Revisiting Ackermann-Hardness for Lossy Counter
Machines and Reset Petri Nets*

Ph. Schnoebelen

LSV, ENS Cachan, CNRS
61, av. Pdt. Wilson, F-94230 Cachan, France
wwv. | sv. ens- cachan. fr/ ~phs

Abstract. We prove that coverability and termination are not primitive-recursive
for lossy counter machines and for Reset Petri nets.

1 Introduction

Lossy counter machines [16, 19] and Reset Petri nets [8jxredmputational models
that can be seen as weakened versions of Minsky counter neagchiihis weakness
explains why some problems (e.g., termination) are detedfy these two models,
while they are undecidable for the Turing-powerful Minskgchines.

While these positive results have been used in the literatueee also exists a neg-
ative side that has had much more impact. Indeed, we showgd]rthat decidable
verification problems for lossy channel systems are Ackanvizard and hence cannot
be answered in primitive-recursive time or space. We alsiongld that the construction
used for lossy channels could be adapted for lossy countdrRaset Petri nets.

Hardness Theorem (in the Introduction of [18]). Reachability, termination and cov-
erability for lossy counter machines are Ackermann-hard.
Termination and coverability for Reset Petri nets are Aakann-hard.

These hardness results turned out to be relevant in seviliel areas. Using lossy
counter machines, hardness results relying on the firstdfidatie Hardness Theorem
have been derived for a variety of logics and automata dgalith data words or data
trees [6,7,14,12,20]. Ackermann-hardness has also bemmsly reductions from
Reset and Transfer nets, relying on the second half of thdri¢as Theorem. Examples
can be found in, e.g., [1, 13]. We refer to [3, 4] and the refees therein for hardness
inherited from lossy channel systems.

Our contribution. In this paper we prove the Hardness Theorem with a simplifoed ¢
struction. Compared to [18], we introduce three main sifigaliions:

1. We use counter machines and not channel systems, whicbres direct since the
crux of the construction is the computation of numericaktions.

2. We use a tail-recursive presentation of Eaefunctions from the Fast-Growing Hi-
erarchy. Thus we do not build our counter machines in nestegbs like in [18]. As a

* Work supported by the Agence Nationale de la Recherche, grant AN&=TIN-001.

2 Ph. Schnoebelen

consequence, the correctness of the numerical compwasiatvious and we obtain a

clearer view of how many counters are really used.

3. We do not define, nor compute, inverses offfadunctions as done in [18]. Instead,

the tail-recursive definition is a simple rewrite loop thah@asily be run backwards.
In addition, we strove for extra simplicity. E.g., we use etar machines extended

with simple primitives that make computing Ackermann’sdtion less cumbersome.

There are several reasons for providing a new proof of aneddlt. First, the re-
sults are important and influential as demonstrated by timebeu and the variety of
applications we listed above: they definitely deserve beawisited, polished, adver-
tised, etc. Second, our original proof has already beentaddp yet other computa-
tional models (e.g., in [15]) and a simplified proof will petily be easier to adapt to
further models. Finally, we note that the main contents &f j& now obsolete since
Ackermann-hardness is not optimal for lossy channel sys{&jn However, for lossy
counter machines and Reset nets, the Hardness Theoreninmbfgee [17, 11]) and
will not become obsolete.

Outline of the paperSection 2 defines counter machines, both reliable and |8&sy.
tion 3 builds counter machines that compute Ackermann’stfan. Section 4 puts
Minsky machinen a budgeta gadget that is essential in Section 5 where the main
reduction is given and the hardness of reachability andretwléy for lossy counter
machines is proved. We then show how to deal with reset n&8edtion 6 and how to
prove hardness of termination in Section 7. Some proofs haea omitted for lack of
space: they can be found in the full version of this paper.

2 Counter machines, reliable and lossy

Counter machineare a model of computation where a finite-state control guots &
finite number ofcountersi.e., storage locations that hold a natural number. The-com
putation steps are usually restricted to simple tests addtep. For Minsky machines,
the tests are zero-tests and the updates are incrementsenedngnts.

