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Abstract—Statistical model-checking is an alternative veri-
fication technique applied on stochastic systems whose size is
beyond numerical analysis ability. Given a model (most often a
Markov chain) and a formula, it provides a confidence interval
for the probability that the model satisfies the formula. In a
previous contribution, we have overtaken the main limitation
of the statistical approach, i.e. the computation time explosion
associated with the evaluation of very small probabilities. This
method was valid only for the standard “Until” of temporal
logics. We establish a similar validity condition which applies
to the “Bounded Until”, using more elaborate arguments. We
also address the problem of additional memory requirements
necessary to apply the method and we design several algorithms
depending on the intended trade-off between time and memory.
The corresponding algorithms have been implemented in our
tool COSMOS. We present experimentations on several relevant
systems, with drastic time reductions w.r.t. standard statistical
model checking.

Keywords-statistical model checking, rare events, importance
sampling, time-bounded until

I. INTRODUCTION

Probabilistic systems. Probabilistic systems have been in-
tensively introduced and studied as they are used in a broad
range of domains from analysing communication protocols
to biological systems. They can model inherent random
behaviour (e.g. an algorithm tossing a coin) as well as partial
information (e.g. an open system whose probabilities are
related to the uncertainity of the environment behaviour).
From performance evaluation to model checking. Model
checking temporal formulas is a natural way to verify prop-
erties of a system behaviour [1]. Thanks to it algorithmic
simplicity, it has been successfully implemented in a variety
of tools. The system is described as a formal model and
required properties are expressed by some temporal logic.
Although a method initially dedicated to discrete event
systems, it has been adapted both to timed systems [2] (e.g.
modelled by timed automata) and stochastic ones [3] (e.g.
modelled by Markov chains). For instance, in a vehicular
system one would verify that “the delay between a shock
and the airbag deploying is less than 10−2 s”. Similarly
if the system is prone to random perturbations, a relevant
property could be “the probability that the airbag does not
deploy after a shock is at most 10−6”.
Statistical model checking. Analysis of probabilistic sys-
tems may be undertaken using numerical or statistical
techniques. Numerical methods give exact results (up to

numerical approximations) but are subject to state explosion
which significantly restricts the class of analysable systems
(manageable size, Markov properties, etc.). Instead, for big-
ger systems, statistical method may be used. By simulating
a big sample of trajectories of the system and computing
the ratio of these trajectories that satisfy a given property, it
produces a probabilistic framing of the expected value. To
generate the sample we only need to have an operational
stochastic semantic of the system. This usually requires a
very small state space compared to the numerical method
and allows to deal with huge models [4].
Rare events. The main drawback of the statistical model
checking is its inefficiency in dealing with very small
probabilities. The size of the sample of simulations required
to estimate these small probabilities exceeds achievable ca-
pacities. This difficulty is known as the rare event problem.
Several methods have been developed to cope with this prob-
lem whose main one is importance sampling. Importance
sampling consists in modifying the model and in substituting
to the indicator random variable related to the satisfaction
of the formula, another variable with same mean and, in the
favorable cases, reduced variance. Most of the techniques
related to importance sampling are based on heuristics and
cannot provide any confidence interval for the estimated
probability. In [5], we proposed an efficient method based
on importance sampling to estimate in a reliable way (the
first one with a true, and not an approximate, confidence
interval) the very small probability of a standard “Until“
property (aUb) using coupling theory and we applied it on
a large variety of case studies, modelled by discrete time
Markov chains (DTMC).
Our contribution. The standard unbounded “Until“ is suffi-
cient to express logical properties on a probabilistic system
but does not allow to handle the random nature of delays as
in the requirement “the probability that the delay between
a shock and the airbag deploying is more than 10−2 s is at
most 10−6”. So here more generally, we handle the evalu-
ation of a tiny probability associated with a “time-bounded
until” formula in a DTMC. Extending our previous method,
we propose a specific theoretical framework in order to
perform an efficient importance sampling that guarantees a
confidence interval in this context. Managing the time bound
in our framework has required more elaborate technics both
for proving its soundness and designing efficient algorithms.
On the one hand, the soundness is established by a careful



study of the recursive equations defining the time-bounded
until. On the other hand, since importance sampling now
depends on the current time of the execution, it yields a
space explosion when the horizon (i.e the upper bound of
the interval) is far. This requires a trade-off between space
and time for which we provide three different solutions
depending on the reduction of the memory requirements.
We implemented our method with the three options in the
statistical model checker COSMOS [6]. We tested our tool on
a classical relevant model getting impressive time or memory
reductions.
Organisation. In section II, we motivate this work and we
give a state of the art related to rare event handling. Then we
develop our method in section III. Afterwards we present and
discuss experimentation in section IV. Finally in section V,
we conclude and give some perspectives to this work.

II. MOTIVATION AND STATE OF THE ART

Temporal logics for probabilistic systems include both the
qualitative and quantitative aspects of the systems. They
make possible to evaluate the probability that a random
path fulfills some property (in CSL [7]). In a more general
setting, they allow to estimate the conditional expectation of
a path random variable whose condition is the satisfaction
of some property by the random path (in HASL [6]).

Model checking of “timed-bounded until” formulas has
been studied and used to express relevant properties of
numerous modelings since the founding introduction of
logic PCTL [8]. Theoretical analysis and specific studies are
essential because of the exponentially increasing complexity
in terms of the horizon of such a property.

Basically, there are two approaches to perform model
checking of these logics: numerical or statistical. The first
one builds the underlying stochastic process of the model
and then computes probabilities or expectations using di-
rect or iterative methods. Such methods have been imple-
mented efficiently in tools like PRISM [9], LiQuor [10]
or MRMC [11]. These methods have two drawbacks. On
the one hand, they rely on strong assumptions about the
stochastic process that must be a Markov chain (see for
instance [7]) or at least a regenerative process (see for
instance [12]). On the other hand they suffer from the
combinatorial explosion of the size of the stochastic process
w.r.t. the size of the model.

Models with huge stochastic process are handled by statis-
tical model checking. The corresponding methods randomly
generate a (large) set of execution paths and check whether
the paths fulfill the formula. The result is a probabilistic esti-
mation of the satisfaction given by a confidence interval [13].
In principle, it only requires to maintain a current state (and
some numerical values in case of a non Markovian process).
Furthermore no regenerative assumption is required and it
is easier to parallelize the methods. Several tools include

statistical model checking: COSMOS [6], GREATSPN [14],
PRISM [9], UPPAAL [15], VESTA [16], YMER [17].

Model checking of probabilistic systems is particularly
important for events which have disastrous consequences
(loss of human life, financial ruin, etc.), but occur with very
small probability. Unfortunately statistical model checking
of rare events triggers a computation time explosion, forbid-
ding its use. To illustrate this point, suppose one wants to
estimate an unknown probability p = 10−13 and one chooses
to generate 1010 paths (which is already a large number) for
such an estimation. With probability larger than 0.999 the
result is 0, giving no information on the value of p. With
probability smaller than 0.001 the result will be greater or
equal than 10−10 which is a very crude estimation.

