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Abstract. This paper studies several formalisms to specify quantitative
properties of finite nested words (or equivalently finite unranked trees).
These can be used for XML documents or recursive programs: for in-
stance, counting how often a given entry occurs in an XML document,
or computing the memory required for a recursive program execution.
Our main interest is to translate these properties, as efficiently as possi-
ble, into an automaton, and to use this computational device to decide
problems related to the properties (e.g., emptiness, model checking, sim-
ulation) or to compute the value of a quantitative specification over a
given nested word. The specification formalisms are weighted regular ex-
pressions (with forward and backward moves following linear edges or
call-return edges), weighted first-order logic, and weighted temporal log-
ics. We introduce weighted automata walking in nested words, possibly
dropping/lifting (reusable) pebbles during the traversal. We prove that
the evaluation problem for such automata can be done very efficiently if
the number of pebble names is small, and we also consider the emptiness
problem.

1 Introduction

In this paper, we develop denotational formalisms to express quantitative prop-
erties of nested words. Nested words, introduced in [2], are strings equipped
with a binary nesting relation. Just like trees, they have been used as a model
of XML documents or recursive programs. Though nested words can indeed be
encoded in trees (and vice versa), they are often more convenient to work with,
e.g., in streaming applications, as they come with a linear order that is naturally
given by an XML document [13] or the program execution. Moreover, nested
words better reflect system runs of recursive programs where the nesting rela-
tion matches a procedure call with its corresponding return. There is indeed
a wide range of works that address logics and automata over nested words to
process XML documents or to model recursive programs e.g., [13, 1, 16].

Most previous approaches to nested words (or unranked trees) consider Bool-
ean properties: logical formulae are evaluated to either true or false, or to a set
of word positions if the formula at hand represents a unary query. Now, given
an XML document in terms of a nested word, one can imagine quantitative
properties that one would like to compute: What is the number of books of a
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certain author? Are there more fiction than non-fiction books? What is the total
number of entries? So, we would like to have flexible and versatile languages
allowing us to evaluate arithmetic expressions, possibly guarded by logical con-
ditions written in a standard language (e.g., first-order logic or XPath). To this
aim, we introduce (1) weighted regular expressions, which can indeed be seen
as a quantitative extension of XPath, (2) weighted first-order logic as already
studied in [5] over words, and (3) weighted nested word temporal logic in the
flavor of [1]. Their application is not restricted to XML documents, though. For
instance, when nested words model recursive function calls, these specification
languages can be used to quantify the call-depth of a given system run, i.e., the
maximal number of open calls.

Thus, when one considers expressiveness and algorithmic issues, a natural
question arises: Is there a robust automaton model to which it is possible to com-
pile specifications written in these languages? Our answer will be positive: we
actually obtain a Kleene-Schiitzenberger correspondence, stating the equivalence
of weighted regular expressions with a model of automaton. Not only do we ob-
tain this correspondence, but we also give complexity results concerning the size
of the automaton derived from a regular expression, and the time and space used
to construct it. We also prove that we can evaluate these automata efficiently
and that emptiness problem is decidable (in case the underlying weight struc-
ture has no zero divisors). Towards a suitable operational device, we consider
navigational automata with pebbles, for two reasons. First, weighted automata,
the classical quantitative extensions of finite automata [19], are not expressive
enough to encode powerful quantitative expressions, neither for words [7] nor for
nested words or trees [17,8]. Second, we are looking for a model that conforms
with common query languages for nested words or trees, such as XPath or equiv-
alent variants of first-order logic, aiming at a quantitative version of the latter
and a suitable algorithmic framework. Indeed, tree-walking automata form an
appropriate machine model for compiling XPath queries [3].

Contribution. In Section 3, we introduce weighted expressions with pebbles over
nested words, mixing navigational constructs and rational arithmetic expres-
sions. As an operational counterpart of weighted expressions, we then introduce
weighted automata with pebbles in Section 4, which can traverse a nested word
along nesting edges and direct successors in both directions, and occasionally
place reusable pebbles. In a sense, these are extensions of the tree-walking au-
tomata with invisible pebbles, introduced in [11], to the weighted setting and to
nested words. We extend results over words stated in [12], namely a Kleene-
Schiitzenberger theorem showing correspondence between weighted expressions
with pebbles and layered weighted automata with pebbles (i.e., those that can
only use a bounded number of pebbles). We also show how to efficiently compute
the value associated to a given nested word in a weighted automaton with peb-
bles, and prove decidability (not surprinsingly, with non-elementary complexity)
of the emptiness problem in case the underlying weight structure has no zero
divisor.



In order to allow more flexibility, we also discuss, in Section 5, logical quan-
titative formalisms like first-order logic and temporal logics, and show how to
compile them efficiently into weighted automata with pebbles.

This report is an extended version of [4].

2 Preliminaries

2.1 Nested Words

We fix a finite alphabet A. For n € N, we let [n] = {0,1,...,n — 1}. A nested
word over A is a pair W = (w,~) where w = ag---a,_1 € A" is a nonempty
string and ~ C ([n] x [n]) N < is a nesting relation: for all (i,7), (i',5') € r,
we have (1) ¢ = ¢ iff. j = j/, and (2) ¢ < ¢’ implies (j < ¢ or j > j'). We will
more often denote (i,5) € ~ as i~ j. Moreover, the inverse of relation ~ will
be denoted as v, so that i ~ j iff. j v i. For uniformity reasons, we denote as
1 — j the fact that j is the successor of 7, i.e., j = i+ 1. In case we want to stress
that ¢ is the predecessor of j, we rather denote it j<—i. The length n of W is
denoted |W|, and pos(W) = [n] is the set of positions of W. In order to ease
some definitions of the paper, a virtual position n can be added to the positions:
we will then denote pos(W) = [n] U {n} the extended set of positions.

