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Abstract. We prove that coverability and termination are not primitive-recursive
for lossy counter machines and for Reset Petri nets.

1 Introduction

Lossy counter machines [16, 19] and Reset Petri nets [8] are two computational models
that can be seen as weakened versions of Minsky counter machines. This weakness
explains why some problems (e.g., termination) are decidable for these two models,
while they are undecidable for the Turing-powerful Minsky machines.

While these positive results have been used in the literature, there also exists a neg-
ative side that has had much more impact. Indeed, we showed in[18] that decidable
verification problems for lossy channel systems are Ackermann-hard and hence cannot
be answered in primitive-recursive time or space. We also claimed that the construction
used for lossy channels could be adapted for lossy counters and Reset Petri nets.

Hardness Theorem (in the Introduction of [18]). Reachability, termination and cov-
erability for lossy counter machines are Ackermann-hard.
Termination and coverability for Reset Petri nets are Ackermann-hard.

These hardness results turned out to be relevant in several other areas. Using lossy
counter machines, hardness results relying on the first halfof the Hardness Theorem
have been derived for a variety of logics and automata dealing with data words or data
trees [6, 7, 14, 12, 20]. Ackermann-hardness has also been shown by reductions from
Reset and Transfer nets, relying on the second half of the Hardness Theorem. Examples
can be found in, e.g., [1, 13]. We refer to [3, 4] and the references therein for hardness
inherited from lossy channel systems.

Our contribution. In this paper we prove the Hardness Theorem with a simplified con-
struction. Compared to [18], we introduce three main simplifications:
1. We use counter machines and not channel systems, which is more direct since the
crux of the construction is the computation of numerical functions.
2. We use a tail-recursive presentation of theFm functions from the Fast-Growing Hi-
erarchy. Thus we do not build our counter machines in nested stages like in [18]. As a
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consequence, the correctness of the numerical computations is obvious and we obtain a
clearer view of how many counters are really used.
3. We do not define, nor compute, inverses of theFm functions as done in [18]. Instead,
the tail-recursive definition is a simple rewrite loop that can easily be run backwards.

In addition, we strove for extra simplicity. E.g., we use counter machines extended
with simple primitives that make computing Ackermann’s function less cumbersome.

There are several reasons for providing a new proof of an old result. First, the re-
sults are important and influential as demonstrated by the number and the variety of
applications we listed above: they definitely deserve beingrevisited, polished, adver-
tised, etc. Second, our original proof has already been adapted to yet other computa-
tional models (e.g., in [15]) and a simplified proof will probably be easier to adapt to
further models. Finally, we note that the main contents of [18] is now obsolete since
Ackermann-hardness is not optimal for lossy channel systems [3]. However, for lossy
counter machines and Reset nets, the Hardness Theorem is optimal (see [17, 11]) and
will not become obsolete.

Outline of the paper.Section 2 defines counter machines, both reliable and lossy.Sec-
tion 3 builds counter machines that compute Ackermann’s function. Section 4 puts
Minsky machineson a budget, a gadget that is essential in Section 5 where the main
reduction is given and the hardness of reachability and coverability for lossy counter
machines is proved. We then show how to deal with reset nets inSection 6 and how to
prove hardness of termination in Section 7. Some proofs havebeen omitted for lack of
space: they can be found in the full version of this paper.

2 Counter machines, reliable and lossy

Counter machinesare a model of computation where a finite-state control acts upon a
finite number ofcounters, i.e., storage locations that hold a natural number. The com-
putation steps are usually restricted to simple tests and updates. For Minsky machines,
the tests are zero-tests and the updates are increments and decrements.

For our purposes, it will be convenient to use a slightly extended model that allows
more concise constructions, and that will let us handle Reset nets smoothly.