Thus acceleration techniques [18] have been introduced
to cope with this problem. The two main families of
methods are splitting and importance sampling. Splitting
methods [19] are by nature heuristics and model dependent.
Importance samplings methods [20] are more robust as they
possess an optimal result generally impossible to compute,
but allowing to design efficient heuristics for some classes
of models. The goal is to substitute to the Bernoulli random
variable corresponding to the occurrence of the rare event,
another one with same mean value (the probability of
event occurrence) but smaller variance. In Markov chains,
an optimal change of distribution exists leading to a zero
variance but it requires more information than the searched
value!

The modification of the distribution can be performed at
the model level (called static) or at the Markov chain level
(called dynamic). The static importance sampling requires
no additional memory but in general provides a smaller
reduction of variance than the dynamic importance sam-
pling. More precisely, it is proved in [21] that asymptotic
optimality (a weaker requirement than optimality) cannot
be obtained even for very simple classes of models by
static importance sampling. In full generality, the dynamic
importance sampling [22] requires to maintain a memory
whose size is proportional to the size of the Markov chain
which is exactly what one wants to avoid. To deal with
this problem, in [23] the authors develop the following
method: (1) the possible distributions belong to the convex
hull of a finite number of distributions, (2) the state space
is partitioned and (3) a distribution is selected for each
subset of this partition. They prove that for a simple class
of models their method is asymptotically optimal. Other
empirical approaches turn out to be efficient [24].

Summarizing, theoretical results (reduction of variance,
asymptotical optimality, etc.) have been obtained for impor-
tance sampling but does not provide any reliable confidence
interval 1 for the mean value since the distribution of the

1In contrast to the empirical confidence interval based on approximations
by the normal distribution.



modified random variable is unknown.
In [5], we proposed an efficient method based on im-

portance sampling to estimate the tiny probability of a
standard “Until” property (aUb). We constrained the im-
portance sampling method to be with guaranteed variance,
a property that ensures a true confidence interval framing
this probability under some conditions. We established a
theoretical framework based on coupling theory in which
only structural analysis is required to verify those hypothe-
ses. We implemented the whole method in our tool COSMOS

and applied it successfully on numerous examples. To our
knowledge, the more general case of model checking “time-
bounded until” formulas corresponding to rare events has
never been studied.

III. GENERAL APPROACH

A. Preliminaries

Markov Chains and Model Checking
Definition 1: A discrete time Markov chain (DTMC) C

is defined as a set of states S, an initial state s0, and a
transition probability matrix P of size S × S. The state
of the chain at time n is a random variable Xn defined
inductively by Pr(X0 = s0) = 1 and Pr(Xn+1 = s′ |
Xn = s,Xn−1 = sn−1, . . . , X0 = s0) = Pr(Xn+1 = s′ |
Xn = s) = P(s, s′).

For our purpose, we enrich the usual definition of Markov
chains with labels on transitions. When these labels are not
useful, we simply omit them.

Definition 2: An enriched discrete time Markov chain C
is defined by a set of states S, an initial state s0, a finite
set of events E, a successor function δ : S × E → S,
and a function p : S × E → [0; 1] with the property that
for all s ∈ S,

∑
e∈E p(s, e) = 1. We define the transition

probability matrix P of size S × S by:

∀s, s′ ∈ S, P(s, s′) =
∑

δ(s,e)=s′

p(s, e)

q

p1
s1

p2

s2

pn
sn

...
∼ q′

p′1
s1

p′2

s2

p′n sn

...

Two Markov
chains are
equivalent if
they have the
same set of states
S, respective
probability
distribution
matrices P, P′ and for all state s with q = P(s, s) ,
q′ = P′(s, s) we have the following equalities:

∀s′ 6= s
P(s, s′)

1− q
=

P′(s, s′)

1− q′

This equivalence is used in an implicit way in the proofs.
We will often omit self-loops: we consider that a self-loop
always exists with a probability such that the sum of all
outgoing transitions probability is equal to 1.
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Figure 1. DTMC for the tandem queues

Example The figure III-A represents a Markov chain of
a tandem queue system. This system contains two queues,
the number of clients in the first queue is represented on the
horizontal axis and the number of clients in the second one
is represented on the vertical axis. In the initial state s0,
the two queues are empty. Given some state, a new client
comes in the first queue with probability λ, a client leaves
the first queue for the second one with probability ρ1 and a
client leaves the second queue and exits with probability ρ2
(λ+ρ1+ρ2 = 1). An impossible event (due to the emptiness
of some queue) corresponds to an event leaving unchanged
the state. These loops are not represented in the figure.

Usually the modeller does not specify its system with a
Markov chain. He rather defines a higher level model M
(a queueing network, a stochastic Petri net, etc.), whose
operational semantic is a Markov chain C.

In the context of model checking, the states of chain C are
labelled with atomic propositions that they fulfill. Given state
s, α(s) denotes the set of propositions satisfied by s. We
denote Sx = {s ∈ S | x ∈ α(s)}, Sx = {s ∈ S | x /∈ α(s)},
Sxy = {s ∈ S | x ∈ α(s) ∧ y ∈ α(s)}, etc.

The problem we address here is the computation of
the probability that a random path starting from a fixed
state s (and in particular from the initial state) satisfies
a formula aU Ib where U is the Until operator, a, b are
atomic propositions and I is an integer interval. We note
[l,∞] the unbounded intervals and we adopt the convention
∞−1 =∞. Then these probabilities, denoted µI(s), can be
shown to be the smallest solution of the following system
of equations (1E denotes the indicator function of set E).

µI(s) = 0 ∀s ∈ Sab
µ[0,0] = 1Sb
µ[0,u](s) = 1 ∀u > 0 ∀s ∈ Sb
µ[0,u](s) =

∑
s′∈S P(s, s′)µ[0,u−1](s

′) ∀u > 0 ∀s ∈ Sab
µ[l,u](s) = 0 ∀l > 0 ∀s ∈ Sa
µ[l,u](s) =

∑
s′∈S P(s, s′)µ[l−1,u−1](s

′) ∀l > 0 ∀s ∈ Sa

Coupling for Model Checking
The coupling method [25] is a classical method for

comparing two stochastic processes, applied in different
contexts (establishing ergodicity of a chain, stochastic or-
dering, bounds, etc.). In the sequel we will develop a new



application for coupling. A coupling between two Markov
chains is a chain whose space is a subset of the product
of the two spaces which satisfies: (1) the projection of the
product chain on any of its components behaves like the
original corresponding chain, (2) an additional constraint
which depends on the property to be proved (here related to
the until formula). In this paper, we only need to define the
coupling of a chain with itself.