Let T = {first, last, call, ret, int}. Each position ¢ € pos(W) in a nested word
W = (w,~) has a type 7(i) C T: first € 7(¢) iff. ¢ = 0; last € 7(¢) iff. i = |[W];
call € 7(¢) iff. there exists j such that ¢ ~ j; dually, ret € 7(¢) iff. there exists j
such that j ~i; finally, int € 7(i) iff. ¢ < |[W| and 7(i) N {call, ret} = 0.

o 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 1. A nested word

It is convenient to represent the pairs of the relation ~ pictorially by curved
lines which do not cross. Fig. 1 shows a nested word W = (w, ~) over A = {a, b}
of length |W| = 14. We have w = aabaaaabaababb and the nesting relation de-
fined by 13, 5~ 11, 6 ~ 8 and 12~ 13. Moreover, 7(0) = {first,int}, 7(13) =
{ret} and 7(14) = {last}. In the examples of this paper, we will consider the
call-depth c-d(j) of a position j € pos(WW), i.e., the number of contexts in which
position j lies. Formally, c-d(j) = [{({,k) | innk Ad < j < k}|. For example,
position 7 has call-depth 2, whereas position 6 has call-depth 1. The call-depth
of a nested word is the maximal call-depth among the positions: the call-depth
of W is here 2.



2.2 Weights

A semiring is a set S equipped with two binary internal operations denoted +
and x, and two neutral elements 0 and 1 such that (S,+,0) is a commutative
monoid, (S, x,1) is a monoid, x distributes over + and 0 x s = s x 0 = 0 for
every s € S. If the monoid (S, x,1) is commutative, the semiring itself is called
commutative.

A semiring S is complete if every family (s;);cr of elements of S over an
arbitrary index set [ is summable to some element in S denoted ), ;s; and
called sum of the family, such that the following conditions are satisfied:

= D icnSi =0, Zie{l} s; = 51 and Eie{l,Q} 8; = 81 + 89;
— if I =W,c; I is a partition, >, ; (Zielj i) = D ier Sis
- (Ziel 51) X (ZjeJ tj) = Z(i,j)e[x.](si X t;).
Intuitively, this means that it is possible to define infinite sums that extend the
binary addition and satisfies infinite versions of associativity and distributivity.
In a complete semiring, for every s € S, the element s* = ), s’ exists
(where s' is defined recursively by s = 1 and s*! = s x 5). We can easily prove
that s* =1+ ss*" =1+ s*sforall s €S.
Here are some examples of complete semirings.

— The Boolean semiring ({0,1},V, A,0,1) with > defined as a possibly infinite

disjunction.

(R>oU {00}, +, x,0,1) with > defined as usual for positive (not necessarily

convergent) series: in particular, s* = oo if s > 1 and s* = 1/(1 — s) if

0<s<1.

— (NU{oo},+, %,0,1) as a complete subsemiring of the previous one.

— (RU{—o0},min, +, —00,0) with > = inf and (R U {co}, max, +, 00, 0) with
> =sup.

— Complete lattices such as ([0, 1], min, max, 0, 1).

— The semiring of languages over an alphabet A: (247,U,-,0,{c}) with
defined as possibly infinite union.

In this paper, we consider continuous semirings which are complete semirings
in which infinite sums can be approximated by finite partial sums. Formally, a
complete semiring S is continuous if the relation < defined over S by a < b if
b = a + ¢ for some ¢ € S for every a,b € S is an order relation; and for every
family (s;)ier in S, the sum . _; s; is the least upper bound of the finite sums
> icy si for J C I finite.

All the above complete semirings are also continuous. See [9] for more dis-
cussions about semirings, especially continuous ones. Thereafter, S will denote
a continuous semiring.

icl

3 Weighted Regular Expressions with Pebbles

In this section, we introduce weighted regular expressions with pebbles. Like
classical regular expressions, their syntax employs operations + and -, as well as



a Kleene star. However, unlike in the Boolean setting, + and - will be interpreted
as sum and Cauchy product, respectively.

We introduce first these weighted regular expressions with an example. We
consider a nested word over the alphabet {a, b}. The classical regular expression
(a + b)*b(a + b)* checks that the given nested word contains an occurrence of
letter b. We will rather use the shortcut — to denote the non-guarded move to
the right encoded by the choice (a + b), and use a weighted semantics in the
semiring (NU {oo}, +, x,0,1): hence, expression —*b—* counts the number of
occurrences of letter b in the nested word. We now turn to the more complex
task of counting the total number of occurrences of the letter b inside a context
with a call position labelled a: more formally we want to sum over all possible
call positions labelled a, the number of occurrences of b that appear strictly in-
between this position and the matching return. For the nested word of Fig. 1,
we must count 4 (in particular, position 7 must count for both call positions 5
and 6). In our formalism, we will achieve this task using expression:

E = —*(a? Acall?) a! [ 2? ~ (ma? )T b7 =" =*.

First, we search for a call position labelled with a using expression —*(a? Acall?):
tests such as a? ot call? check the current position without moving. Then, we
mark, with x!—, the call position of the interesting context with a pebble named
2: this permits us to compute independently the subexpression between brackets
on the nested word, restarting from the first position. The latter subexpression
first searches for the pebble with —*z7, follows the call-return edge and then
moves backward inside the context with (—z? <-)T to pick non-deterministically
a position carrying letter b.

