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Abstract. Lossy counter machines (LCM’s) are a variant of Minsky counter ma-
chines based on weak (or unreliable) counters in the sense that they candecrease
nondeterministically and without notification. This model, introduced by R. Mayr
[TCS 297:337-354 (2003)], is not yet very well known, even thoughit has already
proven useful for establishing hardness results.
In this paper we survey the basic theory of LCM’s and their verification problems,
with a focus on the decidability/undecidability divide.

1 Introduction

Lossy counter machinesare a weakened version of Minsky counter machines. They
were introduced by Richard Mayr [38, 39] as a simpler versionof lossy channel sys-
tems, using counters holding numerical values rather than channels recording sequences
of messages in transit. Mayr proved that finiteness and uniform termination are undecid-
able for lossy counter machines and used this to derive various undecidability results,
e.g. in [11].

Lossy counter machines are hard.Since then, lossy counter machines have been used
in a variety of situations, sometimes under the guise ofcounter automata with incre-
mentation errors[19]. Mostly, they have been used in reductions provinghardness, i.e.,
complexity lower bounds. This relies on two kinds of results. Firstly, some problems
that are undecidable for Minsky machines remain undecidable for the weaker lossy
counter machines. This can be used for undecidability proofs in situations where it is
easier to encode lossy counters than reliable ones, e.g., asin [19, 16]. Secondly, some
problems that are decidable for lossy counters machines arestill Ackermann-hard, i.e.,
they require nonprimitive-recursive time and space [43, 44]. This can be used to show
Ackermann-hardness of problems that are decidable but richenough to encode lossy
counters, see [18, 19, 32, 24, 46] for examples.

A survey for lossy counter machines.In this paper, we survey the main decidability
and undecidability results on lossy counter machines. Mostareas have not yet been
investigated deeply, and some have only been superficially visited. As a consequence,
our survey looks sometimes more like a road map for future research than as a record
of past achievements.

⋆ Work supported by the Agence Nationale de la Recherche, grant ANR-06-SETIN-001.
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We strove for simplicity. Most decidability results can be proven by elementary ar-
guments, relying only on generic properties like strong monotonicity of steps (Fact 2.1),
the wqo property (Fact 2.3) and basic features of semilinearsets. These proofs are sim-
pler and more versatile than the algorithms provided in, e.g., [5, 28]. For undecidability,
all our proofs share a single and very simple gadget, “putting a Minsky machine on a
budget”, making them conceptually simpler.

In this “survey” we do not always point to the earliest existing reference for each
and every stated theorem. Mostly this is because these results are new, or presented in
a new and extended form, or with a new and simplified proof. In general, the results
come from [11, 42, 39] when they are specific to lossy counter machines. Some results
have been first shown for lossy channel systems [15, 7, 6] or even well-structured sys-
tems [25, 26, 5, 28, 29].

Outline of the paper.We define counter machines, both reliable and lossy, in Section 2.
We handle reachability properties in Section 3, termination and inevitability properties
in Section 4, liveness properties in Section 5, finiteness properties in Section 6. All the
decidability results given in these first sections are proven along the way, while the
proof of the undecidability results are delayed until Section 7 where they are handled
uniformly. Finally, we gather in Section 8 a few extra results on issues that are less
central, or more recent, in the theory of lossy counter machines. Finally, and for the sake
of completeness, the complexity of decidable problems is briefly discussed in Section 9.

2 Counter machines

Counter machinesare a model of computation where a finite-state control acts upon a
finite number ofcounters, i.e., storage locations that hold natural numbers. The com-
putation steps are usually restricted to simple tests and updates. For Minsky counter
machines, the tests are zero-tests and the updates are incrementations and decremen-
tations. Formally, a(Minsky) counter machineis a tupleM = (Loc,C,∆) whereLoc=
{ℓ1, . . . , ℓm} is finite set oflocations, C = {c1, . . . ,cn} is a finite set ofcounters, and
∆⊆ Loc×OP(C)×Loc is a finite set of transition rules carrying operations from aset

OP(C)
def
= C×{++,--,=0?}.

In pictorial representations, a counter machine is usuallydepicted as a directed
graph where transition rules areOP(C)-labeled edges between control locations, see
Fig. 1 for a simple example. An operation of the formc++ denotes the incrementation
of counterc, while c-- denotes its decrementation. Decrementations are only firable
when the counter at hand holds a strictly positive value, as is formally stipulated in the
operational semantics. Operations of the formc=0? are tests used to restrict transition
steps.

2.1 Operational semantics

Let M = (Loc,C,∆) be a counter machine. Aconfigurationof M is someσ = 〈ℓ,aaa〉 ∈

Conf
def
= Loc×N

C, i.e., acurrent control locationℓ and aC-indexed vectoraaa of natural
numbers (onecurrent valuefor each counter inC). If we assume, as we shall do from
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Fig. 1. M: a counter machine that enumerates all pairs(a1,a2) ∈ N
2.

now on, thatC = {c1, . . . ,cn}, we may identifyNC with N
n and writeσ under the form

〈ℓ,a1, . . . ,an〉. We sometimes use counter names as positional indexes when there is a
need for disambiguation, e.g., writing〈000,ck : 1,000〉 for thek-th unit vector.

The operational semantics ofM is given under the form of transitions between its

configurations. Formally, there is atransition(also called astep) σ δ
−→std σ′ if, and only

if, σ is some〈ℓ,a1, . . . ,an〉, σ′ is some〈ℓ′,a′1, . . . ,a
′
n〉, δ = (ℓ,op, ℓ′) and either:

– op is ck=0? (zero test):ak = 0, anda′i = ai for all i = 1, . . . ,n, or
– op is ck-- (decrementation):a′k = ak−1, anda′i = ai for all i 6= k, or
– op is ck++ (incrementation):a′k = ak +1, anda′i = ai for all i 6= k.

As usual, we writeσ−→stdσ′ whenσ δ
−→stdσ′ for someδ∈∆. Chainsσ0−→stdσ1−→std

· · · −→std σk of consecutive steps, also calledruns, are denotedσ0
∗
−→std σk, and also

σ0
+
−→std σk whenk > 0. For example,M from Fig. 1 has a run:

〈ℓ0,0,0〉 −→std 〈ℓ1,0,0〉 −→std 〈ℓ2,0,0〉 −→std 〈ℓ0,1,0〉 −→std 〈ℓ3,0,0〉 −→std 〈ℓ0,0,1〉

−→std 〈ℓ1,0,1〉 −→std 〈ℓ4,0,0〉 −→std 〈ℓ1,1,0〉 −→std 〈ℓ2,1,0〉 −→std 〈ℓ0,2,0〉 −→std 〈ℓ3,1,0〉

For a vectoraaa= (a1, . . . ,an), or a configurationσ = 〈ℓ,aaa〉, we let|aaa|= |σ| def
= ∑n

i=1ai

denote itssize. ForN ∈ N, we say that a runσ0 −→std σ1 −→std · · · −→std σk is N-bounded
if |σi | ≤ N for all i = 0, . . . ,k.

