
Laboratoire Spécification & Vérification
École Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex France

HASL: a New Approach for
Performance Evaluation and Model

Checking from Concepts to
Experimentation

Paolo Ballarini, Benoı̂t Barbot, Marie Duflot, Serge
Haddad and Nihal Pekergin

March 2015

Research report LSV-15-04 (Version 1)

HASL: a New Approach for Performance Evaluation and
Model Checking from Concepts to Experimentation

Paolo Ballarinia, Benoı̂t Barbotb, Marie Duflotc, Serge Haddadb, Nihal Pekergind

aEcole Centrale de Paris, France
bLSV, ENS Cachan & CNRS & INRIA, France

cUniversité de Lorraine- LORIA, Nancy, France
dLACL, Université Paris-Est Créteil, France

Abstract

We introduce the Hybrid Automata Stochastic Language (HASL), a new temporal logic
formalism for the verification of Discrete Event Stochastic Processes (DESP). HASL
employs a Linear Hybrid Automaton (LHA) to select prefixes of relevant execution
paths of a DESP. LHA allows rather elaborate information to be collected on-the-fly
during path selection, providing the user with powerful means to express sophisticated
measures. A formula of HASL consists of an LHA and an expression Z referring
to moments of path random variables. A simulation-based statistical engine is em-
ployed to obtain a confidence interval estimate of the expected value of Z. In essence,
HASL provides a unifying verification framework where temporal reasoning is natu-
rally blended with elaborate reward-based analysis. Moreover, we have implemented
a tool, named COSMOS, for performing analysis of HASL formula for DESP modelled
by Petri nets. Using this tool we have developed two detailed case studies: a flexible
manufacturing system and a genetic oscillator.

Keywords: Discrete Event Stochastic Process, Statistical Model Checking,
Performance Evaluation.

1. Introduction

From model checking to quantitative model checking. Since its introduction [27],
model checking has quickly become a prominent technique for verification of discrete-
event systems. Its success is mainly due to three factors: (1) the ability to express
specific properties by formulas of an appropriate logic, (2) the firm mathematical foun-
dations based on automata theory and (3) the simplicity of the verification algorithms
which has led to the development of numerous tools. While the study of systems re-
quires both functional, performance and dependability analysis, originally the tech-
niques associated with these kinds of analysis were different. However, in the mid
nineties, classical temporal logics were adapted to express properties of Markov chains
and verification procedures have been designed based on transient analysis of Markov
chains [8].
From numerical model checking to statistical model checking. The numerical tech-
niques for quantitative model checking are rather efficient when a memoryless property

Preprint submitted to Performance Evaluation February 4, 2015

can be exhibited (or recovered by a finite-state memory), limiting the combinatory ex-
plosion due to the necessity to keep track of the history. Unfortunately both the formula
associated with an elaborated property and the stochastic process associated with a real
application make rare the possibility of such a pattern. In these cases, statistical model
checking [47] is an alternative to numerical techniques. Roughly speaking, statistical
model checking consists in sampling executions of the system (possibly synchronised
with some automaton corresponding to the formula to be checked) and comparing the
ratio of successful executions with a threshold specified by the formula. The advantage
of statistical model checking is the small memory requirement while its drawback is its
inability to generate samples for execution paths of potentially unbounded length.
Limitations of existing logics. A topic that has not been investigated is the suitabil-
ity of the temporal logic to express (non necessarily boolean) quantities defined by
path operators (minimum, integration, etc.) applied on instantaneous indicators. Such
quantities naturally occur in standard performance evaluation. For instance, the aver-
age length of a waiting queue during a busy period or the mean waiting time of a client
are typical measures that cannot be expressed by the quantitative logics based on the
concept of successful execution probability like CSL [6].
Our contribution. Following the idea to relieve these limitations, we introduce a
new language called Hybrid Automaton Stochastic Language (HASL) which provides
a unified framework both for model checking and for performance and dependability
evaluation 1. Evaluating a system using HASL allows both the probability computation
of a complex set of paths as well as elaborate performability measures. The use of
conditional expectation over these subsets of paths significantly enlarges the expressive
power of the language.

A formula of HASL consists of an automaton and an expression. The automaton is
a Linear Hybrid Automaton (LHA), i.e. an automaton with clocks, called in this con-
text data variables, where the dynamic of each variable (i.e. the variable’s evolution)
depends on the model states. This automaton is synchronised with the model of the
system, precisely selecting accepting paths while maintaining detailed information on
the path through data variables. The expression is based on moments of path random
variables associated to path executions. These variables are obtained by operators like
time integration on data variables.

HASL extends the expressiveness of automaton-based CSL as CSLTA [26] and its
extension to multi-clocks [21] with state and action rewards and sophisticated update
functions especially useful for performance and dependability evaluation. On the other
hand it extends reward enriched versions of CSL, (CSRL [9]) with a more elaborate
selection of path executions, and the possibility to consider multiple rewards. Therefore
HASL makes possible to consider not only standard performability measures but also
complex ones in a generic manner.

A statistical verification tool, named COSMOS, has been developed for this lan-
guage. We have chosen generalised stochastic Petri nets (GSPN) as high level for-
malism for the description of the discrete event stochastic process since (1) it allows a
flexible modelling w.r.t. the policies defining the process (choice, service and memory)

1A preliminary version of this language has been presented in [11].

2

and (2) due to the locality of net transitions and the simplicity of the firing rule it leads
to efficient path generation. This tool has been presented in [10].

We have developed in this paper two detailed case studies relative to flexible man-
ufacturing systems (FMS) and to gene expression. The choice of FMS was guided by
the fact that they raise interesting analysis issues: productivity, flexibility, fault toler-
ance, etc. While analysis of such systems is usually based on standard performance
indices, we demonstrate the usefulness of HASL through elaborate transient formulas.
Similarly, biological measures often concern the shape of trajectories which can only
be expressed by complex formulas. In addition, our experiments demonstrate the time
efficiency of the COSMOS tool.
Organisation. In section 2, we describe the class of stochastic models we refer to (i.e.
DESP). In section 3, we formally introduce the HASL language and we provide an
overview of the related work, where the expressiveness of HASL is compared with that
of existing logics. Section 4 is dedicated to the presentation of the basic principles of
statistical model checking as well as the COSMOS software tool for HASL verification.
In section 5, we present two full case studies: a flexible manufacturing system and a
genetic oscillator. Finally, in section 6, we conclude and give some perspectives.

2. Discrete Event Stochastic Process

We describe in this section a large class of stochastic models that are suitable for
HASL verification, namely Discrete Event Stochastic Processes (DESP). Such a class
includes in particular the main type of stochastic models targeted by existing stochastic
logics, namely Markov chains. The definition of DESP we introduce is similar to that
of generalised semi-Markov processes [28] as well as that given in [2].

Syntax. DESPs are stochastic processes consisting of a (possibly infinite) set of states
and whose dynamic is triggered by a set of discrete events. We do not consider any
restriction on the nature of the distribution associated with events. In the sequel dist(A)
denotes the set of distributions whose support is A.

Definition 1. A DESP is a tuple
D = 〈S, π0, E, Ind, enabled, delay, choice, target〉 where

• S is a (possibly infinite) set of states,

• π0 ∈ dist(S) is the initial distribution on states,

• E is a finite set of events,

• Ind is a set of functions from S to R called state indicators (including the con-
stant functions),

• enabled : S → 2E are the enabled events in each state with for all s ∈ S,
enabled(s) 6= ∅.

• delay : S×E → dist(R+) is a partial function defined for pairs (s, e) such that
s ∈ S and e ∈ enabled(s).

3

• choice : S × 2E × R+ → dist(E) is a partial function defined for tuples
(s, E′, d) such that E′ ⊆ enabled(s) and such that the possible outcomes of
the corresponding distribution are restricted to e ∈ E′.

• target : S×E×R+ → S is a partial function describing state changes through
events defined for tuples (s, e, d) such that e ∈ enabled(s).

From syntax to semantics. Given a state s, enabled(s) is the set of events enabled in
s. For an event e ∈ enabled(s), delay(s, e) is the distribution of the delay between
the enabling of e and its possible occurrence. Furthermore, if we denote d the earliest
delay in some configuration of the process with state s, and E′ ⊆ enabled(s) the set
of events with minimal delay, choice(s, E′, d) describes how the conflict is randomly
resolved: for all e′ ∈E′, choice(s, E′, d)(e′) is the probability that e′ will be selected
among E′ after waiting for the delay d. The function target(s, e, d) denotes the target
state reached from s on occurrence of e after waiting for d time units.

Let us detail these explanations. A configuration of a DESP is described as a triple
(s , τ , sched) with s being the current state, τ ∈ R+ the current time and sched :
E → R+ ∪ {+∞} being the function that describes the occurrence time of each
enabled event (+∞ if the event is not enabled). Starting from a given configuration
(s , τ , sched) of a DESP, we can now informally define the dynamics of a DESP.
It is an infinite loop, where each iteration consists in the following steps. First the
function sched provides E′, the set of enabled events with minimal delay, i.e. E′ =
{e ∈ enabled(s) | ∀e′ ∈ enabled(s), sched(e) ≤ sched(e′)}. The corresponding
delay d is equal to sched(s) − τ for any s ∈ E′. Then the probability distribution
choice(s, E′, d) randomly specifies which event e ∈ E′ will be sampled. The next
state s′ is then defined by target(s, e, d). Finally the function sched is updated as
follows. First for all events e′ different from e that are still enabled, sched(e′) is
maintained while for all other enabled event e′ in state s′, a new delay d′ is sampled
according to the distribution delay(s′, e′) and sched(e′) is set to τ+d+d′. When e′ is
disabled, sched(e′) is set to +∞. The three elements of a configuration being updated,
the system can now start a new iteration. Let us now give a more formal definition
of sched and the families of random variables corresponding to the successive states,
events and time instants of a trace of the DESP.

Operational semantics of a DESP. Given a discrete event system, its execution is char-
acterised by a (possibly infinite) sequence of events {e1, e2, . . .} and occurrence time
of these events. Only the events can change the state of the system. In the stochastic
framework, the behaviour of a DESP is defined by three families of random variables:

• e1, . . . , en, . . . defined over the set of events E denoting the sequence of events
occurring in the system;

• s0, . . . , sn, . . . defined over the (discrete) state space of the system, denoted as
S. s0 is the system initial state and sn for n > 0 is the state reached after the
nth event. The occurrence of an event does not necessarily modify the state of
the system, and therefore sn+1 may be equal to sn;

4

• τ0 ≤ τ1 ≤ · · · ≤ τn ≤ · · · defined over R+, where τ0 is the initial instant and
τn for n > 0 is the instant of the occurrence of the nth event.

We start from the syntactical definition of a DESP and show how we obtain the three
families of random variables {sn}n∈N, {en}n∈N∗ and {τn}n∈N. This definition is
inductive w.r.t. n and includes some auxiliary families.
Notation. In the whole section, when we write an expression like Pr(en+1 = e | e ∈
E′n), we also mean that this conditional probability is independent from any random
event Ev that could be defined using the previously defined variables:
Pr(en+1 = e | e ∈ E′n) = Pr(en+1 = e | e ∈ E′n ∧ Ev)

The family {sched(e)n}n∈N whose range is R+ ∪ {+∞} denotes the current
schedule for event e in state sn (with value ∞ if e is not scheduled). Now τn+1 is
defined by τn+1 = min(sched(e)n | e ∈ E) and the family {E′n}n∈N denotes the set
of events with minimal schedule: E′n = {e ∈ E | ∀e′ ∈ E, sched(e)n ≤ sched(e′)n}.
From this family we obtain the conditional distribution of en+1:
Pr(en+1 = e | e ∈ E′n ∧ τn+1 − τn = d) = choice(sn, E

′
n, d)(e).

Now sn+1 = target(sn, en+1, τn+1 − τn) and:
• For every e ∈ E, Pr(sched(e)n+1 =∞ | e /∈ enabled(sn+1)) = 1
• For every e ∈ E,
Pr(sched(e)n+1 = sched(e)n | e ∈ enabled(sn+1) ∩ enabled(sn) ∧ e 6= en+1) = 1
• For every e ∈ E and d ∈ R+,
Pr(τn+1 ≤ sched(e)n+1 ≤ τn+1 + d | e ∈ enabled(sn+1) ∧ (e /∈ enabled(sn) ∨
e = en+1)) = delay(sn+1, e)(d). Notice that delay is defined by its cumulative
distribution function.

We start the induction by:
• Pr(τ0 = 0) = 1, Pr(s0 = s) = π0(s)
• For every e ∈ E, Pr(sched(e)0 =∞ | e /∈ enabled(s0)) = 1
• For every e ∈ E and d ∈ R+, Pr(sched(e)0 ≤ d | e ∈ enabled(s0)) = delay(s0, e)(d).

We define the subset Prop ⊆ Ind of state propositions taking values in {0, 1}.
The sets Ind and Prop will be used in the sequel to characterise the information on
the DESP known by the automaton (LHA) corresponding to a formula. In fact the LHA
does not have direct access to the current state of the DESP but only through the values
of the state indicators and state propositions.

Note that by definition the evolution of a DESP is naturally suitable for discrete
event simulation. However, while it can model almost all interesting stochastic pro-
cesses, it is a low level representation since the set of states is explicitly described. A
solution for a higher level modelling is to choose one of the formalisms commonly
used for representing Markov chains (e.g. Stochastic Petri Nets [1] or Stochastic Pro-
cess Algebras [29]), that can straightforwardly be adapted for representation of a large
class of DESPs. It suffices that the original formalisms are provided with formal means
to represent the type of delay distribution of each transition/action (function delay of
Definition 1) as well as means to encode the probabilistic choice between concurrent
events (i.e. function choice of Definition 1).

Our approach is based on Generalised Stochastic Petri Net (GSPN), a formalism
particularly well suited for concurrent and distributed systems which yields to highly
efficient verification of properties. Below we informally outline the basis of GSPN

5

specification (for a formal account we refer the reader to [1]) pointing out the differ-
ences between “original” GSPNs and our variant.

GSPN models. A GSPN model is a bipartite graph consisting of two classes of nodes:
places and transitions. Places may contain tokens (representing the state of the mod-
elled system) while transitions indicate how tokens “flow” within the net (encoding the
model dynamics). The state of a GSPN consists of a marking indicating the distribu-
tion of tokens among the places (i.e. how many tokens each place contains). Roughly
speaking a transition t is enabled whenever every input place of t contains a number
of tokens greater than or equal to the multiplicity of the corresponding (input) arc. An
enabled transition may fire, consuming tokens (in a number indicated by the multiplic-
ity of the corresponding input arcs) from its input places, and producing tokens (in a
number indicated by the multiplicity of the corresponding output arcs) in its output
places. Transitions can be either timed (denoted by empty bars) or immediate (denoted
by filled-in bars, see Figure 1). Transitions are characterised by: (1) a distribution
which randomly determines the delay before firing it; (2) a priority which determin-
istically selects among the transitions scheduled the soonest, the one to be fired; (3)
a weight, that is used in the random choice between transitions scheduled the soonest
with the same highest priority. With the original GSPN formalism [1] the delay of
timed transitions is assumed exponentially distributed, whereas with our GSPN it can
be given by any distribution. Thus a GSPN timed-transition is characterised by a tuple:
t ≡ (type, par, pri, w), where type indicates the type of distribution (e.g. uniform),
par indicates the parameters of the distribution (e.g [α, β]), pri ∈ R+ is a priority
assigned to the transition and w ∈ R+ is used to probabilistically choose between
transitions occurring with equal delay and equal priority. Observe that the information
associated with a transition (i.e. type, par, pri, w) is exploited in different manners
depending on the type of transition. For example for a transition with a continuous dis-
tribution the priority (pri) and weight (w) records are superfluous (hence ignored) since
the probability that the schedule of the corresponding event is equal to the schedule of
the event corresponding to another transition is null. Similarly, for an immediate tran-
sition (denoted by a filled-in bar) the specification of the distribution type (i.e. type)
and associated parameters (par) is irrelevant (hence also ignored). Therefore these
unnecessary informations are omitted in Figure 1.

Running example. This model will be used in Section 3 for describing, through a cou-
ple of LHA examples, the intuition behind hybrid automata based verification. We
consider the GSPN model of Figure 1 (inspired by [1]). It describes the behaviour of
an open system where two classes of clients (processes) (namely 1 and 2) compete to
access a shared resource (memory). Class i-clients (i ∈ {1, 2}) enter the system ac-
cording to a Poisson process with parameter λi (corresponding to the exponentially
distributed timed transition Arri with rate λi). On arrival, clients cumulate in places
Reqi waiting for the resource to be free (a token in place Free witnessing that the
resource is available). The exclusive access to the shared resource is regulated either
deterministically or probabilistically by the priority (prii) and the weight (wi) of im-
mediate transitions Start1 and Start2. Thus in presence of a competition (i.e. one or
more tokens in both Req1 and Req2) a class i client wins the competition with a class

6

Arr1 (Exp,λ1)

Req1

(pri1, w1)Start1

Acc1

Serv1

Free

Req2

Arr2(Exp,λ2)

(pri2, w2) Start2

Acc2

Serv2

(Unif,[α2, β2])(Unif,[α1, β1])

Figure 1: The GSPN description of a shared resource system.

j 6= i client with probability 1 if prii > prij , and with probability wi/(wi+wj) if
prii = prij . The occupation time of the resource by a class i client is assumed to be
uniformly distributed within the interval [αi, βi] (corresponding to transitions Servi).
Thus on firing transition Servi the resource is released and a class i client leaves the
system.