We turn to the formal syntax of our expressions. We let Peb = {z,y,...}
be an infinite set of pebble names. Weighted expressions are built upon simple
Boolean tests from a set Test. The syntax of these basic tests is given as follows:

az=a?|7m?|2? | alarhalaVa

where a € A, 7 € T and = € Peb. Thus, a test is a Boolean combination of
atomic checks allowing one to verify whether a given position in a nested word
has label a; whether it is the first or last position (which is useful since we deal
with 2-way expressions); whether it is a call, a return or an internal action;
or whether it carries a pebble with name x, respectively. Given a nested word
W = (ag---an-1,m), a position i € pos(W) and an assignment of free pebble
names given by a partial mapping o: Peb — pos(W), we denote W,i,0 = « if
test «v is verified over the given model: the semantics of atomic tests is defined
in Table 1, and the semantics of Boolean operators is defined as usual. Next, we
present weighted regular expressions.

Definition 1. The set pebWE of weighted expressions with pebbles from Peb
s given by the following grammar:

E:i=s|a|—=|+|~|~A|2lE|E4+E|E-E|ET



Table 1. Semantics of atomic tests in Test

W,i,oc Ea?ifi<|W|and a; =a
Wi,o =77 if 7 € 7(4)
W,i,o Ea?ifo(z) =1

Table 2. Semantics of pebWE

ifj=1 . 1 ifj=iAW,0,i Ea
W M/? Y =
[s1(W:,3,5) = {0 otherwise o] (W 0,3,7) {0 otherwise
1 ifid
[d)(W, 0,1, j) Widy (with d € {«—, =, ~,"})
0 otherwise
E)(W, 0,|W if j=i<|W
[AE|(W. 0.5, ) = {[[ ola i), 0,[W) it j =i < [W]
otherwise
[E-FIW,0,i,5) = Y [El(W,0,i,k) x [F](W,0,k,j)
kepos(W)
[E+ F] = [E] + [F] [E*Y] =) [E"]

n>0

where s € S, a € Test, and x € Peb.

We get the classical Kleene star as an abbreviation: E* ] 4 Bt It is also
convenient to introduce macros for “check-and-move”: a = a?-—. This allows us
to use common syntax such as (ab)*abc, or to write —*abba < first?—*baab —*
to identify words having both abba and baab as subwords.

A pebWE is interpreted over a nested word W with a marked initial position ¢
and a marked final position j (as is the case in rational expressions or path
expressions from XPath) and an assignment of free pebbles (as is the case in
logics with free variables), given as a partial mapping o: Peb — pos(W). The
atomic expressions —, <, M, v have their natural interpretation as a binary
relation R and are evaluated 1 or 0 depending on whether or not (i,5) € R.
On the contrary, formulae s, «, x!FE are non-progressing and require ¢ = j. In
particular, x!E evaluates F in W with the current position marked with pebble
x. The formal semantics of pebWE is given in Table 2: notice that the semantics
of E*1 is well-defined since the semiring is complete. By default, ¢ and j are
the first and the last position of W, i.e., 0 and |W/|, so that we use [E](W,0)
as a shortcut for [E](W,0,0,|W]|). In the following, we call pebble-depth of an
expression in pebWE its maximal number of nested z!E operators.

Ezample 2. Over (NU {—o0}, max, 4+, —00,0), consider the pebWE

E = ((Lcall? — —ret?) + (int? — —ret?) + ~ + (ret? — —\ret?))*a:?—>* .



Notice the use of 1 € N which is not the unit of the semiring. Moreover, oper-
ations + are resolved by the max operator, whereas concatenation implies the
use of addition in N U {—oc}. For every nested word W, and every position
i € pos(W), [E](W, [z +— 1i]) computes the call-depth of position i: indeed the
first Kleene star is unambiguous, meaning that only one path starting from po-
sition 0 will lead to x in this iteration; along this path — the shortest one — we
only count the number of times we enter inside the context of a call position.
Hence, the call-depth of W can be computed with expression £/ = —*(z!E)—*.

4 Weighted Automata with Pebbles

We define an automaton that walks in a nested word W. Whether a transition
is applicable depends on the current control state and the current position 4
in W, i.e., its letter and type 7(7). A transition then either moves to a succes-
sor/predecessor position (following the linear order or the nesting relation), or
drops/lifts a pebble whose name is taken from Peb. The effect of a transition is
described by a move from the set Move = {—, <, ~, T} U{l, | z € Peb}.

Definition 3. A pebble weighted automaton (or shortly pebWA) is a tuple
A= (Q,A 1,46T) where Q is a finite set of states, A is the input alphabet,
I € S@ is the vector of initial weights, T € S® is the vector of final weights, and
§: Q x Test x Move x Q — S is a transition function with finite support!.

Informally, I assigns to any state ¢ € ) the weight I, of entering a run in g.
Similarly, T determines the exit weight T, at ¢. Finally, 6(p, o, m, ¢), determines
the weight of going from state p to state ¢ depending on the move m € Move
and on the outcome of a test a € Test. The set Peb(A) of pebble names of A is
defined to be the set of pebble names that appear either in drop transitions |,
or in tests z? of A.