For our purposes, it will be convenient to use a slightly edtd model that allows
more concise constructions, and that will let us handle Rests smoothly.

2.1 Extended counter machinesand Minsky machines

Formally, anextended counter machine with n counteyfien just called a “counter
machine” (a CM), is a tupl = (Loc,C,A) whereLoc = {/1,...,¢p} is a finite set of
locations C = {c1,...,cn} is a finite set ofcounters andA C Locx OP(C) x Loc is

a finite set of transition rules. The transition rules areictep as directed edges (see
Fig. 1, 2, and 3 below) between control locations labeletl @it instructiorop < OP(C)

that is either ayuard (a condition on the current contents of the counters for titeeto

be firable), or arupdate(a method that modifies the contents of the counters), or. both

Revisiting Ackermann-Hardness for Lossy Counter Machines andtRedri Nets 3

For CM’s, the instruction séDP(C) is given by the following abstract grammar:

OP(C) > op::= c=0? I* zero test */ | c: =0 I* reset */
| c>0?c-- /*decrement*/ | c=c'? [* equality test */
| c++ [* increment */ | c:=c’ I* copy */

wherec, ¢’ are any two counters i@. (We also allow ao_op instruction that does not
test or modify the counters.)

A Minsky machings a CM that only uses instructions among zero tests, decre-
ments and increments (the first three types). Petri nets aoctbAddition Systems
with States (VASS’s) can be seen as counter machines thatusel decrements and
increments (i.e., Minsky machines without zero-tests).

2.2 Operational semantics

The operational semantics of a CM = (Loc,C,A) is given under the form of tran-
sitions between its configurations. Formallyc@nfiguration(written 0,8,...) of M is

a tuple(¢,a) with ¢ € Loc representing the “current” control location, aad N¢, a
C-indexed vector of natural numbers representing the ctuo@ments of the counters.
If Cis some{cy,...,cn}, we often write(¢,a) under the form¢,ay,...,a,). Also, we
sometimes use labels in vectors of values to make them madalée, writing, e.g.,
a=(0,...,0,ck:1,0,...,0).

Regarding the behavior induced by the rules fibrthere is aransition(also called
astep o istd o’ if, and only if, o is some(¢,ay,...,an), 0’ is some(?,a,...,a}),
A>d=(4,0p¢) and either:

—opis c=0? (zero test)a, = 0, anda] = g; foralli=1,...,n, or

—opis cx>0? c- - (decrement)a) = ax — 1, anda; = &; for all i #k, or

—opis ctt (increment)a), = ax+ 1, anda; = &; for all i #k, or

—opis ck: =0 (reset):a, = 0, anda] = &; for all i #k, or

—opis ck=cp? (equality test)a, = ap, anda] = g foralli=1,...,n, or

—opis ck: =cp (copy): &, = ap, anda] = a; for all i # k.

(The steps carry a “std” subscript to emphasize that we arsidering the usual, stan-
dard, operational semantics of counter machines, whereethavior iseliable.)

As usual, we writeo istd o', or justo —gg @', wheno istd o’ for somed € A.
Chainsog —stg 01 —std - - - —std Om Of consecutive steps, also calledhs, are denoted
00 —%gOm, and alswg — &, 0m Wwhenm > 0. Steps may also be written more precisely
under the forrM F 0 — g 0’ When several counter machines are at hand and we want
to be explicit about where the steps take place.

For avecto@a= (ay,...,a,), or a configuratiow = (¢,a), we letja| = |o| =5 1 &
denote itssize For N € N, we say that a ruwy — 01 — --- — O is N-bounded if
|oi| <Nforalli=0,...,n.

2.3 Lossy counter machines

Lossy counter machines are counter machines where thentemtthe counters can
decrease non-deterministically (the machine can “leak”lose data”).

4 Ph. Schnoebelen

Technically, it is more convenient to see lossy machinesaster machines with
a different operational semantics (and not as a specias diasnachines): thus it is
possible to use simultaneously the two semantics and riblete.