3. HASL

The use of statistical methods instead of numerical ones gives us the possibility
to relieve the limitations that were inherent to numerical methods, in terms of model
and properties. When numerical model checking was focusing on Markovian models,
statistical methods permit to use a very wide range of distributions, and to synchronise
such a model with an automaton that includes linearly evolving variables, complex up-
dates and constraints. We are no more limited to the probability with which a property
is satisfied, we can also compute the expected value of performability parameters such
as waiting time, number of clients in a system, production cost of an item. In this
section, we present the Hybrid Automata Stochastic Language, first introduced in [11],
and illustrate its expressiveness on examples. We intuitively describe the syntax and
semantics of HASL before formally defining them in the next subsections. A formula
of HASL consists of two parts:

• The first component of a formula is a hybrid automaton that synchronises with
an infinite timed execution of the considered DESP until some final location
is reached (i.e. the execution is successful) or the synchronisation fails. This
automaton uses data variables evolving along the path. They both enable to
select the subset of successful executions and maintain detailed information on
the path.

• The second component of a formula is an expression based on the data variables
that expresses the quantity to be evaluated. In order to express path indices, they

7

include path operators such as min and max values along an execution, value
at the end of a path, integral over time and the time average value operator.
Conditional expectations over the successful paths are applied to these indices in
order to obtain the value of the formula2.

In order to illustrate our formalism, we consider the automaton of Figure 2. Its
purpose is to compute the lower and upper bounds on the waiting time for clients of
type 1 in the DESP of Figure 1. It has three data variables, whose evolution rate is
indicated in location l0. Variable x2 (resp. x3) is a counter to record the number of
completed (resp. started) accesses of type 1 clients to the shared resource. Variable
x1 counts the cumulated waiting time for all clients of type 1, thus the rate of x1 in
location l0 is equal to the number of type 1 clients waiting for the resource (Req1). The
transitions can either be synchronised and triggered by the actions of the DESP (the
self loops) where Serv1 (resp. Start1) denotes the end (resp. beginning) of type 1
service, or autonomous (denoted by]) and triggered by the evolution of the variables’
values (transition to the final location l1).

l0
ẋ1:Req1
ẋ2:0, ẋ3:0

l1

Serv1,>,{x2++} Start1,>,{x3++}

E\{Serv1,Start1},>,∅

],x2≥k,∅

Figure 2: An LHA to compute the bounds on the waiting time

An execution of this automaton terminates in final location l1 after k type 1 clients
have completed their access to the shared resource. The formulas used to compute
the aforementioned bounds are presented in page 15. Let us explain the behaviour of
the synchronised product of the LHA and the DESP, based on the following execution
with k = 1. Initially in the DESP two transitions (Arr1 and Arr2) are enabled and
so (randomly) scheduled respectively at times 3 and 17). The LHA starts in location
l0 with all variables initialised to 0. Since the rate of x2 in l0 is null, the autonomous
transition labelled by] and guarded by x2 ≥ 1 cannot be eventually fired. So the initial
state of this execution is: ((Free, 0, (Arr1:3, Arr2:17)), (l0, (0, 0, 0)) where the first
component of this couple is the marking of the GSPN, the current time, and the time
schedules of its enabled transitions while the second component is the location of the
LHA and the values of its data variables. Then transition Arr1 is fired synchronising
with the loop below l0. Start1 is now enabled and is scheduled immediately (due
to its Dirac distribution). In addition, Arr1 is again enabled and scheduled (at time
12). This leads to: ((Req1 + Free, 3, (Arr1:12, Arr2:17, Start1:3)), (l0, (0, 0, 0))).
The firing of Start1 is synchronised with the upper right loop incrementing x3. This

2As seen later on, the existence of expectations requires syntactical or semantical restrictions on the
formula and/or on the DESP.

8

leads to: ((Acc1, 3, (Arr1 :12, Arr2 :17, Serv1 :15)), (l0, (0, 0, 1))). A new client of
type 1 arrives at time 12, with the scheduling of a new client at time 20: (Req1 +
Acc1, 12, (Arr1 : 20, Arr2 : 17, Serv1 : 15)), (l0, (0, 0, 1))). When the first client is
served at time 15, this leads to a synchronisation with the upper left loop and x2 is
incremented. In addition the rate of x1 is 1, and so at the time of the firing x1 is incre-
mented by 3: (Req1 + Free, 15, (Arr1:20, Arr2:17, Start1:15,]:15)), (l0, (3, 1, 1))).
Observe that the autonomous transition and a synchronised one are scheduled at the
same time (15). Since an autonomous transition has higher priority, it is fired. The
resulting location is a final one and so the reached state is an absorbing state of the
product: (Req1 + Free, 15, (l1, (3, 1, 1))).

We will now proceed to a more formal definition of the automata and expressions
used in HASL.

3.1. Synchronised Linear Hybrid Automata
Syntax. The first component of a HASL formula is a restriction of a hybrid automa-
ton [3], namely a synchronised Linear Hybrid Automaton (LHA). Such automata ex-
tend the Deterministic Timed Automata (DTA) used to describe properties of Markov
chain models [26, 21]. Simply speaking, LHA are automata whose set of locations is
associated with a n-tuple of real-valued variables (called data variables) whose rate can
vary.

In our context, the LHA is used to synchronise with DESP paths. However, it
can evolve in an autonomous way. The symbol], associated with these autonomous
changes, is thus used to denote a pseudo-event that is not included in the event set
E of the DESP. The transitions in the synchronised system (DESP + LHA) are either
autonomous, i.e. time-triggered (or rather variable-triggered) and take place as soon as
a constraint is satisfied, or synchronised i.e. triggered by the DESP and take place when
an event occurs in the DESP. The LHA will thus take into account the system behaviour
through synchronised transitions, but also take its own autonomous transitions in order
to evaluate the desired property.

The values of the data variables x1, . . . , xn evolve with a linear rate depending both
on the location of the automaton and on the current state of the DESP. More precisely,
the function flow associates with each location of the automaton an n-tuple of indicators
(one for each variable) and, given a state s of a DESP and a location l, the flow of
variable xi in (s, l) is flowi(l)(s) (where flowi(l) is the ith component of flow(l)). Our
model also uses constraints, which describe the conditions for an edge to be traversed,
and updates, which describe the actions taken on the data variables on traversing an
edge. A constraint of an LHA edge is a boolean combination of inequalities of the
form

∑
1≤i≤n αixi+c ≺ 0 where αi, c∈Ind are indicators, and≺∈{=, <,>,≤,≥}.

The set of constraints is denoted by Const. Given a location and a state, an expression
of the form

∑
1≤i≤n αixi + c linearly evolves with time. An inequality thus gives an

interval of time during which the constraint is satisfied. We say that a constraint is left
closed if, whatever the current state s of the DESP (defining the values of indicators),
the time at which the constraint is satisfied is a union of left closed intervals. These
special constraints are used for the “autonomous” edges, to ensure that the first time
instant at which they are satisfied exists. We denote by lConst the set of left closed
constraints.

9

An update is more general than the reset of timed automata. Here each data variable
can be set to a linear function of the variables’ values. An update U is then an n-tuple
of functions u1, ..., un where each uk is of the form xk =

∑
1≤i≤n αixi + c where the

αi and c are indicators. The set of updates is denoted by Up.

Definition 2. A synchronised linear hybrid automaton (LHA) is defined by a tupleA =
〈E,L,Λ, Init ,Final , X, flow,→〉 where:

• E is a finite alphabet of events;

• L is a finite set of locations;

• Λ : L→ Prop is a location labelling function;

• Init is a subset of L called the initial locations;

• Final is a subset of L called the final locations;

• X = (x1, ...xn) is a n-tuple of data variables;

• flow : L 7→ Indn is a function which associates with each location one indicator
per data variable representing the evolution rate of the variable in this location.
flowi denotes the projection of flow on its ith component.

• The transition relation→⊆ L×
(
(2E × Const)] ({]} × lConst)

)
×Up×L is a

set of edges, where the notation l
E′,γ,U−−−−→ l′ means that (l, E′, γ, U, l′) ∈→ and

] denotes the disjoint union.

Furthermore A fulfils the following conditions.

• Initial determinism: ∀l 6= l′ ∈ Init , Λ(l) ∧ Λ(l′) ⇔ false. This must hold
whatever the interpretation of the indicators occurring in Λ(l) and Λ(l′).

• Determinism on events: ∀E1, E2 ⊆ E s.t . E1 ∩ E2 6= ∅, ∀l, l′, l′′ ∈ L, if

l′′
E1,γ,U−−−−→ l and l′′

E2,γ
′,U ′−−−−−→ l′ are two distinct transitions, then either Λ(l) ∧

Λ(l′)⇔ false or γ∧γ′ ⇔ false. Again this equivalence must hold whatever
the interpretation of the indicators occurring in Λ(l), Λ(l′), γ and γ′.

• Determinism on]: ∀l, l′, l′′ ∈ L, if l′′
],γ,U−−−→ l and l′′

],γ′,U ′−−−−→ l′ are two distinct
transitions, then either Λ(l) ∧ Λ(l′)⇔ false or γ ∧ γ′ ⇔ false.

• No]-labelled loops: For all sequences

l0
E0,γ0,U0−−−−−−→ l1

E1,γ1,U1−−−−−−→ · · · En−1,γn−1,Un−1−−−−−−−−−−−→ ln such that l0 = ln, there exists
i ≤ n such that Ei 6=].

10

Illustration. In order to make this definition more concrete, we get back to the au-
tomaton of Figure 2. On this automaton the set of events E is Arri, Starti and Servi
with i ∈ {1, 2} corresponding to the events of the associated GSPN of Figure 1. The
set L of locations consists of l0 and l1. Location l0 is initial and location l1 is final.
There are no labelling functions (such as acc1, noacc and acc2 which can be found
in Figure 3). The set of data variables is X = {x0, x1, x2}. Concerning the flow, the
last two variables have rate 0 in l0 whereas x0 evolves with a rate that is equal to the
marking of place Req1 in Figure 1. The rate of variables in state l1 is irrelevant as a
path ends as soon as this state is reached. Concerning the transitions the top left loop
on l0 is triggered as soon as action Serv1 is fired in the GSPN, it has trivial constraint
> (True) and its update consists in incrementing x2. The transition from l0 to l1 is not
synchronised (label]), has a left closed constraint x2 ≥ k and no update.

Discussion. The automata we consider are deterministic in the following (non usual)
sense. Given a path σ of a DESP, there is at most one synchronisation with the linear
hybrid automaton. The three first constraints ensure that the synchronised system is still
a stochastic process. The fourth condition disables “divergence” of the synchronised
product, i.e. the possibility of an infinity of consecutive autonomous events without
synchronisation.

It should also be said that the restriction to linear equations in the constraints and
to a linear evolution of data variables can be relaxed, as long as they are not involved in
autonomous transitions. Polynomial evolution of constraints could easily be allowed
for synchronised edges for which we would just need to evaluate the expression at a
given time instant. Since the best algorithms solving polynomial equations operate in
PSPACE [19], such an extension for autonomous transitions cannot be considered for
obvious efficiency reasons.

Notations. A valuation ν : X → R maps every data variable to a real value. In
the following, we use V al to denote the set of all possible valuations. The value of
data variable xi in ν is denoted ν(xi). Let us fix a valuation ν and a state s. Given
an expression exp =

∑
1≤i≤n αixi + c related to variables and indicators, its in-

terpretation w.r.t. ν and s is defined by exp(s, ν) =
∑

1≤i≤n αi(s)ν(xi) + c(s).
Given an update U = (u1, . . . , un), we denote by U(s, ν) the valuation defined by
U(s, ν)(xk) = uk(s, ν) for 1 ≤ k ≤ n. Let γ ≡ exp ≺ 0 be a constraint, we
write (s, ν) |= γ if exp(s, ν) ≺ 0. Let ϕ be a state proposition. We write s |= ϕ if
ϕ(s) = true.

Semantics. The role of a synchronised LHA is, given an execution of a corresponding
DESP, to decide whether the execution is to be accepted or not, and also to main-
tain data values along the execution. Before defining the model associated with the
synchronisation of a DESP D and an LHA A, we need to introduce a few notations
to characterise the evolution of a synchronised LHA. Given a state s of the DESP, a
non final location l and a valuation ν of A, we define the effect of time elapsing by:
Elapse(s, l, ν, δ) = ν′ where, for every variable xk, ν′(xk) = ν(xk)+flowk(l)(s)×δ.
We also introduce the autonomous delay Autdel(s, l, ν):

Autdel(s, l, ν) = min(δ | ∃l],γ,U−−−→ l′ ∧ s |= Λ(l′) ∧ (Elapse(s, l, ν, δ)) |= γ)

11

Whenever Autdel(s, l, ν) is finite, we know that there is at least one executable
transition with minimal delay and, thanks to the “determinism on]” of definition 2, we
know that this transition is unique. In the following we denote Next(s, l, ν) the target
location of this first transition and Umin(s, l, ν) its update. We now proceed to the for-
mal definition of the DESP,D′ = 〈S′, π′0, E′, Ind′, enabled′, target′, delay′, choice′〉
associated with the synchronisation of a DESP D and an LHA A.

• S′ = (S × L × V al)] {⊥} among which (S × Final × V al)] {⊥} are the
absorbing states.

• π′0(s, l, ν) =

{
π0(s) if (l ∈ Init ∧ s |= Λ(l) ∧ ν = 0)
0 otherwise

and π′0(⊥) = 1− Σs∈S,l∈L,ν∈V alπ′0(s, l, ν).

Note that this definition gives a distribution since, due to “initial determinism”
of definition 2, for every s ∈ S, there is at most one l ∈ Init such that s |= Λ(l).

• E′ = E] {]}
• Ind′ = ∅. In fact Ind′ is useless since there is no more synchronisation to make.

• if Autdel(s, l, ν) 6=∞ then
enabled′(s, l, ν) = enabled(s) ∪ {]}

else
enabled′(s, l, ν) = enabled(s)

• delay′((s, l, ν), e) = delay(s, e) for every e ∈ enabled(s) and, whenever] ∈
enabled′(s, l, ν), delay′((s, l, ν),]) is a Dirac function with a spike for the value
Autdel(s, l, ν).

• choice′((s, l, ν), E′, d)(e) =

1 if (] ∈ E′ ∧ e =])
0 if (] ∈ E′ ∧ e 6=])
0 if e /∈ E′
choice(s, E′, d)(e) otherwise

Again this is coherent since, as soon as] /∈ E′, then E′ is a subset of enabled(s)
on which choice is thus defined.

• For a synchronised event e,

if e ∈ enabled(s) and there exists l
E′,γ,U−−−−→ l′ with e ∈ E′ such that

target(s, e, d) |= Λ(l′) and Elapse(s, l, ν, d) |= γ then
target′((s, l, ν), e, d) = (target(s, e, d), l′, ν′)
with ν′ = U(Elapse(s, l, ν, d))

else
target′((s, l, ν), e, d) = ⊥

Due to the determinism, there is at most one such transition.

• For an autonomous event] ∈ enabled′(s, l, ν),
target′((s, l, ν),]) = (s, l′, ν′) with l′ = Next(s, l, ν) and
ν′ = Umin(s, l, ν)(Elapse(s, l, ν, Autdel(s, l, ν)))

12

• In order to get a DESP, for any absorbing state one adds a special event tick
only enabled in absorbing states with Dirac distribution on value 1 (so that time
diverges in these states).

Roughly speaking, as long as the automaton is not in a final state, the product of
a DESP and an LHA waits for the first transition to occur. If it is an autonomous one
then only the location of the automaton and the valuation of variables change. If it is
a synchronised event triggered by the DESP, either the LHA can take a corresponding
transition and the system goes on with the next transition or the system goes to a ded-
icated rejecting state ⊥ implying the immediate end of the synchronisation. In case of
a conflict of two transitions, an autonomous and a synchronised one, the autonomous
transition is taken first.

Note that, by initial determinism, for every s ∈ S there is at most one l ∈ Init
such that s satisfies Λ(l). In case there is no such l the synchronisation starts and
immediately ends up in the additional state ⊥. Determinism on events (resp. on])
ensures that there is always at most one synchronised (resp. autonomous) transition
fireable at a given instant.

