R−−−→ `′ in A such that v ∈ JφK and v′ = v[R ← 0]. By construction there exists an edge

`r
φ∧φreg(v),a,R−−−−−−−−−→ `reg(v)[R←0] in implη(A). This is because reg(v) ∈ tsucc∗(r) and reg(v) ⊆ JφK

(since v ∈ JφK and clock formulae cannot distinguish points in the same region). Valuation
v obviously satisfies φ ∧ φreg(v). We have v′ = v[R ← 0] so reg(v′) = reg(v)[R ← 0], thus
reg(v′) ∈ tsucc∗(reg(v)[R← 0]). Therefore (`′, v′)R(`′reg(v)[R←0], v

′).
The symmetric case, and the timed transitions are equally simple to see.
The proof of JAK ∼0 Jsafe(A)K follows from the fact that strengthening the guards by the

description of reachable states does not change the semantics (it only does so for the enlarged
automaton).

The proof of JAK ≈0+ Jimplη(A)K is trickier. In fact, since all guards are closed in implη(A),
but not necessarily in A, all time delays may not be matched exactly. The first part of the proof
follows the lines of Proposition 16 of [OW03a], who, by a similar construction, prove that the finite
timed traces of JAK are dense in those of Jimplη(A)K, for an appropriate topology. Their result has a
similar flavor, but we consider 0+-bisimulation which cannot be interpreted in terms of density in
an obvious way.

Lemma 10.4.8. For any timed automaton A and granularity η, JAK ≈0+ Jimplη(A)K.

Proof. We fix any η and δ ∈ (0, 1). We define (`, v)R(`r, v
′) iff

r = reg(v), v′ ∈ reg(v) and ∃v′′ ∈ reg(v), v = δv′′ + (1− δ)v′. (10.3)

We show that R is a timed-action 0+-bisimulation.
Initial states clearly satisfy (10.3) by letting v′′ be equal to both valuations. Consider now states

(`, v) R (`r, v
′). Let v′′ ∈ reg(v) such that v = δv′′ + (1− δ)v′. We prove the two directions.

• Suppose (`r, v
′)

d′,σ−−→ (`′r′ , v
′ + d′[R← 0]) in Jimplη(A)K, using the edge `r

φ∧φs,σ,R−−−−−−→ `′r. Since
s (the region described by φs) is a time-successor of reg(v) by construction, there exists some
d′′ ≥ 0 such that v′′ + d′′ ∈ s.
Then (`, v)

d,σ−−→ (`′, (v + d)[R← 0]) as

(`, v)
d−→ (`, v + d)

σ−→ (`′, (v + d)[R← 0]),

using the edge l φ,σ,R−−−→ `′ in A and d = δd′′ + (1− δ)d′. Now v + d ∈ JφK because v′′ + d′′ ∈ s,
v′ + d′ ∈ s and v + d = δ(v′′ + d′′) + (1− δ)(v′ + d′) with 0 < δ < 1 (in fact, v + d must be in
reg(s) and not only in reg(s)).
Also (v + d)[R← 0] = δ(v′′ + d′′)[R← 0] + (1− δ)(v′ + d′)[R← 0], and (v′′ + d′′)[R← 0] ∈
s[R← 0] = reg(v + d)[R← 0], thus (`′, (v + d)[R← 0]) R (`′s[R←0], (v

′ + d′)[R← 0]).

168 CHAPTER 10. APPROXIMATE IMPLEMENTATION

• Symmetrically, suppose that (`, v)
d,σ−−→ (`′, (v + d)[R← 0]) in JAK, using the edge ` φ,σ,R−−−→ `′.

Let s = reg(v + d), then (by Lemma 10.4.9 below) there exists d′, d′′ ≥ 0 such that v′ + d′ ∈ s
and v′′ + d′′ ∈ s. Hence v + d = δ(v′′ + d′′) + (1− δ)(v′ + d′).

By construction implη(A) contains `r
φ∧φs,σ,R−−−−−−→ `′s[R←0] since JφsK ⊆ JφK. Then we have

(`r, v
′)

d′,σ−−→ (`′s[R←0], (v
′ + d′)[R ← 0]). Observing (v + d)[R← 0] = δ(v′′ + d′′)[R← 0] +

(1 − δ)(v′ + d′)[R← 0], and (v′′ + d′′)[R← 0] ∈ s[R← 0] = reg(v + d)[R← 0], we have
(`′, (v + d)[R← 0]) R (`′s[R←0], (v

′ + d′)[R← 0]).

We now prove that relationR has parameter at most 2δ. In fact, whenever we have (`, v) R (`r, v
′),

valuation v′ and the corresponding valuation v′′ reside in the (closure of the) same region, and at
each transition, these delay into the (closure of the) same region. Then the difference between these
delays is at most 2 (in fact, 2η) by Proposition 10.4.4. With the notations of the first case, we get
|d′′ − d′| ≤ 2. But since d = δd′′ + (1− δ)d′, we have |d− d′| = |δd′′ − δd′| = δ|d′′ − d′| ≤ 2δ.

The result follows since δ was chosen arbitrarily.

Note that it may be the case that Jimplη(A)K 6∼k JAK for all k ≥ 0. In fact, consider a location
with outgoing edges respectively guarded by x < 1, x = 1, x > 1. Then Jimplη(A)K is able to delay
to x = 1 (say, starting from x = 0) where it satisfies all the guards but JAK cannot delay to such a
point.

Lemma 10.4.9. Let v, v′, v′′ ∈ R≥0 such that v′′ ∈ reg(v) and v′ ∈ reg(v), and v = εv′′ + (1− ε)v′
for some ε ∈ (0, 1). Then for all d ≥ 0, there exists d′, d′′ ≥ 0 s.t. v+d = ε(v′′+d′′)+(1− ε)(v′+d′),
v′′ + d′′ ∈ reg(v + d) and v′ + d′ ∈ reg(v + d).

Proof. Write R1 for region reg(v) and R2 for its immediate successor. We will prove the property
when v + d ∈ R2. The general case is then a consequence. [The case where R1 has no immediate
successor is trivial.]

Let D = {v + d | d ∈ R≥0}, D′ = {v′ + d′ | d′ ∈ R≥0} and D′′ = {v′′ + d′′ | d′′ ∈ R≥0}. We
distinguish between two cases.

First case: assume D ∩R2 is the singleton {v + d}. One of the constraints which define R2 is of
the form x = c. In particular, D′ ∩R2 and D′′ ∩R2 are also singletons {v′+ d′} and {v′′+ d′′}
respectively. We then have c = v(x) + d = v′(x) + d′ = v′′(x) + d′′, from which we deduce
d′ = ε(v′′(x)−v′(x))+d and d′′ = (1−ε)(v′(x)−v′′(x))+d. This is then a simple computation
to get the desired property that ε(v′′ + d′′) + (1− ε)(v′ + d′) = v + d.

Second case: assume D ∩ R2 is not a singleton. In that case D ∩ R1 is the singleton {v}, and
one of the constraints which define R1 is of the form x = c. And D′ ∩ R1 and D′′ ∩ R1 are
also singletons, {v′} and {v′′} respectively. If R2 has no immediate successor, then this is
easy, for any d′ > 0 we can find d′′ > 0 that satisfies the desired property. Assume that R2

has an immediate successor R3, one of the constraints that defines R3 being y = e. Also, by
definition of the immediate successor, for any 0 < d′ such that v′(y) +d′ < e, it is the case that
v′+d′ ∈ R2. Similarly for any 0 < d′′ such that v′′(y)+d′′ < e, it is the case that v′′+d′′ ∈ R2.
Define λ = d

e−v(y) , and set d′ = λ(e− v′(y)) and d′′ = λ(e− v′′(y)). We have that v′ + d′ ∈ R2

and v′′ + d′′ ∈ R2. A simple computation yields that ε(v′′ + d′′) + (1− ε)(v′ + d′) = v + d.

This concludes the proof.

10.4. PROOF OF CORRECTNESS 169

1

1

v′′

v
v′

Figure 10.4: Lemma 10.4.9.

10.4.3 Proof of Samplability
We now show that implη(A) is a sampled implementation for any timed automaton A. This result
follows from the following lemma and Lemma 10.4.8.

Lemma 10.4.10. Let A be any integral timed automaton. For any granularities η and α such that
η = kα for some k ∈ N>0, we have Jimplη(A)K ≈2η Jimplη(A)Kα.

The proof is given below and is similar to Lemma 10.4.5. But we first need the following lemma.
Let us fix some granularity η. In what follows, all regions refer to η-regions. We fix another

granularity α such that η = kα for some k ∈ N>0.

Lemma 10.4.11. Let r, s be regions such that s ∈ tsucc∗(r). For all v ∈ r ∩ NC, there exists
d ∈ αNC such that v + d ∈ s.

Proof. The case where r = s is trivial with d = 0. It is also easy if all clocks are above the maximal
constant in s. Otherwise, we prove the lemma for the case where s is the immediate time successor
of r.

In this proof only, an η-integer value means an element of ηN. Suppose that no clock has an
η-integer value in r and let x denote the clock that has the greatest fractional part in r. Let
Ax,0 − η < x < Ax,0 denote the constraint on x in r. Then s is obtained from r by replacing this
constraint by x = Ax,0 and without changing other constraints. We have d = Ax,0 − v(x) ∈ αN
since Ax,0 ∈ ηN ⊆ αN and v(x) ∈ αN. We get v + d ∈ s.

Suppose now that some subset of clocks X ⊆ C have η-integer values in r, say x = Ax,0 for each
x ∈ X. Then the immediate time successor of r is obtained by replacing these equalities either by
Ax,0 < x < Ax,0 + η if Ax,0 < M , or by Ax,0 > M , without changing other contraints. We choose
d = 0 and we have v ∈ s.

Proof of Lemma 10.4.10. We define the relation R ⊆ (L × RC) × (L × αNC) between Jimplη(A)K
and Jimplη(A)Kα by (`r, u) R (`′r′ , u

′) if, and only if `r = `′r′ and

∀s ∈ tsucc∗(r),∃d ∈ R≥0, u+ d ∈ JφsK ⇐⇒ ∃d′ ∈ αN, u′ + d′ ∈ JφsK (10.4)

Initial states satisfy (`0,0) R (`0,0). In fact (the closures of) all time-successor regions of 0 are
reachable by a delay in both systems (Lemma 10.4.11). Let (`r, u) and (`r, u

′) be two states of
Jimplη(A)K and Jimplη(A)Kα respectively, such that (`r, u) R (`r, u

′). Suppose (`r, u) delays d and

170 CHAPTER 10. APPROXIMATE IMPLEMENTATION

takes the edge `r
φ∧φs,a,R−−−−−−→ `′s[R←0]. By construction, s is a time-successor of r (or itself) and

s ⊆ JφK. By (10.4), there exists d′ ∈ αN such that u′ + d′ ∈ JφsK. Then we also have u′ + d′ ∈ JφK
since JφsK ⊆ JφK. It remains to show that (`′s[R←0], (u+ d)[R← 0]) R (`′s[R←0], (u

′ + d′)[R← 0]).
First, notice that we have (u+ d)[R← 0] ∈ Jφs[R←0]K and (u′ + d′)[R← 0] ∈ Jφs[R←0]K. Then both
states can reach the closures of all time successors of s[R← 0]: In Jimplη(A)K this is clear from the
properties of regions and in Jimplη(A)Kα from Lemma 10.4.11.

