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Abstract. Most of the existing verification techniques for programs
based on message passing suppose either that channel endpoints are
used in a linear fashion, where at most one thread can be considered
as the owner of an endpoint at any given time, or that endpoints may
be used arbitrarily by any number of threads. The former approach for-
bids the sharing of channels, while the latter limits what is provable
about programs, since no constraint is put on the usage of channels.
In this paper, we propose a midpoint between these techniques by ex-
tending a previously published proof system based on separation logic to
allow the sharing of endpoints. We identify two independent mechanisms
for supporting sharing: the standard technique based on reasoning with
permissions, and a new technique based on what we call ownership on
demand. We formalize these two techniques in a proof system, illustrate
them on several examples, and we extend Villard’s semantics [19] and
soundness proofs to support sharing.

Introduction

In a recent work, we introduced a proof system based on separation logic for
a model of copyless message-passing concurrency inspired by the Sing# pro-
gramming language [20] The main idea of this proof system was to impose on
channel’s endpoints the same ownership discipline as the one usually put on cells:
at every point in time, each endpoint is logically owned by a unique thread that
is the only one allowed to use it for sending and receiving. This restriction facil-
itates the analysis of communications, and allows in particular to check whether
they obey a certain communication contract specified by the programmer. Such
an analysis permits then the detection of communications errors like unspecified
receptions or message orphans. This strict ownership discipline however excludes
many interesting concurrent programs, as the only programs that can be proved
are confluent [8], i.e. deterministic up to commutation of non-conflicting con-
current events. Relaxing the ownership discipline is however not obvious. In the
setting of session types [11], such a linear usage of channels is essential in order
to ensure the subject reduction property, and relaxations of this principle are
known to be problematic: if a channel needs to be shared among several parties,



the best that can be done is to type it with an unrestricted session type [9], which
basically allows to send a unique type of message for the rest of the session.

Consider for instance a voting protocol, where an authority sends a voting
request to voters, and then collects their votes:

authority(voter ,N) {
local e,f,x;
(e,f) = open(C);
for i=0 to N-1 { send(vote_request ,voter .(i),f) };
for i=0 to N-1 { x = receive(vote ,e); ...}

}
voter(ep) {

local f,opinion;
f = receive(vote_request ,ep); ...
send(vote ,f,opinion );

}

In this code, the authority allocates a channel (e, f) for the vote, then gives
access to f to all voters, and finally collects all votes on e. On the other side, each
voter i receives f on its local endpoint ep (assumed to be paired with endpoint
voter.(i)), and uses it to send its vote. The non-linear usage of endpoint f
cannot be checked against a communication contract in our proof system, but
it could be typed with an unrestricted type C = un ?vote;C, where type C
would guarantee that the session on channel (e, f) contains vote messages only.
However, unrestricted types cannot ensure that exactly N messages will be sent,
nor allow to distinguish among different kinds of messages, like vote_yes and
vote_no.

Going back to Separation Logic, it could be expected to go beyond these
limitations by introducing fractional ownership for endpoints, using the permis-
sions mechanism [4,3]. In fact, such a mechanism has already been considered
in other proof systems for message-passing concurrency based on Separation
Logic [1,18,10]. Sharing contract-obedient endpoints with permissions is however
problematic, as a consistent view of the contract’s state of the endpoint should
be maintained among all sharers. Sends and receives on a shared endpoint seem
thus restricted to messages that do not change the contract’s state, which does
not permit significantly more than what is achieved with unrestricted types.
Consider for instance the following code featuring a seller bargaining the price
of its product, using an endpoint e, with several buyers concurrently accessing
the peer enpoint f of e:

seller(e) {
local price;
price =0;
while not good(price) {

send(product_descr ,e);
price=receive(offer ,e);

}
}
buyer(f) {
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local x;
receive(product_descr ,f);
x = think_about_it ();
send(offer ,f,x)

}

The most natural contract that could be designed for the communication
channel (e, f) is the one specifying that the sequence of message exchanges along
(e, f) is !product_descr.?offer∗. However, any contract expressing that prop-
erty contains at least two states, which makes the above program unprovable
using fractional permissions.

In this work, we introduce another relaxation to the ownership discipline that
allows sharing endpoints. The main idea of this relaxation can be illustrated on
the seller and buyers’ example. The crucial observation for proving this example
is to consider that all buyers have no assumption on the contract’s state of f until
they have received the product_descrmessage. Considering that, a buyer that has
received a product_descrmessage is the only one allowed to make assumptions on
the contract’s state of f , it can safely change it without breaking someone else’s
asumption. But then, to do so, we should not require to own the (contract’s state
of the) endpoint f for a reception receive(f,m) on f . Instead, we assume that
the received message m grants a posteriori the ownership of (the contract’s state
of) f . In other words, a buyer is justified to be able to receive a product_descr
message on f right after it has received this message.

This relaxation raises several questions. First, about its soundness, consider-
ing that it is not clear how contract obedience could still be guaranteed with this
relaxation. Second, about its relevance for real programs, considering that this
example is not necessarily representative of the traditional schemes of message-
passing programming. Third, about the class of concurrent programs it supports,
and how far this class differs from deterministic concurrent programs. We answer
these questions as follows. First, we show that our relaxed proof system keeps
all of the guarantees that we proved for its original version, including partial
correctness, absence of races, unspecified receptions, or message orphans. Sec-
ond, we show that it guarantees other properties that we did not completely
formalize in previous works, namely contract obedience and absence of mem-
ory leaks. Third, we show that it provides a proof method for encoding many
standard synchronization primitives like multicast, synchronization barriers, or
locks. Fourth, it supports an encoding of the internal choice, which shows that
all non-deterministic race-free programs can be proved.

Outline In the first section, we introduce a toy programming language and some
problems of interest. In the second section, we introduce communication con-
tracts. In the third section, we formalize our proof system. In the fourth section,
we illustrate our proof system on several examples of non-confluent concurrent
programs. In the fifth section, we provide an operational semantics for our toy
programming language. In the sixfth section, we establish the soundness of our
proof system with respect to this semantics. In the seventh section, we discuss
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some consequences of the soundness of our proof system on the safety of provable
programs. We conclude with related works.

1 Background

1.1 A Model of Sing#

We consider a programming environment à la Sing#, where threads communi-
cate via a global shared memory and rely on communication channels for syn-
chronisation. Channels are pairs of FIFO buffers and always consist of exactly
two endpoints. Each endpoint can be used to send to and receive from the other
endpoint. A send instruction send(m,e,v1,..,vn) consists thus of an endpoint
e, a message tag m, and values v1, .., vn for the n parameters associated to the
message tag m. A receive instruction specifies which message tag is expected; if
different message tags could be expected, a switch construct can be used. Finally,
endpoints are heap objects, and can be dynamically allocated by the instruction
(e,f)=open(C) and disposed by close(e,f). We equip our programming language
with heap-manipulating primitives specialised for cells with two fields.

We assume infinite sets Var = {e, f, x, y, . . . }, Loc = {l, . . . }, Endpoint =
{ε, . . . }, Σ = {m, . . . }, CIdent = {C, . . . }, Control = {q, . . . } and Val = {v, . . . }
of respectively variables, memory locations, endpoints, message identifiers, con-
tract identifiers, contract states and values. All sets but values are pairwise
disjoint, and Loc ] Endpoint ] N ⊆ Val. The grammar of expressions, boolean
expressions, atomic commands and programs is as follows:

E ::= x ∈ Var | v ∈ Val i ::= 0 | 1 B ::= E = E | B and B | not B
c ::= assume(B) | x = E | x = new() | E.i = E | x = E.i | free (E)

| (e, f) = open(C) | close (E,E) | send(m, E,E1,..,En)
| (x1 ,.., xn)= receive(m, E) | switch{cases}

cases ::= ␣ | case (x1 ,.., xn)=receive(m,E):{p} cases
p ::= c | skip | p; p | p ‖ p | p+ p | p∗ | local x in p

assume(B) does nothing if B holds and blocks otherwise. x=new() allocates
a new cell and store its address in lx, free(x) disposes the cell at address x,
E.i=E’ sets the the i field of the E cell to be equal to E′, and x=E.i copies the
content of the i field of the E cell into the variable x. Compound commands are
standard and are in order sequential and parallel composition, internal choice,
Kleene iteration and local variable creation. We leave the encodings of while
loops and if statements to the attention of the reader, and will freely use them
in our examples.

Example 1. The following program allocates a cell, a channel, exchanges the
memory cell between two threads put and get by passing a message cell, and
closes the channel.

main (){(e,f)=open ();x=new (); {put(e,x)|| get(f)}; close(e,f);}
put(e,x) {send(cell ,e,x);}
get(f) {y=receive(cell ,f); dispose(y);}
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Example 2. Consider now the situation where the sender (put) non-deterministically
chooses either to send the cell or to keep it. On the other side, the receiver (get)
needs to be ready to receive any of the two messages cell and no_cell, and
will thus rely on a switch/case construct. Consider moreover that get disposes
its endpoint unilaterally after it has handled put’s message. Disposing endpoint
unilaterally is not exactly what our model allows, and the receiver instead sends
a clos message that informs the other party that communications should be in-
terupted. This message carries the endpoint that get wants to dispose, and put
is then in charge to dispose it together with its peer.
main (){(e,f)=open ();x=new (); {put(e,x)|| get(f)};}
put(e,x) {

if (*) send(cell ,e,x) else {send(nocell ,e,x); dispose(x);};
ff = receive(clos ,e);
close(e,ff);

}
get(f) {

switch {
case y=receive(cell ,f) : {dispose(y);}
case receive(nocell ,f) : {skip;}

}
send(clos ,f);

}

1.2 Some Problems of Interest

Programs of our model of Sing# may suffer from several runtime errors: first, all
errors that occur in memory-manipulating programs, second, all errors that occur
in shared-memory concurrency, and third, errors specific to message-passing. Let
us review the ones we will focus on in this paper:
Memory violations They occur when a dangling pointer is dereferenced, mod-

ified, or disposed.
Races They occur when two threads simultaneously try to access a variable or

a memory location in an unprotected way, and at least one of the accesses
is a write access.

Memory leaks They occur when the memory state becomes such that no pro-
gram’s continuation can deallocate all channels and cells.

Orphan messages They occur when a channel is closed while messages are left
in at least one of its buffers.

Deadlocks A program is in a deadlock configuration if all of its threads are
blocked on receptions.

Unspecified receptions They occur when a thread enters a switch/case con-
struct and the buffer of one of the endpoints it scans starts with a message
whose tag is not listed as a possible case in the switch/case.

Note that these problems are sometimes related and not always mutually exclu-
sive. For instance, the program

P0 , send(m1,e) || switch {case receive (m2,f):{}}
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may be considered both as deadlocking and as triggering an unspecified recep-
tion. Similarly, replacing get(f) by skip in Example 1 would cause both a mem-
ory leak and an orphan message. However, none of these problems fully overlap,
and in particular:

– orphan messages are not a special case of memory leaks: it may be the case
that lost messages carried no ownership (e.g. the message nocell above);

– unspecified receptions are not a special case of deadlocks: we will distinguish
the program P1 , send(m1,e);||receive(m2,f); from the program P0 above:
the former is only deadlocking.1 –provided no environment accesses f con-
currently. Conversely, the program P||receive(m1,f);send(m2,e) triggers an
unspecified reception, but does not deadlock if P does not either.

All of these safety properties will be formalized in Sec 7, once we will have
provided an operational semantics for our toy programming language.