Definition 3: Let C = (S,P) be a labelled chain and ϕ ≡
aU [l,u]b be a formula. A coupling of C w.r.t. ϕ is a DTMC
C⊗ = (S⊗,P⊗) such that :
• S⊗ ⊆ S × S
• ∀s 6= s1 ∈ S , ∀(s, s′) ∈ S⊗,

P (s , s1) =
∑

(s1,s
′
1)∈S⊗

P⊗((s, s′), (s1, s
′
1)) and

∀s′ 6= s′1 ∈ S, ∀(s, s′) ∈ S⊗,
P(s′, s′1) =

∑
(s1,s

′
1)∈S⊗

P⊗((s, s′), (s1, s
′
1))

• ∀(s, s′) ∈ S⊗ s′ ∈ Sb ⇒ s ∈ Sb
• ∀(s, s′) ∈ S⊗ s ∈ Sab ⇒ s′ ∈ Sab
• If l > 0 then ∀(s, s′) ∈ S⊗ s ∈ Sa ⇒ s′ ∈ Sa

The set S⊗ defines a coupling relation of the chain.
The following proposition allows to compare probabili-

ties without any numerical computation. As before, µI(s)
denotes the probability that a random path starting from s
satisfies aU Ib.

Proposition 1: Let C⊗ be a coupling of C related to aU Ib
Then for all (s, s′) ∈ S⊗, we have:

µI(s) ≥ µI(s′)
Proof
We first observe that the property on the coupling only
depends on a, b and whether l > 0. So we prove the property
by induction on the intervals.

Let (s, s′) ∈ S⊗, since µ[0,0] = 1Sb and s′ ∈ Sb ⇒ s ∈ Sb,
µ[0,0](s) ≥ µ[0,0](s

′).

Now we prove the property for interval [0, u] with finite u
by induction on u > 0 with basis case u = 0 already proved.
If s ∈ Sb then µ[0,u](s) = 1 ≥ µ[0,u](s

′)
If s′ ∈ Sb then s ∈ Sb and µ[0,u](s) = µ[0,u](s

′) = 1
If s ∈ Sab then s′ ∈ Sab and µ[0,u](s) = µ[0,u](s

′) = 0
If s′ ∈ Sab then µ[0,u](s

′) = 0 ≤ µ[0,u](s)
The last case to consider is s, s′ ∈ Sab.
µ[0,u](s) =

∑
s1∈S P(s, s1)µ[0,u−1](s1)

=
∑
s1∈S

∑
(s1,s′1)∈S⊗

P⊗((s, s′), (s1, s
′
1))µ[0,u−1](s1)

≥
∑
s1∈S

∑
(s1,s′1)∈S⊗

P⊗((s, s′), (s1, s
′
1))µ[0,u−1](s

′
1)

=
∑
s′1∈S

∑
(s1,s′1)∈S⊗

P⊗((s, s′), (s1, s
′
1))µ[0,u−1](s

′
1)

=
∑
s′1∈S

P(s′, s′1)µ[0,u−1](s
′
1) = µ[0,u](s

′)

Since µ[0,∞](s) = limu→∞ µ[0,u](s), this proves the result
for interval [0,∞].

Now we prove the property for interval [l, u] with finite or
infinite u by induction on l > 0 with basis case l = 0 already
proved.
If s ∈ Sa then s′ ∈ Sa and µ[l,u](s) = µ[l,u](s

′) = 0
If s′ ∈ Sa then µ[l,u](s

′) = 0 ≤ µ[l,u](s)
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Figure 2. Reduced DTMC C•

The last case to consider is s, s′ ∈ Sa.
µ[l,u](s) =

∑
s1∈S P(s, s1)µ[l−1,u−1](s1)

=
∑
s1∈S

∑
(s1,s′1)∈S⊗

P⊗((s, s′), (s1, s
′
1))µ[l−1,u−1](s1)

≥
∑
s1∈S

∑
(s1,s′1)∈S⊗

P⊗((s, s′), (s1, s
′
1))µ[l−1,u−1](s

′
1)

=
∑
s′1∈S

∑
(s1,s′1)∈S⊗

P⊗((s, s′), (s1, s
′
1))µ[l−1,u−1](s

′
1)

=
∑
s′1∈S

P(s′, s′1)µ[l−1,u−1](s
′
1) = µ[l,u](s

′)

c.q.f.d. ♦♦♦

Example Let us illustrate coupling for the Markov chain
represented in figure 2 and called C•. This chain is obtained
from the tandem queues by lumping together states which
have the same number of clients and at least R clients
in the second queue. Its set of state is S• = N × [0..R].
Consider the coupling of this chain with itself defined by
S⊗ = {((n1, n2), (n′1, n

′
2)) | n1+n2 ≥ n′1+n′2∧n1 ≥ n′1}.

Consider now proposition a “There is at least one client in
some queue” and proposition b “The sum of the number of
clients in both queues is at least 5”. (we consider that the
initial state s0 is the state with one client in the first queue
to avoid trivial evaluation).

Lemma 1: S⊗ is a coupling relation w.r.t. aU Ib for any
interval I .
Proof
We recall the coupling relation
a) n1 + n2 ≥ n′1 + n′2
b) n1 ≥ n′1
We need to check that for all couples ((n1, n2), (n′1, n

′
2)) in

the relation, all successors are also in the relation. We have
three different types of transitions in the system:

1) For transition λ, the successor of ((n1, n2), (n′1, n
′
2)) is

((n1 +1, n2), (n′1 +1, n′2)) which is inside the relation.
2) For transition ρ1, the successor of ((n1, n2), (n′1, n

′
2))

is
((n1 − 1{n1>0∧n2<R}, n2 + 1{n1>0∧n2<R}),
(n′1 − 1{n′1>0∧n′2<R}, n

′
2 + 1{n′1>0∧n′2<R}))

the condition a) is satisfied as the sum is not modified.

• If n1 > n′1 then n1 − 1{n1>0∧n2<R} ≥ n′1 −
1{n′1>0∧n′2<R} and condition b) is satisfied.



• Else n1 = n′1 and with the condition a) we have
n2 ≥ n′2 ; then
n1 > 0 ∧ n2 < R ⇒ n′1 > 0 ∧ n′2 < R which
implies :
n1 − 1{n1>0∧n2<R} ≥ n′1 − 1{n′1>0∧n′2<R} then
conditionb) holds.

3) For transition ρ2, the successor of ((n1, n2), (n′1, n
′
2))

is
((n1, n2 − 1{n2>0}), (n

′
1, n
′
2 − 1{n′2>0})).