The symmetric case is similar. The index 2η follows from Proposition 10.4.4.

10.4.4 Proof of Safety Preservation (Ready Simulation)

To complete the proof of Lemma 10.3.11, it remains to prove the ready simulation relations. The
following proves the statement on implη(A) and implη(A) of Lemma 10.4.12. The ready-simulation
involving safe(A) is restated and proved afterwards.

Lemma 10.4.12. We have Jimplη(A)∆′K vBad JA∆K and Jimplη(A)∆K vBad JA∆K for any 0 < ∆′ <

∆ < 1
|C| ; and Jsafe(A)∆K vBad JA∆K for any ∆ < 1

2|C| .

Proof. We prove the lemma for implη(A)∆. The case of implη(A)∆ is similar (choosing ∆′ = ∆).
We fix any η. Let JA∆K = (S, s0,Σ, T and Jimplη(A)∆′K = (S′, s′0,Σ, T

′) respective TTSs. Let
R ⊆ S×S′ defined by, (`r, u) R (`, u) iff (`r, u) is reachable and u ∈ J〈φr〉∆′K. We first show that R
is a simulation with parameter 0, then prove that it is a ready simulation w.r.t. Bad.

Initial states are obviously related by R. Now, consider any (`r, u)R(`, u) and suppose that

(`r, u)
d,σ−−→ (`′r′ , u

′) in Jimplη(A)∆′K, for some d ≥ 0 and σ ∈ Σ following edge `r
σ,φ∧φs,R−−−−−−→ `′r′ ,

where s ∈ tsucc∗(r). Then, A has the edge ` σ,φ,R−−−→ `′. Since J〈φ〉∆′K ⊆ J〈φ〉∆K (because ∆′ < ∆) we
have u+ d ∈ J〈φ〉∆K, and we get (`, u)

d,σ−−→ (`′, u′) in JA∆K. Clearly, (`′r′ , u
′) R (`′, u′).

We now show that actions Bad are not enabled in JA∆K at any point in this simulation, which
suffices to show ready simulation. First, observe that if any location `r is reachable in Jimplη(A)∆′K,
then all points of region r at location ` are reachable in JAK. This follows from the fact that implη(A)

encodes the region automaton in its locations, so any run of Jimplη(A)∆′K follows the run of the
region automaton of A, made of the sequence of regions annotating each location. Now, suppose
that (`r, u)R(`, u) and (`, u)

d,σ−−→ (`′, u′) in JA∆K for some d ≥ 0 and σ ∈ Bad. Let φ be the guard
of this edge labelled by σ, and let s = reg(u+ d). Since u+ d ∈ J〈φ〉∆K, it must be the case that
d∞(s, JφK) ≤ ∆. But since ∆ < η

|C| by assumption, we have s ∩ JφK 6= ∅ by Proposition 10.4.13,
hence d∞(s, JφK) = 0. This implies that s (thus, r) is not reachable in Jimplη(A)K since otherwise, A
would not be safe w.r.t. Bad. This shows that actions in Bad are not enabled in this simulation
starting from the initial states.

Proposition 10.4.13 ([DDMR08]). Let R and R′ be closures of η-regions of R≥0. If R ∩R′ = ∅
then d(R,R′) ≥ η

|C| .

Lemma 10.4.14. We have Jsafe(A)∆K vBad JA∆K for any ∆ < 1
2|C| .

Proof. The identity relation, restricted to the set of reachable states, is clearly a simulation. To
see that it is also a ready simulation, consider any reachable state (`, u) of Jsafe(A)∆K, and suppose

10.5. APPLICATION TO ROBUST UNDECIDABILITY 171

that from this state, an action of Bad is enabled in JA∆K, after a possible delay. There exists
d ≥ 0 such that u + d ∈ J〈φ〉∆K, where φ denotes the guard of the edge with a label in Bad.
State (`, u) cannot be the initial state since this would contradict the safety of JAK. In fact, we
would have d∞(reg(d), JφK) ≤ ∆ which implies JφK ∩ reg(d) 6= ∅. Therefore, (`, u) must have a

reachable predecessor in Jsafe(A)∆K, say (`′, u′)
d′,σ′−−−→ (`, u), following some edge `′

σ′,g∧φ`j ,R−−−−−−→ `. By
definition, all points of Jφ`jK are reachable in JAK at location `. We have u′ + d′ ∈ J〈φ`j〉∆K. So
there exists a state (`, v) which is reachable in JAK such that d∞(u, v) ≤ ∆. But, we assumed that
u+ d ∈ J〈φ〉∆K, so d∞(v + d, u+ d) ≤ ∆ implies d∞(v + d, JφK) ≤ 2∆. So d∞(reg(v + d), JφK) = 0
by Proposition 10.4.13, where reg(v+ d) is reachable in JAK. We get d∞(Reach(JAK), {`}× JφK) = 0,
which is a contradiction.

10.5 Application to Robust Undecidability

The constructions we gave in this chapter are also important theoretical results, since they show that
the class of robust timed automata contain timed automata that are equivalent, in the sense of strong
0-bisimulation, to arbitrary timed automata. Hence, considering only robust timed automata in the
domain of any problem is not restrictive at all, when it comes to decidability and expressiveness.
Although there is a blow-up in the size of the equivalent models we define, this is irrelevant if we are
only interested in the decidability of verification problems.

Here, we apply the implementation constructions given previously to show that all undecidable
problems on timed automata remain undecidable on the class of robust timed automata. We state
explicitly the undecidability of the timed language universality, which is one of the important
problems in verification.

The timed language of a timed automaton is the set of its timed traces of its initialized runs. The
timed language universality problem asks whether the timed language of a given timed automaton
contains all timed traces. The problem is undecidable for general timed automata [AD94].

Theorem 10.5.1. The timed language universality problem is undecidable for the class of safety-
robust (resp. bisimulation-robust) timed automata.

Proof. The proof given in [AD94] consists in defining a language Lundec encoding the computations
of a Minsky machine. Then a timed automaton A that encodes exactly the complement of Lundec is
given. Hence, the universality of the timed language of A is equivalent to the non-emptiness of the
computations of the Minsky machine. In this proof, we can replace A by safe(A) which has the same
timed language since A ∼0 safe(A). Furthermore, safe(A) is safety-robust by construction. The
same holds for implη(A). Thus, the problem remains undecidable in both classes of robust timed
automata.

The proof above shows that any encoding of an undecidable language by a regular timed language,
can be realized by a robust timed automaton. One can thus formulate the following meta-theorem:

All problems whose undecidability is proven by encoding an undecidable problem as a
timed automaton remain undecidable for the class of robust timed automata.

172 CHAPTER 10. APPROXIMATE IMPLEMENTATION

10.6 Conclusion
We have presented a way to transform any timed automaton into robust and samplable ones, while
preserving the original semantics with any desired precision. Such a transformation is interesting
if the timed automaton under study is not robust (or not samplable), or cannot be certified as
such. In this case, one can simply model-check the original automaton in the exact semantics for
desired properties, then apply our constructions. This allows one to design timed automata at a
high abstraction level, without taking into account imprecisions, and then automatically refine to an
equivalent but robust design.

Our results also show that robust timed automata are not less expressive than the class of
arbitrary timed automata, since one can always transform a timed automaton into a robust one and
preserve its semantics exactly. On one hand, this is good news since one can implement all timed
automata (satisfying the safety assumption of Definition 10.3.2). On the other hand, this means that
our notion of robustness does not rule out very complex timed automata, such as those encoding
undecidable problems: as we showed in Section 10.5, undecidable problems remain undecidable for
the class of robust timed automata.

Several important questions remain open. First of all, for now, our construction is applied to
timed automata seen as a whole. Thus, if the input is a network of timed automata, the construction
requires each component to have (read-only) access to all other clocks. If all clocks cannot be
publicly read, then our constructions may not be actually realizable in some platforms. Another
problem is that we can only treat “one-player timed automata”, that is, we assume that the evolution
of the system is entirely controlled by the controller. In reality, there may be uncontrollable actions,
whose guards cannot be constrained. Taking into account uncontrollable transitions would require
formalizing the system as a game. Another interesting future work would be to investigate the size
complexity of robust timed automata: given a timed automaton A, can we always find a robust
equivalent timed automaton of size polynomial in A? This would not only extend our understanding
of the class of robust timed automata by providing information on their succinctness, but it would
also have practical implications since one would avoid the exponential blow-up of our constructions.

Chapter 11

Implementation by Shrinking

11.1 Introduction
The perturbation models and the corresponding robustness problems considered in this thesis
are related to implementability, i.e., whether a given model can be implemented on physical
hardware, preserving (the properties of) its exact semantics. In this chapter, we first present a
target implementation semantics for timed automata, which takes into account nonzero reaction
times, synchronization delays and clock imprecisions. Our semantics is similar to the one studied
in [DDR05a] with minor differences (corresponding to different abstraction choices), and we prove
additional properties besides the one given there. We then show how shrinkability (of Chapter 5)
can be used to ensure that the behavior is preserved in implementation.

We will “implement” timed automata simply by shrinking their guards. We explain the intuition
in a simple case, where the only imprecisions are modelled as guard enlargement. When an edge
with the guard x ∈ [a, b] is implemented as x ∈ [a+ δ, b− δ], under imprecisions bounded by some ∆,
the system still guarantees that x ∈ [a+ δ −∆, b− δ + ∆]. Provided that 0 ≤ ∆ < δ, the resulting
behavior then conforms to the initial model since

[a+ δ −∆, b− δ + ∆] ⊆ [a, b].

Thus, no new behavior is present in the implemented system under imprecisions. We will follow
this idea to show that shrunk timed automata have no additional behavior in the implementation
semantics than in the exact semantics. Furthermore, we are interested in ensuring that the
implementation semantics also do not lose behaviors: We will show that if a timed automaton is
shrinkable, then its implementation semantics is non-blocking and time-abstract simulates its exact
semantics. Thus, the main result of this chapter is that shrinkable timed automata are implementable
in our implementation semantics.