2 Contracts

Our aim is to design a proof system for Hoare triples {A} p {B} based on Separa-
tion Logic that will prevent all of the aforementioned errors, except deadlocks2.
Hoare triples are understood in terms of partial correctness and, for this reason,
non-terminating and deadlocking programs generally have a proof. The other
kinds of errors we mentioned are tractable in a standard proof system, but they
require to model the communication contracts introduced by Sing#.

Suppose indeed that we have managed to derive a proof of a given program
using our proof system. As usual in Separation Logic, this would guarantee
that the program does not cause a memory violation nor a race. However, the
other problems of interest that we listed are left unchecked. These problems are
arguably out of the scope of the local reasoning approach: for detecting either an
orphan message or an unspecified reception, one needs to be able to make some
assumptions about the behaviour of the environment of a thread, in particular
about the sequences of messages that it will send on those endpoints not owned
by the program. This missing information is exactly the one conveyed by channel
contracts.

2.1 Contracts as Automata

Channel contracts are finite automata that describe the protocol followed by
the channel, i.e. which sequences of sends and receives are admissible on the
1 In some cases, one may wish to authorize a thread to wait for a message in a buffer
provided that other threads will pick all the other ones first. In order to support such
behaviors, we distinguish reception from scanning, and consider that unspecified
reception occurs only on scanning, not on reception.

2 The reason why we omit deadlocks is not that we find them uninteresting, but rather
there is no simple way to treat them without introducing new notions; see Leino et
al. [12], or session types [11] for analyses of message-passing programs dealing with
deadlocks.
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channel, and when the channel may be closed. A contract C is written from
one of the endpoints’ point-of-view, the other one following the dual contract C̄,
where sends ! and receives ? have been swapped. Contracts specify moreover an
initial state, in which endpoints are assumed to be at channel creation, and a
set of final states, in which endpoints have to be at channel closure.

Definition 1 (Contracts). A contract is a tuple C = (Q,Σ, δ, q0, F ) such that
Q is a finite set of states, Σ is a finite set of message tags, δ : Q×{!, ?}×Σ→Q
is a deterministic3 transition function, q0 ∈ Q is an initial state, and F ⊆ Q is
a set of final states.

We write C̄ for the dual of contract C, i.e. C where ! and ? are swapped,
init(C) and final(C) for respectively q0 and F , succ(C, q, λ) for the state q′ (when
it exists) such that q λ−→ q′ ∈ ∆, and choice(C, q) for the set of message identifiers
m such that ∃q′. q ?m−−→ q′ ∈ ∆.

Example 3. The contracts for the two previous example programs are depicted
below:

C1 : 1 2!cell C2 : 1 2 3

!cell

!nocell

?clos

The first contract says that exactly one message cell will be sent from e to
f, after which the channel may be closed. The second contract says that either
cell or nocell will be sent, and this will be answered by a clos message, after
which the channel may be closed.

2.2 Formal Semantics

Not all contracts will be validated by our analysis: their semantics should ensure
the absence of unspecified receptions and orphan messages. For the sake of gen-
erality, we adopt here a more general semantics, and thus a broader notion of
valid contracts as in other works4. We write Σ∗ to denote the set of words over
alphabet Σ, and ␣ to denote the empty word. A configuration of a contract C is
a tuple

γ = (q, q′, w, w′) ∈ Q×Q×Σ∗ ×Σ∗

where q is the current contract’s state, q′ is the dual contract state, and w,w′
are the buffers’ contents in both directions.

The semantics of a contract is provided by the transition system of a com-
municating finite state machine (CFSM):
3 We could allow non-deterministic automata as well, but this would complicate the
proof rules in Separation Logic a little bit. Moreover, determinism can always be
assumed by standard automaton determinization.

4 In particular, full-duplex communications are allowed: we do not restrict contracts
to be positional [20], aka “autonomous” [17]
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Definition 2 (Transition System). We write

(q01 , q
1
1 , w

0
1, w

1
1)→ (q02 , q

1
2 , w

0
2, w

1
2)

if and only if there is i ∈ {0, 1}, λ ∈ {!, ?} ×Σ and a transition qi1
λ−→ qi2 of the

contract Ci (where C0 = C and C1 = C) such that

– q1−i1 = q1−i2 ;
– if λ = !m, then w1−i

2 = w1−i
1 .m and wi2 = wi1;

– if λ = ?m, then wi1 = m.wi2 and w1−i
2 = w1−i

1 .

For instance, the transition system of the second contract of Example 3 is

1, 1, ␣, ␣

2, 1, cell , ␣

2, 1, nocell , ␣

2, 2, ␣, ␣ 2, 3, ␣, clos 3, 3, ␣, ␣

Note that, due to the absence of bounds on the size of the communication
buffers, the transition system associated to a contract may sometimes be infinite.

Definition 3 (Error Configurations). Let C0, C1 be two contracts such that
C1 = C). A configuration γ = (q0, q1, w0, w1) of C0 is called a message leak if
q0 = q1 ∈ F and w.w′ 6= ␣, and an unspecified reception if there is i ∈ {0, 1}
such that wi = m.w′i for some w′i, and m 6∈ choices(Ci, qi).

Definition 4 (Valid Contracts). A contract C is valid if all reachable con-
figurations are neither message leaks nor unspecified receptions.

In a previous work, we proposed sufficient conditions ensuring that a contract
is valid. A contract is said positional if there are no q, q1, q2, a1, a2 such that q !a1−−→
q1 and q ?a2−−→ q2. A contract that is both deterministic and positional prevents
unspecified receptions [19]. They are moreover realisable in a certain sense, as
shown by Stengel and Bultan [17]. A state is said synchronizing if all cycles going
through this state contain at least a send and a receive transition. A contract
that is deterministic, positional, and whose final states are synchronizing, is a
valid contract [19]. Moreover, if all states are synchronizing, then the transition
system is ensured to be finite, since communication buffers are then bounded by
the length of the largest elementary cycle of the contract.

All the example contracts presented in this work are valid contracts for these
reasons.

3 Separation Logic

Being based on Separation Logic, our proof system will ensure that every proved
program follows some locality principles. If we were to consider a proof system
without sharing, these locality principles could be summarized as follows:
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Ownership hypothesis Each program component (procedure or thread) owns
a subpart of the heap: it only reads and update that part of the heap.

Separation property At any point in the execution, each cell is owned by
either exactly one thread, or by a message stored in in a queue.

Example 4. In the program of Ex. 1, put and get own disjoint parts of the heap:
initially, put owns the endpoint e and the cell x, whereas get owns the endpoint
f. During execution, the ownership of x is transferred from put to the message
cell, and ultimately to get, which justifies its disposal by get.

3.1 Assertions: Overview

State assertions convey information on the part of the heap that is owned by the
thread it refers to. Basic state assertions should thus describe the ownership of
a cell or an endpoint. For cells, we simply adopt the usual predicate x 7→ (v1, v2)
that specifies that the cell at address x is allocated, contains v1 in the first field,
and v2 in the second one. For endpoints, we introduce a new predicate e ep7→C〈a〉
that accounts for the ownership of an endpoint e ruled by a contract C, and
currently in a state a of C.

Example 5. The example code below features the annotations that formalizes the
explanations given in Example 4. Separation formulas appear in square brackets:
x 7→ − denotes the ownership of a cell x, emp indicates that nothing is known
to be allocated (or, alternatively, that nothing in the heap is owned at this
program’s point), and the separating conjunction ∗ adds up disjoint pieces of
owned heap.
message cell (x)

[
x 7→ −

]

contract C {
{ initial state a {!cell->b;};
final state b {};

}
main()

[
emp

]
{

(e,f)=open(C);x=new(); {put(e,x);||get(f);}; close(e,f);
}
[
emp

]

put(e,x)
[
e

ep7→C〈a〉 ∗ x 7→ −
]
{send(cell,e,x);}

[
e

ep7→C〈b〉
]

get(f)
[
f

ep7→C〈a〉
]
{y=receive(cell,f);dispose(y);}

[
f

ep7→C〈b〉
]

The contract described in the code is just the contract C1 of Example 3, in
a Sing#-like syntax.

3.2 Assertions: Formal Definition

We consider Boyland’s model of fractional permissions Π , (0, 1] [4], essentially
for simplicity, but any other permission model could be used instead in the
following. Let us recall that permissions are equipped with a partial composition
+, that a permission of 1 is the “total” or “write” permission, and a permission
π < 1 is called a “partial” or “read” permission.
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The set of formulas is as follows, assuming an additional set of logical vari-
ables LVar , {X,Y, . . . }:5

A ::= emps | ownπ(x) | E = E stack predicates
| emph | E 7→π (E,E) | . . . heap predicates
| empep | E

ep7→(Cπ〈.〉, E) | E ep7→(Cπ〈qπ〉, E) buffer predicates
| ¬A | A ∧A | ∃X.A | A ∗A connectives

Intuitively, E ep7→(Cπ〈.〉, E′) represents the partial ownership of an endpoint E
with contract C and peer E′, but no ownership of its state, and E ep7→(Cπ〈qπ

′〉, E′)
the same endpoint with a partial ownership π′ of its state. For simplicity, we will
not use the first predicate in any examples, and we will write E ep7→π(C〈q〉, E′)
for E ep7→(Cπ〈qπ〉, E′). As usual, we omit the permission subscript to mean that
it is 1, and write emp for emph∧empep , E 7→ (−,−) for ∃X,Y.E 7→ (X,Y ). Free
logical variables are existentially quantified. When O = x1, . . . , xn, we write as
usual OA as a shorthand for (own(x1) ∗ . . . ∗ own(xn))∧A. In some examples,
we will omit part of the formula for conciseness: the O . . . part of the formula,
the wildcard, or the exact peer of an endpoint are often left to the attention of
the reader.

We will assume a fixed environment Γ that associates contracts to contract
identifiers, and precise formulas to message identifiers. The footprint formu-
las (those annotating message identifiers) may use the special variable src that
will be interpreted as the endpoint that sends the message. We will often write
Im(src,−→x ) for the footprint formula of m, where −→x are the message parameters.

3.3 Local states

We give a forcing semantics to the previous formula with respect to a memory
state model that does not model queue contents, and will be later enriched for
providing an operational semantics to our toy programming language.

Local states are tuples (s, h, k̇) of ˙State:

˙State , Stack× Heap× IQueue Stack , Var ⇀fin Π × Val

Heap , Cell ⇀fin Π × Val× Val

IQueue , Endpoint ⇀fin Endpoint×Π × Ctt× ({.}+Π × Control)

We define the peer function mate(σ̇) : Endpoint ⇀ Endpoint, for σ̇ = (s, h, k̇),
as the function with the same domain as k̇ such that mate(k̇)(ε) = ε′ if k̇(ε) =
(ε′,−,−,−). We define the functions contract(σ̇) and cstate(σ̇) similarly. We only
consider well-formed states, namely states σ̇ = (s, h, k̇) for which:

5 For conciseness, we do not introduce recursive predicates for the heap as we do not
need them in our examples, but they would not cause any problem for soundness.
Some of them, like lists, trees, or doubly-linked lists are supported by Heap-Hop.
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– For all allocated ε, if mate(σ̇) = ε′ is allocated, then contract(σ̇)(ε) and
contract(σ̇)(ε′) are dual.

– There is a total function f : Endpoint→Endpoint extending mate(σ̇) such
that f2 = IdEndpoint and f(ε) 6= ε for all ε ∈ Endpoint.