Let us turn to the formal semantics of a pebWA A = (Q, A,1,6,T). A run
is described as a sequence of configurations of A. A configuration is a tuple
(W,0,q,7,1). Here, W is the nested word at hand, o: Peb — pos(W) is a val-
uation, ¢ € @ indicates the current state, ¢ € pos(W) the current position, and
7w € (Peb x pos(W))*. The valuation o indicates the position of free pebbles,
which may be tested using z7 even before being dropped with |,. It can be
omitted when there are no free pebbles. The string m may be interpreted as the
contents of a stack (its top being the rightmost symbol of 7) that keeps track of
the positions where pebbles have been dropped, and in which order. Pebbles are
reusable (or invisible as introduced in [11]): this means that we may use several
pebbles having a same name from Peb. If several pebbles with name x have been
dropped, only the last dropped is wvisible in the configuration. However, when
the latter will be lifted, the previous occurrence of pebble x will become visible
again. Formally, this means that a pebble name can occur at several places in
7, but only its topmost occurrence is visible. Having this in mind, we define,

! The support of § is the set of tuples (g, , m,q’) such that §(q, o, m, q’) # 0.



given o and 7, a new valuation o : Peb — pos(W) by 0. = o and 0, 5 (x) = 1,
O (x,i) (y) = Uﬂ'(y) if Y ?é €Z.

Any two configurations with fixed W and o give rise to a concrete transition
(W,o,p,m,i) ~ (W,0,q,7, 7). Tts weight is defined by

Z S(p,a,d,q) ifn’ ==
a€Test,de{—,«,~, "}
W,or,iEa Aidj
> g ifj=0i<|W|and 7’ =n(x,i)
a€Test|W,o,i=a

Z 5(p,a,t,q) if m=x'(y,j) for some y € Peb
a€Test|W,o,il=a

and 0, otherwise. In particular, this implies that a pebble cannot be dropped on
position |W| in agreement with the convention adopted for weighted expressions.

A run of A is a sequence of consecutive transitions. Its weight is the product
of transition weights, multiplied from left to right. We are interested in runs that
start at some position ¢, in state p, and end in some configuration with position
j and state g. So, let [ A, ](W,0,i,7) be defined as the sum of the weights
of all runs from (W, o,p,¢€,i) to (W,0,q,¢,7). Since the semiring is continuous,
[Ap. ](W, 0,i,7) is well defined.

The semantics of A wrt. the nested word W and the initial assignment o
includes the initial and terminal weights, and we let

[AI(W,0) = > I, x [Ap (W, 0,0,[W]) x

P,q€EQ

In order to evaluate automata, or prove some expressiveness results, we con-
sider the natural subclass of pebWA that cannot drop an unbounded number
of pebbles. We will hence identify K-layered automata, for K > 0, where a
state contains information about the number n € {0, ..., K} of currently avail-
able pebbles. Formally, a pebWA A = (Q, A, I, M,T) is K-layered if there is a
mapping ¢: @ — {0,..., K} satisfying, for all p,q € Q,

— if I; # 0 or T, # 0 then 4(q) = K;

— if there is a € Test and d € {«,—,~,\} such that d(p,«,d,q) # 0 then
U(q) = 4(p);

— if there is a € Test such that §(p, a, T, q) # 0 then £(q) = {(p) + 1

— if there is a € Test and z € Peb such that d(p, o, ),,q) # 0 then ¢(q) =
t(p) — 1.

Fig. 2 schematizes a 2-layered pebWA.

Ezxample 4. We depict in Fig. 3 a pebWA which computes the call-depth of a
nested word: it has the same semantics as expression E’ of Example 2. Notice
that this automaton is 1-layered.



— ~ —
Layer 2: { - ~ - }
1 L 1 L

~ — —
Layer 1: { - - ~ }
il o T 1.

— — ~
Layer 0: { }
A — —

Fig. 2. A 2-layered pebWA

T,—,0 T,—,0

int?, —,0
call?, —,1

—ret? Az?,—,0

x?,—,0

Fig. 3. A pebWA computing the call-depth

4.1 Kleene Theorem

We now extend the Kleene theorem to our setting. In order to express the com-
plexity of the construction, we define the literal-length ¢¢(E) of an expression as
the number of occurrences of moves in {—, <, ~, v} plus twice the number of
occurrences of ! (in a!—).

Theorem 5. For each pebWE E, we can construct a layered pebWA A(E)
equivalent to E, i.e., for all nested words W and for all assignments o we
have: [A(E)|(W, o) = [E](W,o). Moreover, the number of layers in A(E) is
the pebble-depth of E, and its number of states is 1+ LL(E). Conversely, for each
layered pebWA we can construct an equivalent pebWE.

Such extensions of Kleene’s theorem have been proved for various weighted
models. In [18], Sakarovitch gives a survey about different constructions estab-
lishing Schiitzenberger’s theorem, namely Kleene’s theorem for weighted one-way
automata over finite words. An efficient algorithm constructing an automaton
from an expression uses standard automata (which has as variants Berry-Sethi
algorithm, or Glushkov algorithm). In [12], we extended this algorithm to deal
with pebbles and two-way navigation in (classical) words. It is not difficult —
and not surprising — to see that this extension holds in the context of nested
words too. For the converse translation, weighted versions of the state elimination



method of Brzozowski-McCluskey, or the procedure of McNaughton-Yamada can
easily be applied to our two-way/pebble setting as previously stated in [12] over
(non-nested) words.

4.2 Evaluation

We now study the evaluation problem of a K-layered pebWA A: given a nested
word W over A and a valuation o: Peb — pos(W), compute [A](W, o). The
problem is non-trivial since, even if the nested word is fixed, the number of
accepting runs may be infinite.

Our evaluation algorithm requires the computation of the matrix N* given
a square matrix N € S™*". By definition, N* is defined as the infinite sum
Yoo N k_which is well defined since the semiring is continuous, but may seem
difficult to compute. However, using Conway’s decomposition of the star of a
matrix (see [6] for more details), we can compute N* with O(n) scalar star
operations and O(n?) scalar sum and product operations.