Formally, this is defined via the introduction of a partiaflering between the con-
figurations ofM:

12 def

(¢ag,....,a0) < (0 @),....,a,) & (=0Nag<ajA---Nap < &,

0 < d can be read asd‘is ¢’ after some losses (possibly none)”.
Now “lossy” steps, denotelll - o ibssyo’, are given by the following definition:

0 210s5y0 & 30,0/ (0>0102540 A O >0). (+)

Note that reliable steps are a special case of lossy steps:

Mt 0 —sg 0 impliesM - 0 —jossy0’. @)

2.4 Behavioral problemson counter machines
We consider the following decision problems:

Reachability: given a CMM and two configurationsi, andogoay, is there a rumM +
Oini =" Ogoal?

Coverability: given a CMM and two configurationsinj andagoa is there a rumM +
Oini —™ 0 for some configuratiow > 0goa that coverssgga?

(Non-)Termination: given a CMM and a configuratiomj;, is there an infinite run
M Fo-ini _>0'l_>..._>0'n_>...?

These problems are parameterized by the class of countdrimeaove consider and,
more importantly, by the operational semantics that isragesli Recall that reachability
and termination are decidable for lossy counter machirescobunter machines assum-
ing lossy steps [16, 19]. Observe that, for lossy machiregg;hability and coverability
coincide (except for runs of length 0). For the standard seice the same problems
are undecidable for Minsky machines but become decidabMX8S’s and, except for
reachability, for Reset nets (see Section 6).

3 TheFast-Growing Hierarchy

The Fast-Growing Hierarchy{10] turns the class of all primitive-recursive functions
into a strict cumulative hierarchy built from a sequeff&gk-o,1 2.... of number-theoretic
functions. The functionBy : N — N are defined by induction ovére N:

n+1times
def

def -ny1 =T
Fo(n) €'n+1, Fera(n) € R) =R(Rd--Rdn)..)). (D)
This induces (n) = 2n— 1 andF(n) = (n+ 1)2"1 — 1, hencer is not polynomial.
Writing down an expression fdfs(n) needs a tower ofi exponents andrs is non-
elementary. Note that, for atlandn, F«(n+ 1) > R (n) and thatm;1 dominated.

Revisiting Ackermann-Hardness for Lossy Counter Machines andtRedri Nets 5

Eachk is primitive-recursive. A classic result is that every pitiae-recursive func-
tion f : N — N is eventually dominated by sonfg.

It is possible to define a variant of Ackermann’s function lgi@agonalisation pro-

cessAck(n) def Fn(n). TheAckfunction is recursive but it eventually dominates &y

S0 it is not primitive-recursive.

A tail-recursive definition.The functions(F)ken can be defined in a convenient tail-
recursive way via the introduction of a generalized, séedatvectorial’, function F
with two arguments. Formally, for a vectar= (an, . ..,ap) € N™*, we define

F(a;n) = F(am,...,a0;n) EFa(...FA(F2(n))). V)

HenceAck(m) is F(1,0;m), i.e.,F(1,0,...,0;n) with m zeroes, and (D) can be refor-
mulated in vectorial form:

F(O;n)=F(0,...,0;n) =n, (Do)
F(am,...,a0+1;n) =F(am,...,a0;n+1), (D1)

k>0 zeroes k—1 zeroes

— —
F(am,...,a+1,0,...,0;n)=F(am,...,a&,n+1,0,...,0;n). (D2)

Fact 3.1 (Monotonicity) If a<a’ and n< n’ then Ha;n) < F(a';n’).

Reading (B-») as left-to-right rewrite rules turns them into a functibpeogram for
evaluatingF: Write (a;n) A (a;n’) when (D)) or (D) transforms the ternfr(a;n)
into F(a';n’). Clearly,{a;n) LA (a;n’) impliesF (a;n) = F(a';r).