Implementability is in general a difficult problem, and an exact answer needs to take into account
a detailed model of the platform, such as the worst and best case execution times for each instruction
in a given microprocessor (e.g. [BKW12]). Such a modeling is out of the scope of this thesis. It
is nonetheless useful to carry the formal verification as far as possible in the design of a system,
so as to gain confidence in the design at hand. Our goal here is to show that some properties of
the system (simulation and non-blockingness) are preserved in a semantics that is closer to a real
implementation than the idealized abstract semantics of timed automata.

We first define our semantics and state its properties, then compare it with [DDR05a].

11.2 Implementation Semantics
In this chapter, we will adopt a different definition for timed transition systems, by making explicit
the global time at any state. This will allow us to compare different measures of time between

173

174 CHAPTER 11. IMPLEMENTATION BY SHRINKING

different semantics. The time domain is the nonnegative reals. Given a TTS (S, s0,Σ,R≥0,→), we
do not separate delays and actions, but rather only define actions with timestamps. Hence, delays
are now implicit. Transitions are labelled by σ(T), with T ∈ R≥0 the timestamp of action σ ∈ Σ. In
all TTSs we consider, the timestamps of consecutive actions are assumed to be nondecreasing. The
definition of simulation can be adapted as follows. A relation R ⊆ S × S is a simulation if for any
(s, t) ∈ R, whenever s σ(T)−−−→ s′, there exists t′ such that t

σ(T)−−−→ t′, for any σ ∈ Σ and T ∈ R≥0. A
timed automaton A is a timed refinement of A′ if the initial state of A′ simulates the initial state
of A. As in Chapter 5, we only consider closed timed automata.

We describe a system which interacts, via sending and receiving signals, with a physical
environment (e.g. via sensors). We distinguish input and output actions, and define the transitions
of the system taking into account the imprecisions of the clock, the transmission delay of signals
and the reaction time of the system. When an event is generated at time T by the environment, it
is treated by the system at time T + ε, for some ε > 0 which will be bounded but unpredictable.
Similarly, when the environment receives a signal at time T , it must have been sent at some time
T − ε. We assume that the system ignores any signal that is received during the treatment of the
previous signal; this reaction time will be also bounded but unpredictable. Thus, in our semantics,
the system does not have a buffer to store incoming signals; it either responds immediately to a
signal or ignores it. We define the timestamps of both input and output actions as the reaction
times of the environment, since we are interested in the behavior of the environment controlled by a
digital timed system.

The implementation semantics has three parameters:

a) ∆c is the clock period,

b) ∆r is the maximum reaction time, following each action,

c) ∆t is the maximum transmission delay of signals between the system and the environment (ε
above).

We suppose the system has a ∆c-periodic clock, whose value, at any real time T , is bT c∆c
=

maxk∈N{k∆c | k∆c ≤ T}.

Definition 11.2.1. Let A = (L, `0, C,Σ, E) be a timed automaton with Σ = Σin ∪ Σout, and
∆r,∆c,∆t > 0. The implementation semantics JAKImpl is the TTS (SA, s0,Σ, E) in which states
are tuples (`, T, v, u0): ` is a location, T ∈ R≥0 the current global time1, v ∈ RC≥0 the timestamp of
the latest reset for each clock, and u0 ∈ [0,∆r] the reaction time following the latest location change.
From any state (`, T, v, u0), for any edge ` σ,g,R−−−→ `′ and T ′ ≥ T , we let,

• if σ ∈ Σin, (`, T, v, u0)
σ(T ′)−−−→ (`′, T ′ + ε, v[R← T ′ + ε], u′0), whenever bT ′ + εc∆c − bvc∆c |= g

and T ′ + ε ≥ T + u0, where (ε, u′0) ∈ [0,∆t]× [0,∆r] is chosen non-deterministically,

• if σ ∈ Σout, (`, T, v, u0)
σ(T ′)−−−→ (`′, T ′, v[R ← T ′ − ε], u′0), whenever

bT ′ − εc∆c
− bvc∆c

|= g, ε < (T ′ − T), and T ′ − ε ≥ T + u0, where (ε, u′0) ∈ [0,∆t]× [0,∆r] is
chosen non-deterministically.

1Although we define the semantics with respect to an exact global time, the behavior of this TTS will only depend
on an approximate measure of this time.

11.3. PROOF OF PROPOSITION 11.2.2 175

The transitions should be interpreted as follows. If the environment generates an event at time
T ′, then the system responds to it at time T ′ + ε, provided that the reaction time from the previous
event is over (T ′ + ε ≥ T + u0), and the guard is approximately satisfied. If the system generates an
event at time T ′ − ε, similar constraints apply but the timestamp is registered as T ′, which is the
time the environment receives the event. Notice that ε and u0 are bounded by known values but
are unpredictable, so they cannot be chosen by the system. We will consider scheduler functions ρ,
which, depending on the history of a given run, chooses (ε, u0) at each transition. For any scheduler
ρ, we denote by JAKImpl

ρ the implementation semantics, where (ε, u0) is given by ρ at each transition.
We will not formally define ρ here, but it can be done without difficulty.

The following proposition states the relation between the exact semantics and the implementation
semantics of timed automata. All properties hold under any scheduler ρ. For any TTS T , let us
write T ≥α, the TTS obtained from T where consecutive transitions are separated by at least α time
units.

Proposition 11.2.2. Let A be a closed non-blocking timed automaton, and ∆r,∆c,∆t > 0. Then,
for any ∆ ≥ 2∆c + 4∆t + ∆r and scheduler ρ, JA∆KImpl

ρ is non-blocking and,

JAK≥2∆r+∆t v JA∆KImpl
ρ v JA∆+2∆c+4∆t

K.

Before proving this proposition, let us give our main result on implementability. We assume that
all timed automata contain an additional clock u that is reset at each edge, and that all edges are
guarded by u ≥ 0. Clearly, this does not change the semantics of timed automata, but we will
require these guards to be shrunk. We have the following result.

Theorem 11.2.3. Let A be a closed timed automaton that is strongly shrinkable w.r.t. A and
let A−kδ be its witnessing shrinking for δ ∈ [0, δ0]. Let ∆r,∆c,∆t > 0 be parameters such that
4∆c + 8∆t + 2∆r ≤ δ0. Then for all ∆ ∈ [2∆c + 4∆t + ∆r, δ0 − 2∆c − 4∆t], for any scheduler ρ,
JA∆KImpl

ρ is a non-blocking timed refinement of A and time-abstract simulates A.

Proof. By Proposition 11.2.2 applied to A−kδ, we have

JA−kδK v JA−kδ+∆KImpl
ρ v JA−kδ+∆′K v JAK = JAK,

and JA−kδ+∆KImpl
ρ is non-blocking whenever ∆ ≥ 2∆c + 4∆t + ∆r, ∆′ = ∆ + 2∆c + 4∆t and

δ ≥ max(2∆r + ∆t,∆
′). In fact, JA−kδK≥2∆r+∆t is equal to JA−kδK whenever δ ≥ 2∆r + ∆t due to

the shrinking of the additional clock constraints in A. The rightmost simulation is due to the fact
that −kδ + ∆′ ≤ 0.

Thus, given δ0, the parameters ∆c,∆t,∆r and ∆ can be chosen so that the implementation
semantics of the automaton A−kδ+∆ is a timed refinement of the exact semantics of the original
automaton. Moreover, when A is shrinkable (say, with parameters kδ), then JA−kδ+∆KImpl

ρ is also
non-blocking and JAK vt.a. JA−kδ+∆KImpl

ρ . Thus, shrinkable timed automata can be implemented so
as to preserve non-blockingness and the behavior upto time-abstract simulation.

11.3 Proof of Proposition 11.2.2
We prove Proposition 11.2.2 through Lemmas 11.3.1 – 11.3.5. In the proofs we use the standard
supremum distance on Rn defined by d∞(ν, ν′) = max1≤i≤n(|νi − ν′i|), where ν, ν′ ∈ Rn. For any
vector ν and real α, we denote by ν + α the vector obtained by adding α to all components of ν.

176 CHAPTER 11. IMPLEMENTATION BY SHRINKING

Lemma 11.3.1. Let A be a closed timed automaton, ∆r,∆c,∆t > 0 denote the parameters. Then,
for any ∆ ≥ 2∆c + 4∆t, and any scheduler ρ,

JAKImpl
ρ v JA∆K.

Proof. We show that the relation R defined by (`, T, v, u0)R(`, ν, T ′) such that T ′ ∈ [T −∆t, T],
and d∞(ν + T − T ′, T − v) ≤ ∆t is a timed simulation. Notice that we do not require these two
states to be at the same time instant, but the difference between these instants must be bounded
and the clock valuations must be close when the second system delays to time T . Consider such a
pair of states.

Consider the following transition.

(`, T, v, u0)
σ(T+τ)−−−−−→ (`′, T + τ + ε, v[R← T + τ + ε], u′0),

for some σ ∈ Σin, and (u′0, ε) ∈ [0,∆r]× [0,∆t] is given by ρ, and bT + τ + εc∆c
− bvc∆c

|= g. We
show that the following transitions are realizable in JA∆K.

(`, ν, T ′)
σ(T+τ)−−−−−→ (`′, (ν + T + τ − T ′)[R← 0], T + τ).

We need to show that ν + T + τ − T ′ |= 〈g〉2∆c+4∆t
. Using the fact that bαc∆c

∈ [α−∆c, α] for any
α ∈ R≥0, we get d∞

(
(T +τ +ε−v), (bT +τ +εc∆c

−bvc∆c
)
)
≤ ∆c. Then T +τ +ε−v |= 〈g〉2∆c

(the
factor 2 is due to diagonal constraints), and, T+τ−v |= 〈g〉2∆c+2∆t

. Since d∞(ν+T−T ′, T−v) ≤ ∆t,
we also have d∞(ν + T − T ′ + τ, T − v + τ) ≤ ∆t, so ν + T + τ − T ′ |= 〈g〉2∆c+4∆t

. We now show
that the new states are related by R. Let ν′ = (ν + T + τ − T ′)[R← 0] and v′ = v[R← T + τ + ε].
We have d∞(ν′ + ε, T + τ + ε − v′) ≤ ∆t. In fact, for any clock x 6∈ R, this follows from the
assumption that d∞(ν + T − T ′, T − v) ≤ ∆t, and for all x ∈ R, we have ν′(x) + ε = ε ≤ ∆t and
(T + τ + ε− v′)(x) = 0.

Now, consider the following transition.