Theorem 6. Given a layered pebWA with p pebble names and a nested word W,
we can compute with O((p+1)|Q|3|W|PTY) scalar operations (sum, product, star)
the values [ A, 4|(W, o) for all states p,q € Q and valuations o: Peb — pos(W).

Proof. In the whole proof, we fix a nested word W = (w, ~). We follow the same
basic idea used to evaluate weighted automata over words, namely computing
matrices of weights for partial runs [12]. The 2-way navigation is resolved by com-
puting simultaneously matrices of weights of the back and forth loops, whereas
we deal with layers inductively. Finally, we deal with call-return edges by using
a hierarchical order based on the call-depth to compute the different matrices.
Hence, for every position j € pos(W) we consider the pair (start(j),end(j)) of
start and end positions as follows

start(j) = min{i € pos(W) |i < jAVE i<k <j = c-d(k) > c-d(j)}
end(j) = max{i € pos(W) | j <iAVk j<k<i = c-d(k)>cd()}

For positions of call-depth 0, the start position is 0 whereas the end position is
|W|. For positions of call-depth at least 1 (see Fig. 4), the start position is the
linear successor of the closest call in the past such that its matched return is
after position j, whereas its end position is the linear predecessor of this return
position.

Let A= (Q,A,I,M,T) be a K-layered pebWA. For k < K, we let Q¥ =
(71(k) be the set of states in layer k. For every layer k € {0,..., K} and every
states p,q € Q®) we denote by Bc(,]fg,q the sum of weights of the runs from con-
figuration (W, o, p,¢e,0) to configuration (W, o, q,e,|W]|): observe that the stack
of pebbles is empty at the beginning of these runs, hence they stay in layers
k,k—1,...,0. Notice that B((,]f}z,q = [A, (](W, o). In the following, these coeffi-
cients (and others that will be defined later) will be grouped into matrices: for

10



start(i end (i start(7)

) i (4) i
P P
) Bei
B;A E ; U
q P
P BGi
B’ E U
q q

Fig. 4. Representation of the four types of matrices

end (7)

example, we denote by ng) the (Q(k) x Q™))-matrix containing all coefficients
k
(B‘(T»T)’»q)p,qEQ“")'

Fix a layer k € {0,..., K} of the automaton. Suppose by induction that we
have already computed matrices Bt(,kfl) for every valuation o : Peb — pos(W).
For a valuation o : Peb — pos(W), the matrix B will be obtained by the
computation of four types of matrices for every position (see Fig. 4). For exam-
ple, Bf,_fp’q (resp. Bf,?pyq) is the sum of weights of the runs from configuration
(W,0,p,¢e,i) to (W,0,q,¢,end(i)) (resp. (W, 0,q,¢e,4)) with intermediary config-
urations of the form (W, 0,7, 7, ) with 7 # € or i < j < end(¢). These runs are
those which stay on the right of their starting position in positions with (at least)
deeper call-depth (except when they drop pebbles, where then the automaton
can read the whole nested word) stopping at the corresponding end position
(resp. their starting position).

We compute these four types of matrices for every position i by decreasing
value of call-depth. Suppose this has been done for every position of call-depth
greater than d. We describe how to compute matrices B~ and Bf,p for every
position i of call-depth d, by decreasing values of i. 2 Similarly, matrices B5™*
and Bg can be computed by increasing values of positions ¢ having call-depth
d.

We let M(‘f’i the matrix with p, g-coefficient ZaeTesth’U,i':a d(p, o, d, q) for
d € {+,—,~,}: this coefficient denotes the weight of taking a transition
with move d from state p to state ¢ on position ¢ with current valuation o. We
similarly define matrices for drop, denoted Mij, and lift moves: without loss of
generality, we assume that lift moves only occur on position |W|, so that it may
be denoted as M for any (useless) valuation o.

There are four distinct cases:

If i = end(7): The only way to loop on the right of 4, staying on the left of
end(7) = i is to drop a pebble a certain number of times. We introduce a
macro for the drop-lift sequences: N, ; = 0 if k = 0 since no pebble may still

2 These positions can be partitioned according to their associated start and end posi-
tions, and computed independently if wanted.
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be dropped, and for £ > 0 we let

Nei= Y M“xB(’“ Do Mt

olxri]
xE€Peb

Then, we have (notice that the star of the null matrix is the identity)
BY = (N,;)" =B,

If i < end(?) and i is not a call: Then, looping on the right of 7 either starts
by dropping of a pebble over i, or starts with a right move, followed by a
loop on the right of i + 1 and a left move. All of this may be iterated using
a star operation:

B = Ny + My x BV x ML, )

Moving to the right of position i, until end(z), can be decomposed as a loop
on the right of 4, followed by a right move (from that point, we will not reach
position ¢ anymore) and a run from ¢ + 1 to end(i 4+ 1) = end(4):

B = BI? x M’ x Bit'7 .

If i < end(i) and i ~i+ 1: The situation is very similar except that there are
two moves leading from i to i + 1 and two moves leading from ¢ + 1 to 4.