Two local states σ̇ = (s, h, k̇) and σ̇′ = (s′, h′, k̇′) are orthogonal, written
σ̇⊥σ̇′, if:
– for all x ∈ dom(s) ∩ dom(s′), if s(x) = (π, v) and s′(x) = (π′, v′), then
π + π′ ≤ 1 and v = v′;

– for all l ∈ dom(h)∩dom(h′), if h(l) = (π, v1, v2) and h′(l) = (π′, v′1, v
′
2), then

π + π′ ≤ 1, v1 = v′1, and v2 = v′2;
– for all ε ∈ dom(k̇) ∩ dom(k̇′), mate(σ̇)(ε) = mate(σ̇′)(ε), contract(σ̇)(ε) =

contract(σ̇′)(ε), permissions can be added, and if both defined, cstate(σ̇)(ε)
and cstate(σ̇′)(ε) are equal, with permission sum ≤ 1.

Two orthogonal local states σ̇, σ̇′ can be composed to form a local state σ̇1 • σ̇2
in the usual way. For instance, the store s of this composition is defined by

– s(x) = s1(x) if x ∈ dom(s1)\dom(s2),
– s(x) = s2(x) if x ∈ dom(s2)\dom(s1),
– s(x) = (π1 + π2, v) if x ∈ dom(s2) ∩ dom(s1), s1(x) = (π1, v) and s2(x) =

(p2, v)
– s(x) is undefined otherwise

Local states equipped with • form a separation algebra [5], i.e. a commutative
cancellative partial monoid, with unit u̇ = (∅, ∅, ∅). The restriction of this alge-
bra to well-formed states (in particular, two states are orthogonal only if their
composition is well-formed), is still a separation algebra.

Given two local states σ̇1 and σ̇2, σ̇1 is a substate of σ̇2, written σ̇1 � σ̇2, if
there is σ̇ such that σ̇1 • σ̇ = σ̇2. In this case, σ̇ is unique (as ˙State is a separation
algebra), thus we can write σ̇2 − σ̇1 for the only such σ̇. The binary relation �
is a partial order which enjoys the following property: any bounded, increasing
sequence (σ̇i)i≥0 admits a lub, and • is a continuous operator.

Finally, we interpret formulas against well-formed local states. Let JEKs de-
note the semantics of E with respect to s, i.e. JxKs = s(x) and JvKs = v.

(s, h, k̇) � emps iff s = ∅
(s, h, k̇) � ownπ(x) iff s(x) = (π,−)

(s, h, k̇) � E1 = E2 iff JE1Ks = JE2Ks
(s, h, k̇) � emph iff h = ∅
(s, h, k̇) � E 7→π (E0, E1) iff h(JEKs) = (π, JE1Ks, JE2Ks)
(s, h, k̇) � empep iff k̇ = ∅
(s, h, k̇) � E ep7→(Cπ〈.〉, E′) iff k̇(JEKs) = (π,C, JE′Ks, .)
(s, h, k̇) � E ep7→(Cπ〈qπ

′〉, E′) iff k̇(JEKs) = (π,C, JE′Ks, π′, q)
σ̇ � ¬A iff σ̇ 6|= A
σ̇ � A1 ∧A2 iff σ̇ � A1 and σ̇ � A2

σ̇ � A1 ∗A2 iff there are σ̇1, σ̇2 such that
σ̇ = σ̇1 • σ̇2, σ̇1 � A1, and σ̇2 � A2

11



We say that A entails B, and write A ` B if, for all well-formed local state
(s, h, k̇), if (s, h, k̇) � A, then (s, h, k̇) � B.

3.4 Proof Rules

Let us briefly review all standard proof rules of Separation Logic, recalled on
Fig. 1.

– Skip: The program has already reached its final state. Using the frame rule,
one can derive {A} skip {A} for any A.

– Assume: If the test is successful, the program terminates. The stack must
contain the variables involved in the test.

– Assign: If the expression E can be read and variable x can be written, the
value of x is updated to be the same as E.

– Lookup and Mutate: Similar, except that E (resp. E1) must point to an
allocated location.

– New and Dispose: Change an empty heap into a singleton heap and vice-
versa.

– Sequence: This is the classical Floyd-Hoare rule for composing programs
sequentially: the post-condition of the first program must be a valid precon-
dition of the second one.

– Parallel: The rule for parallel composition accounts for disjoint concur-
rency: one has to be able to partition the heap into two disjoint portions
that are valid respective preconditions for each of the two threads. The re-
sulting post-conditions are glued together to form the post-condition of their
parallel composition.

– Choice and Star are standard.
– Local: The rule allocates a new variable z which is used to prove p. The

variable must be tracked throughout the proof of p and still be present at
the end, when it is disposed.

– Frame This rule states that, whenever the execution of a program from a
certain heap does not produce memory faults, it will not produce memory
faults from a bigger heap either (a property called safety monotonicity), and
the extra piece of heap will remain untouched by the program throughout
its execution (a property called locality). With the frame rule, one can re-
strict the specification of programs to the cells they actually access (their
footprint [16]). This also justifies that we can give the axioms for atomic
commands in a very minimalistic way.

– Weakening is the standard Floyd-Hoare rule, whose soundness follows di-
rectly from the definition of what a valid Hoare triple is.

– Conjunction, Disjunction, and Existential are straightforward.

Let us now review the new rules supporting message-passing primitives.

Channel allocation and deallocation The rules for allocation and disposal are
quite symmetric: open produces two fully owned, peered endpoints, whereas close

12



Skip

{emp} skip {emp}

Assume

{var(B)π  emp} assume(B) {var(B)π B ∧ emp}

Assign
{x, var(E)π  E = X ∧ emp} x =E {x, var(E)π  x = X ∧ emp}

Lookup
{x, var(E)π  E = Y ∧ Y 7→ (X0, X1)} x =E.i {x, var(E)π  Y 7→ (X0, X1) ∧ x = Xi}

Mutate
{var(E1, E2)π  E1 7→ (−,−) ∧ E2 = Xi} E1.i=E2 {var(E1, E2)π  E1 7→ (X0, X1)}

New
{x  emp} x = new() {x  x 7→ (−,−)}

Dispose
{var(E)π  E 7→ (−,−)} dispose(E) {var(E)π  emp}

Sequence
{A} p {A′} {A′} p′ {B}

{A} p; p′ {B}

Parallel
{A} p {B} {A′} p′ {B′}
{A ∗A′} p || p′ {B ∗B′}

Choice
{A} p {B} {A} p′ {B}

{A} p+ p′ {B}

Star
{A} p {A}
{A} p∗ {A}

Local
{own(z) ∗A} p[x←z] {own(z) ∗B}

{A} local x in p {B} z /∈ freevar(A, p,B)

Frame
{A} p {A′}

{A ∗B} p {A′ ∗B}

Weakening
A′ ⇒ A {A} p {B} B ⇒ B′

{A′} p {B′}

Conjunction
{A1} p {B1} {A2} p {B2}
{A1 ∧A2} p {B1 ∧B2}

Disjunction
{A1} p {B1} {A2} p {B2}
{A1 ∨A2} p {B1 ∨B2}

Existential
{A} p {B}

{∃X.A} p {∃X.B}

Figure 1: Standard proof rules.
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consumes them. The former guarantees that they are in the initial state, while
the latter requires them to be in a same final state.

Open
q0 = init(C)

{e, f  emp} (e, f) = open(C) {e, f  e ep7→(C〈q0〉, f) ∗ f ep7→(C〈q0〉, e)}

Close
q ∈ final(C)

{var(E,E′)π  E ep7→(C〈q〉, E′) ∗ E′ ep7→(C〈q〉, E)} close (E,E’) {var(E,E′)π  emp}

Send and receive The rules for sending and receiving are also quite symmetric,
but slightly more complicated. Send and receives indeed perform to changes
on the owned heap: one the one hand they update the endpoint’s state, and
on the other hand, they acquire or release the ownership on the footprint of
the message they deal with. If we do not want to consider reflexive ownership
transfers, these two operations commute, as they touch disjoint part of the heap.
But for supporting reflexive ownership transferring, we need to fix some order
between both operations, and treat them with distinct rules.

To solve this issue, we use a pseudo-instruction skipEλ,E′ , whose role is to
change the contract’s state of E, whose peer is at the address E’, with respect
to the action λ, and to check that the transition is indeed authorized by the
contract. Updating a contract state requires either a partial permission if the
state is left unchanged, or a total permission otherwise. The pseudo instruction
skipEλ,E′ is triggered by another rule, whose role is to account for the ownership
transfer of the message footprint.

Send
{var(E,−→F )π A} skipE!m,E′ {var(E,−→F )π B ∗ Im(E,

−→
F )}

{var(E,−→F )π A} send(m,E,F1,..,Fn) {var(E,−→F )π B}

Receive
{−→x , var(E)π A ∗ Im(E′,−→x )} skipE?m,E′ {−→x , var(E)π B}
{−→x , var(E)π A} (x1 ,.., xn) = receive(m,E) {−→x , var(E)π B}

SkipLabel
succ(C, q,m) = q′ q = q′ ∨ π = 1 O = var(E,E′)π

{O  E ep7→(Cπ′〈qπ〉, E′)} skipEλ,E′ {O  E ep7→(Cπ′〈q′π〉, E′)}

Note that, in the send case, the footprint of the message is transferred after
the endpoint’s state has been updated, and that it may contain the endpoint
itself, and that conversely, in the receive case, the footprint of the message is
transferred before the endpoint’s state is checked and updated, and that the
footprint may also contain the endpoint itself.
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Switch/Case Finally, two new rules address the switch/case construct: the first
rule dispatches switches on different endpoints in different subproofs, the second
addresses switch/case on a unique endpoint only: in that case, this endpoint
must be owned (at least partially), and the switch is checked to be exhaustive
with respect to the possible incoming messages at the contract’s state.

SwitchDispatch
{A} switch cases1 {B} {A} switch cases2 {B}

{A} switch cases1,cases2 {B}

SwitchExhaust
choices(C, q) ⊆ {m1, . . . ,mn}

{E ep7→
π
(C〈q〉, E′) ∗A} −→xi = receive(mi, E); pi {B} for all i

{E ep7→
π
(C〈q〉, E′) ∗A} switch{. . . ,−→xi = receive(mi, E) : pi, . . . } {B}

Notation We will write `Γ {A} p {B} to denote that the Hoare triple {A} p {B}
has a proof in our proof system.