(`, T, v, u0)
σ(T+τ)−−−−−→ (`′, T + τ, v[R← T + τ − ε], ε, u′0),

where σ ∈ Σout, (u′0, ε) ∈ [0,∆r] × [0,∆t] is given by ρ and bT + τ − εc∆c
− bvc∆c

|= g. We show
that the following transition is realizable in JA∆K.

(`, ν, T ′)
σ(T+τ)−−−−−→ (`′, (ν + T + τ − T ′)[R← 0], T + τ)

We show that ν+T + τ −T ′ |= 〈g〉2∆c+4∆t
. As in the previous case, we have, T + τ − ε− v |= 〈g〉2∆c

and using the fact that d∞(ν + T − T ′, T − v) ≤ ∆t, we get ν + T + τ − T ′ |= 〈g〉2∆c+4∆t
. Let

ν′ = (ν + T + τ − T ′)[R ← 0] and v′ = v[R ← T + τ − ε]. We have d∞(ν′, T + τ − v′) ≤ ∆t. In
fact, for any clock x 6∈ R, this follows from d∞(ν + T − T ′, T − v) ≤ ∆t, and for all x ∈ R, we have
ν′(x) = 0 and (T + τ − v′)(x) = ε ≤ ∆t.

For any timed automaton A and ∆′ ≥ 0, we define JAK≥∆′ as a TTS whose states are (`, ν, u),
where l is a location, ν a clock valuation and u the time elapsed since the latest action (and it is 0
initially).

Lemma 11.3.2. Let A be a closed timed automaton, and ∆r,∆c,∆t > 0 parameters. Then, for
any ∆ ≥ 2∆c + 4∆t, and any scheduler ρ,

JAK≥2∆r+∆t v JA∆KImpl
ρ .

11.3. PROOF OF PROPOSITION 11.2.2 177

Proof. We show that the relation R defined by (`, ν, T)R(`, T ′, v, u0) such that T ′ ∈ [T, T + ∆t] and
d∞(ν + (T ′ − T), T ′ − v) ≤ ∆t is a timed simulation. Consider such a pair of states.

Suppose that (`, ν, T)
σ(T+τ)−−−−−→ (`′, ν′, T + τ) for some σ ∈ Σin, where ν′ = (ν + τ)[R← 0]. For

any (u0, ε) ∈ [0,∆r]× [0,∆t] given by ρ, this is simulated by the following transition.

(`, T ′, v, u0)
σ(T+τ)−−−−−→ (`′, T + τ + ε, v[R← T + τ + ε], u′0),

In fact, by hypothesis, τ ≥ 2∆r + ∆t, so (T + τ)− T ′ ≥ ∆r ≥ u0, hence the reaction time is over
when the action happens. Let us show that the guard is satisfied. We have ν + τ |= g. Since
d∞(ν+T ′−T, T ′−v) ≤ ∆t, we have d∞(ν+τ, T+τ−v) ≤ ∆t (in fact, we add τ−(T ′−T) = τ−T ′+T
to the first vector, and (T +τ)−T ′ = τ −T ′+T to the second). Hence T +τ + ε−v |= 〈g〉4∆t

. Then,
bT + τ + εc∆c

− bvc∆c
|= 〈g〉4∆t+2∆c

, so the guard is satisfied. Let us write v′ = v[R← T + τ + ε].
It remans to show that d∞(ν′ + ε, T + τ + ε − v′) ≤ ∆t. In fact, for all x 6∈ R this follows from
hypothesis since the difference between the values of a clock in two systems is unchanged when
both systems delay to time instant T + τ + ε. For all x ∈ R, we have (ν′ + ε)(x) = ε ≤ ∆t and
(T + τ + ε− v′)(x) = 0. Hence, (`′, ν′, T + τ)R(`′, T + τ + ε, v′, u′0).

Suppose now that (`, ν, T)
σ(T+τ)−−−−−→ (`′, ν′, T + τ) for some σ ∈ Σout, where ν′ = (ν + τ)[R← 0].

For any (u′0, ε) ∈ [0,∆r]× [0,∆t] given by ρ, this is simulated by the following.

(`, T ′, v, u0)
σ(T+τ)−−−−−→ (`′, T + τ, v[R← T + τ − ε], u′0),

In fact, by hypothesis, τ ≥ 2∆r + ∆t, so T + τ − ε−T ′ ≥ ∆r. Let us show that the guard is satisfied.
We have ν+ τ |= g. Since d∞(ν+(T ′−T), T ′−v) ≤ ∆t, we have d∞(ν+ τ, T + τ −v) ≤ ∆t as in the
previous case, hence T + τ − ε− v |= 〈g〉4∆t . Then, bT + τ − εc∆c − bvc∆c |= 〈g〉4∆t+2∆c . It remans
to show that d∞(ν′, T + τ − v′) ≤ ∆t. This follows from hypothesis for clocks x 6∈ R since both
systems delay to time instant T + τ . For all x ∈ R, we have (ν′)(x) = 0 and (T + τ −v′)(x) = ε ≤ ∆t.
Hence, (`′, ν′, T + τ)R(`′, T + τ, v′, u′0).

We are now interested in the preservation of non-blockingness in the implementation semantics.
Note that this is not a consequence of the simulation relations. We first prove a property on the
enlarged zones.

Definition 11.3.3. Let Z be any closed convex subset of RC≥0. The lower boundary of Z is the set
lb(Z) = {v ∈ Z | ∀τ > 0, v − τ 6∈ Z}. The width of Z is defined as inf{τ | ∃v ∈ lb(Z), v + τ 6∈ Z).
In other terms, the width of Z is the least delay necessary to go out of Z starting inside the lower
boundary.

A guard is said to be normalized if the corresponding DBM is normalized. Recall that all guards
we consider are closed, thus so are DBMs.

Lemma 11.3.4. Let g be a normalized guard such that JgK 6= ∅. Then for any ∆ > 0, J〈g〉∆K has
width greater than or equal to ∆.

Proof. Let M be a DBM that describes JgK. Then M ′ = M + ∆1 describes J〈g〉∆K, where 1
is the matrix with same dimension as M in which all coefficients are 1’s. Let v ∈ lb(JM ′K).
We will show that v + τ ∈ JM ′K for all τ ∈ [0,∆]. First, observe that clock differences are
constant during delay transitions. So, whenever −My,x −∆ ≤ v(x) − v(y) ≤ Mx,y + ∆, we have
−My,x−∆ ≤ (v(x) + τ)− (v(y) + τ) ≤ Mx,y + ∆ for all τ . We now show that rectangular constraints

178 CHAPTER 11. IMPLEMENTATION BY SHRINKING

are also satisfied for at least ∆ time units. Since v ∈ lb(JM ′K), there exists x ∈ C, such that
−M0,x −∆ = v(x) (otherwise valuation v can be decremented by some positive amount). For this
clock, obviously −M0,x −∆ ≤ v(x) + τ ≤ Mx,0 + ∆ for τ ∈ [0,∆], since −M0,x ≤ Mx,0 (in fact, the
set is not empty). Now, consider any y ∈ C. DBM M ′ implies the following diagonal constraint (and
possibly a tighter one).

−∆−M0,x −My,0 ≤ v(x)− v(y) ≤ Mx,0 + M0,y + ∆.

But, combining the above inequality with v(x) = −M0,x − ∆, we get that v(y) ≤ My,0, so
v(y) + τ ≤ M′y,0 = My,0 + ∆ for τ ∈ [0,∆].

The following lemma shows that if the exact semantics is non-blocking, then the implementation
semantics is also non-blocking.

Lemma 11.3.5. Let A be a closed timed automaton, ∆r,∆c,∆t > 0 be parameters and assume
that JAK is non-blocking. Then for any ∆ ≥ ∆r + 2∆c + ∆t, JA∆KImpl is non-blocking.

Proof. First, observe that if JAK is non-blocking, then so is JA∆K for any ∆ > 0. In fact, consider

an edge ` g,σ,R−−−→ `′ and any corresponding transition (`, v1, T)
σ(T+τ)−−−−−→ (`′, v′1, T + τ) in JA∆K. Since

v1 + τ |=∆ g, there exists v2 such that d∞(v2, v1) ≤ ∆ and v2 + τ |= g. Let v′2 be such that

(`, v2, T)
σ(T+τ)−−−−−→ (`′, v′2, T + τ). Since JAK is non-blocking, for some τ ≥ 0, there exists an edge with

guard g′ such that v′2 + τ |= g′. But d∞(v′1, v
′
2) ≤ ∆, so we also have v′1 + τ |=∆ g′, and the edge is

enabled from (`′, v′1, T + τ) as well. Hence JA∆K is non-blocking.

Let (`, T, v, u0)
σ(T+τ)−−−−−→ (`′, T+τ+ε, v′, u′0) denote a transition in JA∆KImpl with v′ = v[R← T+τ+

ε] for some σ ∈ Σin, and `
σ,g,R−−−→ `′ the corresponding edge in A. We have bT+τ+εc∆c−bvc∆c |=∆ g,

so for ν = bT + τ + εc∆c − bvc∆c , we have (`, ν, 0)
σ(0)−−−→ (`′, ν′, 0) in JA∆K, where ν′ = ν[R ← 0].

Notice that ν′ = bT + τ + εc∆c − bv′c∆c . Since JA∆K is non-blocking, there exists τ ≥ 0 such that
ν′ + τ |=∆ g′, where g′ is the guard of some edge with label σ′ outgoing from `′.

Consider Z = J〈g′〉∆K, whose width is at least ∆ by Lemma 11.3.4. Then, there exists α, β ∈ R≥0

such that α+ ∆ ≤ β and ν′ + τ ′ ∈ J〈g′〉∆K for all τ ′ ∈ [α, β]. We show that (`′, T + τ + ε, v′, u′0) can
delay some amount τ ′ and take this transition. For any max(α,∆r) + ∆c ≤ τ ′ ≤ β −∆c −∆t, we
have

bT + τ + εc∆c
+ (max(α,∆r) + ∆c)−∆c ≤ bT + τ + ε+ τ ′c∆c

≤ bT + τ + εc∆c + β −∆c −∆t + ∆c.

Thus,
ν′ + max(α,∆r) ≤ bT + τ + ε+ τ ′c∆c

− bv′c∆c
≤ ν′ + β −∆t. (11.1)

Notice that such a τ ′ exists since ∆r + 2∆c + ∆t ≤ ∆. Hence, if σ′ ∈ Σout, then, for any ε′ ∈ [0,∆t]
given by ρ, the transition

(`′, T + τ + ε, v′, u′0)
σ′(T+τ+ε+τ ′+ε′)−−−−−−−−−−−−→ (`′′, T + τ + ε+ τ ′ + ε′, ·, ·),

is valid. If σ′ ∈ Σin, then

(`′, T + τ + ε, v′, u′0)
σ′(T+τ+ε+τ ′)−−−−−−−−−→ (`′′, T + τ + ε+ τ ′ + ε′, ·, ·)

is valid thanks to the right hand side term in (11.1) (since ε′ ∈ [0,∆t].
The proof is similar when σ ∈ Σout.