Example. The three LHAs of Figure 2, 3 and 4 intend to illustrate the expressiveness
of LHAs in the context of HASL. When the first two are meant to synchronise with
the shared resource system of Figure 1, the last one expresses a property of the flexible
manufacturing systems presented in Figure 8. Note that in the LHAs presented here-
inafter,] labels for autonomous transitions are omitted; furthermore, label E is used to
denote universal synchronisation (i.e. synchronisation with any event). The example
of Figure 2 uses indicator dependent flows and has already been explained on page 8.

The LHA in Figure 3 illustrates the interest of associating state propositions with
locations of the LHA (function Λ of Definition 2). In the figure, three such propositions
are used, associated to non final locations: acc1 (there is a token in place Acc1), acc2
(there is a token in place Acc2) and noacc (there is no token neither in Acc1 nor in
Acc2). The interest of such propositions is that the automaton can take a transition to
location l1 only if acc1 has value 1 in the corresponding state of the system. Hence,
starting from location Init, no matter which precise event occurs in the system, the
automaton will switch from Init to l1 and l2 depending on which class of clients has
access to the resource. The fact that for example three different transitions labelled with
E without any constraint are available in location Init does not induce non determin-
ism as only one of these transitions is possible at a time thanks to the state propositions.
The automaton uses variables x0 that is used to count the number of granted resource
accesses and x1 that expresses the difference of resource usage between clients of class
1 and 2. To do so variable x1 has flow 1 (resp. -1) when the resource is used by class
1 (resp. 2) clients, and 0 when the resource is not used. In figures, we denote the flow
of variable x by ẋ. As soon as k clients have been given a resource access, the system
terminates in location l3 or l4 depending on which client type has used the resource for
the longest cumulated period.

The LHA of Figure 4 is meant to compute the probability to have at leastK product
completions (events corresponding to transitions Serv1 and Serv2 of the FMS Petri
nets of section 5) in a time interval of duration D during horizon mD. The three

13

Init
ẋ0:0
ẋ1:0

noacc

l1
ẋ0:0
ẋ1:1

acc1

l2
ẋ0:0
ẋ1:−1

acc2

E,>,
∅E,>,∅ E,>,∅

E,>,{x0++}

E,>,∅E,>,{x0++}

E,>,∅

l3

l4

],x
0
=
k

∧
x
1 ≥

0,∅

], x
0=k∧x

1≥0,∅],x0
=k
∧x1
≥0,∅

],x
0
=
k

∧x
1
<

0
,∅

], x0
=k
∧x1

<0,∅],x
0=k∧x

1<0,∅

Figure 3: An LHA to compute the difference of shared resource usage.

variables represent respectively the total time (x1), the time and the number of product
completions since the beginning of the interval (x2 and x3). The automaton reaches
a final state when the time horizon is reached (state l1). The value of x4 at the final
location represents the proportion of successful K-completions.

l0
ẋ1:1
ẋ2:1
ẋ3:0
ẋ4:0

l1

{Serv1,Serv2},>,
{x3:=x3+1}

E\{Serv1,Serv2},>,∅

], x1<m×D∧x2=D∧x3≥K,
{x2:=0,x3:=0,x4:=x4+1}

],x1<m×D∧x2=D∧x3≤K−1,
{x2:=0,x3:=0}

],x1=m×D∧x3≥K,
{x4:= 1

m×(x4+1)}

],x1=m×D∧x3≤K−1,{x4:= 1
m×x4}

Figure 4: An LHA for experiment φ3 of FMS case study (section 5.1)

3.2. HASL expressions
The second component of an HASL formula is an expression related to the automa-

ton. Such an expression, denoted Z, is based on moments of a path random variable Y
and defined by the grammar:

Z ::= c | P | E[Y] | Z + Z | Z − Z | Z × Z | Z/Z
Y ::= c | Y + Y | Y × Y | Y/Y | LAST (y) |MIN(y)

|MAX(y) | INT (y) | AV G(y)

y ::= c | x | y + y | y × y | y/y

(1)

Preliminary assumption. Before explaining this syntax, we emphasise that given an
infinite path of the synchronised product, the formula is evaluated on the finite pre-
fix that ends when the path reaches an absorbing state. In the general case, it would
be possible that an infinite path does not admit such a prefix. Here we assume that

14

given a DESP D and a HASL formula (A, Z), with probability 1, the synchronising
path generated by a random execution path of D reaches an absorbing configuration.
This semantical assumption can be ensured by structural properties ofA and/orD. For
instance, the time bounded Until of CSL guarantees this property. As a second exam-
ple, the time unbounded Until of CSL also guarantees this property when applied on
finite CTMCs where all terminal strongly connected components of the chain include
a state that either fulfils the target sub-formula of the Until operator or falsifies the
continuing sub formula. This (still open) issue is also addressed in [42, 30].

The variable y is an arithmetic expression built on top of LHA data variables (x)
and constants (c). A path variable Y is a path dependent expression built on top of
basic path random variables such as LAST (y) (i.e. the value of y when reaching the
absorbing state), MIN(y) (resp. MAX(y)), the minimum (resp. maximum), value
of y along a synchronising path, INT (y) (i.e. the integral over time along the finite
prefix) and AV G(y) (the average value of y along a path). Finally Z, the actual tar-
get of HASL verification, is either P , denoting the probability that a path is accepted
by the LHA or an arithmetic expression. Such an expression is built on top of the
first moment of Y (E[Y]), and thus allowing for the consideration of diverse signifi-
cant characteristics of Y (apart from its expectation) as the quantity to be estimated,
including, for example, the variance V ar[Y] ≡ E[Y 2] − E[Y]2 and the covariance
Covar[Y1, Y2] ≡ E[Y1Y2] − E[Y1]E[Y2]. Note that for efficiency reasons, in the im-
plementation of the COSMOS software tool, we have considered a restricted version of
grammar (1), where products and quotients of data variables (e.g. x1 × x2 and x1/x2)
are allowed only within the scope of the LAST operator (i.e. not with MIN , MAX ,
INT or AV G). Indeed, allowing products and quotients as arguments of path oper-
ators such as MAX or MIN requires the solution of a linear programming problem
during the generation of a synchronised D×A path which, although feasible, would
considerably affect the computation time.

Example. With the LHA of Figure 2, we can express bounds for the average wait-
ing time until the first k clients have been served. The upper (resp. lower) bound
on the waiting time is computed by the final value of x1 divided by k (resp. x3). In
our formalism it corresponds to the expressions E[LAST (x1)/k] for the upper bound
and to E[LAST (x1)/LAST (x3)] for the lower bound. Referring to the LHA of Fig-
ure 3, we can consider path random variables such as Y = LAST (x1) (the final
difference of shared resource usage), or Y = AV G(x1) (the average along paths of
such a difference). Furthermore, with a slight change of the automaton (setting x0

to 0 (resp. 1) when reaching l4 (resp. l3)), E[LAST (x0)] will give the probability
to reach l3. Finally, on the LHA of Figure 4, the ratio of time intervals of the form
[nD, (n + 1)D[during which K product completions occur is evaluated through ex-
pression E[LAST (x4)].

Semantics. We emphasise that the (conditional) expectation of a path random variable
is not always defined. There are two obvious necessary conditions on the synchronised
product: (1) almost surely the random execution ends either in a final state of the LHA
or in the rejecting state, and (2) with positive probability the random execution ends in
a final state of the LHA. However these conditions are not sufficient. Different restric-

15

tions on the path formula ensure the existence of expectations. For instance, when the
formula only includes bounded data variables and the operator INT and the division
are excluded, the expectation exists. Divisions may be allowed when the path expres-
sion is lower bounded by a positive value: in the example of Figure 2, LAST (x3)
is lower bounded by LAST (x2) which is lower bounded by k. The existence of re-
generation points of the synchronised product may also entail the existence of such
expectations. We do not detail the numerous possible sufficient conditions but in all
considered applications here, it can be proved that the expectations exist.

3.3. Expressiveness of HASL

In this subsection we first give an overview of related logics. Then we discuss the
expressiveness of HASL and show how it improves the existing formalisms to capture
more complex examples and properties, and facilitates the expression and the compu-
tation of costs and rewards.

CSL and its variants. In [6] Continuous Stochastic Logic (CSL) has been introduced
and the decidability of the verification problem over a finite continuous-time Markov
chain (CTMC) has been established. CSL extends the branching time reasoning of CTL
to CTMC models by replacing the discrete CTL path-quantifiers All and Exists
with a continuous path-quantifier that expresses that the probability of CTMC paths
satisfying a given condition fulfils a given bound. Several variants have been intro-
duced and studied such as CSRL [9], that extends CSL to take into account Markov
reward models, i.e. CTMCs with a single reward on states or possibly on actions [38],
that is used to specify an interval (on the accumulated reward) on the Until or Next
operator. asCSL, introduced in [7] replaces the interval time constrained Until of
CSL by a regular expression with a time interval constraint. These path formulas can
express elaborated functional requirements as in CTL∗ but the timing requirements
are still limited to a single interval globally constraining the path execution. In the
logic CSLTA [26], path formulas are defined by a single-clock deterministic timed au-
tomaton. This logic has been shown strictly more expressive than CSL and also more
expressive than asCSL when restricted to path formulas.

DTA. In [21], deterministic timed automata with multiple clocks are considered and
the probability for random paths of a CTMC to satisfy a formula is shown to be the
least solution of a system of integral equations. The cost of this more expressive model
is both a jump in the complexity as it requires to solve a system of partial differential
equations, and a loss in guaranty on the error bound.

M(I)TL. Several logics based on linear temporal logic (LTL) have been introduced
to consider timed properties, including Metric (Interval) Temporal logic in which the
Until operator is equipped with a time interval. Chen et al. [20] have designed pro-
cedures to approximately compute desired probabilities for time bounded verification,
but with complexity issues. The question of stochastic model checking on (a sublogic
of) M(I)TL properties, has also been tackled see e.g. [49].

Observe that all of the above mentioned logics have been designed so that numer-
ical methods can be employed to decide about the probability measure of a formula.

16

This very constraint is at the basis of their limited expressive scope which has two as-
pects: first the targeted stochastic models are necessarily CTMCs; second the expres-
siveness of formulas is constrained by decidability/complexity issues. Furthermore the
evolution of stochastic logics based on CTL seems to have followed two directions:
one targeting temporal reasoning capability (in that respect the evolutionary pattern
is: CSL→ asCSL→ CSLTA→ DTA), the other targeting performance evaluation ca-
pability (evolutionary path: CSL → CSRL → CSRL+impulse rewards). A unifying
approach is currently not available, thus, for example, one can calculate the probabil-
ity for a CTMC to satisfy a sophisticated temporal condition expressed with a DTA,
but cannot, assess performance evaluation queries at the same time (i.e. with the same
formalism).

HASL. As HASL is inherently based on simulation for assessing measures of a model,
it naturally allows for releasing the constraints imposed by logics that rely on numer-
ical solution of stochastic models. From a modelling point of view, HASL allows for
studying a broad class of stochastic models (i.e. DESP), which includes, but is not
limited to, CTMCs. From an expressiveness point of view, the use of LHAs allows for
generic variables, which include, but are not limited to, clock variables (as per DTA).
This means that sophisticated temporal conditions as well as elaborate performance
measures of a model can be accounted for in a single HASL formula, rendering HASL
a unified framework suitable for both model-checking and performance and depend-
ability studies. Note that the nature of the (real-valued) expression Z, available in
grammar (1) page 14, generalises the common approach of stochastic model checking
where the outcome of verification is (an approximation of) the mean value of a certain
measure (with CSL, asCSL, CSLTA and DTA a measure of probability).

It is also worth noting that the use of data variables and extended updates in the
LHA enables to compute costs/rewards naturally. The rewards can be both on loca-
tions and on actions. First using an appropriate flow in each location of the LHA,
possibly depending on the current state of the DESP we get “state rewards”. Then, by
considering the update expressions on the edges of the LHA, we can model sophisti-
cated “action rewards” that can either be a constant, depend on the state of the DESP
and/or depend on the values of the variables. Thus HASL extends the possibilities of
CSRL (and extensions [38]). The extension does not only consist of the possibility to
define multiple rewards (that can be handled, for example, through the reward-enriched
version of CSL supported by the PRISM [40] tool) but rather of their use. First several
rewards can be used in the same formula, and last but not least these rewards have a
more active role, as they can not only be evaluated at the end of the path, but they can
also take an important part in the selection of enabled transitions, hence of accepted
paths. It is for example possible and easy to characterise the set of paths along which
a reward reaches a given value and after that never goes below another value, a typical
example that neither PRISM-CSL nor CSRL can handle.

Limitations of HASL. Finally, we briefly discuss two features that are available in the
above mentioned stochastic logics but not in HASL. First HASL does not allow to
properly model nesting of probabilistic operators. The key reason is that this nesting
is meaningful only when an identification can be made between a state of the proba-

17

bilistic system and a configuration (comprising the current time and the next scheduled
events). While this identification was natural for Markov chains, it is not possible with
DESP and general distributions that have no memoryless property, and therefore this
operation has not been considered in HASL. Furthermore, even for Markovian systems,
the complexity of the statistical method on formulas with nesting is quite high [47] as
the verification time per state along a path is no longer constant.

A similar problem arises for the steady state operator. The existence of a steady
state distribution raises theoretical problems, except for finite Markov chains. With
HASL we allow for not only infinite state systems but also non Markovian behaviours.
However, when the DESP has a regeneration point, various steady state properties can
be computed considering the sub-execution between regeneration points.

In conclusion it is worth noting that these limitations are rather due to the verifica-
tion method (statistical in our case) and to the expressiveness of the model (allowing
non Markovian systems) than to a particular tool. All this information given, partic-
ularly concerning nested and steady state formulae, we can now state and prove our
claim about the respective expressiveness of HASL, CSRL and CSLTA:

Proposition 1. Given a non nested transient CSRL formula P./qφ and a system de-
scribed as a Markov Reward Model, it is possible to build an LHA to estimate the
probability p for φ to hold, and then decide whether it fulfils the bound required (i.e.
p ./ q with ./∈ {<,>,≤,≥}).
To prove this proposition, we first need to characterise what is a non nested transient
CSRL formula. Following the grammar given in [9], such a formula is either a boolean
combination of atomic propositions, or of the form P./qX

I
Jϕ or P./qϕ UIJ ψ with ϕ

and ψ being boolean combinations of atomic propositions. Roughly speaking, path
formula XI

Jϕ means that the first transition in the system will occur after a time delay
in interval I and accumulated reward within interval J , and that it will lead to a state
satisfying ϕ. The second path formula ϕ UIJ ψ means that the path reaches, with a
delay in I and a cumulated reward in J a state satisfying ψ, and that all preceding
states satisfy ϕ. The case of boolean formulas being rather trivial, we will focus on
P./qX

I
J and P./qUIJ

The kind of systems on which CSRL formulas are checked is called Markov Re-
ward Model (MRM), which consists of a finite state labelled continuous time Markov
chain plus two reward structures: one on actions and one on states. In our formal-
ism, the MRM will be represented by both a GSPN and an LHA. The underlying la-
belled Markov chain will be represented by a GSPN. For each state si of the MRM
we create one place Pi of the GSPN, and an indicator pi that is true when a token
is in place Pi, and for every couple of states (si, sj) such that the rate in the MRM
is R(si, sj) = rij > 0, we add a transition tij with input place Pi, output place Pj
and exponential distribution using rate rij . The atomic propositions of the MRM are
simply encoded as indicators, now on places instead of states.

For a formula of the kind P./qXI
Jϕ the LHA is quite simple. First the boolean for-

mula ϕ is transformed straightforwardly into a state proposition pϕ on the GSPN. It has
one initial location Initi per state si of the MRM, plus two final locations, one called
f1 labelled with pϕ, the other f2 with ¬pϕ. It also has three data variables, t with rate
1 in every location for the global time, OK with rate 0 in every location to determine

18

whether an execution satisfies the property or not, and r to capture the reward struc-
ture. In order to ensure initial determinism (see Definition 2), each Initj is labelled
with indicator pj . The reward structure is captured by a data variable r whose rate in
Initi is ρ(si), the reward on state si in the MRM. Then, for every transition (si, sj)
with impulse reward ι(si, sj) of the MRM, the LHA has three transitions starting from
Initi. The first one, taken if state sj of the MRM does not satisfy ϕ, sets OK to 0
and leads to location f2. The two other transitions lead to f1 and set OK to 1 or 0
depending on whether the interval constraint c = t ∈ I ∧ r + ι(si, sj) ∈ J is satisfied
or not. The probability to satisfy XI

Jϕ is computed by the expression E[LAST (OK)]
that can then be compared to bound q.