Now, ®, terminates sincéa; n) LA (@’;n'y impliesa >exico @ (recall that the lexico-
graphical ordering is a linear extension<f hence a well-ordering df™1). Further-
more, ifa+# 0, one of the rules among (Pand (D;) can be applied t¢a; n). Hence for

all a andn there exists somg’ such that(a; n) E>*<0;n’>, and them’ = F(a;n) since
F(a;n) andF(0;r'), i.e.,n’, must coincide. (The reverse relatiGn ! terminates too

since, in a stega’;n’) EA ~1(a;n), eithern’ is decreased, or it stays constant and the
number of zeroes i@’ is increased.)

A counter machine evaluating F vectoriallgeing tail-recursive, the vectori&l can be

evaluated via a simple while-loop that implementsﬁaeewriting. Fix a levelme N:

we needn+ 2 counters, one for theargument, andh+ 1 for thea € N™?* argument.
We define a counter machidéayair(M) = (LOCevalr, C, Aevalr), OF Meyair for short,

with C = {ag,a1,...,am,n}. Its rules are defined pictorially in Fig. 1: they implement

D asa loop around a central locatiéfya i, as captured by the following lemma.

Lemma 3.2 (Behavior of Meyair). Foralla,a ¢ N™landnn' € N:
D *

a. If (an) = (@’;n’) then Mvar = (Levair, &, N) — &g (Levalr, @, 1).

b. If Mevair F (Cevair, @,n) — %y (Cevair. @, 1) then K@;n) = F(a';n').

C. If Mevair = (Yevair, @, n) —>i§,ssy (Cevair, @, 1) then Ha;n) > F(a;n).

6 Ph. Schnoebelen

am

Fig. 1. Mevair(m), a counter machine evaluatifigvectorially onN™+1

A counter machine inverting FThe rules (3—D;) can also be used from right to
left. Used this way, theynvert F. This is implemented by another counter machine,
Mbpackr(M) = (LOGyackr, C, Apackr), OF Mpackr for short, defined pictorially in Fig. 2.

Mbpackr implementsg ~1 as a loop around a central locatifipcr, as captured by
Lemma 3.3. Note tha¥l,,cke may deadlock if it makes the wrong guess as whesher
containsn+ 1, but this is not a problem with the construction.

Lemma 3.3 (Behavior of Mpacke). For all @, @ ¢ N™land nn’ € N:
D #

a.lf <a; n> — <a/; n/> then Myackr (Ubackr, a, n/) —std (EbackF, a, n)-

b. If Mpacke - (Ybackr: @ N) — &g (Cbackr, &, 1) then Ha;n) = F(a’;).

C. If Mpackr - (Ubackr @, n) —>|*ossy(£backp, a,n’) then Ka;n) > F(a’;n’).

am

Fig. 2. Mpacke(m), & counter machine invertirfg vectorially onN™ 1

Revisiting Ackermann-Hardness for Lossy Counter Machines andtRedri Nets 7
4 Minsky machines on a budget

With a Minsky machinevl = (Loc,C,A) we associate a Minsky machig®-budget
(Log,,Cp, Ap), calledMP for short. (Note that we are only considering Minsky mackine
here, and not the extended counter machines from earlidosgsg

Mon_budgefis ghtained by adding tM an extra “budget” countes and by adapting
the rules ofA so that any increment (resp. decrement) in the original ievans bal-
anced by a corresponding decrement (resp. increment) oretheounteB, so that the
sum of the counters remains constant. This is a classic ideatri nets. The construc-
tion is described on a schematic example (Fig. 3) that isetehan a formal definition.
Observe that extra intermediary locations (in gray) areluaad that a rule itM that
increments some; will be forbidden inMP when the budget is exhausted.

M Mon_budget akaMb

4)
@ @ [

C3:0? .

- >0? B- - s E’

cqtt+ ?
_ 2 c2>0? co- - 3) _ 2 c2>0? cp- - B++ 3)

Fig. 3. FromM to M (schematically)

We now collect the properties of this construction that Ww#él used later. The fact
that MP faithfully simulatesM is stated in Lemmas 4.2 and 4.3. There and at other
places, the restriction to/;'¢’ € Loc” ensures that we only relate behavior anchored at
the original locations irM (locations that also exist iMP) and not at one of the new
intermediary locations introduced MP.