11.4. COMPARISON WITH [DDR05a] 179

11.4 Comparison with [DDR05a]
A similar semantics, called the program semantics, was defined in [DDR05a] and was proven to be
simulated by the enlarged semantics (as in the rightmost simulation in Proposition 11.2.2). Our
definition follows their ideas, but we define a somewhat more abstract semantics by concentrating
on different aspects. Our goal here in this chapter is not defining the semantics of a microprocessor
model but rather introducing various kinds of imprecisions. One difference with [DDR05a] is that
we do not insist on the semantics to produce events almost as soon as possible (almost ASAP). Thus,
transitions are not urgent in our semantics; only the reactions to input events are. Our semantics is
not input-enabled, that is, it can ignore signals during the treatment of another signal, since it has
no buffer. Both assumptions are applicable to different platforms (see [AMP98, Die01] for examples
of systems that ignore any signal unless it is maintained long enough). Moreover, instead of giving a
detailed model of the treatment of the signals in several steps, we rather define action transitions
taking a positive unpredictable amount of time, during which computations take place. This allows
us to model the unpredictability using schedulers and state our properties for any scheduler. Due
to these differences, both semantics are uncomparable: the program semantics is not simulated, in
general, by our implementation semantics, and vice versa. Note that two results in Proposition 11.2.2
are new compared to [DDR05a]: the leftmost simulation and the preservation of non-blockingness.

180 CHAPTER 11. IMPLEMENTATION BY SHRINKING

Part V

Conclusion

181

Chapter 12

Conclusion and Perspectives

We summarize here the results presented in this thesis. Conclusions and possible future work were
given specifically at the end of each chapter. We mention here more general perspectives for future
research directions.

Robustness analysis One of the important perturbation models considered in the literature is
that of guard enlargement. We studied the untimed languages of timed automata under parameterized
guard enlargement. We gave an algorithm to decide whether the untimed language of a given
timed automaton is preserved under some enlargement parameter. This extends the possibility
of robustness analysis: while previous work allowed to do model-checking for a given property,
under a parameterized enlargement parameter, our algorithm allows to check for complete behavior
preservation. The algorithm runs in exponential space, which matches the complexity of checking
untimed language equivalence between timed automata.

The semantics of timed automata under parameterized guard enlargement have thus been studied
for several properties. Although this is a parameter synthesis problem, one can notice that these
robustness problems have no complexity cost over the corresponding standard verification problems.
We believe efforts in this field should now concentrate on developing efficient algorithms, so that
robust model-checking becomes a standard feature in timed automata model-checkers. Some symbolic
algorithms have been developed for this aim, but they only apply to a restricted class of timed
automata, namely timed automata without nested loops [DK06, JR11]. Extending these techniques
to general timed automata remains an open problem. A timed automata designer interested in
robustness analysis should note that in case the parameterized robustness problems are too inefficient,
it is always possible to syntactically enlarge the guards for a fixed (guessed) enlargement parameter,
and model-check the resulting timed automaton. Although there is no guarantee on termination, one
could stop trying when enlargement parameter becomes too small. This would work on models that
are not too large, and has the advantage of being simple. But for large models with large constants,
this procedure could easily become impractical. An important question here is whether, and to what
extent parameterized robustness analysis algorithms (against guard enlargements) overperform a
simple binary search on enlargement parameters.

An interesting future direction is understanding whether the similarity between the semantics
under clock drifts and guard enlargements can be extended beyond safety (these were shown to be
equivalent for safety in [Pur00, DDMR08]). For instance, could parameterized robust model-checking
algorithms for ω-regular objectives, or untimed language preservation be adapted to clock drifts?
Does correctness under guard enlargement imply correctness under clock drifts? Such results would
have practical significance since one can model-check under a fixed guard enlargement with existing
tools for timed automata whereas clock drifts require hybrid automata model-checkers.

In this thesis, we also introduced a new notion of robustness, namely shrinkability, based on
syntactic perturbations of the guards. Shrinking is the inverse operation of the enlargement, that is,

183

184 CHAPTER 12. CONCLUSION AND PERSPECTIVES

tightening the guards so as to disallow behaviors that are in the limit of satisfying the guards. We
were interested in synthesizing possibly different shrinking parameters for all guards, under which
the resulting timed automaton is non-blocking and time-abstract similar to a given finite automaton.
Thus, while analysis under guard enlargements was concerned with the newly appeared behaviors,
here the emphasis is on the preservation of time-abstract behavior under removal of limit (timed)
behavior. The resulting problems are decidable, with reasonable theoretical complexity (these vary
from NP to EXPTIME). Shrinkability has also implications in implementability of timed automata
models. In fact, to overcome th effect of imprecise time measures (that is, guard enlargements),
one can shrink a timed automaton, then check whether any important time-abstract behavior is
lost. We presented a software tool in which a shrinkability algorithm is implemented. We were able
to treat several case studies from the literature, where timed automata models had, e.g. upto 11
clocks and hundreds of transitions (the train gate model), or 4 clocks with thousands of transitions
(Fischer’s protocol).

We plan to extend the theory of fixpoint equations between shrunk DBMs by studying the
arbitrary use of the union. This would allow expressing much richer properties, such as reachability,
simulation (without the hypothesis of distinct edges), and one could even treat temporal logic
formulae. This would give the system designer much freedom when applying shrinkability analysis,
compared to the actual algorithms which require specifying a finite automaton with respect to which
simulation is checked. In order to make shrinkability analysis appealing, further tool support is also
needed to interpret and refine the finite automaton specification.

Note that for shrinkability analysis, manually trying different shrinking parameters is not an
option, in contrast with the robustness analysis against enlargements. In fact, the shrinking
parameters have dependencies between them (which we expressed as max-plus graphs) and these
are difficult to solve by hand even for small models. Thus, automatic synthesis of these parameters
are an essential feature in shrinkability algorithms.

Robust synthesis Robustness analysis algorithms are used to check whether a timed automaton
design preserves its behavior, or satisfies its specification, under perturbations. Thus, when applying
these algorithms, one assumes that the given timed automaton is designed to do exactly what one
expects it to do. Another approach in formal verification is that of controller synthesis. Here, the
given model is often under-specified, that is, it contains too much non-determinism, or several ways
of performing similar behaviors. Given such a model, and a specification, the goal is then to find a
strategy to guide the system so as to satisfy the specification. The model controlled by the strategy
is often deterministic, so it can be seen as an implementation.

In this thesis, we investigated the controller synthesis problems on timed automata and games
under robustness concerns. We modelled the perturbations as a game between a controller and an
environment (these were called Controller, and Perturbator). In this semantics, both players suggest
valid delays and actions. Moreover, if Controller’s move is taken, Perturbator perturbs the delay by
a parameterized amount. We considered two variants. In the excess perturbation game, Controller
only needs to suggest moves that satisfy the guards; while in the conservative perturbation game,
the moves should satisfy the guards under any perturbation. The conservative perturbation game,
where the magnitude of the perturbations is seen as a parameter, yields to a PSPACE-complete
problem for Büchi objectives in timed automata. The proofs establish a strong relation between
controllability in our sense and the absence of convergence phenomena. The excess perturbation
game is more complex: reachability is EXPTIME-complete already on timed automata; we also
extend this algorithm to turn-based timed games. We apply these game semantics to weighted timed

185

games, on which the optimal-cost reachability problem is known to be undecidable. We proved that,
unfortunately, the problem remains undecidable under both semantics.

We believe that both semantics are interesting under different modelling assumptions. We
have seen that while the excess perturbation game allow to keep the model simple, but introduce
additional behaviors, the conservative perturbation game semantics requires the system designer
to define strict constraints on the behaviors, and then concentrate on satisfying these. In both
semantics, we formulate the control problems from a worst-case analysis point of view. In fact,
the semantics are based on the assumption that the perturbations are controlled by an adversary
with an opposite objective. A robust system, in the sense of these semantics, is then capable of
supporting any source of perturbations.

An important direction is the treatment of general timed games. Although both semantics seem
plausible for modelling purposes, we will privilege the conservative game semantics, since it yields
problems with lower complexity. Technically, both algorithms use shrunk DBMs, which we also used
to solve shrinkability problems. We believe this is a good data structure to explore the parameterized
state space of timed automata, and we expect it to be used in other problems related to robustness
in timed systems.

Once the theory of parameterized perturbation game semantics has been fully understood, the
following research goal will be finding symbolic algorithms efficient enough to allow treating real case
studies. One could hope to extend the on-the-fly algorithm of [CDF+05] to one of our perturbation
game semantics. The long term goal should be to integrate robust controller synthesis algorithms
in timed game solvers, such as Uppaal-TIGA [BDL+06] and Synthia [PEM11]. As in the case of
robustness analysis, the relevance of computing the perturbation parameter should be evaluated
compared to manually testing different values in terms of performance.

We studied perturbation game semantics in weighted timed automata and games, and gave a
PSPACEalgorithm for cost-optimal reachability in weighted timed automata under the conservative
perturbation game semantics. On the other hand, these semantics unfortunately do not render cost-
optimal reachability problems decidable on weighted timed games. In order to obtain decidability,
one could restrict to closed weighted timed games. In fact, closed guards make it difficult for players
to check whether the complement of an expected behavior has been performed. Similarly, another
idea is to look at different semantics which eliminate “isolated” behaviors, such as probabilistic or
topological semantics.

Robust implementation A third set of results we considered here is on implementation, that
is, automatically transforming a given timed automaton so that it can be implemented. We gave
constructions to transform any given timed automaton into an equivalent one, in the sense of strong
bisimulation, whose behavior under enlargement is approximately bisimilar to its exact behavior. It
follows that the enlargement of the transformed timed automaton is approximately bisimilar to the
original timed automaton. We also gave a variant which only preserves safety properties, but may
not be time-abstract bisimilar with the original timed automaton. These results enable a design
methodology that clearly separates design and problems related to robustness. In fact, one can
design a system in the exact semantics, apply model-checking, and then automatically “compile” to
an equivalent and robust model. Hence, in this development procedure, there is no need for the
robustness analysis, since it is ensured by construction.

We also considered a more concrete target implementation semantics for the implementation
problem. We described a semantics with a discrete clock, positive communication and reaction times,
and proved that the behaviors of shrinkable timed automata are preserved under this semantics. In

186 CHAPTER 12. CONCLUSION AND PERSPECTIVES

this approach, the resulting semantics is (exactly) simulated by the original timed automaton, in
contrast with the approximate bisimulation with the former results. So this method ensures strict
behavior preservation. However not all timed automata are shrinkable, so one cannot implement
any timed automaton in this framework.

