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Abstract

In this thesis, we consider the problem of determining the winner in various models of reachability
games played on counter systems. A game on a graph is played by two players, who own states.
During a play, the players create a run on the system by moving a token between states along tran-
sitions, the choice of the transition being made by the owner of the state where the token is. When
the game is played on a counter system of dimension d, transitions update a vector of d counters,
usually by componentwise additions. Configurations in a counter system are pairs composed of a
state of the system and a counter vector. In reachability games on counter systems, the objective
of the first player is to reach a particular configuration. The decision problem associated with a
reachability game is whether the first player has a winning strategy for the game from a given initial
configuration, in other words whether the initial configuration is winning. When the problem is
decidable, we wonder whether it is possible to describe the set of winning initial configurations.

We study various models of counter reachability games and the effect of differences between
models on decidability or complexity of the problems that we consider. The main part of our study
follows two directions: on the one hand, we compare models that differ regarding their semantics,
and on the other hand we consider a stateless model of counter systems. About the first direction,
the semantics of our systems differs regarding what happens when a counter should become negative.
We focus primarily on three semantics, the first two being standard: In vector addition systems
with states (VASS), or equivalently under the “VASS semantics”, a transition that should make a
counter become negative is deactivated, so all counters are nonnegative integers all along the play;
the semantics that we call “Z semantics” allows any integer value for all counters; a third semantics,
the “non-blocking VASS semantics”, consists of letting all transitions active, yet replacing at each
step any negative value by zero. About the second direction, we study a model called “robot games”,
where the system has exactly one state per player and there are no self-loops. In some sense, we
abstract from the state in order to focus on the counters and on their evolution. Accordingly, in
dimension one, studying robot games involves various results about modular arithmetic, on which
we base most strategies that we build. Our motivation for robot games is to have a model of
counter reachability games where determining the winner is easier than in the general case. In one
of our other models, we allow updates that are resets of the counters along the transitions, and
more generally updates defined by componentwise affine functions. We also study systems, named
hierarchical counter systems, on which any update of the ith counter requires that the value of all
counters from 1 to i − 1 is zero. Such a restriction is added to the semantics and gives three new
semantics.
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6 ABSTRACT

Our main results regarding semantics are mutual reductions between the decision problems
under our three main semantics. Hence, we extend complexity or undecidability results of [BJK10],
where games are played on VASS, to other semantics. Under the non-blocking VASS semantics, a
particular case has a lower complexity in dimension one: when the counter value in the objective is 0.
Determining the winner is then P-complete with a unary encoding instead of PSPACE-complete
with a unary encoding when the counter value is a positive integer. Our main results on the model
of robot games, are the following. For dimension one, we describe an algorithm with an optimal
complexity, according to a reduction that we make from the problem of determining the winner of a
countdown game, a model of counter reachability games presented in [JLS07]. As a consequence, in
dimension one, determining the winner of a robot game has a lower complexity than determining the
winner of reachability games on counter systems. We also prove that robot games are undecidable
in dimension three, and we leave the case of dimension two as an open problem. For dimension
two, we have written a graphical implementation of a stepwise construction of the winning set to
get an insight of the shape that this winning set may have. On the other models that we study,
we prove that: (i) allowing counter resets does not affect the complexity of the decision problem in
dimension one, (ii) allowing affine updates makes the decision problem undecidable in dimension
two, even in the one-player case, and (iii) the decision problem on hierarchical counter systems is
in NP for any dimension in the one-player case.



Résumé

Dans cette thèse, nous considérons le problème consistant à déterminer le vainqueur de différents
modèles de jeux d’accessibilité sur des systèmes à compteurs. Un jeu sur un graphe est joué par deux
joueurs à qui les états du système appartiennent. Au cours d’une partie, les joueurs construisent une
exécution du système en déplaçant un jeton d’état en état le long des transitions, le choix de chaque
transition étant laissé au joueur à qui appartient l’état où le jeton se trouve. Lorsque le jeu est joué
sur un système à compteurs de dimension d, les transitions mettent à jour un vecteur de d compteurs,
généralement par l’addition d’un vecteur. Les configurations des systèmes à compteurs sont des
paires composées d’un état du système et d’un vecteur formé par les valeurs des compteurs. Dans
les jeux d’accessibilité sur des systèmes à compteurs, l’objectif du premier joueur est d’atteindre
une configuration particulière. Le problème de décision associé à un jeu d’accessibilité consiste à
déterminer si le premier joueur a une stratégie gagnante dans le jeu depuis une configuration initiale
donnée, ce qui revient à dire que la configuration initiale est gagnante. Lorsque ce problème est
décidable, on s’intéresse à la possibilité de décrire l’ensemble des configurations gagnantes.

Nous étudions divers modèles de jeux d’accessibilité sur des systèmes à compteurs, ainsi que
l’effet des différences entre les modèles sur la décidabilité ou la complexité des problèmes que nous
considérons. L’essentiel de notre étude suit deux directions : d’une part, nous comparons des modèles
dont la différence réside dans la sémantique, d’autre part nous considérons un modèle sans états de
systèmes à compteurs. Concernant la première direction, la sémantique dépend du comportement
du système quand un compteur devrait devenir négatif. Nous nous focalisons principalement sur
trois sémantiques : dans les systèmes d’addition de vecteurs avec états (VASS en anglais), une
transition qui devrait rendre un compteur négatif est désactivée, de sorte que tous les compteurs
sont toujours des entiers naturels ; la sémantique que nous appelons sommairement « Z semantics »
en anglais autorise toutes les valeurs entières pour les compteurs ; à ces deux sémantiques habituelles
s’ajoute une troisième, que l’on pourrait traduire par « sémantique de VASS non-bloquant », et qui
consiste à autoriser toutes les transitions, en remplaçant d’éventuelles valeurs négatives par zéro.
Concernant la seconde direction, nous étudions un modèle intitulé « robot games », où il n’y a qu’un
état pour chaque joueur, sans boucle sur les états. Il s’agit en quelque sorte d’ignorer l’état pour
ne se concentrer que sur les compteurs et leur évolution. Ainsi, en dimension une, l’étude des robot
games fait appel à des résultats d’arithmétique modulaire, sur lesquels nous nous appuyons pour
décrire la plupart des stratégies construites. L’étude des robot games est motivée par la volonté
d’avoir un modèle de jeux d’accessibilité avec des compteurs pour lequel déterminer le vainqueur
est plus facile que dans le cas général. Dans un autre de nos modèles, nous autorisons des mises à
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jour qui réinitialisent des compteurs, voire plus généralement des mises à jour qui sont dans chaque
dimension des fonctions affines. Nous étudions aussi des systèmes, appelés systèmes à compteurs
hiérarchisés, où toute mise à jour du i-ième compteur nécessite que tous les compteurs numérotés
de 1 à i− 1 soient nuls. Une telle restriction est greffée sur la sémantique, ce qui donne en fait trois
nouvelles sémantiques possibles.

Nos résultats principaux concernant les sémantiques des systèmes sont des réductions mu-
tuelles entre les problèmes de décision avec les trois sémantiques principales. Ainsi, nous étendons à
d’autres sémantiques les résultats de complexité et d’indécidabilité de [BJK10], où les jeux étudiés
sont sur des VASS. Avec la sémantique des VASS non-bloquants, un cas particulier a une complexité
moindre en dimension une : quand la valeur dans l’objectif est zéro. Déterminer le vainqueur est
alors P-complet avec un encodage en unaire au lieu de PSPACE-complet dans le cas général, éga-
lement avec un encodage en unaire. Nos résultats principaux sur le modèle des robot games sont
les suivants. En dimension une, nous décrivons un algorithme de complexité optimale, d’après une
réduction que nous établissons depuis le problème consistant à déterminer le vainqueur d’un autre
modèle de jeux d’accessibilité : les « countdown games » [JLS07]. Par conséquent, en dimension une,
déterminer le vainqueur de robot games a une complexité moindre que déterminer le vainqueur de
jeux d’accessibilité sur des systèmes à compteurs. Nous prouvons également que les robot games sont
indécidables en dimension trois, et la décidabilité en dimension deux demeure une question ouverte.
En dimension deux, nous avons écrit une implémentation graphique de la construction pas à pas de
l’ensemble des configurations gagnantes pour avoir une idée de la forme de cet ensemble gagnant.
Dans les autres modèles que nous étudions, nous prouvons que : (i) l’ajout de réinitialisations de
compteurs ne modifie pas la complexité des problèmes de décision considérés en dimension une, (ii)
autoriser des mises à jour affines rend les problèmes de décision indécidables en dimension deux,
même avec un seul joueur, et (iii) avec un seul joueur, déterminer si une configuration est accessible
sur un système à compteur hiérarchisé est dans NP quelle que soit la dimension.



Chapter 1

Introduction

“Display twenty-one matches in a row. Let two players remove turn after turn between one and
three matches each time. The player who picks the last match wins.” In three sentences, we sum
up one of the most popular versions of Nim games. This makes the first step towards the domain of
games with counters, with an example that bears a long history: The general game itself has been
solved more than hundred years ago, and a machine that plays it perfectly already existed before
the fourties, according to [Eps12].

Counters, which are usually integers due to the way computers store numbers, express any-
thing that we want to quantify, when values or fluctuations are important. For example, if we have
too little of a resource, we buy or produce supplies until a critical level, which can be much higher,
is reached. The consumption and the refill of the resources itself can be controlled by other agents,
viewed as opponents in a game. Other agents can be the environment, with or without a predictible
behaviour. Consider for example an automatic air conditioning that maintains the inside tempera-
ture in a certain range. The outside temperature has an influence on the inside temperature, hence
on the activity of the heater, which will consume more or less electrical power. When we model
such a system, we can discretize temperature and energy consumption, with an arbitrary precision,
for example hundredths of degrees and watt-hour, in order to work with integers. Where is the
game? The programmer of the heater would like to minimize the power consumption such that the
temperature requirements remain satisfied. Intuitively, when it is cold outside, it is less expensive
to keep the inside temperature in the lower part of the required range, and conversely when it is
warm outside.

On the example with the air conditioning, we face the following question: what can a system
do with the counters? The previous situation is usually modelled as a timed system, and we can
imagine that the increase of the inside temperature is the image of the temperature by an affine
function, hence we need to solve a differential equation to obtain this temperature. When we
abstract from the time parameter and discretize temperature, we get step by step updates of the
counters, and these updates can remain as simple as adding constants. The choice of the constants
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to add need not be the same at each step, though. A parameter on which the choice depends can
be an internal state of the system, or even a more global state for the whole model, a state that
players, so our agents, share and that changes when they play.

Scope of the thesis

In the domain of model checking, the use of integer counters has come naturally to represent
any discrete parameter that one wants to control or measure. This has led to various models of
counter systems, according to the phenomenon that counters represent. Whenever an uncontrollable
antagonist, human or not, takes part in the phenomenon, counter systems become game arenas.
For example, when the system is a device that must perform a given task without any further
human intervention and the antagonist is the environment, the program of the device must deal
with any possible case, in particular the least favorable case, that can happen in the environment.
We represent such a program as a player that uses an optimal strategy against the strategy of his
adversary.

Since the introduction of counter machines by Minsky in [Min67], the number of types of
special Turing machines with integers on which they perform simple operations increased, according
to features that were needed. Usually, with few different operations already, the machines were
Turing-powerful with at least two counters, the key operation being the ability to test that a
counter is zero. Petri nets, introduced in [Pet62], and Vector Addition Systems (VAS), introduced
in [KM69], are famous equivalent models of counter machines: without zero tests, in fact with
positivity tests instead, the problem of reaching a particuliar configuration is decidable for these
models, according to [May84]. In our work, we take as a basis the semantics of Vector Addition
Systems with States (VASS), which are also equivalent to VAS, a possible reduction being given
in [HP79]. VASS become game arenas by assigning each vertex to one of the two players, Adam
and Eve. The games that we consider are always turn-based. Actually, it stands as an exception to
study concurrent games on counter systems, which is the case in [BHSS12]. In [BJK10], the authors
give decidability and complexity results for the problem of determining the winner of reachability
games on VASS, where the objective is to make at least one counter zero. In [Cha10], the complexity
of the same problem is improved when the number of counters is two. For the particular objective
of making at least one counter zero, it turns out that the problem of determining the winner is
decidable in any dimension, which is seldomly the case in the models that we study, the difference
being that the objectives are singletons.

However, the literature also contains examples where the systems do not have the restriction
that counters remain positive like in VASS. In our work, we call Z semantics the semantics under
which counters can take any integer value. It is then conceivable to define as an objective that
counters remain positive. This is the case in energy games [BFL+08, FJLS11, CD10], which are
linked to mean-payoff games [CDHR10, CD10, CD11] and in which the objective of one of the players
is that all counters remain nonnegative.Another model, consumption games, presented in [BCKN12],
is like energy games but with ω-transitions, that add an arbitrarily large integer to one of the
counters.
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In the games that we study, we only consider reachability objectives. In some sense, reach-
ability objectives are very standard, as they are just expressed by the formula “at some step, the
configuration is in a particular set”, and the particular set is usually a singleton. Note that an en-
ergy game can be reduced to a reachability game, although the most immediate reduction requires
to add two vertices linked with −k edges, where k is the lowest integer that is added while crossing
an edge, and k is necessarily negative if the game is nontrivial. Also, in our counter systems, a
player has a strategy to prevent the counters from becoming unbounded if, and only if, there exists
a configuration c such that the same player has a strategy to reach c from the initial configuration
and from c itself. Detection of controllable zero-cycles is involved, and also doable in polynomial
time in the one-player case, as stated by the authors of [KS88].

Regarding the labels of the edges when counter updates are vector additions, it is important
in terms of complexity to make a difference between the models where the labels are vectors with
only −1, 0 or 1 as components, and the models where labels can be any integer vector. In some
sense, this distinction is the difference between binary and unary encoding. One of our reductions,
namely between two decision problems for reachability games with singleton and non-singleton
objectives, is polynomial for unary encodings but not for binary encodings. Actually, some authors,
like in [BJK10] and [Cha10], even rule out the case where other integers than −1, 0 and 1 appear
in the label of edges.

In our work, some models that we present are less common than VASS or counter systems
without restriction. This is for example the case of systems, which we call non-blocking VASS,
where negative counter values are replaced by zero. On these systems, the usual decision problems
have a lower complexity in dimension one than similar problems on VASS. Another uncommon
model introduces a hierarchy between the counters, and the semantics of the model requires that a
counter cannot be modified if a lower counter is not zero. The latter model is inspired by VAS with
hierarchical zero-tests, presented in [Rei95]: we attach states and a hierarchical zero-test, possibly
void, at every step. VAS with hierarchical zero-tests extend VAS with one zero-test, on which some
decision problems, although undecidable with arbitrary zero-tests, become decidable, as we can see
in [AM09, BFLZ10, BFLZ12, Bon11, FS10, Rei08].

Outline

In Chapter two, we present reachability games on counter systems under three different semantics.
In the first section, we present the semantics of vector addition systems with states, or VASS
semantics. Because the VASS semantics is the most common semantics, we take the problem of
determining the winner under it as the basis for our reductions to give results under other semantics.

The second section deals with the Z semantics, i.e., the semantics under which counter values
may be negative. We begin with the one-player case, for which the reachability problem has small
complexity compared to the reachability problem on VASS. After that, we prove that the problem
of determining the winner in reachability games of dimension two, which is undecidable under the
VASS semantics, is also undecidable under the Z semantics. We end the section by showing that
the problem of determining the winner of reachability games has the same complexity in dimension
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one under the Z semantics and under the VASS semantics.
The third section introduces the non-blocking VASS semantics. In our study of counter reachability
games, we distinguish whether the counter value in the objective is positive or zero. In the first
case, the associated decision problems for VASS and non-blocking VASS are interreducible. In the
second case, the associated decision problem has a much lower complexity for non-blocking VASS.
The first three sections form an extension of the work presented in [Rei13].

The fourth section presents an extended model, where counter updates include resets to zero.
We prove that the problem of determining the winner of a one-dimensional counter reachability game
with resets is decidable with the same complexity as in the model without resets. In our proof, we
consider systems under the Z semantics, yet the reduction that we give also holds under the other
two semantics.

In the fifth section, we study a generalization that subsumes counter additions and resets:
affine updates. Here, when an edge is taken, the value of each counter is modified according to
the affine function in the corresponding component of the label of the edge. We prove that the
reachability problem, so a one-player game, is undecidable in dimension two.

In the sixth section, we give three new semantics, which are restrictions of the Z, VASS and
non-blocking VASS semantics. Under the new semantics, which we call semantics of hierarchical
counter systems, for any i between 1 and the dimension, the ith counter can only be modified if
counters 1 to i − 1 are zero. Whether the counters can become negative or not depends on the
combination with the three main semantics. Here again, we just consider the reachability problem
and we prove that it is in NP for any dimension and under any semantics.

In Chapter three, we introduce robot games, a particular case of counter reachability games
under the Z semantics. In a robot game, each player owns exactly one vertex, and there are no
self-loops, so plays are round-based. Also, Adam always starts and Eve’s objective is to reach the
origin after one of her turns. Robot games have many regularity properties, for example Eve’s
winning set is closed under addition. Also, in some cases, a human can solve the game, especially
in dimension one: When all moves are even, no odd position is winning for Eve; When Adam has
at least one positive move and Eve has no negative moves, no positive position is winning for Eve;
etc.
In the first section, we write an EXPTIME algorithm that computes Eve’s winning set in dimen-
sion one as a union of a finite set, around zero, and a void or infinite set, beyond given bounds
towards ±∞. We prove the correctness of the algorithm using a deeper view of the properties of
robot games than what we present earlier in this paragraph.
In the second section, we give a lower bound for the problem of determining the winner of a robot
game in dimension one, namely EXPTIME-hard, which makes our algorithm asymptotically opti-
mal. The proof is based on a reduction of countdown games, introduced in [JLS07], which are seen
as a particular model of counter reachability games. The first two sections are based on the work
presented in [AR13].
In the third section, we show that the problem of determining the winner of a robot game is unde-
cidable in dimension three, with a technical proof that we present in three steps.
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In Chapter four, we give some comments about robot games in dimension two, based on a
graphical tool that implements a step-by-step construction of the winning set of Eve. With the
concrete results and the examples of instances that give a winning set of uncommon shape, we have
arguments for and against decidability of the problem of determining the winner, which we leave
as open.
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Chapter 2

Reachability Games on Counter
Systems

Consider an integer variable x. Give somebody a list of instructions to modify the value of x. We
can wonder whether x remains positive, or whether x takes at least once, or infinitely often, a given
value, or, on the contrary, whether x grows unboundedly at some point. . .

All these questions are conceivable winning conditions for one of the players in a game on a
counter system. Among the conditions, reachability, i.e., whether the variable takes at least once a
given value, plays a central role because many other conditions reduce to reachability: for example,
a counter remains positive if it does not reach any negative value.

In this chapter, we introduce reachability games on counter systems, starting with the well-
known model of Vector Addition Systems with States (VASS). We study three semantics, which
represent three different behaviours when an update may decrease a counter below zero: crossing
an edge with such an update is either impossible, which is the VASS semantics, or possible, which
is the Z semantics, or possible but negative values are replaced by zero, which is the non-blocking
VASS semantics. The latter semantics, which we studied in [Rei13], is new, as far as we know.

The objectives that we consider are usually configurations, i.e., a given counter vector must
be reached on a given vertex. We show that determining the winner of a reachability game in
dimension one is PSPACE-complete under the three studied semantics when the counter value in
the objective is in unary. Surprisingly, there is a particular case : under the non-blocking VASS
semantics, when the objective is a configuration with counter value 0, determining the winner is
P-complete, because the winning set for Eve is downward closed, a property that is specific to the
objective under the non-blocking VASS semantics. In dimension two, determining the winner is
undecidable under the VASS semantics when the objective is a configuration, according to [BJK10],
and we give a reduction to the same decision problem, which we hence prove to be undecidable,
under the Z semantics.

17
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The last result contrasts with the one-player case, for which the reachability problem is NP-
complete under the Z semantics, but solely proved decidable by the author of [Kos82], without any
known lower bound when the dimension is at least three, under the VASS semantics.

We extend the results of this chapter with three other models of counter systems. The first
model has an ordinary feature: reset edges. Even though translation invariance, a property of
reachability games under the Z semantics, disappears, the complexity of determining the winner in
dimension one is the same as the complexity without resets. The second model has affine updates
of the counters, a restricted case of the polynomial updates of [FGH13]. In the third model, some
edges are disabled depending on the counter values, like in VASS but under another condition:
edges that modify the ith counter can be taken only if the first i− 1 counters are zero.

Definitions

A counter system (Figure 2.1) in dimension d is a directed graph (Q,T ), where Q is a finite set of
vertices and T ⊆ Q×Zd×Q is a finite set of edges labelled by integer vectors. A path in a counter
system (Q,T ) is an infinite sequence of vertices that starts from an initial vertex q0 ∈ Q and such
that, for every i ∈ N, there exists a vector vi such that (qi, vi, qi+1) ∈ E. A configuration in a
counter system is a pair (q, x), where q ∈ Q and x ∈ Zd. A run of a counter system (Q,T ) is an
infinite sequence r = (q0, x0)(q1, x1) . . . that starts from an initial configuration (q0, x0) ∈ Q × Zd

and such that, for every i ∈ N, we have (qi, xi+1 − xi, qi+1) ∈ E. Hence, a run of a counter system
follows a path. A counter system is unary if all vectors in the labels of the edges are in {−1, 0, 1}d.

As we define them, the counter updates of the counter systems that we study here are vector
additions. In the literature, counter systems may have affine updates, for example in [FGH13], there
may be resets or transfers between counters, which is the case in [DFS98], and the counter values
may even decrease arbitrarily, to describe situations where the system is lossy, like in [BM99].

A counter reachability game (Figure 2.2) is played by two players, Eve and Adam, on a
counter system (Q,T ). We partition the set of vertices into QE

⊎
QA; Eve owns QE , and Adam

owns QA. In our figures, we use © to represent Eve’s vertices, � to represent Adam’s vertices and
� when the owner of the vertex does not matter.

A play in a counter reachability game corresponds to a run of the counter system. Hence, a
play is represented by an infinite sequence of configurations that players form by moving a token
on (Q,T ) and updating counters as follows. At the beginning, the token is at a vertex q0 and the
counter vector is initialized with x0, hence the initial configuration is (q0, x0). If the token is at
q ∈ QE , then Eve chooses an edge (q, v, r), otherwise Adam chooses. The token is moved to r,
the counter vector, which was x before, is updated to x + v, and the configuration (r, x + v) is
appended to the play. There is a special configuration, called the objective of the game. Eve wins
if the play visits the objective, and Adam wins otherwise, for example when a dead end is reached.
Note that our definition of objective is not the usual definition, because objectives need not be a
single configuration in general.
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Figure 2.1: Two-dimensional
counter system (Q,T ).

Figure 2.2: Counter reachability
game on (Q,T ).

In our example of Figure 2.2, let (q0, (2, 4)) be the objective of the game. A possible play
starting in q0 with (1, 1) as initial counter is the sequence that starts with

(q0, (1, 1))(q3, (3, 1))(q2, (5, 1))(q2, (4, 0))(q0, (6, 3))

and that alternates between q0 and q2. The play that we have given cannot visit the objective,
because the difference between the second and the first counter only increases upon the loop.
However, if the first move of Adam would have been (q0, (1, 1))→ (q2, (0, 1)), then Eve would have
won by choosing the edge to q0, and it would have been useless to look at the rest of the play.

A play prefix starting from the configuration (q0, x0) in a counter reachability game is a finite
sequence (q0, x0)(q1, x1) . . . (qk, xk) of configurations in the counter system (Q,T ). A strategy for
a player is a function that takes as argument a play prefix (q0, x0)(q1, x1) . . . (qk, xk) and returns
an edge that is enabled from the configuration (qk, xk), depending on the semantics. Given a
configuration (q0, x0), two strategies sE and sA for the players, the outcome of sE and sA from the
configuration is the play starting at (q0, x0) and obtained when each player always chooses edges
according to his strategy. A strategy s is winning for a player P from a given configuration c if, for
any strategy s′ of the other player, the outcome of s and s′ from the configuration c is a play that
player P wins. A configuration (q0, x0) in the game is winning if Eve has a winning strategy from
(q0, x0). The decision problem associated with a counter reachability game is, given a configuration
c of a counter system under a semantics that is defined beforehand, to determine whether Eve has
a winning strategy from the configuration c.

Again in our example, Adam has a winning strategy from the configuration (q0, x0) for any
vector x0 = (y0, z0), provided that the objective (qf , xf ), with xf = (yf , zf ), is different from the
configuration (q0, x0). A possible winning strategy involves comparing the differences between the
two counters in the objective and in the starting configuration. If zf − yf is greater than or equal
to z0− y0, then Adam always chooses the edge to q3, and we notice that the difference between the
second and the first counter never increases. Otherwise, Adam always chooses the edge to q2 and
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the difference between the second and the first counter never decreases. In any case, Eve has no
possibility to reach the objective.

We restrict to a unique configuration in our reachability objectives, which allows to encode
most kinds of reachability conditions, as stated in Proposition 12 page 34. Actually, a consequence
of this proposition is that, when the complexity of determining the winner is above EXPTIME or
when the system is not unary, by a slight modification of the arena, we can replace by a singleton
any objective that is a union of {qf} ×Xf , where qf ∈ Q and Xf ⊆ Zd is linear, i.e. has the form
{x0 + k1x1 + · · ·+ knxn | k1, . . . , kn ∈ N} for some d-dimensional vectors x0, x1, . . . , xn. When the
complexity of determining the winner is below EXPTIME on unary counter system, this complexity
may differ depending on whether the objectives are singletons or linear sets: determining whether
Eve has a winning strategy to reach for example the value 0 is P-complete if 0 can be reached in
any vertex but PSPACE-complete if 0 must be reached in a given vertex. This property is proved
in [BJK10] for VASS, and inherited for systems under the Z semantics.

We introduce a notation for the decision problems with which we deal, and we write seman-
tics1

d(xf ) with the following parameters:

• the semantics : Vass, Cs for the Z semantics to avoid notation confusions, or NbVass for
non-blocking VASS;

• a subscript d for the dimension;

• an optional argument xf for the counter value in the objective;

• a superscript 1 to point out, if present, that the system is unary.

We omit the vertex in the objective, because only the counter value is relevant with regard
to complexity. For example, let us look at two notations that appear in this chapter.

• The problem of determining the winner on a counter system of dimension two with an arbitrary
objective is denoted by Cs2.

• The problem of determining the winner on a unary VASS of dimension one with 0 as objective
value is denoted by Vass1

1(0).

A linear set in Zd is a set of the form {x+
∑n

i=1 kixi | k1, . . . , kn ∈ N}, for some d-dimensional
vectors x, x1, . . . , xn. The set {x+

∑n
i=1 kixi | k1, . . . , kn ∈ N} is the least set that contains x and is

closed under addition of vectors in {x1, . . . , xn}. We denote this linear set by x + 〈{x1, . . . , xn}〉N
or simply x + x1N when n = 1. We also write 〈Y 〉N rather than 0 + 〈Y 〉N. We say that a vector
is Y -reachable if, and only if, it belongs to 〈Y 〉N. When d = 1, we have the notion of Y -reachable
integers.

In our work, we write 0d for the d-dimensional vector that has 0 in all its components, and
we denote by −N the set {0,−1,−2, . . .} of nonpositive integers.
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2.1 Reachability games on Vector Addition Systems with States

Reachability games on counter systems, as well as the reachability problem, appear most often
when the counter system is a Vector Addition System with States. The article [BJK10] covers
many results about games on unary VASS and on unary extended VASS. Extended VASS are
VASS with possible additional edges that add ω to a counter, which means adding an arbitrarily
large nonnegative integer. Like in our definitions, states, i.e. vertices, belong to either player.

We rephrase the first result of the article to fit our notations.

Theorem 1 ([BJK10], Proposition 4): Let (Q,T ) be a unary VASS of dimension two. Consider a
reachability game on (Q,T ) with QZ × (({0} × N) ∪ (N × {0})) as objective, where QZ ⊆ Q. The
problem of determining the winner of this game is undecidable.

The following proposition holds under all sematics and makes most proofs of this chapter
simpler, without loss of generality.

Proposition 2: Let (Q,T ) be a counter system. Consider a reachability game on (Q,T ) with a
union of {qi} × Xi as objective, for some vertices qi and some subsets Xi of Z. We can build a
counter system (Q′, T ′) on which we consider a reachability game with a union of {q′i} × Xi as
objective, such that all q′i are vertices of Eve, and she has a winning strategy on (Q,T ) if, and only
if, she has a winning strategy on (Q′, T ′).

Proof. Let (Q,T ) be a counter system. Let QZ = {q1, . . . , qn} be a subset of Q such that the
objective for a reachability game on (Q,T ) is {{qi} ×Xi | 1 ≤ i ≤ n} for some subsets X1, . . . , Xn

of Z.

We build the counter system (Q′, T ′) such that Q′ is the union of Q and of one copy of each
vertex of Adam in QZ . If qi is a vertex of Adam in QZ , which we call duplicated vertex, we denote
by q′i the copy that we create. The set T ′ is the union of the set of all edges that do not point to
a duplicated vertex and of the set {(q, v, q′i), (q′i, 0d, qi) | (q, v, qi) ∈ T}. In other words, any edge
to a duplicated vertex is split into two edges, the first edge updates the counters and points to a
new vertex of Eve and the second edge, the only outgoing edge of the new vertex, points to the
duplicated vertex.