4 Examples

Negociated connection Let us first consider a model of a negociated connection.
A server offers a service on a fixed ip address, modeled as a endpoint location
– we assume a primitive bind(ip) that allocates two endpoints, one of which is
allocated at location ip. The server listens for connection requests on the peer
of the endpoint ip. No client owns the endpoint ip, but it can try to receive on
it; if it succeeds, it gets the right to negociate a connection with the server. The
client and server can be modeled as follows

server (){
local f,e’;[
emp

]
f:= bind(ip);[
ip

ep7→(C〈1〉, f) ∗ f ep7→(C〈1〉, ip)
]

listen(f);[
f

ep7→(C〈2〉, ip)
]

while(true) {
e’:= accept(f);[
f

ep7→(C〈2〉, ip) ∗ e′ ep7→C′〈q0〉
]

spawn service(e’);[
f

ep7→(C〈2〉, ip)
]

}
}

client (){
local f’;[
emp

]
f’:= connect(ip);[
f ′

ep7→C′〈q0〉
]

run_service(f’);
}

// Connection ’s Contract
contract C {

initial final state 1
{? is_listening ->2;};

state 2 {!connect - >1;};
}
// Service ’s contract
contract C’ {

initial state q0 . . .
}
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When the server starts listening, he releases the ownership of ip by sending it
towards itself – this is the purpose of the is_listening message. To make a con-
nection, a client gets this message, and then send a connection request’s message
(message connect) over ip. For simplicity, we assume that the server accepts any
connection request. The connection request thus contains one endpoint allocated
by the client to be used by the server to open the service with this client, and it
also transfers back the ownership of ip.

message is_listening[
− ep7→(C〈1〉, src)

]
message connect(ep)[
− ep7→(C〈2〉, src) ∗ ep ep7→C′〈q0〉

]
listen(f){

local e’;[
ip

ep7→(C〈1〉, f) ∗ f ep7→(C〈1〉, ip)
]

send(is_listening ,f);[
f

ep7→C〈2〉
]

}

accept(f){
local e’;[
f

ep7→C〈2〉
]

e’:= receive(connect ,f);[
f

ep7→(C〈2〉, ip) ∗ ip
ep7→(C〈2〉, f)

∗ e′ ep7→C′〈q0〉
]

send(is_listening ,f);

return e’;
{f ep7→C〈2〉 ∗ e′ ep7→C′〈q0〉}

}
connect(ip){

local e’,f’;[
emp

]
receive(is_listening ,ip);[
ip

ep7→C〈2〉
]

(e’,f’) := open(C’);[
ip

ep7→C〈2〉 ∗ e′
ep7→(C′〈q0〉, f ′)

∗ f ′ ep7→(C〈q0〉, e′)
]

send(connect ,ip ,e’);[
f ′

ep7→C〈q0〉
]

return f’;
}

Multicast Consider the following implementation of multicast primitives (limited
here to two clients, for simplicity).
multicast_send(x,y)

[
msnd(x) ∗ I(y) ∗ I(y)

]
{

send(token,x.0,y,2); receive(ack,x.1)
}
[
msnd(x)

]

multicast_recv(x)
[
mrcv(x)

]
{

local n; (y,n) = receive(token,x.1);
if n=2 then send(token,x.0,y,1) else send(ack,x.0);
return y;

}
[
mrcv(x) ∗ I(y)

]

To prove this code, I(.) can be any predicate, C must be the contract
contract C { 2

!token−→ 1
!token−→ 0

!ack−→ 2 }, and

mrcv(x) , x 7→0.25 (−,−)
msnd(x) , x 7→0.5 (X0, X1) ∗X0

ep7→(C〈2〉, X1) ∗X1
ep7→(C〈2〉, X0),

Itoken(y, n) , I(y)n ∗ x 7→0.5 (X0, X1) ∗X0
ep7→(C〈n− 1〉, X1) ∗X1

ep7→(C〈n〉, src)

Iack , x 7→0.5 (X0, X1) ∗X0
ep7→(C〈2〉, X1) ∗X1

ep7→(C〈0〉, src).
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Let us stress that the Itoken footprint is implicitly a disjunction on the
value of n. The proof of the receive(token,x.1) instruction thus invokes first
the receive rule, then the disjunction rule, and finally the skipEλ,E′ rule, which
would not have been possible if the rules for send and receive did not use the
pseudo instruction skipEλ,E′ .

Synchronization barriers Consider the following implementation of a multiple-
usage barrier synchronizing N threads. We write FN to denote F ∗ · · · ∗ F︸ ︷︷ ︸

N times
.

x = new_barrier()
[
emp

]
{

x = new(); (x.0,x.1) = open(C); send(token,x.0,0)
}
[
barrier(x)

]

barrier_wait(x)
[
barrier 1

2N
(x) ∗ IN

]
{

local n = receive(token,x.1);
if n=N-1 then send(ack,x.0,n) else {
send(token,x.0,n+1);
n = receive(ack,x.0);
if n=0 then send(token,x.0,0) else send(ack,x.1,n-1)

}
}
[
barrier 1

2N
(x) ∗ OUT

]

dispose_barrier(x)
[
barrier(x) ∗ OUTN

]

receive(token,x.1); close(x.0,x.1); dispose(x);
}
[
OUTN

]

To prove this code, the formulas IN, OUT in the specification should be any
formulas such that INN ` OUTN and OUTN ∗ IN ` ⊥, and the following contract
and auxiliary specifications should be used:

contract C { initial state s.0; final state s.1;
state s.0=r.0 {!token ->s.1} state s.N=r.N {?ack ->r.(N-1)}
state s.i (0<i<N) {!token ->s.(i+1)}
state r.i (0<i<n) {?ack ->r.(i-1)}}

barrierπ(x) , x 7→π (−,−)
Itoken(n) , INn ∗ x 7→0.5 (X0, X1) ∗X0

ep7→(C〈sn+1〉, X1) ∗X1
ep7→(C〈sn〉, src)

Iack(n) , OUTn ∗ x 7→0.5 (X0, X1) ∗X0
ep7→(C〈rn〉, src) ∗X1

ep7→(C〈rn+1〉, X0)

Internal choice In order to illustrate permission-based sharing and switch/case
rules, consider the following encoding of internal choice

choice(p1, p2) , local e, f in {(e, f)=open(C); {send(token,e) || p′1 || p
′
2}}

where e, f 6∈ fv(p1, p2), and p′i is defined parametrically in the program pi by

switch { case receive(token ,f): {send(notoken ,e); pi}
case receive(notoken ,f): {close(e,f)}}
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It can be checked that {A} choice(p1, p2) {B} is derivable from {A} p1 {B} and
{A} p2 {B}, giving to each process half of the ownership on the endpoint f, and
using the following contract and footprint:

contract C { initial state 0 {!token→0; !notoken→1} final state 1;}

Itoken , src
ep7→(C〈0〉, f) Inotoken , src

ep7→(C〈1〉, f) ∗ f ep7→
0.5

(C〈0〉, src)

Locks Our last example features an encoding of locks in the heap. The lock is
accessed by x, and protects a resource I(.) parametrized by y:
contract C{ initial state 0 {!token->0; !stop->1} final state 1 {}}

new_lock(y;x)
[
I(y)

]
{

x=new(); (x.0,x.1) = open(C);
}
[
handle(x) ∗ locked(x) ∗ I(y)

]

dispose_lock(x,y);
[
handle(x) ∗ locked(x) ∗ I(y)

]
{

send(stop,x.0); receive(stop,x.1); close(x.0,x.1); dispose(x);
}
[
I(y)

]

acquire(x,y)
[
handleπ(x)

]
{

receive(token,x.0);
}
[
handleπ(x) ∗ locked(x) ∗ I(y)

]

release(x,y)
[
handleπ(x) ∗ locked(x) ∗ I(y)

]
{

send(token,x.1);
}
[
handleπ(x)

]

locked(x) , x 7→0.5 (X0, X1) ∗X0
ep7→(C〈0〉, X1) ∗X1

ep7→(C〈0〉, X0)

handleπ(x) , x 7→π/2 (−,−) Itoken , locked(x) ∗ I(y) Istop , emp

Let us stress some subtleties of this encoding and proof:

– We could have derived a proof with permission-based sharing, where end-
points would be part of the handle, and message token would transfer I(y)
solely; however, this would not ensure that locked(x) ∗ locked(x) ` ⊥, which
would accept a larger amount of programs with deadlocks.

– The stop message is needed to make contract C valid. Without it, we would
not be able to guarantee the absence of orphan messages just from the se-
mantics of the CFSM associated to C, and the particular content of message
token would have to be part of the argument for the absence of orphan mes-
sages. Such a stop message brings to mind the way channels are sometimes
closed one endpoint after the other.
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5 Operational Semantics

We now provide an operational semantics to our toy programming language
following Villard’s thesis [19]. The operational semantics is a binary relation on
pairs p, σ, where σ is a global state modeling queue contents. We start by defining
this object and handy notions related to it.

5.1 Global and Open States

Global states We call global state an element k ∈ ˚EHeap, where

˚EHeap , Endpoint→ Endpoint× ˚Buffer ˚Buffer , (MsgId× Val∗ × ˙State)∗

When k(ε) = (ε′, buf ), we write buffer(k)(ε) for buf . We define mate(k) similarly.

Definition 5 (Well-formed global state). A global state k is well-formed if

– for all ε ∈ dom(k), mate(k)(mate(k)(ε)) = ε 6= mate(k)(ε);
– the set of ε such that buffer(k)(ε) 6= ␣ is finite.

Definition 6 (Environment consistency). A global state k is consistent with
an environment Γ , written Γ ` k, if, for all ε, buf , ε′,m,−→v , σ̇, if (m,−→v , σ̇) ∈ buf
and k(ε) = (ε′, buf ) then σ̇ � Im(ε′,−→v ).

Open states We call open state a pair σ = (σ̇, k) where σ̇ is a local state and k
a global state.

Definition 7 (Flattable state). An open state σ = (σ̇, k) is flattable if all
local states in

LSσ , {σ̇} ∪ {σ̇m : (m, v, σ̇m) ∈ buffer(k, ε), ε ∈ dom(k)}

are pairwise compatible.

Let emp(k) be the global state obtained by setting all the footprints to u̇,
i.e. by the lifting to k of the function (a, v, σ̇) 7→ (a, v, u̇).

Definition 8 (Flattening). The flattening flat(σ) of a flattable open state is
defined as

flat(σ̇, k) ,
( ⊙

σ̇′∈LSσ
σ̇′, emp(k)

)
.

Note that flat(flat(σ)) = flat(σ).
We can now give the definition of well-formed open states, which imposes

two restrictions on the flattening of the states additionally to the requirement
imposed by the flattening operation itself.

Definition 9 (Well-formed open states). An open state σ = (σ̇, k) is well-
formed if:
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– k is well-formed
– it is flattable, flat(σ) = ((sf , hf , k̇f ), kf ), and
– (sf , hf , k̇f ) is well-formed, and
– mate(k) is an extension of mate(k̇f ).

We define a partial composition on well-formed open state: (σ̇1, k1) and
(σ̇2, k2) are orthogonal if σ̇1⊥σ̇2, k1 = k2 = k, and σ = (σ̇1 • σ̇2, k) is well-
formed. In that case, their composition is σ. It can be noticed that well-formed
open states equipped with this partial composition form a separation algebra
with multiple units [7].

Coherence Between Local and Global States

Definition 10 (Set of configurations of a global state). Let k be a well-
formed global state. To any pair (ε, ε′) of endpoints such that mate(k)(ε) = ε′, we
associate the set of CFSM configurations CONFS(k, ε, ε′) , Q×Q×{w}×{w′},
where w,w′ ∈ Σ∗ × Σ∗ are defined by applying the projection (MsgId × Val∗ ×

˙State)→ MsgId to the buffers of ε and ε′.

Definition 11 (Set of configurations of a local state). Let σ̇ be a local state.
To any pair of endpoint (ε, ε′), we associate the set of CFSM configurations

CONFS(σ̇, ε, ε′)

,{(q, q′, w, w′) : cstate(σ̇)(ε) = q if defined, and cstate(σ̇)(ε′) = q′ if defined}

Definition 12 (Set of configurations of an open state). Let (σ̇, k) be a
flattable open state, and flat(σ̇, k) = (σ̇f , kf ). To any pair of endpoints (ε, ε′)
such that mate(k)(ε, ε′), we associate the set of CFSM configurations

CONFS((σ̇, k), ε, ε′) , CONFS(σ̇f , ε, ε
′) ∩ CONFS(k, ε, ε′)

We write CONFSwf (C) for the set of configurations of C that are reachable
from the initial configuration.