In future, we plan to extend these “robust-by-construction” design techniques. For instance,
similar results need to be adapted to networks of timed automata, where the transformed components
do not need to access other components’ clocks. For these to be applicable in general, the theory
also needs to be extended to timed games, so that one distinguishes between controllable and
uncontrollable transitions.

General Remarks In this thesis, we considered several perturbation models, each reflecting a
different point of view on the nature of the perturbations. One could wonder which one is the
“best” notion of robustness, and deserves more attention for future research. Similar questions could
be asked by a timed automaton practitioner who wants to check the robustness of their timed
automaton design.

We believe that the theory of robustness in timed automata naturally needs this diversity in
perturbation models. In fact, timed automata are a general-purpose formalism: Its applications range
from low-level circuits to high-level schedulings of multimedia tasks, intended to be implemented as a
monolithic system or a distributed one. Thus, the system designer needs to determine which kind of
robustness analysis makes sense given the application, say, among time measurement errors (guard
enlargement), clock synchronization errors (clock drifts), or sampling. A rich theory of robustness
will allow the system designer to pick the solution that is the most adapted to the application at
hand.

A common practice in engineering is decomposing a complex task into several simpler pieces
that are easier to solve, then obtaining a global solution by combining the small solutions. This
approach can also be found in formal verification, where smaller components are verified under some
assumptions, then recombined to prove the correctness of the global system. Such a decomposition
allows the treatment of large systems.

Concerning robustness, an important step would be to find decidable criteria on timed automata
and their synchronization which ensure that their combination (network of timed automata) is
robust by construction. This does not seem easy, since even very simple and robust timed automata
may define non-robust timed automata once combined by synchronization (This is the case of
Fig. 2.1). Thus, non-trivial criteria might be needed, including the restriction of synchronization
between components in order to define a “robust composition operator”. Possible applications would
be analyzing the robustness of each component separately, and deducing the robustness of the
global system, or applying a robust implementation construction on each component such that their
composition is robust by construction.

Bibliography

[AAM06] Yasmina Adbeddaïm, Eugene Asarin, and Oded Maler. Scheduling with timed automata.
Theoretical Computer Science, 354(2):272–300, 2006.

[AB01] Eugene Asarin and Ahmed Bouajjani. Perturbed turing machines and hybrid systems.
In Logic in Computer Science, 2001. Proceedings. 16th Annual IEEE Symposium on,
pages 269–278. IEEE, 2001.

[ABG+08] S. Akshay, Benedikt Bollig, Paul Gastin, Madhavan Mukund, and K. Narayan Kumar.
Distributed timed automata with independently evolving clocks. In Franck van Breugel
and Marsha Chechik, editors, Proceedings of the 19th International Conference on
Concurrency Theory (CONCUR’08), volume 5201 of Lecture Notes in Computer Science,
pages 82–97, Toronto, Canada, August 2008. Springer.

[ABM04] Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal reachability for weighted
timed games. In Josep Díaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella,
editors, Automata, Languages and Programming, volume 3142 of Lecture Notes in
Computer Science, pages 122–133. Springer Berlin Heidelberg, 2004.

[ACD93] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking in dense real-time.
Inf. Comput., 104(1):2–34, May 1993.

[ACS10] Tesnim Abdellatif, Jacques Combaz, and Joseph Sifakis. Model-based implementation
of real-time applications. In Proceedings of the tenth ACM international conference on
Embedded software, pages 229–238, New York, NY, USA, 2010. ACM.

[AD90] Rajeev Alur and David L. Dill. Automata for modeling real-time systems. In Michael S.
Paterson, editor, Automata, Languages and Programming, volume 443 of Lecture Notes
in Computer Science, pages 322–335. Springer Berlin Heidelberg, 1990.

[AD92] Rajeev Alur and David L. Dill. The theory of timed automata. In J.W. Bakker,
C. Huizing, W.P. Roever, and G. Rozenberg, editors, Real-Time: Theory in Practice,
volume 600 of Lecture Notes in Computer Science, pages 45–73. Springer Berlin
Heidelberg, 1992.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[AFH99] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock automata: a
determinizable class of timed automata. Theoretical Computer Science, 211(1-2):253 –
273, 1999.

[AFKS12] Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. IMITATOR 2.5:
A tool for analyzing robustness in scheduling problems. In Dimitra Giannakopoulou and
Dominique Méry, editors, Proceedings of the 18th International Symposium on Formal
Methods (FM’12), volume 7436 of Lecture Notes in Computer Science. Springer, 2012.

187

188 CHAPTER 12. CONCLUSION AND PERSPECTIVES

[AFM+02] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi.
Times - a tool for modelling and implementation of embedded systems. In TACAS,
pages 460–464, 2002.

[AHJR12] S. Akshay, Loïc Hélouët, Claude Jard, and Pierre-Alain Reynier. Robustness of time
petri nets under guard enlargement. In Alain Finkel, Jérôme Leroux, and Igor Potapov,
editors, Reachability Problems, volume 7550 of Lecture Notes in Computer Science,
pages 92–106. Springer Berlin Heidelberg, 2012.

[AIK+03] Rajeev Alur, Franjo Ivancic, Jesung Kim, Insup Lee, and Oleg Sokolsky. Generating
embedded software from hierarchical hybrid models. SIGPLAN Not., 38(7):171–182,
June 2003.

[AKY07] Parosh Abdulla, Pavel Krčál, and Wang Yi. Sampled universality of timed automata.
In Proc. 10th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS’07), volume 4423 of Lecture Notes in Computer
Science, pages 2–16. Springer, 2007.

[AKY10] Parosh Abdulla, Pavel Krčál, and Wang Yi. Sampled semantics of timed automata.
Logical Methods in Computer Science, 6(3:14), 2010.

[ALM05] Rajeev Alur, Salvatore LaTorre, and P. Madhusudan. Perturbed timed automata. In
Manfred Morari and Lothar Thiele, editors, Hybrid Systems: Computation and Control,
volume 3414 of Lecture Notes in Computer Science, pages 70–85. Springer, 2005.

[AMP95] Eugene Asarin, Oded Maler, and Amir Pnueli. Symbolic controller synthesis for discrete
and timed systems. In Hybrid Systems II, volume 999 of LNCS, pages 1–20. Springer,
1995.

[AMP98] Eugene Asarin, Oded Maler, and Amir Pnueli. On discretization of delays in timed
automata and digital circuits. In Davide Sangiorgi and Robert de Simone, editors,
CONCUR’98 Concurrency Theory, volume 1466 of Lecture Notes in Computer Science,
pages 470–484. Springer, 1998.

[AMPS98] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis for
timed automata. In Proceedings of the 5th IFAC Cconference on System Structure and
Control (SSC’98), pages 469–474. Elsevier Science, 1998.

[AT05] Karine Altisen and Stavros Tripakis. Implementation of timed automata: An issue of
semantics or modeling? In Paul Pettersson and Wang Yi, editors, Proceedings of the
3rd International Conferences on Formal Modelling and Analysis of Timed Systems,
(FORMATS’05), volume 3829 of Lecture Notes in Computer Science, pages 273–288.
Springer, 2005.

[ATP01] Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in weighted
timed automata. In Proceedings of the 4th International Workshop on Hybrid Systems:
Computation and Control, HSCC ’01, pages 49–62, London, UK, UK, 2001. Springer-
Verlag.

189

[BA11] Nicolas Basset and Eugene Asarin. Thin and thick timed regular languages. In Uli
Fahrenberg and Stavros Tripakis, editors, Formal Modeling and Analysis of Timed
Systems, volume 6919 of Lecture Notes in Computer Science, pages 113–128. Springer
Berlin Heidelberg, 2011.

[BBBR07] Patricia Bouyer, Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On
the optimal reachability problem on weighted timed automata. Formal Methods in
System Design, 31(2):135–175, October 2007.

[BBM06] Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved undecidability results
on weighted timed automata. Information Processing Letters, 98(5):188–194, June 2006.

[BBR05a] Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On optimal timed
strategies. In Proceedings of the Third international conference on Formal Modeling
and Analysis of Timed Systems, FORMATS’05, pages 49–64, Berlin, Heidelberg, 2005.
Springer-Verlag.

[BBR05b] Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On optimal timed
strategies. In Proceedings of the Third international conference on Formal Modeling
and Analysis of Timed Systems, FORMATS’05, pages 49–64, Berlin, Heidelberg, 2005.
Springer-Verlag.

[BC05] Patricia Bouyer and Fabrice Chevalier. On conciseness of extensions of timed automata.
Journal of Automata, Languages and Combinatorics, 10(4):393–405, 2005.

[BCFL04] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal
strategies in priced timed game automata. In Kamal Lodaya and Meena Mahajan,
editors, Foundations of Software Technology and Theoretical Computer Science, volume
3328 of Lecture Notes in Computer Science, pages 148–160. Springer Berlin Heidelberg,
2004.

[BCOQ92] François Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat. Synchro-
nization and Linearity – An Algebra For Discrete Event Systems. John Wiley & Sons,
1992.

[BDFP00] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Are timed
automata updatable? In E. Allen Emerson and A. Prasad Sistla, editors, Proceedings of
the 12th International Conference on Computer Aided Verification (CAV 2000), volume
1855 of Lecture Notes in Computer Science, pages 464–479, Chicago, Illinois, USA, July
2000. Springer.

[BDL+06] Gerd Behrmann, Alexandre David, Kim .G. Larsen, John Hakansson, Paul Petterson,
Wang Yi, and Martijn Hendriks. Uppaal 4.0. In Quantitative Evaluation of Systems,
2006. QEST 2006. Third International Conference on, pages 125–126. IEEE, 2006.

[BDM+98] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and
Sergio Yovine. Kronos: A model-checking tool for real-time systems. In CAV ’98:
Proceedings of the 10th International Conference on Computer Aided Verification, pages
546–550, London, UK, 1998. Springer-Verlag.

190 CHAPTER 12. CONCLUSION AND PERSPECTIVES

[Ber00] Gérard Berry. The foundations of Esterel. In Gordon D. Plotkin, Colin Stirling, and
Mads Tofte, editors, Proof, Language, and Interaction – Essays in Honour of Robin
Milner, pages 425–454. MIT Press, 2000.

[BFH+01] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Larsen, Paul Pettersson, Judi
Romijn, and Frits Vaandrager. Minimum-cost reachability for priced time automata.
In MariaDomenica Benedetto and Alberto Sangiovanni-Vincentelli, editors, Hybrid
Systems: Computation and Control, volume 2034 of Lecture Notes in Computer Science,
pages 147–161. Springer Berlin Heidelberg, 2001.