We set the objective to be the union of the set of the {q′i} × Xi, where qi is a duplicated
vertex, and of the set of the {qi} ×Xi, where qi is a vertex of Eve. There is no difference in how
the two games are played, so Eve has a winning strategy in the second game if, and only if, she has
a winning strategy in the first game, because on (Q′, T ′) the counter value is already updated like
in (Q,T ) when a copy of a duplicated vertex is reached.

While the objective in Theorem 1 is a set of configurations, our model restricts to singletons.
Still, we show that both are equivalent in any dimension.
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Proposition 3: Let (Q,T ) be a VASS of dimension d. Consider a reachability game on (Q,T )
with QZ × (({0} ×Nd−1) ∪ (N× {0} ×Nd−2) ∪ · · · ∪ (Nd−1 × {0}) as objective, where QZ ⊆ Q. We
can build a VASS (Q′, T ′) such that Eve wins the reachability game on (Q,T ) if, and only if, she
wins the reachability game on (Q′, T ′) with objective (⊥, 0d), where ⊥ ∈ Q′ \Q.

Proof. According to Proposition 2, we assume that QZ contains vertices of Eve only. We build a
VASS (Q′, T ′), where Q′ = Q ∪ {∅1, ∅2, . . . , ∅d,⊥}, and

T ′ = T ∪ {(q, 0d, ∅1), (q, 0d, ∅2), . . . , (q, 0d, ∅d) | q ∈ QZ}
∪ {(∅1, (0,−1, 0 . . . , 0), ∅1), (∅1, (0, 0,−1, 0, . . . , 0), ∅1), . . . , (∅1, (0, . . . , 0,−1), ∅1)}
∪ {(∅2, (−1, 0, 0 . . . , 0), ∅2), (∅2, (0, 0,−1, 0, . . . , 0), ∅2), . . . , (∅2, (0, . . . , 0,−1), ∅2)}
. . .

∪ {(∅d, (−1, 0 . . . , 0), ∅d), (∅d, (0,−1, 0, . . . , 0), ∅d), . . . , (∅d, (0, . . . , 0,−1, 0), ∅d)}
∪ {(∅1, 0d,⊥), (∅2, 0d,⊥), . . . , (∅d, 0d,⊥), (⊥, (0, 0),⊥)}.

Note that (Q′, T ′) is unary if (Q,T ) itself is unary. If Eve has a winning strategy in the game
on (Q,T ), then she can follow the same strategy on (Q′, T ′) and reach a configuration where the
vertex is in QZ and one of the counters is zero. At this point, she can go to the vertex where
she decreases the other counters to zero and, after that, she can go to ⊥ and win. Conversely,
if Eve has a winning strategy in the game on (Q′, T ′), then she can enforce that the play visits
QZ × (({0}×Nd−1)∪ (N×{0}×Nd−2)∪ · · · ∪ (Nd−1 ×{0}), as this is the only possibility to reach
a vertex ∅i with the ith counter at zero and, after that, to reach the objective.

The article [BJK10] also considers a game on their extended VASS, where the system wins if,
and only if, a configuration with at least one counter at 0 is reached, so the vertex does not matter
anymore. The problem of determining the winner of this game is in (d−1)-EXPTIME, where d ≥ 2
is the dimension. In dimension one, the same problem is in P, and PSPACE-complete when the
objective is QZ × {0}, with QZ ⊆ Q. In dimension two, the complexity is actually P instead of
EXPTIME, an improvement given by the author of [Cha10].

We have already mentioned the difference between the objective in reachability games on
VASS that the authors of [BJK10] study and our model: the objective is on the one hand “at least
one counter is zero” and on the other hand “all counters are zero”. Because both are equivalent in
dimension one, we may use the results directly.

Proposition 4: Determining the winner of a reachability game on a one-dimensional VASS where
Eve wins if, and only if, the counter value becomes 0 reduces in polynomial time to Vass1(0), and
vice-versa.

The difference between the two objectives in this proposition is that with the first objective
Eve wins when the counter value is 0, whichever is the vertex, whereas with the second objective
Eve wins when the counter value is 0 in a given vertex.

Proof. The reduction from the problem of reaching the value 0 to Vass1(0) is straightforward: it
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suffices to give to Eve the possibility of going to a new sink ⊥ after any edge, with two-state gadgets
that replace Adam’s vertices. The idea behind the gadgets is like in Proposition 2.

Let us prove the reduction from Vass1(0) to the problem of reaching the value 0. Let (Q,T )
be a VASS of dimension one. Consider a reachability game on (Q,T ), where Eve wins if, and only
if, the counter value becomes 0 in a particular vertex qf , which belongs to Eve. Suppose that Q is
partitioned into QA and QE , which are the sets of vertices of Adam and Eve, respectively.

Let Q′ = Q ∪ {⊥}, where Adam owns QA and Eve all other vertices. The set T ′ contains the
edge (q, 2v, r) for all edges (q, v, r) of T . There are also two new edges: (qf ,−1,⊥) and (⊥, 0,⊥).

Intuitively, a play on (Q′, T ′) corresponds to a play on (Q,T ), but with the possibility for
Eve to force to reach the sink ⊥ whenever the configuration is (qf , 0) in (Q,T ). Hence, if the play
on (Q,T ) starts in (q0, x0), then the corresponding play on (Q′, T ′) starts in (q0, 2x0 + 1). The
counter value in (Q′, T ′) is always one plus twice the counter value in (Q,T ), until the sink ⊥ is
reached. At this point, the counter value in (Q′, T ′) is 0 if, and only if, it is zero in (Q,T ), hence
Eve has a winning strategy in one game if, and only if, she has a winning strategy in the other.

A remark about the reduction from Vass1(0) to the problem of reaching the value 0 and
the reverse reduction: both reductions also hold under the Z semantics, and for any counter value
in the objective (provided that it is doubled in (Q′, T ′)), but the reduction from Vass1(0) to the
problem of reaching the value 0 does not hold under the non-blocking VASS semantics when the
counter value in the objective is 0.

Note that for any edge in T that adds an integer k to the counter, there is an edge in T ′ that
adds 2k to the counter. Hence, if there is any edge in T that adds another integer than 0 to the
counter, then (Q′, T ′) is not unary. As a consequence, the complexity result of [BJK10] cannot be
used, and this justifies the difference in the article between the complexities with one or another
objective.

To sum up, the problem of determining the winner of a reachability game under the VASS
semantics is undecidable in dimension two, and in dimension one, the problem is PSPACE-complete
on unary counter systems. Moreover, according to the unpublished short paper [Hun14], the prob-
lem of determining the winner of a reachability game on a non-unary system under any semantics
is EXPSPACE-complete; membership in EXPSPACE is deducible from the PSPACE-completeness
of Vass1

1(0) by splitting edges of a system to get an at most exponentially bigger unary system.
We refer to all these results in the next sections when we give reductions from one of the previous
problems.
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2.2 Reachability games on counter systems under the Z se-
mantics

Counter systems under the Z semantics have a regularity property that is missing under the other
semantics. Indeed, if we consider any run on the underlying graph, this run is always possible on
the counter system, and its effect on the counters is always the same: along the run, a vector that
only depends on the edges that were crossed is added to the initial counter vector.

The first consequence of this property is that we can and will consider the vector 0d as the
only objective, thanks to a simple translation of the initial configuration: determining whether
(qf , xf ) is reachable form (q0, x0) and determining whether (qf , 0

d) is reachable form (q0, x0 − xf )
are equivalent. This will not only enable to lower the complexity of decision problems, but also
help to make links to other semantics with more freedom.

In this section, we first consider one-player reachability games under the Z semantics, in
other words the reachability problem. Determining whether there is a winning strategy, i.e., a
run from the initial configuration to a specific objective, is NP-complete in any dimension, which
contrasts to the case of VASS. This difference is a consequence of the regularity property that we
mention, insofar as we may consider a run as the multiset of the edges that it crosses, without
caring for the order because no edge is ever blocked. Actually, only the fact that a multiset of
edges indeed corresponds to a path matters, if the total sum of the labels is the vector that must
be added. For VASS, the reachability problem is NP-complete in dimension one, though, as stated
in [HKOW09], and, according to the recent article [BFG+14], the reachability problem for VASS
is PSPACE-complete in dimension two, which improves the previous lower bound of 2-EXPTIME
given in [HRHY86].

We also study reachability games on counter systems under the Z semantics. Now, the order
of the edges matters again, because Adam’s strategy takes the current configuration into account,
and this configuration depends on the prefix of the play. In fact, we prove that the decision problem
is equivalent under the Z semantics and under the VASS semantics, with mutual reductions that
rely on gadgets. These gadgets show how to simulate under one semantics the behaviour around
zero of the other, with interventions of a player against the moves of his adversary.

We use the equivalence between the problems to deduce that determining the winner of
reachability games under the Z semantics is undecidable in dimension two and PSPACE-complete
in dimension one when the system is unary.

Some results in this section are folklore, with an alternative proof.

2.2.1 The one-player version

The reachability problem on counter systems consists of determining whether there exists a run
from an initial configuration to a final configuration in a counter system. This problem corresponds
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to the one-player version of the decision problem associated with counter reachability games. The
reachability problem on VASS has been widely studied. It was proved to be decidable in [Kos82],
but with still unknown complexity when the dimension is not fixed, or even fixed but at least three.

The following fact is folklore.

Theorem 5: The reachability problem on counter systems under the Z semantics is NP-complete.

Proof. (NP-membership) Let (Q,T ) be a counter system under the Z semantics in an arbitrary
dimension d. We suppose without loss of generality that there are no self-loops in (Q,T ). Let
(q0, x0) and (qf , xf ) be two configurations. We consider the problem of determining whether (qf , xf )
is reachable from (q0, x0). Because of the Z semantics, it is equivalent to decide whether (qf , 0

d) is
reachable form (q0, x0 − xf ), hence we suppose that xf is the vector 0d.

When we want to guess a run from (q0, x0) to (qf , 0
d), where we also suppose that q0 6= qf ,

we just need to guess how many times each edge is taken and check that every vertex is entered as
many times as it is exited, apart from q0 and qf for which there is a difference of ±1 time. We also
need to check that it is possible to form a path with the number of times each edge is taken, and
we explain separately how to do this. We then rewrite the reachability problem as an integer linear
programing (ILP) problem. Note that solving an ILP is NP-complete, according to [PS82, p. 320,
Th. 13.4].

Let n be the size of Q, we assign a number between d+ 1 and d+ n to each vertex, where i0
is the number for q0 and if is the number for qf . We create vectors in dimension d + n from the
vectors in the edges: For each (q, v, q′) in T , let i be the number of q and i′ 6= i be the number of
q′, we denote by v′ the vector with the same first d components as v, a −1 in the component if , an
1 in the component i0 and a 0 in the other components. We also denote by x′0 the vector with the
same first d components as x0, a −1 in the component i0, an 1 in the component if and a 0 in the
other components. We introduce a variable ai for each edge (qi, vi, q

′
i) ∈ E, and we want to solve∑

i aiv
′
i = −x′0

under the constraint ∀i, ai ≥ 0.

It is equivalent to have a solution for the ILP problem and a run from (q0, x0) to (qf , 0
d).

Now, let us show how we check whether a run candidate, i. e., a number of times, possibly 0,
each edge is taken, that satisfies the above ILP. We write n(e) the number of times the edge e is
taken according to the run candidate that we check. Let us call marked edge an edge e such that
n(e) > 0, and marked vertex a vertex that is the source or the target of a marked edge. Let q be a
marked vertex. We need to ensure that there is a path from q0 to q and a path from q to qf that
crosses only marked edges. Once we have ensured this for all marked vertices, it is guaranteed that
there is a path from q0 to qf that crosses n(e) times all marked edges e, because we can build a
multigraph (Q′, E′), where Q′ is the set of the marked vertices and E′ the set of marked edges e
counted n(e) times. The multigrph (Q′, E′) is connected and there is an Eulerian path from q0 to
qf in (Q′, E′) because we have a run candidate (folklore property). The Eulerian path gives a run
from (q0, x0) to (qf , xf ).
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To sum up, we need to guess a number of times each edge is taken, and for all marked vertices
we also need to guess a path of marked edges from q0 to qf via the vertex, which can be done in
polynomial time as such paths need not visit twice a same vertex.

This polynomial-time reduction proves NP-membership of the reachability problem for counter
systems under the Z semantics.

(NP-hardness) Let us reduce 3SAT to the reachability problem. Consider a formula ϕ
in conjunctive normal form with at most three literals per clause. Let {x1, . . . , xn} be the set of
variables that appear in ϕ and C1, . . . , Ck be the clauses of ϕ.

We build an n-dimensional counter system that consists of k gadgets, which represent the
clauses, and an end that depends on k and n only. In the gadget, there are one, three or seven
edges, if the number of literals is one, two or three, respectively, from the initial vertex to the second
vertex. Each of them stands for a satisfying valuation of the variable(s) in the clause: the vector
has 1 in the ith component if xi is set to true in the affectation, −1 if xi is set to false, 0 if xi is a
variable that does not appear in the clause. After that, there are one vertex and two edges in the
gadget for each free variable of the clause, the two edges increment and decrement the component
that corresponds to the variable. A gadget for a given formula is depicted in Figure 2.3. At the
exit of the last gadget, there is a chain of n vertices with two outgoing edges each, one that adds
k to the corresponding component and one that subtracts k from the same component, as we can
see in Figure 2.4.

If there is an assignment of the variables that satisfies ϕ, then there exists a run from the
initial vertex of the first gadget with 0n as counter vector to the end of the chain with 0n as counter
vector, where, in each gadget, each component is incremented when the corresponding variable is
assigned to true and decremented else, then after the k gadgets the integer k is subtracted from
any component such that the corresponding variable is assigned to true and added to the other
components. This is possible because in each gadget each component is either incremented or
decremented and the only restriction is the satisfaction of the corresponding clause. Conversely, if
there exists a run from the initial vertex of the first gadget with 0n as counter vector to the end of
the chain with 0n as counter vector, then the vector must be only composed of ±k at the beginning
of the chain, and all gadgets must change the vector identically, which gives an assignment that
satisfies the formula.

Note that the number of vertices, as well as the number of edges, is polynomially bounded
by the size of the formula.

In dimension one, it is also possible to reduce the Subset-Sum problem, which is proved
to be NP-complete in [CLRS09, p.1097], to the reachability problem. This gives another proof of
NP-hardness.

Theorem 6: The reachability problem on counter systems in dimension one under the Z semantics
is NP-complete.
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in bound x2 x5

(1, 0,−1, 1, 0)

(1, 0,−1,−1, 0)

(1, 0, 1, 1, 0)

(1, 0, 1,−1, 0)

(−1, 0,−1, 1, 0)

(−1, 0,−1,−1, 0)

(−1, 0, 1, 1, 0)

(0, 1, 0, 0, 0)

(0,−1, 0, 0, 0)

(0, 0, 0, 0, 1)

(0, 0, 0, 0,−1)

Figure 2.3: Gadget for the clause x1 ∨ ¬x3 ∨ x4 in a formula with five variables.

1 2 3 4 5 end

(3, 0, 0, 0, 0)

(−3, 0, 0, 0, 0)

(0, 3, 0, 0, 0)

(0,−3, 0, 0, 0)

(0, 0, 3, 0, 0)

(0, 0,−3, 0, 0)

(0, 0, 0, 3, 0)

(0, 0, 0,−3, 0)

(0, 0, 0, 0, 3)

(0, 0, 0, 0,−3)

Figure 2.4: Chain at the end of a counter system obtained from a formula with three clauses and
five variables.
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We do not give the details of the reduction, which is similar to the one that we use to prove
the following fact.

Theorem 7: The reachability problem on unary counter systems under the Z semantics is NP-
complete.

Proof. NP-membership is a consequence of NP-membership on non-unary systems.

(NP-hardness) Consider an instance (X, s) of Subset-Sum, i.e., a set X = {x1, . . . , xn} ⊆ N
and an integer s ∈ N. Let d = 1 + blog2(max(X))c. All elements of X can be written with at
most d bits. We build a d-dimensional unary counter system (Q,T ) such that the configuration
(qn, (s, 0, . . . , 0)) is reachable from (q0, 0

d) if, and only if, there exists a subset of X that sums up
to s.

We use a binary encoding of the integers of X: We associate a vector vi = (vi,1, . . . , vi,d)

with each xi, such that xi =
∑d

j=1 vi,j2
j−1. The set of vertices Q consists of two parts, Qa to add

some vectors vi to the counter vector, and Qt to transfer everything to the first dimension. More
precisely, Qa = {q0, q1, . . . , qn} and Qt = {r2, . . . , rd}, with the following set of edges:

• {(qi−1, vi, qi), (qi−1, 0, qi) | 0 < i ≤ n} to choose whether to add vi or not, hence to have xi in
the subset or not;

• {(qn, (0, . . . , 1︸︷︷︸
i

,−1, . . . , 0), ri), (ri, (0, . . . , 1︸︷︷︸
i

, . . . , 0), qn) | 1 ≤ i < d} to transfer one unit

of the i+ 1th dimension into two units of the ith dimension.

At any step, if the counter vector is (c1, . . . , cd), then the sum of the elements of X that cor-
respond to the vectors that have been added is

∑d
i=1 ci2

i−1. In qn, it suffices to transfer everything
to the first dimension, where the value should be s when the run simulates a positive instance of
Subset-Sum. Figure 2.5 represents an illustration of this reduction.

q0 q1 q2 q3 q4

r2

r3

(0, 1, 0)

(0, 0, 0)

(1, 1, 0)

(0, 0, 0)

(1, 0, 1)

(0, 0, 0)

(0, 1, 1)

(0, 0, 0)

(1,−1, 0)

(0, 1,−1)
(1, 0, 0)

(0, 1, 0)

Figure 2.5: Counter system for the instance ({2, 3, 5, 6}, 11) of Subset-Sum.

Another proof of Theorem 7 was given independently in [HH14].
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2.2.2 The two-player version in dimension two or more

We present a construction that we use here to obtain our proof of undecidability of counter reach-
ability games in dimension two, and in Subsection 2.2.3 to give lower complexity bounds.

In order to show the reduction from the decision problem under the VASS semantics to the
decision problem under the Z semantics, we simulate in the winning condition the deactivation of
edges in VASS, which makes the difference to the Z semantics.

The only edges that may make a counter value become negative are the ones that add a
negative integer in at least one component. In other words, the label of such edges is not in Nd.
Other edges do not cause any problem regarding the semantics, which justifies our distinction in
the proof of the next proposition.

Proposition 8: Vassd(0d) reduces to Csd(0d) in polynomial time for any dimension d.

Proof. Let (Q,T ) be a VASS of dimension d, let (q0, x0) and (qf , xf ) be configurations of (Q,T ).
We consider the reachability game on (Q,T ) where the objective is (qf , xf ). As usual, the set Q is
partitioned into the set QE of Eve’s vertices and the set QA of Adam’s vertices. We assume that
qf ∈ QE . This is without loss of generality like in the proof of Proposition 3 page 21.

We build a counter system under the Z semantics on which Eve has a winning strategy from
a particular configuration if, and only if, she has a winning strategy from (q0, x0) in the VASS. The
key property is that each player must be able to win whenever his adversary makes a counter value
become negative. We can then simulate the VASS semantics.

In order to have this property, we construct a counter system (Q′, T ′), with vertices Q′ =
Q ∪ {testt | t = (q, v, r) ∈ T, v 6∈ Nd} ∪ {⊥, check, check1, . . . , checkd}. We partition Q′ into
Q′E = QE ∪ {⊥, check, check1, . . . , checkd} ∪ {testt | t = (q, v, r) ∈ T, q ∈ QA} and Q′A. The set of
edges T ′ is obtained from T , first by splitting every edge t = (q, v, r) such that v 6∈ Nd into two
edges (q, v, testt) and (testt, 0d, r), and second by adding moves from every vertex testt to check
vertices of Q′ as well as additional edges in the set of vertices that gathers check vertices and ⊥,
according to the list that we give and as depicted in Figures 2.6 and 2.7.

More precisely, T ′ is the union of the following sets of edges, where (x)di is the vector with x
in the ith component and 0 in the other components:

• {(q, v, r) ∈ T | v ∈ Nd};

• {(q, v, testt), (testt, 0d, r) | t = (q, v, r) ∈ T, v 6∈ Nd};

• {(testt, 0d, check) | t = (q, v, r) ∈ T, v 6∈ Nd, q ∈ QE};

• {(testt, (1)di , checki) | t = (q, v, r) ∈ T, q ∈ QA, 1 ≤ i ≤ d};
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q r
(−1,−2)

↓

q testt check ⊥

r

(−1,−2) (0, 0)

(0, 0)

(0,−1)

(−1, 0)

(0, 0)

(0, 0)

Figure 2.6: Gadget to replace an edge t = (q, (−1,−2), r) from a vertex of Eve in the reduction
from Vass2((0, 0)) to Cs2((0, 0)).

• {(check, (−1)di , check) | 1 ≤ i ≤ d};

• {(checki, (−1)dj , checki) | 1 ≤ j ≤ d, j 6= i};

• {(checki, (1)dj , checki) | 1 ≤ j ≤ d};

• {(qf ,−xf ,⊥)} ∪ {(q, 0d,⊥) | q ∈ {⊥, check, check1, . . . , checkd}}.

The objective of the counter reachability game is (⊥, (0, . . . , 0)). Hence, in the vertex check,
Eve has a winning strategy if, and only if, every counter is nonnegative, and in the vertex checki,
Eve has a winning strategy if, and only if, the ith counter, which has been incremented when the
play reached checki, is nonpositive. Consequently, as soon as a player makes a counter become
negative, his adversary has a winning strategy by going to a check vertex. If all counters remain
positive, then Eve wins by using the move (qf ,−xf ,⊥) once the play visits the objective of the
game on (Q,T ).

The reduction is polynomial: we have |Q′| ≤ d+2+|Q|+|T | and |T ′| ≤ (d+2)|T |+2d(d+1)+2.
Moreover, if (Q,T ) is unary, then (Q′, T ′) is unary too, provided that the objective in the VASS is a
vector that contains only values in {−1, 0, 1}, and otherwise we may split the edge that subtracts the
objective to still get a reduction such that the system that we build is unary, even if the reduction
is then no longer polynomial.

Theorem 9: Cs1
2 is undecidable.
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q r
(−1,−2)

↓

q

testt

check1

check2

⊥

r

(−1,−2) (1, 0)

(0, 1)(0, 0)

(1, 0)

(0,−1)(0, 1)

(0, 0)

(0, 1)

(1, 0) (−1, 0)

(0, 0)

(0, 0)

Figure 2.7: Gadget to replace an edge t = (q, (−1,−2), r) from a vertex of Adam in the reduction
from Vass2((0, 0)) to Cs2((0, 0)).



32 CHAPTER 2. REACHABILITY GAMES ON COUNTER SYSTEMS

Proof. We make two successive reductions: from the decision problem on VASS that is proved to
be undecidable in Theorem 1 page 21 to Vass1

2 using Proposition 3 page 21, then from Vass1
2 to

Cs1
2 using Proposition 8.

2.2.3 The two-player version in dimension one

We recall that Proposition 8 page 29 implies that there is a polynomial-time reduction from
Vass1

1(0) to Cs1
1(0), hence Cs1

1(0) is PSPACE-hard because Vass1
1(0) is PSPACE-complete ac-

cording to [BJK10].

The main idea of the construction in this section to prove PSPACE-membership of Cs1
1(0)

by a reduction to Vass1
1(0) is to simulate, with nonnegative integers only, a counter value in Z. For

this purpose, we use two copies of the set of vertices and explain how to move from one copy to
another.

Let us present the intuition of our reduction. We start from a counter system (Q,E) under
the Z semantics and we build a counter system (Q′, E′) under the VASS semantics. One half of Q′
represents locations of (Q,E) with nonnegative counter values in a corresponding run, the other
half represents nonpositive counter values. Plays on (Q′, E′) correspond to plays on (Q,E). During
a play on (Q′, E′), any player can decide to move from one half to another one, provided that the
counter value in the corresponding play on (Q,E) has the adequate sign. If a player makes such a
decision unduly, then his adversary has a winning move in reaction. Winning moves are explained in
the figures that depict the gadgets that the construction uses. With the feature of moving between
the copies, it is possible to encode an integer into a pair (copy number, nonnegative integer).

Theorem 10: Cs1
1(0) is PSPACE-complete.

Proof. We reduce Cs1
1(0) to Vass1

1(0) in polynomial time. Consider a reachability game on a unary
counter system (Q,T ), where the objective is (f, 0), with f ∈ QE . Recall that when the counter
value in the objective is not 0, we can translate initial and objective value thanks to the Z semantics.

We define two copies Q+ = {q+ | q ∈ Q} and Q− = {q− | q ∈ Q} of Q, and the set
QT = {qt | ∃p, q ∈ Q, v ∈ {±1}, t = (p, v, q) ∈ T}. We build the unary VASS (Q′, T ′), where
Q′ = Q+ ∪ Q− ∪ QT ∪ {no,⊥} is partitioned into Q′E = {q+, q− | q ∈ QE} ∪ {qt ∈ QT | t ∈
QA × {±1} × Q} ∪ {no,⊥} and Q′A. The set of edges T ′ contains two copies of T , i.e., edges
(q+, v, r+) and (q−,−v, r−) for each edge (q, v, r) ∈ T . When v = 0 in the edge, we do not use
any gadget and the play remains in the same copy of Q. The other edges of T ′ are used to move
between Q+ and Q− via the new vertices of QT , as depicted in Figures 2.8 and 2.9.

More precisely, T ′ is the union of the following sets of edges:

• {(q+, v, r+), (q−,−v, r−) | (q, v, r) ∈ E};
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• {(q−, 0, rt), (qt, 0,⊥), (qt, 1, q+) | t = (q, 1, r) ∈ T, q ∈ QE};

• {(q+, 0, rt), (qt, 0,⊥), (qt, 1, q−) | t = (q,−1, r) ∈ T, q ∈ QE};

• {(q−, 0, rt), (qt,−1, no), (qt, 1, q+) | t = (q, 1, r) ∈ T, q ∈ QA};

• {(q+, 0, rt), (qt,−1, no), (qt, 1, q−) | t = (q,−1, r) ∈ T, q ∈ QA};

• {(no,−1,no), (no, 0,⊥), (f+, 0,⊥), (f−, 0,⊥), (⊥, 0,⊥)}.

The VASS (Q′, T ′) is designed such that a play in it corresponds to a play in the counter
system (Q,T ). Let (q, x) be the initial configuration of the game on (Q,T ). If x ≥ 0, then the
initial configuration of the game on (Q′, T ′) is (q+, x) ; if x < 0, then the initial configuration of
the game on (Q′, T ′) is (q−,−x). Hence, a configuration (q, x) ∈ Q× (−N) in (Q,T ) is associated
with the configuration (q−,−x) ∈ Q− ×N in (Q′, T ′). That is why the labels of the edges between
vertices in Q− are the opposite of the labels of the edges in Q.

The objective of the game on (Q′, T ′) is (⊥, 0). In fact, Eve loses whenever a play reaches ⊥
with another counter value. Furthermore, if a player makes a move to a vertex qt in QT and the
counter value is not 0, then his adversary, who owns qt, has a winning move.

q r
−1

↓
q−

q+

r−

qt r+

⊥
1

−1

0

0
1

0

Figure 2.8: Gadget to replace an edge t = (q,−1, r) from a vertex of Eve in the reduction from
Cs1

1(0) to Vass1
1(0).

A consequence of Theorem 10 is that Cs1 is in EXPSPACE: It suffices to split every edge
with another label than −1, 0 or 1. At the time when we wrote this section, we did not know yet
whether EXPSPACE was an optimal upper bound, but a lower bound can be obtained from from
the complexity of countdown games, presented in [JLS07], a model that we can express as counter
reachability games.

Theorem 11 ([JLS07]): Cs1 is EXPTIME-hard.

According to Paul Hunter in [Hun14], the problem of determining the winner of a counter
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q r
1

↓
q+

q−

r+

qt r−

no⊥
1

−1

0

−1
1

−1
0

0

Figure 2.9: Gadget to replace an edge t = (q, 1, r) from a vertex of Adam in the reduction from
Cs1

1(0) to Vass1
1(0).

reachability game under any semantics in dimension one is EXPSPACE-hard. It appears that all
complexities for the two-player game match with the corresponding complexities under the VASS
semantics, unlike in the one-player case.

Note that the complexity result under the Z semantics holds whichever counter value is in the
objective, as we explained at the beginning of the section. Since our reductions, although written
with zero as objective, hold for any fixed counter value in the objective, we can extend our results
to obtain PSPACE-completeness in dimension one under the other semantics. We must in fact take
care that, on unary counter systems, when the counter value in the objective is k 6= 0, we need to
create k fresh vertices and edges, which would have an effect on the complexity if k were in input.

Let us also extend our results to objectives that are not singletons but unions of {qi} ×Xi,
where all Xi are linear sets, with a similar, but more advanced, argument to the one in the proof
of Proposition 4 page 22. On non-unary systems, determining the winner of a reachability game
under the Z semantics has the same complexity with and without singleton objectives, and on unary
systems, the complexity does not differ either when it is already at least EXPTIME.

Proposition 12: Let (Q,T ) be a counter system under the Z semantics. Consider a reachability
game on (Q,T ), where the objective for Eve is a union of {qi} × Xi, where the qi ∈ Q and all
Xi ⊆ Zd are linear sets. We can build in polynomial time a counter system (Q′, T ′) under the Z
semantics in which the objective of Eve is a singleton and such that Eve has a winning strategy
from a given initial configuration (q0, x0) in (Q,T ) if, and only if, she has a winning strategy from
the same initial configuration in (Q′, T ′).

