
ON THE OPTIMAL REACHABILITY
PROBLEM IN WEIGHTED TIMED

AUTOMATA AND GAMES

Patricia Bouyer

LSV, CNRS & ENS Cachan, France
bouyer@lsv.ens-cachan.fr

Abstract
In these notes, we survey works made on the models of weighted timed automata and games,
and more specifically on the optimal reachability problem.

1 Introduction

In thirty years computerized systems have widely spread in our society, from ubiquitous elec-
tronic appliances (communication devices, automotive equipment, etc), to internet transactions
(e-banking, e-business, etc), to new technologies (like wireless communications), and to critical
systems (medical devices, industrial plants, etc). Due to their rapid development, such systems
have become more and more complex, and unfortunately this development has come with many
bugs, from arithmetic overflow (which caused the crash of the Ariane 5 rocket in 1996) to race
conditions (which caused the lethal dysfunction of the Therac-25 radiotherapy machine in the
late 80’s) or infinite loops (for instance the leap-year bug turning all Zune MP3 devices off on
31 December 2008). Many of those bugs could have been avoided if implemented softwares
had been formally verified prior to their use. The need for formal methods for verifying and
certifying computer-driven systems is therefore blatant.

Toward the development of more reliable computerized systems, several verification approaches
have been developed, among which the so-called model-checking technique. Model-checking
is a model-based approach to verification, which goes back to the late seventies [45, 31, 46].
Given a system S and a property P , the model-checking approach consists in constructing a
mathematical model MS for the system and a mathematical model ϕP for the property, for
which we will be able to automatically check that MS satisfies ϕP . If the models MS and ϕP
are accurate enough with respect to S and P respectively, we will deduce with confidence that
the system S satisfies the property P . This approach requires the development of expressive
modelling formalisms (to increase faithfulness of models) and efficient algorithms.

These last twenty years a huge effort has been made to design expressive models for representing
computerized systems. As part of this effort the model of timed automata has been proposed

2 Patricia Bouyer

in the early nineties [4, 5], as a powerful and suitable model to reason about (the correct-
ness of) real-time computerized systems. Timed automata extend finite-state automata with
several clocks, which can be used to enforce timing constraints between various events in the
system. They provide a convenient formalism and enjoy reasonably-efficient algorithms (e.g.
reachability can be decided using polynomial space), which explains the enormous interest that
they provoked in the community of formal methods. Timed games [8] extend timed automata
with a way of modelling systems interacting with external, uncontrollable components: some
transitions of the automaton cannot be forced or prevented to happen. The reachability prob-
lem then asks whether there is a strategy to reach a given state, whatever the uncontrollable
components do. This problem can also be decided, in exponential time.

Timed automata and games are not powerful enough for representing quantities like resources,
prices, temperature, etc. The more general model of hybrid automata [3, 2, 37, 38] (see [47] for
a survey) allows for accurate modelling of such quantities using hybrid variables. The evolution
of these variables follow differential equations, depending on the state of the system, and this
unfortunately makes the reachability problem undecidable [38], even in the restricted case of
stopwatches, which are clocks that can be stopped and restarted.

Weighted (or priced) timed automata [6, 9] and games [42, 1, 17] have been proposed in the early
2000’s as an intermediary model for modelling resource consumption or allocation problems
in real-time systems (eg optimal scheduling [11]). As opposed to (linear) hybrid systems,
an execution in a weighted timed model is simply one in the underlying timed model: the extra
quantitative information is just an observer of the system, and it does not modify the possible
behaviours of the system. Figure 4 displays an example of a weighted timed game: each location
carries an integer, which is the rate by which the weight (we will also call it cost thereafter)
increases when time elapses in that location. Some edges also carry a weight, which indicates
how much the cost increases when crossing this edge. The cost of an execution is then the
accumulated sum of the costs of all individual moves along the execution, and this cost value
is a quantitative measure of the quality of the execution. Dashed edges are uncontrollable, and
cannot be forced or prevented to occur; they appear in timed games only. Notice that the
constraints on edges never depend on the value of the cost, but only on the values of the clocks.

In these notes, we investigate the optimal reachability problem in weighted timed automata
and games: given a target location, we want to know what is the optimal (i.e. smallest) cost for
reaching the target location, and what is a corresponding strategy? We will survey the main
results that have been obtained on that problem. We will start with a motivating example
(Section 2). In Section 3, we will focus on the automaton model, state the main decidability
result, and give a glimpse of the new abstraction that may be used in this context. In Section 4,
we will overview most of the results which have been obtained on this problem; we will also
give some details on some of the technics that have been used. We will then show how we can
use the models studied in this paper to model the initial motivating example (Section 5).

ON THE OPTIMAL REACHABILITY PROBLEM IN WEIGHTED TIMED AUTOMATA AND GAMES3

2 An example: The task graph scheduling problem

In this section, we give an example of problem, that we will be able to model and solve using
the developments presented in this paper.

We want to compute the following arithmetical expression:

D×(C×(A+B))+(A+B)+(C×D)

using two processors, whose characteristics are given in Figure 1.