Definition 13 (Coherence global-local). A global state k is coherent with a
local state σ̇, written Γ ` k . σ̇, if (σ̇, k) is flattable, flat(σ̇, k) = (σ̇f , kf ), and
for all pair of endpoint (ε, ε′) such that mate(k)(ε) = ε′ and contract(σ̇f )(ε) is
defined and equal to C,

CONFS((σ̇, k), ε, ε′) ∩ CONFSwf (C) 6= ∅.

5.2 Towards Operational Semantics

For a flattable open state σ, the set of allocated variables and cells (but not
the set of allocated endpoints) depends on the portions of state stored inside
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the buffers, hence on the flattening flat(σ) = ((sf , hf , k̇f ), k) of σ. We use the
following notations:

valloc(σ) , dom(sf )

calloc(σ) , dom(hf )

ealloc(σ) , dom(k̇f ) ∪ {ε : buffer(k)(ε) 6= ␣}
cstate(σ) , cstate(k̇f )

contract(σ) , contract(k̇f )

We define shorthands to describe updates in the global state. If k(ε) = (ε′, α̊),
we write [k | buffer(ε)←α̊′] for [k | ε : (ε′, α̊′)]; if k̇(ε) = (ε′, C, r, q), we write
cstate(k̇, ε) for q, role(k̇, ε) for r, and [k̇ | cstate(ε)←q′] for [k̇ | ε : (ε′, C, r, q′)].

We will implicitly consider programs up to a structural congruence relation
that treats internal choice +, parallel composition ‖, and case composition as
commutative and associative, and sequential composition ; as associative.

The operational semantics implicitly depends on the context Γ , and is of the
form

p, σ
Γ−→
p
p′, σ′ or error .

where σ is assumed in the definition to be flattable (and we will later prove that
σ′ is flattable as well). The p subscript emphasizes the fact that the transition
comes from the program, as the semantics also includes interferences from the
environment, of the form

σ
Γ−→
e
σ′

to account for messages being sent or received by the other end of a dangling
channel (that is, a channel where one end is owned by the program but the other
one is not).

The dependence of the semantics in Γ is clearly unrealistic. However, since
our semantics will send flattable open states to flattable open states, it is easy
to define a semantics that does not depend on Γ , faults less often, and simulates
our semantics up to flattening.

Our semantics may raise the following errors:

OwnError indicates an ownership error : the program has tried to access a
resource it does not currently own, be it a variable, a memory cell or an
endpoint;

MsgError indicates a message error : either during a reception, an unexpected
message is present at the head of a receive buffer, or during closure, one
buffer is not empty.

ProtoError indicates that the program is not contract obedient, either because
it performs a communication that is not allowed by the contract, or because
it closes a channel without having both peers in a final state, or because a
switch/case is not exhaustive.

21



We write error for one of OwnError,MsgError or ProtoError in the
rules that propagate an error throughout the programming constructs.

Explicit error detection is a rather unrealistic aspect of the semantics, because
threads would not normally fault when merely trying to access the same mem-
ory location, and may or may not fault when receiving an unexpected message
depending on the implementation. Our semantics can be seen as a “truncation”
of a more permissive semantics, for which some states might be reached going
through what we consider here as error states. Such a more permissive semantics
would still ensure the soundness of the proof system, since proved programs do
not go through these error states at any step of their computation.

For conciseness purposes, and whenever possible, we describe all the cases
where executing a command will produce an ownership violation together with
the reduction where the command executes normally. We do so by putting the
premises that are necessary for the command not to fault in boxes . A boxed
premise means that there is an additional reduction to OwnError from a state
where the premise is either false or undefined.

Consider for instance the rule for memory lookup:

s(x) = (1,−) JEKs = l h(l) = (−, v0, v1)

x =E.i, ((s, h, k̇), k)
Γ−→
p

skip, (([s | x : (1, vi)], h, k̇), k)

It indicates that x =E.i will fault whenever x or one of the variables in E is not
present in the current stack with enough permission, or E does not evaluate to
an address present in the heap. Thus, this rule stands for the following four rules:

x ∈ dom(s) s(x) = (1, l) h(l) = (−, v0, v1)

x =E.i, ((s, h, k̇), k)
Γ−→
p

skip, (([s | x : (1, vi)], h, k̇), k)

x, var(E) * dom(s)

x =E.i, ((s, h, k̇), k)
Γ−→
p

OwnError

s(x) = (π, l) π < 1

x =E.i, ((s, h, k̇), k)
Γ−→
p

OwnError

JEKs = l l /∈ dom(h)

x =E.i, ((s, h, k̇), k)
Γ−→
p

OwnError

5.3 Stack and heap commands.

For the stack and heap commands and constructs, the semantics is derived
straightforwardly from the usual semantics, ignoring (almost) the global state.
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JBKs = true

assume(B), ((s, h, k̇), k)
Γ−→
p

skip, ((s, h, k̇), k)

s(x) = (1,−) JEKs = v

x =E, ((s, h, k̇), k)
Γ−→
p

skip, (([s | x : (1, v)], h, k̇), k)

s(x) = (1,−) l ∈ Cell \ calloc((s, h, k̇), k)) v ∈ Val

x = new(), ((s, h, k̇), k)
Γ−→
p

skip, (([s | x : (1, l)], [h | l : (1, v0, v1)], k̇), k)

JEKs = l h(l) = (1,−,−)

dispose(E), ((s, h, k̇), k)
Γ−→
p

skip, ((s, h \ l, k̇), k)

s(x) = (1,−) JEKs = l h(l) = (−, v0, v1)

x =E.i, ((s, h, k̇), k)
Γ−→
p

skip, (([s | x : (1, vi)], h, k̇), k)

JE1Ks = l JE2Ks = v

h(l) = (1, v0, v1) (i = 0 ∧ v′0 = v ∧ v′1 = v1) ∨ (i = 1 ∧ v′0 = v0 ∧ v′1 = v)

E1.i=E2, ((s, h, k̇), k)
Γ−→
p

skip, ((s, [h | l : (1, v′0, v
′
1)], k̇), k)

Note that the semantics of new is the only one that depend on the global
state, namely to avoid reusing a location that may be hidden in the contents of
a buffer (which could result in a non-flattable state).

5.4 Channel Creation and Destruction

The semantics of open and close takes the protocol of the channel into account:
open initializes it, and close raises a protocol error if the channel is closed in a
non-final state of the contract. If the buffers of a closed channel are not empty,
it raises a message error. If the endpoints given as arguments to close do not
form a channel, an ownership error is raised. Like new, open takes care not to
reallocate a location already present in one of the buffers, so as not to create a
non-flattable state.
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s(e) = (1,−) s(f) = (1,−)

ε, ε′ ∈ Endpoint \ ealloc((s, h, k̇), k) mate(k)(ε) = ε′ q0 = init(C)

s′ = [s | e : (1, ε), f : (1, ε′)] k̇′ = ε 7→ (1, ε′, C, (1, q0)), ε′ 7→ (1, ε, C, (1, q0))

(e, f) = open(C), ((s, h, k̇), k)
Γ−→
p

skip, ((s′, h, k̇ ∪ k̇′), k)

JE1Ks = ε1

JE2Ks = ε2 k̇(ε1) = (1, ε2,−,−) k̇(ε2) = (1, ε1,−,−)

close (E1,E2), ((s, h, k̇), k)
Γ−→
p

skip, ((s, h, k̇ \ {ε1, ε2}), k)

JE1Ks = ε1 JE2Ks = ε2 buffer(k)(εi) 6= ␣ for some i

close (E1,E2), ((s, h, k̇), k)
Γ−→
p

MsgError

JE1Ks = ε1 JE2Ks = ε2 k̇(ε1) = (1, ε2, C, (1, q1))

k̇(ε2) = (1, ε1, C, (1, q2)) q1 6= q2 or q1 /∈ finals(C)

close (E1,E2), ((s, h, k̇), k)
Γ−→
p

ProtoError

5.5 Sending and Receiving Messages

The semantics of send and receive is decomposed into an ownership transfer
and the update of the endpoint’s state. Any of these two steps may fail: the
ownership transfer may fail in the send case because a message required by the
environment Γ is not available, which raises an ownership error. The update
of the endpoint’s state may fail, either because the endpoint is not owned with
enough permission, which raises an ownership error, or because the contract does
not allow the action λ, which raises a protocol error.

24



JEKs = ε J−→F Ks = −→v k(ε) = (ε′, α̊) σ̇m � Im(ε,−→v )

skipε!m,ε′ , (σ̇, k)
Γ−→
p

skip, (σ̇′ • σ̇m, k) k′ = [k | buffer(ε′)←α̊.(m,−→v , σ̇m)]

send(m,E,
−→
F ), (σ̇, k)

Γ−→
p

skip, (σ̇′, k′)

JEKs = ε J−→F Ks = −→v mate(k)(ε) = ε′

∀.σ̇m � σ̇′, σ̇m 6� Im(ε,−→v ) skipε!m,ε′ , (σ̇, k)
Γ−→
p

skip, (σ̇′, k)

send(m,E,
−→
F ), (σ̇, k)

Γ−→
p

OwnError

JEKs = ε s(x1) = (1,−), · · · , s(xn) = (1,−)

k(ε) = (ε′, (m,−→v , σ̇m).α̊) s′ = [s | −→x :
−−−→
(1, v)] k′ = [k | buffer(ε′)←α̊]

−→x=receive(m,E), ((s, h, k̇), k)
Γ−→
p

skipε?m,ε′ , ((s
′, h, k̇) • σ̇m, k′)

k̇(ε) = (π, ε′, C, (π′, q))

q = q′ or π′ = 1 allowed(C, q, λ, q′) k̇′ = [k̇ | cstate(ε)←q′]

skipελ,ε′ , ((s, h, k̇), k)
Γ−→
p

skip, ((s, h, k̇′), k)

k̇(ε) = (π, ε′, C, (π′, q)) 6 ∃q′. allowed(C, q, λ, q′)

skipελ,ε′ , ((s, h, k̇), k)
Γ−→
p

ProtoError

5.6 External Choice

The reduction rules that treat a switch/case can either succeed and proceed
with one of its branches, or fail, either because the receive is prohibited by the
protocol, or because an unexpected message is present at the head of one of
the inspected buffers, or because, although no unexpected message is necessar-
ily present, the protocol stipulates that a message that is not expected by the
program is possibly available.
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−→xi=receive(mi, Ei)
Γ−→
p

skip, σ′

switch{. . . , case −→xi=receive(mi, Ei) : {pi}, . . . }, σ Γ−→
p
pi, σ

′

JEKs = ε k(ε) = (−, (m′,−,−).α̊) (m 6= m′ or ε 6= ε′)

−→x=receive(m,E), (σ̇, k)
Γ−→
p

WARNING(ε′)

−→xi=receive(mi, Ei)
Γ−→
p

WARNING(JEjKs) for one j and for all i

switch{. . . , case−→xi=receive(mi, Ei) : {pi}, . . . }, σ Γ−→
p

MsgError

JEiKs = ε for all i

k̇(ε) = (−, C,−, (−, q)) choices(C, q) 6⊆ {m1, . . . ,mn}

switch{. . . , case−→xi=receive(mi, Ei) : {pi}, . . . }, σ Γ−→
p

ProtoError

5.7 Programming constructs.

We introduce the predicate ˚race(p1, p2, σ), true if it is impossible to partition σ
into two disjoint substates on which each program can safely make a step.