As the first component is not modified, the condition b)
holds.
• If n1 + n2 > n′1 + n′2 then n1 + n2 − 1{n2>0} ≥
n′1 + n′2 − 1{n′2>0}

• Else n1 + n2 = n′1 + n′2 and with condition b)
n2 ≤ n′2 then n2 − 1{n2>0} ≥ n′2 − 1{n′2>0}, the
condition a) holds.

We now have to check the properties related to atomic
propositions a and b.
• Let (n′1, n

′
2) ∈ Sb which means that n′1+n′2 ≥ 5. Since

n1 + n2 ≥ n′1 + n′2 ≥ 5, (n1, n2) ∈ Sb.
• Let (n1, n2) ∈ Sa which means that n1+n2 = 0, Since

0 = n1 + n2 ≥ n′1 + n′2, (n′1, n
′
2) ∈ Sa.

• Combining the two first items, (n1, n2) ∈ Sab implies
(n′1, n

′
2) ∈ Sab.

Then S⊗ is a coupling relation.

c.q.f.d. ♦♦♦

Importance Sampling for Reachability Analysis
We consider a Markov chain C with two absorbing states

s+ or s−, i.e. P(s−, s−) = P(s+, s+) = 1. We require that
the probability to reach s+ or s− from any state is equal to
1.

The statistical approach consists in generating K paths of
the Markov chain C which ends in an absorbing state.

Let K+ be the number of paths ending in the s+ state. The
random variable K+ follows a binomial distribution with
parameters p and K. Thus the random variable K+

K has a
mean value p and a variance p−p2

K . When K goes to infinity
the variance goes to 0. In order to be more precise on the
estimation, we introduce the notion of confidence interval.

Definition 4: Let X1, . . . , Xn be independent random
variables following a common distribution including a pa-
rameter θ. Let 0 < γ < 1 be a confidence level. Then a
confidence interval for θ with level at least γ is given by
two random variables m(X1, . . . , Xn) and M(X1, . . . , Xn)
such that for all θ:

Pr (m(X1, . . . , Xn) ≤ θ ≤M(X1, . . . , Xn)) ≥ γ

For standard parametrized distributions like the normal
or the Bernoulli ones, it is possible to compute confidence
intervals [13]. Thus, given a number of paths K and a
confidence level 1 − ε, the method produces a confidence
interval. As discussed before when p � 1, the number of

paths required for a small confidence interval is too large to
be simulated.

The importance sampling method uses a modified tran-
sition matrix P′ during the generation of paths. P′ must
satisfy:

P(s, s′) > 0⇒ P′(s, s′) > 0 ∨ s′ = s− (1)

which means that this modification cannot remove transi-
tions that have not s− as target, but can add new transitions.
The method maintains a correction factor called L initialized
to 1; this factor represents the likelihood of the path. When a
path crosses a transition s→ s′ with s′ 6= s−, L is updated
by L← L P(s,s′)

P′(s,s′) . When a path reaches s−, L is set to zero.
If P′ = P (i.e. no modification of the chain), the value of
L when the path reaches s+ (resp. s−) is 1 (resp. 0).

Let Vs (resp. Ws ) be the random variable associated
with the final value of L for a path starting in x in the
original model C (resp. in C′). By definition, E(Vs0) = p.
The following proposition establishes the correctness of the
method.

Proposition 2: E(Ws0) = p.
Proof
In all states, the probability to reach s− or s+ is equal to
1. Then thanks to a classic result on Markov chains the
expected value of the r.v. Vs is the unique solution of the
following system of equations:

E(Vs−) = 0 ∧ E(Vs+) = 1 ∧ ∀s /∈ {s−, s+}
E(Vs) =

∑
s′ 6=s−

P(s, s′)E(Vs′) (2)

We now write the corresponding system for P′ with correc-
tion factor:

E(Ws−) = 0 ∧ E(Ws+) = 1 ∧ ∀s /∈ {s−, s+}

E(Ws) =
∑

s′ 6=s−∧P′(s,s′)>0

P′(s, s′)

(
P(s, s′)

P′(s, s′)

)
E(Ws′) (3)

Thanks to the restriction of equation 1, the two systems are
equal after simplification, and we have E(Ws0) = E(Vs0) =
p.

c.q.f.d. ♦♦♦

Proof of proposition 3
If µ(s) = 0 then all trajectories starting in s end in s−.
Therefore the variance is null.

If µ(s) 6= 0, thanks to the equation

µ(s) =
∑

s′|µ(s′)>0

P(s, s′)µ(s′)

P′(s,−) is a distribution. A trajectory starting from
a state s with µ(s) > 0 visits only states s′ with
µ(s′) > 0, so it ends in s+. Denoting by s =



u0, . . . , ul = s+ such a trajectory, the value L is equal to
(µ(u0)/µ(u1)) . . . (µ(ul−1)/µ(ul)) = µ(s).

c.q.f.d. ♦♦♦

A good choice of P′ should reduce the variance of Ws0

w.r.t. to variance of Vs0 . The following proposition shows
that there exists a matrix P′ which leads to a null variance.
We denote the probability to reach s+ starting from s by
µ(s).

Proposition 3: Let P′ be defined by
• ∀s such that µ(s) 6= 0, P′(s, s′) = µ(s′)

µ(s) Pu(s, s′)

• ∀s such that µ(s) = 0, P′(s, s′) = P(s, s′)

Then for all s, we have V(Ws) = 0.
This result has a priori no practical application since it

requires the knowledge of µ for all states, whereas we only
want to estimate µ(s0)!
From Model Checking to Reachability

We now relate the computation of µI(s) in a Markov
chain C to a reachability problem in a Markov chain CI
which depends both on C and on I . From now on, we focus
on the case I = [0, u] with 0 < u < ∞ (and s ∈ Sab)
and we postpone to paragraph III-D the management of the
other cases. So we simplify the notations with µu (resp. Cu)
instead of µ[0,u] (resp. C[0,u]).

The Markov chain Cu is defined by:
• Su = Sab × [1, u] ∪ {s−, s+}
• s−, s+ are absorbing states:

Pu(s−, s−) = Pu(s+, s+) = 1
• ∀s, s′ ∀τ > 1 Pu((s, τ), (s′, τ − 1)) = P(s, s′),

Pu((s, τ), s−) =
∑
s′∈Sab

P(s, s′),
Pu((s, τ), s+) =

∑
s′∈Sb P(s, s′).

• ∀s Pu((s, 1), s+) =
∑
s′∈Sb P(s, s′),

Pu((s, 1), s−) = 1−Pu((s, 1), s+),
• The other transition probabilities are null.
Example Figure III-A describes chain Cu associated with

the example.
First observe that the probability to reach s+ or s− from

any state is equal to 1. Moreover by construction, µ(s, τ) =
µτ (s) where µ(s, τ) is a reachability property in Cu and
µτ (s) is the probability of satisfying a formula in C.