Proof. Let (Q,T ) be a counter system under the Z semantics, let q1, . . . , qn be elements of Q and
for 1 ≤ i ≤ n let Xi = xi + xi,1N + · · ·+ xi,ki

N be linear sets. For the case of semilinear sets, i.e.,
finite unions of linear sets, we just consider that a same vertex can appear many times in the list
of qi.
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We suppose without loss of generality that all qi belong to Eve, like in the proof of Propo-
sition 3 page 21. We build a counter system (Q′, T ′) under the Z semantics, where Q′ = Q ∪
{q′1, . . . , q′n,⊥}, Q′E = Q′ \QA, and T ′ is the union of the following sets of edges:

• T ;

• {(qi, 0d, q′i) | 1 ≤ i ≤ n};

• {(q′i,−xi,j , q′i) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki};

• {(q′i,−xi,⊥) | 1 ≤ i ≤ n} ∪ {(⊥, 0d,⊥)};

The objective in (Q′, T ′) is the singleton (⊥, 0d).

Intuitively, a play in (Q′, T ′) simulates the same play in (Q,T ) up to a point when Eve claims
that she would win in (Q,T ). Indeed, whenever the play is in a qi and the counter vector is in Xi,
Eve may force to reach q′i, where she subtracts vectors that are directions of Xi until the counter
vector is the base vector of Xi. By subtracting this base vector and going to ⊥, Eve wins.

Conversely, by a careful look at T ′, we remark that Eve wins a play in (Q′, T ′) if, and only if,
at some point in the play, just before entering a q′i, the configuration was (qi, x) with x ∈ Xi, and
before this point plays in (Q,T ) and in (Q′, T ′) were the same, insofar as the same configurations
are visited.

Finally, note that the reduction that we present is polynomial, which is useful when we need
the result of this proposition for dimension one. Indeed, the number of additional vertices is the
number of linear sets in the objective plus one, and the number of additional edges is linear in the
number of base vectors in all linear sets. However, with this reduction, we do not build in general
unary systems, and building unary systems would cause an exponential blowup insofar as the new
edges would have to be split. It is only if all vectors in all Xi have only components in {−1, 0, 1}
that the systems that we build according to the reduction are unary.

2.3 Reachability games on counter systems under the Non-
blocking VASS semantics in dimension one

When we consider possible behaviours around zero in counter systems, we understand that between
the Z semantics, which always allows to take every edges, and the VASS semantics, under which an
edge is disabled if it would make a counter become negative, there may be an intermediary choice:
if an edge would make at least one counter become negative, it is indeed crossed, but the counters
that should have become negative are put to zero instead.

This leads to the definition of a new semantics, that we call non-blocking VASS semantics
in [Rei13].
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A counter system under the non-blocking VASS semantics has a weaker version of the regu-
larity property that counter systems under the Z semantics have: Consider a run in the underlying
graph, the effect of the run on the counters in the system will not necessarily be the same for two
different initial counter vectors. In other words, the difference between final and initial counter vec-
tors may not be preserved when the initial counter vector is changed. Nevertheless it is guaranteed
that if a counter is smaller in the first initial configuration than in the second initial configuration,
then the same counter will be smaller or equal in the first final configuration than in the second
final configuration.

In this section, the counter systems are all in dimension one.

When counter values are far away from 0, there is no difference between the two semantics,
and we first show how to simulate the VASS semantics with the non-blocking VASS semantics
and vice-versa, when the counter value in the objective of the game under the non-blocking VASS
semantics is a constant. According to the mutual reductions that we obtain, determining the winner
of a counter reachability game under the non-blocking VASS semantics with a positive objective
given in unary is PSPACE-complete.

In the specific case where the objective is 0, and because of the above property, the winning
set for Eve is downward closed, hence we may compute for every vertex the maximal starting value
from which she has a winning strategy, which leads to a polynomial-time algorithm for determining
the winner if the system is unary. With non-unary systems, the problem is in NP.

Let us first deal with the reachability problem under the non-blocking VASS semantics. Recall
that this problem is NP-complete in dimension one for counter systems under the Z semantics and
under the VASS semantics. Here, knowing the counter value before taking an edge is even more
important than in VASS, because the effect of an edge changes when the value is near zero. Hence
we do not look for a direct algorithm for solving the reachability problem, but rather for a reduction
from the same problem under the VASS semantics. In fact, what matters is whether an edge that
decreases the counter, say by k, is taken, whereas the counter value is lower than k. Accordingly,
consider a run ρ from a configuration (q, x) to a configuration (qf , xf ) in a counter system (Q,T )
under the non-blocking VASS semantics. For all edges t = (r, v, s) ∈ T such that v < 0, we can
assume without loss of generality that in ρ the edge t is taken at most once while the counter value
is ≤ v, because a witness of reachability need not visit twice the same configuration, and taking t
from any configuration (r, y) with y ≤ v leads to (s, 0).

Theorem 13: The reachability problem for one-dimensional counter systems under the non-blocking
VASS semantics is in NP.

Proof. (NP-membership) Let us reduce the reachability problem for one-dimensional counter
systems under the non-blocking VASS semantics to the same problem under the VASS semantics.

Let (Q,T ) be a one-dimensional counter system under the non-blocking VASS semantics.
Let (q, x), (qf , xf ) ∈ Q× N be two configurations.
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As stated before the proposition, if there is a run in (Q,T ) from (q, x) to (qf , xf ), then
each edge that decreases the counter can be taken at most once from a configuration such that
the counter value then becomes zero. Let Q0 ⊆ Q be the set of targets of edges that decrease the
counter.

Apart from that, the behaviour of the system is like under the VASS semantics. Hence, for
each vertex r ∈ Q0, we would like to know whether (qf , xf ) is reachable from (r, 0) in (Q,T ), but
under the VASS semantics, which amounts to solving the reachability problem.

We then make the connections between parts of a run candidate from (q, x) to (qf , xf ) in
(Q,T ) under the non-blocking VASS semantics, linking the parts in (r, 0) for r ∈ Q0. To do this,
we guess an ordered sequence r1, . . . , rn of elements of Q0, each of them appearing at most once,
and we guess the subruns from (q, x) to (r1, 0), from (ri, 0) to (ri+1, 0) for 1 ≤ i < n and from
(rn, 0) to (qf , xf ).

For the last subrun, we already explained how to check reachability. For the previous ones,
we need to modify the counter system in order to simulate the last edge taken in the run, because
this edge would be disabled under the VASS semantics and we cannot replace it by multiple edges
because the reduction would no longer be polynomial.

Hence, instead of determining whether there is a run from (ri, 0) to (ri+1, 0) in (Q,T ) under
the VASS semantics (analogous for the first subrun), we decide whether there is a run from (ri, 0)
to (⊥, 0) in (Q ∪ Q′ ∪ {>}, T ′) under the VASS semantics, where Q′ = {>q | (q, v, ri+1) ∈ T ∩
Q× (−N)×Q} is a copy of the set of sources from edges that decrease the counter and have ri+1

as targets, T ′ = T ∪ {(q, 0,>q), (>q, 1,>q) | q ∈ Q′} ∪ {(>q, v,>) | (q, v, ri+1) ∈ T} ∪ {(>, 0,>)}
contains the edges in T and for each vertex in >q ∈ Q′ a gadget that simulates the edge from q to
ri+1 and decreases the counter to zero. In this gadget, the counter is incremented as many times as
needed such that when > is reached the value is 0. Of course, the gadget should be entered when
the counter value is low enough.

Finally, we check whether the guessed subruns exist in the modified counter systems under
the VASS semantics, which leads to the announced complexity.

(NP-hardness)

The NP lower bound uses a straightforward reduction from the Subset-Sum problem like
the case of the other two semantics. In the reduction for this semantics, it is necessary that the
reachability problem is whether there is a path from a configuration (q0, 0) to a configuration (qf , s),
where q0 is the initial vertex, qf is the final vertex and s is the sum in the instance of Subset-
Sum. Indeed, if 0 were the counter value in the objective, then this value could be reached while
subtracting more than s, under the non-blocking VASS semantics. As we evoked before, when the
value is 0 in the objective, the complexity of determining the winner of a reachability game is lower
than in the general case, which explains why the same reduction cannot hold.
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2.3.1 Reachability games on non-blocking VASS with value 1 in the ob-
jective

In this subsection, we give a reduction from the problem of determining the winner on a non-blocking
VASS to the problem of determining the winner on a VASS, and also the reverse reduction. The idea
of the first reduction is the following. For every edge labelled by −1 in a unary non-blocking VASS,
we give two choices for Adam in the VASS: decrement the counter or leave it unchanged, depending
on whether it is positive or zero. The winning condition is designed so that Eve has a checking move
that makes her win whenever Adam chooses the wrong move, e.g., he leaves the counter unchanged
whereas he should decrement it. Moreover, Adam wins if Eve abuses her checking move.

Theorem 14: NbVass1
1(1) is PSPACE-complete.

Proof. (PSPACE-membership) We reduce NbVass1
1(1) to Vass1

1(0) in polynomial time. Let
(Q,T ) be a unary non-blocking VASS (Q,T ). Consider a reachability game on (Q,T ), where the
objective is to reach (qf , 1) for a fixed location qf ∈ Q1. We define QT as the set {qt, q>0

t , q=0
t | t ∈

T ∩ (Q × {−1} × Q)}, and we build the unary VASS (Q′, T ′), where Q′ = Q ∪ QT ∪ {no,⊥} is
partitioned into Q′E = QE ∪ {q>0

t , q=0
t | t ∈ E} ∪ {no,⊥} and Q′A. The set of edges is

T ′ ={(q, v, r) | (q, v, r) ∈ T, v ∈ {0, 1}}
∪ {(q, 0, qt), (qt, 0, q>0

t ), (qt, 0, q
=0
t ), (q=0

t , 0, r), (q>0
t ,−1, r),

(q>0
t , 0,⊥), (q=0

t ,−1,⊥) | t = (q,−1, r) ∈ T}
∪ {(no,−1, no), (no, 0,⊥), (qf ,−1,⊥), (⊥, 0,⊥)}.

Intuitively, every time a play visits an edge with a decrement in (Q′, T ′), Adam has to guess
whether the counter value is zero or positive, and move accordingly to an intermediate vertex,
where Eve can move to the actual target of the edge in (Q,T ) or to a checking gadget where the
play ends.

The objective of the game on (Q′, T ′) is (⊥, 0). As we can see in Figure 2.10, Eve has a
winning strategy in every vertex q=0

t when the counter value is positive, and in every vertex q>0
t

when the counter value is zero.

In the construction for the reverse reduction, when a player chooses any edge with a negative
label and the counter value is less than the value that should be subtracted, then the adversary of
this player has a winning move. While taking the aforementioned edge is allowed in a non-blocking
VASS, it would be forbidden in a VASS.

(PSPACE-hardness)We show a polynomial-time reduction from Vass1(0) to NbVass1(1).
Let (Q,T ) be a VASS. Consider a reachability game on (Q,T ), where the objective is (qf , 0), with
qf ∈ QE . We define QT as the set {qt | t ∈ T ∩ (Q × (Z \ N) × Q)}, and we build the non-
blocking VASS (Q′, T ′), where Q′ = Q ∪ QT ∪ {noE, noA,⊥}, Q′E = QE ∪ {qt ∈ QT | t ∈
Q2 × Z×Q} ∪ {noE,noA,⊥}, Q′A = Q′ \Q′E , and T ′ is obtained from T by splitting every edge
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Figure 2.10: Gadget to replace an edge t = (q,−1, r) in the reduction from NbVass1
1(1) to Vass1

1(0).

(q, v, r) such that v ∈ −N into two edges (q, 0, qt) and (qt, v, r) and by adding an edge from every
vertex qt to the “no”-vertex that corresponds to the owner of q, as well as additional edges between
noA, noE and ⊥, as depicted in the Figures 2.11 and 2.12.

More precisely, T ′ is the union of the sets of edges:

• {(q, v, r) | (q, v, r) ∈ T, v ∈ N};

• {(q, 0, qt), (qt, v, r) | t = (q, v, r) ∈ T, v < 0};

• {(qt, v + 1, noE) | t = (q, v, r) ∈ T, v < 0, q ∈ QE};

• {(qt, v + 1, noA) | t = (q, v, r) ∈ T, v < 0, q ∈ QA};

• extra edges {(noE,−1, noE), (noE, 0,⊥), (noA, 1,⊥), (qf , 1,⊥), (⊥, 0,⊥)}.

The non-blocking VASS (Q′, T ′) is designed such that a play in it corresponds to a play in
the VASS (Q,T ). Let us consider a vertex qt ∈ QT , for an edge (q, v, r) in T . Note that v < 0 and
that the owner of qt is not the owner of q. In the play on the VASS, the edge (q, v, r) can only be
taken if the counter value is at least −v. If a player goes to qt, i.e., simulates the choice of the edge
(q, v, r), his adversary wins whenever the counter value is less than −v, after going to a “no”-vertex,
as we can see in the Figures 2.11 and 2.12.

Indeed, suppose that Eve tries to take an edge t that decreases the counter by 5 whereas the
counter value is less. Adam goes to noE and decreases the counter by 4, so the counter becomes 0
because of the non-blocking VASS semantics. In noE , Eve cannot decrement the counter and bring
its value to 1, hence she cannot reach her objective, which is (⊥, 1). Now, suppose that Adam tries
to take an edge t that decreases the counter by 5 whereas the counter value is less. Eve goes to noA
and decreases the counter by 4, so the counter also becomes 0. Then Eve wins at the next move
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q r
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Figure 2.11: Gadget to replace an edge t = (q,−5, r) from a vertex of Eve in the reduction from
Vass1(0) to NbVass1(1).
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Figure 2.12: Gadget to replace an edge t = (q,−5, r) from a vertex of Adam in the reduction from
Vass1(0) to NbVass1(1).
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because the configuration is (⊥, 1).

Note that according to this reduction, if (Q,T ) is a unary VASS, then (Q′, T ′) is a unary
non-blocking VASS.

2.3.2 The case of zero-reachability games on non-blocking VASS

For non-blocking VASS, we prove that the set of winning configurations is downward closed when
the reachability objective is (qf , 0) for a given qf . Hence, to decide whether Eve has a winning
strategy, we compute for all vertices the maximal initial value for which the pair (vertex, value) is
winning and we look at the initial configuration.

Lemma 15: Let (Q,T ) be a non-blocking VASS. Consider a reachability game on (Q,T ), where
the objective is (qf , 0), where qf ∈ Q. If the initial configuration (q0, x) is winning, then every
configuration (q0, x

′) for x′ < x is winning.

Proof. Let (q0, x) be a winning configuration, and let s be a winning strategy for Eve from (q0, x).
We want to prove that s is also a winning strategy from (q0, x

′) for x′ < x. Consider any strategy
s′ for Adam. The outcome of the strategies s and s′ from (q0, x) is a play π that Eve wins, i.e.,
the play π eventually visits (qf , 0), because s is a winning strategy. Also, the outcome of the same
strategies from (q0, x

′) is a play π′ that visits the same locations as π, and no edge is disabled
because of the semantics of a non-blocking VASS. Moreover, the counter value in π′ is after each
move less than or equal to the counter value in the corresponding move of π. In particular, π′
eventually visits qf with counter value 0, hence Eve wins.

Algorithm 1 determines whether Eve has a winning strategy in a reachability game on a
non-blocking VASS when the counter value in the objective is 0, by computing for every vertex q
the greatest counter value x such that Eve has a winning strategy from (q, x). Its time complexity
is exponential in the initial counter value. Because we want a polynomial-time complexity, we call
it only with 0 as initial counter value in the proof of Theorem 16.

q ⊥
2n −1

Figure 2.13: Counter system where Algorithm 1 uses 2n iterations for an input of size n.

Theorem 16: NbVass1
1(0) is P-complete.

Proof. According to Lemma 15, we just need to compute for every vertex q ∈ Q the maximal value
xm such that (q, xm) is winning. We even do more: First, we compute the set QZ of vertices
from which Eve has a winning strategy with initial counter value 0. For this purpose, we use
Algorithm 1, and here the time complexity is polynomial. Second, we build the VASS (Q′, T ′),
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Algorithm 1: Solves NbVass1
1(0).

Input: A non-blocking VASS (Q,T ), a vertex qf , and a configuration (q0, x0)
Result: Does Eve have a winning strategy to reach (qf , 0) from (q0, x0)?
begin

Create a table Mq with q ∈ Q as indices, initialized to −∞
Mqf ← 0
repeat

foreach q ∈ QE do
new_Mq ← −∞
if q = qf then new_Mq ← 0
foreach t = (q, v, r) ∈ E do

if Mr − v ≥ 0 then new_Mq ← max(new_Mq,Mr − v)

Mq ← new_Mq

foreach q ∈ QA do
new_Mq ←∞
foreach t = (q, v, r) ∈ T do

if Mr − v ≤ 0 then new_Mq ← −∞ else new_Mq ← min(new_Mq,Mr − v)

if q = qf then new_Mq ← max(0, new_Mq)

Mq ← new_Mq

until a fixpoint is reached or Mq0
≥ x0

if Mq0 ≥ x0 then return true else return false
end
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Value in q ≤ 3 4 or 5 ≥ 6
If edge to q1 No Yes
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If edge to q3 No
If edge to q4 No Yes

Figure 2.14: Vertex of Adam in a game on a
non-blocking VASS (maximal winning value
for Eve in parenthesis).

Figure 2.15: Does Adam have a winning
strategy in a zero-reachability game on a
non-blocking VASS?

where Q′ = QZ ∪ {⊥} and T ′ is the union of T ∩ (QZ × Z × QZ) and of {(q, 1,⊥) | (q, v, r) ∈
T, q ∈ QZ , r 6∈ QZ} ∪ {(⊥, 0,⊥)}. In (Q′, T ′), the value 0 can only be reached in a vertex that
belongs to QZ . Consider the reachability game on (Q′, T ′), where the objective is Q × {0}, like
defined in [BJK10]; determining the winner in this game is in P. Moreover, Eve has a winning
strategy if, and only if, she has a strategy in Q to reach (q, 0) for any q ∈ QZ , hence to reach (qf , 0).
Indeed, if a play visits a vertex outside of QZ , then Adam has a winning strategy. We conclude
that determining the winner of the reachability game is in P too.

Let us extend this result to counter systems which are not unary. Algorithm 1 should be
modified to detect negative cycles and it should bound in a more clever way the number of iterations.
As we use a binary encoding of the input, the number of iterations would be exponential for a simple
counter system like in Figure 2.13.

Theorem 17: NbVass1(0) is in NP.

Proof. We suppose that Eve has a strategy to reach qf from each vertex, in particular Adam cannot
force any cycle. If it is not the case, we may as well replace some vertices by sinks.

We use another algorithm, Algorithm 2, that also computes from each vertex the greatest
initial value for which Eve has a winning strategy, according to a similar principle to the one of
shortest path algorithms. The greatest value that we compute increases at each iteration until
either a fixpoint is reached or the initial configuration is proved to be winning. However, unlike for
the unary case, we use the algorithm alone, in the one-player case (as explained in the following)
and not with 0 as input, hence we need to detect negative cycles. To do this, we keep for each vertex
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Algorithm 2: Solves NbVass1(0) in the one-player case.
Input: A non-blocking VASS (Q,T ), a vertex qf , and a configuration (q0, x0)
Result: Does there exist a run from (q0, x0) to (qf , 0)?
begin

Create a table Mq with q ∈ Q as indices, initialized to −∞
Create a table Pq with q ∈ Q as indices, initialized to {ε}
Mqf ← 0
Pqf ← {qf}
repeat

foreach q ∈ Q do
foreach t = (q, v, r) ∈ T do

if Mq < Mr − v AND Mr − v > 0 // convention: test is false when ∞ appears
on left hand or −∞ on right hand
then

if q is in a sequence of Pr // the cycle can only be negative
then

Mq ←∞
Pq ← {⊥} // ⊥ is not a location, but indicates that there is no need to
keep the information

else if Pr = {⊥} // hence Mr is ∞
then

Mq ←∞
Pq ← {⊥}

else
Mq ←Mr − v
Pq ← ∅
foreach seq1 ∈ Pr // append the vertex to the sequence
do

seq← q seq1

Pq ← Pq ∪ {seq}

if Mq = Mr − v
then

foreach seq1 ∈ Pr do
if q is not in seq1 // else the cycle is zero and we ignore it
then

seq← q seq1

if seq contains an element in no sequence of Pq then
Pq ← Pq ∪ {seq}

until a fixpoint is reached or Mq0
≥ x0

if Mq0 ≥ x0 then return true else return false
end
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information not only about the greatest winning value but also about a list of paths to the vertex
qf for the optimal value. The paths that we store for a given vertex bear the following constraints:

• In every path, no vertex appears twice, or else we have necessarily a nonpositive cycle. We
compute the value of the cycle: if it is zero, then we remove it; else we know that the vertex
is winning for any initial value and we set this to ∞, after that we do not need to remember
the paths anymore for this vertex.

• Every path contains a vertex that appears in no other path, else it would not be useful to
store it.

Because of this, the number of paths that we keep for each vertex is at most the number of vertices,
and the total size of the information is cubic.

Let us prove the correctness of Algorithm 2. The algorithm ends when no entry of the
table Mq changes upon an iteration on all vertices, or when a positive answer is obtained. For
each iteration, for every vertex q, all edges with q as source are considered, which causes possible
updates on the value Mq, so the maximal value x for which it is established that there exists a run
from (q, x) to (qf , 0). Recall that we only deal with the one-player case.

The first possibility for an edge (q, v, q′) is that the target vertex improves the maximal
winning value, in other words Mq′ is positive and Mq′ > Mq + v, which is equivalent to the
conjunction Mq < Mq′ −v and Mq′ −v > 0. In this case, Mq should be adapted and the memory of
optimal paths should be updated by adding q at the beginning of all optimal paths from q′. Also,
this may lead to the detection of a negative cycle, if q was already in an optimal path. With the
possibility of crossing a negative cycle, every nonnegative integer becomes winning, which justifies
the value ∞. For the same reason, if the value of q′ is ∞, then the value of q can be updated to ∞.
With such a value, it is no longer relevant to remember optimal paths, negative cycles need not be
detected.

The second possibility is that the target vertex gives another way to have the same maximal
winning value, in other words Mq′ = Mq + v, which is equivalent to Mq = Mq′ − v. In this case,
for the purpose of detecting negative cycles, the set of optimal paths should take into account the
new possible paths through q′, which are relevant as soon as they have a vertex that belongs to no
other optimal path.

For the third possibility, it is useless to consider the edge, at least as long as the value Mq′

is not modified.

Finally, upon reaching a fixpoint, the table Mq stores the maximal winning value for all
vertices, so it suffices to make the test for q0.

Note that the cycles that we detect should be forced by Eve, and so should be the paths
of which we keep track. But Adam can also make choices at some points. We could handle this
by considering boolean formulas over paths and consider satisfiability issues to decide whether a
negative cycle is controllable, but it seems easier to use the following property of a game on non-
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blocking VASS with objective 0: Adam has optimal memoryless strategies. Indeed, assume that he
computes himself the greatest winning value for each vertex, and consider one of his vertices from
which there are two edges, one with label k to a vertex with greatest winning value v, and one with
label k′ to a vertex with greatest winning value v′. It is always better for Adam to choose the first
edge if v − k < v′ − k′ and the second one if v′ − k′ < v − k, as depicted in Figure 2.14. In other
words, Adam chooses the edge for which the difference is the smallest. If several differences are the
smallest, he can always choose the same. Hence, we can restrict to memoryless strategies for Adam,
and guess his strategy, at the cost of nondeterminism, thus obtaining a one-player game where the
problem of controlling the loops disappears.

For our new model of non-blocking VASS, we leave the complexity of the reachability problem,
especially in arbitrary dimension, as an open problem. In the two-player case, the complexities
match with the corresponding complexities under the other two semantics in the general case, with
the notable exception of the problem of determining the winner when the counter value in the
objective is zero.

2.4 Reachability games on reset counter systems

In this section, we consider one-dimensional counter reachability games on counter systems where
some edges, labelled by z, reset the counter to zero. We show how to decide the winner in such
games with polynomially many calls to an algorithm that decides the winner in counter reachability
games.

A reset counter system in dimension one is a directed graph (Q,T ), where Q is a finite set of
vertices and T ⊆ Q× (Z ∪ {z})×Q. Configurations and runs are defined like for counter systems,
where runs may contain a subsequence (qi, xi)(qi+1, 0), for any xi ∈ Z, if (qi, z, qi+1) ∈ T .

We can assume without loss of generality that reset counter systems have the property, which
we call isolation property, that edges with a reset are the only outgoing edges of their source. Indeed,
we just need to create new intermediary vertices that are reachable through edges with label 0, and
from which either a reset edge or the non-reset edges start, respectively.

We call ResetCs1 the problem of determining the winner of a reachability game on a reset
counter system in dimension one.

Proposition 18: ResetCs1 reduces in polynomial time to Cs1.

Proof. Let us consider a reset counter system (Q,T ) with the isolation property, and a reachability
game played on (Q,T ) with objective (qf , xf ) and initial configuration (q0, x0). We denote by
TZ the set of reset edges in T and QZ the set of their sources. The idea of the reduction is the
following: Suppose that Eve has a winning strategy, and consider a run from (q0, x0) to (qf , xf ).
This run goes through a finite number of reset edges, possibly zero. Also, we may find a run from
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(q0, x0) to (qf , xf ) such that each reset edge is visited at most once. Let us suppose that Eve
tries to use as few reset edges as possible. We consider the counter reachability game played on
(Q′, T ′) := (Q∪{⊥}, T \TZ ∪T⊥), where ⊥ is a sink that makes Eve lose, T⊥ = {(q, 0,⊥) | q ∈ QZ},
and the objective is (qf , xf ). Note that there is no reset in the game that we just defined: reset
edges of (Q,T ) have become losing edges for Eve. Because Eve has a winning strategy in (Q,T ),
she has a winning strategy in the game on (Q′, T ′) from at least one of the configurations (q, 0) for
q ∈ QZ or from (q0, x0). Indeed, Adam cannot force to take a reset edge infinitely often without
that the objective of the game on (Q,T ) is visited, because it would contradict the fact that Eve
wins on (Q,T ). Hence, starting either from the initial configuration or from a configuration just
after a reset edge, Eve has a strategy such that the objective is reached while no further reset edge
is taken.

This is the main principle that we use: We decide from which configurations in the set
CZ := {(q0, x0)} ∪ {(q, 0) | q target of a reset edge} Eve has a winning strategy in a counter
reachability game (Q ∪ {⊥}, T ′), where T ′ is T with every reset edge redirected to a sink ⊥ where
Eve loses. If the initial configuration is winning in (Q ∪ {⊥}, T ′), then we know that Eve has a
winning strategy in (Q,T ). Else, we redirect to a winning gadget all reset edges that have a target
in the set of vertices q such that (q, 0) is winning in (Q ∪ {⊥}, T ′). The gadget is a new vertex
> that belongs to Eve and in which she has an incrementing loop, a decrementing loop and an
edge labelled by 0 to qf . We obtain yet another counter reachability game. We compute the set of
the remaining configurations in CZ that are now winning in this new game, and we repeat the two
steps: redirecting edges and computing the winning configurations in the new game, until either the
initial configuration becomes winning, hence Eve has a winning strategy, or a fixpoint is reached,
i.e., no configuration becomes winning, hence Adam has a winning strategy.

Let us illustrate this reduction with an example. Figure 2.16 depicts a reset counter system,
and Figure 2.17 represents an equivalent one with the isolation property. Consider a reachability
game on this system, where the objective is (q4, 3). The first step consists of redirecting the
reset edges to a losing sink, as in Figure 2.18. In the counter system that we obtain, we call an
algorithm that solves counter reachability games. The configuration (q1, 0) is winning for Eve, but
the configuration (q0, 0) is not. The initial configuration of the reachability game on the initial reset
counter system, that we do not need to specify, may actually be winning too. We get a new counter
system for the second step in Figure 2.19 by redirecting the reset edge from vertex q4 to a winning
sink. At this point, we easily deduce that every configuration where the vertex is neither q3′ nor
⊥ is winning, and with a third iteration the losing sink becomes unreachable and Eve wins from
any initial configuration. The procedure is even constructive because we can compute a winning
strategy from winning strategies in reachability games without resets, by keeping in mind through
which reset edges Eve needs to go.

Corollary 19: ResetCs1 is in EXPSPACE and EXPTIME-hard.

According to the new lower bound from [Hun14], we even get a precise complexity.

Theorem 20: Csz1 is EXPSPACE-complete.



48 CHAPTER 2. REACHABILITY GAMES ON COUNTER SYSTEMS

q0 q1

q2 q5

q3 q4

1

1
1

1

1

1

z

1

z

q0 q1

q2q5

q3q4

q3′

1

1
1

1

1

1

0

1

z

z

Figure 2.16: Reset counter system. Figure 2.17: Equivalent reset counter system
with isolation property.

q0 q1

q2q5

q3q4

q3′⊥

1

1
1

1

1

1

0

1

0

0
0

q0 q1

q2q5

q3q4

q3′⊥

>

1

1
1

1

1

1

0

1
0

0
0

0
1

−1

Figure 2.18: First step. Figure 2.19: Second step.



2.5. AFFINE UPDATES 49

Note that, in fact, the semantics plays no role in the proof of Proposition 18. The reduction
also works for the VASS semantics and for the non-blocking VASS semantics.