The above definitions use a “std” subscript when writing steps to emphasize that
they rely on the usual, standard, operational semantics of counter machines, where the
behavior isreliable. We now introduce lossy counter machines as counter machines
with a different semantics.

2.2 Lossy counter machines

In lossy counter machines, the contents of the counters may decrease non-determinis-
tically (the machine can “leak”, or “lose data”). This behavior is not under the control
of the machine, i.e., it can be seen as some inherent non-determinism. Furthermore, the
lossy machine does not have any direct way of noticing if/when a loss occurs. Hence
lossy counter machines are less powerful than standard, reliable, counter machines.

Technically, it is more convenient to see lossy machines as counter machines with
a different operational semantics (and not as a special class of machines): thus it is
possible to use simultaneously the two semantics and to relate them.
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Formally, this is defined via the introduction of a partial ordering between the con-
figurations ofM:

〈ℓ,a1, ...,an〉 ≤ 〈ℓ
′,a′1, ...,a

′
n〉

def
⇔ ℓ = ℓ′∧a1≤ a′1∧·· ·∧an≤ a′n.

One way to readσ≤ σ′ is to seeσ as the result of some losses (possibly none) inσ′.
Now “lossy” steps, denotedσ δ

−→lossyσ′, are given by the following definition:

σ δ
−→lossyσ′ def

⇔ ∃θ,θ′ : (σ≥ θ ∧ θ δ
−→std θ′ ∧ θ′ ≥ σ′). (†)

Note that reliable steps are a special case of lossy steps:

σ−→std σ′ impliesσ−→lossyσ′. (‡)

An immediate corollary of (†) is the so-called “monotonicity of steps” property:

Fact 2.1 ((Strong) Monotonicity)
1. Assumeσ−→lossyτ. Thenσ′ −→lossyτ′ for all σ′ ≥ σ and all τ′ ≤ τ.

2. Assumeσ +
−→lossyτ. Thenσ′ +

−→lossyτ′ for all σ′ ≥ σ and all τ′ ≤ τ.

Remark 2.2.Here the adjective “strong” emphasizes the fact that the existence of some
stepσ −→lossy τ implies the existence ofσ′ −→lossy τ for all σ′ ≥ σ, (rather thansome
σ′ −→lossyτ′) and, symmetrically, the existence ofσ−→lossyτ′ for all τ′ ≤ τ. ⊓⊔

2.3 Dickson’s Lemma

The configuration ordering enjoys the following key property:

Fact 2.3 (Wqo) (Conf,≤) is a well-quasi-ordering.

This is otherwise known as Dickson’s Lemma. It means that anyinfinite sequence
σ0,σ1,σ2, . . . of configurations contains an infinite increasing subsequenceσi0 ≤ σi1 ≤
σi2 ≤ ·· · . Equivalently, not only is the ordering well-founded (there is no infinite de-
creasing sequenceσ0 > σ1 > σ2 > · · · ) but every linearisation is well-founded. In par-
ticular, there is no infinite set of pairwise incomparable configurations. See [34] for
more information.

It is the combination of monotonicity of steps with the wqo-property that turns lossy
counter machines into what are calledwell-structured transition systems[28, 5].

2.4 Semilinear sets of configurations

A set of configurationsR⊆ Conf is linear if it can be written under the form

R= {〈ℓ,aaa+k1.bbb1 + · · ·+km.bbbm〉 | k1, . . . ,km∈ N}

for somebase configuration〈ℓ,aaa〉 and some finite set of incrementsbbb1, . . . ,bbbm ∈ N
n.

For example the upward-closure↑σ def
= {θ ∈ Conf | θ ≥ σ} of a single configuration is
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linear, withσ itself as the base, andn unit vectors, one per counter, as increments. A
second example is the singleton set{σ}, linear too, with same base but no increments.

A setR⊆ Conf is semilinearif it is a finite unionR= L1∪ ·· · ∪Lk of linear sets.
In particular, the empty set is semilinear (takek = 0) andConf itself is semilinear as
S

ℓ∈Loc↑〈ℓ,000〉.
It is well-known that semilinear sets are exactly the sets that can be denoted by

Presburger formulae (effective translations between the two representations exist) and
that they are closed under complement, intersection, projection, etc., all this in an effec-
tive way [33, 37]. Slightly abusing notations, we shall use letters likeX,Y, . . . to denote
semilinear sets of configurations and, at the same time, to denote their finitary descrip-
tions (e.g., Presburger formulae, or basescumincrements) that can be given as input to
algorithms.

Not all sets of configurations are semilinear but many interesting sets can be de-
noted by Presburger formulae (e.g., the set of all configurations whose size satisfy a
Presburger constraint) and thus are semilinear.

The following is even more important for our purposes:

Fact 2.4 (Order-closed sets are semilinear)If R⊆ Conf is upward-closed or down-
ward-closed, it is semilinear.

Indeed, by the wqo-property, an upward-closedR hasfinitely manyminimal elements,
hence can be writtenR= ∪σ∈min(R)↑σ which is semilinear. For a downward-closedR,
we observe that its complement is upward-closed, hence semilinear, and rely on the fact
that the complement of a semilinear set is semilinear.

3 Reachability and safety

From now on, we omit the “lossy” subscript and writeσ −→ σ′ instead ofσ −→lossy σ′.
This is because the lossy steps are our main objects. We only revert to the fully explicit
notation when it is necessary to consider both reliable and lossy steps at the same time
(for example in Section 7).

3.1 Post-sets and Pre-sets

For R⊆ Conf, we letPost(R)
def
= {σ′ | ∃σ ∈ R : σ −→ σ′} denote the set ofimmediate

successorsof configurations inR. Similarly, we letPost∗(R) andPost+(R) denote the set
of configurations reachable fromR through an arbitrary number (resp. strictly positive
number) of steps. Similarly,Pre(R), Pre∗(R), andPre+(R) denote sets ofpredecessors
configurations, from which a configuration inRcan be reached.

A consequence of monotonicity (Fact 2.1) is the following order-closure property:

Fact 3.1 For any R⊆ Conf , Post(R) and Post+(R) are downward-closed sets, while
Pre(R) and Pre+(R) are upward-closed sets.
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Corollary 3.2. For any R⊆ Conf , Pre(R), Pre+(R), Post(R) and Post+(R) are semi-
linear.
Furthermore, if R itself is semilinear, then Post∗(R) and Pre∗(R) too are semilinear.

Here the first point is just an applications of Fact 2.4 while the second point stems from
Post∗(R) = R∪Post+(R) and symmetrically forPre∗(R).

Note that, ifR is semilinear, one can computePost(R) andPre(R) uniformly fromR
(andM). This has little to do with lossiness: counter machines is alow-level computa-
tional model with simple operational semantics for single steps. For counter machines,
the one-step relations−→std and−→lossy, seen a subsets ofConf×Conf, are semilinear
(and easily read out ofM).

3.2 Reachability problems

The main question is the decidability of a general form of reachability questions, that
we callgeneral reachabilityin order to distinguish it from its less general variants.