As for Until operator, it is also possible to build an LHA to compute the desired
probability, but this automaton is more complicated. In order not to make this part
too long, we just give here an idea of the LHA checking Until formulas. It is again
built based on the corresponding MRM. First, if the value 0 is not both in I and J , for
the states satisfying ¬ϕ the synchronisation ends immediately setting OK to 0. If 0
belongs to both intervals then, starting in a state satisfying ¬ϕ∧ψ, the synchronisation
immediately ends setting OK to 1. For all other states of the MRM we create a cor-
responding location in the LHA from which we will follow the evolution of the MRM
(with rates on locations modelling the state rewards and updates modelling the impulse
rewards). A further distinction has to be made between locations satisfying both ϕ and
ψ and others. Indeed, in the first case, time can pass without further transition of the
GSPN and the formula become true. This has to be detected. Otherwise, the transitions
will then synchronise with those of the GSPN and check whether time and reward after
the MRM transition are within the interval bounds. If yes then the execution will either
end if ψ is satisfied or if neither ϕ nor ψ are, setting OK to 1 and 0 respectively, or
go on until the above solution occurs. If time or reward passes over its interval, the
synchronisation ends setting OK to 0. In all other cases the synchronisation goes on.

On the automata built according to the above described method, the desired proba-
bility can then be computed using again expression E[LAST (OK)] and compared to
the desired bound

Proposition 2. Given a non nested transient CSLTA formula P./qA(φ1, ..., φn) and a
system described as a Continuous Time Markov Chain, it is possible to build an LHA
to estimate the probability p for an execution to be accepted by the DTAA(φ1, ..., φn),
and then decide whether it fulfills the bound required (i.e. p ./ q with ./∈ {<,>,≤
,≥}).

Since DTA is a class of automata that is a strict subset of LHA , the construction is
rather simple since the DTA can itself be used. It however has to be slightly modified.
Indeed, the DTA was rejecting executions not satisfying the property. For the LHA
we need to accept all executions and add a variable OK that is set to 0 or 1 depending
whether the execution satisfies the desired property. Thus all transitions leading to
an accepting location are enriched with the update OK:=1. Furthermore, for every
location of the automaton we add transitions setting OK to 0 and leading to a new
accepting location KO to ensure that every transition of the GSPN can synchronise
with the LHA. For example in a location with a single outgoing transition labelled

19

e, x ≤ a, ∅ we add two transitions to KO with label E \ {e}, true,OK := 0 and
e, x > a,OK := 0.

4. Software Support

In order to provide a software support to the HASL formalism we developed
COSMOS3 [10], a prototype software platform for HASL-based verification. In this
section, we describe the COSMOS tool including its architecture and providing as well
a comparison with other platforms featuring statistical model checking functionalities:
PRISM [40], UPPAAL-SMC [16], MARCIE [31] and PLASMA [34]. We start with a brief
summary of confidence interval estimation, the statistical method that COSMOS relies
on.

4.1. Confidence Interval Estimation.

In statistics, Confidence Interval (CI) estimation is a method for estimating an inter-
val which is likely to contain the exact value that an (unknown) parameter θ of a certain
population may assume. The peculiarity of CI estimation is twofold: i) it allows for
specifying how reliable the estimate should be by choosing the desired confidence level
α∈(0, 1)); ii) it allows for specifying how accurate the estimate should be by choosing
the desired admitted error bound (i.e. the width δ of the resulting interval). In other
words, if we repeatedly estimate the interval for a given θ we are guaranteed that the
(possibly different) resulting intervals will contain the actual value of θ in a proportion
corresponding to (1− α).

Static sample size estimation. Originally CI estimation works by collecting (through
execution of experiments) a fixed number n of samplesX1, . . . Xn of the target param-
eter θ. Sampled values are then used to calculate the interval containing θ. The general
form of the 100(1 − α)% confidence-interval for the expected value µθ of θ, denoted
CIαµθ , is:

CIαµθ = (PEµθ)± EBα
where PEµθ is a Point Estimate of µθ andEBα is the Error Bound, which corresponds
to the semi-width of the CI interval, i.e. EBα = δ/2. The sample mean X =

∑n
i=1Xi
n

is used as (unbiased) Point Estimator of µθ. On the other hand the expression for
the EB depends on assumptions concerning the nature of target parameter θ (hence of
samples X1, . . . Xn). COSMOS handles three kinds of variables:

• Indicator variables (Bernoulli variables) used for evaluation of unknown proba-
bilities. In this case, we provide an error bound applying the Clopper-Pearson
method [23].

3COSMOS is an acronym of the french sentence “Concept et Outils Statistiques pour le MOdèles
Stochastiques” whose english translation would sound like: “Tools and Concepts for Statistical analysis
of Stochastic MOdels”.

20

• Bounded variables used for evaluation of proportions, ratios, mean number of
clients in a system with finite capacity, etc. In this case, we provide an error
bound applying the Chernoff-Hoeffding method [33].

• General variables without any additional knowledge. In this case using the cen-
tral limit theorem, we provide an asymptotically correct error bound based on an
approximation by a normal distribution with unknown mean and variance.

There are three parameters for the interval estimation: the size of the samples, the
error bound and the confidence level. In the case of indicator or bounded variables,
the user provides two of them and the third one is computed before the sampling. For
general variables, the size of the sample, and one more parameter (the error bound
or the confidence level) must be given, and the remaining one is computed after the
sampling. Thus, the sample size is fixed before the sampling.

Dynamic sample size estimation. When the user wants to a priori provide the error
bound and the confidence level for a general variable, the system can perform a dy-
namic number of samples depending on some stopping condition. While an exact
condition cannot be achieved, Chow and Robbins [22] provide a stopping condition
ensuring that when the error bound goes to 0, then the probability that the unknown
expectation belongs to the interval associated with their method converges to the confi-
dence level. COSMOS also offers this functionality. Compared to conservative methods
like Clopper-Pearson and Chernoff-Hoeffding ones, the simulation time is significantly
reduced, as illustrated in Figure 6.

Confidence interval for expressions. The previous paragraphs deal with the case of a
single estimation. HASL expressions include an arbitrary number of estimations de-
noted by operator E[] (see Equation (1)). Assume that we have to perform n estimations
for which we get CI [ai, bi] and confidence level αi for i = 1 . . . n. Then the confi-
dence level of the whole expression is given by α = 1 −∑n

i=1 1 − αi. The CI of the
expression is obtained by applying operations on intervals like:
[a, b] + [a′, b′] = [a+ a′, b+ b′], [a, b]− [a′, b′] = [a− b′, b− a′],
[a, b]× [a′, b′] = [min(aa′, ab′, ba′, bb′),max(aa′, ab′, ba′, bb′)], etc.

4.2. Hypothesis testing

When one is not interested in the actual value of a statistic but rather wants to decide
whether this value is above or below a threshold, hypothesis testing methods can be
used. For a Bernoulli variable of unknown mean p, and given two probabilities p0 < p1

(the maximal probability of false positive and true negative results), the Sequential
Probability Ratio Test (SPRT) [46] is an optimal sequential test for deciding whether
p ≥ p0 or p ≤ p1 holds.

4.3. The COSMOS Tool

COSMOS code generation scheme. COSMOS is implemented in C++ and relies on the
BOOST libraries for random number generation functionalities. The tool is designed
according to a model driven code generation scheme (Figure 5): the inputs D and

21

A are parsed in order to generate a C++ code that implements the simulation of the
synchronized product of the inputs. The code generator takes advantage of the structure
of the GSPN and the LHA to produce an efficient code.

More precisely the code generation works as follows: From the GSPN given as
input the tool produces C++ functions for firing transitions, checking whether a tran-
sition is enabled and computing the probability distributions. For any transition t, the
set of transitions that might become enabled or disabled due to the firing of t are also
generated. These informations are obtained by an analysis of the structure of the Petri
net. They significantly increase the speed of simulation by testing only a small subset
of transitions after each firing.

In order to perform an efficient synchronization of the LHA with the GSPN, the tool
generates data that links synchronized transitions of the automaton with transitions of
the net. Checking the firing of an autonomous transition of the LHA requires to gener-
ate a function that manages a system of linear equations associated with the transition.
Due to the syntactical constraints for autonomous transitions, the function computes
the exact firing time of such a transition. A timed integral occurring in a formula of
HASL is also efficiently determined thanks to the linear constraint requirement.

The generated code is linked with a library containing parts of the simulator that
are independent of the model and the formula. This library contains the main function
that determines the next event to occur by means of an event heap and the generated
code. In addition a pseudo random generator computes delays for the new events that
are put into the heap.

Parameters

Command line
Boost Random

Generator

Simulator

Statistical
Evaluation Result

LHA Parser

GSPN Parser

Command Line
Parser

Code
Generator

LHA.cpp

GSPN.cppmodel.grml

property.grml

Figure 5: COSMOS’s model-driven code generation scheme

COSMOS launches several copies of the resulting executable code in parallel that
repeatedly generate trajectories and send back the evaluation of the formulas on these
trajectories. COSMOS aggregates these evaluations and stops the simulation depend-
ing on the selected statistical method (see above). The compilation time is generally
negligible compared to the simulation time.

Input and Output files. COSMOS uses the XML-based file format of CosyVerif [24]
named GrML both for the GSPN and the LHA. COSMOS can output results in different
ways. By default the mean value and confidence interval of each HASL formula is
written in a text file with some statistics about the simulation (number of generated
paths, execution time, etc.). Several options allow to output intermediate results, traces
of simulation and graphics.

Interface. COSMOS interface can be either a command line tool or a graphical user
interface. The command line requires as parameters the path to the GSPN and LHA

22

files and several options which set the statistical parameters and the output format.
COSMOS is integrated into the CosyVerif [24] platform which provides a graphical
interface.

HASL Implementation. COSMOS implements a slight extension of HASL. This exten-
sion does not enhance the expressive power of HASL but adds some macros allowing
more compact syntax. First, the operator V AR is provided as a macro for E[Y 2] −
E[Y]2. Second, two macros allow to compute PDF (Probability Density Function) and
CDF (Cumulative Density Function). Their syntax is PDF (Y, step, start, end)
(respectively CDF (Y, step, start, end)) where Y is an expression defined like in (1).
PDF (resp. CDF) is translated by COSMOS into several HASL formulas, each of
them compute the probability for Y ∈ [start + i · step; start + (i + 1) · step[(resp.
Y ≥ start+i·step) with i < (end−start)/step. An example of their use is provided
in the second case study.

4.4. Related Tools
Numerous tools are available for performing SMC, some of them also performing

numerical model checking. Here is a non exhaustive list of tools freely available for
universities: COSMOS [12], PLASMA [35], PRISM [37], UPPAAL [17], MARCIE [31],
APMC [32], YMER [48], MRMC [36] and VESTA [41]. As APMC is partly integrated
in PRISM, we have discarded it. Since 2011, MRMC has not been updated and the
corresponding team seems to use UPPAAL. Finally, the link for downloading VESTA

is not valid anymore. So we focus on the following tools: YMER, PRISM, UPPAAL,
PLASMA, MARCIE and COSMOS.

YMER is a statistical model checker for CTMCs and generalised semi-Markov
processes described using the PRISM language. Its property specification language
is a fragment of CSL without the steady-state operator but including the unbounded
Until.

PRISM is a tool for performing model checking on probabilistic models that has
been used for numerous applications. The numerical part of PRISM can analyse dis-
crete and continuous time Markov chains, Markov decision processes and probabilistic
timed automata. The statistical part only deals with Markov chains as it cannot handle
nondeterminism. The PRISM language defines a probabilistic system as a synchronised
product between reactive modules, thus can describe large systems in a compact way.
The verification procedures of PRISM take as input a wide variety of languages for the
specification of properties. Most of them are based on CSL or PCTL.

UPPAAL is a verification tool including many formalisms: timed automata, timed
games, priced timed automata, etc. It supports automata-based and game-based veri-
fication techniques and has shown its ability to analyse large scale applications. It has
recently been enriched with a statistical model checker engine to verify timed systems
with a stochastic semantics. The specification language is PLTL (i.e. an adaptation of
LTL with path operators substituted for quantifiers) with bounded Until.

PLASMA is a platform dedicated for statistical model checking. It accepts the PRISM

language but extended with more general distributions and a dedicated biological lan-
guage for the models. The property specification language is a restricted version of
PLTL with a single threshold operator. Furthermore, PLASMA is built with a plugin

23

system allowing a developer to extend it, and it can be integrated in another software
via a library.

MARCIE is a tool for qualitative and quantitative analysis of Generalised Stochastic
Petri nets. It relies on Interval Decision Diagram (IDD) to represent symbolically the
state space of the Petri net. The implementation of IDD is mostly parallel, taking
advantages of multicore architectures. It has been recently extended with a simulation
engine for the model checking of PLTL formulas. Like COSMOS, MARCIE can deal
with unbounded until properties as long as the user guarantees the termination. It has
been developed for the study of chemical reaction networks and thus facilitates the
modelling of such systems.

Discussion. The formalisms are characterised by different features: model specifi-
cations (dedicated languages in PRISM or standard formalisms in COSMOS, MARCIE

and UPPAAL), expressiveness of the formalisms (supported distributions, presence of
clocks, etc.) and dedicated application based languages (e.g. for biological systems
in PLASMA and MARCIE). While the probabilistic extension of UPPAAL is similar to
COSMOS, the differences come essentially from the initial motivations. As UPPAAL in-
tends to attribute a stochastic semantics to originally non probabilistic timed automata,
the available probability distributions are restricted (exponential for transitions having
guards without upper time bound, and uniform otherwise). COSMOS which is con-
structed as a statistical model checker provides several well known distributions (expo-
nential, normal, deterministic, uniform, gamma, etc.). Even if any general distribution
can be approximated by combining several exponential distributions, the simulation
cost increases with the required accuracy. MARCIE only supports exponential and im-
mediate distributions.

The property specification is expressed by a formula for most of the tools but it is a
combination of an expression and an automaton for COSMOS. The available operators
in formulas often exclude unbounded Until and nesting of probabilistic operators
(only possible for Markovian models). Moreover the evolution of the time and data
variables are subject to some restrictions.

4.5. Tool Evaluation

We performed several experiments aimed at evaluating COSMOS both in terms of
accuracy and runtime. For this purpose we consider two popular workbench mod-
els. The first one, a tandem queuing system (TQS), is available on the PRISM web
page [40], the second one is a model of dining philosophers (DPM). We run experi-
ments with COSMOS, PRISM (version 4.0.2), UPPAAL-SMC (version 4.1.13), PLASMA

(version 1.1.4), YMER (version 3.1) and MARCIE (version 1178M). These are the stable
version available from the corresponding web sites.

The TQS is a M/Cox2/1 queue composed with a M/M/1 queue. For the exper-
iments, we use queue capacities : N = 5, the arrival rate : λ = 20, the service rates
of the first phase in the first queue : µ1 = 0.2, µ′1 = 1.8 (for clients without second
service phase), the service rate of the second phase in the first queue : µ2 = 2 and the
service rate in the second queue : κ = 4 as in [37]. The DPM is a mutual exclusion
problem where N philosophers are sitting around a table. Initially thinking, they can

24

decide to eat by taking two forks shared with their right and left neighbours. How-
ever a contention problem may arise due to the sharing of resources (forks). For the
experiments, the rate of all exponential distributions is chosen as 10. PRISM supports
Chernoff-Hoeffding, SPRT methods and the sequential confidence interval computa-
tion using approximations to Student and Normal laws. UPPAAL and PLASMA sup-
port Chernoff-Hoeffding and SPRT methods while YMER only supports SPRT method.
MARCIE uses a static sample size algorithm which is not described in the manual. So
for experiments with MARCIE, we set the number of samples to the one required by
Chernoff-Hoeffding method. COSMOS provides Chernoff-Hoeffding, Chow-Robbins
and Gaussian methods for the sequential confidence interval estimation and the SPRT
method.

For the TQS model we consider the following time-bounded reachability measure:
φTQS ≡ The probability that the first queue in the tandem gets full within time T . For
the dining philosopher model we consider the following measure: φDPM ≡ The prob-
ability to reach a deadlock state before N philosophers eat. A deadlock occurs when
all philosophers have taken one fork. Both properties can be straightforwardly encoded
in CSL and HASL, hence equivalent verification experiments can be performed by all
tools.

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100

Si
m

ul
at

io
n

T
im

e

Number of Philosophers

Cosmos(C&R)

Cosmos(Hoeffding)

UPPAAL

PRISM-CI

PRISM-ACI

PRISM-APMC

PLASMA

MARCIE

(a) The philosophers model

0

50

100

150

200

250

0 50 100 150 200

Si
m

ul
at

io
n

ti
m

e

Time Bound

(b) The TQS model

Figure 6: Comparison of simulation time for probability measures

Experiment settings. We have set the following statistical parameters: the confidence
level is 0.95 and the width of confidence interval is 0.005, the probability of error is
0.005 for the hypothesis testing and the width of the indifference region is 0.001. To
fulfil these parameters, tools must generate large number of trajectories. The other
parameters have been set to their default value. Most tools can take advantage of par-

25

allelisation but for simplicity we use only one processor4 for the comparison.

DPM experiments. Figure 6(a) refers to the runtime for the DPM as a function of the
number of philosophers. COSMOS is the fastest of the tools using Chernoff-Hoeffding
bounds. For 100 philosophers, MARCIE is 1.4 times slower, UPPAAL is 1.5 times slower,
PLASMA is 1.9 times slower, and PRISM-APMC is 2.5 times slower. Among the tools us-
ing sequential procedures, the two versions of PRISM have similar runtime and COSMOS
is up to 1.9 times faster.