2.5 Affine updates

Until now, the counter systems that we consider have updates that consist of additions, and resets
in one section. The common point between additions and resets is that they are affine functions,
respectively x 7→ 1 ·x+v and x 7→ 0 ·x+0. In this section, we extend the updates of edges in counter
systems to any affine function. A more general version of this model, with polynomial updates, has
been studied in [FGH13], where several complexity results are given in dimension one.

To represent the label of an edge in this model, we write ax+ b in a component, where x is
a variable and a, b are integers, if the edge applies the function x 7→ ax + b to the corresponding
counter. In other words, in a d-dimensional counter syste with affine updates, when an edge
(q, (a1x+ b1, . . . , adx+ bd), q′) is taken from a configuration (q, (x1, . . . , xd)), the next configuration
is (q′, (a1x1 + b1, . . . , adxd + bd)). Let us insist on the fact that, for example in dimension one, an
edge with label k sets the counter value to k, and an edge that adds k has label x+ k.

In dimension two, the reachability problem is already undecidable for affine updates with
coefficients that are powers of 2. We can even restrict to coefficients 2 and 1 precisely, but the
construction becomes heavier.

Proposition 21: The reachability problem for two-dimensional counter systems with affine updates
is undecidable.

Before proving the proposition, let us introduce the Post Correspondence Problem (PCP),
presented in [Pos46]. Given an alphabet Σ, and a set {(u1, v1), . . . , (un, vn)} of pairs of words on
Σ, decide whether there is a finite nonempty sequence i1, i2, . . . , ik of elements of {1, . . . , n} such
that the two words ui1ui2 . . . uik and vi1vi2 . . . vik are the same.

The intuition is that the pairs of words on Σ are dominos with one word in the up side and
one word in the down side. The Post correspondence problem asks whether there is a sequence of
dominos that give the same word in the up side as in the down side when we put them one next to
the other.

Theorem 22 ([Pos46]): PCP is undecidable when Σ contains at least two letters.

Proof of Proposition 21. We reduce the Post Correspondence Problem to the reachability problem
for two-dimensional counter systems with affine updates.

Let Σ = {0, 1}, let D = {(u1, v1), . . . , (un, vn)} be a set of pairs of words on Σ. For 1 ≤ i ≤ n,
define hi as the size of ui and ki as the size of vi, define also ũi as the integer that has ui as binary
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representation and ṽi as the integer that has vi as binary representation. We build a counter
system with two states such that a run on this system corresponds to a sequence of elements of D,
by encoding in binary the concatenation of the two words obtained with the sequence into the two
counters. Note that the 0 at the beginning of the words should not be omitted in the counter value.
To do this, we add a bit at one at the beginning of the binary encodings.

Let Q = {q,⊥}, let T be the set of edges, which contains all ti := (q, (2hix+ ũi, 2
kix+ ṽi), q)

for 1 ≤ i ≤ n and two additional edges (q, (x− 1, x− 1),⊥) and (⊥, (x− 1, x− 1),⊥).

Let us have a look at the binary encoding of the counters. The edge ti pads the two counters
by the number of bits that corresponds to the size of the words ui and vi, respectively, then adds
the integer that is represented by these words to the first and second counter, respectively, which
fills the padded bits, possibly with 0 at the beginning if they are indeed in the words.

In the counter system (Q,T ), there is a run from (q, (1, 1)) to (⊥, (1, 1)) if, and only if, the
instance D of the PCP problem is positive.

Indeed, let i1, i2, . . . , ik, with k > 0, be a sequence of indices in {1, . . . , n} such that
ui1ui2 . . . uik = vi1vi2 . . . vik .

Consider a run that takes the edges ti1 , ti2 , . . . , tik in this order. After these k steps, the
two counter values are equal and their binary encoding, which we identify to a word on {0, 1}, is
1ui1ui2 . . . uik . Let v be the common counter value. By taking the edge (q, (x − 1, x − 1),⊥) and
v − 2 times the self-loop on ⊥, the run reaches (⊥, (1, 1)).

For the other implication, if there is a run from (q, (1, 1)) to (⊥, (1, 1)), then such a run reaches
necessarily a configuration (q, (y, y)) where y > 2. Yet, the configuration can only be reached by
taking a sequence of transitions ti, for 1 ≤ i ≤ n. According to our remark about the effect of
these transitions, the sequence of indices of the transitions that the run takes gives a witness for
the instance D of the PCP problem.

2.6 Hierarchical counter systems

In this section, we consider a model of counter systems inspired by the Vector Addition Systems
(VAS) with hierarchical zero-tests, studied in [Rei08], and on themulti-pushdown automata (MPDA)
defined in [BCCCR96].

VAS with hierarchical zero-tests have been introduced in the unpublished work [Rei95] by
Klaus Reinhardt. They extend VAS with one zero-test, in which only one counter can be tested to
zero, in the following way: the counters are numbered, and whenever one of them is tested to zero,
all others with a lower index are tested to zero as well. Note that allowing even that two counters
can be tested to zero without restriction leads to a Turing-powerful model. According to the usual
equivalence between VAS and VASS, a VASS with hierarchical zero-tests is defined as a VASS such
that there exist special transitions that can be fired from their starting vertex if, and only if, the
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first k counters are all zero, where k is a positive integer smaller than or equal to the dimension of
the VASS.

Multi-pushdown automata are pushdown automata with multiple stacks, which are linearly
ordered, with transitions that depend on the configuration: In a run on an MPDA, the pop operation
can only be performed on the first non-empty stack.

According to [Ati10], model-checking ω-regular properties for MPDA is 2-EXPTIME-complete,
a result that extends the 2-EXPTIME-completeness of the emptiness problem for MPDA in [ABH08].
In the latter article, the authors reduce another model, bounded-phase multi-stack pushdown au-
tomata, to MPDA with twice as many stacks. In bounded-phase multi-stack pushdown automata,
the phase is a part of a run in which all operations affect only one stack, and all runs must have
a bounded number of phases. Anil Seth studied parity games on bounded-phase multi-stack push-
down automata in [Set09] and the reachability problem on the same model in [Set10].

The comparison between pushdown automata and counter systems shows some similarities. A
stack with an alphabet that contains a single letter is equivalent to a natural integer, and push/pop
represent incrementation/decrementation. Also, a stack with an alphabet that contains two letters
can represent a relative integer, which is the difference between the number of occurrences of one
of the letters and the number of occurrences of the other one. It is by the way useful that the stack
never contains the two letters at the same time, so that the size of the stack is the absolute value
of the integer that the stack represents, whereas the sign corresponds to the letter that the stack
contains.

A natural translation of multi-pushdown automata to counter systems is the following: In
a run on a counter system, the ith counter can only be decreased if the counters numbered from
1 to i − 1 are all zero. We may imagine another translation by replacing the last word “zero” by
“nonpositive”.

Actually, the model that we define is slightly different, and we name it hierarchical counter
system. In a run on a hierarchical counter system, the ith counter can only be modified if the
counters numbered from 1 to i − 1 are all zero. We also suppose that the vector in the label of
all edges has at most one non-zero component. This is without loss of generality because it is
possible to split for example an edge with label (4, 2, 3, 0) into the three consecutive edges with
labels (0, 0, 3, 0), (0, 2, 0, 0) and (4, 0, 0, 0), in this very order. The chain of edges is enabled in a run
if, and only if, the sum is enabled.

We consider hierarchical counter systems under the Z semantics, but the semantics itself has
no influence on the proof: we can use the same proof for the other two semantics that we defined
in this chapter. Note that hierarchical counter systems under the VASS semantics are a particular
model of VASS with hierarchical zero-tests. Indeed, to forbid the update of a counter when the
lower counters are not zero is equivalent to have transitions that tests the first k counters for zero
before any transition that updates the (k + 1)th counter.
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2.6.1 The reachability problem on hierarchical counter systems

The reachability problem on hierarchical counter systems is the following: Given a hierarchical
counter system (Q,T ) in dimension d, a vector (c1, . . . , cd) and two vertices q and qf , decide
whether there is a run from (q, (c1, . . . , cd)) to (qf , (0, . . . , 0)). Note that, even though there is no
translation invariance in hierarchical counter systems, i.e., there can be a run from (q, x) to (q′, x′)
but no run from (q, x + y) to (q′, x′ + y) where q, q′ ∈ Q and x, x′, y ∈ Nd, the complexity would
not be affected if we had (0, . . . , 0) as initial counter vector or an arbitrary counter vector in the
objective. The reachability problem on VAS with hierarchical zero-tests, defined similarly but with
(c1, . . . , cd) = (0, . . . , 0), is decidable according to [Rei08], which guarantees that the reachability
problem on hierarchical counter systems under the VASS semantics is decidable too, and we prove
in this section that the problem is in NP under any semantics.

Intuitively, in hierarchical counter systems, the update of a counter at zero freezes all edges
that modify counters of higher numbers. We can thus consider that there are as many underlying
counter systems as counters, the counter system number i is obtained by removing edges that
modify a counter with a number > i.

Proposition 23: The reachability problem on hierarchical counter systems is in NP.

Proof. Let (Q,T ) be a hierarchical counter system in dimension d, let (c1, . . . , cd) be a counter
vector, let q and qf be two vertices. Because we imposed that edges modify one counter only, we
here redefine T as a subset of Q × Z × {1, . . . , d} × Q. With this redefinition of T , when an edge
(q, k, i, q′) is taken from a configuration (q, (x1, . . . , xd)), first, it is required that x1 = · · · = xi−1 = 0,
and second, the next configuration is (q′, (x1, . . . , xi−1︸ ︷︷ ︸

all zero

, xi + k, xi+1, . . . , xd).

Note that on any run from (q, (c1, . . . , cd)) to (qf , (0, . . . , 0)), if it exists, the following counter
vectors are necessarily reached in this order: (0, c2, . . . , cd), (0, 0, c3 . . . , cd), . . . , (0, . . . , 0, cd). How-
ever, it is possible that for example between reaching (0, c2 . . . , cd) and (0, 0, c3, . . . , cd) the run
reaches a counter vector with a non-zero value in the first counter. If some ci are zero, then the
list of configurations contains multiple entries, but anyway counter vectors that appear more than
once may be reached once only.

Let us first describe a naive procedure to solve the problem. This procedure has the drawback
of computing everything that could be useful, without making any guess. This leads to a complexity
in the class PNP, which is the class, also called ∆P

2 , of problems decided by a deterministic Turing
machine halting in polynomial time and that can use an oracle to solve any problem in NP in a
single operation. This class is in the polynomial hierarchy, and the polynomial hierarchy is included
in PSPACE, as proved in [MS72].

For 0 ≤ i ≤ d, we denote by T≤i the subset of T that contains exactly the edges that modify
a counter ≤ i, in other words T≤i = T ∩ (Q × Z × {1, . . . , i} × Q). In particular, T≤d = T and
T0 = ∅. We compute for all 1 ≤ i ≤ d the pairs of vertices (r, s) such that there exists a run from
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(r, 0) to (s, 0), with edges in T≤i only.

For 1 ≤ i ≤ d, we denote by T=i ∈ Q×Z×Q the projection on the ith counter of T≤i \T≤i−1,
i.e., T=i = {(r, v, s) | (r, v, i, s) ∈ T}, and we build by induction the sets Qi ⊆ Q, Wi ⊆ Q×Q and
Ti ⊆ Q × Z × Q. We obtain i one-dimensional counter systems (Q,Ti) on which we call a solver
of the reachability problem. Until now, the semantics played no role, and its only influence is that
the systems (Q,Ti) are under the same semantics as (Q,T ).

For the naive procedure, the induction starts with T1 := T=1. We compute successively:

• the set Q1 of vertices s such that there exists a run in (Q,T1) from (q, c1) to (s, 0);

• the relation W1 ⊆ Q × Q such that (r, s) ∈ W1 if, and only if, there exists a run in (Q,T1)
from (r, 0) to (s, 0);

• for 2 ≤ i ≤ d− 1:

– the set Ti := T=i ∪ {(r, 0, s) | (r, s) ∈Wi−1};

– the set Qi of vertices s such that there exists a vertex r ∈ Qi−1 such that there exists a
run in (Q,Ti) from (r, ci) to (s, 0);

– the relation Wi ⊆ Q×Q such that (r, s) ∈Wi if, and only if, there exists a run in (Q,Ti)
from (r, 0) to (s, 0);

• the set Td := T=d ∪ {(r, 0, s) | (r, s) ∈Wd−1};

• the set Qd of vertices s such that there exists a vertex r ∈ Qd−1 such that there exists a run
in (Q,Td) from (r, cd) to (s, 0);

We claim that there exists a run from (q, (c1, . . . , cd)) to (qf , (0, . . . , 0)) if, and only if, qf ∈ Qd.
Indeed, for all 1 ≤ i ≤ d, the set Ti gathers all edges that either modify the ith counter (the subset
T=i) or replace an existing run ρ in Ti−1 with labels that sum up to zero (the subset based on
Wi−1, for “warping edges”), and edges in ρ can themselves already replace runs in previous sets.
Accordingly, for all 1 ≤ i ≤ d, the set Qi gathers all vertices s such that there exists a run from
(q, (c1, . . . , cd)) to (s, (0, . . . , 0, ci+1, . . . , cd) in (Q,T≤i).

Here, the number of calls to an oracle that solves the NP-complete reachability problem on
a one-dimensional counter system (see Theorem 6 page 26, [HKOW09] or Theorem 13 page 36
depending on the semantics) is d · |Q|2 + d and the counter systems (Q,Ti) have the size of (Q,T ),
which leads to the announced complexity.

Now, in a second time, we use the same sets, but we do not compute them. Instead, everything
is a matter of guessing at each step elements or pairs of elements of Q, checking that they are indeed
in the Qi or in a relation Wi or Ti, respectively.
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More precisely, we guess checkpoints of the run of which we want to prove the existence. In
other words:

• guess s1 ∈ Q, check that there exists a run in (Q,T1) from (q, c1) to (s1, 0);

• guess elements (r, s) of Q×Q that are in W1, call W ′1 their collection, check that there exists
a run in (Q,T1) from (r, 0) to (s, 0) for each (r, s) ∈W ′1;

• for 2 ≤ i ≤ d− 1:

– define T ′i as T=i∪{(r, 0, s) | (r, s) ∈W ′i−1}, which is a subset of T2 that contains required
edges;

– guess si ∈ Q, check that there exists a run in (Q,T ′i ) from (si−1, ci) to (si, 0);

– guess elements (r, s) of Q×Q that are in Wi, call W ′i their collection, check that there
exists a run in (Q,Ti) from (r, 0) to (s, 0) for each (r, s) ∈W ′i ;

• define T ′d as T=d ∪ {(r, 0, s) | (r, s) ∈W ′d−1};

• check that there exists a run in (Q,T ′d) from (sd−1, cd) to (qf , 0).

Even though we do not consider some edges based on sets Wi, it is not necessary to guess
that they exist if the run does not cross them. Hence, there is a polynomial number of guesses, at
most d · |Q|2 + d, and each guess corresponds to a call to a solver of the reachability problem in
dimension one. Now, because we need to check that the guesses are correct, the calls to a solver
require an answer yes, hence that the instance is positive, and the whole procedure answers no else.
This guarantees that the procedure that we present solves the reachability problem on (Q,T ) in
nondeterministic polynomial time.

Note that the notion of hierarchical counter systems is irrelevant in dimension one, hence a
lower complexity bound for hierarchical counter systems under any semantics in any dimension is
the lower complexity bound under the same semantics in dimension one.

2.6.2 Reachability games on hierarchical counter systems

In the heuristic for solving the reachability problem on hierarchical counter systems, a crucial point
is that we compute the set of pairs of vertices such that there exists a path from one to another
with labels that sum up to zero. In reachability games, it is unlikely to have a set of pairs of vertices
(q, r) such that Eve has a strategy to go from (q, x) to (r, x) for any x ∈ N, for example in the
simple arena given in Figure 2.20, whatever happens, Eve has a strategy to go from (q0, 1) to a
configuration (q, 1), where q ∈ {q3, q4, q5, q6}, but she does not have a strategy to go to a particular
vertex of the set, it depends on Adam’s first move.
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Figure 2.20: Counter reachability game on which Eve has no winning strategy to reach a particular
vertex.

2.7 Discussion

In this chapter, using unary systems was crucial and many results needed such systems. Actually,
it represents the fact that inputs, in particular counter values in the labels, are encoded in unary.
With binary encodings, the complexity of our algorithms becomes exponential, yet we can find
algorithms of lower complexity in a few cases thanks to properties of some systems. For example,
in the section about non-blocking VASS, Algorithm 1 uses polynomial time only when the initial
counter value, which is in input, is zero, and we use it precisely in this case, while we take care of
other values in a different way, namely as we solve a counter reachability game on the VASS that
is formed by a subgraph of the counter system, with objective zero in any vertex, like in [BJK10].

When a counter system is not unary, determining the winner of a reachability game is EX-
PSPACE-complete, according to the article [Hun14]. In this article, the author presents a model
of one-dimensional counter systems with which we can cover all three semantics, and we can even
include reset counter systems. There are in fact three types of edges: regular edges, edges that are
activated when the counter is zero and edges that are activated when the counter is in Z\{0}. Edges
of the last two types have label zero. The EXPSPACE lower bound is established by two consecutive
reductions: from the EXPSPACE-complete CTL model checking on succinct one-counter automata
to Büchi games on one-counter graphs and from these Büchi games to counter reachability games.
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Chapter 3

An Example of Counter Reachability
Games: Robot Games

Robot games, introduced in [DR13] are counter reachability games on an arena with only one vertex
for each player. There is no self-loop, hence the plays proceed in rounds. In Figure 3.1, we represent
a robot game by drawing the arena, and another possible representation consists of giving the set A
of labels of moves from Adam’s vertex to Eve’s vertex and the set E of labels of moves from Eve’s
vertex to Adam’s vertex.

−1, 3

−1, 0, 4

Figure 3.1: Example of a robot game for the sets A = {−1, 3} and E = {−1, 0, 4}.

The winning condition for Eve in a robot game is that the counter vector is zero after her
turn. We decide that Adam always starts, and players have perfect information, so they know the
value of the counter vector before they play.

The first mention of robot games shows an exemple in dimension two, where determining
whether Eve has a winning strategy is given as an open problem, unlike most counter reachability
games for which undecidability has been proved. The study of robot games, though, was most
fruitful and motivated in dimension one, where the complexity of the problem of determining the
winner was settled, unlike, at that time, the lower complexity bound of the same problem for counter
reachability games in dimension one.

We give in this chapter an EXPTIME algorithm for determining the winner in dimension one,

57
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then we prove that the complexity is optimal by a reduction of the decision problem associated
with countdown games, presented in [JLS07]. After that, we prove undecidability of robot games
in dimension three in three steps.

Definitions and basic properties

A robot game in dimension d is a pair (A,E), where A and E are finite subsets of Zd. The robot
game is played by Adam, who owns the subset A, and Eve, who owns the subset E. Given an
initial counter vector in Zd, a play proceeds in rounds. In a round that starts at the counter vector
x ∈ Zd, Adam chooses what we call a move a ∈ A and updates the counter vector to x + a, then
Eve chooses a move e ∈ E and updates the counter vector to x + a + e, in which the round ends.
Eve wins and the play stops if the counter vector is zero when a round ends, else a new round is
played. By convention, Eve wins immediately when a play starts with zero as counter vector.

The notion of strategy is inherited from counter reachability game. Here, only the counter
value just before the turn of the player is important, not its evolution before. In fact, if we consider
the robot game as a reachability game on the infinite arena {�,©} × Zd, with objective (�, (0)),
the latter game is determined according to the Gale-Stewart theorem in [GS53]. We use again this
comparison when we introduce the attractor.

A counter vector x is winning if there exists a strategy of Eve, such that for all strategies
of Adam, Eve wins the play that starts with x and in which each player moves according to his
strategy. We switch Eve and Adam in the last sentence to define the notion of a losing counter
vector. The decision problem associated with a robot game (A,E) and an initial counter vector
x ∈ Zd asks whether x is winning.

In dimension one, the amplitude of a robot game (A,E) is the integer interval bounded
by the extremal combinations of moves in a round. We denote it by Ampl(A,E) = Jmin(A) +
min(E),max(A) + max(E)K. We also define for any k ∈ N the integer interval Amplk(A,E) =
Jmin(A) + min(E)− k,max(A) + max(E) + kK.

We now give some basic properties of robot games. Let us first remark that robot games are
translation invariant: Whenever a player can make a move and change the counter vector from x
to x′, the same move changes the counter vector from y to y − x+ x′.

Proposition 24: If two counter vectors are winning in a robot game, then their sum is also winning.

Proof. Let x ∈ Zd and y ∈ Zd be two winning counter vectors. Let σx and σy be winning strategies
of Eve from x and y. Because the game is translation invariant, in a play that starts with x + y,
Eve can enforce a round to end with counter vector y, with the strategy z 7→ σx(z− y). After such
a round, Eve wins by using σy.
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As a consequence, if all counter vectors in a set X ⊆ Zd are winning in a robot game, then
every X-reachable counter vector is winning. This guarantees that the winning set is closed under
addition and multiplication by a nonnegative integer.

The next proposition states what happens in dimension one when a player can force the
counter value to increase or decrease unboundedly.

Proposition 25: Let (A,E) be a robot game in dimension one.

• If max(A) ≥ −min(E), then each positive counter value is losing. Similarly, if min(A) ≤
−max(E), then each negative counter value is losing.

• If max(E) > −min(A), and if there exists a bound above which each counter value is winning,
then each counter value is winning. The same holds if min(A) < −max(E), and if there exists
a bound below which each counter value is winning.

Proof. • We consider a robot game (A,E) in which we have max(A) ≥ −min(E). For any
positive counter value x and all moves a1, . . . , ak ∈ A, e1, . . . , ek ∈ E, Adam wins by playing
always max(A), because every round ends with a counter value that is greater than or equal to
the one of the previous round, no matter what Eve does. The case where min(A) ≤ −max(E)
is analogous for negative counter values.

• (First case only, the second one is analogous) We consider a robot game (A,E) for which
we have max(E) > −min(A), and for any counter value y above a certain x ∈ Z, Eve has
a winning strategy σy. Here is a possible winning strategy for Eve from any initial counter
value: In a play prefix where no round ended with a counter value above x, she plays max(E);
if the counter value is z and the first time when a round ended with a counter value above
x, this value was y, she plays σy(z). Because max(E) > −min(A), the counter value grows
after every round until it goes over x and Eve will win afterwards. Like in the proof of
Proposition 24, Eve knows whether a round already ended with a counter value y > x and
she knows in that case the value y.

The first result of Proposition 25 extends well in dimension d: if, for any 1 ≤ k ≤ d,
the greatest component along dimension k of a vector in A is greater than the opposite of the
smallest component along dimension k of a vector in E, then each counter vector with a positive
component along dimension k is losing. Conversely, if, for any 1 ≤ k ≤ d, the smallest component
along dimension k of a vector in A is smaller than the opposite of the greatest component along
dimension k of a vector in E, then each counter vector with a negative component along dimension k
is losing.
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3.1 Algorithm for determining the winner in dimension one

In this section, we present the tools to build an exponential-time algorithm that determines the
winner in a robot game. First, we explain the notion of an attractor, then we define the Frobenius
problem and we give two over-approximations of the solution to this problem, in order to find
bounds above and below which we are sure that the same player always wins. The algorithm in
the fourth subsection computes the attractor and uses the bounds that we get to avoid infinite
recursion.

3.1.1 The attractor construction

The attractor construction is a well known tool to determine the winner of a reachability game. It
is for example presented in [GTW02, Section 2.5]. We use different notations in our work.

We first define the one-step attractor of a set. Consider a graph (Q,QE , QA, T ) for a general
reachability game, where Q is a possibly infinite set of vertices partitioned into subsets QE for Eve
and QA for Adam, and T ⊆ Q×Q. The one-step attractor of a subset X of Q, here written Attr(X),
is the set of states from which Eve can force to go to X in one step, which means:

Attr(X) = {q ∈ QE such that ∃q′ ∈ X, (q, q′) ∈ T}
∪ {q ∈ QA such that ∀q′ ∈ Q, (q, q′) ∈ T implies q′ ∈ X}.

The attractor of X, written Attr∗(X), is the set of states from which Eve has a strategy to
eventually go to X no matter what Adam plays, in other words she has a winning strategy in the
reachability game with objective X on the aforementioned arena. The set Attr∗(X) is the least
fixpoint of Attr containing X. We obtain it recursively: compute Y = X ∪ Attr(X), if Y = X
then return Y else set X := Y and repeat.

Let us adapt a robot game to these notations. Eve owns QE := {©} × Z and Adam owns
QA := {�} × Z. The set of edges is the union of the set {((�, x), (©, y)) | x, y ∈ Z, y − x ∈ A},
which represents the moves of Adam, and of the set {((©, x), (�, y)) | x, y ∈ Z, y − x ∈ E}, which
represents the moves of Eve. The objective for Eve is the vertex (�, 0). In our definition of robot
games, winning positions are counter values. They are here represented as a pair (�/©, the counter
value), but we only care for winning positions with � as left component when we solve the game,
because a play starts with Adam.

We use here two-step attractors Attr2(X) = Attr(Attr(X)), rather than one-step attractors,
because of the round-based structure of a play in the robot game. The winning set in a robot game
is Attr∗({(�, 0)}). We call it trivial if its intersection with the set of vertices of Adam is restricted
to {(�, 0)}, which is the case if, and only if, the computation of Attr∗({(�, 0)}) stops at the second
step because a fixpoint has already been reached. In other words, the winning set in a robot game
is trivial if, and only if, the set Attr2({(�, 0)}) is {(�, 0)}.
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Proposition 26: The winning set in a robot game (A,E) is non-trivial if, and only if, there exists
a counter value x 6= 0 such that, for all moves of Adam a ∈ A, there exists a move e ∈ E of Eve
such that a+ e = −x.

Proof. Given a counter value x 6= 0, a configuration (�, x) is in Attr2({(�, 0)}) if, and only if, for
any move a ∈ A of Adam, we have (©, x+a) ∈ Attr({(�, 0)}, and this is equivalent to the existence
of an e ∈ E, which depends on a and x, such that x+ a+ e = 0.

Let us look at the game presented in the Figure 3.1. Here, consider a play that starts at
−3. If Adam chooses to play 3, then Eve wins by playing 0, if Adam plays −1, then Eve wins by
playing 4. With the terminology of this section, it means that (�,−3) ∈ Attr2({(�, 0)}).

We define an integer version of Attr2, for a subset X of Z, by

Pre(X) = {x ∈ Z | (∀a ∈ A)(∃e ∈ E) x+ a+ e ∈ X}.

Note that a round begins in Pre(X) if, and only if, Eve can force this round to end in X.
Let X be a subset of Z, and let Xopp = {�} × X. Because the predecessor of a vertex with �
in the left component can only be a vertex with © in the left component and vice-versa, we have
Attr2(Xopp) = {�} × Pre(X).

The next result is very important for our algorithm. We will usually be in a situation where
the algorithm computes a bound b such that we can decide immediately for which player a counter
value x that is greater in absolute value than b is winning. The proposition presents the bounded
arena that we build from the robot game, where termination is guaranteed for the computation of
the attractor.

Proposition 27: Consider a robot game G for which there exist two integers d ∈ N\{0} and b ∈ N
such that no negative counter value is winning and every counter value greater than b is winning if,
and only if, it is a multiple of d. We can build a reachability game on a finite arena on which Eve
has a winning strategy if, and only if, she has a winning strategy in G.

Proof. Let Restrbd(A,E) = (Q,QE , QA, T ), where:

• QA = {⊥<0,>>b,⊥>b} ∪ ({�} × J0, bK);

• QE = {©} × Jmin(A), b+ max(A)K;

• Q = QE ∪QA;

• T = {((�, x), (©, y)) ∈ QA ×QE | y − x ∈ A}
∪ {((©, x), (�, y)) ∈ QE ×QA | y − x ∈ E}
∪ {((©, x),⊥<0) ∈ QE ×QA | ∃e ∈ E, x+ e < 0}
∪ {((©, x),⊥>b) ∈ QE ×QA | ∃e ∈ E, x+ e > b ∧ x+ e 6∈ dZ}
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∪ {((©, x),>>b) ∈ QE ×QA | ∃e ∈ E, x+ e > b ∧ x+ e ∈ dZ}
∪ {(⊥<0,⊥<0), (>>b, (�, 0)), (⊥>b,⊥>b)}.

The reachability game played on Restrbd(A,E) where Eve’s objective is to go from (�, x) to
(�, 0), for a given 1 ≤ x ≤ b, is actually the robot game (A,E) with the initial value x, in which the
play stops as soon as the winner is decided. Indeed, we supposed that all negative counter values
are losing, that is why, on Restrbd(A,E), instead of vertices (QA, x) for x ∈ −N we have a losing
sink ⊥<0. Similarly, because in (A,E) all counter values above b are winning if, and only if, they
are multiples of b, on Restrbd(A,E), instead of vertices (QA, x) for x > b, we have two sinks, one
winning and one losing, and the redirection of edges depends on the counter value.

The notation Restrbd(A,E) is extended to negative integers b whenever no positive counter
value is winning and every counter value less than b is winning if, and only if, it is a multiple of d. In
fact, Restrbd(A,E) is the arena Restr−bd (−A,−E). Given d and b, we can decide the winner in the
reachability game on Restrbd(A,E) using the attractor construction, because this time the arena is
finite. We write RestrAttr(G) = {x ∈ Z | (�, x) ∈ Attr∗({(�, 0)})} where Attr∗({(�, 0)})} is the
winning set in the game described above on the arena G = Restrbd(A,E). The function RestrAttr
is used in the main algorithm.