By = (Noi + (Mg, + Mgy) x By x (M + M) )
B = B x (M7, + MJ;) x BUH™~

If i < end(i) and i~ j with j # i+ 1: Looping on the right of ¢ consists of
either (1) dropping a pebble over i, or (2) looping on the right of ¢ without
ever reaching j, or (3) going to j, looping on j staying between positions i+1
and end(i), and going back to ¢ without reaching position j again. All of this
is again possibly iterated using a star operation. Notice that positions ¢ + 1
and j — 1 have a call-depth greater than d, hence their four types of matrices
have been computed previously. We have end(i) = end(j), end(i+1) = j—1
and start(j — 1) = i + 1. First we define a matrix for the runs going from
i to j, another one for those looping over j, and a last one for those going
from j to :

Goto-Return, ; = M + M, x BIf1™ x M(fj 1
Loop-Return,, ; (BN x M x B x M7, )"

Goto- Callaj =M+ M x BT x ME
Runs looping on the right of i are then computed by
B = [N, + M x BEFY s ME,

+ Goto-Return, ; x Loop-Return,, ; x Bib x Goto-Call, ;|*

]
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Finally, to go from ¢ to end(7), we split the runs considering the last time we
reach position ¢ and the last time we visit a position on the left of j:

B~ = B! x Goto-Return,; X Loop-Return,, ; x BJ ™.

If i = 0 then end (i) = |W| and we have B = B2~ . Hence, we have computed
the behavior of layer k.

To conclude this proof, it remains to count the number of matrix operations
(sum, product and star) in the whole computation and then infer the number of
scalar operations assuming standard algorithms on matrices (quadratic for sum,
cubic for product and cubic for star as noticed previously).

Fix a layer k. We denote by ny, the number of states in Q(*). For all valuations
o (there are |W|? such valuations), and all positions 0 < ¢ < |W/|, the matrices
B, Bi~ BSY, Bf % must be computed. When k = 0, the total number of
matrix operations (sum, product, star) is O(|]W|° x |W|), which corresponds to
O(nd x |W|PT1) scalar operations. For k > 0, the computation of N, ; takes
O(p(ngni_, + ngng_1nk)) scalar sum and products for each o and i. Hence,
the total number of scalar operations for computing all matrices Bi?, Bi~ BS,
B of layer k is now O(p(ngni_; + ning—1 + n3)|[W|PT).

Summing over all k¥ < K, we get a total number of O((p + 1)|Q|?>|W|°*1)
scalar operations since n3 + Y v, ngn2_, +ning_1 +n3 < |QJ. O

Notice that if the nested word is in fact a word, our algorithm only needs
to compute the two sets of matrices BL and Bf,D with a backward visit of the
positions of the word. This is indeed a different algorithm than the one presented
in [12] where the positions are visited in a forward manner.

4.3 Decidability of Emptiness

Classical decision problems over finite state automata have natural counterparts
in the weighted setting. For example, the emptiness problem takes as input a
pebWA A, and asks whether there exists a nested word W such that [A](W) # 0.

Theorem 7. The emptiness problem is decidable, with non-elementary complex-
ity, for layered pebWA over a continuous semiring S with no zero divisor, i.e.,
such that s X s =0 implies s =0 or s’ = 0.

Proof. Let A be a pebWA and S be a continuous semiring with no zero divisor.
The crucial fact is that the support of A, i.e., the set of nested words W such
that JA]J(W) # 0 is recognizable by a pebWA B over the Boolean semiring.
Indeed, B is obtained from A by replacing nonzero weights by 1, i.e., keeping
only transitions with nonzero weights and then ignoring weights. The correctness
follows from the fact that in a continuous semiring, 0 =  ,_; s; implies s; = 0
for all ¢ € I. Hence, [A](W) # 0 if and only if there is an accepting run of A
on W whose weight is nonzero. Since S has no zero divisor, this is equivalent to
the existence of an accepting run of B on W. Hence, the emptiness problem for
A reduces to the emptiness problem for B.
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1 fWokEe

0 otherwise

[s)(W,0) = s [el(W, o) = {
[+ ] = [®] + [¥] .2l W)= > [2)(W, o[z ul)

u€pos(W)

[® x ¥] = [#] x [¥] [[L2]W,e)= ] [#1(W ol ul)

u€epos(W)

Table 3. Semantics of wFO

It should be no surprise that the emptiness problem for Boolean layered peb-
ble automata over nested words is decidable. Indeed, mimicking the proof of [10],
we may build from a Boolean layered pebble automaton B over nested words
an equivalent MSO formula, for which decidability of satisfiability is known.
Alternatively, we may use the fact that nested words can be encoded in trees
and construct from a Boolean layered pebble automaton over nested words an
equivalent pebble tree walking automaton, for which decidability of emptiness
is known by [10]. O

5 Weighted Logical Specifications over Nested Words

5.1 Weighted First-Order Logic

We fix an infinite supply of first-order variables V = {z,y,...}. We suppose
known the fragment of (Boolean) first-order formulae, denoted as FO, over nested
words, defined by the grammar

=T | P(x) |z <ylzny|-pw|leVe|pAp|Tze| Ve

where a € A and z,y € V.

The weighted extension is based on sums and products as for FO with count-
ing (see [15], e.g.). The class of weighted first-order formulae, denoted as wFO,
and first introduced by authors of [7], is defined by:

Pu=5|p|P+P|PxD|> P[P

where s € S, ¢ € FO, and x € V.

The semantics of a wFO formula is a map from nested words to the semiring.
For the inductive definition, we need to consider formulae with free variables.
So let @ € wFO. Then, [®] maps to a value in S each pair (W, o) where W is a
nested word and o : V' — pos(W) is a valuation of a subset V' C V containing the
free variables of @. The inductive definition is given in Table 3. It is possible to
define a quantitative implication: given ¢ € FO and & € wFO, we let ¢ £ ¢
be a macro for the formula —¢ 4 ¢ x @. Then, its semantics coincides with the
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O 8 8 A last? 8 first? A

Fig. 5. Automata for = =sand =& =& x ¥

semantics of @ if ¢ holds, and its semantics is 1 (the unit of the semiring) if ¢
does not hold.