TQS experiments with confidence intervals. Results about the runtime comparison
with different time bounds T are reported in Figure 6(b). There are two kinds of be-
haviours for tools depending on the applied statistic method. For the first one that
corresponds to the Chernoff-Hoeffding method, the simulation time is increasing with
the time bound T . About 295000 trajectories are required to obtain the specified con-
fidence interval. For the second one that corresponds to sequential confidence interval
methods, the required number of samplings decreases when the time bound goes to
infinity. This phenomenon is a consequence of the evolution of the satisfaction proba-
bility of φTQS that goes to 1 when T goes to infinity.

COSMOS is again the fastest of the tools using Chernoff-Hoeffding method. When
the time bound is 200, PLASMA is approximatively 2.6 times slower, MARCIE is 3.7
times slower, UPPAAL is 4.2 times slower and PRISM-APMC is 6.5 times slower. Among
the tools using sequential procedures, when the time bound is 40 the two versions of
PRISM have similar runtime and COSMOS is up to 2.8 times faster.

4.5.1. TQS experiments with sequential hypothesis testing.
Results on hypothesis testing are reported in Table 1. Each value is the mean over

100 experiments. The threshold value for the hypothesis is always very close the nu-
merical value in order to increase the number of trajectories performed by tools. Re-
sults confirm that hypothesis testing methods are faster than confidence interval based
methods. The number of trajectories generated by all tools are similar to each other.
In most cases COSMOS is the fastest, YMER being up to 1.8 times slower, UPPAAL 2.8
times slower, and PRISM 6 times slower.

Time NumValue p ≥? UPPAAL PRISM YMER COSMOS

10 0.17505 0.17 4.78 12.02 3.29 3.36
20 0.33574 0.33 11.54 23.78 7.48 5.08
40 0.56931 0.564 21.23 46.47 14.00 7.78
80 0.81894 0.814 20.10 43.46 13.01 7.60
200 0.98655 0.981 2.81 8.10 1.92 2.74

Table 1: Runtime comparison for the TQS for Sequential Testing

4These experiments have been executed on a MacBook Pro, with processor 2.4 GHz Intel Core 2 Duo.

26

Figure 7: Runtime for a probability measure of the TQS model for Sequential Testing

0
5
10
15
20
25
30
35
40
45
50

0 20 40 60 80 100 120 140 160 180 200

S
im

u
la
ti
o
n
ti
m
e

Time Bound

Uppaal Prism-CI Ymer Cosmos

Accuracy comparison. To assess the accuracy of COSMOS we compared its output
with the one produced by PRISM via both its numerical engine (PRISM-n) and its sta-
tistical engine (PRISM-s)5: results indicate that COSMOS and PRISM-s are comparably
accurate with the estimated intervals always containing the (actual) value obtained with
the numerical engine of PRISM. Using the value computed by the numerical engine of
PRISM, we perform a coverage test of COSMOS: we compute the ratio of simulations
that return a confidence interval which contains the real value. This ratio is always
close to the confidence level.

5. Case Studies

In this section we demonstrate the potential of HASL model checking through two
different applications, namely an industrial modelling and a biological modelling ap-
plication. In the first case study we develop a complete (GSPN) model of a production
process, which includes the representation of different routing policies and we analyse
them through dedicated HASL formulae. In the second case study we focus on a model
of biological oscillator (i.e. the circadian-clock) for which we show how we can per-
form a detailed analysis of its oscillatory characteristics (i.e. period analysis) by means
of HASL.

5.1. Flexible Manufacturing System
Flexible Manufacturing Systems (FMS) design has been introduced to optimise

manufacturing systems according to different criteria. The goal is to evaluate and com-
pare several manufacturing system architectures before selecting the suitable one ac-
cording to a selection of specific criteria. This process implies resorting to formal
models and evaluation methods. Although the vast majority of FMS stochastic mod-
elling studies have been focused on the analysis of steady-state-based measures such

5Experiments were executed with confidence level=99.99%, interval width=0.01.

27

as throughput, productivity, makespan [18], the relevance of transient-analysis of FMS
models has been extensively demonstrated [39]. In [13], we have proposed a composi-
tional framework targeted to modelling FMSs by means of the HASL verification ap-
proach. Here we focus on the transient analysis and more precisely with fixed horizon:
thus it can be straightforwardly shown that all expectations related to these transient
properties exist. Furthermore, it is well known that for systems presenting regenerative
points (like idle states), every steady-state measure can be obtained by averaging the
corresponding transient measure between two occurrences of a regenerative point.

5.1.1. FMS model
We now proceed to the description of our FMS case study. We first state the ar-

chitecture of the system, composed of two machines served by two conveyor belts.
Then we present two possible routing policies, and finally we describe the experiments
we performed on this system. The numerical results as well as their interpretation are
given in section 5.1.2.

Architecture. The raw material arrives to an unbounded buffer which is represented by
place Products in GSPN models (see Figure 8). The inter-arrival times are distributed
according to a uniform distribution within interval [a1, a2]. A uniform distribution is
chosen, rather than a deterministic one, in order to represent small variabilities due
to logistic problems. The raw materials are oriented to one of the two conveyor belts
according to a strategy that will be explained later. Each conveyor belt i ∈ {1, 2}
consists of an unbounded input buffer, represented by place Bufferi in the GSPN model,
and a set of equally distanced positions, represented by places Posji . Here we consider
4 positions, j ∈ {1, ..., 4}. The transitions Mvji denote the movements on the conveyor
i, from Bufferi all the way to the input buffer Qi of machine i. Transitions Mvji with
j > 1 and Starti are deterministic with parameter Tunit which represents transport time
of one pallet between two successive positions. Transition Mv1

i is immediate. Priorities
denoted πk in the figure are introduced to ensure that all tokens progress simultaneously
(without them, a token could move from Pos4

i to Qi, blocking the conveyor belt before
all tokens have moved forward). They satisfy the condition πk < πl whenever k < l.

Conveyor belt i drives materials to place Qi that represents both the bounded input
buffer of machine i and the output buffer of conveyor i. When it is full (i.e. two tokens
in Qi), the conveyor belt i is blocked (as ensured by inhibitor arcs of weight 2). The
service in machine i is represented by transition Servei in the GSPN model. The service
duration in machine i follows a lognormal distribution, LnN (µ, σ2);6

We consider two models. In the first one we suppose that there is no machine
failure so the service is always available, we refer to this model as M1. In the second
one that we refer as M2, we suppose a failure/repair model for each machine. The time
between two successive failures is distributed according to an Erlang distribution. The
reparation time is uniformly distributed in the interval [r1, r2].

6with scale parameter µ and shape parameter σ2. The expectation is given by eµ+σ
2/2 and the variance

by (eσ
2 − 1)e2µ+σ

2
.

28

Routing policies. In manufacturing systems, the routing policy to send material to one
among several machines doing the same job is an important question as a bad policy
can have a significant impact on the efficiency of the whole system. Here we consider
two policies S1 and S2 to choose the transport unit (conveyor belt) to drive raw material
from the input buffer to one of the machines.
Policy S1.
If one of the conveyor belts is blocked and the other is available, then put the material
to the available one (transitions In1

i). If both conveyor belts are available and if the
number of material in conveyor i is greater than a given threshold li while for the other
conveyor is less than its own threshold lj , put the material in the conveyor which does
not exceed its threshold (In2

i). Otherwise, one of the conveyor is randomly chosen
with probability 0.5 (In2

i or In3
i).

Policy S2.
Choose the conveyor belt with the smallest number of occupied positions. If these
numbers are equal, choose randomly a conveyor with probability 0.5 (Ini with inhibitor
arcs).

The top GSPN model of Figure 8 represents a FMS with policy S1 and non-failing
machines (model M1) while the bottom one represents a FMS with policy S2 and fail-
ing/repair machines (modelM2). The two other options (policy S1, modelM2 and pol-
icy S2, model M1) can easily be deduced from the figures given by adding/removing
fail and repair transitions.

Evaluating the system. We have chosen several meaningful properties in order to as-
sess the quality of the FMS design w.r.t. different model assumptions: routing policies,
and presence of failures. We also study the behaviour of COSMOS and in particular
its runtime and the accuracy of its results (witnessed by the width of the confidence
intervals).

φ1 : First we want to characterise the bottlenecks of the architecture. More pre-
cisely, a large ratio of blocking time for the conveyor may indicate that the buffer of
the server should be enlarged. Furthermore if some cost is associated with the re-
starting of the conveyors, decreasing this ratio can induce significant savings. So φ1

denotes the ratio of blocking time for conveyor 1. Since we study this formula in a
symmetric framework the choice of the conveyor is irrelevant.

φ2 : In order to support additional load due to client requests, it is important to
estimate the average completion time for a product. Using Little formula (on the long
run), it is equivalent to compute the expected number of products in the system which
is denoted by φ2. We estimate this value depending on the relative rate of the two
machines.

φ3 : For logistic issues, the time is divided in periodic intervals. It is required to
guarantee a certain number of production on each of these cycles. This can be charac-
terised by some thresholds relative to the number of items produced inside an interval.
Failing to meet this threshold may have dramatic consequences for the company. So
φ3 is the probability to produce at least K products (the threshold) in a time interval of
the form [iD, (i+ 1)D[for 0 ≤ i < m during horizon T = mD (see Figure 4 for the
LHA expressing this formula).

29

Arrive

Products

InConv1

InConv2

In3
1

π8
In2

1

π9

In1
1

π10
Buffer1

Ready1

Finish1

π5

Start1

π7

Waiting1

Mv1
1

π6

Pos11
Mv2

1

π5

Pos21
Mv3

1

π4

Pos31
Mv4

1

π3

Pos41
Mv5

1

π2

Q1
Serve1

In3
2

π8
In1

2

π10

In2
2

π9

Buffer2

Ready2 Finish2

π5

Start2

π7

Waiting2

Mv1
2

π6

Pos12
Mv2

2

π5

Pos22
Mv3

2

π4

Pos32
Mv4

2

π3

Pos42
Mv5

2

π2
Q2

Serve2

l1

2

2
2

2

2

2

l2
2

2
2

2

2

2

2

2

Arrive

Products

InConv1

InConv2

In1

π8

In2

π8

Buffer1

Ready1 Finish1

π5

Start1

π7

Waiting1

Mv1
1

π6

Pos11
Mv2

1

π5

Pos21
Mv3

1

π4

Pos31
Mv4

1

π3

Pos41
Mv5

1

π2

Q1

Fail1 Up1

Down1

Repair1

Serve1

Buffer2

Ready2 Finish2

π5

Start2

π7

Waiting2

Mv1
2

π6

Pos12
Mv2

2

π5

Pos22
Mv3

2

π4

Pos32
Mv4

2

π3

Pos42
Mv5

2

π2

Q2

Fail2 Up2

Down2

Repair2

Serve2

InConv1 + 1

InConv2 + 1

2

2
2

2
2

2

2
2

2
2

Figure 8: GSPNs for policies S1 (above) and S2 (below).

5.1.2. Numerical results
Unless specified otherwise, all numerical results have been obtained with a confi-

dence interval level 0.99 and with a confidence interval width 0.01. The transport time
of pallets between two successive positions is Tunit = 0.5 time unit. In the following
tables, T denotes the simulation horizon, S.T. denotes the simulation time in seconds,
N.P. denotes the number of paths for the required accuracy of the estimation, and C.I.
denotes the confidence interval width. In the experiences, the inter-arrival distribution
of raw material is Unif[0.45, 0.55]. We first study model M1 without machine failures.
In table 2, we consider property φ1 with respect to horizon T under policy S1 with
thresholds l1 = 3, l2 = 3 and under policy S2. The service rates in machines are
symmetric and the service distribution is LnN (−0.683046, 0.83255) with expectation
1/1.4 and variance (1/1.4)2.

We observe that the values seem to become stable when T > 6400. For short hori-
zons, the sample variance is high, necessitating a large number of generated paths. The
sample variance then decreases when the simulation horizon increases, and becomes
constant when the situation seems to stabilise. The blocking probability for conveyor
1 is slightly smaller under policy S1 than under S2.

In Table 3, we present the expected number of products in the system with the

30

T S1 S2

φ1 S.T. N.P. φ1 S.T. N.P.
10 0.113 0.07 3060 0.098 0.03 2680
50 0.221 0.19 2070 0.218 0.16 2060

100 0.243 0.25 1390 0.243 0.22 1480
400 0.255 0.48 730 0.259 0.49 730

1600 0.259 1.37 560 0.263 1.19 570
6400 0.260 4.66 530 0.265 4.32 530

25600 0.260 18.66 520 0.265 16.61 520
102400 0.261 75.34 520 0.265 65.83 520

Table 2: The ratio of blocking time of conveyor 1 for model M1 under policies S1 and S2.

thresholds l1 = 3, l2 = 3. We note that the expected number of products in the system
is greater under policy S2.Thus the mean production time for a product is better in the
long term under policy S1.

T S1 S2

φ2 S.T. N.P. φ2 S.T. N.P.
10 5.299 1.51 109120 5.354 1.35 113040
50 7.601 34.29 559050 8.478 44.41 842390

100 8.085 67.85 553750 9.185 93.19 875700
400 8.471 116.24 236130 9.756 166.78 388840

1600 8.569 133.71 67770 9.905 187.82 109350
6400 8.596 139.13 17550 9.943 199.72 29020

25600 8.599 136.18 4290 9.950 196.08 7090
102400 8.602 152.78 1190 9.951 208.64 1870

Table 3: The expected number of products in the system for model M1 under policies S1 and S2.

In the next experiments, we study the impact of increasing the machine service
rates. Indeed, when the response time constraints are not met for a given FMS ar-
chitecture, one solution may be the replacement of one or both machines with more
efficient ones. For this purpose, we evaluate different configurations in order to deter-
mine the most suitable one. In particular, we consider configurations with a fixed total
service rate which is 1.5 times the original total service rate (used in table 3). In the
asymmetric case, i.e. φ2(asy), the service rate of the second machine is set to twice the
rate of the first machine while the service rate is not modified for the first machine. In
the symmetric case, i.e. φ2(sym), service rates of both machines are the same and they
are increased by 1.5 times the original value. In table 4 we give results of both policies
for φ2(asy) with different threshold values (l1, l2) for S1, and for φ2(sym) with l1 = 3,
l2 = 3 for S1.

By comparing results in Tables 3, and 4, we observe that increasing the service
rate reduces significantly the mean number of products in the system. We observe that
symmetric increase gives better results than asymmetric increase for both policies. Fur-
thermore, policy S1 is better than policy S2 for all experiences for the expected number
of products in the system. The best performance is reached by symmetric increase un-
der policy S1 with threshold (l1, l2) = (3, 3). For asymmetric configuration of the S1
policy, asymmetric thresholds (l1, l2) = (1, 4) and (l1, l2) = (1, 5) seem to provide
better results. Such results may be useful during the cost-contribution analysis of FMS
designing. In the case we consider here, for example, the designer knows that investing

31

T φ2(asy) φ2(sym)
S2 S1 S2 S1

(3,5) (3,4) (3,3) (2,3) (1,3) (1,4) (1,5) (3,3)
10 4.889 4.748 4.764 4.785 4.689 4.624 4.590 4.611 4.149 4.110
50 6.626 5.817 5.835 5.928 5.762 5.695 5.587 5.576 5.011 4.762

100 6.892 5.964 5.994 6.108 5.888 5.827 5.723 5.722 5.198 4.855
400 7.087 6.074 6.107 6.226 5.998 5.958 5.831 5.841 5.415 4.925

1600 7.133 6.079 6.124 6.236 6.030 5.977 5.848 5.863 5.503 4.950
6400 7.141 6.101 6.115 6.239 6.050 5.983 5.861 5.860 5.525 4.956

25600 7.153 6.103 6.133 6.251 6.044 5.982 5.859 5.860 5.527 4.955
102400 7.154 6.098 6.129 6.259 6.042 5.987 5.861 5.864 5.518 4.958

Table 4: The expected number of products in the system for model M1 with asymmetric service rates
φ2(asy), different thresholds for policy S1, and symmetric service rates.

on a single twice-faster machine (i.e. asymmetric configuration) is, performance-wise,
less convenient as investing on a pair of 50% faster machines (i.e. symmetric configu-
ration). Thus he/she can opt for either possibility based on machine costs.

In remaining tables, we compare models M1 and M2. Failures occur according to
an Erlang distribution of 4 stages of exponential distribution with mean value 1000,
Erlang(4, 1000), while repair time follows a uniform distribution Unif(30, 50). Thus
the mean time to failure is 4000 while mean repair time is 40 time units. First we
report again in Table 5 the experiences of Tables 3 for model M1 and we give the
results for model M2. In short horizons, models M1 and M2 have similar behaviours.
As expected, in large horizons, the number of products in the system significantly
increases due to failures under both policies. However policy S1 performs better than
policy S2 in model M2.