2.1 Extended counter machines and Minsky machines

Formally, anextended counter machine with n counters, often just called a “counter
machine” (a CM), is a tupleM = (Loc,C,∆) whereLoc= {ℓ1, . . . , ℓp} is a finite set of
locations, C = {c1, . . . ,cn} is a finite set ofcounters, and∆ ⊆ Loc×OP(C)×Loc is
a finite set of transition rules. The transition rules are depicted as directed edges (see
Fig. 1, 2, and 3 below) between control locations labeled with an instructionop∈OP(C)
that is either aguard (a condition on the current contents of the counters for the rule to
be firable), or anupdate(a method that modifies the contents of the counters), or both.
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For CM’s, the instruction setOP(C) is given by the following abstract grammar:

OP(C) ∋ op ::= c=0? /* zero test */ | c:=0 /* reset */

| c>0?c-- /* decrement */ | c=c′? /* equality test */

| c++ /* increment */ | c:=c′ /* copy */

wherec,c′ are any two counters inC. (We also allow ano_op instruction that does not
test or modify the counters.)

A Minsky machineis a CM that only uses instructions among zero tests, decre-
ments and increments (the first three types). Petri nets and Vector Addition Systems
with States (VASS’s) can be seen as counter machines that only use decrements and
increments (i.e., Minsky machines without zero-tests).

2.2 Operational semantics

The operational semantics of a CMM = (Loc,C,∆) is given under the form of tran-
sitions between its configurations. Formally, aconfiguration(written σ,θ, . . .) of M is
a tuple(ℓ,aaa) with ℓ ∈ Loc representing the “current” control location, andaaa ∈ N

C, a
C-indexed vector of natural numbers representing the current contents of the counters.
If C is some{c1, . . . ,cn}, we often write(ℓ,aaa) under the form(ℓ,a1, . . . ,an). Also, we
sometimes use labels in vectors of values to make them more readable, writing, e.g.,
aaa = (0, . . . ,0,ck : 1,0, . . . ,0).

Regarding the behavior induced by the rules from∆, there is atransition(also called

a step) σ δ
−→std σ′ if, and only if, σ is some(ℓ,a1, . . . ,an), σ′ is some(ℓ′,a′1, . . . ,a

′
n),

∆ ∋ δ = (ℓ,op, ℓ′) and either:
– op is ck=0? (zero test):ak = 0, anda′i = ai for all i = 1, . . . ,n, or
– op is ck>0?ck-- (decrement):a′k = ak−1, anda′i = ai for all i 6= k, or
– op is ck++ (increment):a′k = ak +1, anda′i = ai for all i 6= k, or
– op is ck:=0 (reset):a′k = 0, anda′i = ai for all i 6= k, or
– op is ck=cp? (equality test):ak = ap, anda′i = ai for all i = 1, . . . ,n, or
– op is ck:=cp (copy):a′k = ap, anda′i = ai for all i 6= k.
(The steps carry a “std” subscript to emphasize that we are considering the usual, stan-
dard, operational semantics of counter machines, where thebehavior isreliable.)

As usual, we writeσ ∆
−→std σ′, or just σ −→std σ′, whenσ δ

−→std σ′ for someδ ∈ ∆.
Chainsσ0 −→std σ1 −→std · · · −→std σm of consecutive steps, also calledruns, are denoted
σ0 −→

∗
std σm, and alsoσ0 −→

+
std σm whenm> 0. Steps may also be written more precisely

under the formM ⊢ σ −→std σ′ when several counter machines are at hand and we want
to be explicit about where the steps take place.

For a vectoraaa= (a1, . . . ,an), or a configurationσ = (ℓ,aaa), we let|aaa|= |σ|= ∑n
i=1ai

denote itssize. For N ∈ N, we say that a runσ0 −→ σ1 −→ ·· · −→ σm is N-bounded if
|σi | ≤ N for all i = 0, . . . ,n.

2.3 Lossy counter machines

Lossy counter machines are counter machines where the contents of the counters can
decrease non-deterministically (the machine can “leak”, or “lose data”).
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Technically, it is more convenient to see lossy machines as counter machines with
a different operational semantics (and not as a special class of machines): thus it is
possible to use simultaneously the two semantics and relatethem.