Definition 14 (Race Detection). ˚race(p1, p2, σ) holds if and only if for all
well-formed open states σ1 and σ2 such that σ1 • σ2 = σ, either p1, σ1

Γ−→
p

OwnError, or p2, σ2
Γ−→
p

OwnError.

This predicate is used to generate ownership error in a special rule handling
parallel composition, which is otherwise described by a standard interleaving
semantics. The semantics of the remaining programming constructs is standard.
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p1 + p2, σ
Γ−→
p
p1, σ p∗, σ

Γ−→
p

skip + (p; p∗), σ

p1, σ
Γ−→
p
p′1, σ

′

p1; p2, σ
Γ−→
p
p′1; p2, σ

′ skip; p2, σ
Γ−→
p
p2, σ

p1, σ
Γ−→
p

error

p1; p2, σ
Γ−→
p

error

˚race(p1, p2, σ)

p1 ‖ p2, σ Γ−→
p

OwnError

p1, σ
Γ−→
p
p′1, σ

′

p1 ‖ p2, σ Γ−→
p
p′1 ‖ p2, σ′

p1, σ
Γ−→
p

error

p1 ‖ p2, σ Γ−→
p

error

v ∈ Val y /∈ valloc(σ) ∪ freevar(p)

local x in p, σ Γ−→
p
p[x←y] ; delete(y), σ[s←s ] {y 7→ v}]

y ∈ dom(s)

delete(y), ((s, h, k̇), k)
Γ−→
p

skip, ((s \ {y}, h, k̇), k)

Note also that, in the treatment of the local variable construct, as in the case
of new, we now have to take into account not only the domain of the surface stack,
but also all the variables that are allocated in the footprints of the messages of
all buffers, in order to stay away from ill-formed states.

5.8 Interferences

Interferences from the environment are described by a single rule, given below.
The rule transforms an open state into an equivalent one with respect to its local
state, but the contents of the buffers may have changed. These changes include
the possibility for the environment to perform sends and receives on endpoints
that are not directly controlled by the program, in accordance to their contracts,
and to open and close channels not visible to the program.

(σ̇, k′) is flattable Γ ` k′ Γ ` k′ . σ̇
(σ̇, k)

Γ−→
e

(σ̇, k′)

σ
Γ−→
e
σ′

p, σ
Γ−−→
p,e

p, σ′

p, σ
Γ−→
p
p′, σ′

p, σ
Γ−−→
p,e

p′, σ′

Note that these interferences are actually a permissive over-approximation of
what a real environment might do: with this definition, the environment may also
modify the buffers of endpoints owned by the program, and even of endpoints
in the local state of the program, provided that it leaves the buffers in a state
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coherent with what the protocols of these endpoints state. This is the simplest
way we found to formalize an environment.

The fact that it really over-approximates an environment will be clarified by
the parallel decomposition lemma (see Lemma 8 below).

6 Soundness

In this section, we establish the soundness of the proof system with respect to
the operational semantics we just defined. The proof goes in two steps: first, we
collect some important properties of the operational semantics that are standard
for proofs of soundness of Separation Logic (locality, parallel decomposition), and
another property that are reminiscent of session types (subject reduction). We
then put together these properties to formally prove that all derivable Hoare
triples are valid.

6.1 Structural Properties of the Operational Semantics

Lemma 1. For all p, p′, σ, σ′, if p, σ Γ−−→
p,e

p′, σ′, and σ is flattable, then σ′ is

flattable.

Proof. We mentioned that the only cases that required a special attention while
designing the semantics were the allocations, that we carefully considered “fresh”
with the flattening of σ, and not just the local state. ut

Lemma 2. For all p, p′, σ, σ′, if p, σ Γ−−→
p,e

p′, σ′, and σ is well-formed, then σ′ is

well-formed.

Proof. Straightforward. ut

Lemma 3. For all p, p′, σ̇, σ̇′, k, k′, if p, (σ̇, k)
Γ−−→
p,e

p′, (σ̇′, k′) and Γ ` k, then
Γ ` k′.

Proof. The only non-trivial case is the send case, where it is required to check
that the local state added in k satisfies its footprint. For other cases, the set of
local states stored in k may only decrease, hence the result. ut

For a contract C, let →C be the relation over sets of configurations of the
CFSM associated to C defined by lifting the reachability relation → to sets of
states as follows:

S→CS
′ , ∀γ′ ∈ S′.∃γ ∈ S. γ → γ′ .

We write →=
C to denote the reflexive closure of this relation.

Lemma 4. For all p, p′, σ, σ′, ε, ε′, if

– p, σ
Γ−→
p
p′, σ′
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– mate(σ′)(ε) = ε′

– contract(σ′)(ε) = C

then

1. either contract(σ)(ε) is undefined, and CONFS(σ′, ε, ε′) = {(q0, q0, ␣, ␣)}
2. or mate(σ)(ε) = ε′, contract(σ)(ε) = C and

CONFS(σ, ε, ε′)→=
C CONFS(σ, ε, ε′) .

Note that this lemma would not hold if p, σ Γ−→
p
p′, σ′ were replaced by p, σ Γ−−→

p,e

p′, σ′ in the hypothesis.

Proof. If the transition p, σ
Γ−−→
p,e

p′, σ′ is not a channel operation, k = k′, and

the result is immediate. Let us analyze the remaining cases. Let us fix some ε
satisfying all the above hypothesis.

Let us assume first that ε is not one of the two endpoints of the channel
over which the instruction applies. It can be observed that cstate(ε) is either
undefined in both σ and σ′, or defined in both σ and σ′, and in that case
cstate(σ)(ε) = cstate(σ′)(ε) (recall that cstate(σ) is defined according to the
flattening). Thus, for an endpoint that is not one of the endpoints of the channel
over which some action is performed, the constraint is the same in σ and σ′, and
CONFS(σ, ε, ε′) = CONFS(σ′, ε, ε′), which shows that case 2 above holds.

Let us assume now that ε is one of the two endpoints of the channel over
which the instruction applies, and reason by case analysis on the instruction.

– close instruction: Since contract(σ′)(ε) = C is defined by hypothesis, ε is
not the closed channel. This case is thus impossible.

– open instruction: case 1 above holds.
– send instruction: let us show that the case 2 above holds, and in partic-

ular that CONFS(σ, ε, ε′)→CONFS(σ′, ε, ε′). By symmetry, we may assume
that ε is the endpoint used for sending. By the rules of send and skipελ,ε′ ,
cstate(σ, ε) and cstate(σ′, ε) must be defined, say respectively q1 and q2.
Moreover, these rules also ensure that there is a transition q λ−→ q′ in C. Let
γ2 = (q2, q

′
2, w2, w

′
2) be a configuration in CONFS(σ′, ε, ε′). Then w′2 = w′1.m,

and γ1 = (q, q′2, w2, w
′
1) → γ2. Moreover, γ1 ∈ CONFS(σ′, ε, ε′) since, again,

q′2 is constrained in the same way in σ and σ′.
– receive instruction: same arguments as for send. ut

Lemma 5 (Subject Reduction). If p, (σ̇, k)
Γ−−→
p,e

p′, (σ̇′, k′) and Γ ` k . σ̇,
then Γ ` k′ . σ̇′.

Proof. If p, (σ̇, k)
Γ−−→
p,e

p′, (σ̇′, k′) by an interference, then the lemma is true by

definition of interferences. Otherwise, let us apply the definition of Γ ` k . σ̇.
First (σ̇′, k′) is flattable by Lemma 1. Second, let (ε, ε′) be a pair of endpoint
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such that mate(k)(ε) = ε′ and contract(σ̇f )(ε) is defined and equal to C. We
need to show that

CONFS((σ̇′, k′), ε, ε′) ∩ CONFSwf (C) 6= ∅ .

We may apply the previous lemma. If we are in the first case, the result is
immediate. If we are in the second case, then

CONFS((σ̇, k), ε, ε′)→=
C CONFS((σ̇′, k′), ε, ε′),

and from the hypothesis Γ ` k . σ̇, CONFS((σ̇, k), ε, ε′) ∩ CONFSwf (C) 6= ∅,
which ends the proof. ut

Lemma 6. For all σ̇1, σ̇2, k, if Γ ` k . σ̇1 • σ̇2, then Γ ` k . σ̇1.

Proof. Let us fix some ε such that contract(σ̇1, k)(ε) = C is defined, and let
ε′ = mate(k)(ε). By hypothesis and definition of the global-local coherence,

CONFS(σ̇1 • σ̇2, k, ε, ε′) ∩ CONFSwf (C) 6= ∅ .

By definition of CONFS(σ̇, k, ε, ε′),

CONFS(σ̇1 • σ̇2, k, ε, ε′) ⊆ CONFS(σ̇1, k, ε, ε
′) .

Thus CONFS(σ̇1, k, ε, ε
′) ∩ CONFSwf (C) 6= ∅, which ends the proof. ut

In the two lemmas below, we write error to denote either OwnError or
ProtoError.

Lemma 7 (Locality). For all program p and open states σ1 and σ2 such that
σ1 • σ2 = (σ̇, k) is defined and Γ ` k . σ̇,

1. if p, σ1 • σ2 Γ−−→
p,e

error then p, σ1
Γ−−→
p,e

error.

2. if p, σ1 • σ2 Γ−−→
p,e

p′, σ′ then either p, σ1
Γ−−→
p,e

error or there exists σ′1, σ′2 such

that
– σ′ = σ′1 • σ′2;
– p, σ1

Γ−−→
p,e

p′, σ′1;

– σ2
Γ−→
e
σ′2.

Proof. The first part of the lemma, sometimes called “safety monotonicity”, is
straightforward by induction on the derivation tree of p, σ1 •σ2 Γ−→

e
error. Let us

prove the second part. Assume σ1 = (σ̇1, k1), σ2 = (σ̇2, k2) and σ′ = (σ̇′, k′) are
as above, and let us reason by induction on the derivation tree of p, σ1 • σ2 Γ−−→

p,e

p′, σ′.
Assume first that p, σ1 • σ2 Γ−→

p
p′, σ′, and that p, σ1 6 Γ−−→

p,e
error. The key

observation is that changes between σ̇1•σ̇2 and σ̇′ concern only the resources that
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are requested for avoiding an ownership error. The only subtlety is in the send
case, where this observation would be false if we did not have precise footprint
formulas. From this observation, we have σ̇′ = σ̇′1 • σ̇2 for some σ̇′1 � σ̇′ such that
p, σ1

Γ−−→
p,e

p′, (σ̇′1, k
′) Since Γ ` k . σ̇1 • σ̇2, Γ ` k′ . σ̇′1 • σ̇2 by subject reduction,

and thus Γ ` k′ . σ̇2 by Lemma 6. Then σ2
Γ−→
e
σ′2 for σ′2 = (σ̇2, k

′), which ends
the proof.

Assume now that p, σ1•σ2 Γ−→
e
p′, σ′. Then σ′ = (σ̇1, σ̇2, k

′), and Γ ` k′.σ̇′1•σ̇2.
Choosing σ′i = (σ̇i, k

′) ends the proof by Lemma 6. ut

Lemma 8 (Parallel decomposition). For all pair of programs p1, p2, for all
state σ and for all σ1, σ2 such that σ1 • σ2 = σ,

1. if p1 ‖ p2, σ Γ−−→
p,e

error then p1, σ1
Γ−−→
p,e

error or p2, σ2
Γ−−→
p,e

error;

2. if p1 ‖ p2, σ Γ−−→
p,e

p′1 ‖ p′2, σ′ then p1, σ1
Γ−−→
p,e

error or p2, σ2
Γ−−→
p,e

error or there

are orthogonal states σ′1, σ′2 such that σ′ = σ′1 • σ′2 and

– p1, σ1
Γ−−→
p,e

p′1, σ
′
1

– p2, σ2
Γ−−→
p,e

p′2, σ
′
2.