B. An Importance Sampling Method with Variance Reduc-
tion and Confidence Interval

The proposed method performs statistical model checking
on C by statistically computing a reachability probability
in Cu using importance sampling with associated matrix
obtained by numerical model checking on a reduced chain
whose formal definition is given below.

Definition 5: Let C be a DTMC, a DTMC C• is called a
reduction of C by a function f that maps S to S•, the state
space of C•, if for all s ∈ S:
• a ∈ α(s) (resp. b ∈ α(s)) iff a ∈ α•(f(s)) (resp.
b ∈ α•(f(s)))

• ∀0 < τ ≤ u µ•τ (f(s)) = 0⇒ µτ (s) = 0
where µ•τ (s•) denotes the probability that a random
path in C• starting from s• satisfies aU [0,τ ]b.

Two states s and s′ are equivalent if f(s) = f(s′), in other
words f−1 define equivalence classes for this reduction.

Example In the example of tandem queues, the reduced
chain C• is obtained from the original chain by applying the
following function to the state space.

f(n1, n2) =

{
(n1, n2) if n2 ≤ R
(n1 + n2 −R,R) otherwise

The intuition behind this reduction is to block clients in the
first queue when there are R clients in the second one, thus
increasing the probability of a global overflow.

Given some reduced chain C•, our goal is to replace the
random variable (r.v.) Vs0 which takes value in {0, 1} by a
r.v. Ws0 which takes value in {0, µ•(f(s0))}. This requires
that µu(s0) ≤ µ•u(f(s0)). By applying an homogeneity
principle, we get the stronger requirement ∀s∈S, ∀0 ≤ τ ≤
u, µτ (s) ≤ µ•τ (f(s)). In fact, the appropriate requirement
which implies the previous one (see later proposition 4) is
expressed by the next definition.

Definition 6: Let C be a DTMC and C• a reduction of C
by f . C• is a reduction with guaranteed variance if for all
s ∈ S such that µ•(f(s)) > 0 and ∀0 < τ ≤ u we have :∑

s′∈S
µ•τ−1(f(s′)) ·P(s, s′) ≤ µ•τ (f(s)) (4)

Given s ∈ S and 0 < τ ≤ u , let hτ (s) be defined by
hτ (s) =

∑
s′∈S

µ•τ−1(f(s
′))

µ•τ (f(s))
P(s, s′). We can now construct

an efficient important sampling based on a reduced chain
with guaranteed variance.

Definition 7: Let C be a DTMC and C• be a reduction of
C by f with guaranteed variance. Then P′u is the transition
matrix on Su the state space of Cu defined by:
Let s be a state of Sab and 0 < τ ≤ u,
• if µ•τ (f(s)) = 0 then for all s′ ∈ Su

P′u((s, τ), s′) = Pu((s, τ), s′)
• if µ•τ (f(s)) > 0 and τ > 1 then

- ∀s′ ∈ Sab
P′u((s, τ), (s′, τ − 1)) =

µ•τ−1(f(s
′))

µ•τ (f(s))
P(s, s′)

- P′u((s, τ), s+) = µ•τ (f(s))−1
∑
s′∈Sb P(s, s′)

- P′u((s, τ), s−) = 1− hτ (s).
• if µ•1(f(s)) > 0 then

- P′u((s, 1), s+) = µ•1(f(s))−1
∑
s′∈Sb P(s, s′)

- P′u((s, τ), s−) = 1− h1(s).
The following proposition justifies the definition of P′u.
Proposition 4: Let C be a DTMC and C• be a reduction

with guaranteed variance. The importance sampling based
on matrix of P′u definition 7 has the following properties:
• For all s and all 0 < τ ≤ u such that µ(s, τ) > 0,
W(s,τ) is a random variable which has value in
{0, µ•τ (f(s))}.



s+

s−

· · · · · ·

Cu

ρ2

µ

Cu−1

µ
ρ1
ρ2

Ci

ρ2

µ

(n1, n2)

(0, 1)

(n1, n2)

Ci−1

µ
ρ1
ρ2

(n1 + 1, n2)

(n1 − 1, n2 + 1)

(n1, n2 − 1)

C2

ρ2

µ

C1

µ
ρ1
ρ2

Figure 3. “Unfolding Cu”

• µτ (s) ≤ µ•τ (f(s)) and V(W(s,τ)) = µτ (s)µ•τ (f(s))−
µ2
τ (s).

• One can compute a confidence interval for this impor-
tance sampling.

Proof
Let s = (s, τ) = u0, . . . , ul = s+ be a trajectory starting in
s ending in s+. We observe that due to the construction of
Cu, any uk can be written as (sk, τ − k) with 0 ≤ k < l.
As the trajectory avoids s−, its value is:
(µ•τ (f(s))/µ

•
τ−1(f(s1))) · · · (µ•τ−l+2(f(sl−2))/µ

•
τ−l+1(f(sl−1)))

µ•τ−l+1(f(ul−1)) = µ•(f(s))

We know that E(W(s,τ)) = µτ (s), then P(W(s,τ) =

µ•(f(s))) = µτ (s)
µ•τ (f(s))

. This implies that µτ (s) ≤ µ•τ (f(s))

and V(W(s,τ)) = µτ (s)µ•τ (f(s))− µ2
τ (s). As W(s,τ) takes

only two values, as for a Bernoulli law, it is possible to
compute a confidence interval.

c.q.f.d. ♦♦♦

Since µu(s0) � 1, V(Vs0) ≈ µu(s0). If µu(s0) �
µ•u(f(s0)), we obtain V(W(s0,u)) ≈ µu(s0)µ•u(f(s0)), so
the variance is reduced by a factor µ•u(f(s0)). In the case
where µu(s0) and µ•u(f(s0)) have same magnitude order,
the reduction of variance is even bigger.

Unfortunately, Inequation (4) requires to compute the
functions µ•τ in order to check that C• is a reduction
with guaranteed variance. We are looking for a structural
requirement that does not involve the computation of µ•τ .

Proposition 5: Let C be a DTMC, C• be a reduction of
C by f . Assume there exists a family of functions (gs)s∈S ,
gs : {t | P(s, t) > 0} → S• such that:

1) ∀s ∈ S, ∀t• ∈ S•,
P•(f(s), t•) =

∑
s′|gs(s′)=t• P(s, s′)

2) ∀s, t ∈ S such that P(s, t) > 0 ∀0 ≤ τ < u
µ•τ (f(t)) ≤ µ•τ (gs(t))

Then C• is a reduction of C with guaranteed variance.
Proof

Let s be a state of S and τ > 0. We partition the terms of
the sum of the inequation (4) according to their images by
the function gs:∑

s′|P(s,s′)>0

µ•τ−1(f(s′)) ·P(s, s′) =

=
∑
s•∈S•

∑
s′|gs(s′)=s•

µ•τ−1(f(s′)) ·P(s, s′)

We apply the second hypothesis:

≤
∑
s•∈S•

∑
s′|gs(s′)=s•

µ•τ−1(s•) ·P(s, s′)

=
∑
s•∈S•

µ•τ−1(s•)
∑

s′|gs(s′)=s•
P(s, s′)

then the first hypothesis yields:

=
∑
s•∈S•

µ•τ−1(s•)P(f(s), s•)

This term is equal to µ•τ (f(s)) thanks to the equation (2)
applied to the Markov chain C•.

c.q.f.d. ♦♦♦

The family of functions (gs) assigns to each transition of C
starting from s a transition of C• starting from f(s). The first
condition can be checked by straightforward examination of
the probability transition matrices. The second condition still
involves the mapping µ• but here there are only comparisons
between its values. Thanks to proposition 1, it can be proved
by exhibiting a coupling of C• with itself.