3.1.2 The Frobenius problem

Let W be a non-empty subset of Z. The arithmetical notions that we present in this section are
part of the algorithm: W stands for a subset of the winning counter values. We denote by gcd(W )
the greatest common divisor of W , which we compute as follows: gcd({d}) = d, and for W 6= ∅,
gcd({w} ∪ W ) is the usual greatest common divisor of w and gcd(W ). The integers in W are
mutually prime if gcd(W ) = 1.

The Frobenius problem asks for the greatest integer that is not W -reachable, where W is a
set of mutually prime positive integers.

Note that the set of non-W -reachable positive integers would be infinite without the assump-
tion of mutual primality. It is empty whenever the set W contains the value 1, in which case the
solution to the Frobenius problem is −1, by convention. Theorem 28, which follows from [Wil78],
gives a bound to the solution to the Frobenius problem for a given set.

Theorem 28 ([Wil78]): Let W be a set of mutually prime positive integers. The solution to the
Frobenius problem for W is less than or equal to max(W )2.

Here, we are interested in a variant of the Frobenius problem on arbitrary subsets W of N
or −N, where we look for a bound beyond which every integer is W -reachable if, and only if, it
is a multiple of gcd(W ). When W is a set of mutually prime positive integers, this is exactly the
Frobenius problem. Otherwise, let W ⊆ N and d = gcd(W ). Consider the set W ′ = {wd | w ∈W},
which contains mutually prime positive integers. Let F be the solution to the Frobenius problem
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forW ′. The set of W -reachable integers greater than dF is equal to the set of multiples of d greater
than dF . Consequently, the solution to our problem for W is dF . For W ⊆ −N, we procede
analogously.

Actually, the computation of F is hard and the bound in Theorem 28 has at most twice
the size of W . That is why we use the following function in the algorithm. Let W ⊆ N (resp.
−N) such that gcd(W ) = 1. We write F̃ (W ) = max(W )2 (resp. −max(−W )2, which is also
−min(W )2), beyond which all integers are W -reachable. We extend F̃ (W ) when gcd(W ) = d 6= 1:
Let W ′ = {wd | w ∈ W}, we set F̃ (W ) := dF̃ (W ′) = max(|W |)2

d . In the particular case where W is
a singleton, we set F̃ (W ) = 0.

Finally, when W is neither included in N nor in −N, we decide W -reachability according to
the following lemma.

Lemma 29: Let W be a finite subset of Z that has two elements of opposite signs. An integer is
W -reachable if, and only if, it is a multiple of gcd(W ).

Proof. Consider two elements w > 0 and w′ < 0 of W . The integers −w and −w′ are W -reachable
because −w = (−w′ − 1)w + ww′ and −w′ = (w − 1)w′ + (−w′)w, which are combinations with
only nonnegative coefficients.

By Bézout’s identity, there exist integer coefficients aw such that
∑

w∈W aww = gcd(W ). We
replace aww by (−aw) · (−w) for all negative coefficients aw. The resulting linear combination has
only positive coefficients, therefore gcd(W ) is W -reachable, as well as −gcd(W ). We conclude that
W -reachability is equivalent to membership in gcd(W )Z.

3.1.3 A theorem by Sylvester

This section aims at giving an alternative way to bound the solution to the Frobenius problem.
Using Theorem 28 is simpler, but we can have a sharper bound.

Theorem 30 relies on the extended Euclidean algorithm, presented in [CLRS09, p. 937].
With an iteration of the algorithm to more than two integers according to the way we present the
greatest common divisor of a set, we can prove Corollary 31.

Theorem 30: Let a, b be two integers. Bézout coefficients for a and b, that is to say integers u, v
such that ua+ vb = gcd(a, b), can be computed with a time complexity polynomial in the size of the
binary encoding of a and b.

Corollary 31: Bézout coefficients for a finite subset of Z are computable with a polynomial time
complexity in the size of the binary encoding of the integers in the subset.

The article [PRS05] mentions a theorem concerning the Frobenius problem, due to Sylvester
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in [Syl82].

Theorem 32 ([Syl82]): Let W = {p, q} be an instance of the Frobenius problem. Then the greatest
non-W -reachable integer is pq−p−q. Moreover, an integer x is reachable if, and only if, pq−p−q−x
is not, which means exactly half of the integers between 0 and pq − p− q are reachable.

Such a simple statement does not extend well when W has more than two elements. If there
are two mutually prime integers in W , then we can take them, else we have to find two mutually
prime W -reachable integers to get an upper bound of the maximal non-W -reachable integer. For
example, if W = {6, 10, 15}, then there is no pair of mutually prime integers in W even though
gcd(W ) = 1. Nevertheless, 25 isW -reachable and we have gcd(6, 25) = 1, hence every integer above
6 · 25 − 6 − 25 is W -reachable. In any case, Proposition 33 gives a way to apply Theorem 32 and
there is only a finite number of integers for which we cannot find out immediately whether they are
W -reachable or not.

Proposition 33: Let W be a subset of Z such that gcd(W ) = 1. There is a polynomial time
algorithm that gives a pair of mutually prime W -reachable integers.

Proof. If two integers inW are mutually prime, then there is nothing to do. Else, consider the linear
combination, obtained with the extended Euclidean algorithm,

∑n
i=1 aiwi = 1 for w1, . . . , wn ∈W .

We suppose that the terms are ordered such that for a certain 1 ≤ k ≤ n+1 all ai, i < k are positive
and all ai, i ≥ k are negative. Note that n ≥ 3, else two integers in W would be mutually prime.
Let us distinguish three cases:

• If k = 1, in other words all ai are negative, then consider the W -reachable integers p := w1

and q :=
∑n

i=2(−ai)wi. We apply Bézout’s theorem: p and q are mutually prime because
a1p− q = 1.

• Similarly, if k = n+1, in other words all ai are positive, then theW -reachable integers p := w1

and q :=
∑n

i=2 aiwi are mutually prime.

• Else, the W -reachable integers p :=
∑k−1

i=1 aiwi and q :=
∑n

i=k −aiwi are mutually prime and
defined by a non-empty sum.

3.1.4 The algorithm

We have now all necessary tools to solve robot games. The main idea is to iterate the computation
of Pre until we establish that we can describe the winning set with the finite set obtained so far.

Let X be the set that we compute in the first step of our algorithm and Win the winning
set in the robot game. We prove in Proposition 34 and its corollary that X ⊆ Win and that, for
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a well-chosen set Y ′ of X-reachable counter values, if gcd(Pre(Y ′)) = gcd(X), then also gcd(Win)
= gcd(X). Basically, the first step relies on this property: We compute successive Pre, and once
the step ends we get gcd(Win). Actually, to keep control over the complexity, we do not do
X := X ∪ Pre(X), but only add to X a single element y of the computed Pre such that gcd(X) 6=
gcd(X ∪ {y}).

Once we find gcd(Win), there are two cases. In the first case, Lemma 29 can be applied and we
are done, because Win has two elements with opposite signs. Hence, the winning set is gcd(Win)Z.
In the second case, the winning set is included in one of the sets N or −N; we suppose without
loss of generality that the winning set is included in N. Theorem 28 yields a bound above which
all multiples of gcd(Win) and only them are winning because they are X-reachable. Therefore, the
only set of counter values about which we still do not know whether they are winning or not is
empty or bounded and, by Proposition 27, we can compute an attractor on the restricted arena.

Proposition 34: Let Win be the winning set in a robot game (A,E), and d ∈ N be a multiple of
gcd(Win) that is not gcd(Win). Let Y = dZ ∩ Ampld(A,E). Then we have Pre(Y ) \ dZ 6= ∅.

Proof. First, we prove that if Pre(dZ) is not included in dZ, then neither is Pre(dZ ∩ Ampld(A,E)).
Let x ∈ Pre(dZ) \ dZ. All counter values x+ a+ e for a ∈ A and e ∈ E are included in the interval
Ampl(A,E) + x, a fortiori when e is chosen according to x and a such that x+ a+ e ∈ dZ. In this
case, x mod d belongs to Pre(dZ ∩ Ampld(A,E)) \ dZ, and it is outside dZ too.

Second, we prove the proposition by contrapositive: Suppose that Pre(dZ ∩ Ampld(A,E))
is included in dZ. We just proved that it implies the inclusion of Pre(dZ) in dZ. As a consequence,
from any counter value outside dZ, there exists a move of Adam such that for all moves of Eve, the
next round begins outside dZ too, in particular it is impossible for Eve to have a winning strategy.
Hence, d is in fact gcd(Win).

We need to adapt this result because we do not know whether Y ⊆ Win and we look for
a statement that allows us to find winning counter values. That is why we define the regularity
interval I(A,E)(X) of a finite subset X of Z neither empty nor equal to {0} in a robot game (A,E).
The elements of this interval are X-reachable if, and only if, they are multiples of gcd(X).

• If X ⊂ N, then I(A,E)(X) := (F̃ (X)−min(A)−min(E)+d)+ Ampld(A,E), the lower bound
of this interval is F̃ (X).

• If X ⊂ −N, then I(A,E)(X) := (F̃ (X) −max(A) −max(E) − d) + Ampld(A,E), the upper
bound of this interval is F̃ (X).

• Else, I(A,E)(X) := Ampld(A,E).

Corollary 35: Let Win be the winning set in a robot game (A,E), and X ⊂ Win such that
gcd(X) = d > gcd(Win). Let Y ′ = I(A,E)(X) ∩ dZ. Then we have Pre(Y ′) \ dZ 6= ∅. As a
consequence, if Win 6⊆ dZ, then we can compute a certain element dZ \ Win in space polynomial
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in |A| and |E|.

We apply this idea to the game in Figure 3.1 page 57 and find that −2 is a winning counter
value outside −3N, because if Adam plays 3, then Eve can play −1 and win, and if Adam plays −1,
then Eve can play 0, and in the next round she can play the difference between 3 and Adam’s move
to win. With the notations of the last proposition and of its corollary, we have F̃ ({−3}) = 0, the
interval I({−1,3},{−1,0,4})({−3}) is (0− 3− 4− 3) + J−5, 10K = J−15, 0K, and Pre({−15,−12, . . . , 0})
is not included in 3Z. We pick −2 in it. Since gcd({−2,−3}) = 1, we know that gcd(Win) is 1.

Algorithm 3: Algorithm for solving robot games on the integer line.
Input: A robot game (A,E).
Result: A description of the winning set.
/* Require: Functions computing the sets that we use, as defined in the
Section 3.1. */
begin

d← 0
X ← Pre({0}) ∪ {0} /* to avoid handling gcd({0}) in the first step */
if X = {0} then return X
/* Step 1. */
while d = 0 do
d′ ← gcd(X)
I ← I(A,E)(X)
/* I is a set of X-reachable counter values with a large absolute value
*/
Y ← Pre(I ∩ d′Z)
/* From Y , Eve can force the next round to end at a counter value known
to be winning */
if Y \ d′Z 6= ∅ then X ← X ∪ {min(Y \ d′Z)} /* minimum in absolute value */
else d← d′ /* We know that d is gcd(Win): we exit the loop */

/* Step 2. */
if X 6⊆ N ∧X 6⊆ −N then return dZ /* Lemma 29 */
else
I ← Ampl(A,E)
b← F̃ (X)
if X ⊆ N then
if −N ∩ Pre(I ∩ dN) 6= ∅ then return dZ /* Lemma 29, second try */

else Unbd← {x ∈ dZ | x > b} /* Half-line of winning counter values */ else
if N ∩ Pre(I ∩ −dN) 6= ∅ then return dZ else Unbd← {x ∈ dZ | x < b} G←
Restrbd(A,E)
/* Between 0 and b, we compute the attractor on the restricted arena
according to Proposition 27 */

return Unbd ∪ RestrAttr(G)
end

Theorem 36: Algorithm 3 computes the winning set in a robot game in exponential time.
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Proof. (Termination) The only loop in the algorithm is in the first step. Each iteration either lowers
the variable d′, more precisely replaces it by one of its divisors, or assigns the variable d to the
value of d′, which makes the loop stop because this value is positive. The lowering of d′ occurs less
times than the greatest common divisor of Pre({0})∪{0}, and if this set is {0}, then the algorithm
stops before the first step begins.

Proof. (Correctness) Let Win be the actual winning set, and let d = gcd(Win).

• In the first step, the variable X is a subset of Win. We prove it by recurrence:

– The step begins with X = Pre({0}) ∪ {0}, which contains only winning counter values.

– Let X ⊆ Win, let d′ = gcd(X). In the loop, when a counter value y is included in X, it
belongs to Pre(I ∩ d′Z), where I is the regularity interval of X. Thus Eve has a move to
go from y to a subset of X-reachable counter values, which justifies that y is a winning
counter value too.

• On the other hand, if no element of Win\dZ is found and included in X, then by Corollary 35,
there exists none. It remains to look for elements of Win\〈X〉N, necessarily in dZ.

• We distinguish three cases to prove the second step.

– If two counter values in X have opposite signs, then Win = 〈X〉N = dZ by Lemma 29
page 63.

– Else if X ⊆ N and −N ∩ Pre(Ampl(A,E) ∩ dN) 6= ∅, then we also have Win = dZ.
Actually we here prove this to be equivalent to the fact that two counter values in Win
have opposite signs.

(⇐) Let x0 ∈ −N ∩ Win. Consider a play π that starts at x0 and in which Eve uses
a winning strategy. The play π ends in 0 and every round finishes in winning counter
values, i.e., multiples of d. Let x ∈ −N be the counter value in which a round in π
ended and no more round ended in −N afterwards. Whatever Adam did, Eve forced the
round that began in x to end in a nonnegative winning counter value. To sum up, x is
a negative counter value in Pre(Ampl(A,E) ∩ dN).

Note that Ampl(A,E) necessarily contains negative counter values, else there would not
be any positive winning counter value.

(⇒) Let x ∈ −N ∩ Pre(Ampl(A,E) ∩ dN). In other words, for every move of Adam,
Eve has a move such that a round that begins in x ends in a positive multiple of d in
one round, and this multiple is less than max(A) + max(E). Consider Eve’s move as the
image of Adam’s move by a function ϕ : A→ E. If Eve plays the image by ϕ of the last
move of Adam dk times, for k ∈ N big enough, then a great multiple of d, i.e., a counter
value in 〈X〉N, is reached. This justifies that x is winning.
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If X ⊆ −N and N ∩ Pre(Ampl(A,E) ∩ −dN) 6= ∅, we have the same result.

– Else, we know that all counter values in Win have the same sign. Suppose without loss
of generality that X ⊆ N. From a negative counter value, only negative or positive but
surely losing counter values can be visited, therefore Win is included in dN. We use
Theorem 28 page 62: every counter value above F̃ (X) is winning. Between 0 and F̃ (X),
we decide the winner using the result of Proposition 27 page 61 about the attractor on
the restricted arena.

Proof. (Complexity) We consider the input size as
∑

w∈A∪E log(|w|). The algorithm first computes
the set Pre({0}), which contains at most |E| counter values, all of them have a lower size than the
input size.

Let us consider the loop in the first step of the algorithm. For any subset X of Z, let d′
be the greatest common divisor of X and let I be the regularity interval of X. The size of I is
2 gcd(X) + min(A) + max(A) + min(E) + max(E), one of its bounds is F̃ (X), and the size of a
representation of this integer is at most twice the size of X. The size of the counter value y obtained
in the loop using Pre on I ∩ d′Z is bounded by a polynom in the size of the integers in X. There
is a logarithmic number of iterations in the loop, because each assignment of d′ sets it to one of its
strict divisors.

We now look at the second step of the algorithm. It first checks whether two integers in X
have opposite signs, and in case of fail it makes another test on the Pre of an interval included in
the amplitude of the game. This can be done in polynomial time. If the second test fails too, then
the bound b := F̃ (X) is computed, the arena G := Restrbd(A,E) is built and the reachability game
on G is solved with the computation of an attractor, for a time complexity that is polynomial in
the size of G. This size is linear in the value of b+ max(A)−min(A). With a binary encoding, the
algorithm uses then exponential time.

Let us illustrate the second step of the algorithm with the example in Figure 3.1 page 57 again.
We exit the first step with a subset X = {−2,−3} of the winning set such that gcd(X) = 1. Because
1 = −min(E) < max(A) = 3, Adam wins from any positive counter value (Proposition 25 page 59),
it is indeed impossible that Pre({−2,−1, 0}) contains any positive counter value. Every nonpositive
{−2,−3}-reachable counter value, i.e., every nonpositive counter value but −1, is winning. We only
have to decide whether Eve wins from −1, and it is not the case because Adam can play 3 every time,
which guarantees that only positive counter values are visited after the first move. The algorithm
decides it when it calls RestrAttr on the arena Restr−1

1 (A,E).
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3.2 Lower complexity bound for dimension one

We are now showing EXPTIME-hardness of robot games. In order to do this, we give the definition
of countdown games, presented in [JLS07], which are games with one positive and strictly decreasing
counter. We then introduce a variant of countdown games and show two successive reductions, from
countdown games to our variant and then from this variant to robot games.

A countdown game between two players 1 and 2 is represented by a pair ((S, T ), c0) where S
is a finite set of locations, T ⊆ S× (N\{0})×S is a set of weighted transitions and c0 ∈ N\{0}. We
consider that S has a particular location s0. Configurations in the game are pairs (s, c) ∈ S × N,
where c is a counter value. A play is a sequence of moves, done in the following way: From a
configuration (s, c), initially (s0, c0), player 1 chooses a value d ≤ c called duration such that there
exists a transition in T with s as first component and d as second component, then player 2 chooses
(s, d, s′) among these transitions. This move updates the configuration to (s′, c− d).

The winner of a play in a countdown game is determined once the play is blocked. Because
only nonnegative integers appear in the configurations and positive integers in the transitions, the
game is finite and ends when player 1 cannot find any duration to make a move. At this point,
player 1 wins if, and only if, the counter value is 0. Determining the winner in countdown games is
EXPTIME-complete, according to [JLS07].

We now define restricted countdown games: On the one hand, the winning condition for
player 1 is now that the play ends in (⊥, 0) for a particular sink ⊥ ∈ S, i.e., there are no transitions
with ⊥ as first component; on the other hand, if there are two transitions (s1, d1, s

′
1) and (s2, d2, s

′
2)

in T with d1 = d2, then s1 = s2; in other words, a duration is specific to a starting location.

Proposition 37: Countdown games reduce in polynomial time to restricted countdown games.

Proof. There are two steps in the construction. Consider an arbitrary countdown game G =
((S, T ), c), where S = {s0, . . . , sn−1}. Let d′ be the least positive integer that does not appear in any
transition in T . First, we build the countdown game G′ = ((S∪{⊥}), T ∪{(s, d′,⊥) | s ∈ S}, c+d′),
The winning condition for player 1 in G′ is to reach (⊥, 0).

Note that player 1 wins a play π in G′ if, and only if, in the last move of π, the configuration is
(s, d′) for any location s, and player 1 chooses d′, in order that player 2 can only pick the transition
(s, d′,⊥). The partial play from (s0, c + d′) to (s, d′), corresponds in G to a play that starts at
(s0, c) and ends in (s, 0), where player 1 wins.

Second, we build from G′ a restricted countdown game that we prove to be equivalent to G.
LetG′′ = ((S∪S′∪{⊥}, T ′′), 2N(c+d′)), where S′ = {s′1, . . . , s′N−1} and T ′′ = {(s0, 2nd, s) | (s0, d, s) ∈
T ′} ∪ {(si, i, s′i), (s′i, 2nd − i, sj) | (si, d, sj) ∈ T ′}. Matching transitions are (s0, 2nd, s) ∈ T ′′ and
(s0, d, s) ∈ T ′, as well as (s′i, 2nd− i, sj) ∈ T ′′ and (si, d, sj) ∈ T ′. Matching plays are π′′ ∈ T ′′ and
π′ ∈ T ′ such that, when we exclude the moves from s ∈ S to s′ in π′′, the transitions of every move
in π′′ and in π′ match.
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The game G′′ is a restricted countdown game because the duration of a transition that starts
in si ∈ S is a multiple of 2N plus i and the duration of a transition that starts in s′i ∈ S′ is a
multiple of 2N minus i.

Moreover, player 1 wins in G′′ if, and only if, he wins in G′, thus in G. Indeed, consider
matching plays π′′ of G′′ and π′ of G′. When the location is in S ∪ {⊥}, the counter value in π′′ is
2n times the counter value in π′, because at the beginning of π′′ the configuration is (s0, 2n(c0 +d′))
and at the beginning of π′ the configuration is (s0, c0 + d′).

Hence, a play in G′′ reaches (⊥, 0) if, and only if, the matching play in G′ reaches (⊥, 0).

Theorem 38: Given a robot game on Z and an initial counter value, determining whether Eve has
a winning strategy from this counter value is EXPTIME-hard.

We prove the theorem by a reduction from restricted countdown games to unidimensional
robot games. Let ((S, T ), c) be a restricted countdown game, where we suppose without loss of
generality that S = J0, n− 1K, s0 = 0 and ⊥ = n− 1. We denote by D = {d0, . . . , dh−1} the set of
values that appear in T as durations. Let k = blog4(c)c+ 1 and k′ = blog4(k)c+ 1.

We write the counter value in the robot game in base 4 and with h + n + k + k′ + 1 digits,
which we split in four parts. These parts encode durations, locations, value in the countdown game
and controls, from the least significant digit to the most significant one. We explain these notions
after the presentation of the sets of moves U and V . The initial counter value is 4h + c0 · 4h+n + k ·
4h+n+k + 4h+n+k+k′

, it corresponds to no duration given, the initial location, the value c0 in the
countdown game, and a default value for the control part.

Let us use an example to see how we represent a configuration in a restricted countdown game
by the counter value in the robot game. Consider the countdown game pictured in Figure 3.2. We
represent in Figure 3.3 the first move of a play that starts at 0 with value 8 (first line) and where
player 1 chooses duration 3 (second line), after which player 2 moves to the location 1 (third line).
We set D = {1, 2, 3, 4, 5, 6}.

For simplicity, we decide that Eve begins in the robot game, but the winning condition is
still that the counter value becomes 0 after a turn of Eve. It remains computationally equivalent.

We first give the moves of both players in the robot games as codes, in order to explain the
way we encode a play in the restricted countdown game. Intuitively, because we split the counter in
four parts, a risk appears that the encoding no longer corresponds to a configuration in the reduced
countdown game, for example because of a carry. We prove that if a player tries to create such a
bad behaviour, then the other one can react with a winning strategy.

In a restricted countdown game, let us write sd for the location uniquely determined by a
duration d.

The codes for the set of moves of Adam are {Duration d Goto s′ | (sd, d, s
′) ∈ T}, which
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2 ⊥

6

3

3

2
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14
4

5

duration︷ ︸︸ ︷
0 0 0 0 0 0

location︷ ︸︸ ︷
1 0 0 0

countdown︷ ︸︸ ︷
0 2

control︷ ︸︸ ︷
2 1

0 0 1 0 0 0 0 0 0 0 1 1 2 1

0 0 0 0 0 0 0 1 0 0 1 1 2 1

Figure 3.2: Restricted countdown game. Figure 3.3: Counter values in the robot
game.

correspond to the choice by player 2 of the next location according to the given duration.

The codes for the set of moves of Eve are {State s Choose d | ∃s′, (s, d, s′) ∈ T}, which
correspond to the choice by player 1 of an available duration; {Finish}, played when the winning
configuration is reached; {Cancel (d, s′) Erase (j, a) | (sd, d, s

′) ∈ T, 0 ≤ j < k, 0 ≤ a ≤ 3},
to modify the third and fourth part of the counter value and eventually reach 0 after a deviating
move of Adam, a notion that we introduce in the following; and {Cancel (d, s′) Remove d′ |
(sd, d, s

′) ∈ T, d 6= d′}, to point out a deviating move of Adam, i.e., cancel the effect of the last
move and subtract the real duration that was chosen. When we do not specify the parameters like
s and d in the codes, we write the type of the moves, for example State/Choose.

We call good encoding a sequence that alternates moves of Eve and moves of Adam such that:

• The first move is State s0 Choose d for a certain d.

• The last move is Finish and the move before is Duration d Goto ⊥ for a certain d.

• There are neither Cancel/Erase nor Cancel/Remove nor other Finish moves.

• For two consecutive moves State s Choose d and Duration d′ Goto s′, we have d = d′.

• For two consecutive moves Duration d Goto s and State s′ Choose d′, we have s = s′.

All sequences that are not the prefix of a good encoding and that have no good encoding as a
prefix are bad encodings, and the first move that refutes in this case the first or one of the three last
properties of a good encoding is called deviating move. A sequence that only refutes the second
property is neither a good nor a bad encoding, and we deal separately with sequences that continue
after a finish move.
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Note that for each play in the restricted countdown game the players have the possibility
to build with their moves in the robot game a good encoding and the codes of this good encoding
trace the play. The hard part is to handle bad encodings. To understand how it can be done, let
us give the integers that correspond to each code.

• Duration di Goto s′ == −4i + 4h+s′ ;

• State s Choose di == 4i − 4h+s − di · 4h+n;

• Finish == −4h+n−1 − k · 4h+n+k − 4h+n+k+k′
;

• Cancel (di, s
′) Erase (j, a) == −(Duration di Goto s′)−a · 4h+n+j − 4h+n+k;

• Cancel (di, s
′) Remove dj == −(Duration di Goto s′)−4j − 4h+n+k+k′

.

It appears that every move of Adam is positive and every move of Eve is negative. Moreover,
any move of Adam move plus any move of Eve is negative, hence, if the counter value becomes
negative, then Adam wins.

The next proposition shows the need for both players to build good encodings.

Proposition 39: If a sequence is a bad encoding, then the adversary of the player who has played
the deviating move has a winning strategy from this move onwards.

Proof. Let us consider a bad encoding and every possibility for the deviating move:

• A move of Adam Duration di Goto s′ whereas the expected duration was dj .

In this case, the counter value has the ith digit at 3. Eve then has the occasion to play
Cancel (di, s

′) Remove dj , in order that the first two parts of the counter value become 0.
From this point onwards, Eve can cancel the effect of every further move of Adam and erase
step by step every digit of the third part of the counter until its value becomes 0.

This case is illustrated in the Figure 3.4. The first line corresponds to the second line in the
Figure 3.3. Imagine that Adam plays the deviating move Duration 6 Goto 0 (second line).
Eve can react with Cancel (6,0) Remove 3 (third line), and then, whatever Adam does
(fourth and sixth line), Eve cancels the effect of every move and erases the first and second
digits of the third part (fifth and seventh line), which makes her win because the counter
value is 0.

• A move of Eve State s Choose di whereas the expected location was s′.

In this case, the counter value has the h+ sth digit at 3. Now, Adam can take advantage of
this error and play a move with Goto s when, and only when, the h + sth digit has been
lowered to 2 by the previous move of Eve, therefore this digit will always be 3 after a move of
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Adam and never 0 again after a move of Eve, because none of her moves permits to increase
a digit of the second part or to decrease it by 2 or more, even with carries. In particular, the
counter value cannot become 0.

• A Cancel/Remove move of Eve.

Here, the first part of the counter value had only digits at 0 just before because Adam did not
do a deviating move and now one digit is at 3, let us say it is the ith one. Adam will always
use moves with Duration di when the ith digit is 3 and other moves when it is 2. Hence,
the ith digit can no longer be put to 0 after Eve plays, therefore Adam wins.

• A Cancel/Erase move of Eve.

Here, the fourth part of the counter value has been reduced, hence the move Finish, which
would lead to a negative counter value, should be avoided by Eve. In other words, Adam just
has to match the duration of his move to the one that Eve chose right before, like in a good
encoding, to be sure that he wins. Indeed, the only possibility for Eve to win is now to use a
Cancel/Remove move, but she will lose whenever she does this meanwhile the first part of
the counter value has only digits at 0.

0 0 1 0 0 0 0 0 0 0 1 1 2 1 Expected duration: 3
0 0 1 0 0 3 0 0 0 0 1 1 2 1 Duration 6 Goto 0
0 0 0 0 0 0 0 0 0 0 1 1 2 0 Cancel (6, 0) Remove 3
0 0 0 0 3 3 3 3 3 0 1 1 2 0 Duration 5 Goto ⊥
0 0 0 0 0 0 0 0 0 0 0 1 1 0 Cancel (5,⊥) Erase (1, 1)
0 0 0 0 3 3 3 3 3 0 0 1 1 0 Duration 5 Goto ⊥
0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cancel (5,⊥) Erase (2, 1)

Figure 3.4: Deviating move of Adam and reaction of Eve.

We now restrict to good encodings, for which the next proposition decides the winner depend-
ing on the winner of the corresponding play in the countdown game. We first need the following
lemma.

Lemma 40: Consider a prefix of a good encoding without any Finish move. The following invari-
ants hold:

• The digits in the first part of the counter value are all 0 after a move of Adam and all 0 except
one 1 after a move of Eve.

• The digits in the second part of the counter value are all 0 after a move of Eve and all 0 except
one 1 after a move of Adam.
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Proof. At the beginning of the play, before the first move of Eve, there is one 1 and other digits
are 0 in the second part, and all the digits in the first part are 0. This can also be seen in the
Figure 3.3. Consider a good encoding. The following alternation happens: State/Choose moves
of Eve erase the 1 in the second part and increment a digit, hence a 0, in the first part; and moves
of Adam erase the 1 that appeared in the first part and increment a 0 in the second part.