General_Reachability:
Given: a LCM M, two semilinear sets of configurationsX andY.
Question: does there existσ1 ∈ X andσ2 ∈Y such thatσ1

∗
−→ σ2? In such a case,

we writeX
∗
−→Y.

Equivalently: DoesPost∗(X)∩Y 6= ∅? DoesPre∗(Y)∩X 6= ∅?

In the literature, reachability problems often appear in other forms:

Configuration_Reachability: doesσ0
∗
−→ σt for given starting configurationσ0 and tar-

get configurationσt?
Location_Reachability: is there someaaa ∈ N

n such thatσ0
∗
−→ (ℓ,aaa) for given σ0 and

target locationℓ ∈ Loc?
Coverability: is there someσ≥ σt such thatσ0

∗
−→ σ for givenσ0 and target configura-

tion to be coveredσt?
Safety: doesPost∗(X0) ⊆ Xs for given semilinear set of starting configurationsX0 and

semilinear set of “safe” configurationsXs?

Obviously, all these problems are special cases ofGeneral_Reachability (or of its com-
plement in the case ofSafety), hence are easier. We observe that location reachability is
a special case of coverability, and that coverability and single-configuration reachability
almost coincide since, thanks to Fact 2.1, one can coverσg from σ0 if, and only if, σg

is reachable fromσ0 or is already covered by it (i.e.,σ0≥ σg).

3.3 Decidability of reachability

Theorem 3.3. General_Reachability is decidable for lossy counter machines.

First observe that general reachability is r.e. (it is enough to guess a run and check it,
which amounts to simulatingM) so that there only remains to show that non-reachability
is r.e. too.
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For this, we rely on semilinear invariants. Aninductive invariant, or just “an invari-
ant”, is a set of configurationsI such thatPost(I)⊆ I or, equivalently,Pre(J)⊆ J letting

J
def
= Confr I .

Classically, invariants are used to prove safety properties, relying on the following
fact: if R⊆ I for some invariantI , thenPost∗(R) ⊆ I . They can be used as negative
witnesses for general reachability: finding an invariantI that containsX and does not
intersectY proves that one cannot reachY from X, written¬(X

∗
−→Y) for short.

This method iscompletesince, if¬(X
∗
−→Y), this is certainly witnessed by invari-

ants, the smallest one beingPost∗(X) and the largest beingConfr Pre∗(Y) [45]. The
method can be madeeffectiveby restricting to semilinear invariants. Only considering
semilinear invariants allows enumerating candidates setsI and it allows checking that
a candidateI is indeed an invariant, that it containsX, and does not intersectY. Re-
stricting to semilinear invariant does not hinder completeness since, e.g.,Post∗(X) and
ConfrPre∗(Y) are semilinear (by Coro. 3.2).

Finally, general reachability is co-r.e., and being r.e. too, is decidable.

Remark 3.4.We observe that the key ingredient for the above proof is simply that the
reachability setsPost∗(X) are “regular” in some sense (for LCM’s, they are semilinear)
and that the one-step imagePost(X), or the pre-imagePre(X), is semilinear too and can
be computed effectively fromX. This proof technique is quite general and applies to
many different situations. For example, the same argument was used for reversible Petri
nets in [14], or for 3-dim VASS’s in [36]. ⊓⊔

Corollary 3.5. Configuration_Reachability, Location_Reachability, Coverability, and
Safety are decidable for lossy counter machines.

3.4 Reachability logic

The reachability problems we just proved decidable can all be stated in a first-order
logic of reachability, where the basic predicates ares−→ t, s

∗
−→ t, ands∈ X for X a

semilinear set.
For example,Safety is written

∀s∈ X0 : ∀t ∈ Xs : ¬(s
∗
−→ t), (ϕSaf)

while configuration reachability and coverability are written, respectively,

∃s∈ {σ0} : ∃t ∈ {σt} : s
∗
−→ t, (ϕCR)

∃s∈ {σ0} : ∃t ∈ ↑σt : s
∗
−→ t. (ϕCov)

These examples show that it is convenient to allow a simple language of terms de-
noting semilinear sets, like singletons “{σ}” or upward-closure “↑X”. Below we also
use Boolean operations, e.g., “X rY”, and order-theoretic constructions e.g., writing
“min(X)” to denote the set of minimal configurations inX. In any case we only use
Presburger-definable operations: they always denote semilinear sets that can be com-
puted effectively from their semilinear operands.
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The model-checking problem for reachability logic is a natural generalization of
the reachability problems we considered in Section 3.2. This problem is undecidable
in general but identifying the decidable fragment is certainly an interesting question
that is still very open. The question is even more interesting since there is ample room
for refining and extending the logic in meaningful ways (see Section 8.1 for related
questions).

Regarding some of the simplest non-trivial formulae, we canalready provide a few
results:

∃s∈ X : ∃t ∈Y : s
∗
−→ t decidable (one-to-one)

∀s∈ X : ∃t ∈Y : s
∗
−→ t decidable (from-all)

∃s∈ X : ∀t ∈Y : s
∗
−→ t undecidable,Σ0

2-complete (one-to-all)

∀s∈ X : ∀t ∈Y : s
∗
−→ t undecidable,Π0

1-complete (all-to-all)

∀t ∈Y : ∃s∈ X : s
∗
−→ t undecidable,Π0

1-complete (to-all)

∃t ∈Y : ∀s∈ X : s
∗
−→ t decidable (all-to-same)

The undecidability results in the above list will be proven later, in Section 7. We
mention them now because they are an indication that we should find the decidability
results a bit surprising.

Regarding the decidability results, one-to-one formulae are just general reachability
and have been shown decidable above. Observe that this entails the decidability of

∃s∈ X : ∃t ∈Y : s
+
−→ t. (one-to-one’)

Indeed this formula, also writtenX
+
−→Y, is equivalent to bothPost(X)

∗
−→Y andX

∗
−→

Pre(Y), andPost(X) andPre(Y) are semilinear sets that can be computed effectively
from X andY (andM), see Coro. 3.2.

Regarding from-all formulae, they reduce to conjunctions of simple reachability
questions with the following reasoning:

∀s∈ X : ∃t ∈Y : s
∗
−→ t (from-all)

⇔ ∀s∈ (X rY) : ∃t ∈Y : s
+
−→ t

⇔ ∀s∈min(X rY) : ∃t ∈Y : s
+
−→ t

where the last step of the reduction relies on monotonicity of lossy steps (Fact 2.1).
Now, min(X rY) is some finite set{σ1, . . . ,σk} (Fact 2.3) that can be computed effec-
tively from X andY. Thus we have reduced a from-all formula to a finite conjunction
of one-to-one’ formulae.

We now turn to all-to-same formulae. The main idea is easier to understand if we
consider a version where

+
−→ is used:

∃t ∈Y : ∀s∈ X : s
+
−→ t. (all-to-same’)
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One can simplify this by using monotonicityon both sides of the steps:1

∃t ∈Y : ∀s∈ X : s
+
−→ t ⇔ ∃t ∈min(Y) : ∀s∈min(X) : s

+
−→ t.