T M1 (no faults) M2 (faults)
S1 S2 S1 S2

φ2 S.T. φ2 S.T. φ2 S.T. φ2 S.T.
10 5.299 1.51 5.354 1.35 5.317 0.02 5.350 0.02
50 7.601 34.29 8.478 44.41 7.620 0.44 8.499 0.49

100 8.085 67.85 9.185 93.19 8.655 2.39 9.885 2.99
400 8.471 116.24 9.756 166.78 21.616 106.91 26.929 118.43

1600 8.569 133.71 9.905 187.82 33.936 738.59 42.118 748.87
6400 8.596 139.13 9.943 199.72 38.691 1724.47 47.796 1737.40

25600 8.599 136.18 9.950 196.08 39.950 2026.30 49.279 2104.75
102400 8.602 152.78 9.951 208.64 40.286 2193.67 49.701 2205.40

Table 5: The expected number of products in the system for models M1 and M2 with failures/repairs under
policies S1 and S2.

In Table 6, we present results for property φ3 with the required number of produc-
tions K = 95 during each time interval D = 50, and with a confidence interval width
0.005 for model M1 and model M2 with failures. We observe that in the case when
the FMS is subject to failures, the probability of having at least 95 productions during
time interval D = 50 significantly decreases. Moreover for both models M1 and M2,
the policies S1 and S2 provide similar performances for this property contrasting with
the different expected number of products in the system (φ2) under these policies.

32

T M1 (no faults) M2 (faults)
S1 S2 S1 S2

φ3 S.T. φ3 S.T. φ3 S.T. φ3 S.T.
50 0.046 0.841 0.020 0.321 0.047 0.893 0.021 0.367

100 0.479 1.108 0.449 1.035 0.423 1.869 0.395 1.522
400 0.807 1.203 0.771 1.361 0.578 1.999 0.553 2.034

1600 0.886 2.029 0.852 1.970 0.633 2.133 0.622 2.091
6400 0.908 5.239 0.872 5.078 0.651 5.289 0.641 4.858

25600 0.912 19.340 0.877 17.508 0.654 18.280 0.646 16.446
102400 0.914 77.016 0.878 69.205 0.655 72.776 0.648 65.585

Table 6: The probability to complete at leastK = 95 productions during a time intervalD = 50 under both
policies, for model M1 and M2.

5.2. Analysis of oscillations in a model of the circadian clock

Many real-life systems are characterised by oscillatory dynamics, i.e. their evolu-
tion follows a periodic trend. Given a stochastic oscillator, a relevant issue is to be able
to assess its basic oscillatory characteristics such as for example how long (on average)
a period lasts for, or also how regular the exhibited periods are. Here we consider
a model of biological oscillator known as circadian-clock, and we demonstrate how
HASL can effectively be used to estimate its periodic character. Model checking based
analysis of stochastic oscillators has been considered using different types of temporal
logic formalisms and tools [5, 14, 43, 25]. Based on Spieler’s approach [43] in which
timed-automata monitors are used to assess the period duration of a CTMC oscillator,
here we show how, through LHA monitors, we can extend the capability of analysing
oscillator by not only measuring the period duration but also its fluctuation.

5.2.1. A stochastic model of the circadian clock
Circadian clocks are biological mechanisms responsible for keeping track of daily cy-
cles of light and darkness. The cycling behaviour involves a network of biochemical
species which exhibit a periodic signal. Here we consider a simple model (presented
in [45]) of a circadian network consisting of chemical equations (2). The model in-
volves 2 genes, geneA and geneR, expressing the activator protein A, respectively the
repressor protein R. Both genes can be in either of two (mutually exclusive) states: 1)
having the promoter region free (represented by species DA, respectively DR); 2) hav-
ing a molecule of activator A attached to the promoter region (represented by species
D′A, respectivelyD′R). The model accounts for protein expression, i.e. a two steps pro-
cess in which first the gene transcribes an mRNA molecule, MA (resp. MR), which is
then translated into the target protein, A (resp. R).

Network reactions. mRNA transcription is modelled by reactions R5, R6 (for geneA)
andR7, R8 (for geneR). Notice that transcription happens at different speed depending
on the state of the gene. If a gene’s promoter is free then transcription (i.e R6, R8)
is slower (see rates in Table 7), if a molecule of activator A is attached to a gene’s
promoter through R1 (resp. R3) transcription (i.e R5, R7) is faster. The remaining
reactions are as follows: mRNA translation corresponds to R9 (resp. R10); the com-
plexation of protein A and R is modelled by R11, while R12 models its “asymmetric”
reverse, i.e. the degradation of A while complexed and consequent release of R (only);

33

simple degradation of each species is modelled by R13, R14, R15 and R16. The (con-
tinuous) kinetic rate constants 7 (taken from [45]) are given in Table 7.

R1 :A+DA
γA−→ D′A R2 : D′A

θA−→ A+DA R3 : A+DR
γR−→ D′R

R4 :D′R
θR−→ DR +A R5 : D′A

α′A−→MA +D′A R6 : DA
αA−→MA +DA

R7 :D′R
α′R−→MR +D′R R8 : DR

αR−→MR +DR R9 : MA
βA−→MA +A

R10 :MR
βR−→MR +R R11 : A+R

γC−→ C R12 : C
δA−→ R

R13 :A
δA−→ ∅ R14 : R

δR−→ ∅ R15 : MA

δMA−→ ∅

R16 :MR

δMR−→ ∅
(2)

Stochastic model. Chemical equations (2) can give rise to either a system of ODEs
(in the continuous-deterministic semantics) or to a stochastic process (in the discrete-
stochastic semantics). Here we focus on the discrete-stochastic semantics: Figure 9
shows the GSPN encoding of equations (2) developed with COSMOS. The configura-
tion of the GSPN requires setting the initial population and the rates of each transition.
Following [45], we consider a model with a single copy of each gene, and we fur-
ther assume that the promoter region of both genes is initially free. Thus initially we
set DA = DR = 1 and D′A = D′R = 0. Observe that a gene can only be in either
of two states (e.g. DA or D′A) hence the following invariant conditions must hold:
DA + D′A = 1 and DR + D′R = 1. The remaining species are initially supposed to
be inexistent, hence they are initialised to 0. Concerning the conversion of the reaction
rate constants, for simplicity we assume a unitary volume of the system under consid-
eration, hence all continuous rates in Table 7 can be used straightforwardly as rates of
the corresponding discrete-stochastic reactions. In this case we assume all reactions
following a negative exponential law thus yielding a CTMC model. Furthermore, we
assume all reactions following the mass action law (i.e. the kinetic rate of a reaction is
given by the product of the rate constant with the population of each reactant), which
in GSPN terms means all transitions in Figure 9 are associated with (single-server)
marking-dependent exponential distributions whose rate constants correspond to those
in Table 7.

We stress that the resulting CTMC has nine dimensions with four bounded
dimensions, i.e., DA, D

′
A, DR, D

′
R ∈ {0, 1}, and five unbounded dimensions

MA, A,MR, R, C ∈ N, therefore its state space is S ⊆ {0, 1}4×N5. Furthermore
the CTMC can be proved to be ergodic, that is, each of its states has a finite mean
recurrence time, which means that a drift towards infinity is not possible. As a con-
sequence the HASL specified random variables we consider later on for assessing the
oscillatory characteristic of the circadian clock CTMC have a well defined mean value.

7Notice that rates of first order reactions are expressed in h−1 units whereas rates of second order reac-
tions are expressed in mol−1h−1

34

αA 50 h−1 αR 0.01 h−1 δA 1 h−1 δR 0.2 h−1

αA′ 500 h−1 αR′ 50 h−1 γA = γR 1 mol−1h−1 γC 2 mol−1h−1

βA 50 h−1 βR 5 h−1 θA 50 h−1 θR 100 h−1

δMA 10 h−1 δMR 0.5 h−1

Table 7: Reactions’ rates for the circadian oscillator

.
The oscillatory dynamics of the circadian clock network can be observed by look-

ing at some trajectories. Figure 10 depicts examples of realisations of the activator A
(red-plot) and repressor R (blue-plot) dynamics along a simulated trace of the GSPN
model of Figure 9. The left plots correspond to the original rates (i.e. δR = 0.2) for
which the exhibited period duration is approximatively 24, while the right plots corre-
spond to a 10 times speed-up of the repressor degradation (i.e. δR = 2) which induces
a more than halved period duration of approximatively 11. In the remainder we for-
mally assess various measures related to the period of oscillations, including the mean
value of the period duration.

R15

δMA

MA

R6

αA

R9

βA

DA

R1

γA

R2

θA

R4

θR

R3

γR DR

R8

αR

MR R16

δMR

R11

γCA

R R1

βR

C

R5

α′A

D′A
D′R R7

α′R

R12

δA

R14

δR

Figure 9: GSPN encoding of the system (2) of chemical equations corresponding to the circadian-clock.

35

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f m
ol

ec
ul

es

Time (min)

A
R

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f m
ol

ec
ul

es

Time (min)

A
R

Figure 10: Single trajectory showing the oscillatory character of activator A and repressor B dynamics with
normal repressor’s degradation rate δR=0.2 (left) and with 10× speed-up, i.e. δR = 2 (right).

5.2.2. Measuring the noisy-period of stochastic oscillations with HASL
HASL-based analysis of oscillations relies on the concept of noisy periodicity [43],

i.e. a weaker characterisation of periodicity of a function. A function f : R+ → R is
said noisy periodic with respect to given thresholds L<H∈R+ (inducing the partition
of R+ into low : [0, L), mid : [L,H), high : [H,+∞)) if f perpetually switches
from low to high and back to low. Such a generic characterisation extends naturally
to traces of a DESP as illustrated in Figure 11).

p1

L

H

low

mid

high

p2p0 T

Figure 11: Example of noisy periodic trace corresponding to a given (L < H) partition of a DESP state
space.

A (noisy) period corresponds to the time interval between two consecutive crossing
points corresponding to entering in one extreme of the partition, interleaved by at least
one crossing point into the opposite extreme. For example in Figure 11 the first period
p1 corresponds to the duration between the first mid-to-low crossing and the succes-
sive mid-to-low crossing interleaved by a mid-to-high crossing. Notice that the first
complete period (p1) might be preceded by a spurious period (i.e. p0) which should be
discarded as there’s no guarantee that T = 0 corresponds with an actual mid-to-low
crossing, hence with the actual beginning of p0.

The Aper automaton. We introduce an LHA (Figure 12), denoted Aper, designed for
detecting realisations of noisy periods of a given observed species (in this case A).

36

More specifically, Aper is designed for assessing two characteristics of an oscillatory
trace: the mean period duration (denoted t̄p) and the period fluctuation (denoted s2

tp)
over the first N periods detected along a trace. Period fluctuation represents how much
(on average) a single period realisation deviates from the mean duration computed
over the periods observed along a trace. From the point of view of analysis the period
fluctuation is a useful indication of the regularity of the observed oscillator. Aper
consists of an initial transient filter (locations l0, l′0) plus three main locations low,
mid and high (corresponding to the partition of A’s domain induced by thresholds
L < H). Initially the simulated trajectory unfolds for a given duration (initT) letting
Aper within l0, l′0 without doing anything.8 After initT time units Aper enters low9

where the actual oscillation analysis begins.

E,(n<N),;

E,(n<N ^ top = 0),;

E,(n<N),{top :=1}

E,(n<N),;

],(n=N),;

],(
n=

N),;

],(n
=
N
),;

A L
LAH A�H

E,(n<N),; E,(n<N),;
E,(n<N),;

E,(n=�1 ^ top = 1), {n++, t :=0, top :=0}

E,(2n<N ^ top = 1), {n++, top :=0}
tp :=f(tp, n), ftp :=g(ftp , t̄p, n), tp :=0}

E,(0n1 ^ top = 1), {n++, top :=0,
t̄p :=f(t̄p, n), tp :=0}

low

ṫ : 1

mid

ṫ : 1

high

ṫ : 1

l0

ṫ : 1

Skipping the initial transient,
until initT second
have passed and A<=L

A>L

l00
],t � initT, ;

E,
>,

{t :=
0,
n
:=

�1}

E,>, ; E,>, ; Aper

end

],
t
�

in
it
T
,

{t
:=

0
,n

:=
�
1
}

Figure 12: An LHA for selecting noisy periodic traces wrt. partition low=(−∞, L], mid=(L,H) and
high=[H −∞).

From low the automaton follows the profile of A hence moving to mid as soon as
L< A<H holds, and then to high as soon asA≥H . WithAper a period starting point
is associated with the first mid-to-low crossing that follows a mid-to-high crossing 10.
Hence the first detected period (crossing from low to high and back to low) is discarded
as its duration may be spurious. Aper uses six variables (Table 8): t is a timer that keeps
track of simulation time; n counts the number of detected noisy-periods while top is a
boolean flag used for distinguishing the mid to low crossing points that correspond to
the closure of one period (i.e. when a traversal from mid-to-low has been preceded by

8This is useful for eliminating the effect of the initial transient from long run measures as already dis-
cussed in [4].

9the choice of beginning measuring in low is arbitrary, equivalentlyAper can be defined so that analysis
starts in either mid or high.

10again equivalent versions of Aper can be easily obtained which detect periods by considering different
starting points, e.g period that starts with a crossing from mid to high.

37

name domain update definition
t R≥0 reset
n N increment
top bool complement
tp R≥0 reset

t̄p R≥0 f(t̄p, tp, n) = 1
n+1

(t̄pn · n+ tp)

s2tp R≥0 g(s2tp , t̄p, tp, n) = 1
n

[(n− 1)s2tp + (tp − t̄p)(tp−f(t̄p, tp, n+ 1))]

Table 8: The data variables of automataAper of Figure 12 for measures of noisy-periodicity

a traversal from high-to-mid) from those who do not. Notice that, in order to ignore
the first potentially spurious period (p0 in Figure 11), n is initially set to n :=−1 on
entering low from the initial transient filter, and the simulation time t is then reset on
detection of the closure of the first spurious detected (i.e. on entering low from mid
when n = −1). Furthermore tp stores the duration of the last detected period (tp),
while tp maintain the mean duration of all (so far) detected periods and s2

tp stores the
fluctuation of the period duration for all (already) detected periods. Notice that the
fluctuation (i.e. s2

tp) is computed on the fly (see Table 8) by adaptation of the so-called
online algorithm for computing the variance out of a sample of observations. Finally
the analysis of simulated trajectories stops (by entering the accepting location end) as
soon as the N th period has been detected. For Aper we consider the following target
measures:

• Z1 ≡ E[LAST (t)/N]: corresponding to the mean value of the period duration
for the first N detected periods.

• Z2 ≡ PDF (LAST (t)/N, s, l, h): corresponding to the PDF of the period du-
ration over the first N detected periods, where [l, h] represents the considered
support of the estimated PDF, and [l, h] is discretised into uniform subintervals
of width s

• Z3 ≡ E[LAST (s2
tp)]: corresponding to the fluctuation of the noisy-period dura-

tion.

Results. We run a number of experiments for assessing the influence of the repressor
degradation rate (δR) on the period of the circadian oscillator. Figure 13(a) shows three
plots representing the PDF of the period obtained through evaluation of formula Z2 for
three values of δR (i.e. 0.1, 0.2 and 2). With δR=0.2 (i.e. the original value as in [45])
the PDF is centered at t= 24.9, i.e. slightly more than the expected 24 hours duration
for a normally functioning circadian clock. Speeding up by a factor 10 the repressor
degradation (i.e. δR = 2) yields a slightly more than halved oscillation period (i.e.
PDF centered at T = 10.8). Finally slowing down the degradation rate of a half (i.e.
δR=0.1) yields a less than doubled oscillation period (i.e. PDF centered at T =40.7).

Figure 13(b) compares the measured mean value of the period (red plot, computed
with Z1) with the period fluctuation (blue plot, computed with Z3). Such plots are

38

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2

 0 5 10 15 20 25 30 35 40 45

pr
ob

ab
ilit

y

period duration

DELTAr=2.0
DELTAr=0.2
DELTAr=0.1

(a) PDFs of the period duration

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

m
ea

n,
flu

ct
ua

tio
n

degradation rate of Repressor

period mean value
period fluctuation

(b) mean value and fluctuation of the period

Figure 13: PDFs (left) and mean value v. fluctuation (right) of the period of the circadian clock model in
function of the repressor degradation rate.

in agreement with the PDF plots of Figure 13(a) and confirm the general outcome
of this analysis which is: slowing down the degradation of the repressor results in
increasing the length of the period as well as its irregularity (i.e. the period fluctua-
tion also increases). In fact the period fluctuation (blue plot Figure 13(b)) decreases
with the increase of δR which means that a slower degradation of the repressor cor-
responds to an increase in the irregularity of the periods. This is in agreement with
the PDF plots of Figure 13(a) as the width of the PDF bell-shaped curves increases
with the increase of δR). All plots in Figure 13 result from sampling of finite trajec-
tories consisting of N = 100 periods, where periods have been detected using L = 1
and H = 1000 as partition thresholds, and target estimates have been computed with
99% confidence and confidence-interval width of 0.01. The PDF plots in Figure 13(a)
have been computed using a discretisation of the period support interval [0, 50] into
subintervals of width 0.1. Finally, in order to assess the effect that the initial transient
of the circadian clock model may have on the outcome of measuring, we repeated all
of the above discussed experiments with different values of the initT parameter (e.g.
initT ∈{1, 10, 50, 100, 500, 1000, . . .}) which determines the starting measuring point
for Aper. The outcomes of repeated experiments turned out to be essentially the same
and hence independent of the chosen initT value, indicating that initialisation period
for the circadian clock is quite short.