Example To apply the method on the example it remains
to specify the family of functions (gs)s∈S .

g(n1,n2)(n1, n2) = f(n1, n2)
g(n1,n2)(n1 + 1, n2) = f(n1 + 1, n2)
g(n1,n2)(n1 − 1, n2 + 1) = f(n1 − 1, n2 + 1)

g(n1,n2)(n1, n2 − 1) =

{
(n1, n2 − 1) if n2 ≤ R
(n1 + n2 −R,R− 1) else



The condition 2 always trivially holds except for the last case
with n2 > R. We have to check that µ•(n1+n2−1−R,R) ≤
µ•(n1 +n2−R,R−1). As (n1 +n2−R,R−1), (n1 +n2−
1 − R,R)) belongs to the coupling relation the inequality
holds.

C. An Importance Sampling Method with Variance Reduc-
tion and Confidence Interval

Based on the previous developments, we describe a
methodology to perform statistical model checking using
importance sampling to estimate the tiny probability p =
µu(s0) in four steps.

1) Exhibit a suitable reduced Markov chain C• (by a
function f ).

2) Specify a coupling satisfying the required properties
in order to insure C• is a reduction with guaranteed
variance (Proposition 5).

3) Compute the distributions {µ•τ}0<τ≤u (numerical com-
putations using equations III-A on C•).

4) Use these distributions to perform importance sampling
on the simulation of the initial model. We generate a
large sample of trajectories using the transition system
corresponding to matrix P ′u (definition 7) and compute
along each path the likehood L in order to obtain an
estimation of p with some confidence interval.

The first step requires some understanding of the system to
design the appropriate reduced chain. The proof of coupling
is done by hand but could be mechanized with a proof
assistant. We now describe in detail the third of forth steps
since they rise algorithmic problems.

We denote by n the number of states of the Markov chain
C and by d the maximum of outdegrees of vertices of C.
Let us remark that in typical modellings, d is very small
compared to n. A simulation takes at most u steps going
through states (su, u), . . . , (s1, 1), s± where su = s0 and
s± ∈ {s+, s−}. In state (sτ , τ), we compute the distribution
P ′u((sτ , τ),−) (cf. definition 7), which requires the values
of µ•τ (f(s)) and µ•τ−1(f(s′)), for each possible target state
s′ from sτ .

Algorithm 1:
Precomputation(u, µ•0, P

•
0 )

Result: L
// List L fulfills L(i) = µ•i

1 v ← µ•0
2 for i = 1 to u do
3 v ← P •0 v
4 L(i)← v

Thanks to equations III-A, the vectors {µ•τ}0<τ≤u may
be computed iteratively one from the other with complexity
Θ(ndu). More precisely, we derive from P•, matrix P•0,

a square (substochastic) matrix, indexed by Sab ∪ s+ and
defined by ∀s, s′ ∈ Sab:
P•0(s, s′) = P•(s, s′),P•0(s, s+) =

∑
s′′∈Sb P

•(s, s′′)
P•0(s+, s+) = 1,P•0(s+, s

′) = 0
Then µ•τ = P•0 · µ•τ−1 and µ•0 is null except µ•0(s+) = 1.
But for large values of u, the space complexity to store them
becomes intractable and the challenge is to obtain a space-
time trade-off. So we propose three methods. The methods
consist of a precomputation stage and a simulation stage.
Their difference lies in the information stored during the first
stage and the additional numerical computations during the
second stage. In the precomputation, both methods compute
iteratively the u vectors µ•τ = (P •0 )τ (µ•0) for τ from 1 to u.

1) The first method is the “natural” implementation. It
consists in storing all these vectors during the precom-
putation stage and then proceeding to the simulation
without any additional numerical computations. The
precomputation stage is described in algorithm 1 where
list L is the main memory requirement.

2) Let l(< u) be an integer. In the precomputation stage,
the second method only stores the bul c+ 1 vectors µ•τ
with τ multiple of l in list L and µ•lbul c+1, . . . , µ

•
u in list

K (see the precomputation stage of algorithm 2). Dur-
ing the simulation stage, in a state (s, τ), with τ = ml,
the vector µ•τ−1 is present neither in L nor in K. So the
method uses the vector µ•l(m−1) stored in L to compute
iteratively all vectors µ•l(m−1)+i = P •i(µ•l(m−1)) for i
from 1 to l − 1 and store them in K (see the step
computation stage of algorithm 2). Then it proceeds
to l consecutive steps of simulation without anymore
computations. We choose l close to

√
u in order to

minimize the space complexity of such a factorization
of steps.

3) Let k = blog2(u)c + 1. In the precomputation stage,
the third method only stores k + 1 vectors in L. More
precisely, initially using the binary decomposition of
u (u =

∑k
i=0 au,i2

i), the list L of k + 1 vectors
consists of vi,τ = µ•∑k

j=i aτ,j2
j , for all 1 ≤ i ≤ k + 1

(see the precomputation step of algorithm 3). During
the simulation stage in a state (s, τ), with the binary
decomposition of τ (τ =

∑k
i=0 aτ,i2

i), the list L
consists of vi,τ = µ•∑k

j=i aτ,j2
j , for all 1 ≤ i ≤ k + 1.

Observe that the first vector v1,τ is equal to µ•τ . We
obtain µ•τ−1 by updating L according to τ − 1. Let
us describe the updating of the list performed by
the stepcomputation of algorithm 3. Let i0 be the
smallest index such that aτ,i0 = 1. Then for i > i0,
aτ−1,i = aτ,i, aτ−1,i0 = 0 and for i < i0, aτ−1,i = 1.
The new list L is then obtained as follows. For i > i0
vi,τ−1 = vi,τ , vi0,τ−1 = vi0−1,τ . Then the vectors
for i0 < i, the vectors vi,τ−1 are stored along iterated
2i0−1 − 1 matrix-vector products starting from vector
vi0,τ−1: v(j, τ − 1) = P •0

2jv(j + 1, τ − 1).