Hence, letting min(X) = {σ1, . . . ,σk} and min(Y) = {σ′1, . . . ,σ
′
m}, we have reduced

all-to-same’ to
Wm

j=1
Vk

i=1 σi
+
−→ σ′j , a finite disjunction of conjunctions of decidable

questions.
One can now show the decidability of all-to-same formulae byadapting the above

idea. One possible way is to rely on, e.g.,

∃t ∈Y : ∀s∈ X : s
∗
−→ t ⇔

(

∃t ∈min(Y) : ∀s∈min(X) : s
+
−→ t

∨ ∃t ∈min(X)∩Y : ∀s∈min(X) : s
∗
−→ t

)

.

Again, we end up with a finite combination of decidable reachability questions.

3.5 Computing co-reachability sets

One can go beyond Theorem 3.3 and compute the co-reachability sets.

Theorem 3.6 (PPPrrreee∗∗∗ is effective).For semilinear X⊆ Conf , Pre∗(X) can be computed
effectively as a function of X and M.

Indeed, we know thatPre∗(X) is a semilinear setX0 that satisfies both

X0⊆ Pre∗(X), i.e.,∀s∈ X0 : ∃t ∈ X : s
∗
−→ t, (1)

and

X0⊇ Pre∗(X), i.e.,¬
(

∃s 6∈ X0 : ∃t ∈ X : s
∗
−→ t
)

. (2)

These two formulae are decidable for givenX andX0: (1) is a from-all formula while
(2) is a negated one-to-one formula. Thus we can effectivelyrecognize when a given
X0 coincides withPre∗(X). There only remains to enumerate all semilinearX0 until we
encounterPre∗(X), which is bound to eventually happen.

ComputingPre∗(X) is useful in many situations where just deciding reachability
questions would be insufficient. For example, Theo. 3.6 letsus list, or count, the number
of starting configurations that do not satisfy a given safetyproperty.

3.6 Computing reachability sets

Surprisingly, it is not possible to computePost∗(X) effectively. This is captured more
precisely by the following statement:

Theorem 3.7 (On computingPPPooosssttt∗∗∗).
1. The question whether, for semilinear X and Y, Post∗(X)⊆Y is decidable.
2. The question whether, for semilinear X and Y, Post∗(X)⊇Y isΠ0

1-complete.

1 Here it is crucial that the source is universally quantified upon and the destination is existen-
tially quantified upon. It would not work the other way around.
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Indeed, Point 1 is the decidability ofSafety, and Point 2 is the undecidability of to-all
formulae (Section 3.4).

There is a troubling lack of symmetry here, between the computablePre∗ and the
non-computablePost∗. We stress that this situation has little to do with the specifics
of counter machines. Indeed, most of the proofs above only rely on monotonicity of
steps, on Dickson’s Lemma, and basic assumptions on the operational semantics (e.g.,
Presburger-definable one-step relation) that are fulfilledby many models. The bot-
tom line is that most decidability proofs above rely on the closure properties stated
in Coro. 3.2 where the asymmetry appears: upward-closed sets have a finite basis (on
which one can base algorithms), while downward-closed setsdo not.2

4 Termination and inevitability

In this section, we consider termination and more general inevitability properties.

4.1 Termination

Consider the following problems:

Termination:
Given: a LCM M and an initial configurationσ0,
Question: doesM terminate?
Equivalently: are all runs starting fromσ0 finite?

Looping:
Given: a LCM M and an initial configurationσ0,

Question: may the system loop? I.e., is there a configurationσ s.t.σ0
∗
−→ σ +

−→ σ?

Of course, looping is a special case of non-termination. That they coincide is less
usual!

Lemma 4.1. A lossy counter machine is looping if, and only if, it does notterminate.

Indeed, assume there is an infinite runσ0 −→ σ1 −→ σ2 −→ . . .. The wqo property entails

that there must be positionsk < l along this run withσk ≤ σl . Sinceσk
+
−→ σl , mono-

tonicity (Fact 2.1) entailsσk
+
−→ σk and we have a loop.

Theorem 4.2. Termination and looping are decidable for lossy counter machines.

2 Finite representations of upward-closed sets exist but they use some kind of “limits
points” [27]. For lossy counter machines, the limit points are extended configurations where
some counters containω. These behave like directed sets of configurations, not like real indi-
vidual configurations.
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The proof of Theorem 4.2 is much simpler than one would expect.
First, we observe that termination is r.e.: since the transition relation is finitely

branching, we know (K̋onig’s Lemma) that if all runs fromσ0 are finite, then the tree of
all runs is finite and an exhaustive simulation algorithm will terminate after examining
finitely many runs.

On the other hand, looping too is r.e.: one just has to guess a looping runσ0
∗
−→ σk

+
−→

σk, which can be represented finitely and checked in finite time.
Now since looping and non-termination coincide, the two problems are r.e. and co-

r.e., hence decidable.

Remark 4.3.The beauty of this proof is that termination and looping are r.e.very gener-
ally. That is to say, termination is r.e. for most sensible computation models, e.g., Turing
machines or Minsky counter machines, and the same is true of looping. Thus that part
of the proof is totally generic. What isspecific to lossy counter machinesis that non-
termination and looping coincide. Indeed, they do not usually coincide for other models
where a system may have infinite runs but no looping ones. ⊓⊔

4.2 Inevitability

Inevitability means that all runs will eventually stumble into something. We consider a
slightly more general form:

Strong_Inevitability:
Given: a LCM M, an initial configurationσ0, and two semilinear setsX1,X2⊆Conf
of configurations,
Question: do all runs fromσ0 stay withinX1 until they eventually visitX2?
Equivalently: does theCTL formulaA[X1U X2] hold in σ0?

Observe that termination is a special case of strong inevitability (by letting X2 = Halt
def
=

ConfrPre(Conf) be the set of all “dead” configurations, from which no move is pos-
sible).

Theorem 4.4. Strong inevitability is decidable for lossy counter machines.

The reasoning is similar to what we did for termination: First, strong inevitability is
r.e. There remains to see that it is also co-r.e., i.e. that there are finite witnesses for
non-inevitability. So assume that there is a run that violates strong inevitability, that run
is either finite or infinite. If it is finite, it is a finite witness. If it is infinite, then the
LCM has an infinite run that remains insideX1rX2. By the wqo property, there are two
configurationsσi ≤ σ j along this run. By the monotonicity property, there is a looping

run σ0
∗
−→ σi

+
−→ σi . This looping run remains insideX1 rX2 and is the finite witness we

need.
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4.3 Undecidability

The decidability of termination and inevitability is very fragile. We only give two ex-
amples:

Uniform_Termination:
Given: a LCM M,
Question: doesM terminate from all starting configurationsσ ∈ Conf?

Repeated_Inevitability:
Given: a LCM M, an initial configurationσ0, and a semilinear setX ⊆ Conf of
configurations,
Question: do all runs fromσ0 visit X infinitely many times?
Equivalently: does theECTL formulaAF∞X hold in σ0?

Theorem 4.5. Uniform_Termination andRepeated_Inevitability are Π0
1-complete for

lossy counter machines.