6. Conclusion

We have presented a new framework for expressing elaborate properties related to
stochastic processes. A formula of HASL returns either a probability (as the previous
approaches do) or a conditional expectation whose condition is based on acceptance by
a linear hybrid automaton. Such a framework can be used both for probabilistic valida-
tion of functional properties or for elaborate performance analysis. We have developed
a tool COSMOS and we have experimentally validated it on Flexible Manufacturing
Systems and biological case studies, thus illustrating the feasibility of this statistical
based approach.

39

While the empirical efficiency has been established, we aim at overcoming the well-
known limitations of the statistical approach. In a recent work [15], an importance
sampling method has been designed and implemented in COSMOS accelerating the
path generation when faced to difficult acceptance condition related to a rare event.
Another research direction consists in analysing the structure of the DESP in order to
circumvent the constraint that almost surely a path is accepted or rejected by the LHA.

References

[1] Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with Generalized Stochastic Petri Nets. John Wiley & Sons (1995)

[2] Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time
systems. In: ICALP’91, LNCS 510, pp. 115–126 (1991)

[3] Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An
algorithmic approach to the specification and verification of hybrid systems. In:
Hybrid Systems, LNCS 736, pp. 209–229 (1992)

[4] Amparore, E.G., Ballarini, P., Beccuti, M., Donatelli, S., Franceschinis, G.: Ex-
pressing and computing passage time measures of gspn models with hasl. In:
J.M. Colom, J. Desel (eds.) Petri Nets, Lecture Notes in Computer Science, vol.
7927, pp. 110–129. Springer (2013)

[5] Andrei, O., Calder, M.: Trend-based analysis of a population model of the akap
scaffold protein. T. Comp. Sys. Biology 14, 1–25 (2012)

[6] Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking CTMCs. ACM
Trans. on Computational Logic 1(1), 162–170 (2000)

[7] Baier, C., Cloth, L., Haverkort, B., Kuntz, M., Siegle, M.: Model checking action-
and state-labelled Markov chains. IEEE Trans. on Software Eng. 33(4), 701–710
(2007)

[8] Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for CTMCs. IEEE Trans. on Software Eng. 29(6), 524–541 (2003)

[9] Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: On the logical charac-
terisation of performability properties. In: ICALP’00, LNCS 1853, pp. 780–792
(2000)

[10] Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: COSMOS: a statis-
tical model checker for the hybrid automata stochastic logic. In: Proc. QEST’11,
pp. 143–144. IEEE Computer Society Press (2011)

[11] Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: HASL : an expres-
sive language for statistical verification of stochastic models. In: Proc. Value-
tools’2011, pp. 306–315 (2011)

40

[12] Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: HASL: An ex-
pressive language for statistical verification of stochastic models. In: P.H. Sam-
son Lasaulce Dieter Fiems, L. Vandendorpe (eds.) Proceedings of the 5th Inter-
national Conference on Performance Evaluation Methodologies and Tools (VAL-
UETOOLS’11), pp. 306–315. Cachan, France (2011)

[13] Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: Petri nets compo-
sitional modeling and verification of flexible manufacturing systems. In: CASE,
pp. 588–593. IEEE (2011)

[14] Ballarini, P., Guerriero, M.: Query-based verification of qualitative trends
and oscillations in biochemical systems. Theoretical Computer Science
411(20), 2019 – 2036 (2010). DOI 10.1016/j.tcs.2010.02.010. URL
http://www.sciencedirect.com/science/article/pii/S0304397510001052

[15] Barbot, B., Haddad, S., Picaronny, C.: Coupling and importance sampling for
statistical model checking. In: C. Flanagan, B. König (eds.) Proc. TACAS’12,
LNCS, vol. 7214, pp. 331–346. Springer, Tallinn, Estonia (2012)

[16] Bulychev, P.E., David, A., Larsen, K.G., Mikucionis, M., Poulsen, D.B., Legay,
A., Wang, Z.: Uppaal-smc: Statistical model checking for priced timed automata.
In: Proceedings 10th Workshop on Quantitative Aspects of Programming Lan-
guages and Systems, EPTCS, vol. 85, pp. 1–16 (2012)

[17] Bulychev, P.E., David, A., Larsen, K.G., Mikucionis, M., Poulsen, D.B., Legay,
A., Wang, Z.: Uppaal-smc: Statistical model checking for priced timed automata.
In: H. Wiklicky, M. Massink (eds.) QAPL, vol. 85, pp. 1–16 (2012)

[18] Buzacoott, J.A., Shantikumar, J.G.: Stochastic Models of Manufacturing Sys-
tems. Prentice-Hall (1993)

[19] Canny, J.: Some algebraic and geometric computations in PSPACE. In: Proc.
STOC’88, pp. 460–467 (1988)

[20] Chen, T., Diciolla Marco an Kwiatkowska, M., Mereacre, A.: Time-bounded ver-
ification of ctmcs against real-time specifications. In: 9th International Confer-
ence, FORMATS 2011, Lecture Notes in Computer Science, pp. 26–42. Springer
(2011)

[21] Chen, T., Han, T., Katoen, J.P., Mereacre, A.: Quantitative model checking of
CTMC against timed automata specifications. In: Proc. LICS’09, pp. 309–318
(2009)

[22] Chow, Y.S., Robbins, H.: On the asymptotic theory of fixed-width sequential
confidence intervals for the mean. Annals of Mathematical Statistics 36(2), 457–
462 (1965)

[23] Clopper, C.J., Pearson, E.S.: The use of confidence or fiducial limits illustrated
in the case of the binomial. Biometrika 26(26), 404–413 (1934)

41

[24] CosyVerif home page. http://www.cosyverif.org

[25] David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., Sedwards, S.:
Runtime verification of biological systems. In: ISoLA (1), pp. 388–404 (2012)

[26] Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic
properties with CSLTA. IEEE Trans. on Software Eng. 35, 224–240 (2009)

[27] Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel
programs using fixpoints. In: Proc. of ICALP’80, LNCS 85, pp. 169–181 (1980)

[28] Glynn, P.W.: On the role of generalized semi-Markov processes in simulation
output analysis. In: Proc. Conf. Winter simulation, pp. 38–42 (1983)

[29] Gorrieri, R., Herzog, U., Hillston, J.: Unified specification and performance eval-
uation using stochastic process algebras. Perform. Eval. 50(2/3), 79–82 (2002)

[30] He, R., Jennings, P., Basu, S., Ghosh, A.P., Wu, H.: A bounded statistical ap-
proach for model checking of unbounded until properties. In: Proc. ASE’10, pp.
225–234 (2010)

[31] Heiner, M., Rohr, C., Schwarick, M.: MARCIE - Model checking And Reacha-
bility analysis done effiCIEntly. In: J. Colom, J. Desel (eds.) Proc. PETRI NETS
2013, LNCS, vol. 7927, pp. 389–399. Springer (2013)

[32] Herault, T., Lassaigne, R., Peyronnet, S.: APMC 3.0: Approximate verification
of discrete and continuous time Markov chains. In: Proc. QEST’06, pp. 129–130
(2006)

[33] Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301), pp. 13–30 (1963)

[34] Jégourel, C., Legay, A., Sedwards, S.: A platform for high performance statistical
model checking - plasma. In: TACAS, Lecture Notes in Computer Science, vol.
7214, pp. 498–503 (2012)

[35] Jégourel, C., Legay, A., Sedwards, S.: A platform for high performance statistical
model checking - plasma. In: C. Flanagan, B. König (eds.) TACAS, vol. 7214,
pp. 498–503. Springer (2012)

[36] Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. QEST pp. 167–176 (2009)

[37] Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of proba-
bilistic real-time systems. In: G. Gopalakrishnan, S. Qadeer (eds.) Proc. 23rd
International Conference on Computer Aided Verification (CAV’11), LNCS, vol.
6806, pp. 585–591. Springer (2011)

[38] L.Cloth, Katoen, J.P., Khattri, M., Pulungan, R.: Model checking Markov reward
models with impulse rewards. In: Proc. DSN’05 (2005)

42

[39] Narahari, Y., Viswanadham, N.: Transient analysis of manufacturing systems per-
formance. IEEE Trans. on Robotics and Automation 10 (2), 230–244 (1994)

[40] PRISM home page. http://www.prismmodelchecker.org

[41] Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: CAV, Lecture Notes in Computer Science, vol. 3576, pp. 266–280.
Springer (2005)

[42] Sen, K., Viswanathan, M., Agha, G.: VESTA: A statistical model-checker and
analyzer for probabilistic systems. In: Proc. QEST’05, pp. 245–246 (2005)

[43] Spieler, D.: Characterizing oscillatory and noisy periodic behavior in markov
population models. In: Proc. QEST’13 (2013)

[44] Tweedie, R.L.: Sufficient conditions for ergodicity and recur-
rence of markov chains on a general state space. Stochastic
Processes and their Applications 3(4), 385–403 (1975). URL
http://EconPapers.repec.org/RePEc:eee:spapps:v:3:y:1975:i:4:p:385-403

[45] Vilar, J., Kueh, H.Y., Barkai, N., Leibler, S.: Mechanisms of noise-resistance in
genetic oscillators. Proc. National Academy of Sciences of the United States of
America 99(9), 5988–5992 (2002)

[46] Wald, A.: Sequential tests of statistical hypotheses. The Annals of Mathematical
Statistics 16(2), 117–186 (1945)

[47] Younes, H., Simmons, R.: Statistical probabilistic model checking with a focus
on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

[48] Younes, H.L.: Ymer: A statistical model checker. In: Computer Aided Verifica-
tion, pp. 429–433. Springer (2005)

[49] Zuliani Paolo an Platzer, A., Clarke, E.M.: Bayesian statistical model checking
with application to stateflow/simulink verification. Formal Methods in System
Design 43(2), 338–367 (2013)

Appendix A. Ergodicity of CTMC model of Circadian Clock

In Section 5.2 we have introduced a number of HASL specifications for analysing the
oscillations of the circadian clock CTMC model. Such specifications represent the
expected value of certain random variables like, for example, (Aper,E[LAST (t)/N]),
which represents the expected value of the period duration for the first N detected
periods.

In order to argue that the expected values for such HASL specified random variables
exist we need to demonstrate that the circadian clock CTMC model is ergodic.

Ergodicity of Markov chains. Ergodicity is a relevant property of Markov chains
as it ensures the existence of a unique stationary distribution for the chain. A finite

43

state Markov chain is ergodic if it is irreducible, i.e., it consists of a single Strongly
Bottom Connected Component, and aperiodic, or, otherwise said, if all of its states are
recurrent, which means each state si has probability 1 that the first return time in si,
denoted τi, is finite, i.e, Prob(τi <∞) = 1. An infinite state Markov chain is ergodic
if all of its state are positive recurrent which means that each state has a finite mean
recurrence time E[τi] < ∞ (for all states si). Here we are interested in the infinite
state case, since the Circadian clock CTMC model is, as we will see, infinite state.

Proving of the ergodicity of general state Markov chains is a well know problem
for which a variety of well established results have been proved, e.g., [44]. For random
walk like chains, such as the Circadian clock chain, proving the ergodicity corresponds
with, essentially, showing that the chain “drifts” consistently back towards the “centre”
of the state space, or, otherwise said, that there exists a finite (positive recurrent) “cen-
tre” region of the state space and that the further we move away from it the stronger we
are attracted towards it.

One way of showing that a chain drifts consistently towards the “centre” of the state
space is by showing that the state space S can be partitioned into a family of (mutually
disjoint) subsets Aj ⊆ S which induces an ordering with respect to their distance from
the “centre”, thus E[‖A1‖] ≤ E[‖A2‖] ≤ . . . (where E[‖Aj‖] denotes the average
distance of region Aj from the “centre”). Then a sufficient condition for ergodicity is
to show that there exists an index k > 0 with a corresponding bound bk ∈ R+ such that
for all j ≥ k the ratio τj→j+1/τj+1→j ≤ bk, where τj→j+1 represents the rate at which
partitionAj+1 is entered fromAj whereas τj+1→j represents the rate at which partition
Aj is entered fromAj+1. In the following proposition we apply such a schema to show
the ergodicity of the CTMC model of the Circadian clock model.

R1 :A+DA
γA−→ DA R2 : DA

θA−→ A+DA R3 : A+DR
γR−→ DR

R4 :DR
θR−→ DR +A R5 : DA

α′A−→MA +DA R6 : DA
αA−→MA +DA

R7 :DR
α′R−→MR +DR R8 : DR

αR−→MR +DR R9 : MA
βA−→MA +A

R10 :MR
βR−→MR +R R11 : A+R

γC−→ C R12 : C
δA−→ R

R13 :A
δA−→ ∅ R14 : R

δR−→ ∅ R15 : MA

δMA−→ ∅

R16 :MR

δMR−→ ∅
(A.1)

Proposition 3. The Circadian clock CTMC corresponding to equations (A.1) is er-
godic.

Proof (sketch). We proceed by showing the following properties of the CTMC: its
irreducibility, its infiniteness with respect to 4 (out of 9) dimensions, the existence of
state space partitions that demonstrate the absence of drift towards infinity along the 4
infinite dimensions.

44

We start by pointing out that the CTMC obtained from equations (A.1) is 9-
dimensional. We denote its states:

s ≡ (DA, DA, DR, DR,MA, A,MR, R, C) ∈ S ⊆ N9

where symbolic names (e.g. DA, DR, . . .) represent the population of the corre-
sponding species. Given the state space S, a state s ∈ S and a symbolic name
X ∈ {DA, DA, DR, DR,MA, A,MR, R, C} we introduce the following notation:

• s(X) represents the population of species X in state s

• s[↑ X] (resp. s[↓ X]) denotes the state obtained from s by incre-
menting (resp. decrementing) the X component of one unit. For
example, given s ≡ (DA, DA, DR, DR,MA, A,MR, R, C) then s[↑
A] ≡ (DA, DA, DR, DR,MA, A + 1,MR, R, C) and s[↓ A] ≡
(DA, DA, DR, DR,MA, A− 1,MR, R, C).

Initial state. The initial state is s0 = (DA, DA, DR, DR,MA, A,MR, R, C) =
(1, 0, 1, 0, 0, 0, 0, 0, 0), meaning that initially the gene for protein A and that for
protein R are in the inactive state, and all other components are “empty”.

Invariants. For any state of the Circadian clock CTMC the following invariants hold:

DA +DA = 1

DR +DR = 1.
(A.2)

This is to say that the systems account for one copy of gene A and one of gene R
and that each gene can only always be in either of two states: inactive (DA, DR) or
activated (DA, DR). The invariants (A.2) are a straightforward consequence of:

• the initial state of the system which is: DA =DR = 1 and DA =DR = 0 (while
all other species are initially 0).

• the reactions that involve species DA, DA, i.e., R1, R2, R5, R6

• the reactions that involve DR, DR, i.e., R3, R4, R7, R8

In fact reactions R6 (resp. R5) let DA (resp. DA) unvaried while R1 transform DA

intoDA (by means of a molecule ofA) but it is counterbalanced by the reverse reaction
R2. Similarly reactions R8 (resp. R7) let DR (resp. DR) unvaried while R3 transform
DR into DR (by means of a molecule of A) but it is counterbalanced by the reverse
reaction R4. As a consequence of the invariants (A.2) the domain for the first four
components of a state is constrained to the boolean values, hence the state space S of
the CTMC is bounded by:

S ⊆ {0, 1}4 × N5

45

Birth-death structure of the circadian clock CTMC. The circadian clock CTMC has
the structure of a multi-dimensional birth-death process along each of its unbounded
dimensions. In particular for each state s ∈ {0, 1}4 × N5 the following holds:

• birth-death of MA: a state-dependent rate transition s
max(DA·αA,DA·α′A)−−−−−−−−−−−−−→

s↑MA
exists as well as a transition with state-dependent rate s

MA·δMA−−−−−−→ s↓MA
.