Proof. The first point is a direct consequence of the rules for error propagation
and the locality lemma. Let us prove the second case. Assume p1, p2, σ1, σ2
as above, and assume moreover that p1, σ1 6 Γ−−→

p,e
error and p2, σ2 6 Γ−−→

p,e
error.

Let us reason by case analysis on the first rule applied in the derivation tree of
p1 ‖ p2, σ Γ−−→

p,e
p′1 ‖ p′2, σ′. There are only two possible cases:

– the first rule applied is the interleaving rule

p1, σ
Γ−→
p
p′1, σ

′

p1 ‖ p2, σ Γ−→
p
p′1 ‖ p2, σ′ .

Then by locality lemma, there are σ′1, σ′2 such that σ′ = σ′1 • σ′2, p1, σ1
Γ−→
p

p′1, σ
′
1, and skip, σ2

Γ−→
e

skip, σ′2. We are thus left to prove p2, σ2
Γ−−→
p,e

p′2, σ
′
2,

which is a direct consequence of skip, σ2
Γ−→
e

skip, σ′2.

– the first rule applied is the interference rule. Setting σ1 = (σ̇1, k), σ2 =
(σ̇2, k), and σ′ = (σ̇′, k′), we have thus σ̇′ = σ̇1 • σ̇2 and Γ ` k′ . σ̇′, so
Γ ` k′ . σ̇1 and Γ ` k′ . σ̇2 by Lemma 6, which ends the proof choosing
σ′i = (σ̇i, k

′). ut
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6.2 Partial Correctness

Definition 15 (Validity). A triple is valid with respect to a footprint context
Γ , written �Γ {A} p {B}, if, for all instantiation of the free logical variables of
A and B, for all state σ = (σ̇, k), if the following holds:

– Γ ` k . σ̇
– Γ ` k
– σ̇ � A

then the following properties hold:

1. p, σ 6 Γ−−→
p,e

∗
OwnError;

2. p, σ 6 Γ−−→
p,e

∗
ProtoError;

3. if p, σ Γ−−→
p,e

∗
skip, (σ̇′, k′), then σ̇′ � B.

Theorem 1 (Soundness). If `Γ {A} p {B} then �Γ {A} p {B}.

Proof. By induction on the derivation tree of {A} p {B}. The case of small
axioms and structural rules is by definition of Γ−−→

p,e
. The case of the frame and

parallel rules are respectively handled by the locality and parallel decomposition
lemmas. ut

7 Proved Programs Are Safe

7.1 Defining Safety and Provable Safety

Let us briefly recall the safety properties we aim at.

Absence of memory violations no dangling pointer is dereferenced, modi-
fied, or disposed.

Absence of races two threads never simultaneously try to access a variable or
a memory location when at least one of them is a write access.

Absence of memory leaks the program never runs into a state preventing all
continuations from deallocating a channel or a cell.

Absence of orphan messages buffers are always empty when they are closed.
Absence of unspecified receptions all switch receive constructs are exhaus-

tive.

Our operational semantics features some error states that model these errors
(except memory leaks). Theo. 1 thus already ensures that provable programs do
not reach memory violations or races according to the operational semantics we
defined. This result is however a bit limited, because:

– it is based on a semantics that depend on the proof environment Γ , which
is an arguably undesirable form of circularity;
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– it does not say anything about memory leaks, orphan messages, and unspec-
ified receptions.

We introduce now an operational semantics that does not depend on the annota-
tions. Γ . For a proof environment Γ , we write emp(Γ ) for the proof environment
in which:

– all message footprints are replaced by emp,
– all contracts are replaced by a single state contract that allows any send and

receive from this state.

We model run-time executions by the ones of the operational semantics with
empty footprints and universal contracts, without interferences from the envi-
ronment6, and without checks on the contract obedience.

Definition 16 (Run-time semantics).We say that p, σ evolves to p′, σ′ (resp.
error) at run-time, p, σ ⇒ p′, σ′, if

– either p, σ
emp(Γ )−−−−→

p
p′, σ′ for any Γ ;

– or p, σ
emp(Γ )−−−−→

p
error and error 6= ProtoError.

Defining the notion of safety we aim at prompts us to clarify the notion of
memory leaks, which has not been properly modeled so far. We assume a fixed
set G of global variables, and we write empG to denote the open state σ such
that calloc(σ) = ealloc(σ) = ∅, and valloc(σ) = G, i.e. the state in which all
cells and endpoints have been deallocated.

Definition 17 (Leak-free state). An open state σ is said leak-free if there is
a program p such that p, σ ⇒∗ empG.

Definition 18 (Safety). A program p is said safe if

1. p, empG 6⇒∗ error, and
2. if p, empG ⇒∗ σ, then σ is leak-free.

Let us now clarify how the proof system should be used to prove safety. First,
one has to be careful to use contracts that prevent unspecified receptions and
message leaks. This is however not enough: even if message leaks are forbidden
by contracts, some memory leaks may not be visible in the proof. For instance,
the Hoare triple

{e, f  emp} (e, f) = open(C); send(channel,e,e) {e, f  emp}

is derivable in the proof environment annotating the channel message with the
footprint src

ep7→(C〈−〉, X) ∗X ep7→(C〈−〉, src), although this program did not deal-
locate all the memory. We thus need to restrict environments in a way that
6 Avoiding interferences is a simplification. We could actually allow interferences, pro-
vided they do not introduce memory leaks, but avoid such a complication for clarity
reasons.

33



forbids such situations. The precise definition of valid environment will be later
detailed (see Def. 21), let us just now give a blackboxed definition of provable
safety. We say that a program p terminates7 if for all σ, there is σ′, such that
either p, σ ⇒∗ skip, σ′ or p, σ ⇒∗ error.

Definition 19 (Provable Safety). A program p is said provable safe if there is
a program p′, and an admissible environment Γ such that `Γ {Gemp} p; p′ {G
emp} and p′ is terminates.

7.2 Runtime Soundness

Proving that provable safe programs are safe requires quite a lot of work. First,
we need to link ProtoError to MsgError using contracts. Second, we need to
link the runtime semantics to the proof-dependent operational semantics. Third,
we need to link the absence of memory leaks in the proof to the same property
for the runtime semantics.

The first point proceeds directly from the subject reduction lemma.

Lemma 9 (Message Safety). For all program p, for all state σ = (σ̇, k), if
the following holds

– Γ ` k . σ̇
– p, σ 6 Γ−−→

p,e

∗
ProtoError

– p, σ 6 Γ−−→
p,e

∗
OwnError

then p, σ 6 Γ−−→
p,e

∗
MsgError.

Proof. Let us assume the hypothesis.
It can be observed that the semantics is designed in such a way that p, σ Γ−→

e

Γ−→
p

MsgError occurs due to an unspecified reception if and only if there are ε, ε′
such that the set of configurations CONFS(σ, ε, ε′) contains a configuration in
an unspecified reception Similarly, p, σ Γ−→

e

Γ−→
p

MsgError occurs due to an or-

phan message if and only if there are ε, ε′ such that the set of configurations
CONFS(σ, ε, ε′) contains a final non-stable configuration and p may close the
channel ε, ε′.

Assume, by contradiction, that p, σ Γ−−→
p,e

∗
MsgError, and let p′, and σ′ =

(σ̇′, k′) be such that:
7 We may wonder wether the assumption that p′ terminates in Def 19 would be easy to
prove or not. On the one hand, if p′ is sequential, and deadlock-free, it is sufficient
to prove that from any program point, a dispose instruction is always reachable,
which is quite likely to be the case for the p′ one may think about for standard data
structures. However, if p′ intends to model a distributed garbage collector, it is likely
that a lot of work would have to be done for proving this assumption.
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– p, σ
Γ−−→
p,e

∗
p′, σ′

– p′, σ′
Γ−→
e

Γ−→
p

MsgError,

– for all p′′, σ′′ such that p, σ Γ−−→
p,e

∗
p′′, σ′′

Γ−−→
p,e

∗
p′, σ′, p′′, σ′′ 6 Γ−−→

p,e

∗
MsgError.

By the previous observation, there is some faulty configuration (q, q′, w, w′)
in CONFS(σ′, ε, ε′). By subject reduction, Γ ` k′ . k̇′, and thus CONFS(σ′, ε, ε′)
contains also a reachable configuration (q1, q

′
1, w, w

′). Since the contract is valid,
these two configurations must be distinct. Let us show that they can be taken
equal:

– if the error is an orphan message, then ε, ε′ must be owned at closure, so their
states are constraint, and CONFS(σ′, ε, ε′) contains only one configuration.

– if the error is an unspecified reception, then ε must be owned, but note
that cstate(σ′)(ε′) may be undefined. This means q1 = q but not necessarily
q′1 = q′. However, due to the definition of unspecified receptions, (q, q′1, w, w

′)
is also an unspecified reception, hence the contradiction. ut

The second step, i.e. the connection between the runtime semantics and the
proof-based semantics, goes through the operation of flattening we introduced
in previous sections (Def 8). For an open state σ, we write erase(σ) to denote
the open state obtained from flat(σ) by replacing all contracts by the universal
single state contract.

Lemma 10 (Runtime Soundness). For all p, σ, σ′,

1. if p, erase(σ)⇒ error, then p, σ Γ−−→
p,e

error;

2. if p, erase(σ)⇒ p′, σ′, then
– either p, σ Γ−−→

p,e
error;

– or p, σ Γ−−→
p,e

∗
p′, σ′′, for some σ′′ such that erase(σ′′) = σ′.

By straightforward induction, this lemma states that any error in the runtime
semantics can be lifted to an error in the proof-dependent semantics: if p, σ ⇒∗
error, then p, σ Γ−−→

p,e

∗
error.

Proof. Assume erase(σ) = (σ̇, k̇) and σ = (σ̇1, k̇1). Let us first prove the first
point of Lemma 10. Assume p, erase(σ) ⇒ error; one of the following cases
holds:

– a OwnError is triggered: then it is also triggered by Γ−→
p

thanks to safety

monotonicity (observe that σ̇1 � σ̇);
– a MsgError is triggered: the error depends only on the first message iden-

tifier in the queue causing the error, which is the same in σ and erase(σ).
– a ProtoError is triggered: this is never the case, due to Def 16.
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Let us now prove the second point of Lemma 10. Assume p, erase(σ)⇒ p′, σ′;
one of the following cases holds:

– a cell-manipulating instruction is executed: then the result holds by locality
and the fact that σ̇1 � σ̇.

– a channel instruction is executed: if it does not fail for Γ−→
p
, it possibly differs

from ⇒ by transferring a message footprint, thus erase(σ′′) = σ′.
ut

7.3 Tracking Memory Leaks

The third step towards our main result on safety is to show that the logic cor-
rectly tracks memory leaks. As already observed, this is not true for every envi-
ronment proof Γ . Intuitively, the problem comes from the following gap between
runtime and symbolic execution:

– at runtime, the open state always remain self-contained: all endpoints that
have been allocated remain allocated until their closure;

– symbolic execution, on the contrary, allows the state to appear not self-
contained

Example 6. In the example triple

{e, f  emp} (e, f) = open(C); send(channel,e,e) {e, f  emp}

the endpoints e and f become ownerless in the final state of the program. The
notion of ownership we care about is an indirect, recursive one, where the owner
is a thread; for instance, in the following example

{e1, e2, f1, f2  emp}
(e1, f1) = open(C); (e2, f2) = open(C); send(ep, e2, e2); send(ep, e1, f2)

{e1, e2, f1, f2  e1 ep7→(C〈−〉, f1) ∗ f1 ep7→(C〈−〉, e1)}

the endpoints e2, f2 are not ownerless: they are indirectly owned by the thread
through f1. If the continuation send(ep, e1, f1) is considered, however, f1, e2, f2
become ownerless.