For these two problems, membership inΠ0
1 is a consequence of the results we already

saw. Indeed, the complement ofUniform_Termination can be written∃σ,σ′ ∈ Conf :

σ ∗
−→ σ′ +

−→ σ′, or even∃σ ∈ Conf : σ +
−→ σ, which is in Σ0

1, while the complement of

Repeated_Inevitability is ∃ a run σ0
∗
−→ σ +

−→ σ such thatX is not visited along the

σ +
−→ σ loop.Π0

1-hardness is shown as Coro. 7.2 in Section 7.

Corollary 4.6. The set Halt of configurations from which M must terminate cannot be
computed.

Note that, for lossy counter machines,Halt is both downward-closed and an invariant,
and it has a decidable membership problem (Theorem 4.2).

5 Büchi and liveness

Here we consider the following problems:

Buchi:
Given: a LCM M, a configurationσ0, and a locationℓ ∈ Loc,
Question: is there a run starting fromσ0 that visitsℓ infinitely many times?

Looping_on_location:
Given: a LCM M, a configurationσ0, and a locationℓ ∈ Loc,

Question: is there a looping run onℓ, i.e., doesσ0
∗
−→ 〈ℓ,aaa〉

+
−→ 〈ℓ,aaa〉 for someaaa?

At first glance, the situation withBuchi andLooping_on_location appears very sim-
ilar to what we encountered in Section 4. Now, instead of justconsidering the existence
of infinite runs, we ask for infinite runs that visit a givenℓ infinitely many times. Still,
we can adapt Lemma 4.1:
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Lemma 5.1. Buchi andLooping_on_location coincide.

Proof. Obviously,Looping_on_location entailsBuchi. For the reverse direction, as-
sume there exists an infinite run visitingℓ infinitely often:

σ0
∗
−→ 〈ℓ,aaa1〉

+
−→ 〈ℓ,aaa2〉

+
−→ 〈ℓ,aaa3〉

+
−→ ·· ·

By the wqo property, there exists someaaai ≤ aaa j for somei < j. Hence〈ℓ,aaa j〉
+
−→ 〈ℓ,aaa j〉

by the monotonicity property. Finally, we have proven the existence of a run looping on
ℓ. ⊓⊔

From there, we cannot prove decidability by claiming thatBuchi is both r.e. and
co-r.e., as we did for non-termination, It is r.e. since looping on ℓ is. But the absence
of Büchi runs does not have finite witnesses, as the absence ofinfinite runs has. (For
Minsky machines, non-termination isΣ0

1-complete whileBuchi is Σ1
1-complete).

Finally Buchi is undecidable:

Theorem 5.2. Buchi andLooping_on_location are Σ0
1-complete for lossy counter ma-

chines.

For these two equivalent problems, membership inΣ0
1 is clear.Σ0

1-hardness is shown as
Coro. 7.4 in Section 7.

6 Finiteness of the reachability sets

Here we consider the following problems:

Finiteness:
Given: a LCM M and an initial configurationσ0,
Question: is the reachability setPost∗(σ0) finite?
Equivalently: (Boundedness) is there abound B∈N such that|σ| ≤B for all reach-
ableσ?

Unbounded_Run:
Given: a LCM M and a configurationσ0,
Question: is there an infinite run fromσ0 that visits ever larger configurations?
Equivalently: is there a run that visits infinitely many different configurations?

The two problems are complementary since a system is unbounded if, and only if,
it has an unbounded run. To see this, which is not specific to lossy counter machines,
assume thatPost∗(σ0) is infinite. Since every reachable configuration is reachable via a
pure run, i.e., a run that does not visit any configuration twice, we conclude that there
are infinitely many pure runs. By arranging them in a tree and invoking Kőnig’s lemma,
we conclude that there exists an infinite pure run (since all its finite prefixes are pure).
HenceM has an unbounded run.
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6.1 Undecidability

Finiteness is undecidable for LCM’s:

Theorem 6.1. Finiteness is Σ0
1-complete andUnbounded_Run is Π0

1-complete for lossy
counter machines.

When it first surfaced (in [39]), undecidability ofFiniteness was a bit surprising in
a way that is difficult to explain in retrospect. The result isnow well-known and we
give a direct proof in Section 7. Before undecidability was known, there were two lines
of reasoning pointing to a conjecture of decidability: firstly, the fact thatPost∗(σ0)
is regular suggested that one could compute it, and secondly, one expected Karp and
Miller’s procedure to extend to all monotonic systems, inferring an unbounded run from

an increasing prefixσ0
∗
−→ σ1

+
−→ σ2 with σ1 < σ2.

6.2 Uniform finiteness

Uniform finiteness is to finiteness what uniform terminationis to termination:

Uniform_Finiteness:
Given: a LCM M,
Question: are all the reachability setsPost∗(σ) finite?
Equivalently: does every run inM visit only finitely many different configurations?

Mayr showed that uniform finiteness is undecidable for lossycounter machines.
This result is perhaps not surprising in view of the undecidability of finiteness. However
the proof is still delicate since, in the encoding showing hardness, one cannot easily
anchor the considered behaviors on some given natural starting configuration.

Theorem 6.2. Uniform_Finiteness is Π0
2-complete for lossy counter machines.

Here, membership inΠ0
2 is obvious since finiteness is inΣ0

1. ForΠ0
2-hardness, we refer

to Section 7.

7 Proving undecidability

Undecidability, and more generally hardness, results are almost always established by
reductions. This means taking some hard computational problems and encoding it in
LCM’s. This encoding can be tricky since, as we noted, LCM’s are hard to control
because of the possibly adversarial losses. Early undecidability proofs for lossy systems
(e.g. [6, 39, 1]) are sometimes hard to understand and then toadapt to related problems.

In this section we want to explain how the idea of “putting a counter machine on a
budget” can be used as a simple, yet versatile and powerful, gadget allowing easy-to-
understand hardness proofs.
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7.1 Putting counter machines on a budget

With a Minsky counter machineM = (Loc,C,∆) we associate a derived Minsky ma-
chine denotedMon_budget, or Mb for short.

In essence,Mon_budgetis obtained by adding toM an extra “budget” counterB and by
adapting the rules of∆ so that any incrementation (resp. decrementation) in the original
counters is balanced by a corresponding decrementation (resp. incrementation) on the
new counterB. Thus,the sum of the counters remains constantin Mb. This is a classic
idea in Petri nets and counter machines. The construction isdescribed on a schematic
example (Fig. 2) that is more explicit that a formal definition. Observe that extra in-
termediary locations (in gray) are used, and that a step inM that increments someci

will be forbidden inMb when the budget is exhausted (instead,Mb may reach a new,
terminal, bankrupt location).

M

ℓ0

ℓ1

ℓ2

ℓ3

c3=0?

c1--

c2++

4

3

0

c1

c2

c3

⇒

Mon_budget, akaMb

ℓ0

ℓ1

ℓ2

ℓ3

ℓbankrupt

c3=0?

c1--

B++

B--

B=0?

c2++

4

3

0

93

c1

c2

c3

B

Fig. 2.FromM to Mb (schematically).