Formally, this is defined via the introduction of a partial ordering between the con-
figurations ofM:

(ℓ,a1, ...,an) ≤ (ℓ′,a′1, ...,a
′
n)

def
⇔ ℓ = ℓ′∧a1 ≤ a′1∧·· ·∧an ≤ a′n.

σ ≤ σ′ can be read as “σ is σ′ after some losses (possibly none)”.

Now “lossy” steps, denotedM ⊢ σ δ
−→lossyσ′, are given by the following definition:

σ δ
−→lossyσ′ def

⇔ ∃θ,θ′ : (σ ≥ θ ∧ θ δ
−→std θ′ ∧ θ′ ≥ σ′). (∗)

Note that reliable steps are a special case of lossy steps:

M ⊢ σ −→std σ′ impliesM ⊢ σ −→lossyσ′. (†)

2.4 Behavioral problems on counter machines

We consider the following decision problems:

Reachability: given a CMM and two configurationsσini andσgoal, is there a runM ⊢
σini −→

∗ σgoal?
Coverability: given a CMM and two configurationsσini andσgoal, is there a runM ⊢

σini −→
∗ σ for some configurationσ ≥ σgoal that coversσgoal?

(Non-)Termination: given a CMM and a configurationσini , is there an infinite run
M ⊢ σini −→ σ1 −→ ·· · −→ σn −→ ·· ·?

These problems are parameterized by the class of counter machines we consider and,
more importantly, by the operational semantics that is assumed. Recall that reachability
and termination are decidable for lossy counter machines, i.e., counter machines assum-
ing lossy steps [16, 19]. Observe that, for lossy machines, reachability and coverability
coincide (except for runs of length 0). For the standard semantics, the same problems
are undecidable for Minsky machines but become decidable for VASS’s and, except for
reachability, for Reset nets (see Section 6).

3 The Fast-Growing Hierarchy

The Fast-Growing Hierarchy[10] turns the class of all primitive-recursive functions
into a strict cumulative hierarchy built from a sequence(Fk)k=0,1,2,... of number-theoretic
functions. The functionsFk : N → N are defined by induction overk∈ N:

F0(n)
def
= n+1, Fk+1(n)

def
= Fn+1

k (n) =

n+1 times
︷ ︸︸ ︷

Fk(Fk(. . .Fk(n) . . .)). (D)

This inducesF1(n) = 2n−1 andF2(n) = (n+1)2n+1−1, henceF2 is not polynomial.
Writing down an expression forF3(n) needs a tower ofn exponents andF3 is non-
elementary. Note that, for allk andn, Fk(n+1) > Fk(n) and thatFk+1 dominatesFk.
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EachFk is primitive-recursive. A classic result is that every primitive-recursive func-
tion f : N → N is eventually dominated by someFk.

It is possible to define a variant of Ackermann’s function by adiagonalisation pro-

cess:Ack(n)
def
= Fn(n). TheAck function is recursive but it eventually dominates anyFk,

so it is not primitive-recursive.

A tail-recursive definition.The functions(Fk)k∈N can be defined in a convenient tail-
recursive way via the introduction of a generalized, so-called “vectorial”, function F
with two arguments. Formally, for a vectoraaa = (am, . . . ,a0) ∈ N

m+1, we define

F(aaa;n) = F(am, . . . ,a0;n)
def
= Fam

m (. . .Fa1
1 (Fa0

0 (n))). (V)

HenceAck(m) is F(1,000;m), i.e.,F(1,0, . . . ,0;n) with m zeroes, and (D) can be refor-
mulated in vectorial form:

F(000;n) = F(0, . . . ,0;n) = n, (D0)

F(am, . . . ,a0 +1;n) = F(am, . . . ,a0;n+1), (D1)

F(am, . . . ,ak +1,

k>0 zeroes
︷ ︸︸ ︷

0, . . . ,0 ;n) = F(am, . . . ,ak,n+1,

k−1 zeroes
︷ ︸︸ ︷

0, . . . ,0 ;n). (D2)

Fact 3.1 (Monotonicity) If aaa≤ aaa′ and n≤ n′ then F(aaa;n) ≤ F(aaa′;n′).