[BGHS81] J. Bermond, A. Germa, M. Heydemann, and D. Sotteau. Longest paths in digraphs.
Combinatorica, 1:337–341, 1981.

[BGS12] Romain Brenguier, Stefan Göller, and Ocan Sankur. A comparison of succinctly
represented finite-state systems. In Maciej Koutny and Irek Ulidowski, editors,
Proceedings of the 23rd International Conference on Concurrency Theory (CONCUR’12),
volume 7454 of Lecture Notes in Computer Science, pages 147–161, Newcastle, UK,
September 2012. Springer.

[BKW12] Victor Bandur, Wolfram Kahl, and Alan Wassyng. Microcontroller assembly synthesis
from timed automaton task specifications. In Mariëlle Stoelinga and Ralf Pinger,
editors, Formal Methods for Industrial Critical Systems, volume 7437 of Lecture Notes
in Computer Science, pages 63–77. Springer, 2012.

[BLM+11] Patricia Bouyer, Kim G. Larsen, Nicolas Markey, Ocan Sankur, and Claus Thrane.
Timed automata can always be made implementable. In Joost-Pieter Katoen
and Barbara König, editors, Proceedings of the 22nd International Conference on
Concurrency Theory (CONCUR’11), volume 6901 of Lecture Notes in Computer Science,
pages 76–91, Aachen, Germany, September 2011. Springer.

[BLN03] Dirk Beyer, Claus Lewerentz, and Andreas Noack. Rabbit: A tool for bdd-based
verification of real-time systems. In Jr. Hunt, WarrenA. and Fabio Somenzi, editors,
Computer Aided Verification, volume 2725 of Lecture Notes in Computer Science, pages
122–125. Springer Berlin Heidelberg, 2003.

[BM83] Bernard Berthomieu and Miguel Menasche. An enumerative approach for analyzing
time Petri nets. In R. E. A. Mason, editor, Information Processing 83 – Proceedings of
the 9th IFIP World Computer Congress (WCC’83), pages 41–46. North-Holland/IFIP,
September 1983.

[BMOW07] Patricia Bouyer, Nicolas Markey, Joël Ouaknine, and James Worrell. The cost of
punctuality. In Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer
Science (LICS’07), pages 109–118, Wrocław, Poland, July 2007. IEEE Computer Society
Press.

[BMPY97] Marius Bozga, Oded Maler, Amir Pnueli, and Sergio Yovine. Some progress in the
symbolic verification of timed automata. In Proc. 9th International Conference on
Computer Aided Verification (CAV’97), volume 1254 of Lecture Notes in Computer
Science, pages 179–190. Springer, 1997.

191

[BMR06] Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier. Robust model-checking
of linear-time properties in timed automata. In José R. Correa, Alejandro Hevia, and
Marcos Kiwi, editors, Proceedings of the 7th Latin American Symposium on Theoretical
INformatics (LATIN’06), volume 3887 of Lecture Notes in Computer Science, pages
238–249. Springer, 2006.

[BMR08] Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier. Robust analysis of timed
automata via channel machines. In Roberto Amadio, editor, Proceedings of the 11th
International Conference on Foundations of Software Science and Computation Structure
(FoSSaCS’08), volume 4962 of Lecture Notes in Computer Science, pages 157–171.
Springer, 2008.

[BMS11] Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robust model-checking of timed
automata via pumping in channel machines. In Uli Fahrenberg and Stavros Tripakis,
editors, Proceedings of the 9th International Conference on Formal Modelling and
Analysis of Timed Systems (FORMATS’11), volume 6919 of Lecture Notes in Computer
Science, pages 97–112, Aalborg, Denmark, September 2011. Springer.

[BMS12] Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robust reachability in timed
automata: A game-based approach. In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts,
and Roger Wattenhofer, editors, Proceedings of the 39th International Colloquium on
Automata, Languages and Programming (ICALP’12) – Part II, volume 7392 of Lecture
Notes in Computer Science, pages 128–140. Springer, July 2012.

[BY04] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In
Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on Concurrency
and Petri Nets, volume 2098 of Lecture Notes in Computer Science, pages 87–124.
Springer-Verlag, 2004.

[CDF+05] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Lmei Didier.
Efficient on-the-fly algorithms for the analysis of timed games. In CONCUR 2005,
pages 66–80, London, UK, 2005. Springer-Verlag.

[CHP11] Krishnendu Chatterjee, Thomas A. Henzinger, and Vinayak S. Prabhu. Timed parity
games: Complexity and robustness. Logical Methods in Computer Science, 7(4), 2011.

[CHR02] Franck Cassez, Thomas A. Henzinger, and Jean-François Raskin. A comparison of control
problems for timed and hybrid systems. In Claire Tomlin and Mark R. Greenstreet,
editors, Proceedings of the 5th International Workshop on Hybrid Systems: Computation
and Control (HSCC’02), volume 2289 of Lecture Notes in Computer Science, pages
134–148. Springer, 2002.

[CM05] Paul Caspi and Oded Maler. From control loops to real-time programs. Handbook of
networked and embedded control systems, pages 395–418, 2005.

[DDMR08] Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-François Raskin. Robust
safety of timed automata. Formal Methods in System Design, 33(1-3):45–84, 2008.

[DDR05a] Martin De Wulf, Laurent Doyen, and Jean-François Raskin. Almost ASAP semantics:
From timed models to timed implementations. Formal Aspects of Computing, 17(3):319–
341, 2005.

192 CHAPTER 12. CONCLUSION AND PERSPECTIVES

[DDR05b] Martin De Wulf, Laurent Doyen, and Jean-François Raskin. Systematic implementation
of real-time models. In John Fitzgerald, IanJ. Hayes, and Andrzej Tarlecki, editors,
FM 2005: Formal Methods, volume 3582 of Lecture Notes in Computer Science, pages
139–156. Springer Berlin Heidelberg, 2005.

[DHLP06] Alexandre David, John Håkansson, Kim Gulstrand Larsen, and Paul Pettersson. Model
checking timed automata with priorities using DBM subtraction. In Eugene Asarin and
Patricia Bouyer, editors, Proceedings of the 4th International Conferences on Formal
Modelling and Analysis of Timed Systems, (FORMATS’06), volume 4202 of Lecture
Notes in Computer Science, pages 128–142. Springer, 2006.

[Die01] Henning Dierks. PLC-automata: a new class of implementable real-time automata.
Theoretical Computer Science, 253:61–93, 2001.

[Dil90] David L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Joseph Sifakis, editor, Proceedings of the International Workshop on Automatic
Verification Methods for Finite State Systems (AVMFSS’89), volume 407 of Lecture
Notes in Computer Science, pages 197–212. Springer, 1990.

[Dim07] Cătălin Dima. Dynamical properties of timed automata revisited. In Jean-François
Raskin and P. Thiagarajan, editors, Formal Modeling and Analysis of Timed Systems,
volume 4763 of Lecture Notes in Computer Science, pages 130–146. Springer Berlin /
Heidelberg, 2007.

[DK06] Conrado Daws and Piotr Kordy. Symbolic robustness analysis of timed automata.
In Eugene Asarin and Patricia Bouyer, editors, Proceedings of the 4th International
Conferences on Formal Modelling and Analysis of Timed Systems, (FORMATS’06),
volume 4202 of Lecture Notes in Computer Science, pages 143–155. Springer, 2006.

[DL07] Cătălin Dima and Ruggero Lanotte. Distributed time-asynchronous automata. In
Proceedings of the 4th international conference on Theoretical aspects of computing,
ICTAC’07, pages 185–200, Berlin, Heidelberg, 2007. Springer-Verlag.

[DY95] C. Daws and S. Yovine. Two examples of verification of multirate timed automata with
kronos. In In Proc. 1995 IEEE Real-Time Systems Symposium, RTSS’95, pages 66–75.
IEEE Computer Society Press, 1995.

[DY00] Alexandre David and Wang Yi. Modelling and analysis of a commercial field bus
protocol. In Proceedings of the 12th Euromicro Conference on Real Time Systems, pages
165–172. IEEE Computer Society, 2000.

[FLT10] Uli Fahrenberg, Kim G. Larsen, and Claus Thrane. A quantitative characterization of
weighted Kripke structures in temporal logic. Journal of Computing and Informatics,
29(6+):1311–1324, 2010.

[Frä99] Martin Fränzle. Analysis of hybrid systems: An ounce of realism can save an infinity of
states. In Jörg Flum and Mario Rodriguez-Artalejo, editors, Computer Science Logic,
volume 1683 of Lecture Notes in Computer Science, pages 126–139. Springer, 1999.

193

[GHJ97] Vineet Gupta, Thomas A. Henzinger, and Radha Jagadeesan. Robust timed automata.
In Proc. International Workshop on Hybrid and Real-Time Systems (HART’97), volume
1201 of Lecture Notes in Computer Science, pages 331–345. Springer, 1997.

[GV08] Orna Grumberg and Helmut Veith, editors. 25 Years of Model Checking - History,
Achievements, Perspectives, volume 5000 of Lecture Notes in Computer Science. Springer,
2008.

[Hen08] Thomas A. Henzinger. Two challenges in embedded systems design: Predictability and
robustness. Philosophical Transactions of the Royal Society, 366:3727–3736, 2008.

[HHK01] Thomas A. Henzinger, Benjamin Horowitz, and Christoph M. Kirsch. Giotto: A time-
triggered language for embedded programming. In EMSOFT, volume 2211 of Lecture
Notes in Computer Science, pages 166–184. Springer, 2001.

[HKSW11] Frédéric Herbreteau, Dileep Kini, B. Srivathsan, and Igor Walukiewicz. Using non-
convex approximations for efficient analysis of timed automata: Extended version.
Technical Report cs.LO/1110.3704v1, arXiv – Computing Research Repository, 2011.

[HLY92] Uno Holmer, Kim Larsen, and Wang Yi. Deciding properties of regular real timed
processes. In Kim G. Larsen and Arne Skou, editors, Computer Aided Verification,
volume 575 of Lecture Notes in Computer Science, pages 443–453. Springer Berlin
Heidelberg, 1992.

[HMP92] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good are digital clocks?
In Proceedings of the 19th International Colloquium on Automata, Languages and
Programming, ICALP ’92, pages 545–558, London, UK, UK, 1992. Springer-Verlag.

[HR00] Thomas A. Henzinger and Jean-François Raskin. Robust undecidability of timed
and hybrid systems. In Nancy Lynch and BruceH. Krogh, editors, Hybrid Systems:
Computation and Control, volume 1790 of Lecture Notes in Computer Science, pages
145–159. Springer Berlin Heidelberg, 2000.