This construction enjoys a few obvious properties that we now state informally
(formal statements are given in [44]).

MMMbbb simulateMMM: Any reliable run〈ℓ,aaa〉
∗
−→std 〈ℓ

′,aaa′〉 of M can be simulated as some
〈ℓ,B,aaa〉

∗
−→std 〈ℓ

′,B′,aaa′〉 in Mb provided with some large enough budgetB∈ N.
MMMbbb can only simulateMMM: Any reliable run inMb can be seen as a run inM if we forget

about the extra budget counter.
Counters are bounded: A lossy run〈ℓ,aaa〉

∗
−→lossy〈ℓ

′,aaa′〉 in Mb has|aaa′| ≤ |aaa|, i.e., the
total sum of the counters can not increase.

Losses are visible:A lossy run〈ℓ,aaa〉
∗
−→lossy〈ℓ

′,aaa′〉 in Mb is also a reliable run if, and
only if, |aaa| = |aaa′|, i.e., if the total sum of the counters is unchanged (and the run
does not bankrupt).
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7.2 Undecidability of uniform termination

The above properties can be put to use immediately. LetM be some Minsky machine
andσ = 〈ℓ,aaa〉 one of its configurations.

Proposition 7.1. There is a loop〈ℓ,aaa〉
+
−→std 〈ℓ,aaa〉 in M if, and only if, there is a B∈ N

and a loop〈ℓ,B,aaa〉
+
−→lossy〈ℓ,B,aaa〉 in Mb.

Indeed, the loop inM is simulated inMb by taking a large enough budget. And the loop
in Mb must be a reliable run since the total sum of the counters is unchanged, hence it
can be simulated inM.

Now recall that the question whether a Minsky machine has a loopσ +
−→std σ (where

σ is existentially quantified upon) is undecidable, more precisely Σ0
1-complete3.

Corollary 7.2 (Undecidability). Uniform_Termination is Π0
1-hard for lossy counter

machines.

Indeed,Mb has an infinite run (starting from somewhere) if, and only if,it has a loop
(from somewhere). HenceΠ0

1-hardness.

7.3 Undecidability of Büchi acceptance

We now show the undecidability ofBuchi, or equivalently, ofLooping_on_location,
for lossy counter machines. This can be obtained by elaborating on the proof used for
Coro. 7.2 above, but we find it more instructive to present another reduction that can be
adapted for the next section.

Let M be a Minsky machine with a starting locationℓinit and an accepting location
ℓend. With M we associate a new machineM′ obtained as follows (see schematics in
Fig. 3): First we putM on a budget. Then we add two extra locations:ℓ0 whereB can
be given any value, andℓ1 from which we can startM (on a budget). Finally, fromℓend

it is possible to reset all counters to zero and go back toℓ1. This resetting uses theB
(budget) counter to store the total sum the other counters had, using perhaps a few extra
intermediary locations that are of no interest.

Proposition 7.3. M has an accepting run〈ℓinit ,000〉
∗
−→std 〈ℓend,aaa〉 if, and only if, M′ has

a lossy run starting from〈ℓ0,000〉 and visitingℓ1 infinitely many times.

Here, the left-to-right implication is clear: ifM has an accepting run, this can be simu-
lated byM′ after it looped inℓ0 to start with a large enough budget. Once the accepting
run has been completely simulated,M′ can reset the counters, go back toℓ1 and repeat
the simulation infinitely many times.

Reciprocally, ifM′ has a run that visitsℓ1 infinitely many times, this run cannot
increase the total sum of the counters once it has leftℓ0. Hence this total sum can
only decrease or stay constant. If the run is infinite, the total sum will eventually stay

3 This applies even if we do not restrict to configurations that are reachable from a given starting
σ0. I do not have a reference at hand but it is an easy exercise in computability theory.
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ℓ0M′ : ℓ1 Mon_budgetℓinit ℓend

B++ 0

0

0

0

c1

c2

c3

B/* reset counters */

B← c1 + · · ·+cm, c1← 0, . . . , cm← 0

Fig. 3. Reduction for undecidability ofBuchi.

constant. Thus, after some time, the lossy run only has reliable steps. Since it visitsℓ1

(and thus alsoℓinit andℓend) infinitely many times, after some time its reliable steps will
witness an accepting run ofM.

Since the existence of an accepting run isΣ0
1-complete for Minsky machines, we

deduce:

Corollary 7.4 (Undecidability). Buchi is Σ0
1-hard for lossy counter machines.

7.4 Undecidability of finiteness

Our next reduction is a simple adaptation of the previous one(see schematics in Fig. 4).
The modifications are as follows: (1) the resetting of the counters is not reached from
ℓend but from the bankrupt locationℓbankruptthatMb reaches when its budget appears to
be too small (recall Fig. 2), and (2) the initial value ofB cannot be chosen as large as
one wants via a loop onℓ0: instead,B can only be incremented in the step fromℓ1 to
ℓinit .

ℓ0M′′ : ℓ1 Mon_budgetℓinit

ℓend

ℓbankrupt

B++

0

0

0

0

c1

c2

c3

B/* reset counters */

B← c1 + · · ·+cm, c1← 0, . . . , cm← 0

Fig. 4.Reduction for undecidability ofFiniteness.

Proposition 7.5. M has an unbounded (reliable) run starting from〈ℓinit ,000〉 if, and only
if, M ′′ has an unbounded (lossy) run starting from〈ℓ0,000〉.

Here again the left-to-right implication is clear. The unbounded run ofM can be simu-
lated byM′′. This simulation is done in incremental stages. FirstM′′ reachesℓinit with a
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low budgetB = 1. The simulation proceeds until the budget is too low for continuing.
M′′ is then in the bankrupt location, resets its counters and goes back toℓ1. ThereB is
incremented and the simulation can be started from scratch,this time withB= 2. It will
now take more steps before bankrupting, resetting the counters, and starting again with a
larger budget. This simulation will reenact longer and longer prefixes of the unbounded
run ofM, leading to a run ofM′′ that is itself unbounded.

The right-to-left implication is more subtle. AssumeM′′ has an unbounded run.
Necessarily, this run visitsℓ1 infinitely many times since this is the only way to increase
the total sum of the counters. Let us write this unbounded runin the following way,
isolating the places whereℓ1 is visited:

〈ℓ0,000〉
+
−→ 〈ℓ1,aaa1〉

+
−→ 〈ℓ1,aaa2〉

+
−→ 〈ℓ1,aaa3〉

+
−→ ·· ·

Zooming in a little bit on the part between two consecutive visits toℓ1, we see it must
be some subrunπi of the form

〈ℓ1,aaai〉 ≡ 〈ℓ1,Bi ,000〉 −→ 〈ℓinit ,1+Bi ,000〉
∗
−→ 〈ℓbankrupt,B,ccc〉

+
−→ 〈ℓ1,Bi+1,000〉 ≡ 〈ℓ1,aaai+1〉.