Reading (D0–2) as left-to-right rewrite rules turns them into a functional program for

evaluatingF : Write 〈aaa;n〉
D
−→ 〈aaa′;n′〉 when (D1) or (D2) transforms the termF(aaa;n)

into F(aaa′;n′). Clearly,〈aaa;n〉
D
−→ 〈aaa′;n′〉 impliesF(aaa;n) = F(aaa′;n′).

Now,
D
−→ terminates since〈aaa;n〉

D
−→ 〈aaa′;n′〉 impliesaaa>lexico aaa′ (recall that the lexico-

graphical ordering is a linear extension of≤, hence a well-ordering ofNm+1). Further-
more, ifaaa 6= 000, one of the rules among (D1) and (D2) can be applied to〈aaa;n〉. Hence for

all aaa andn there exists somen′ such that〈aaa;n〉
D
−→ ∗〈000;n′〉, and thenn′ = F(aaa;n) since

F(aaa;n) andF(000;n′), i.e.,n′, must coincide. (The reverse relation
D
−→ −1 terminates too

since, in a step〈aaa′;n′〉
D
−→ −1〈aaa;n〉, eithern′ is decreased, or it stays constant and the

number of zeroes inaaa′ is increased.)

A counter machine evaluating F vectorially.Being tail-recursive, the vectorialF can be

evaluated via a simple while-loop that implements the
D
−→ rewriting. Fix a levelm∈ N:

we needm+2 counters, one for then argument, andm+1 for theaaa∈ N
m+1 argument.

We define a counter machineMevalF(m) = (LocevalF,C,∆evalF), or MevalF for short,
with C = {a0,a1, ...,am,n}. Its rules are defined pictorially in Fig. 1: they implement
D
−→ as a loop around a central locationℓevalF, as captured by the following lemma.

Lemma 3.2 (Behavior of MevalF). For all aaa,aaa′ ∈ N
m+1 and n,n′ ∈ N:

a. If 〈aaa;n〉
D
−→ 〈aaa′;n′〉 then MevalF⊢ (ℓevalF,aaa,n) −→∗

std (ℓevalF,aaa′,n′).
b. If MevalF⊢ (ℓevalF,aaa,n) −→∗

std (ℓevalF,aaa′,n′) then F(aaa;n) = F(aaa′;n′).
c. If MevalF⊢ (ℓevalF,aaa,n) −→∗

lossy(ℓevalF,aaa′,n′) then F(aaa;n) ≥ F(aaa′;n′).
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ℓevalF ℓ1 ℓ′1 ℓ′′1 ℓ′′′1

ℓ2 ℓ′2 ℓ′′2 ℓ′′′2

· · · · · ·· · ·

ℓm ℓ′m ℓ′′m ℓ′′′m

r

a0>0?

a0--
n++

am=0?

a0=0?

a1=0?

a2=0?

am−1=0?

a1>0?a1-- a0:=n a0++

a2>0?a2-- a1:=n a1++

am>0?am-- am−1:=n am−1++

...

n

a0

a1

am

Fig. 1. MevalF(m), a counter machine evaluatingF vectorially onN
m+1

A counter machine inverting F.The rules (D0–D2) can also be used from right to
left. Used this way, theyinvert F. This is implemented by another counter machine,
MbackF(m) = (LocbackF,C,∆backF), or MbackF for short, defined pictorially in Fig. 2.

MbackF implements
D
−→ −1 as a loop around a central locationℓbackF, as captured by

Lemma 3.3. Note thatMbackF may deadlock if it makes the wrong guess as whetherai

containsn+1, but this is not a problem with the construction.