First, the sum of the countersMP is a numerical invariant (that is only temporarily
disrupted while in the new intermediary locations).

Lemmad4.l. IfMPI- (¢,B,a) —%4(¢,B,a) and(, ¢ € Loc, then Bt |a| =B’ +|a/|.
Observe thamMP can only do whaM would do:
Lemma4.2. IfMP-(¢,B,a) —%4(¢',B,&)and/, ¢’ € Locthen M- (¢,a) —%q (¢, @).

Reciprocally, everything done iy can be mirrored by® provided that a large
enough budget is allowediore precisely:
Lemma4.3. If M - (£,a) —%4 (¢, &) is an N-bounded run of M, then'Mhas an N-

bounded run M- (¢£,B,a) —%4(¢,B, &) for BL'N —|a] and B £'N - |a/|.

8 Ph. Schnoebelen

Now, the point of the construction is th&t? can distinguish between lossy and
non-lossy runs in ways tha cannot. More precisely:

Lemma4.4. Let M (£,B,8) —joss (¢, B, @) with £, ¢’ € Loc. Then M+ (¢,B,8) =4y
(¢,B,&) if, and only if, B+ |a| = B' + |&|.

Proof (ldea).The “(«<)” direction is an immediate consequence of (1).

For the {=-)" direction, we consider the hypothesized IR (¢,B,a) = 09 —lossy
01 —lossy - —lossyOn = (¢, B',@). Coming back to definition+), these lossy steps
require, fori = 1,...,n, some reliable steg_1 —sq 6 With cj_1 > 6;_1 and®; > oj,
and hencég;| > |6;| for i < n. Combining with|6;_1| = |6/| (by Lemma 4.1), an¢bo| =
|on| (from the assumption th&+- |a| = B’ 4 |&'|), proves that all these configurations
have same size. Henée= o; = 6; and the lossy steps are also reliable steps. O

Corollary 4.5. Assume MI- (¢,B,0) —ossy (¢, B',@) with £,¢" € Loc. Then:
1.B>B+|al, and

2. M (¢,0) —%4 (¢',a) if, and only if, B= B’ + |a|. Furthermore, this reliable run of
M is B-bounded.

5 Ackermann-hardnessfor lossy counter machines

We now collect the ingredients that have been developectiptvious sections.

Let M be a Minsky machine with two fixed “initial” and “final” locains 4;,; and
fin. With M and a levelm € N we associate a counter machilEm) obtained by
stringing togetheMeyar(m), MO"-bUd9et and My, (M) and fusing the extra budget
counterB from MO"-budgetyith the accumulaton of Meyair(m) and Mpacke(mM) (these
two share their counters). The construction is depictedgn4=

no_op
s
Mevalr o o[m s (x‘l - N
N AevaIFtZ""- ------- Y, %0 ‘z‘ @ c1 ¥ B
KI\/I N &t E E c2 \vjon_budget
backF . . :
........ : : @
: , - J
N\ Dpackp e) o E k

no_op
Fig. 4. ConstructingV (m) from MP, Meyair andMpacke

Theorem 5.1. The following are equivalent:
1. M(m) has a lossy rutifeyair,2am: 1,0,n: m,0) —lossy® for somed > (lbackr, 1,0,m, 0).
2. MON-PUdeehas a lossy rurflini, B : Ack(m), 0) —jossy (i, Ack(m), 0).

Revisiting Ackermann-Hardness for Lossy Counter Machines andtRedri Nets 9

3. Men_buddehas g reliable run(fini, Ack(m), 0) —%q (¢in, Ack(m), 0).
4. M(m) has a reliable run(4evair, 1,0,m, 0) — %4 (¢backr, 1,0,m, 0).
5. M has a reliable rur(4ini, 0) — %4 (4in, 0) that is Ackm)-bounded.