Proposition 41: Consider a good encoding π′ built from a play π in the restricted countdown
game. If player 1 wins π, then Eve wins any play that begins with the prefix π′ in the robot game
when he plays the Finish move, else Adam has a winning strategy after the Finish move.

Proof. We look at the evolution of the counter value along a good encoding. Every Duration d
cancels the effect of the previous Choose d, every State s cancels the effect of the previous Goto
s, the move State s0 zeroes the 1 in the initial counter value, and Finish zeroes the digit that
corresponds to ⊥ and the fourth part. In other words, all parts except possibly the third one are
zero at the end of a good encoding. Here, we do not consider possible carries from the third to
the fourth part, which make Eve lose. As for the third part, at the beginning, it represents the
initial value in the countdown game and Eve subtracts from it the values of the durations chosen
by player 1 in the simulated play. The counter value is also 0 at the end of the good encoding in the
robot game if, and only if, the corresponding play in the countdown game ends in the configuration
(⊥, 0).

Let us show why we need the Finish move. According to Lemma 40, Eve cannot win if she
plays State/Choose moves forever, even if she tries to make a carry appear from the third to the
fourth part of the counter value, because there will always be a digit at 1 in the first part of the
counter. However, with a Finish move, no digit is incremented in the first part of the counter.
Hence, Eve should use this move at least once at the end of a good encoding.

Note that, in particular, Eve loses if she subtracts from the third part more than the initial
value in the countdown game.

Now, we present the winning strategy for Adam if Eve did not win at the moment where she
played Finish. The fourth part of the counter is now nullified, hence Eve can afterwards only use
State/Choose moves because other moves would make the counter value negative. Consequently,
Adam can do a move with Goto ⊥ and guarantee at the next step that the digit that corresponds
to ⊥ is never 0 again.

We conclude from Propositions 39 and 41 that Eve has a winning strategy in the robot game
if, and only if, player 1 has a winning strategy in the countdown game. Indeed, both players need
to generate a good encoding, else they know that they will lose, thus, it is just a matter of checking
whether Eve can enforce the good encoding to make her win.

To sum up, the algorithm that we give in the previous section is asymptotically optimal, and
the problem of determining whether a given integer is winning in a robot game of dimension one
is EXPTIME-complete. Moreover, for this dimension, building the whole winning set and giving a
description of it is also doable in exponential time.
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3.3 Undecidability for dimension three

In this section, we prove the undecidability of the problem of determining the winner of a robot
game in dimension three, by a reduction of a variant of the halting problem of Minsky machines.
Our proof is in three steps. In each step, we introduce a new argument to prove the undecidability
of the problem of determining the winner in an increasingly stronger model of robot games.

For the first reduction, we extend the definition of robot games by giving control states to
Eve. The term control states of Eve means that we represent states of a Minsky machine so that,
unlike in counter reachability games, Adam has no influence on transitions from one control state
of Eve to another.

For the second reduction, we show how to encode Eve’s control states in several additional
counters. The number of counters depends linearly on the number of control states of Eve, thus on
the size of the original Minsky machine.

For the third reduction, we keep two counters inherited from the Minsky machine and we
introduce a third counter that stores all information of the additional counters from the second
reduction.

3.3.1 Minsky machines

Before giving the first reduction, we present Minsky machines, introduced in [Min67], a crucial
model for our proof. A deterministic two-counter Minsky machine (2CM) is a pair (Q,T ), where
Q is a finite set of states and T ⊆ Q× {c1++, c1--, c1 == 0, c2++, c2--, c2 == 0} ×Q is a finite set of
labelled transitions to increment, decrement or test to zero one of the counters. In a deterministic
two-counter Minsky machine, the setQ contains an initial state q0 and a sink state⊥, such that there
is no outgoing transition from ⊥. Moreover, from all q ∈ Q \ {⊥}, either there is only one outgoing
transition with label c1++ or c2++, or there are exactly two outgoing transitions with respective
labels c1-- and c1 == 0, or c2-- and c2 == 0. A configuration of a 2CM is a pair (q, (y, z)) ∈ Q×N2,
representing a state and a pair of counter values. The run of a 2CM is a finite or infinite sequence
of configurations that starts from (q0, (0, 0)) and follows transitions of the machine, insofar as for
two consecutive configurations (q, (y, z)) and (q′, (y′, z′)), one of the following holds:

• y′ = y + 1, z′ = z and (q, c1++, q′) ∈ T , the first counter is incremented upon the transition;

• 0 ≤ y′ = y − 1, z′ = z and (q, c1--, q′) ∈ T , the first counter must be positive and it is
decremented upon the transition;

• y′ = y = 0, z′ = z and (q, c1 == 0, q′) ∈ T , the first counter must be zero before taking the
transition;

• y′ = y, z′ = z+ 1 and (q, c2++, q′) ∈ T , the second counter is incremented upon the transition;
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• y′ = y, 0 ≤ z′ = z − 1 and (q, c2--, q′) ∈ T , the second counter must be positive and it is
decremented upon the transition;

• y′ = y, z′ = z = 0 and (q, c2 == 0, q′) ∈ T , the first counter must be zero before taking the
transition;

Note that there is only one possible run in a deterministic two-counter Minsky machine. Indeed,
when there are two outgoing transitions, only one of them can be executed, depending on the value
of the counter that the transitions update or test to zero.

The halting problem of 2CM is to decide, given a 2CM, whether the run reaches a configura-
tion with state ⊥, in other words whether the run halts.

Theorem 42 ([Min67]): The halting problem of 2CM is undecidable.

Reductions from the halting problem of 2CM can be seen in the literature to prove unde-
cidability of games on VASS, with Minsky machines that are deterministic, like in [BJK10], or
nondeterministic, like in [ABD08].

Because Eve’s objective in a robot game is to reach a counter vector, we introduce another
decision problem for Minsky machines, and we denote this new decision problem by Reach-2CM:
given a 2CM (Q,T ), decide whether the run ρ of (Q,T ) returns at least once to a configuration in
Q×{(0, 0)}. Note that the sink ⊥ of the 2CM is no longer particular when we consider the problem
Reach-2CM.

Proposition 43: Reach-2CM is undecidable.

Proof. We reduce the halting problem of 2CM to Reach-2CM.

Let (Q,T ) be a deterministic two-counter Minsky machine with initial state q0. We build
a deterministic two-counter Minsky machine (Q′, T ′) such that the run in (Q,T ) from (q0, (0, 0))
reaches a configuration in {⊥}×N2 if, and only if, the run in (Q′, T ′) from a configuration (q′0, (0, 0))
returns to a configuration in Q× {(0, 0)}.

To do this, we first ensure that whenever the configuration is (q, (0, 0)) in (Q′, T ′) after the
first step of the run, then q = ⊥. Intuitively, the run ρ′ on (Q′, T ′) simulates the run ρ on (Q,T )
with the feature that the value of each counter in each step of ρ′ is either equal to the value of the
same counter in the corresponding step of ρ, or equal to one plus the value of the same counter. In
the reduction, we call shift the fact that the value of a counter in a step of ρ′ is equal to one plus
the value of the same counter in the corresponding step of ρ. We ensure that, at each step until ⊥ is
reached, there is at least one shift, and the run starts with a shift of both counters upon transitions
from q′0 to q′′0 and from q′′0 to q0, where q′0 is a fresh state, fixed to be the initial state of (Q′, T ′),
and q′′0 is also fresh. Before any transition that decrements a counter or tests it to zero, there is a
shift on both counters, and the shift is cancelled for the counter that the transition modifies or tests
to zero. This is done with a gadget of three transitions, and we introduce fresh states, which we
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gather in a set that we denote by Q2, for such gadgets : fq, sq and s′q, for q ∈ Q with two outgoing
transitions. If the sink ⊥ is reached in (Q,T ), then all counters are decreased to zero in (Q′, T ′),
which is done in two fresh states ⊥′ and ⊥′′, hence the instance of Reach-2CM is positive.

Formally, let Q′ = Q∪Q2 ∪ {q′0, q′′0 ,⊥′,⊥′′}. The set Q2 contains all states fq, sq and s′q, for
q ∈ Q, which are the f irst and second intermediary states to cancel the shift of a counter, apply
the effect of an outgoing transition, and put back the shift.

The set T ′ gathers all gadgets that replace transitions in T , as we show in Figure 3.5. As-
sume that there are two outgoing transitions from q, so a decrement of a counter, say the first
counter, and a zero test of the same counter. There are five transitions in T ′ that replace the two
outgoing transitions, which we denote by (q, c1--, r) and (q, c1 == 0, s), from q in T : one from q
to fq that decrements the first counter, one from fq to sq that decrements the first counter, one
from fq to s′q that tests the first counter to zero, one from sq to r that increments the first counter,
and one from s′q to s that increments the first counter. Otherwise, there is one outgoing transition
from q, with an increment. All transitions of T with an increment are also in T ′ without any
change. At the beginning of the run, to initiate the shift of the counters, T ′ contains two tran-
sitions (q′0, c1++, q

′′
0 ) and (q′′0 , c2++, q0). Moreover, T ′ contains additional transitions (⊥, c1--,⊥),

(⊥, c1 == 0,⊥′), (⊥′, c2--,⊥′) and (⊥′, c2 == 0,⊥′′). Hence, when the run reaches ⊥ in (Q′, T ′), the
counters are emptied and ⊥′′ is reached.

Formally, the set T ′ is the union of the following sets of transitions :

• {(q, c1++, r) | (q, c1++, r) ∈ T} ∪ {(q, c2++, r) | (q, c2++, r) ∈ T};

• {(q, c1--, fq), (fq, c1--, sq), (sq, c1++, r), (fq, c1 == 0, s′q), (s′q, c1++, s)
, where (q, c1--, r), (q, c1 == 0, s) ∈ T} (see Figure 3.5);

• {(q, c2--, fq), (fq, c2--, sq), (sq, c2++, r), (fq, c2 == 0, s′q), (s′q, c2++, s)
, where (q, c2--, r), (q, c2 == 0, s) ∈ T}

• {(⊥, c1--,⊥), (⊥, c1 == 0,⊥′), (⊥′, c2--,⊥′), (⊥′, c2 == 0,⊥′′)};

Note that there are missing transitions with a zero test in (Q′, T ′) from the states q where we
have created a transition to fq. This is no problem since the transition to fq is always the one that
can be executed because there is a shift on both counters when original states of (Q,T ) are visited
in (Q′, T ′). Still, it would be possible to add another state that gathers all the missing transitions
and that has one outgoing transition to itself with label c1++, but the construction and above all
the drawings would become heavier. Anyway, we can see (Q′, T ′) as a deterministic machine.

After the two initial transitions in (Q′, T ′), the runs proceed in parallel in (Q′, T ′) and in
(Q,T ), except that the shift is cancelled for one counter while crossing gadgets, each of which
matches one transition in (Q,T ). As a consequence, when the state is not ⊥, at least one counter
is positive because of the shift.

We deduce that it is possible to reach a configuration with both counters at zero in (Q′, T ′)
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from (q′0, (0, 0)) if, and only if, a configuration with state⊥ is reachable in (Q,T ) from (q0, (0, 0)).

q

r

s

c1--

c1 == 0

↓

q fq

sq

s′q

r

s

c1--

c1--

c1 == 0

c1++

c1++

Figure 3.5: Gadget to replace transitions (q, c1--, r) and (q, c1 == 0, s) in the reduction from the
halting problem of 2CM to Reach-2CM.

Let us give an example to illustrate the reduction. Figure 3.6 represents a Minsky machine,
in which the sink is reachable from the state q0 after taking the loop once. The Minsky machine
that we obtain with our reduction is represented in Figure 3.7, and we show corresponding runs in
Figure 3.8.

3.3.2 First step: Undecidability of robot games with states in dimension
two

In a first step towards the proof of undecidability of robot games in dimension three, we consider
an extension of robot games: robot game with states. In our extension, Eve has control states,
depending on which her move set changes. We prove that the problem of determining the winner
of a robot game with states is undecidable in dimension two, by a reduction from Reach-2CM.

A robot game with states in dimension two with a finite set Q of control states is a pair
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q0 q

rt

⊥
c1++ (t1)

c1-- (t2)

c1 == 0 (t5)

c2++ (t3)

c2++ (t4)

Figure 3.6: Minsky Machine (Q,T ).

q0

q′′0

q′0

q fq

sq

s′q ⊥′′

rt

⊥′

⊥

c1--

c1++

c2++ (t3)

c2++ (t4)

c1 == 0 (t5)

c1-- (t2)

c1++

c1 == 0

c1--
c1++ (t1)

c1++

c2++

c2 == 0

c2--

Figure 3.7: Minsky Machine (Q′, T ′) obtained from (Q,T ) by the reduction in the proof of Propo-
sition 43. Original transitions of (Q,T ) are in blue.
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Transition in (Q,T ) Configuration in (Q,T ) Configuration in (Q′, T ′) Transition in (Q′, T ′)
Initial configuration (q0, (0, 0)) (q′0, (0, 0)) Initial configuration

− (q′′0 , (1, 0)) (q′0, c1++, q
′′
0 )

− (q0, (1, 1)) (q′′0 , c2++, q0)
(q0, c1++, q) (q, (1, 0)) (q, (2, 1)) (q0, c1++, q)

− (fq, (1, 1)) (q, c1--, fq)
(q, c1--, r) (r, (0, 0)) (sq, (0, 1)) (fq, c1--, sq)

− (r, (1, 1)) (sq, c1++, r)
(r, c2++, t) (t, (0, 1)) (t, (1, 2)) (r, c2++, t)
(t, c2++, q) (q, (0, 2)) (q, (1, 3)) (t, c2++, q)

− (fq, (0, 3)) (q, c1--, fq)
(q, c1 == 0,⊥) (⊥, (0, 2)) (s′q, (0, 3)) (fq, c1 == 0, s′q)
Accepting run (sink) (⊥′′, (1, 3)) (s′q, c1++,⊥′′)

− (⊥′′, (0, 3)) (⊥′′, c1--,⊥′′)
− (⊥′′, (0, 3)) (⊥′′, c1 == 0,⊥′)
− (⊥′, (0, 2)) (⊥′, c2--,⊥′)
− (⊥′, (0, 1)) (⊥′, c2--,⊥′)
− (⊥′, (0, 0)) (⊥′, c2--,⊥′)
− (⊥, (0, 0)) (⊥′, c2 == 0,⊥)
− (sink) Accepting run

Figure 3.8: Corresponding runs of (Q,T ) and (Q′, T ′).

(A,E), where A is a finite subset of Z2 and E is a finite subset of Q× Z2 ×Q. Robot games with
states are played like robot games, except that a configuration is a pair (q, v) consisting of Eve’s
control state q and a counter vector v ∈ Z2. Eve updates her control state when she makes a move:
in (q, v) for any vector v, only moves of the form (q, x, r) are enabled, and with one such move the
new configuration is (r, v + x). Eve wins if, and only if, both counters are zero after her turn, no
matter which is her control state. The decision problem associated with robot games with states
asks whether Eve has a winning strategy from a given configuration. We call this problem 2RGS
in dimension two.

Theorem 44: Reach-2CM reduces to 2RGS.

Proof. Let (Q,T ) be a 2CM with initial state q0. Let us explain how to build Eve’s control states
in a robot game with states such that Eve has a winning strategy if, and only if, the run of (Q,T )
returns to a configuration in (0, 0). Most of Eve’s moves in the robot game with states simulate
transitions of the 2CM, and there is additional information about the positivity of the 2CM counters.
This additional information is stored for each counter as a flag b or B ∈ {0,+}, which we include
in Eve’s control state.

Let us introduce a function δ : N → {0,+} such that δ(0) = 0 and δ(n) = + for all n > 0,
There is a matching between the counter value y and the flag b if, and only if, b = δ(y). We also
say that the counter value y and the flag b match. In our reduction, the values of both counters
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will match the corresponding flag all along a play in the robot game with states that we build.

Let Q′ = (Q∪{>})×{0,+}2, where > is a sink such that > 6∈ Q. Eve’s set of moves is built so
that the set {>}×{0,+}2 cannot be exited. To have lighter notations, a control state (q, (b, B)) ∈ Q′
is denoted by qbB . We construct a robot game with states (A,E), where A = {(0, 0), (1, 0)} and
E ⊆ Q′ × Z2 ×Q′ contains moves of two types.

First type, Eve’s regular moves:

• For each transition (r, c1++, s) ∈ T : four moves (rbB , (4, 0), s+B), for b, B ∈ {0,+};

• For each transition (r, c1--, s) ∈ T : four moves (r+B , (−4, 0), sbB), for b, B ∈ {0,+};

• For each transition (r, c1 == 0, s) ∈ T : two moves (r0B , (0, 0), s0B), for B ∈ {0,+};

• For each transition (r, c2++, s) ∈ T : four moves (rbB , (0, 1), sb+), for b, B ∈ {0,+};

• For each transition (r, c2--, s) ∈ T : four moves (rb+, (0,−1), sbB), for b, B ∈ {0,+};

• For each transition (r, c2 == 0, s) ∈ T : two moves (rb0, (0, 0), sb0), for b ∈ {0,+}.

With these moves, Eve simulates the run of the 2CM. Note that she can maintain the
matching between the counter values and the flags: for example, if a move decrements the second
counter from 1 to 0, then Eve updates B from + to 0. We explain later the factor 4 in the updates
of the first counter.

Second type, Eve’s emptying moves:

• For each q ∈ Q: four moves (qbB , (−1, 0),>bB), for b, B ∈ {0,+};

• {(>++, (−4− e,−1),>bB) | e ∈ {0, 1}, b, B ∈ {0,+}};

• {(>0+, (−e,−1),>0B) | e ∈ {0, 1}, B ∈ {0,+}};

• {(>+0, (−4− e, 0),>b0) | e ∈ {0, 1}, b ∈ {0,+}};

• {(>00, (−e, 0),>00) | e ∈ {0, 1}}.

With these moves, Eve’s control state enters {>} × {0,+} and stays there until the end of
the play. Eve goes to {>}×{0,+}2 and decrements the first counter with the first emptying move,
and afterwards she may or may not decrement the first counter with the last four emptying moves,
while she also decreases the first (respectively second) counter if, and only if, the first (respectively
second) flag is +. When Eve’s control state is in {>} × {0,+}2, the control state may change, but
only by changing a + flag, or both, to a 0 flag.

To avoid that Eve wins trivially every play in the robot game with states, we do not use
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((q′00), (0, 0)) as initial configuration, but instead consider the configuration that is reached in (Q,T )
after one step of the run of the machine. We write the configuration after one step (q, (y, z)) and
we define b̄ = δ(y) and B̄ = δ(z). The initial configuration in the robot game with states is then
(qb̄B̄ , (4y, z)).

We now prove the correctness of the reduction: Eve has a winning strategy if, and only if,
the instance of Reach-2CM is positive, in other words if, and only if, the run of the 2CM returns to
a configuration where both counters are zero. First, we prove that, if the instance of Reach-2CM
is positive, then Eve has a winning strategy based on a simulation of the run of the 2CM. Second,
we prove that Eve needs to ensure that the first counter is a multiple of 4 after each of her turns,
otherwise she loses. Finally, we prove that, if the instance of Reach-2CM is negative, then Eve has
no winning strategy, and our proof is based on the following properties: Eve needs to ensure that
the flags of her control state and the counter values match, and the first counter must be a multiple
of 4 after all turns of Eve.

We begin with the proof that Eve has a winning strategy if the instance of Reach-2CM is
positive. Suppose that the run ρ of the 2CM returns to a configuration where both counters are
zero. Eve’s strategy, which we present in the next two paragraphs, is based on ρ, and depends on
the moves that Adam uses during the play.

As long as Adam plays (0, 0), Eve’s strategy is to simulate ρ using her regular moves. She
updates at each step her control state to qbB , where q is the current state of the 2CM in ρ and b, B
match the counter values.

As soon as Adam plays (1, 0), the simulation of the run of the 2CM stops and Eve uses
emptying moves only. Suppose that Eve’s control state is qbB at the first time when Adam plays
(1, 0). Eve’s strategy is to play immediately (qbB , (−1, 0),>bB). Because b and B matched so far
with the counters, Eve can bring both counters to zero. Note that, if B = +, then Eve’s strategy
is to put B to 0 precisely when the second counter becomes 0. With the subtraction of e ∈ {0, 1}
from the first counter in Eve’s emptying moves, Eve can also decrement the first counter precisely
when Adam plays (1, 0), so she cancels the effect of his move.

As a consequence, when Adam plays (1, 0) whereas b and B match the counters, Eve wins
with her strategy.

Hence, if the run of the 2CM returns to a configuration where both counters are 0, then Eve
has a winning strategy to reach a configuration with both counters zero from the counter values
(4ȳ, z̄) in the control state q̄b̄B̄ .

We now prove that Eve loses if the first counter is not a multiple of four after one of her
turns. We propose this strategy for Adam, and we will keep the same strategy in the next part
of our proof: Adam plays (1, 0) whenever (i) b or B does not match the corresponding counter, or
(ii) the first counter is a multiple of 4 plus 1 or 2. Otherwise, Adam plays (0, 0). To begin with,
we point out that the first counter must be a multiple of 4 after each move of Eve. Indeed, if the
first counter is not a multiple of 4 after Eve’s turn, then at least one of Adam’s moves puts the
value of the first counter to a multiple of 4 plus 2 or plus 3, and Eve cannot bring back the first
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counter to a multiple of 4, because the first component of all her moves is either congruent to 3
modulo 4 or a multiple of 4. We show this in Figure 3.9, where we write in square vertices the value
modulo 4 of the first counter before a move of Adam, and in circle vertices the value modulo 4 of
the first counter before a move of Eve. Arrows indicate Adam’s strategy from left to right and any
reasonable move of Eve from right to left. We remark that Adam’s strategy ensures that the first
counter is never again a multiple of 4, as soon as it is not a multiple of 4 after a turn of Eve. In
particular, the first counter is then never again zero, hence Eve cannot win.

We can now explain the factor 4 in y: The winner of the game is fixed as soon as the least
two significant bits of the first counter are modified, because this means that Adam has played
(1, 0) or Eve has brought the value of the first counter to a multiple of 4 plus 3. We deduce that
the least two significant bits of the first counter are in some sense independent of the rest of the
counter, and act as a separate counter.

Finally, let us prove that the strategy that we just proposed for Adam is winning if the
instance of Reach-2CM is negative. We make a case split and consider any possible strategy of Eve:

• Suppose that Eve always uses her regular moves and that she maintains the matching between
the counters and the flags b and B. It amounts to simulate an infinite run on (Q,T ) and,
because Adam always plays (0, 0), the counter vector cannot become (0, 0), in the play like in
the 2CM.

• Suppose that Eve always uses her regular moves, but at some point, one of the counters and
the corresponding flag of Eve’s control state do not match. At this point, because Adam plays
(1, 0) according to his strategy, there are two possibilities:

– Eve plays immediately the move (qbB , (−1, 0),>bB), where qbB is her internal state. After
that, she cannot make a counter value reach zero or stay at zero when the matching does
not hold, because she cannot decrease a counter when the corresponding flag is 0 and
she must decrease a counter when the corresponding flag is +.

– Eve plays another move, then the first counter is not a multiple of 4 and, as we have
explained in the previous part of our proof, Adam’s strategy prevents the first counter
to be a multiple of 4 ever again.

• Suppose that Eve uses at some point an emptying move, whereas Adam always played (0, 0)
so far. In this case too, the first counter is not a multiple of 4 and Adam’s strategy is winning.

Anyway, Adam’s strategy, which is to play (1, 0) whenever (i) b or B does not match the
corresponding counter, or (ii) the first counter is a multiple of 4 plus 1 or 2, and to play (0, 0)
otherwise, is winning when the instance of Reach-2CM is negative.

Corollary 45: The problem of determining the winner of a play in a robot game with states is
undecidable in dimension two.
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1 mod 4

2 mod 4

3 mod 4

2 mod 4

3 mod 4

0 mod 4

0 mod 4

1 mod 4

(1, 0)

(1, 0)

(0, 0)

(move with decrement)

(move without decrement)

(move with decrement)

(move without decrement)

(0, 0)

(1, 0)

(move without decrement)

(move with decrement)

Figure 3.9: First counter modulo four according to the moves of Adam and Eve.
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3.3.3 Second step: Reduction from Reach-2CM to robot games with
multiple counters

In the last section, we reduced Reach-2CM to the problem of determining the winner in the new
model of two-dimensional robot games with states. We now consider the usual model of robot
games, but without fixing the dimension. We make here again a reduction from Reach-2CM, and
this time, the dimension of the robot game depends on the Minsky machine in input.

For this second step, we introduce our main feature: the encoding of states into additional
counters. First, we explain our reduction and we give the sets A and E of moves of both players.
Second, we present an algorithm that extracts from the run of a Minsky machine a strategy for Eve
in the robot game (A,E). The strategy that our algorithm extracts is winning if, and only if, the
run is accepting. Finally, we prove that our algorithm is correct by explaining why the strategy
that we extract is optimal for Eve.

The reduction

Let us consider a 2CM (Q,T ) with m states and without self-loop, and a configuration (q, (y, z))
such that the run of (Q,T ) starts with (q0, (0, 0))(q, (y, z)) . . . . We build from (Q,T ) a robot game
(A,E) in dimension 4m + 9. Two counters in (A,E) represent the counters of (Q,T ), and each
of the n := 4m + 7 other counters in (A,E), which we call state counters, represents one control
state of Eve in the extended robot game from the proof of Theorem 44. We prove that Eve has a
winning strategy in (A,E) if, and only if, a configuration with vector (0, 0) is reachable in (Q,T )
from (q, (y, z)).

Let us explain how we design the set of state counters that correspond to what would be, up
to a slight modification of sink states, the set of control states of Eve in the first reduction. We define
our setQ′ of state counters asQ×{0,+}2∪Q>, whereQ> = {>++,>++′ ,>+0,>+0′ ,>0+,>0+′ ,>00}.
The difference between Q′ and (Q ∪ {>})× {0,+}2 is that we have three more states, >++′ , >+0′

and >0+′ , to avoid self-loops. We think of the elements of Q′ as integers between 1 and n, and we
decide that >++ = n,>++′ = n − 1,>+0 = n − 2,>+0′ = n − 3,>0+ = n − 4,>0+′ = n − 5 and
>00 = 1. The state counters in Q> are emptying counters and the others are 2CM state counters.
The order of the counters is depicted in Figure 3.10. Like in the previous subsection, we denote
an element (q, (b, B)) of Q′ by qbB . We also keep the function δ : N → {0,+} and the notion of
matching between a counter value and an element of {0,+}.

2CM counters︷ ︸︸ ︷
c1 c2︸ ︷︷ ︸

2

emptying counter︷︸︸︷
>00︸︷︷︸

1

2CM state counters in any order︷ ︸︸ ︷
q00 q0+ . . . r++︸ ︷︷ ︸

4m

emptying counters︷ ︸︸ ︷
>0+′ >0+ >+0′ >+0 >++′ >++︸ ︷︷ ︸

6

Figure 3.10: Counters in the (n+ 2)-dimensional vector of the robot game.

Like in Chapter 2, we write in this section (x)di , where x ∈ Z and 1 ≤ i ≤ d, for the d-
dimensional vector with x in the ith component and 0 in the other components. We also write 0d
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instead of (0)d1. Note that 8n, for example, corresponds to 8 to the power of n and is not related to
our new notation.

We give names for update vectors that we often use, and we show their effect graphically in
Figure 3.11:

• Add(i, x) := (x)n+2
i , for 1 ≤ i ≤ 2, adds x to the ith counter.

• Move(j, k) := (−1)n+2
j+2 + (1)n+2

k+2 , for 1 ≤ j, k ≤ n, decrements the jth state counter and
increments the kth state counter.

• Check(i) := (−5)n+2
n−i+3, for 1 ≤ i ≤ 6, subtracts 5 from the emptying counter n− i+ 1.

0 1 − 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
→ addition of Add(2, 1)
0 2 − 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
→ addition of Move(2, 5)
0 2 − 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
→ addition of Check(1)
0 2 − 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -5

Figure 3.11: Effect of update vectors Add(2, 1), Move(2, 5) and Check(1) on a counter vector
where m = 3.

We now come to the construction of the robot game (A,E). For our instance of Reach-2CM,
define b̄ = δ(y) and B̄ = δ(z). The initial vector in the robot game (A,E), in dimension n + 2, is
(4y, z, 0, . . . , 0)−Move(qb̄B̄ , 1).

The set of moves A of Adam in the robot game contains what we name Adam’s regular move
{(0)n+2}, the positivity-check {Add(1, 1)} and the state-checks {Check(i), 1 ≤ i ≤ 6}. The set of
moves E of Eve contains four types of moves.

First type, Eve’s regular moves:

• For each transition (r, c1++, s) ∈ T :
four moves Add(1, 4) + Move(rbB , s+B), for b, B ∈ {0,+};

• For each transition (r, c1--, s) ∈ T :
four moves Add(1,−4) + Move(r+B , sbB), for b, B ∈ {0,+};

• For each transition (r, c1 == 0, s) ∈ T : two moves Move(r0B , s0B), for B ∈ {0,+};

• For each transition (r, c2++, s) ∈ T :
four moves Add(2, 1) + Move(rbB , sb+), for b, B ∈ {0,+};

• For each transition (r, c2--, s) ∈ T :
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four moves Add(2,−1) + Move(rb+, sbB), for b, B ∈ {0,+} (see Figure 3.13);

• For each transition (r, c2 == 0, s) ∈ T : two moves Move(rb0, sb0), for b ∈ {0,+}.

With her regular moves, Eve simulates a run of the 2CM, like in the previous reduction.