Lemma 3.3 (Behavior of MbackF). For all aaa,aaa′ ∈ N
m+1 and n,n′ ∈ N:

a. If 〈aaa;n〉
D
−→ 〈aaa′;n′〉 then MbackF⊢ (ℓbackF,aaa′,n′) −→∗

std (ℓbackF,aaa,n).
b. If MbackF⊢ (ℓbackF,aaa,n) −→∗

std (ℓbackF,aaa′,n′) then F(aaa;n) = F(aaa′;n′).
c. If MbackF⊢ (ℓbackF,aaa,n) −→∗

lossy(ℓbackF,aaa′,n′) then F(aaa;n) ≥ F(aaa′;n′).

...

n

a0

a1

am
· · ·

· · ·

· · ·

ℓbackF
n>0?

n--

a0++ a1++ a2++ am++

a0:=0 a1:=0 am−1:=0

a0>0?
a0--

a0=n?

a1>0?
a1--

a1=n?

am−1>0?
am−1--

am−1=n?

a0=0?
Vm−2

i=1 ai=0?

a0=0?

Fig. 2. MbackF(m), a counter machine invertingF vectorially onN
m+1
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4 Minsky machines on a budget

With a Minsky machineM = (Loc,C,∆) we associate a Minsky machineMon_budget=
(Locb,Cb,∆b), calledMb for short. (Note that we are only considering Minsky machines
here, and not the extended counter machines from earlier sections.)

Mon_budgetis obtained by adding toM an extra “budget” counterB and by adapting
the rules of∆ so that any increment (resp. decrement) in the original counters is bal-
anced by a corresponding decrement (resp. increment) on thenew counterB, so that the
sum of the counters remains constant. This is a classic idea in Petri nets. The construc-
tion is described on a schematic example (Fig. 3) that is clearer than a formal definition.
Observe that extra intermediary locations (in gray) are used, and that a rule inM that
increments someci will be forbidden inMb when the budget is exhausted.

M

ℓ0

ℓ1

ℓ2 ℓ3

c3=0?

c1++

c2>0?c2--

4

3

0

c1

c2

c3 ⇒

Mon_budget, akaMb

ℓ0

ℓ1

ℓ2 ℓ3

c3=0?

B>0?B--

c1++

c2>0?c2-- B++

4

3

0

93 c1

c2

c3

B

Fig. 3. FromM to Mb (schematically)

We now collect the properties of this construction that willbe used later. The fact
that Mb faithfully simulatesM is stated in Lemmas 4.2 and 4.3. There and at other
places, the restriction to “ℓ,ℓ′ ∈ Loc” ensures that we only relate behavior anchored at
the original locations inM (locations that also exist inMb) and not at one of the new
intermediary locations introduced inMb.

First, the sum of the counters inMb is a numerical invariant (that is only temporarily
disrupted while in the new intermediary locations).

Lemma 4.1. If Mb ⊢ (ℓ,B,aaa) −→∗
std (ℓ′,B′,aaa′) andℓ,ℓ′ ∈ Loc, then B+ |aaa| = B′ + |aaa′|.

Observe thatMb can only do whatM would do:

Lemma 4.2. If Mb⊢ (ℓ,B,aaa)−→∗
std(ℓ′,B′,aaa′) andℓ,ℓ′ ∈Loc then M⊢ (ℓ,aaa)−→∗

std(ℓ′,aaa′).