Ezample 8. In the semiring of natural numbers, the formula 3 (z <y A Pu(y))
computes the number of a’s after the position of variable x in the nested word.
In a probabilistic setting, the formula &(z) = [], (y<az = 1/2) maps
a position i to (1/2)""1, hence defining a geometric probability subdistribution
over the positions of the nested word. We can then compute the expectation of
a formula ¥(z) by the formula > &(z) x ¥(x).
Finally, in the (R, max, +, 00,0) semiring, the formula

any[(ﬂz (ynzhy<az<z) = 1]

computes the call-depth of a nested word, as it was already presented for expres-
sions and automata in Examples 2 and 4. Notice again that in the (R, max, +, 0o, 0)
semiring, sum stands for max, product for 4, and the unit of the semiring is 0.

Theorem 9. Let & € wFO be a formula and V. C V be a finite set con-
taining the wvariables occurring in @ (free or bound). We can effectively con-
struct an equivalent layered pebWA A? with O(|®|) states and set V of peb-
ble names: [AT](W,0) = [®](W,0) for every nested word W and valuation
o:V — pos(W).

Proof. This is achieved by structural induction on the formula. We deal with
Boolean formulae below. For = = s € S, the automaton is given on the left of
Fig. 5. For the sum = = @ + ¥, we use a non-deterministic choice as usual. For
the product = = & x ¥, the construction is described on the right of Fig. 5: the
automaton first performs the computation of formula @, that must end in the
last position of the nested word?, before resetting the position to the first one,
and then performs the computation of formula V.

Constructions for = = 3> & and = = [[ P are schematized in Fig. 6. The
idea is to use a pebble of name z that we drop — either using a non-deterministic

3 This is checked by using a transition labelled by last?. Formally, this kind of tran-
sitions, which are not performing actions, is not allowed in our model of automata,
however, we may easily transform these only-testing transitions by making them
perform a little back-and-forth move around their position. For the current last?
transition, it is even sufficient to make it move to the left using action <, as this
clearly does not change the overall semantics of the automaton.
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choice, or systematically other all positions — before performing the computa-
tion of formula @ using the automaton A® obtained by induction. Notice that
automaton A® has z as a free pebble name, as 2 may be checked in its first
layer, before being possibly dropped again.

_>
®
@,

Fig. 6. Automata for ) & and [] &

We explain now the construction of pebWA for Boolean formulae. The values
computed by such automata should be in {0,1} so we cannot freely use non-
determinism. Also, to achieve the complexity stated in the theorem, we cannot
use classical constructions yielding deterministic automata. Instead, we build
unambiguous automata. Hence, for every ¢ € FO and V' C V containing the
free variables of ¢, we construct a pebWA BY¥ having one initial state ¢ and
two (final) states ok and ko such that for all nested words W and valuations
o: V — pos(W), the quantitative semantics satisfies:

1 itWoEg

Bl oW, 0,0,[W|) =
[[ L,Ok]]( g | |) {O otheI‘Wise,

[BL)(W.0.0. W) = {‘f i
otherwise.

We obtain automaton A® by considering B¢ with ¢ (resp. ok) having initial
(resp. final) weight 1. To get an automaton for the negation of a formula, we
simply exchange states ok and ko. Automata for atoms P,(z) and z ~y are
given in Fig. 7 and the automaton for z < y is left to the reader.

last?

The construction for disjunction & = ¢ V ¥ is described above. It is similar
to the one used for the product: we start computing ¢ and stop if it is verified,
otherwise, we reset to the beginning of the nested word and check formula .
The construction for conjunction is obtained dually.
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—y?,—

z? A —call?, —

Fig. 7. Automata for P,(z), c~yand z <y

last?

Finally, the construction for existential quantification £ = 3z ¢ is described
above. During a run of this automaton, a pebble of name x is successively
dropped over each position of the nested word, in order to simulate automa-
ton BY¥ over every position. If such a run ends in state oke, it means that at
some position 7, formula ¢ has been positively verified over position i (the part
of the run in lower layer ended in state ok,). More precisely, as B¥ is unam-
biguous, in that case, all the runs of non-zero weight will end in state ok¢ after
dropping the pebble on position 7, henceforth computing the weight 1, meaning
that formula £ is verified. In the contrary, if no position verifies formula ¢, all the
runs will end in state ko, meaning that £ is not verified. Again, the construction
for universal quantification is dual. a

5.2 Weighted Temporal Logics

A temporal logic is usually based on modalities such as next and wuntil where
the until modality is a simple fixed point based on the next modality. When the
structures (the models) are not linear, one may follow different paths which are
in general based on elementary steps. For instance, in unranked trees, one may
move vertically down to a child or up to the father, or horizontally to the right or
left brother. Similarly, for nested words, several types of paths were introduced
in [1] yielding various until modalities, some of them will be discussed below.
Here, we adopt a generic definition of temporal logics where until modalities
are based on various elementary steps. Formally, an elementary step 7 is a regular

17



expression following the syntax:

nu=slal=l« [~ [aln+nln-nln

az=a? || alahNa|laVa (1)

with s €S, a € A and 7 € T. In some cases, elementary steps will naturally be
unambiguous, meaning that the quantitative semantics [n] as defined in Section 3
coincides with the Boolean semantics: [n](W,i,7) € {0,1} for all nested words
W and positions i, j € pos(W).