[HRSV01] Thomas Hune, Judi Romijn, Mariëlle Stœlinga, and Frits Vaandrager. Linear parametric
model checking of timed automata. In Tiziana Margaria and Wang Yi, editors, Tools
and Algorithms for the Construction and Analysis of Systems, volume 2031 of Lecture
Notes in Computer Science, pages 189–203. Springer, 2001.

[HS06] Thomas A. Henzinger and Joseph Sifakis. The embedded systems design challenge. In
Formal Methods, 14th International Symposium on Formal Methods, volume 4085 of
Lecture Notes in Computer Science, pages 1–15, Hamilton, Canada, 2006. Springer.

[HSLL97] Klaus Havelund, Arne Skou, Kim G. Larsen, and Kyle Lund. Formal modeling and
analysis of an audio/video protocol: an industrial case study using uppaal. In Proceedings
of the 18th IEEE Real-Time Systems Symposium, RTSS ’97, pages 2–, Washington, DC,
USA, 1997. IEEE Computer Society.

[JR11] Rémi Jaubert and Pierre-Alain Reynier. Quantitative robustness analysis of flat timed
automata. In Proceedings of the 14th international conference on Foundations of software
science and computational structures: part of the joint European conferences on theory

194 CHAPTER 12. CONCLUSION AND PERSPECTIVES

and practice of software, volume 6604 of Lecture Notes in Computer Science, pages
229–244. Springer, 2011.

[KLP09] Piotr Kordy, Rom Langerak, and Jan Willem Polderman. Re-verification of a lip
synchronization protocol using robust reachability. In FMA, pages 49–62, 2009.

[Kop11] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Springer, 2011.

[Koy90] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2:255–299, 1990.

[KP05] Pavel Krčál and Radek Pelánek. On sampled semantics of timed systems. In Proc. 25th
Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’05), volume 3821 of Lecture Notes in Computer Science, pages 310–321.
Springer, 2005.

[Kri00] P. Krishnan. Distributed timed automata. Electronic Notes in Theoretical Computer
Science, 28:5–21, 2000.

[LLTW11] Kim G. Larsen, Axel Legay, Louis-Marie Traonouez, and Andrzej Wasowski. Robust
specification of real time components. In Uli Fahrenberg and Stavros Tripakis, editors,
Formal Modeling and Analysis of Timed Systems, volume 6919 of Lecture Notes in
Computer Science, pages 129–144. Springer Berlin Heidelberg, 2011.

[LS89] Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. In Proc.
16th Annual ACM Symposium on Principles of Programming Languages, pages 344–352,
1989.

[LY94] Kim G. Larsen and Wang Yi. Time abstracted bisimulation: Implicit specifications and
decidability. In Stephen Brookes, Michael Main, Austin Melton, Michael Mislove, and
David Schmidt, editors, Mathematical Foundations of Programming Semantics, volume
802 of Lecture Notes in Computer Science, pages 160–176. Springer Berlin Heidelberg,
1994.

[Min67] Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1967.

[OLS11] James Ortiz, Axel Legay, and Pierre-Yves Schobbens. Distributed event clock automata.
In Béatrice Bouchou-Markhoff, Pascal Caron, Jean-Marc Champarnaud, and Denis
Maurel, editors, Implementation and Application of Automata, volume 6807 of Lecture
Notes in Computer Science, pages 250–263. Springer Berlin Heidelberg, 2011.

[OW03a] Joël Ouaknine and James Worrell. Revisiting digitization, robustness, and decidability
for timed automata. In Proc. 18th Annual Symposium on Logic in Computer Science
(LICS’03), pages 198–207. IEEE Computer Society, 2003.

[OW03b] Joël Ouaknine and James Worrell. Universality and language inclusion for open and
closed timed automata. In Proceedings of the 6th international conference on Hybrid
systems: computation and control, HSCC’03, pages 375–388, Berlin, Heidelberg, 2003.
Springer-Verlag.

195

[PEM11] Hans-Jörg Peter, Rüdiger Ehlers, and Robert Mattmüller. Synthia: Verification and
synthesis for timed automata. In Ganesh Gopalakrishnan and Shaz Qadeer, editors,
Computer Aided Verification, volume 6806 of Lecture Notes in Computer Science, pages
649–655. Springer Berlin Heidelberg, 2011.

[Pur00] Anuj Puri. Dynamical properties of timed automata. Discrete Event Dynamic Systems,
10(1-2):87–113, 2000.

[Ram30] F. P. Ramsey. On a problem in formal logic. Proc. London Math. Soc. (3), 30:264–286,
1930.

[RNPH05] G. Rodriguez-Navas, J. Proenza, and H. Hansson. Using uppaal to model and verify a
clock synchronization protocol for the controller area network. In Emerging Technologies
and Factory Automation, 2005. ETFA 2005. 10th IEEE Conference on, volume 2. IEEE,
2005.

[RWT+06] Jan Reineke, BjÃűrn Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia Polian, Jochen
Eisinger, and Bernd Becker. A definition and classification of timing anomalies. In
Proceedings of 6th International Workshop on Worst-Case Execution Time (WCET)
Analysis, 2006.

[San10] Ocan Sankur. Model-checking robuste des automates temporisés via les machines à
canaux. Master’s thesis, Ecole Normale Supérieure, 2010.

[San11] Ocan Sankur. Untimed language preservation in timed systems. In Filip Murlak
and Piotr Sankowski, editors, Proceedings of the 36th International Symposium on
Mathematical Foundations of Computer Science (MFCS’11), volume 6907 of Lecture
Notes in Computer Science, pages 556–567. Springer, August 2011.

[San13] Ocan Sankur. Shrinktech: A tool for the robustness analysis of timed automata.
In Proceedings of the 25th International Conference on Computer Aided Verification
(CAV’13). To appear, 2013.

[SBM11] Ocan Sankur, Patricia Bouyer, and Nicolas Markey. Shrinking timed automata. In
Supratik Chakraborty and Amit Kumar, editors, Proceedings of the 31st Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS’11),
volume 13 of LIPIcs, pages 375–386. Leibniz-Zentrum für Informatik, December 2011.

[SBMR13] Ocan Sankur, Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier. Robust
controller synthesis in timed automata. In In submission, 2013.

[SFK08] Mani Swaminathan, Martin Fränzle, and Joost-Pieter Katoen. The surprising robustness
of (closed) timed automata against clock-drift. In Giorgio Ausiello, Juhani Karhumäki,
Giancarlo Mauri, and Luke Ong, editors, Fifth IFIP International Conference On
Theoretical Computer Science TCS 2008, volume 273 of IFIP International Federation
for Information Processing, pages 537–553. Springer US, 2008.

[Sta12] Amélie Stainer. Frequencies in forgetful timed automata. In Marcin Jurdzinski and
Dejan Nickovic, editors, Formal Modeling and Analysis of Timed Systems, volume 7595
of Lecture Notes in Computer Science, pages 236–251. Springer Berlin Heidelberg, 2012.

196 CHAPTER 12. CONCLUSION AND PERSPECTIVES

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5(2):285–309, 1955.

[TFL10] Claus Thrane, Uli Fahrenberg, and Kim G. Larsen. Quantitative analysis of weighted
transition systems. Journal Logic and Algebraic Programming, 79(7):689–703, 2010.

[TY01] Stavros Tripakis and Sergio Yovine. Analysis of timed systems using time-abstracting
bisimulations. Form. Methods Syst. Des., 18(1):25–68, January 2001.

[Wan06] Farn Wang. Redlib for the formal verification of embedded systems. In Proceedings of
the Second International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation, ISOLA ’06, pages 341–346, Washington, DC, USA, 2006.
IEEE Computer Society.

Index

aperiodic cycle, 118, 131
atomic guard, 23

Büchi objective, 22, 118
bisimulation

ε-, 157
approximate, 157
timed, 21
timed-action, 157

clock valuation, 23
coloring, 56
controllable predecessor, 95, 130
corner-point abstraction, 147
cost-optimal reachability, 137

DBM, see difference-bound matrix
difference-bound matrix, 38

constraint graph, 38
normalization, 38

empty action, 22
exact semantics, 23

forgetful cycle, 118

game structure, 22
turn-based, 22

guard, 23
granularity, 158

guard shrinking, see shrinking

implementation semantics, 174
scheduler, 175

initial strongly connected component, 118

language, 21
language robustness, 51
lower boundary, 177

max-plus
polynomial fixpoint equation, 67

max-plus algebra, 67

max-plus graph, 68
bad cycle, 69
contradicting path, 69

max-plus polynomial, 44
Minsky machine, 140
monochromatic, 56

non-blocking, 21

OptReach, see cost-optimal reachability
orbit graph, 36

folded, 37

parameter valuation, 44
parameterized robust reachability, 85
parameterized shrinking matrix, 44
parameterized shrunk DBM, see

parameterized shrunk
difference-bound matrix

parameterized shrunk difference-bound matrix,
44

normalization, 46
partition according to the fractional ordering, 36
perturbation game semantics, 31

conservative, 33, 117
excess-, 31, 85

positivity function, 67
program semantics, 179
progress cycle, 36
punctual, 118

non, 118

reachability objective, 22
ready-simulation, 158
region, 35

bounded, 36
lasso, 36
projection, 36
region automaton, 36

path, 36
time-successor, 159
vertex, 36

197

198 INDEX

region-deterministic, 52
run, 21, 22

maximal, 22

sampled semantics, 31
sampling, 31
shrinkability, 61

non-blocking-, 61
simulation-, 62

shrinking, 30
shrinking constraint, 86

constrained DBM, 86
constrained neighborhood, 93
neighborhood, 92
neighboring regions, 92
normalized, 86
well, 86

shrinking matrix, 40
parameterized, 44

shrinking operator, 42
shrinking parameters, 62
shrunk DBM, see shrunk difference-bound matrix
shrunk difference-bound matrix, 39

elementary function, 42
normalization, 41

shrunk solution, 66
simulation

timed, 21
SM, see shrinking matrix
strategy

winning, 22

tight valuation, 101
time-abstract bisimulation, 22
timed automaton, 23

closed timed automaton, 23
granularity, 158
integral, 23, 52, 158
open timed automaton, 23
region, 158
region-deterministic, 52
with distinct labels, 63

timed game, 23
timed language, 171

universality, 171
timed trace, 21
timed transition system, 21

timed-action region automaton, 36
timestamp, 174
transition system, 21
TTS, see Timed transition system
two-player timed game, 23

ultimately universal, 56
untimed trace, 21

valuation, 23
far, 122

weighted timed game, 24, 137
width, 177
work-conserving scheduling, 25