Second type, Eve’s state-defence moves:

• {Move(rbB , k)−Check(i) | b, B ∈ {0,+}, k ∈ {>bB ,>bB′}, k 6= n+ 1− i, 1 ≤ i ≤ 6};

• {Add(1,−4e1) + Add(2,−e2)−Check(i), e1, e2 ∈ {0, 1}, 1 ≤ i ≤ 6};

• {Add(1,−4) + Add(2,−1) + Move(j, k)−Check(i),
1 ≤ i ≤ 6, i 6= k, n− 1 ≤ j ≤ n, n− 5 ≤ k ≤ n− 2 ∨ k = 1};

• {Add(1,−4) + Move(j, 1)−Check(i), 1 ≤ i ≤ 6, n− 3 ≤ j ≤ n− 2};

• {Add(2,−1) + Move(j, 1)−Check(i), 1 ≤ i ≤ 6, n− 5 ≤ j ≤ n− 4}.

With her state-defence moves, Eve can cancel the effect of any state-check move of Adam.
At the same time, she decrements a state counter and increments an emptying counter that is not
the one that Adam modified with his state-check move. The possible updates of state counters
are either a decrement of a 2CM state counter and an increment of an emptying counter with the
same flags b and B, or a decrement of an emptying counter and an increment of another emptying
counter, such that no flag changes from 0 to +. This is summed up in Figure 3.12.

q00q0+ q++ q+0

>00

>0+ >++ >+0

>′0+ >′++ >′+0

Figure 3.12: Possible updates of state counters in defence moves: arrows go from the identifier of
the state counter that is decremented to the identifier of the state counter that is incremented.
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Third type, Eve’s emptying moves, which are defensive moves as well:

• {Add(1,−1) + Move(rbB ,>bB) | b, B ∈ {0,+}, r ∈ Q} (see Figure 3.14);

• {Add(1,−4− 1) + Add(2,−1) + Move(j, k)
| j ∈ {n− 1, n}, k ∈ {n+ 1− i, 1 ≤ i ≤ 6} ∪ {1}, j 6= k};

• {Add(1,−4− 1) + Move(j, k) | j ∈ {n− 3, n− 2}, k ∈ {1, n− 3, n− 2}, j 6= k};

• {Add(1,−1) + Add(2,−1) + Move(j, k) | j ∈ {n− 5, n− 4}, k ∈ {1, n− 5, n− 4}, j 6= k};

• {Add(1,−4) + Add(2,−1) + Move(j, k)
| j ∈ {n− 1, n}, k ∈ {n+ 1− i, 1 ≤ i ≤ 6} ∪ {1}, j 6= k};

• {Add(1,−4) + Move(j, k) | j ∈ {n− 3, n− 2}, k ∈ {1, n− 3, n− 2}, j 6= k};

• {Add(2,−1) + Move(j, k) | j ∈ {n− 5, n− 4}, k ∈ {1, n− 5, n− 4}, j 6= k};

With these moves, Eve can bring the 2CM counters to zero. The strategy that we will describe
is to use them only when an emptying counter has value 1, though. We distinguish defence emptying
moves, the first four types of emptying moves, which change the parity of the first counter, and
regular emptying moves, the last three types of emptying moves. In fact, defence emptying moves
cancel the effect of Adam’s positivity-check and, like the other emptying moves, they decrease
2CM counters. Only the first defence emptying move stands as an exception: when Eve uses the
first defence emptying move, she decrements a 2CM state counter and she increments an emptying
counter, besides cancelling the effect of Adam’s positivity check.

Fourth type, Eve’s final moves: {Move(j, 1), 2 ≤ j ≤ n}. Any of these moves increments
the first state counter and decrements another state counter. Recall that the first state counter has
value −1 at the beginning of the play.

r s
c2--

↓
(0,−1, 0, 0, . . . , 0,

r0+︷︸︸︷
−1 , 0, . . . , 0,

s00︷︸︸︷
1 , 0, . . . , 0)

(0,−1, 0, 0, . . . , 0,

r0+︷︸︸︷
−1 , 0, . . . , 0,

s0+︷︸︸︷
1 , 0, . . . , 0)

(0,−1, 0, 0, . . . , 0,

r++︷︸︸︷
−1 , 0, . . . , 0,

s+0︷︸︸︷
1 , 0, . . . , 0)

(0,−1, 0, 0, . . . , 0,

r++︷︸︸︷
−1 , 0, . . . , 0,

s++︷︸︸︷
1 , 0, . . . , 0)

Figure 3.13: Eve’s moves that correspond to the 2CM transition (r, c2--, s)
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>++[′] >+0[′]

>0+[′] >00

(−1,−1)∗1
(−1,−1)∗2

(−1,−1)
(−1,−1)

(−1, 0)

(−1, 0)∗3

(0,−1)
(0,−1)

↓
(−4,−1, 0, 0, . . . , 0, 0, 0, 0, 1,−1)∗1

(−4,−1, 0, 0, . . . , 0, 0, 0, 0,−1, 1)∗1

(−4,−1, 0, 0, . . . , 0, 0, 0, 1, 0,−1)∗2

(−4,−1, 0, 0, . . . , 0, 0, 0, 1,−1, 0)∗2

(−4, 0, 1, 0, . . . , 0, 0, 0,−1, 0, 0)∗3

(−4, 0, 1, 0, . . . , 0, 0,−1, 0, 0, 0)∗3

Figure 3.14: Eve’s emptying moves explained on a graph, self-loops are in fact two moves between
the two versions of the simulated control state.

The algorithm

We explain how to build a strategy for Eve from the run ρ in the 2CM, that is winning if ρ reaches
a configuration in Q× {(0, 0)}. In our strategy, Eve simulates ρ as long as Adam plays his regular
move. Meanwhile, Eve also updates the elements of {0,+} by incrementing and decrementing
relevant state counters, according to whether the 2CM counters are positive or zero. In fact, she
maintains the matching between the 2CM counters and the flags b and B of qbB , where q is the
state of the 2CM in the corresponding step of the run. Maintaining the matching between the 2CM
counters and the flags amounts to ensuring that the only state counter with value 1 is qbB . This
is the simulation phase of a play. Let us assume that ρ is an accepting run of the 2CM. We prove
that it implies that in any play of the robot game, depending on Adam’s strategy:

• either Adam always plays his regular move, and consequently the 2CM counters eventually
both become zero;

• or Adam does a check at one of the steps.

In the first case, the couter vector becomes (0, 0,−1, 0, . . . , 0, 1, 0, . . . , 0), for an arbitrary position
of the 1 among the 2CM state counters, so Eve’s strategy is to play a final move with which she
wins. In the second case, the play enters the emptying phase. In the emptying phase, after each
turn of Eve, there are exactly two state counter with value 6= 0: the counter >00 has value −1 and
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another emptying counter has value 1. Also, in the emptying phase, each move of Eve depends on
the last move a of Adam and cancels the effect of a, while the first two counters are decreased until
zero. This phase also ends with a final move or a move that increments the first state counter, so
that the counter vector becomes zero. Hence, in both cases, Eve wins with the strategy that we
propose.

In the description of the strategy and in our proof, we have some recurring notions. It is
expected that Eve simulates the run of a Minsky machine and that Adam plays (0, 0) all along the
play. If any of the players does anything else, we call that a wrong move. We will see that both
Adam and Eve own punishing moves to win when the adversary makes a wrong move, or abuses a
punishing move, according to a principle of attack and defence or counterattack.

We sum up Eve’s strategy in Algorithm 4, which gives an informal procedure. In particular, at
every step, the algorithm contains the instruction “Play” associated with a vector, which corresponds
to the strategy at the current position in the play. In fact, the input of the algorithm is not only
the 2CM and its run ρ, but also a strategy of Adam, and the instructions “Play” give the strategy
on the fly, one move after the other and depending on Adam’s moves.

The variables that appear in the algorithm are the counter vector x in the robot game, a
variable to keep the index of the current step of ρ, the corresponding state p in ρ, the variables b
and B for the flags such that the state counter pbB has value one in x, at least during the simulation
phase.

Algorithm 4 calls a function move_of_transition, shown in Algorithm 5. The function
move_of_transition gives Eve’s move that corresponds to a transition in the 2CM, depending
on the counter values. The variables of the main algorithm are updated during the execution of
the function, and we recall this in the algorithm by pointing out the existence of side effects upon
calling move_of_transition. Indeed, all variables are global, except the index of the step of ρ.
The choice of the move is intuitive, for example the transition (r, c2--, s) can only be fired if the
second counter is positive, so the flag B must be +, and after a decrement the second counter is
either zero, if the value was exactly one before, or still positive. Accordingly, there is a test on
the value of the second counter, and the possible moves that correspond to (r, c2--, s) are either
Add(2,−1) + Move(pb+, sb+) or Add(2,−1) + Move(pb+, sb0).

Whereas the calls to the function move_of_transition deal with the simulation phase of a
play, the remaining part of Algorithm 4 relates to cases where Adam performs a check. The first
check of Adam is a particular move: according to her strategy, Eve only used regular moves before,
so only one state counter has value one, and this counter is a pbB , for p ∈ Q. According to the
strategy described in the algorithm, Eve cancels the effect of Adam’s check and makes a move to
>′bB if Adam’s check is precisly the move Check(i) such that >bB is the ith state counter, and to
>bB otherwise. After the first defence move of Eve, only state counters with state > are updated,
and Eve cancels the effect of each move of Adam and decrements the first two counters until they
become zero. Meanwhile, she ensures that the flags of the state counter that has value one match
the counter values, which corresponds to the instructions “if x[0] == 4 then b← 0” and “if x[1] == 1
then B ← 0”. To sum up, Eve uses defence moves until the whole counter vector becomes zero.
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Algorithm 4: Extracts from the run of a 2CM, supposed to be accepting, a winning strategy
for Eve in the robot game constructed in the reduction from Reach-2CM.
Input: A 2CM (Q,T ), the run ρ of (Q,T ) supposed to be accepting and given as a list of

transitions, the second configuration (q, (y, z)) of ρ, a strategy of Adam.
Result: A winning strategy for Eve in the game obtained from (Q,T ).
begin

b← δ(y); B ← δ(z); p← q
x← (4y, z, 0, . . . , 0)−Move(qbB , 1) /* counter vector */
step ← 0 /* step in the run ρ */
while Adam plays (0)d do

if x[0] == 0 ∧ x[1] == 0∧ step 6= 0 /* the first two counters are zero, but
not in the beginning */ then

Play Move(pbB , 1) /* at this point, Eve wins */
else

v ← move_of_transition(ρ[step]) See Algorithm 5 for side effects
Play v
step++

repeat
v ← Adam’s move
if p ∈ Q /* the first move in this block */ then

if −v + Move(pbB ,>bB) ∈ E /* when v is a Check, the test may be false
*/ then

x← x+ Move(pbB ,>bB); p← >bB

Play −v + Move(pbB ,>bB)

else
x← x+ Move(pbB ,>bB′); p← >bB′

Play −v + Move(pbB ,>bB′)

else
if b == + then d1 ← Add(1,−4) else d1 ← 0
if B == + then d2 ← Add(2,−1) else d2 ← 0
if x[0] == 4 then b← 0
if x[1] == 1 then B ← 0
d3 ← (a move, possibly 0, from p to >bB or >bB′ , depending on which ones are in
E)
x← x+ d1 + d2 + d3

Play −v + d1 + d2 + d3

until the end of the play
end
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Algorithm 5: move_of_transition
Input: A transition t in a run ρ.
Result: The move according to Eve’s strategy in the simulation phase.
begin

/* Updates of the variables are applied as side effects in the main
algorithm */
if t == (r, c1++, s) /* p = r, state: rbB */ then

x← x+ (4)1,d + Move(pbB , s+B); b← +; p← s
Return Add(1, 4) + Move(pbB , s+B)

else if t == (r, c2++, s) /* p = r, state: rbB */ then
x← x+ (1)2,d + Move(pbB , sb+); B ← +; p← s
Return Add(2, 1) + Move(pbB , sb+)

else if t == (r, c1--, s) /* p = r, state: r+B */ then
if x[0] == 4 then b← 0 /* side effect */
x← x− (4)1,d + Move(p+B , sbB); p← s
Return Add(1,−4) + Move(p+B , sbB)

else if t == (r, c2--, s) /* p = r, state: rb+ */ then
if x[1] == 1 then B ← 0 /* side effect */
x← x− (1)2,d + Move(pb+, sbB); p← s
Return Add(2,−1) + Move(pb+, sbB)

else if t == (r, c1 == 0, s) /* p = r, state: r0B */ then
x← x+ Move(p0B , s0B); p← s
Return Move(p0B , s0B)

else if t == (r, c2 == 0, s) /* p = r, state: rb0 */ then
x← x+ Move(pb0, sb0); p← s
Return Move(pb0, sb0)

end
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The proof of correctness

The following lemmas cover all possible cases in a play on (Q′, T ′), and prove that Eve has a winning
strategy if, and only if, the run of the Minsky machine is accepting. The strategy that we prove
to be winning is exactly the strategy that we present in Algorithm 4: it consists of a simulation of
the run of the Minsky machine in the simulation phase and of appropriate defence if Adam attacks,
because an attack of Adam can only be a wrong move.

In our proof of correctness, in the first four lemmas, we point out invariants that Eve needs to
preserve in any play, otherwise Adam would have a winning move. After these lemmas, we assume
that Eve always preserves the invariants, which restricts her possible strategies. We then prove, by
studying all possible strategies of Adam, that:

• If Eve has a winning strategy, then the strategy that we present in Algorithm 4 is winning.

• Eve has a winning strategy if, and only if, the instance of Reach-2CM is positive.

Lemma 46: Consider an arbitrary play on (A,E), where Adam and Eve play to the best of their
interest. If Adam never plays his positivity-check move and Eve plays a defence emptying move,
then Eve loses the play. Moreover, when Adam plays his positivity-check move for the first time, if
Eve does not play directly afterwards a defence emptying move, then she loses the play.

Proof. Note that defence emptying moves are Eve’s only moves that modify the parity of the first
counter. If the least two significant bits of the binary representation of the first counter are not zero
after a turn of Eve, then Adam has a strategy to prevent these bits to become zero again, hence he
wins: he plays the positivity-check move at every turn when these two bits are not 1 and 1.

Note that, as we consider that Adam and Eve play to the best of their interest, even though
it is not required that Adam plays indeed according to the strategy that we propose in the previous
paragraph, it is guaranteed that Adam plays according to a winning strategy when the least two
significant bits of the binary representation of the first counter are not zero after a turn of Eve.

Here, the wrong move is either the positivity check, or the defence emptying move, or an
earlier move of the game. In any case, the nature of the wrong move is less important than the
parity of the counters, and we make the link with the expected behaviours in a later lemma.

Lemma 47: Consider an arbitrary play on (A,E), where Adam and Eve play to the best of their
interest. If Adam never plays a state-check move and Eve plays a state-defence move, then Eve
loses. Moreover, when Adam plays a state-check move, if Eve does not play directly afterwards a
corresponding state-defence move, then she loses.

Proof. The sum of the state counters is zero at the beginning of a play: the counter >00 has value
−1 and the counter qb̄B̄ has value 1. Every move apart from the state-check and state-defence
moves leaves the sum of the state counters unchanged, whereas the state-check moves increase the
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sum of the state counters by five and the state-defence moves decrease the sum of the state counters
by five. Hence, suppose that Eve plays something else than a state-defence move after a state-check
move of Adam. Adam can then guarantee that the sum of the state counters is never zero again
by playing only state-check moves. Moreover, if the state-defence move of Eve does not correspond
to the state-check move of Adam, then there will be a state counter with non-zero value after each
following turn. As a consequence, the counter vector cannot become zero, hence Eve loses.

Like in the proof of the previous lemma, the wrong move is either the state-check, or the
state-defence move, or an earlier move of the game. Still, what really matters is a property that
we point out: Eve needs to ensure that the sum of the state counters remains zero after all her
turns.

Note that Lemma 47 does not hold if the value of the state counter that the state-check move
modifies is for example 5, but in this case Adam should not use this move at all.

Lemma 48: Consider an arbitrary play on (A,E), where Adam and Eve play to the best of their
interest. If a state counter other than the first one is negative after any turn of Eve, then she loses
the play.

Proof. First, we prove that Eve loses if a 2CM state counter is negative after one of her turns.
A 2CM state counter can only be increased, namely incremented, by Eve’s regular moves. Hence, if
one of the 2CM state counters becomes negative, then Adam wins by playing state-check moves only,
because according to Lemma 47, Eve then must play state-defence moves only and cannot bring
back a negative 2CM state counter to zero. Second, suppose that an emptying counter n + 1 − i,
for 1 ≤ i ≤ 6, is negative after a turn of Eve. Adam then wins by playing Check(i) forever,
because Eve can increase a state counter by at most five at each turn, which just compensates a
move Check(i) but is not sufficient to make the counter n+ 1− i nonnegative again.

As a consequence, since Eve’s regular moves decrement a 2CM state counter and only one
2CM state counter has value one, we have a new invariant: during the simulation phase, exactly
one 2CM state counter has value 1, the counter >00 has value −1 and all other state counters
have value 0; moreover, Eve must decrement at every turn the 2CM state counter that has value 1,
otherwise she loses the play.

Lemma 49: Consider an arbitrary play on (A,E), where Adam and Eve play to the best of their
interest. We suppose that exactly one state counter has value one after every turn of Eve during
the simulation phase. We consider the flags, in {0,+}, of the identifier of the only state counter
that has value one. If one of the first two counters does not match the corresponding flag in {0,+}
after any turn of Eve, then she loses the play.

Proof. We assume that Eve decrements at every turn the state counter that has value 1 during the
simulation phase. As we stated after the previous lemma, Eve would lose otherwise.
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Let us denote by pbB the identifier of the state counter that has value 1 at some step of the
play. If one of the first two counters does not match the corresponding flag b or B, then Adam
can play his positivity-check move, which forces Eve to play a defence emptying move, according to
Lemmas 46 and 48. At this point, the matching will still not hold, because the flags and the first two
counters remain unchanged. Let us look at the emptying moves. Eve cannot decrease a counter if
the corresponding flag is 0 and she decreases it if the corresponding flag is +. Consequently, Adam
wins by playing the positivity-check move forever, because the first two counters cannot be both
brought to zero at the same time. Indeed, Eve needs to play defence emptying moves at all steps,
still according to Lemma 46. Now, there are two possibilities:

• Either the matching does not hold because one of the first two counters, say the second
counter, is 0 whereas the corresponding flag is +. Then, the next defence emptying move of
Eve decrements the second counter, and none of the further defence emptying moves increases
the second counter again, so Eve cannot bring the counter vector to zero: she loses the play.

• Or the matching does not hold because one of the first two counters, say the second counter,
is positive whereas the corresponding flag is 0. Then, the same flag will remain at zero after
all further defence emptying moves, none of which decrease the second counter, which will
never be 0: Eve loses the play.

Lemma 50: Let ρ be the run of (Q,T ) and suppose that it reaches a configuration in Q×{(0, 0)}.
Consider a play on (A,E), in which Eve follows the strategy based on ρ and described in Algorithm 4.
If Adam plays at some step his positivity-check move and never plays any state-check move, then
Eve wins.

Proof. Eve maintains the matching, we can see it in the function move_of_transition of Algo-
rithm 5. Suppose that Adam plays his positivity-check move and that he never plays any state-
check move. Eve can then make every counter zero with her emptying moves, precisely because
the matching holds. The argument is the same as in the reduction from Reach-2CM to extended
2RG.

Lemma 51: Let ρ be the run of (Q,T ) and suppose that it reaches a configuration in Q×{(0, 0)}.
Consider a play on (A,E), in which Eve follows the strategy based on ρ and described in Algorithm 4.
If Adam plays a state-check move, then Eve wins.

Proof. Suppose that Adam plays a state-check move. According to her strategy, Eve cancels im-
mediately the effect of Adam’s move with a corresponding state-defence move. Because of the
state-check move, one of the emptying counters cannot be incremented. Nevertheless, there is at
least one corresponding state-defence move that gives the value 1 to an emptying counter that
corresponds to the positivity of the machine counters. After that, either Adam does not play a
state-check move and Eve plays an emptying move, or Adam plays a state-check move and Eve
cancels the effect of this move and still decreases the first two counters. This is repeated until the
end of the play. In both cases, Eve can put the first two counters to zero and use a move that
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increments the first state counter afterwards, hence she wins.

Theorem 52: Let ρ be the run of (Q,T ), denote by (q, (y, z)) the second configuration in ρ. Let
b̄ = δ(y) and B̄ = δ(z). Eve has a winning strategy in (A,E) from (4y, z, 0, . . . , 0)−Move(qb̄B̄ , 1)
if, and only if, ρ returns to a configuration in Q× {(0, 0)}.

Proof. We still assume that Eve decrements at every turn the state counter that has value 1 during
the simulation phase, according to Lemma 54. As we stated after the previous lemma, Eve would
lose otherwise. Note that, because of Lemma 49, Eve’s regular moves must correspond to transitions
that are allowed in the 2CM.

Hence, the strategy described in Algorithm 4, which fulfils this constraint, is winning for Eve
against the strategy “only the regular move” of Adam if the run of the 2CM (Q,T ) returns to a
configuration with counter vector (0, 0).

Moreover, according to Lemmas 50 and 51, the strategy is winning against every other
strategy of Adam.

For the converse implication, according to Lemma 46 and 47, a strategy of Eve that does
not fulfil the above constraint is losing. Hence, the only reasonable strategies of Eve consist of
simulating the run ρ of the 2CM and using defence moves as soon as Adam plays another move
than his regular move. Indeed, everything else than the simulation of ρ is a wrong move, and we
have proved that it makes Eve lose. If ρ does not return to any configuration in Q× {(0, 0)}, then
Eve cannot bring the first two counters to zero with the strategy that consists of simulating ρ, so
she does not have any winning strategy at all.

The following proposition points out an additional property of the strategy that we describe
in Algorithm 4. In fact, we need to bound the values of the state counters in anticipation of the
next step, where we encode vectors in integers and we must avoid any ambiguity in our encoding.

Proposition 53: If Eve has a winning strategy in (A,E), then she also has a winning strategy
such that all state counters have a value between −5 and 1 after each move.

Proof. Consider the strategy s described in Algorithm 4. It Eve plays according to s and Adam
plays according to any strategy, then the play that is constructed has the following properties:

• The first state counter always has value −1 or 0 and Adam cannot modify it. The other
state counters always have value 0 or 1 and Adam can only decrease them by 5 or leave them
unmodified.

• The effect of each move of Adam is immediately cancelled, insofar as the strategy returns a
move that contains the opposite of Adam’s move. Actually, cancelling the effect of Adam’s
regular move amounts to doing nothing specific.
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Hence, Adam can at worst bring a state counter to the value −5, after which Eve increases the
counter to 0 again. For the upper bound, Adam cannot increase state counters and Eve’s moves
never put any state counter to a greater value than 1.

Moreover, we have proved that s is a winning strategy if, and only if, there run of the 2CM
is accepting, and if the run of the 2CM is not accepting, then Eve does not have any winning
strategy.

3.3.4 Reduction from Reach-2CM to 3RG

For this final reduction, we use the same principle as in the previous reduction to build a robot
game in dimension three from a 2CM. The only difference is that instead of 4m+ 7 state counters
we have one counter that stores the same information. In our proof, the focus is on how to avoid
undesired side effect while merging counters.

Let f : Zn → Z be the encoding basis function (x1, . . . , xn) 7→
∑n

i=1 xi8
i−1. We encode n

values, which correspond to the state counters in the game (A,E) of the previous section, in an
integer with the function f .

We rewrite the update vectors that we often use:

• Add(1, x) = (x, 0, 0) and Add(2, x) = (0, x, 0).

• Move(i, j) = (0, 0, f((1)nj − (1)ni )), for 1 ≤ i, j ≤ n.

• Check(i) = (0, 0, f((−5)nn+1−i)), for 1 ≤ i ≤ 6.

We reuse the notations (Q,T ), (q, (y, z)), b, B, qb̄B̄ and Q′ from the previous section. Let
(A1, E1) be a three-dimensional robot game, with initial vector (4y, z, 8n+1 + 8n + f((1)nqb̄B̄ − (1)n1 ))
where A1 = {(0, 0, 0),Add(1, 1)} ∪ {Check(i), 1 ≤ i ≤ 6} and E1 is the following set, for which we
emphasize the differences to E:

• – For each transition (r, c1++, s) ∈ T :
four moves Add(1, 4) + Move(rbB , s+B), for b, B ∈ {0,+};

– For each transition (r, c2++, s) ∈ T :
four moves Add(2, 1) + Move(rbB , sb+), for b, B ∈ {0,+};

– For each transition (r, c1--, s) ∈ T :
four moves Add(1,−4) + Move(r+B , sbB), for b, B ∈ {0,+};

– For each transition (r, c2--, s) ∈ T :
four moves Add(2,−1) + Move(rb+, sbB), for b, B ∈ {0,+};
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– For each transition (r, c1 == 0, s) ∈ T : two moves Move(r0B , s0B), for B ∈ {0,+};

– For each transition (r, c2 == 0, s) ∈ T : two moves Move(rb0, sb0), for b ∈ {0,+};

• – {Move(rbB , k)−Check(i)+(0,0,−8n)
| r ∈ Q, (b, B) ∈ {0,+}2\{(0,0)}, k ∈ {>bB ,>bB′}, k 6= n+ 1− i, 1 ≤ i ≤ 6};

– {Move(r00, 1)−Check(i)+(0,0,−8n+1 − 8n) | r ∈ Q};

– {Add(1,−4e1) + Add(2,−e2)−Check(i) | e1, e2 ∈ {0, 1}, 1 ≤ i ≤ 6};

– {Add(1,−4) + Add(2,−1) + Move(j, k)−Check(i)
| 1 ≤ i ≤ 6, i 6= k, 1 ≤ j ≤ 2, 3 ≤ k ≤ 6};

– {Add(1,−4) + Add(2,−1) + Move(j, 1)−Check(i)+(0,0,−8n+1)
| 1 ≤ i ≤ 6, 1 ≤ j ≤ 2};

– {Add(1,−4) + Move(j, 1)−Check(i)+(0,0,−8n+1) | 1 ≤ i ≤ 6, 3 ≤ j ≤ 4};

– {Add(2,−1) + Move(j, 1)−Check(i)+(0,0,−8n+1) | 1 ≤ i ≤ 6, 5 ≤ j ≤ 6};

• – {Add(1,−1) + Move(rbB ,>bB)+(0,0,−8n) | (b, B) ∈ {0,+}2\{(0,0)}, r ∈ Q}

– {Add(1,−1) + Move(r00,>00)+(0,0,−8n+1 − 8n) | r ∈ Q};

– {Add(1,−4− e) + Add(2,−1) + Move(j, k)
| 0 ≤ e ≤ 1, j ∈ {n− 1, n}, k ∈ {n+ 1− i, 1 ≤ i ≤ 6}, j 6= k};

– {Add(1,−4− e) + Add(2,−1) + Move(j, 1)+(0,0,−8n+1) | 0 ≤ e ≤ 1, j ∈ {n− 1, n}};

– {Add(1,−4− e) +Move(j, k) | e ∈ {0, 1}, j ∈ {n− 3, n− 2}, k ∈ {n− 3,n− 2}, j 6= k};

– {Add(1,−4− e) + Move(j, 1) + (0,0,−8n+1) | e ∈ {0, 1}, j ∈ {n− 3, n− 2}};

– {Add(1,−e) + Add(2,−1) + Move(j, k)
| e ∈ {0, 1}, j ∈ {n− 5, n− 4}, k ∈ {n− 5,n− 4}, j 6= k};

– {Add(1,−e) + Add(2,−1) + Move(j, 1)+(0,0,−8n+1) | e ∈ {0, 1}, j ∈ {n− 5, n− 4}};

• {Move(j, 1)+(0,0,−8n+1) | j ∈ {n+ 1− i, 1 ≤ i ≤ 6}}
∪ {Move(j, 1)+(0,0,−8n+1 − 8n) | 2 ≤ j ≤ n− 6}.

In our construction, the information about the states of the 2CM is in the third counter.

The differences between the moves in the game (A,E) and the moves in the game (A1, E1)
come from possible carries. Because of carries, two vectors of state counters would give the same
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value for the third counter, for example f(4, 1, 0, . . . , 0) = 12 = f(−4, 2, 0, . . . , 0). Counter updates
may involve carries in the game (A1, E1), because state counters may have a value outside {0, . . . , 7},
for example when Adam performs a state check. Nevertheless, there is no risk of ambiguity because
the possible range of the state counters is an interval of length at most eight, namely {−5, . . . , 1},
according to Proposition 53. Note that we write moves with an e ∈ {0, 1} in the third block, to
gather defence emptying moves and regular emptying moves for a more concise description of the
moves.

In the game (A,E), according to Proposition 53, if Eve has a winning strategy, then she also
has a winning strategy s that ensures that the state counters have at every step a value between
−5 and 1, hence, a winning strategy, which is adapted from s, in (A1, E1).

We now have to prove that Adam also can prevent Eve to use carries to her advantage,
concretely, that Adam has a winning strategy in (A1, E1) if he has a winning strategy in (A,E).
This is the purpose of the most two significant digits of the third counter. We prove that Eve
must decrement exactly once each of these two digits: at most once because she cannot make the
third counter become negative, at least once because Adam has a punishing strategy if she tries to
use carries to decrease the two digits without modifying them with dedicated moves. According to
Eve’s set of moves, we conclude that Eve can make the counter vector become zero, while indeed
decrementing exactly once each one of the most two significant digits, if, and only if, she simulates
the run ρ of the 2CM and ρ is accepting.