Proof (Sketch).
— For “1 = 2", and because coverability implies reachability By, (ve may assume
w.l.o.g. thatM(m) has a run4eyalr, 1,0,m,0) —>,*ossy (backr, 1,0,m,0). This run must

go throughM°"-budgetand be in three parts of the following form:

Devalr .
(LevalF; 1,0,m,0) e—alFﬂossy (Cevair,@,n 1 X,0) (starts inMevaiF)
A *
—tossy (linis - - -+ B,0) oy (Lin, -, B/, €) (goes throughvion-budgej
Dpacke * .
—lossy (backr, &, X, ...) bLCKFHossy (lbackr; 1,0,m, 0). (ends inMpackr)

The first part yieldd=(1,0;m) > F(a;x) (by Lemma 3.Z), the third part=(a’;x) >
F(1,0;m) (by Lemma 3.%), and the middle pa > B’ + |¢| (by Coro. 4.51). Lossi-
ness further impliex > B, B’ > X anda > a’. Now, the only way to reconcilE (a;x) <
F(1,0;m) = Ackm) < F(a';x), @ < a, X < x, and the monotonicity of (Fact 3.1)
is by concludingc = B =B’ = X' = Ackm) andc = 0. Then the middle part of the run
witnessedvio"- U9t ((ini, Ackm), 0) —jossy (£fin, ACK(m), 0).

—“2=5"is Coro. 4.52.

—"5= 3"is given by Lemma 4.3.

— "3 = 4" is obtained by stringing together reliable runs of the comgnts, relying
on Lemmas 3.2 and 3.3afor the reliable runs oMeyair aNdMpackr

— Finally “3 = 2" and “4 = 1" are immediate from (). O

With Theorem 5.1, we have a proof of the Hardness Theorenmegwhability and
coverability in lossy counter machines: Recall that, for m®ky machineM, the ex-
istence of a run between two given configurations is undébtigand the existence of
a run bounded byck(m) is decidable but not primitive-recursive whemis part of
the input. Therefore, Theorem 5.1, and in particular theévadgnce between its points
1 and 5, states that our construction reduces a nonpririgiversive problem to the
reachability problem for lossy counter machines.

6 Handling Reset Petri nets

Reset nets [2, 5] are Petri nets extended with special resetteat empty a place when
a transition is fired. They can equally be seen as speciatepmrachines, called “reset
machines”, where actions are restricted to decrementerirtents, and resets. This is
the view we adopt in this papedote that zero-tests are not allowed in reset machines.

It is known that termination and coverability are deciddblereset machines while
other properties like reachability of a given configuratifiniteness of the reachability
set, or recurrent reachability, are undecidable [8, 9].

Our purpose is to prove the Ackermann-hardness of ternoimathd coverability
for reset machines. We start with coverability and refereiction 7 for termination.

10 Ph. Schnoebelen

6.1 R(M): replacing zero-testswith resets

For a counter machin®l, we letR(M) be the counter machine obtained by replacing
every zero-test instructioe=0? with a corresponding reset =0. Note thatR(M) is a
reset machine whel is a Minsky machine.

Clearly, the behavior df1 andR(M) are related in the following way:

Lemma6.1.
1. MF 0 —gg 0’ implies RM) - 0 —q0’.
2. R(M) Fo —std O—/ Imp|IeS ME o —>|053y0_/.

In other words, the reliable behaviorBfM) contains the reliable behavior bf and is
contained in the lossy behavior bfF.
We now consider the counter machiMém) defined in Section 5 and buiR(M(m)).

Theorem 6.2. The following are equivalent:

1. RM(m)) has a reliable runlevair, am : 1,0,n: m,0) — %4 (ébackr; 1,0, m, 0).

2. RIM(m)) has a reliable runeyair, 1,0,m,0) —%,,6 for somed > (¢packr, 1,0,m, 0).
3. M has areliable rur(4ini, 0) — %4 (4in, 0) that is Ackm)-bounded.

Proof. 1= 3: The reliable run irR(M(m)) gives a lossy run iM(m) (Lemma 6.12),
and we conclude usindl=-5" in Theorem 5.1.