For instance, the (classical) linear until is based on the linear step n = —.
The summary-up until is based on the summary-up step o* defined as o% =
~ + —call? - — which may move directly from a call to the matching return,
or go to the successor, but cannot “enter” a call. The summary-down until is
based on the summary-down step defined as 0 = ~ + — - —ret?. Notice that
o? is unambiguous, even though a call position may have two successors. An
example of a non-unambiguous step, in the (NU{—o0}, max, +, —00, 0) semiring,
is Nea = (1call? — —ret?) + (int? — —ret?) + ~, aiming at following a path of
increasing call-depth, moreover computing 1 each time we enter inside a call.

The syntax of the weighted temporal logic wTL over nested words is defined
by

Pi=s|a|P+P|PxP|PSU" P

with s € S, « simple tests as defined in (1), and 7 elementary steps. Since a
(weighted) temporal logic formula has an implicit free variable, the quantitative
semantics [@](W,4) € S maps a nested word W and a position ¢ € pos(W) to a
value in the semiring. It is defined in Table 4.

This semantics may be computed in another way in case we only deal with
unambiguous steps. In that case, given a nested word W, we say that two posi-
tions i, € pos(W) form an n-step if [n](W,4,j) = 1. Moreover, an n-path is a
sequence ig, . .., i, € pos(W) such that (ix,ix+1) is an n-step for all 0 < k < n.
Then, [@ SU" &](W, i) may be computed by the formula

> ( 11 [@]](VVJI@)) x [P](W,iy,) -

1=10,%1,..-,inM-path ~0<k<n

As usual, we may use derived modalities such as the non strict until defined
by U1 = p+p x (9SUTY) and n-next defined by X" ¢ = 1. SU" . As special
cases, we get the linear next 1 SU™ ¢ and the jumping next X™ ¢ = L SU™ o.
We also get eventually with Fp = T U™ ¢, but notice that T SU™ ¢ = X ¢
since two consecutive ~-steps are not possible.

As a concrete example, the call-depth of a nested word can be computed
with the formula T SU”¢¢ T as explained previously. Interestingly, we may also
compute it with the unambiguous step o¢ with formula (1 x —ret? x X (call?) +
X (—call?) +ret? +first?) U’ T: the idea is rather to compute 1 once the step has
been performed, since we have a way to check if the previous step just entered
a call position.
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o 1 #Wika
[sI(W,i) = s [e](W>5) = {0 otherwise
[@+ ¥] = [®] + [¥] [¢ x ¥] = [?] x [¥]

[SUTTI(W,i) = ([[n]](w, io, i1) X

G=00,81 50 sin

IT (IIWsin,inga) x [[¢I](Wik))) X [P](Win) . (2)

0<k<n

Table 4. Semantics of wTL

Fig. 8. Automaton for = = & SU" ¥

Notice that the sum in (2) may be infinite for some step expressions such
as 7 = < + —. On the other hand, if a step expression only moves forward
(respectively, backward) then it defines a future (respectively, past) modality
and the sum in (2) is finite. The following theorem shows that wTL formulae
can be translated into equivalent layered pebWA.

Theorem 10. For each wTL formula @ we can effectively construct an equiv-
alent layered pebWA A? with a single pebble name z and O(|®|) states: for all
nested words W and positions i € pos(W) we have [A|(W,z + i) = [®](W,1).

Proof. We proceed by structural induction over the formula . Automata for
formula s and « are identical to those used in Theorem 9. Moreover, construc-
tions of Theorem 9 for the sum @ 4+ ¥ and the product @ x ¥ work again in the
case of temporal logics.

We detail the construction for SU” where 7 is a step expression. Using The-
orem 5, from the pebWE 7 we obtain an equivalent pebWA C": [C"](W, 4, ) =
[nl(W,i,7) for all nested words W and positions 7, j € pos(W).

Consider the wTL formula = = @ SU" ¥ and assume we have already con-
structed the pebWA A? and AY. The pebWA A= is given in Fig. 8. Observe
that we have added one layer and a constant number of states. The automaton
starts by searching for pebble x, and then it enters in a loop. At every iteration,
it enters in automaton C" to follow the step 1 and reach the next position. When
exiting C" (having computed the weight [n] (W, 1, 7)), it chooses between two op-
tions: either it drops pebble z (overwriting the previous pebble x) and compute
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formula @ on the current position before lifting the pebble and continuing to
the next iteration, or it decides that formula ¥ must now be checked, using a
similar technique. In the overall, resolving the non-determinism by a sum in the
semiring, the automaton computes exactly the semantics given in (2). a

Notice that we can extend the wTL in several ways. One option could be to
allow arbitrary Boolean temporal formulae instead of simple (pebble-free) tests
a. A more strict requirement over steps 7 should then be designed in order to
be able to compute such Boolean temporal formulae with weighted automata, in
the same way Boolean first-order formulae have been translated in Theorem 9.

6 Conclusion and Perspectives

We have presented a general framework to specify quantitative properties of
nested words, and compile them into automata.

Several improvements can be considered. First, concerning our procedure for
evaluation, [12] also presented an improved algorithm in the strongly layered
case, namely when at every layer, only one pebble name can be dropped. We
did not consider this case in this paper for lack of space, but we believe it can
be adapted in the nested word case, and leave it for future work. Second, we
would like to extend the decidability of emptiness in the general case, where the
semiring may have zero divisors.

Finally, notice that, contrary to [1], wFO is strictly less expressive than our
temporal logics. This is due to the power of n steps, which gives to wTL a
flavor of weighted transitive closure (see [5]), and of regular LTL [14]. As other
directions of research, we would like to study this transitive closure operator in
order to find a logical fragment expressively equivalent to pebWA and pebWE.
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