Reciprocally, everything done byM can be mirrored byMb provided that a large
enough budget is allowed. More precisely:

Lemma 4.3. If M ⊢ (ℓ,aaa) −→∗
std (ℓ′,aaa′) is an N-bounded run of M, then Mb has an N-

bounded run Mb ⊢ (ℓ,B,aaa) −→∗
std (ℓ′,B′,aaa′) for B

def
= N−|aaa| and B′

def
= N−|aaa′|.
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Now, the point of the construction is thatMb can distinguish between lossy and
non-lossy runs in ways thatM cannot. More precisely:

Lemma 4.4. Let Mb⊢ (ℓ,B,aaa)−→∗
lossy(ℓ

′,B′,aaa′) with ℓ,ℓ′ ∈Loc. Then Mb⊢ (ℓ,B,aaa)−→∗
std

(ℓ′,B′,aaa′) if, and only if, B+ |aaa| = B′ + |aaa′|.

Proof (Idea).The “(⇐)” direction is an immediate consequence of (†).
For the “(⇒)” direction, we consider the hypothesized runMb ⊢ (ℓ,B,aaa) = σ0 −→lossy

σ1 −→lossy · · · −→lossy σn = (ℓ′,B′,aaa′). Coming back to definition (∗), these lossy steps
require, fori = 1, . . . ,n, some reliable stepsθi−1 −→std θ′i with σi−1 ≥ θi−1 andθ′i ≥ σi ,
and hence|θ′i | ≥ |θi | for i < n. Combining with|θi−1|= |θ′i | (by Lemma 4.1), and|σ0|=
|σn| (from the assumption thatB+ |aaa| = B′ + |aaa′|), proves that all these configurations
have same size. Henceθ′i = σi = θi and the lossy steps are also reliable steps. ⊓⊔

Corollary 4.5. Assume Mb ⊢ (ℓ,B,000) −→∗
lossy(ℓ

′,B′,aaa) with ℓ,ℓ′ ∈ Loc. Then:
1. B≥ B′ + |aaa|, and
2. M ⊢ (ℓ,000) −→∗

std (ℓ′,aaa) if, and only if, B= B′ + |aaa|. Furthermore, this reliable run of
M is B-bounded.

5 Ackermann-hardness for lossy counter machines

We now collect the ingredients that have been developed in the previous sections.
Let M be a Minsky machine with two fixed “initial” and “final” locationsℓini and

ℓfin. With M and a levelm∈ N we associate a counter machineM(m) obtained by
stringing togetherMevalF(m), Mon_budget, andMbackF(m) and fusing the extra budget
counterB from Mon_budgetwith the accumulatorn of MevalF(m) andMbackF(m) (these
two share their counters). The construction is depicted in Fig. 4.

MevalF

MbackF
Mon_budget

ℓini

ℓfin

m

0

0

0

0
...

...

01

n

a0

a1

am

B

c1

c2

ck

ℓevalF

ℓbackF

∆evalF

∆backF

no_op

no_op

Fig. 4. ConstructingM(m) from Mb, MevalF andMbackF

Theorem 5.1. The following are equivalent:
1. M(m) has a lossy run(ℓevalF,am : 1,000,n : m,000)−→∗

lossyθ for someθ≥ (ℓbackF,1,000,m,000).

2. Mon_budgethas a lossy run(ℓini ,B : Ack(m),000) −→∗
lossy(ℓfin,Ack(m),000).
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3. Mon_budgethas a reliable run(ℓini ,Ack(m),000) −→∗
std (ℓfin,Ack(m),000).

4. M(m) has a reliable run(ℓevalF,1,000,m,000) −→∗
std (ℓbackF,1,000,m,000).

5. M has a reliable run(ℓini ,000) −→∗
std (ℓfin,000) that is Ack(m)-bounded.

Proof (Sketch).
— For “1⇒ 2”, and because coverability implies reachability by (∗), we may assume
w.l.o.g. thatM(m) has a run(ℓevalF,1,000,m,000) −→∗

lossy (ℓbackF,1,000,m,000). This run must

go throughMon_budgetand be in three parts of the following form:

(ℓevalF,1,000,m,000)
∆evalF−−−→

∗

lossy(ℓevalF,aaa,n : x,000) (starts inMevalF)

−→lossy(ℓini , . . . ,B,000)
∆b−→

∗

lossy(ℓfin, . . . ,B
′,ccc) (goes throughMon_budget)

−→lossy(ℓbackF,aaa
′,x′, . . .)