3=-2: We obtain areliable run iM(m) (“5=-4" in Theorem 5.1) which gives a reliable
run inR(M(m)) (Lemma 6.11) which in particular witnesses coverability.

2=-1: The covering runifk(M(m)) gives a lossy covering run M(m) (Lemma 6.12),
hence also a lossy run M(m) that reaches exactl{fpackr, 1,0, m,0) (e.g., by losing
whatever is required at the last step). From there we obtagliable run inM(m)
(“1=4"in Theorem 5.1) and then a reliable runRiM(m)) (Lemma 6.11). O

We have thus reduced an Ackermann-hard problem ([®atiove) to a coverability
question (poink above).

This almost proves the Hardness Theorem for coverabilifyd@ret nets, except for
one small ingredientR(M(m)) is not a reset machine properly becabdém) is an
extended counter machine, not a Minsky machine. l.e., weegrdardness for “ex-
tended” reset machines. Before tackling this issue, we tegpbint out that something
as easy as the proof of Theorem 6.2 will prove Ackermann#essl of reset machines
by reusing the hardness of lossy counter machines.

In order to conclude the proof of the Hardness Theorem foeRests, we only
need to provide versions Meyar andMpackr in the form of Minsky machines and
MP already are Minsky machines) and plug these in Figure 4 aedfBm 5.1. This is
an easy and unsurprising exercise that we only tackle inuthgdrsion of this paper.

7 Hardnessfor termination

We can prove hardness for termination by a minor adaptafitieqroof for coverabil-
ity. This adaptation, sketched in Fig. 5, is similar to the aised in [18]. It applies to
both lossy counter machines and reset machines.

Revisiting Ackermann-Hardness for Lossy Counter Machines andtRedri Nets 11

T.=n
Mevalr
AevaIF‘i_—:- k
- ~
0O mtimes A b
—_— N
. o,mo <o ap E E c1 ; M
n-- am>0? 5 add “T>0?T-- " to
1 c2
am- - E’ E’ . each simulation
: : . ofastep oM
Vosor) (5] [| .
AbackF-"-A___“,s'

no_op

Fig. 5. Hardness for termination: A new versionfm)

Basically, MP now uses two copies of the initial budget. One copiworks as
before: its purpose is to ensure thagses will be detected by a budget imbalaasén
Lemma 4.4. The other copy, in a new couriteis a time limit that is initialized with
n and is decremented with every simulated stepMofts purpose is to ensure that the

) . D
newMP always terminates. Sindéeyar andMpacke cannot run forever (because and

D, -1 terminate, see Section 3), we now have a i{m) that always terminate when
started infeyqF and that satisfies the following variant of Theorems 5.1 a@d 6

Theorem 7.1. The following are equivalent:

1. M(m) has a lossy rurievalr, am: 1,0,n: m,0) “lossy® = (Lbackr, 1,0,m, 0).
2. RM(m)) has a reliable run(¢eyair, 1,0,n: m,0) —’|*ossy9 > (lbackr, 1,0,m, 0).
3. M has a reliable rur(/ini, 0) — % (4in, 0) of length at most Adgin).

Finally, we add a series ah+ 1 transitions that leave fromy,ckr, and check that

Ogoal def (backr, 1,0,m,0) is covered, i.e., thaiy, contains at least 1 andat leastm.

If this succeeds, one reaches a new locafigrthe only place where infinite looping is
allowed unconditionallyThis yields a machin®& (m) that has an infinite lossy run if,
and only if, it can reach a configuration that covegga, i.€., if, and only if,M has a
reliable run of length at mogtck(m), which is an Ackermann-hard problem.

8 Concluding remarks

We proved Ackermann-hardness for lossy counter machirgssadth very minor adap-
tations to the proof, for Reset Petri nets. These resultingpertant in the field of al-
gorithmic verification. Indeed, they have been abundaritdcin recent years even
though they were only claimed in the introduction of [18].eTproof we present has
several simplifications over the one that was given in [18]clvannel systems instead
of counter machines. We hope that these improvements wilittge the wider dissem-
ination of these results.