The computation associated with τ requires 1+2+· · ·+
2i0−1 products matrix-vector , i.e. Θ(nd2i0). Noting
that the bit i is reset at most u2−i times, the complexity
of the whole computation is

∑k
i=1 2k−iΘ(nd2i) =

Θ(ndu log(u)).
The three methods are numbered according to their de-

creasing space complexity. The corresponding space-time
trade-off is summarized by table I, where the space unit
is the storage of a float.

Algorithm 2:
Precomputation(u, µ•0, P

•
0 )

Result: L,K
// List L fulfills L(i) = µ•i·l

1 l← b
√
uc

2 v ← µ•0
3 for i from 1 to bul cl do
4 v ← P •0 v
5 if i mod l = 0 then
6 L( il )← v

// List K contains µ•bul cl+1, . . . , µ
•
u

7 for i from bul cl + 1 to u do
8 v ← P •0 v
9 K(i mod l)← v

10 Stepcomputation(τ, l, P •0 ,K, L)
// Updates K when needed

11 if τ mod l = 0 then
12 v ← L( τl − 1)
13 for i from ( τl − 1)l + 1 to τ − 1 do
14 v ← P •0 v
15 K(i mod l)← v

More on simulation. Simulating trajectories sequentially
is really inefficient since the additional computations during
the simulation stage are repeated during every simulation.
Thus for methods 2 and 3, we proceed with a bunch of
trajectories simulated in parallel step by step. Different sizes
of bunches are possible but they cannot exceed the size
required for the numerical computations. So based on the
asymptotic time and space cost, we handle n2 trajectories
in parallel.

D. Handling all the intervals

Three other kinds of intervals must be handled:
• When interval I = [0,∞], which is the topic that we

fully describe in [5]. So we refer the interested reader
to this communication.

• When interval I = [l, u] with l > 0 that we detail
below.

Algorithm 3:
Precomputation(u, µ•0, P

•
0 )

Result: L
// L fulfills L(i) = µ•∑k

j=i au,j2
j

1 k ← blog2(u)c+ 1
2 v ← µ•0
3 L(k + 1)← v
4 for i from k downto 0 do
5 if au,i = 1 then
6 for j from 1 to 2i do
7 v ← P •0 v

8 L(i)← v

9 Stepcomputation(τ, l, P •0 , L)
// L is updated accordingly to τ − 1

10 i0 ← min(i | aτ,i = 1)
11 v ← L(i0 + 1)
12 L(i0)← v
13 for i from i0 − 1 downto 0 do
14 for j = 1 to 2i do
15 v ← P •0 v

16 L(i)← v

Complexity Method 1 Method 2 Method 3
Space nu 2n

√
u n log u

Time
for the Θ(ndu) Θ(ndu) Θ(ndu)
precomputation
Additional time
for the 0 Θ(ndu) Θ(ndu log(u))
simulation

Table I
COMPARED COMPLEXITIES

• When interval I = [l,∞] with l > 0 which, roughly
speaking is managed by combining the two previous
cases.

When I = [l, u] with 0 < l < u, chain CI is defined by:
• Its state space is:
SI = Sa × [u− l + 1, u] ∪ Sab × [u− l, 1] ∪ {s−, s+}
with s−, s+ absorbing states.

• The transition probabilities associated with
Sab × [u− l, 1] are the same ones as those of Cu−l.

• ∀s, s′ ∈ Sa ∀τ > u− l + 1
Pu((s, τ), (s′, τ − 1)) = P(s, s′),
Pu((s, τ), s−) =

∑
s′∈Sa P(s, s′).

• ∀s ∈ Sa ∀s′ ∈ Sab
Ptu((s, u− l + 1), (s′, u− l)) = P(s, s′),
Pu((s, u− l + 1), s−) =

∑
s′∈Sa P(s, s′),

Pu((s, u− l + 1), s+) =
∑
s′∈Sb P(s, s′).

• The other transition probabilities are null.
When I = [u, u] with 0 < u, chain CI is defined by:



• Its state space is SI = Sa × [1, u] ∪ {s−, s+}
with s−, s+ absorbing states

• ∀s, s′ ∈ Sa ∀τ > 1
PI((s, τ), (s′, τ − 1)) = P(s, s′),
PI((s, τ), s−) =

∑
s′∈Sa P(s, s′).

• ∀s ∈ Sa,
PI((s, 1), s+) =

∑
s′∈Sb P(s, s′)

PI((s, 1), s−) = 1−PI((s, 1), s+).
• The other transition probabilities are null.
In both cases, by construction, µ(s, u) = µI(s) where

µ(s, u) is a reachability property in CI and µI(s) is the
probability to satisfy aU Ib in C.

Furthermore definition 7 can be adapted straightforwardly
to obtain an importance sampling distribution P ′I yielding
the same conclusions as those of proposition 4. Below we
only detail the main equation related to P ′I . with s, s′ ∈ Sa
and u− l+ 1 < τ ≤ u. Given I = [l, u] we denote I − k =
[max(l − k, 0), u− k]. Then:

P′I((s, τ), (s′, τ − 1)) =
µ•I−(τ−1−u)(f(s′))

µ•I−(τ−u)(f(s))
P(s, s′)

It remains to explain how to numerically compute µ•I−k
for 0 ≤ k < u. For sake of readability, we only present
the case 0 < l < u (the case 0 < l = u is simpler). This
is performed by iterative matrix-vector products using three
transformations of P•. Let I ′ = [l′, u′] be an interval.
• If l′ = 0 then one only needs to compute µ•I′(s) for s ∈
Sab. So we use matrix P•0 defined in subsection III-C
and µ•I′ = P•0 · µ•I′−1

• If l′ = 1 then one needs to compute µ•I′(s) for s ∈ Sa.
So matrix P•1 is a (possibly non square) matrix defined
for Sa × (Sab ∪ s+) by ∀s ∈ Sa ∀s′ ∈ Sab:
P•0(s, s′) = P•(s, s′),P•0(s, s+) =

∑
s′′∈Sb P

•(s, s′′)
and µ•I′ = P•1 · µ•I′−1

• If l′ > 1 then one needs to compute µ•I′(s) for s ∈ Sa.
So matrix P•> is a square (substochastic) matrix defined
for Sa by ∀s, s′ ∈ Sa: P•>(s, s′) = P•(s, s′)
and µ•I′ = P•> · µ•I′−1

The three methods that we have proposed can be adapted
for this general case. Since method 1 does not perform
additional computations during the simulation, it only has to
select the appropriate matrix during the iterative steps of the
precomputation. Methods 2 and 3 still apply partial storage
with additional computations by splitting the simulation in
two steps whose boundary is time l.