∆backF−−−→
∗

lossy(ℓbackF,1,000,m,000). (ends inMbackF)

The first part yieldsF(1,000;m) ≥ F(aaa;x) (by Lemma 3.2.c), the third partF(aaa′;x′) ≥
F(1,000;m) (by Lemma 3.3.c), and the middle partB≥ B′ + |ccc| (by Coro. 4.5.1). Lossi-
ness further impliesx≥ B, B′ ≥ x′ andaaa≥ aaa′. Now, the only way to reconcileF(aaa;x)≤
F(1,000;m) = Ack(m) ≤ F(aaa′;x′), aaa′ ≤ aaa, x′ ≤ x, and the monotonicity ofF (Fact 3.1)
is by concludingx = B = B′ = x′ = Ack(m) andccc = 000. Then the middle part of the run
witnessesMon_budget⊢ (ℓini ,Ack(m),000) −→∗

lossy(ℓfin,Ack(m),000).
— “2⇒ 5” is Coro. 4.5.2.
— “5⇒ 3” is given by Lemma 4.3.
— “3 ⇒ 4” is obtained by stringing together reliable runs of the components, relying
on Lemmas 3.2.a and 3.3.a for the reliable runs ofMevalF andMbackF.
— Finally “3⇒ 2” and “4⇒ 1” are immediate from (†). ⊓⊔

With Theorem 5.1, we have a proof of the Hardness Theorem for reachability and
coverability in lossy counter machines: Recall that, for a Minsky machineM, the ex-
istence of a run between two given configurations is undecidable, and the existence of
a run bounded byAck(m) is decidable but not primitive-recursive whenm is part of
the input. Therefore, Theorem 5.1, and in particular the equivalence between its points
1 and 5, states that our construction reduces a nonprimitive-recursive problem to the
reachability problem for lossy counter machines.

6 Handling Reset Petri nets

Reset nets [2, 5] are Petri nets extended with special reset arcs that empty a place when
a transition is fired. They can equally be seen as special counter machines, called “reset
machines”, where actions are restricted to decrements, increments, and resets. This is
the view we adopt in this paper.Note that zero-tests are not allowed in reset machines.

It is known that termination and coverability are decidablefor reset machines while
other properties like reachability of a given configuration, finiteness of the reachability
set, or recurrent reachability, are undecidable [8, 9].

Our purpose is to prove the Ackermann-hardness of termination and coverability
for reset machines. We start with coverability and refer to section 7 for termination.
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6.1 R(M): replacing zero-tests with resets

For a counter machineM, we letR(M) be the counter machine obtained by replacing
every zero-test instructionc=0? with a corresponding resetc:=0. Note thatR(M) is a
reset machine whenM is a Minsky machine.

Clearly, the behavior ofM andR(M) are related in the following way:

Lemma 6.1.
1. M⊢ σ −→std σ′ implies R(M) ⊢ σ −→std σ′.
2. R(M) ⊢ σ −→std σ′ implies M⊢ σ −→lossyσ′.

In other words, the reliable behavior ofR(M) contains the reliable behavior ofM and is
contained in the lossy behavior ofM.

We now consider the counter machineM(m) defined in Section 5 and buildR(M(m)).

Theorem 6.2. The following are equivalent:
1. R(M(m)) has a reliable run(ℓevalF,am : 1,000,n : m,000) −→∗

std (ℓbackF,1,000,m,000).
2. R(M(m)) has a reliable run(ℓevalF,1,000,m,000)−→∗

std θ for someθ ≥ (ℓbackF,1,000,m,000).
3. M has a reliable run(ℓini ,000) −→∗

std (ℓfin,000) that is Ack(m)-bounded.