We will need to forbid ownerless cells to precisely track garbage cells, but
this is due to a technical limitation, and we should make clear that ownerless
cells and garbage cells are different. A cell can be garbage, although it is still
owned by a thread, and conversely, an ownerless cell can be reclaimed by the
ownership on demand mechanism: the examples above are not leaking memory:
for instance, the continuation

. . . (e,f)=receive(channel,f);close(e,f)
would deallocate everything correctly on the first example. However, would we
not allow ownership on demand, ownerless cell would always remain ownerless,
and would be a particular case of garbage cells.
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Interestingly, ownerless cells are undesirable for Sing#, although it is garbage
collected. Execution units in Sing# indeed are processes, and not threads, and
can be killed abruptly, so the garbage collector of a process only reclaims the
cells that are known to be owned by the process.

There are actually three reasons for creating or supressing ownerless cells:

– at channel’s closure, if some messages with non-empty footprints are still in
the queue.

– when a message is sent, if the indirect ownership on the reception endpoint
is granted by the footprint of the message.

– when a message is received, if the message was not indirectly owned and
provides ownership for the reception endpoint a posteriori.

The first case is already prevented by contracts, but the two other cases
should be prevented by some condition on the environment proof Γ . Intuitively,
this condition should say that no state reachable by a program proved with Γ
contain ownerless cells. We however want to have a condition as general as pos-
sible, and thus need to define as precisely as possible what reachable states are.
Thanks to Lemmas 1, 2, 3, and 5, we already collected quite a lot of restrictions
on these reachable states. Let us now formalize a last one, the notion of self-
contained state, which will later allow us to give a more general notion of valid
environment.

Definition 20 (Self-contained state). A well-formed open state σ = (σ̇, k)
such that flat(σ) = ((s, h, k̇), emp(k)) is said self-contained if

1. for all ε such that k(ε) is not the empty queue, ε ∈ dom(k̇)
2. for all ε such that ε ∈ dom(k̇), perm(ε, k̇) = 1 and peer(ε, k̇) ∈ dom(k̇).

Lemma 11 (Self-containment preservation). Let p, p′, σ, σ′ be such that

– p, σ
Γ−→
p
p′, σ′

– p, σ 6 Γ−→
p

error

– σ = (σ̇, k) is well-formed and self-contained.

Then σ′ is self-contained.

Proof. Let EP0, EP
′
0 be the sets of endpoints with permission 1 in σ and σ′,

EP1 and EP ′1 the endpoints that are defined in the local state of the flattening
of σ and σ′, and EP2, EP ′2 the set of endpoints whose incoming queue is not
empty in σ and σ′. We have EP2 ⊆ EP1 ⊆ EP0, with EP1 closed by peer, and
we want to show that EP ′2 ⊆ EP ′1 ⊆ EP ′0, with EP ′1 closed by peer. We reason
by case analysis on the reduction rule

– for non-channel instructions, these sets are unchanged: EP0 = EP ′0, EP1 =
EP ′1, EP2 = EP ′2

– for open, EP ′o = EP0 ] {ε, ε′}, EP ′1 = EP1 ] {ε, ε′}, and EP ′2 = EP2.
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– for close, EPo = EP ′0 ] {ε, ε′}, EP1 = EP ′1 ] {ε, ε′}, and EP2 = EP ′2.
Moreover, by p, σ, 6 Γ−→

p
MsgError, {ε, ε′} ∩ EP2 = ∅.

– for a send over ε towards ε′, EP ′o = EP0, EP ′1 = EP1, and EP ′2 = EP2∪{ε′}.
By p, σ, 6 Γ−→

p
OwnError, we have ε ∈ EP1, so ε′ ∈ EP1.

– for a receive over ε, EP ′o = EP0, EP ′1 = EP1, and EP2 = EP ′2 ∪ {ε}.
ut

Let us now define the notion of valid environment. An environment proof is
valid if it does not allow to have a subset of the queues whose flattening gives
the full permission on the endpoints that are needed to access these queues:

Definition 21 (Valid Environment). An environment Γ is valid if all con-
tracts in Γ are valid, and for all global state k, if

– (u̇, k) is well-formed and self-contained
– Γ ` k
– Γ ` k B u̇

then (u̇, k) = emp∅, e.g. all queues are empty.

Here are several sufficient (but not necessary) conditions that ensure that an
environment is valid:

– à la Sing#, forbidding the message footprints to contain endpoints that are
in a receive state;

– a variant of Sing#: allowing to send server’s endpoints only, and allowing
only to send them from server’s endpoints;

– á la Bono et al. [2], imposing a well-foundedness condition.

At this point of the presentation, one might wonder wether the proof envi-
ronments that were used in the examples are valid. Indeed, some of them are
not valid. However, using permissions, we will see at the end of the section how
to accomodate the proofs so as to use valid environments.

Theorem 2 (Safety). For all program p, if p is provable safe, then p is safe.

Proof. Let Γ be a valid environment and p′ be a terminating program such that
`Γ {emp} p; p′ {emp}. We want to show that

1. p, empG 6⇒∗ error
2. if p, empG ⇒∗ σ, then σ is leak-free.

Let us start with proving 1. By Theorem 1, p; p′, empG 6
Γ−→
p

∗
OwnError, and

p; p′, empG 6
Γ−→
p

∗
ProtoError. By Lemma 9, p; p′, empG 6

Γ−→
p

∗
MsgError, and by

definition of Γ−→
p
, p, empG 6

Γ−→
p

∗
error. Finally, by straightforward induction using

Lemma 10, p, empG 6⇒∗ error.
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Let us now prove 2. Let σ be such that p, empG ⇒∗ σ. Since p′ terminates,
there is σ′ such that p′, σ ⇒∗ skip, σ′. By definition of Γ−→

p
, p; p′, empG

Γ−→
p

∗

skip, σ′. By Theorem 1, σ′ = (u̇, k′) for some k′. By Lemmas 2, 3, 5, and 11
(inductively applied), k′ satisfies all the conditions of Def 21, thus σ′ = empG.
By Lemma 10, p′, σ ⇒∗ empG, hence σ is leak-free, which ends the proof. ut

Let us now give a new proof of the bounded server that uses a valid environ-
ment. Instead of transferring the full ownership on the public endpoint e_pub, we
assume that the server always keeps half of its ownership, but looses the own-
ership on the contract’s state. It is thus not always allowed to read or update
the contract’s state of e_pub. However, our rules for reflexive ownership transfer
allows the client to update the contract’s state of e_pub, first from 1 to 2 right
after it has received e_pub, second from 2 to 1 just before sending it back.
message con(e)

[
e

ep7→C〈i〉 ∗X ep7→(S1/2〈1〉, src)
]

message ack
[
src

ep7→S1/2〈1〉
]

contract S {state 1 {!con->2;} state 2 {?ack->1;}}

server(e_priv)
[
e_priv ep7→(S〈1〉, X) ∗X ep7→S〈1〉

]
{

local e,f;
(e,f) = open(C);
send(con,e_priv,e);[
e_priv ep7→(S〈2〉, X) ∗X ep7→S1/2〈.〉 ∗ f ep7→C〈i〉

]

receive(ack,e_priv);[
e_priv ep7→(S〈1〉, X) ∗X ep7→S〈1〉 ∗ f ep7→C〈i〉

]

server(e_priv)||service(f)
}
[
⊥
]

client(e_pub)
[
emp

]
{

local e;
e=receive(con,e_pub);[
e_pub ep7→S1/2〈2〉 ∗ e ep7→C〈i〉

]

send(ack,e_pub);[
e

ep7→C〈i〉
]

...
}

8 Related Works

Turon andWand [18] were the first to propose a proof system for message-passing
concurrency that exploited permissions; their work is based on the π-calculus,
focuses on temporal properties and refinement, and is noticeably different from
ours. In particular, they only deal with synchronous communications, and do
not feature a form of communication contracts.

Leino, Mueller and Smans [12] proposed a proof system for reasoning about
asynchronous, unidirectional communication channels and locks. They have no
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special mechanism for specifying buffer contents, but they can prevent all dead-
locks using a mechanism of “levels” of locks and channels, and counting the
“debts” and “credits” of channels. These ideas are implemented in the Chalice
tool.

Bell, Appel and Walker [1] proposed a proof system for asynchronous unidi-
rectional channels shared by means of permissions, and applied it on one exam-
ple, the parallelization of a while loop. They do not consider message identifiers,
endpoints in the heap, or message safety. They abstract the contents of the
buffer by considering the local history, i.e. the sequences of messages that were
locally observed to transit through the endpoint. In the event of sharing, histories
need to be arbitrarily interleaved when two copies of a same shared endpoint
are glued together, at the cost of some imprecision and a lack of modularity.
Conversely, contracts, being in essence a specialized form of rely/guarantee rea-
soning, can be considered as more modular. They may moreover be considered
as more precise, since the sequences of messages they describe are global, which
allows a finer-grained control on how messages emitted from concurrent sources
are interleaved.

Bono, Messa, and Padovani [2] accurately pointed out that our previous work
made a confusion between orphan messages and memory leaks. Their work, based
on the ideas of session types, prompted us to clarify this point in our proof system
as well, which we hope we achieved convincingly. Although their work is based on
types, there are remarkable similarities with our work. As we already mentioned,
they propose a condition on proof environments that is less general than ours.
This condition seems influenced by a previous work of Padovani that proposes to
view a session type as the projection of the behavior of a program over a given
channel [14]. The notion of projection defined by Padovani is however syntax-
driven, and due to bound variables, any received channel should not be already
owned. Conversely, we adopted a notion of contract obedient programs that is
semantics-driven (see Def 13), and do not have to face the problem of bound
variables.

Hobor and Gherghina [10] proposed a proof system for synchronization bar-
riers based on separation logic that was helped by “barrier diagrams,” a contract-
like description of the sequences of synchronizations on the barrier. The authors
conjectured that our previous proof system was not expressive enough to give a
proved encoding of barriers. On the contrary, we conjecture that a proved encod-
ing exists if and only if at most N threads are considered and, as we have shown,
the encoding can be done using only one channel in our new proof system.

It may look appealing to try to embed some of our proof system in Re-
ly/Guarantee Separation Logic, using concurrent abstract predicates, as recently
suggested by Matthew Parkinson [15]. This would replace the definition of an
operational semantics by the choice of a particular implementation of queues in
the heap, and enable one to reuse the soundness result of concurrent abstract
predicates [6]. However, we believe that keeping the actual implementation of
queues at an abstract level is more beneficial. For instance, adapting our proof to
non-FIFO communications would only amount to a change to the semantics of
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contracts (see our work on such a theory of contracts [13]). We also believe that,
apart from soundness, other results regarding the correctness of communications
would not follow as consequences of the soundess of RGSep, and thus a large
part of our proofs should be kept.

Sassone, Rathke and Francalanza [8] stated a confluence property for the
π-calculus ruled by a strict ownership discipline. Our proof system shows that,
with little effort, it is possible to go past confluent programs while still obeying
this discipline, but we could not provide a characterization for this new class of
concurrent programs.
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