IV. EXPERIMENTATION

A. Implementation

Tools. Our experiments have been performed on a modified
version of COSMOS. COSMOS is a statistical model checker
whose input model is a stochastic Petri net with general
distributions and formulas are expressed by the Hybrid
Automata Stochastic Logic [6]. We have also used the model

checker PRISM for comparisons with our method. All the
experiments have been performed on a computer with a
2.6Ghz processor and 48Go of memory which allow us to
perform benchmark on very large model.
Adaptation of COSMOS. To proceed with experimentation
on the bounded case we had to perform major changes in
the tool. We detail below the added features to COSMOS

we have implemented w.r.t. the handling of the unbounded
“Until” case2:
• COSMOS takes as input continuous time stochastic Petri

nets, therefore we adjusted the tool to apply on discrete
time systems.

• To compute the vector of probability µ•τ , we imple-
mented a state space generator which computes matrix
P •.

• We implemented the three algorithms described in sec-
tion: III-C. Theses algorithms achieve different space-
time trade-off for the computation of µ•τ , which is
needed for the importance sampling. To manage sparse
matrix computation we use the uBLAS/boost libraries.

• We modified the simulator in order to construct step
by step a batch of trajectories instead of generating full
trajectories one after the other.

B. Example: Global Overflow in Tandem Queues

Modelling considerations. This example is a classical
benchmark for importance sampling. It has practical in-
terest as a standard modelling of networks [26]. Such a
modelling allows to accurately dimension a network for a
given loadwork. Furthermore it illustrates the advantage of
dynamic importance sampling w.r.t. the static importance
sampling [21].

We choose the parameters of the system as follows: µ =
0.8 and ρ1 = ρ2 = 0.1. These parameters correspond to an
unstable system. Thus checking the property “What is the
probability for the system to overflow (more than N clients
in both queues) before returning to an empty state within u
steps” can be interpreted as the probability of a network to
fall in u seconds while facing a deny of service attack.
Preliminary observation. While the probability associated
with the time-bounded until converges towards the probabil-
ity associated with the unbounded until when u ← ∞, the
rate of this convergence highly depends on the model. In
our benchmarks, these probabilities are drastically different:
the former probability is tiny while the latter is close to 1.
Analysis of numerical and statistical PRISM. We compare
our method to numerical and statistical model checking done
by PRISM. The PRISM statistical model checker behaves as
follows. For N = 500, the computation takes at least 85s
to ensure the confidence interval that we obtain in at most
5s with COSMOS. For larger values of N , the event becomes

2The reader can refer to [5] for details about the modifying distribution
performed by the importance sampling method



Table II
EXPERIMENTAL RESULTS FOR THE EXAMPLE

N R u Size of C numerical PRISM Cosmos
Method 1 Method 2 Method 3

T (s) Mem µ(s0) µ(s0) Conf. Int. Tpre Tsim Mem Tpre Tsim Mem Tpre Tsim Mem
500 5 650 ≈ 250E3 5 5.4M 0.0105 0.0104 0.00129 ≈ 0 2 18M ≈ 0 3 4.3M 1 4 3.5M
1E3 10 1300 ≈ 1E6 36 18.8M 1.924E-4 1.989E-4 1.523E-05 4 5 116M 3 9 10 M 3 24 6M
5E3 20 6500 ≈ 25E6 3439 426M 1.795E-18 1.797E-18 2.502E-19 178 200 5345M 185 385 157M 114 1165 38M

10E3 25 13E3 ≈ 100E6 28028 1.7G 3.752E-36 3.770E-36 7.072E-37 883 908 26G 919 1894 521M 544 5911 93M
20E3 30 26E3 ≈ 400E6 227812 6.7G 1.246E-71 1.219E-71 3.351E-72 - - ≈127G 4347 4366 1696M 2703 32393 225M
50E3 35 65E3 ≈ 2.5E9 - - - 2.73E-178 - - - - 33961 32489 7.5G 16515 248882 672M

very rare and the PRISM statistical model checker is unable
to evaluate the probability.

We collect our results with respective time and space
consumption for the three algorithms and PRISM in table II.
We observe that the empirical complexity of time and
memory consumption of numerical model checker PRISM are
respectively Θ(uN2) and Θ(N2). For N = 20000, PRISM

is highly time-consuming (> 48h). We did not launch the
computation for N = 50000 since, applying extrapolation,
we estimate its execution time to be bigger than a month.
Comparison of the three methods. Given some fixed
horizon, the time complexity of the numerical computation
of the methods is linear w.r.t. the size of the system C• (here
Θ(NR)). For our methods to be efficient we need to choose
a value of R small compared to N while being enough large
to provide tight confidence interval. On this example, very
small value of R (smaller than 35) are sufficient to provide
a tight confidence interval with a thousand of simulations.
The confidence interval width is always less than 30% of
the estimated value which is very accurate for statistical
estimation of a rare event.

As the results and confidence interval width are similar
for the three algorithm they are reported in the table only
once. For the three algorithms we show the precomputation
time, the simulation time (time unit is the second) and the
memory consumption.

We observe that empirical complexities of time and
memory of the three methods follow our theoretical ones,
obtained for the asymptotic case (table I).

Applying method 1 is possible until N reach 10000, but
for N = 20000 the program crashes because of its memory
consumption. We have estimated the required memory in
this case to be approximately equal to 127Go which is to
big for a present-day computer. For such a N , methods 2
and 3 terminate, only using respectively 521Mo and 93Mo.
Moreover the method 2 and 3 are always faster than PRISM

and use less memory. For N = 20000 the method 2 is 28
times faster and uses 4 times less memory while method 3
is 6 times faster and uses 29 times less memory.

From our experimentations, we recommend to apply
method 1 when time and space resources are available.
Otherwise, if memory is the bottleneck methods 2 and
3 should be preferred. Finally observe that for a huge
horizon, it is likely that the probability associated with an
“unbounded until” could be a good approximation of the

time-bounded case. Since the method we design in this case
requires significantly less memory, applying it is a good
alternative when other methods fail.

V. CONCLUSION

We proposed a method of statistical model checking in
order to compute with accuracy a tiny probability associated
with a “time-bounded until” formula in a DTMC. We obtain
a reliable confidence interval bounding this value. We have
developed a theoretical framework justifying the validity
of a confidence interval and ensuring the reduction of the
variance. This framework requires a structural analysis of the
model using coupling theory in order to get an appropriate
distribution for the importance sampling method. As the
time dependance of a property specified by “time-bounded
until” formula induces a space explosion, we propose three
different trade-off between space and time complexities. We
have implemented these three algorithms in the statistical
model checker COSMOS and we have done experiments on
a classical relevant model with impressive results.

We plan to go further in three directions. Our first goal
is to deal with more complex infinite systems. Secondly we
want to handle “bounded until” formulas in the context of
CTMC. In the long run, we consider to mechanize the proofs
of coupling using an assistant prover as COQ [27], since it
consists in checking parametrized inequalities.
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