Proof. 1⇒ 3: The reliable run inR(M(m)) gives a lossy run inM(m) (Lemma 6.1.2),
and we conclude using “1⇒5” in Theorem 5.1.
3⇒ 2: We obtain a reliable run inM(m) (“5⇒4” in Theorem 5.1) which gives a reliable
run inR(M(m)) (Lemma 6.1.1) which in particular witnesses coverability.
2⇒ 1: The covering run inR(M(m)) gives a lossy covering run inM(m) (Lemma 6.1.2),
hence also a lossy run inM(m) that reaches exactly(ℓbackF,1,000,m,000) (e.g., by losing
whatever is required at the last step). From there we obtain areliable run inM(m)
(“1⇒4” in Theorem 5.1) and then a reliable run inR(M(m)) (Lemma 6.1.1). ⊓⊔

We have thus reduced an Ackermann-hard problem (point3 above) to a coverability
question (point2 above).

This almost proves the Hardness Theorem for coverability inReset nets, except for
one small ingredient:R(M(m)) is not a reset machine properly becauseM(m) is an
extended counter machine, not a Minsky machine. I.e., we proved hardness for “ex-
tended” reset machines. Before tackling this issue, we wantto point out that something
as easy as the proof of Theorem 6.2 will prove Ackermann-hardness of reset machines
by reusing the hardness of lossy counter machines.

In order to conclude the proof of the Hardness Theorem for Reset nets, we only
need to provide versions ofMevalF andMbackF in the form of Minsky machines (M and
Mb already are Minsky machines) and plug these in Figure 4 and Theorem 5.1. This is
an easy and unsurprising exercise that we only tackle in the full version of this paper.

7 Hardness for termination

We can prove hardness for termination by a minor adaptation of the proof for coverabil-
ity. This adaptation, sketched in Fig. 5, is similar to the one used in [18]. It applies to
both lossy counter machines and reset machines.
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Fig. 5. Hardness for termination: A new version ofM(m)

Basically,Mb now uses two copies of the initial budget. One copy inB works as
before: its purpose is to ensure thatlosses will be detected by a budget imbalanceas in
Lemma 4.4. The other copy, in a new counterT, is a time limit that is initialized with
n and is decremented with every simulated step ofM: its purpose is to ensure that the

newMb always terminates. SinceMevalF andMbackF cannot run forever (because
D
−→ and

D
−→ −1 terminate, see Section 3), we now have a newM(m) that always terminate when
started inℓevalF and that satisfies the following variant of Theorems 5.1 and 6.2:

Theorem 7.1. The following are equivalent:
1. M(m) has a lossy run(ℓevalF,am : 1,000,n : m,000) −→∗

lossyθ ≥ (ℓbackF,1,000,m,000).
2. R(M(m)) has a reliable run(ℓevalF,1,000,n : m,000) −→∗

lossyθ ≥ (ℓbackF,1,000,m,000).
3. M has a reliable run(ℓini ,000) −→∗

std (ℓfin,000) of length at most Ack(m).

Finally, we add a series ofm+ 1 transitions that leave fromℓbackF, and check that

σgoal
def
= (ℓbackF,1,000,m,000) is covered, i.e., thatam contains at least 1 andn at leastm.

If this succeeds, one reaches a new locationℓω, the only place where infinite looping is
allowed unconditionally. This yields a machineM(m) that has an infinite lossy run if,
and only if, it can reach a configuration that coversσgoal, i.e., if, and only if,M has a
reliable run of length at mostAck(m), which is an Ackermann-hard problem.

8 Concluding remarks

We proved Ackermann-hardness for lossy counter machines and, with very minor adap-
tations to the proof, for Reset Petri nets. These results areimportant in the field of al-
gorithmic verification. Indeed, they have been abundantly cited in recent years even
though they were only claimed in the introduction of [18]. The proof we present has
several simplifications over the one that was given in [18] for channel systems instead
of counter machines. We hope that these improvements will facilitate the wider dissem-
ination of these results.
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