Lemma 54: Let (A1, E1) be the three-dimensional robot game that we build by our last reduction
from Reach-2CM. Consider an arbitrary play on (A1, E1), where Adam and Eve play to the best of
their interest. If, after any turn of Eve, the third counter is negative, then Eve loses the play.

Proof. Let us prove that, whenever the third counter becomes negativs, Adam wins if he then plays
Check(1) on and on.

Proposition 25 page 59 states that, in a robot game in dimension one, if the least move of
Adam is smaller or equal to the opposite of the greatest move of Eve, then no negative value is
winning for Eve. This still holds, analogously, in any dimension: if the lowest value in the dth

dimension of the moves of Adam is smaller than or equal to the opposite of the greatest value in
the dth dimension of the moves of Eve, then no counter vector with a negative dth component is
winning for Eve.

Here, the lowest value in the third dimension of the moves of Adam is Check(1) and the
greatest value in the third dimension of the moves of Eve is −Check(1), which increases the third
most significant digit. Let us consider all moves of Eve that contain −Check(1) in their description.
Some of these moves also decrement at least one of the most two significant digits, others contain
a move that also increments a digit and decrements a more significant digit, all others contain no
Move at all. In any case, the sum of Adam’s move Check(1) and of any move e of Eve, with
or without −Check(1) in the description of e, has a negative component in the third dimension.
To sum up, when Adam plays Check(1) and Eve plays any of her moves, the third dimension of
the counter vector is not increased. Hence, if the third dimension of the counter vector becomes
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negative, then Adam wins by playing Check(1) forever.

Lemma 55: Let (A1, E1) be the three-dimensional robot game that we build by our last reduction
from Reach-2CM. Consider an arbitrary play on (A1, E1), where Adam and Eve play to the best
of their interest. During the play, if Eve does not use exactly once either a move that contains
(0, 0,−8n+1 − 8n) in its description or a move that contains (0, 0,−8n+1) in its description and a
move that contains (0, 0,−8n) in its description, then she loses.

Proof. First, we deal with the most significant digit of the third counter. We find constraints on
Eve’s moves to prove that she needs to decrement the most significant digit exactly once. Second,
we deal with the second most significant digit of the third counter.

The most significant digit of the third counter is decremented exactly by Eve’s moves that
increment the least significant digit of the third counter, and there is no other possible update of the
least significant digit than the increments. Incidentally, Eve cannot increment the most significant
digit of the third counter. As the least significant digit is non-zero at the beginning of a play, Eve
must use a move that modifies the two end digits at least once. Moreover, using such a move more
than once would decrement the most significant digit when it is already zero, so the third counter
would become negative. Then, according to Lemma 54, Adam would win. To sum up, Eve must
decrement the most significant digit of the third counter exactly once.

The second most significant digit of the counter is decremented by every move Move(i, j)
of Eve such that i corresponds to a state of the 2CM and j corresponds to a state counter. If Eve
never uses such a move, then the digits that correspond to the states of the 2CM cannot become
all zero a priori. In fact, there are two possibilities to decrement a digit: either a direct decrement,
or a carry caused by a decrease of a lower digit.

Let us rule out that Eve does a direct decrement of the second most significant digit of the
third counter, by never using a move of the form that we give in the beginning of the paragraph.
If Eve manages to decrease in (A1, E1) the second most significant digit with a carry, it necessarily
corresponds in (A,E) to a state counter that she made become negative. Then, Adam can attack
on the corresponding digit of the third counter with Check moves, so that at least one lower digit
of the third counter never becomes zero again, hence the third counter cannot become zero, and
Eve loses. We conclude that Eve must do a direct decrement of the second most significant digit of
the third counter, possibly with the same move as the move with which she decrements the most
significant digit of the third counter.

Theorem 56: Let ρ be the run of (Q,T ), denote by (q, (y, z)) the second configuration in ρ. Let
b̄ = δ(y) and B̄ = δ(z). Eve has a winning strategy in (A1, E1) from (4y, z, 8n+1+8n)−Move(qb̄B̄ , 1)
if, and only if, ρ returns to a configuration with counter value (0, 0).

Proof. The strategy is exactly the same as in the game (A,E), and Lemma 55 ensures that Adam
can prevent Eve from creating ambiguous configurations with carries on the third counter, whereas
there is no ambiguity in (A,E). Therefore, if Eve has a winning strategy in (A1, E1), then she also
has one in (A,E) and conversely.
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Corollary 57: The problem of determining the winner of a robot game in dimension three is
undecidable.

Unfortunately, the technique that we use in this section does not seem to be extendable to
dimension two.
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Chapter 4

A Graphical Tool for Representing
the Winning Set in Two-Dimensional
Robot Games

An open problem remains, in light of the work in the chapter about robot games: what about
dimension two? Whereas it is believable that the proof of undecidability can be adapted with
two counters only, nothing seems to work when we try to merge an unbounded counter with a
bounded one, because the property that Eve loses whenever the bounded counter becomes negative
(Lemma 54) is fundamental and would no longer hold if we used a naive concatenation.

Indeed, handling possible carries between different parts of a counter is not obvious, as we
can see in the reductions from countdown games to the problem of determining the winner of a one-
dimensional robot game and from the reachability problem on Minsky machines to the problem of
determining the winner of a three-dimensional robot game. In the two reductions that we mention,
we managed to prove that carries did not cause any trouble in the robot games that we build,
but all counters that we merged and encoded in one counter were meant to be bounded, which
would not be the case if we tried to extend the proof of undecidability to dimension two, in other
words, if we merged the third counter with one of the counters of the 2CM, necessarily in the least
significant digits because the counters of the 2CM are unbounded. In some sense, Eve needs to
have moves with much variety so that she can defend against Adam’s attacks, and the problem lies
in the difficulty to prevent such moves to have an effect on the above part of the merged counter,
i.e., the value of a 2CM counter. If there were any possible effect, due to a carry, on the value of
a 2CM counter in a merged counter, then we could have examples of ambiguous two-dimensional
counter vectors corresponding to different three-dimensional counter vectors and still obtainable by
Eve in the two-dimensional robot game, which is not acceptable.

In short, it is still possible, but delicate, to look for a proof that the problem of determining the
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winner of a two-dimensional robot games is undecidable, but it is possible as well that the problem
of determining the winner of a two-dimensional robot game is decidable after all. Accordingly, to
investigate on decidability, or at least for particular cases, I implemented a graphical tool1 that
computes the attractor on Z× Z.

With this tool, it is possible to have an overview of the winning set in a robot game, and
moreover to see how it is computed step by step, i.e., from which counter vectors Eve has a strategy
to win in at most a given number of moves. Of course, the tool is in no way an algorithm,
because termination is not guaranteed and would not be guaranteed either for Algorithm 3, which
computes Eve’s winning set in a one-dimensional robot game, if we did not stop the iterations,
using arithmetical results presented beforehand, while computing the attractor. The reason why
the tool was written is precisely because finding out a stopping criterion in dimension two could be
easier with an illustration.

Among the attempts to find decidable classes of robot games in dimension two, sometimes
supported by hypotheses that the tool helped to formulate, we present the main extensions with
positive results:

• Only horizontal or vertical moves: Adam and Eve have moves in Z× {0} ∪ {0} × Z;

• unary moves: Adam and Eve have moves in {−1, 0, 1} × {−1, 0, 1};

• both at the same time.

We leave out from this part an extension of robot games where the objective is no longer the
origin but the set N× 0∪ {0}×N or Z× 0∪ {0}×Z, because many of the most basic properties of
robot games do not hold for this extension, which would hence not bring results that can be used
for standard robot games. Still, the tool handles the extension.

For all models that we consider, we need to remember that Eve “can only win when she can
win in one round”, which is the summary of Proposition 26 page 60. This is another formulation
of the fact that the computation of the attractor stops at the first step if Pre({(0, 0)}) = {(0, 0)}.
Geometrically, WE 6= {(0, 0)} if, and only if, there is a subset of E that is obtained from A by the
reflection across a point x 6= (0, 0) (in this case, we have −2x ∈WE).

For an extension in dimension two of the arithmetics that we used in dimension one to write
Algorithm 3, one can have a look at the articles [PRS05, ST03]. Unfortunately, obtaining a general
algorithm for dimension two does not seem feasible with this method, although the shape, like a
beam of light, of linear sets in dimension two seen in [PRS05, Fig. 1 page 3] and [ST03, Fig. 2 page
8], which also appears in our figures of the next pages, gave the intuition that the description of
Eve’s winning set was easy to compute, for example by stepwise computation of sets generated by a
greater and greater basis. In dimension two, the problem is to know when to stop the computation:
in dimension one, we used results about the Frobenius problem, but this problem does not really
exist in higher dimensions. Worse: Eve’s winning set is not necessarily a linear set, because a linear
set must be generated by a finite basis, which is not guaranteed for two-dimensional robot games,

1available at http://www.lsv.ens-cachan.fr/~reichert/Graphical_tool_robot_games.zip

http://www.lsv.ens-cachan.fr/~reichert/Graphical_tool_robot_games.zip
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and we give a counterexample in Figure 4.3.

4.1 Only horizontal or vertical moves

When Adam and Eve have all their moves in ({0} × Z) ∪ (Z× {0}), we distinguish four cases.

• Either A is a singleton, so we can consider the robot game as a one-player game, which is
easy to solve.

• or A = {(x, 0), (0, y)}, with x, y 6= 0, in other words Adam has one move along each axis;

• or A ⊆ Z × {0} (the case A ⊆ {0} × Z would be similar), in other words Adam has moves
along only one axis;

• or, in all other cases, A has at least two elements along one axis and one along the other.
This implies that WE = {(0, 0)}.

4.1.1 Adam has one move along each axis

Let us denote (x, 0) and (0, y) for Adam’s moves. According to the argument about winning in
one round stated in Proposition 26, and because Eve’s moves are also only horizontal or vertical,
Eve’s winning set is not restricted to {(0, 0)} if, and only if, she owns at least (x, 0) and (0, y).
In this case, (−x,−y) is winning for Eve and, as we can see in Figure 4.1, for the game where
A = {(−1, 0), (0, 1)} and E = {(−1, 0), (4, 0), (−6, 0), (0, 1), (0, 3)}, winning counter vectors for Eve
may form a set with nontrivial shapes.

4.1.2 Adam has moves along only one axis

When Adam has moves along only one axis, a first idea is to split any play in two steps: first, let Eve
reach the axis along which Adam has his moves, then solve a robot game in dimension one. Actually,
this does not work, because Eve has at every step to consider Adam’s last move to decide when
and where to land on the axis. Hence, even if we restrict to strategies where Eve uses for example
only vertical moves until the horizontal axis is reached and only horizontal moves afterwards, we
cannot say that there exists an integer n such that for all sequences of n moves of Adam, there
exists a sequence of n moves of Eve such that a winning counter vector for Eve is reached on the
axis along which Adam has his moves. There are in fact n existential and n universal quantifiers
that must alternate. We then cannot derive, as hoped, an EXPTIME algorithm according to the
idea of splitting plays.

Figure 4.2 gives an exemple of robot game under this restriction: Adam owns the set A =
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Figure 4.1: Graphical tool run on the file “test_restr_2_6.txt”. Adam has one move along each
axis: (−1, 0) and (0, 1). Eve has the moves (−1, 0), (4, 0), (−6, 0), (0, 1) and (0, 3). Eve’s winning
set becomes regular below y = −10, the above shape is nontrivial, though.
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Figure 4.2: Graphical tool run on the file “test_restr_1.txt”. Adam has moves along only one axis :
(−6, 0), (−4, 0) and (1, 0). Eve has the moves (−3, 0), (2, 0), (4, 0), (0,−5) and (0, 2). Eve’s winning
set has the same shape on all horizontal lines, only the starting position, i.e., the leftmost position,
differs and is given by the formula 8a+ 6b, where the ordinate of the line is an integer y such that
y = 5a− 2b for the smallest possible nonnegative integers a and b.
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{(−1, 0), (0, 1)} and Eve owns the set {(−1, 0), (4, 0), (−6, 0), (0, 1), (0, 3)}. The shape of Eve’s
winning set WE is regular, although a description of WE , which we found graphically, is hard to
obtain from A and E. This reduces the hope to find an algorithm for determining Eve’s winning
set in dimension two.

4.2 Unary moves

Everything seems easier when additions are restricted to ±1 and 0. It is, for example, the frame-
work of the whole articles [BJK10] and [Cha10] about games on VASS. There are exactly 511× 511
instances of robot games in dimension two with unary moves, hence there is a constant-time algo-
rithm that looks up the solution for each of them. The goal of this restriction, though, is to search
a technique that could be extended to the general case.

According to Proposition 25 page 59, every non-zero move of Adam defines a region of Z×Z
where Eve cannot win. Indeed, if for example Adam owns the move (1, 0), then the greatest
component along dimension one of a vector in A is 1, and it is greater than or equal to the opposite
of the lowest component along dimension one of a vector in E, because we restrict to unary moves.
Accordingly, each counter vector with a positive component along dimension one is losing. As a
consequence, each horizontal or vertical move of Adam defines a half-plane where Eve cannot win,
and each diagonal move of Adam defines a region, covering three quarters of the plane, where Eve
cannot win. Moreover, by just looking at the set of moves for Adam, we directly know that the
winning set of Eve is included in a set that has one of the following six shapes:

• The singleton {(0, 0)} (322 out of 511 sets of moves for Adam).

• The whole plane (when A = (0, 0), in which case Eve’s winning set WE is −〈E〉N).

• One of the four half-lines that start at (0, 0), say N × {0} and following an axis (136 out of
511 sets), in which case WE is fully determined by looking at Pre({(0, 0)}):

◦ If Pre({(0, 0)}) = {(0, 0)}, then WE = {(0, 0)};

◦ if (1, 0) ∈ Pre({(0, 0)}), then WE = N× {0};

◦ else Pre({(0, 0)}) contains (2, 0) and possibly (0, 0), in both cases WE = 2N× {0}.

• One of the two axes, say Z×{0} (4 out of 511 sets), in which caseWE is also fully determined
by looking at Pre({(0, 0)}): for all integers x that are not zero, (x, 0) is in WE if, and only if,
(sgn(x), 0) is in Pre({(0, 0)}).

• One of the four half-planes, say N × Z (8 out of 511 sets, 4 of which being trivial because
A is a singleton). The interesting case is then A = {(0, 0), (−1, 0)} and, depending on E,
the shape of WE does not have the properties that we expect. For example, in Figure 4.3,
where A = {(−1, 0), (0, 0)} and E = {(−1,−1), (0, 1), (1, 1), (1, 0)}, we have WE = {(0, 0)} ∪
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(0,−1) + 〈{(0,−1), (1, 0), (2, 1)}〉N, which is not a linear set.

• One of the four quarters of the plane, say N×N (40 out of 511 sets). The set A is then included
in {(0, 0), (−1, 0), (0,−1), (−1,−1)} and contains (−1,−1) or both (−1, 0) and (0,−1). An ex-
ample is given Figure 4.4, whereA = {(−1, 0), (−1,−1)}, E = {(−1, 0), (−1,−1), (0,−1), (1, 0), (1,−1)},
and WE is exactly the cone generated by {(0, 1), (1, 2), (2, 1)}.

Figure 4.3: Graphical tool run on the file “test_shrtrg_3.txt”. Adam’s set of moves is
{(−1, 0), (0, 0)}, Eve’s set of moves is {(−1,−1), (0, 1), (1, 1), (1, 0)}, and Eve’s winning set is
WE = {(0, 0)} ∪ (0,−1) + 〈{(0,−1), (1, 0), (2, 1)}〉N, which is not a linear set.

4.3 Unary horizontal and vertical moves, and the “2-2-1 ex-
tension”

Restricting to unary moves along one axis means that there are only five possible moves: (±1, 0), (0, 0)
and (0,±1). There are 31 × 31 instances of 2RG under this condition, and they can all be solved
according to a classification that is similar to the one in the previous section.

First, note that if Adam owns two “opposite” moves, that is, either (1, 0) and (−1, 0) or (0, 1)
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Figure 4.4: Graphical tool run on the file “test_shrtrg_4.txt”. Adam’s set of moves is
{(−1, 0), (−1,−1)}, Eve’s set of moves is {(−1, 0), (−1,−1), (0,−1), (1, 0), (1,−1)}, and Eve’s win-
ning set is 〈{(0, 1), (1, 2), (2, 1)}〉N.
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and (0,−1), then WE = {(0, 0)}. By symmetry, we now suppose that A ⊆ {(0, 0), (−1, 0), (0,−1)}.
We also set aside the easy case of singletons, which lets us with four cases.

• A = {(0, 0), (−1, 0), (0,−1)}. Even if Eve owns all five possible moves, we haveWE = {(0, 0)}.

• A = {(0,−1), (−1, 0)}. Then WE 6= {(0, 0)} if, and only if, E contains (0,−1) and (−1, 0),
and in this case, whatever other moves Eve owns, we have WE = (1, 1)N.

• A = {(0, 0), (−1, 0)}. Then WE 6= {(0, 0)} if, and only if, E contains (0, 0) and (−1, 0), and
in this case, depending on the other moves of Eve, there are four shapes for WE , as the move
(1, 0) has no relevance:

– If neither (0,−1) nor (0, 1) are in E, then WE = N× {0}.

– If (0,−1) is in E but (0, 1) is not, then WE = 〈{(1, 0), (0, 1)}〉N.

– If (0, 1) is in E but (0,−1) is not, then WE = 〈{(1, 0), (0,−1)}〉N.

– If (0,−1) and (0, 1) are in E, then WE = 〈{(1, 0), (0, 1), (0,−1)}〉N.

• A = {(0, 0), (0,−1)}, it is similar to the previous case.

This result extends well in dimension d: WE is a hyperpyramid, which is possibly flattened
along some axes.

In this section, we call “2-2-1 extension” a more elaborated model, in which A and E are
subsets of a fixed set of five moves, among which one is (0, 0), two other are on a same line and the
two remaining are on another line. For example, a possible set of five moves gathers (0, 0), on one
line (2, 3) and (6, 9), and on another line (1,−2) and (−3, 6). In the last extension, we mention a
case where the fixed set of five possible moves is not the same for Adam and Eve.

4.3.1 First “2-2-1 extension”: changing the base

The limit to five possible moves in this subsection seems to be a good framework to find positive
results. Let us now make the problem as general as possible, still with the property that Adam and
Eve have moves that are included in a set {0,±x,±y} for x, y ∈ Z2.

In a first extension, the five possible moves are {(0, 0),±(x1, y1),±(x2, y2)}, where (x1, y1)
and (x2, y2) are linearly independent and span, by linear combinations with integer coefficients, a
sub-vector space Y of Z× Z.

Because {(x1, y1), (x2, y2)} is a base of Y, there is a linear bijection f from Y to Z× Z such
that (x1, y1) 7→ (1, 0) and (x2, y2) 7→ (0, 1). If we replace (x1, y1) by (1, 0) and (x2, y2) by (0, 1) in
a robot game, and we solve the instance that we obtain, we just have to apply f−1 to WE to find
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a description of Eve’s winning set in the original game.

4.3.2 Second “2-2-1 extension”: removing symmetry

According to another restriction, we use horizontal and vertical vectors for the second exten-
sion: we remain with five possible moves, but with various sizes: for a, b, c, d ∈ Z \ {0}, we use
{(0, 0), (a, 0), (b, 0), (0, c), (0, d)}.

A new case for which it is possible that WE 6= {(0, 0)} appears: if both Adam and Eve own
(a, 0) and (b, 0), then the counter vector (−a− b, 0) is winning for Eve, and is no longer necessarily
(0, 0). In general, if Adam owns any set of at least three moves, then WE = {(0, 0)}. There is only
one exception: Adam owns (a, 0), (b, 0) and (0, 0) with b = 2a, and Eve owns at least the same
moves, in which case WE is generated by (−b, 0), and also by (−b,−c) if (0, c) ∈ E and by (−b,−d)
if (0, d) ∈ E.

Without loss of generality, we have then the following cases:

• A = {(a, 0), (0, 0)}. The winning set for Eve can be as hard to describe as in the general case
when Adam has only moves along one axis, see Figure 4.5, where A = {(−4, 0), (0, 0)} and
E = {(−10, 0), (−4, 0), (0, 0), (0, 2), (0,−1)}.

• A = {(a, 0), (b, 0)}. If a and b have the same sign, then WE = (−a − b, 0)N if E contains
(a, 0) and (b, 0), and {(0, 0)} else. If a and b have different signs, then the winning set for Eve
can there again be like in the previous case, see Figure 4.6, where A = {(−4, 0), (6, 0)} and
E = {(−4, 0), (6, 0), (0, 0), (0, 2), (0,−1)}.

• A = {(a, 0), (0, c)}. When for example b is a multiple of a or d is a multiple of c, the
winning set for Eve can be as hard to describe as in the general case when Adam has
a vertical and an horizontal move, see Figure 4.7, where A = {(−1, 0), (0, 2)} and E =
{(−2, 0), (−1, 0), (0, 0), (0, 2), (0,−1)}.

It appears that the difficulties that we raise when we present the case where both players have only
horizontal and vertical moves already appear in the restriction where the possible moves are in such
a small set as {(0, 0), (a, 0), (b, 0), (0, c), (0, d)}. The lack of symmetry between the possible moves
causes this increase of difficulty to solve robot games.

4.3.3 Third “2-2-1 extension”: different sets of possible moves

These observations lead to take another path for the third extension: Two moves along the same
direction have the same size, but this size is different for both players. In this section, A is a subset
of {(±a, 0), (0,±c), (0, 0)} and E is a subset of {(±b, 0), (0,±d), (0, 0)}.
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Figure 4.5: Graphical tool run on the file “test_combi_diff_1.txt”. Adam’s set of moves is
{(−4, 0), (0, 0)}, Eve’s set of moves is {(−10, 0), (−4, 0), (0, 0), (0, 2), (0,−1)}.

Figure 4.6: Graphical tool run on the file “test_combi_diff_3.txt”. Adam’s set of moves is
{(−4, 0), (6, 0)}, Eve’s set of moves is {(−4, 0), (6, 0), (0, 0), (0, 2), (0,−1)}.
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Figure 4.7: Graphical tool run on the file “test_combi_diff_5.txt”. Adam’s set of moves is
{(−1, 0), (0, 2)}, Eve’s set of moves is {(−2, 0), (−1, 0), (0, 0), (0, 2), (0,−1)}.



4.3. UNARY HORIZONTAL AND VERTICAL MOVES, AND THE “2-2-1 EXTENSION” 115

The argument “Eve can only win when she can win in one round” implies that, modulo all
symmetries, there are only two possibilities such that neither (a = ±b & c = ±d) norWE = {(0, 0)}
nor A is singleton:

• A = {(0, 0), (a, 0)}, a = 2b and Eve owns at least ±b. The shape of WE depends on the other
moves of Eve, apart from (0, 0), which has no influence.

– If neither (0, d) nor (0,−d) are in E, then WE = −(b, 0)N.

– If (0, d) ∈ E but not (0,−d), thenWE = 〈{(−b, 0), (−2b,−d)}〉N. Analoguous if (0,−d) ∈
E but not (0, d).

– If (0,±d) ∈ E, then WE = 〈{(−b, 0), (−2b,−d), (−2b, d)}〉N.

• A = {(±a, 0)}, b = 2a and Eve owns at least (0, 0) and one move among (b, 0) and (−b, 0).
Let us denote Y for the sub-vector space that (b, 0) and (0, d) generate. The shape of WE

is easy to describe given E, it can be the intersection of Y with a half-line, a line, a cone, a
half-plane or the full plane.

This result confirms what we noticed in the previous subsection: symmetry is fundamental to have
winning sets that are simple to describe. In some sense, moves a and −a do not really act like two
different moves, it is rather doing an action and cancelling it.

4.3.4 Fourth “2-2-1 extension”: removing parallelism

This time, Adam’s moves and Eve’s moves do not share all their directions: Adam’s set of moves
A is a subset of {(0, 0),±v1,±v2}, Eve’s set of moves E is a subset of {(0, 0),±v3,±v4}, where we
suppose that v1 or v2 is neither parallel to v3 nor to v4.

Once again because “Eve can only win when she can win in one round”, as soon as Adam has
at least two moves, a disjunction of equations that link v1, v2, v3 and v4 must be verified in order
that WE 6= {(0, 0)}.

For example, if A = {(0, 0), v1}, then we look for two moves in E that have v1 as vector
difference. In other words, v1 = ±v3 ± v4.

Modulo symmetry, the only cases that do not imply directlyWE = {(0, 0)} are the following:

• A = {(0, 0), v1}.

• A = {±v1}.

• A = {(0, 0), v1, v2} provided that other equations hold.
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• A = {v1, v2} (same).

• A = {±v1, v2} (same).

Figure 4.8 presents an example in another context, where A = {(0, 0), v1, v2} and E =
{(0, 0),±v3,±v4}, with v1 = (−1, 0), v2 = (1, 2), v3 = v1, and v4 = v2 − v3 = (2, 2). Here, Eve’s
winning set is 〈{(0, 1), (−1,−2)}〉N.

Figure 4.8: Graphical tool run on the file “test_combi_indep_pire_1.txt”. Adam’s set of moves is
{(0, 0), (−1, 0), (1, 2)}, Eve’s set of moves is {(0, 0), (−1, 0), (1, 0), (2, 2), (−2,−2)}.

As a matter of fact, our study of robot games in dimension two reveals that the models that
we consider seem often either trivial or as complicated as the general case. Whether the problem
of determining the winner of a two-dimensional robot games is decidable or not is left as open.
Actually, even though we have seen that in many cases Eve’s winning set has a regular shape, we
cannot lend towards believing that the problem is decidable: in dimension three, we have proved
indecidability and there are most certainly many examples where Eve’s winning set has a regular
shape, which are unfortunately much harder to represent on a screen.



Chapter 5

Conclusion

In this thesis, we considered the problem of deciding the winner in one-player or two-player reach-
ability games on systems with one or more counters under various semantics for counter updates.
The summary of our results is that decidability seems to require that there is only one counter, or
only one player, whichever is the semantics of the system.

The tables of this section recall all decidability and complexity results in the manuscript,
with a reference to the section, or in the literature, depending on the model. The symbol ∗ stands
for folklore.

Objective Z semantics VASS semantics non-blocking VASS semantics
(q, 0) (dim. 1) NP-complete [*,2.2.1] NP-complete [*] P [2.3.2]
(q, c) (dim. 1) NP-complete [*,2.2.1] NP-complete [*] NP-complete [2.3]
(q, 0) (dim. 1), unary P [*]
(q, 0d) (dim. d) NP-complete [*,2.2.1] decidable [[Kos82]] not considered

Figure 5.1: Reachability problem (one-player version)

Determining the winner of a counter reachability game according to the objectives that we
use, i.e., the counter vector must be equal to a target vector (usually zero) and the vertex must
be the only goal vertex, is undecidable in dimension two under all semantics. Hence, we spare the
drawing of a table with “undecidable” everywhere. The case of dimension one, with decidability
results, shows more diversity: see the table in Figure 5.2.
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Objective Z semantics VASS semantics non-blocking VASS semantics
(q,0), unary PSPACE-C [2.2.3] PSPACE-C [[BJK10]] P [2.3.2]
(q,1), unary PSPACE-C [2.2.3] PSPACE-C [[BJK10]+2.2.3] PSPACE-C [2.3.1]
(q,0) EXPSPACE-C [[Hun14]] EXPSPACE-C [[Hun14]] NP [2.3.2], open lower bound
(q,1) EXPSPACE-C [[Hun14]] EXPSPACE-C [[Hun14]] EXPSPACE-C [[Hun14]]

Figure 5.2: Reachability games in dimension one

The EXPSPACE-hardness in the cells of the bottom-left corner of the table in Figure 5.2 has
been proved by Paul Hunter in [Hun14], membership in EXPSPACE is obtained by splitting edges
to obtain a unary arena of exponential size.

For the extensions that we study, our results do not depend on the semantics so they are
presented without mention of it.

Model Objective Decidability/complexity
Two players, with resets (q,c), c fixed, unary PSPACE-complete [2.4]
Two players, with resets (q,c), c fixed EXPSPACE-C [2.4,[Hun14]]
One player, with affine updates (q,v), v fixed, dim. ≥ 2 Undecidable [2.5]
One player, with hierarchical updates (q,v), v fixed NP [2.6.1], open lower bound

Figure 5.3: Reachability games, variants

Finally, for robot games, our main results are EXPTIME-completeness in dimension one and
undecidability in dimension three. For dimension two, the problem is open in the general case, but
we have some refinements. In the next table, “restricted choice” means that Eve’s set of moves is
a subset of {0,±v1,±v2} and Adam’s set of moves is a subset of {0,±v3,±v4}, for given vectors
v1, v2, v3 and v4. In fact, more than being solvable in polynomial time, the decision problem often
has an immediate solution. For example, when E = {v1, v2} and A = {v3, v4}, Eve’s winning set
is {0d} if, and only if, v1 − v2 6= ±(v3 − v4). On the other hand, if v1 − v2 = v3 − v4, then Eve’s
winning set is (−v1 − v4)N = (−v2 − v3)N.

Dimension Particular case Decidability/complexity
1 EXPTIME-complete [3.1.4,3.2]
2 Eve has states Undecidable [3.3.2]

2 (but works for d) “restricted choice” P [4.3.4]
2 open
3 Undecidable [3.3.4]
d One player NP-complete [inherited from 2.2.1]

Figure 5.4: Robot games
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