Now, Bi+1≤ 1+Bi since “Counters are bounded” and the sequenceB1,B2, . . . can only
increase by 1 at a time. It can also decrease (by losses) but, since the run is unbounded,
it must eventually increase and for everyk ∈ N, there is an indexi such thatBi = k. If
now we assume thatik is the first such index, we deduceBik = 1+Bik−1, hence the run
πik−1 only uses reliable steps (indeed, “Losses are visible”). Reliable steps simulateM,

henceπik−1 witnesses a runπ′k≡ 〈ℓinit ,000〉
+
−→〈ℓ,ccc〉 for someℓ and someccc of sizek. If we

assume thatM is deterministic, these runs are longer and longer prefixes of the infinite
unbounded run ofM. If M is non-deterministic, we use K̋onig’s Lemma to extract an
unbounded run from these ever larger finite runs.

Since the existence of an unbounded run isΠ0
1-complete for Minsky machines, we

deduce:

Corollary 7.6 (Undecidability). Finiteness is Σ0
1-hard for lossy counter machines.

The reduction also shows undecidability for the to-all and all-to-all formulae of the
reachability logic (Section 3.4). For to-all formulae, i.e., formulae of the form∀t ∈Y :
∃s∈ X : s

∗
−→ t, we observe that by takingX = {σ0} andY = {〈ℓ1,k,000〉 | k ∈ N}, the

formula expresses the existence of an unbounded run inM′′. Since in this reductionX
is a singleton, the reduction also works for all-to-all formulae, of the form∀s∈ X : ∀t ∈
Y : s

∗
−→ t.

7.5 Undecidability of uniform finiteness

We further adapt the previous reduction (see schematics in Fig. 5). Now M′′′ has an
extra counterK that is never modified and that is used to store a value with which to
reinitializec1 when looping back toℓ1.

Proposition 7.7. M has an unbounded (reliable) run starting from some〈ℓinit ,c1 : n,000〉
if, and only if, M′′′ has an unbounded (lossy) run starting from someσ.



Lossy Counter Machines Decidability Cheat Sheet 19

ℓ0M′′′ :
ℓ1

ℓ2

Mon_budgetℓinit

ℓend

ℓbankrupt

B++

n 0

0

0

0

K c1

c2

c3

B
/* reset counters */

B← c1 + · · ·+cm, c1← 0, . . . , cm← 0

/* reinit c1 */

c1← K, B← B−K

Fig. 5.Reduction for undecidability ofUniform_Finiteness.

We reason as for the proof of Prop. 7.5, with very minor adaptations.
Again, the left-to-right implication is the easier one. AssumeM has an unbounded

run from〈ℓinit ,n,000〉. This can be simulated byM′′′ starting from〈ℓinit ,B,K : n,c1 : n,000〉,
i.e., after we make sure that the extra counterK contains exactlyn. As with Proposi-
tion 7.5, the simulation proceeds until the budget bankrupts. Then,M′′′ loops back to
ℓ1, where the budget is incremented. and the simulation startsanew. This loop back to
ℓ1 resets the counters withc1 = n, using the memoryK to find the value (truly, a Minsky
machine needs an auxiliary storage for this copy, butc2 can do the job). By visitingℓ1

infinitely many times, this simulation manages to produce anunbounded run ofM′′′.
For the right-to-left implication, we assume thatM′′′ has an unbounded run from

some arbitraryσ. Since the only way to increase the total sum of the counters is to
go throughℓ1, the run must visitℓ1 infinitely many times, and increase the total sum
of the counters by at most one between such visits. Also, since K can only decrease
(by losses) it will eventually stays constant. OnceK is constant (say= n), we have,
for any k ∈ N, a run likeπik−1 above that incrementsB from k− 1 to k, going from
〈ℓinit ,B : k− 1,K : n,c1 : n,000〉 to 〈ℓinit ,k,n,n,000〉. This run only uses reliable steps and
witnesses, inside the Minsky machine, a path〈ℓinit ,n,000〉

∗
−→ 〈ℓ,aaa〉 for someaaa of sizek.

HenceM has an unbounded run from〈ℓinit ,n,000〉.

Since the question whether there exists somen∈N such that a Minsky machine has
an unbounded run starting from〈ℓinit ,n,000〉 is Σ0

2-complete, we deduce:

Corollary 7.8 (Undecidability). Uniform_Finiteness is Π0
2-hard for lossy counter ma-

chines.

The reduction also showsΣ0
2-hardness of the one-to-all formulae of the reachability

logic. These have the form∃s∈X : ∀t ∈Y : s
∗
−→ t. By takingX = Conf andY = {〈ℓ2,B :

k,000〉 | k∈N}, the formula expresses the existence of an unbounded run inM′′′, i.e., the
negation of uniform finiteness.

8 Further developments

We gather in this section a few results, remarks, and pointers to the literature, regarding
problems that are less central in the theory of lossy countermachines as it exists today.
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8.1 Temporal logic model-checking

Temporal logics [22] can express behavioral properties of systems in general, and of
lossy counter machines in particular. It has been observed in the literature on lossy sys-
tems that temporal logic model-checking is generally undecidable (e.g., [6] shows the
undecidability of bothCTLmodel-checking andLTL model-checking for lossy channel
systems). However, as with the reachability logic we considered in Section 3.4, the pic-
ture can be more interesting if we focus on relevant fragments of general logics.

For lossy counter machines, the∃CTL fragment ofCTL has a decidable model-
checking problem. This fragment, also denotedB(EU,EX), is the branching-time logic
built on twoCTL modalitiesEU andEX. Arbitrary nesting and Boolean combinations
are allowed, and we take all the semilinear sets as basic propositions.

Theorem 8.1 (Decidability of∃∃∃CCCTTTLLL model-checking).
1. The problem, given a LCM M, a configurationσ, and an∃CTL formulaϕ, whether
M,σ |= ϕ, is decidable.

2. Moreover, the setMod(ϕ)
def
= {σ ∈ Conf | M,σ |= ϕ} is a semilinear set that can be

computed effectively from M andϕ.

ComputingMod(ϕ) is done by induction over the structure ofϕ. This uses standard
techniques like

Mod(¬ϕ) = ConfrMod(ϕ),

Mod(ϕ∨ψ) = Mod(ϕ)∪Mod(ψ),

Mod(EXϕ) = Pre(Mod(ϕ)),

and relies on the fact that semilinear sets are closed under complementation, union and
thePreoperator, all this in an effective way.

ForMod(EϕUψ), semilinearity is seen after one unfolding of the Until:

Mod(EϕUψ) = Mod(ψ ∨ ϕ∧EXEϕUψ)

= Mod(ψ) ∪ Mod(ϕ)∩Pre(Mod(EϕUψ)).

The last expression denotes a semilinear set sincePre(· · ·) is always semilinear.
The computability ofMod(EϕUψ) can be shown with the same technique we used,

in Section 3.5, for the computability ofPre∗(X). Alternatively, one can use backward-
chaining algorithms whose termination is guaranteed by Dickson’s Lemma (see [9]).