• birth-death of MR: a state-dependent rate transition s
max(DR·αR,DR·α′R)−−−−−−−−−−−−−→

s↑MR
exists as well as a transition with state-dependent rate s

MR·δMR−−−−−−→ s↓MR

• birth-death of A: a state-dependent rate transition s
MA·βA−−−−−→ s↑A exists as well

as a state-dependent rate transition s MA·δA−−−−→ s↓A

• birth-death of R: a state-dependent rate transition s
MR·βR−−−−−→ s↑R exists as well

as a state-dependent rate transition s MR·δR−−−−→ s↓R

• birth-death of C: a state-dependent rate transition s A·R·δC−−−−−→ s↑C exists as well

as a state-dependent rate transition s C·δA−−−→ s↓C,↓A

s = (DA, DA, DR, DR,MA, A,MR, R, C) s["MA]

s["A]

s["R]

s[#A, #R, "C)

s[#A]

(MA+1)·�MA

(M
R
+
1)

·�M
R

M
R ·�

R

(A+
1)·�

A

(R
+
1
)·�

R

m
ax

(↵
R
,↵

0
R
)

max(↵A,↵0
a)

A
·R

·�
C

(C+1)·�A

MA
·�A

A·�A

M
R
!

1

MA!1

A ! 1

R
!

1

s["MR]

M
A ·�

A

C
+
m
a
x
(A

,
R
)

C

Figure A.14: Birth-death transitions along the unbounded dimensions of the circadian clock CTMC

46

Observe that because of invariant (A.2) the birth rate ofMA, respectivelyMR, are both
step functions with 2 possible constant levels, i.e., αA, α′A for MA and αR, α′R for
MR. Without loss of generality, in the ergodicity analysis we will replace the two-steps
birth rates with a single constant rate corresponding to the maximum between the two
possible rates (as in Figure A.14). Thus for reasoning about ergodicity we will consider

s
αmaxA−−−→ s[↑ MA] as constant rate birth transition for MA and s

αmaxR−−−→ s[↑ MR]
for MR (where αmaxA = max(αA, α

′
A) and αmaxR = max(αR, α

′
R))11. Figure A.14

illustrates the multi-dimensional birth-death structure of the circadian clock CTMC
along its 5 unbounded dimensions. Transitions with constant rate are depicted in red,
whereas those with state-dependent rates are depicted in blue. Furthermore note that
the transitions along the C dimension are depicted with thin lines to highlight the fact
that the “unboundedness” of C in only a consequence of that of A and R, hence is
“weaker” than that of A, R, MA and MR as the only transition yielding an increase of
C also decrease both A and R of one unit.

Irreducubility. Proving the irreducibility of the CTMC boils down to showing that
for any pair of generic states s1, s2 ∈ S s1

∗ s2 , i.e. s2 is reachable from s1 and
viceversa, s2

∗ s1. To prove this we adopt the following strategy:

c1. first we prove that S = {0, 1}4 × N5, that is, we show that from the initial
state s0 = (1, 0, 1, 0, 0, 0, 0, 0, 0)

∗ (DA, DA, DR, DR,MA, A,MR, R, C)
∀(DA, DA, DR, DR,MA, A,MR, R, C) ∈ {0, 1}4 × N5.

c2. Then we prove the opposite, that is, that
(DA, DA, DR, DR,MA, A,MR, R, C)

∗ s0,
∀(DA, DA, DR, DR,MA, A,MR, R, C) ∈ {0, 1}4 × N5.

The proof of c1 and c2 corresponds to showing that from the initial state it is al-
ways possible to perform a multidimensional random-walk leading to any state in
{0, 1}4 × N5 and that, because of the structure of the CTMC, such a random walk
can be decomposed in a sequence of mono-dimensional walks along each dimension
of the CTMC. We break down the proof of existence of a multi-dimensional random
walk in a number of auxiliary properties. In so doing we adopt the following notation:
s = (DA, DA, DR, DR,MA, A,MR, R, C) denote a generic state and s[X ′ ∼ X]
denote a generic state which is identical to s except with respect to the X dimen-
sion whose value satisfies the relationship X ′ ∼ X , with ∼∈ {<,>}. For example
s[M ′A <MA] denotes a state s′ which is identical to s except with respect to its MA

component for which s′(MA) < s(MA).

P1.a (inc MA) s ∗ s[M ′A > MA], ∀M ′A > MA. This is straight-
forwardly true since because of invariant (A.2) for any state s =

(DA, DA, DR, DR,MA, A,MR, R, C) then either s R5−−→ s[↑MA] or s R6−−→ s[↑
MA].

11Note that if we prove that such a faster divergent process is ergodic the actual process with the two-step
birth-rate is also ergodic.

47

P1.b (dec MA) s ∗ s[M ′A < MA], ∀M ′A < MA and given that
MA > 0. This is straightforwardly true since for any state s =

(DA, DA, DR, DR,MA, A,MR, R, C), if MA>0 then s R15−−→ s[↓MA].

P2.a (inc MR) s ∗ s[M ′R > MR], ∀M ′R ∈ N with M ′R > MR. This is
straightforwardly true since because of invariant (A.2) for any state s =

(DA, DA, DR, DR,MA, A,MR, R, C) then either s R7−−→ s[↑MR] or s R8−−→ s[↑
MR].

P2.b (dec MR) s ∗ s[M ′R < MR], ∀M ′R < MR and given that
MR > 0. This is straightforwardly true since for any state s =

(DA, DA, DR, DR,MA, A,MR, R, C), if MR>0 then s R16−−→ s[↓MR].

P3.a (inc A) s ∗ s[A′ > A] ∀A′ > A and given that MA > 0. This is straightfor-
wardly true since for any state s = (DA, DA, DR, DR,MA, A,MR, R, C), if

MA>0 then s R9−−→ s[↑A].

P4.a (inc R) s ∗ s[R′ > R] ∀R′ > R and given that MR > 0. This is straightfor-
wardly true since for any state s = (DA, DA, DR, DR,MA, A,MR, R, C), if

MR>0 then s R10−−→ s[↑R].

P5.a (inc C) s ∗ s[C ′ = C+m,A′ = A−m,R = R−m] given that A,R > 0
and m = min(A,R). This is straightforwardly true since for any state s =

(DA, DA, DR, DR,MA, A,MR, R, C), if A,R>0 then s R11−−→ s[↑C, ↓A, ↓R].

P5.b (dec C) s ∗ s[C ′<C,R>R] given that C > 0. This is straightforwardly true
since for any state s = (DA, DA, DR, DR,MA, A,MR, R, C), if C > 0 then

s
R12−−→ s[↓C, ↑R].

The proof of c1 and c2 follows by combination of the above properties. Thus
from the initial state s0 = (1, 0, 1, 0, 0, 0, 0, 0, 0) there exists a random walk
to any state (1, 0, 1, 0,MA, A,MR, R, C) (∀MA, A,MR, R, C ∈ N) which fol-
lows simply by composition of the Pi.a properties (the inc properties). Similarly
from any state (1, 0, 1, 0,MA, A,MR, R, C) there exists a random walk to s0 =
(1, 0, 1, 0, 0, 0, 0, 0, 0) which follows simply by composition of the Pi.b properties (the
dec properties). Finally note that the extensions of the above results to the entire set
{0, 1}4×N5 is a straightforward consequence since genesDA andDR can be activated
in any state s with S(A)>0, and once activated can always (autonomously) deactivate.

Drift towards the “centre” of the state-space. Having seen that the CTMC is irre-
ducible and has 5 unbounded dimensions, i.e., (MA, A,MR, R, C), we now demon-
strate that the chain consistently drift towards a finite region of the state space. To do
so we focus on an abstracted version of the CTMC where we only consider the five
unbounded species, hence we disregard the genes components DA, DA, DR and DR,
which we know being invariant. By disregarding the invariant components of the chain

48

we eliminate the reactions R1, R2, R3, R4 which regard the activation/deactivation
swapping of genes DA, DR and we subsume two pairs of reactions. R5 : DA

αA−→
MA + DA and R6 : DA

α′A−→ MA + DA are subsumed by R∗6 : ∅ α
max
A−→ MA repre-

senting the unconditional production of MA at constant rate αmaxA = max(αA, α
′
A).

Similarly R7 : DR
αR−→ MR + DR and R8 : DR

α′R−→ MR + DR are subsumed by

R∗8 : ∅ αmaxR−→ MA with αmaxR = max(αR, α
′
R). The resulting abstracted systems is

given by equations (A.3).

R∗6 :∅ α
max
A−→ MA R∗8 : ∅ α

max
R−→ MR R9 : MA

βA−→MA +A

R10 :MR
βR−→MR +R R11 : A+R

γC−→ C R12 : C
δA−→ R

R13 :A
δA−→ ∅ R14 : R

δR−→ ∅ R15 : MA

δMA−→ ∅

R16 :MR

δMR−→ ∅

(A.3)

We stress that demonstrating the lack of divergency for the abstracted CTMC
model (A.3) implies the lack of divergency also for the original CTMC (A.1).

To demonstrate that the abstracted CTMC model (A.3) do not drift towards infinity
(along any unbounded dimension) we need to find a partition through which the state
space is split in classes containing states at constant level of population (e.g. the class
of states for which MA = nA and MR = nR, etc). We then need to shown that, for
such partition, there exist “boundary classes” that is, we need to show that, along each
dimension, once reached a class representing a certain population level then the rate
for moving towards a higher population class is smaller than that for moving towards
lower population classes.

State-space partition. Let S ⊂ N5 be the state space of CTMC model (A.3). Let Γ =
{γ1, . . . , γi} be a set of atomic conditions referring to the species of the CTMC model,
with γi ≡ (Xi∼ni) ni ∈ N and ∼∈{<,≤,≥, >,=, 6=} or γi ≡ (fi(X1, . . . Xm)∼
ni) with fi() ≡ max(), or fi() ≡ min(). We denote S[Γ] the subset of S that fulfil
the conjunction of conditions in Γ (i.e. S[Γ] = {s ∈ S | ∧γi∈Γ(γi)}). Based on such
notation we determine the following subclasses of S:

• S[MA = nA,MR = nR]: the set of states s ∈ S such that the population of
MA is nA and that of MR is nR, with nA, nR ∈ N

• S[MA =nA,MR =nR,max(A,R)=n]: the set of states s ∈ S such that
the population of MA is nA, that of MR is nR and the maximum between the
population of A and R is n, with nA, nR, n ∈ N

It is straightforward to show that both of the above classes represent actual partitions
of S, that is:

• S = ∪(nA,nR)∈N2S[MA=nA,MR=nR] and all of S[MA=nA,MR=nR] are
pairwise disjoint.

49

• S = ∪(nA,nR,n)∈N3S[MA=nA,MR=nR,max(A,R)=n] and all of S[MA=
nA,MR=nR,max(A,R)=n] are pairwise disjoint.

Furthermore the two classes represent two partitions with different granularity. In fact
for a fixed (nA, nR) ∈ N2 the classes S[MA = nA,MR = nR,max(A,R) = n]
∀n ∈ N represent a partition of S[MA = nA,MR = nR], i.e., S[MA = nA,MR =
nR]=∪n∈NS[MA=nA,MR=nR,max(A,R)=n]

1,0,1,0

1,0,1,1

1,0,1,2

1,0,1,3

1,0,1,4

�A

�R�R

�R2�R

�R

�R

3�R

4�R

1,1,1,0

1,1,1,1

1,1,1,2

1,1,1,3

1,1,1,4

�R�R

�R2�R

�R

�R

3�R

4�R

�A

�A

�A

�A

�A

�A

�A

�A

�A

�A

1,2,1,0

1,2,1,1

1,2,1,2

1,2,1,3

1,2,1,4

�R�R

�R2�R

�R

�R

3�R

4�R

�A

�A

�A

�A

2�A

2�A

2�A

2�A

2�A

�A

1,3,1,0

1,3,1,1

1,3,1,2

1,3,1,3

1,3,1,4

�R�R

�R2�R

�R

�R

3�R

4�R

�A

�A

�A

�A

3�A

3�A

3�A

3�A

3�A

�A

1,4,1,0

1,4,1,1

1,4,1,2

1,4,1,3

1,4,1,4

�R�R

�R2�R

�R

�R

3�R

4�R

�A

�A

�A

�A

max(A,R)=0

max(A,R)=1

max(A,R)=2

max(A,R)=3

MA=MR=1

4�A

4�A

4�A

4�A

4�A

Figure A.15: Details of internal partition of a generic S[MA=nA,MR=nR] class, nA, nR∈N

Figure A.15 shows details of the internal partition of a generic class
S[MA = nA,MR = nR] with nA, nR ∈ N, highlighting subclasses
S[MA = nA,MR = nR,max(A,R) = n] for n ∈ N. Note that in Figure A.15
only the internal transitions of S[MA = nA,MR = nR] are drawn (for transitions
to/from S[MA = nA,MR = nR] and its neighbours classes see Figure A.17).
Concerning the internal transitions observe that each state of a generic subclass
S[max(A,R) = n] (n ∈ N) admits a single (constant rate) transition towards
S[max(A,R) = n+ 1] except the “corner” state, i.e., s = (nA, n, nR, n), which
has two outgoing transitions (with rate nAβA, respectively nRβR). Therefore from
s = (nA, n, nR, n) the actual rate for entering subclass S[max(A,R)=n+1] is given
by the sum nAβA+nRβR, i.e. the rate of the minimum between the two competing
transitions. From this observation we can devise an approximated chain (shown in
Figure A.16) which represents transitions between the subclasses S[max(A,R) = n]
of class [MA = nA,MR = nR]. Observe that such chain over approximates the
original chain (Figure A.15) since it assumes that transitions towards subclasses with

50

increasing n=max(A,R) have rate nAβA+nRβR, whereas from the actual graph in
Figure A.15 we know that only the “corner” state has rate nAβA+nRβR whereas all
remaining states happens with a slower rate (either nAβA or nRβR). Therefore if we
prove that the chain of Figure A.16 cannot diverge along the max(A,R) dimension,
then obviously also the original chain in Figure A.15 cannot.

nA�A+nR�R nA�A+nR�R

max(n�R,n�A)

max(A,R)=n

MA= nA,MR=nR

max(A,R)=0

max(�R,�A)

Figure A.16: Approximated transitions graph for internal subclasses of a generic class S[MA=nA,MR=
nR]

Drift toward the centre inside a class S[MA = nA,MR = nR]. Let us
consider the transition graph of Figure A.16. Transitions along the increasing
direction of max(A,R) happen at constant rate nRβR + nAβA whereas transi-
tions in the decreasing direction happens at a rate which depends on the subclass
S[max(A,R) = n], i.e. max(nδR, nδA). Therefore there exists k ∈ N such that
∀n > k, max(nRβR, nAβA) < max(nδR, nδA), which proves that the drift cannot
diverge towards infinity within each class S[MA=nA,MR=nR].

max(A,R)=0

max(A,R)=n

MA=n!,MR=nR

MA=nA,MR=nR+1

MA=nA+1,MR=nR

↵
max

R

nA,0,nR,0

nA,0,nR,n

nA,n,nR,n

nA,n,nR,0
nA+1,0,nR,0

nA+1,0,nR,n

nA+1,n,nR,n

nA+1,n,nR,0

nA,0,nR+1,0

nA,0,nR+1,n

nA,n,nR+1,n

nA,n,nR+1,0

(nR
+1)�

MR

(nR
+1)�M

R

↵
max

R

(n
R
+
1)
�M

R

↵
m
ax

R

(n
R
+
1)
�M

R

↵
m
ax

R

↵max
A

(nA+1)�MA

↵max
A

↵max
A

(nA+1)�MA

↵max
A

(nA+1)�MA

(nA+1)�MA

Figure A.17: Details of transitions between neighbours of a generic class S[MA=nA,MR=nR]

51

Drift toward the centre between different classes S[MA = nA,MR = nR]. We
now focus on the analysis of drift along the remaining two unbounded dimensions,
i.e., MA and MR. Observe that classes S[MA = nA,MR = nR] are connected by
two pairs of transitions: those representing the synthesis and degradation of mRNA
MA, resp. MR, that is, R∗6 and R15, respectively R∗8 and R16. Figure A.17 give
details of the transitions between a generic class S[MA = nA,MR = nR] and the
two “increasing” neighbours classes, i.e., S[MA = nA+1,MR = nR] and S[MA =
nA,MR=nR+1]. On the other hand Figure A.18 shows the complete transition graphs
between classes S[MA = nA,MR = nR] which is obtained directly by abstraction of
the actual graph in Figure A.17. Observe that transitions along the increasing direction
(i.e. of MA → ∞, MR → ∞) happen at constant rate αmaxA , resp. αmaxR , whereas
those in the decreasing directions have rate which depends on the MA (resp. MR)
population corresponding to the considered class. Therefore there exists kA, kR ∈ N
such that ∀nA > kA, nR > kR, αmaxA < nAδMA

and αmaxR < nRδMR
which proves

that the drift between classes S[MA = nA,MR = nR] cannot diverge towards infinity
along neither of the two unbounded dimensions MA and MR.

�

MA= 0,MR=0 MA= nA,MR=0

MA= 0,MR=nR MA= nA,MR=nR

↵max
A

�MA
nA�MA

↵max
A

↵max
A

�MA
nA�MA

↵max
A

↵max
R

nR�MR

�MR
↵max

R

↵max
R

nR�MR

�MR
↵max

R

Figure A.18: Transitions graph for classes S[MA=nA,MR=nR], with (nA, nR) ∈ N2

52