12

Ph. Schnoebelen

Acknowledgement&Ve thank Pierre Chambart and Sylvain Schmitz who greatlydukl
by proof-reading this paper at various stages.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

R. Amadio and Ch. Meyssonnier. On decidability of the control rdaitityaproblem in the
asynchronoustcalculus.Nordic Journal of Computingd(2):70-101, 2002.

T. Araki and T. Kasami. Some decision problems related to the rbditharoblem for Petri
nets. Theoretical Computer Sciencg(1):85-104, 1977.

P. Chambart and Ph. Schnoebelen. The ordinal recursivelexitgpf lossy channel sys-
tems. InProc. LICS 2008pages 205-216. IEEE Comp. Soc. Press, 2008.

P. Chambart and Ph. Schnoebelen. Pumping and counting on th&aRegst Embedding
Problem. InProc. ICALP 2010QLect. Notes Comp. Sci. Springer, 2010.

G. Ciardo. Petri nets with marking-dependent arc cardinality: Ptiegeand analysis. In
Proc. ICATPN '94 volume 815 ol_ect. Notes Comp. Scpages 179-198. Springer, 1994.
S. Demri. Linear-time temporal logics with Presburger constraintovenview. J. Applied
Non-Classical Logics16(3-4):311-347, 2006.

S. Demri and R. Lazi LTL with the freeze quantifier and register automataPioc. LICS
20086 pages 17-26. IEEE Comp. Soc. Press, 2006.

C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets betwexgdatbility and unde-
cidability. In Proc. ICALP '98 volume 1443 ofLect. Notes Comp. Scipages 103-115.
Springer, 1998.

C. Dufourd, P. Jatar, and Ph. Schnoebelen. Boundedness of Reset P/T nBtecliCALP
'99, volume 1644 ot ect. Notes Comp. Secpages 301-310. Springer, 1999.

M. V. Fairtlough and S. S. Wainer. Hierarchies of provably reearfsinctions. InHandbook
of Proof Theoryvolume 137 ofStudies in Logicchapter 3, pages 149-207. North-Holland,
1998.

D. Figueira, S. Figueira, S. Schmitz, and Ph. Schnoebelen. eker and primitive-
recursive upper bounds with Dickson’s lemma. In preparation, 2010

D. Figueira and L. Segoufin. Future-looking logics on data wordgraes. InProc. MFCS
2009 volume 5734 ot_ect. Notes Comp. Scpages 331-343. Springer, 2009.

A. Finkel, J.-F. Raskin, M. Samuelides, and L. Van Begin. Moniotertensions of Petri
nets: Forward and backward search revisited.Ptac. INFINITY 2002 volume 68(6) of
Electronic Notes in Theoretical Computer Scignuages 121-144, 2003.

M. Jurdziski and R. La4i. Alternation-free modal mu-calculus for data treesPtoc. LICS
2007, pages 131-140. IEEE Comp. Soc. Press, 2007.

T. Jurdziski. Leftist grammars are nonprimitive recursive. Aroc. ICALP 2008 volume
5126 ofLect. Notes Comp. Scpages 51-62. Springer, 2008.

R. Mayr. Undecidable problems in unreliable computatidimoretical Computer Science
297(1-3):337-354, 2003.

K. McAloon. Petri nets and large finite sefBheoretical Computer Sciencg2(1-2):173—
183, 1984.

Ph. Schnoebelen. Verifying lossy channel systems has nongamétursive complexity.
Information Processing Letter83(5):251-261, 2002.

Ph. Schnoebelen. Lossy counter machines decidability cheatlste®c. RP 2010volume
6227 ofLect. Notes Comp. S&pringer, 2010.

T. Tan. On pebble automata for data languages with decidable enspiiiodgem. InProc.
MFCS 2009volume 5734 ot.ect. Notes Comp. Sgpages 712—723. Springer, 2009.