Remark 8.2.The same techniques can be used to enlarge decidability from∃CTL to
some existential fragment of the branching-time mu-calculus, where regular properties
like “ there exists a run along which every even-numbered configuration is in X” can be
stated. See [11, 9]. ⊓⊔

Regarding other temporal modalities, we know that model checking oneAϕUψ
formula is decidable whenMod(ϕ) andMod(ψ) are effectively given semilinear sets
(this is the decidability ofStrong_Inevitability from Section 4.2) but it isnot possible
to computeMod(AϕUψ), nor even (by Coro. 4.6)Mod(AF¬EX⊤).
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As a consequence, nestedAU modalities give undecidable model-checking prob-
lems (e.g., they can easily encode uniform termination).

Model-checking is also undecidable forECTLmodalities likeEF∞ (this is theBuchi

problem from Section 5) andAF∞ (this is repeated inevitability from Section 4.3).

8.2 Games people play on lossy counter machines

Sections 3 to 5 focused on classical reachability, inevitability, or liveness properties,
but one is also interested in more general game-theoreticalproblems where several
opponents have conflicting goals. Branching-time temporallogic is only a first step
toward these new issues.

The question of checking game-theoretical properties of lossy counter machines has
barely been scratched. Obviously, one could expect that undecidability is everywhere
since the properties are more general. One could be wrong.

Let us illustrate this on an example. We consider a reachability game played in
turn by two opponents on a single LCM. Starting fromσ0, Alice tries to reachℓend by
picking the odd-numbered lossy steps of a growing run, whileBob tries to frustrate her
by choosing adversarially the even-numbered lossy steps. The decision problem is:

Reachability_Game:
Given: a LCM M, an initial configurationσ0, and a goal locationℓend.
Question: does Alice have a winning strategy?

Surprisingly, this problem is very easy.

Theorem 8.3. Reachability_Game is PTIME-complete for lossy counter machines.

The paradox is explained when we realize that an optimal strategy for both players
can choose to always lose all the contents of the counters at every step. Indeed, losing
everything can only reduce our opponent’s options (becauseof strong monotonicity). It
also reduces our later options, but anyway the opponent willhave the possibility to lose
everything if it hurts us.

Finally, it is possible to solve the game by restricting to the finite graph of all con-
figurations〈ℓ,000〉 for ℓ ∈ Loc, which isPTIME-complete.

Games on LCM’s can be more interesting. We could decide that Bob can only play
reliable steps. Or that Alice and Bob choose reliable steps while losses in the counters
are chosen probabilistically by the environment, leading to games with 21/2 players.
Or that the objective is more complex than just reachability. Many variations are possi-
ble, motivated by different situations. We refer to [3, 41, 9, 10, 2, 4] for results on such
games.

8.3 Equivalence checking

Comparing two systems is a classic decision problem. In the simplest situations, the
comparison criterion is an equivalence relation, sometimes a preorder.
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When dealing with systems (like LCM’s) that give rise to infinite-state transition
systems, the behavioral equivalences one could use for verification purposes are often
undecidable. The main exception isstrong bisimilaritythat has been shown decidable
in many cases (and undecidable in many other cases) [13].

For lossy counter machines, equivalences are hard. One way to put it is to say that
all interesting relations between lossy counter machines are undecidable, even if we
only consider lossy VAS’s (i.e., lossy counter machines without zero-tests). A proof for
all relations between bisimilarity and trace containment can be obtained (see [42]) by
adapting Jaňcar’s classic proof for Petri nets [30]. The proof certainlyextends, e.g., to
all equivalences between equality of the reachability set and trace containment modulo
invisibility of internal steps.

On the other hand, comparison between a lossy counter machine and afinite transi-
tion systemis very often decidable.

This line of positive results was started by Abdulla and Kindahl [8] with the simu-
lation preorder and the bisimulation equivalence.

It turns out that there is a generic approach to these problems: the question whether
S� F or S≈ F for some finiteF can often be translated as a temporal question, whether
S|= ϕ for some formulaϕ = ϕ�F or ϕ = ϕ≈F , called acharacteristic formula for F, that
states exactly what is required to be� F or ≈ F . We refer to [12, 31, 35] for more
details.

In the special case of lossy counter machines, comparison with finite systems is
decidable for all the equivalences and preorders that admitcharacteristic formulae in
∃CTL. This is a direct corollary of Theorem 8.1. The equivalencesand preorders thus
covered are numerous and include, e.g., weak bisimulation and branching bisimulation.

9 Decidable but hard

Problems that are decidable for lossy counter machines are usually very hard.

9.1 Lower bounds for complexity

Reachability and termination are Ackermann-hard for LCM’s. We refer to [44] for a
recent and simplified proof that uses the same “counter machine on a budget” gadget
that we used in Section 7. Hardness extends, via obvious reductions, to most decidable
problems we listed in the previous sections (one major exception is the reachability
game from Section 8.2).

A finer analysis of the lower bounds shows that the most important parameter here
is thenumber of countersin a lossy counter machine. The hardness proof uses a num-
ber of counters that cannot be boundeda priori. For a fixed number of counters, one
only obtains lower bounds at a finite, primitive-recursive,level in the Fast Growing
Hierarchy, see [44]. This is in accordance with what is knownon upper bounds.



Lossy Counter Machines Decidability Cheat Sheet 23

9.2 Upper bounds

All along this paper, we deliberately avoided giving explicit algorithms for our decid-
ability proofs. However, algorithms exist in the literature. Their termination arguments
usually rely on the wqo property, and more precisely Dickson’s Lemma. From these,
upper bounds can be deduced, based on the length of bad sequences for the(Nn,≤)
wqo [40, 17].

These upper bounds lie in the Fast Growing Hierarchy. The good news is that they
closely match the known lower bounds. In particular, an Ackermann upper bound holds
for most decidable problems on lossy counter machines, and this can be refined to
primitive-recursive upper bounds at various levels when one restricts attention to ma-
chines with a fixed number of counters. We refer to our upcoming paper for more de-
tails [23].

10 Concluding remarks

Lossy counter machines are a paradoxical computational model where unreliability
brings decidability. At the moment, they have mostly been used as a tool for hard-
ness results (undecidability or Ackermann-hardness). They have sometimes been used
under the symmetrical guise of counters with incrementation errors [19].

In a leisurely way, we surveyed the main known results on bothsides of the decid-
ability frontier. From this, two main conclusions emerge:

1. Most decidability results rely only superficially on specific features of lossy
counter machines. They can be obtained by a combination of very general properties
enjoyed by most models (e.g., finitely branching non-determinism, effective one-step
relation, . . . ) and the combination of strong monotonicity of steps with the wqo prop-
erty of configurations. As a consequence, most of our decidability proofs can be easily
adapted to other classes of well-structured transition systems. For example, they hold
mutatis mutandisfor lossy channel systems [7] or Reset Petri nets [20].

2. Most hardness results can be proved with the “machine on a budget” gadget. For
counter systems, this gadget is used in two different ways (pioneered by [21]). It can
bound the total sum of the counters, so that this sum must eventually stabilize along an
infinite behavior, or can only grow in controlled ways. Then,when the sum is stabilized,
the behavior must be reliable and hardness can be inherited from the Turing-powerful
Minsky machines.
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