P1 (fast):

time
+ 2 picoseconds
× 3 picoseconds

energy
idle 10 Watt

in use 90 Watts

P2 (slow):

time
+ 5 picoseconds
× 7 picoseconds

energy
idle 20 Watts

in use 30 Watts

Figure 1: Characteristics of the two processors

+
T1

×
T2

×
T3

+
T4

×
T5

+
T6

BA DC

C

D

Figure 2: The task graph

The task graph giving the logical dependencies of the various atomic tasks that need to be done
for computing the arithmetical expression is depicted on Figure 2. It reads as follows: Task T3
corresponds to the outermost multiplication in sub-expression C×(A+B). It requires first the
addition A+B to be computed, which is why the gate T3 has two inputs: C and the output of
T1 (implying that T1 needs to be computed prior to T3).

There are many possible schedules that satisfy the logical dependencies given by the task graph,
and allow to compute the global arithmetical expression, three of them are given on Figure 3.
Two of their characteristics are summarized (time of execution and energy consumption).

The theory we will describe in these notes will allow to model this system, and compute time-
optimal, as well as cost-optimal, schedules. We will come back to this example in Section 5.

4 Patricia Bouyer

0 5 10 15 20 25

P2

P1

S
ch

1 T2 T3 T5 T6

T1 T4

13 picoseconds
1.37 nanojoules

P2

P1

S
ch

2 T1

T2

T3 T4T5 T6
12 picoseconds

1.39 nanojoules

P2

P1

S
ch

3 T1

T2

T3 T4

T5 T6

19 picoseconds
1.32 nanojoules

Figure 3: Three possible schedules and their characteristics

3 Optimal reachability in weighted timed automata

3.1 Weighted timed automata

In this section we introduce the weighted (also named priced) timed automaton model, that
has been proposed in 2001 for representing resource consumption in real-time systems [6, 9]

We consider as time domain the set R>0 of non-negative reals. We let X be a finite set of
variables, called clocks. A (clock) valuation over X is a mapping v : X → R>0 that assigns to
each clock a time value. The set of all valuations over X is denoted RX

>0. Let t ∈ R>0, the
valuation v + t is defined by (v + t)(x) = v(x) + t for every x ∈ X. For Y ⊆ X, we denote by
[Y ← 0]v the valuation assigning 0 (respectively v(x)) to every x ∈ Y (respectively x ∈ X \Y).
We write 0X for the valuation which assigns 0 to every clock x ∈ X.

The set of clock constraints over X, denoted C(X), is defined by the grammar:

g ::= x ∼ c | g ∧ g

where x ∈ X is a clock, c ∈ N, and ∼ ∈ {<,6,=,>, >}.

Clock constraints are evaluated over clock valuations, and the satisfaction relation, denoted
v |= g, is defined inductively by v |= (x ∼ c) whenever v(x) ∼ c, and v |= g1 ∧ g2 whenever
v |= g1 and v |= g2.

Definition 3.1. A weighted (or priced) timed automaton is a tuple A = (X,L, `0,Goal, E, cost)
where X is a finite set of clocks, L is a finite set of locations, `0 ∈ L is the initial location,
Goal ⊆ L is a set of goal (or final) locations, E ⊆ L × C(X) × 2X × L is a finite set of edges
(or transitions), and cost : L∪E → N is a cost function which assigns a value to each location
and to each transition. The cost (function) cost is said stopwatch whenever cost(L) ⊆ {0, 1}
and cost(E) = {0}.

ON THE OPTIMAL REACHABILITY PROBLEM IN WEIGHTED TIMED AUTOMATA AND GAMES5

In the above definition, if we forget about the cost function, we obtain the well-known model of
timed automata [4, 5]. The semantics of a weighted timed automaton is that of the underlying
timed automaton, and the role of the cost function will be to give a quantitative information
to the moves and the executions in the system.

We therefore start by recalling the semantics of a timed automaton A = (X,L, `0,Goal, E).
It is given as a timed transition system TA = (S, s0,→) where S = L × RX

>0 is the set of
configurations (or states) of A, s0 = (`0,0X) is the initial configuration, and → contains two
types of moves:

• delay moves: (`, v)
t−→ (`, v + t) if t ∈ R>0;

• discrete moves: (`, v)
e−→ (`′, v′) if there exists an edge e = (`, g, Y, `′) in E such that v |= g,

v′ = [Y ← 0]v.

A run % in A is a finite or infinite sequence of moves in the transition system TA, with a
strict alternation of delay moves (though possibly 0-delay moves) and discrete moves. In the

following, we may write a run % = s
t1−→ s′1

e1−→ s1
t2−→ s′2

e2−→ s2 . . . more compactly as % = s
t1,e1−−→

s1
t2,e2−−→ s2 A transition of the form s

t,e−→ s′ will be called a mixed move. If % is a finite
run which ends in some s = (`, v) with ` ∈ Goal, we say that % is accepting. If s ∈ S is a
configuration, we write Runs(A, s) (respectively Runsf(A, s), Runsaccf (A, s)) the set of infinite
(respectively finite, finite accepting) runs that start in s.

In the following we will assume timed automata are non-blocking, that is, from every reachable
configuration s, there exists some delay t and some edge e, there exists some configuration s′

such that s
t,e−→ s′ is a mixed move of A.

We can now give the semantics of a weighted timed automaton A = (X,L, `0,Goal, E, cost).
The value cost(`) given to location ` represents a cost rate, and delaying t time units in a
location ` will then cost ‘t ·cost(`)’. The value cost(e) given to edge e represents the cost of
taking that edge. Formally, the cost of the two types of moves in a weighted timed automaton
is defined as follows:1 cost

(
(`, v)

t−→ (`, v + t)
)

= t · cost(`)

cost
(

(`, v)
e−→ (`′, v′)

)
= cost(e)

A run % of a weighted timed automaton is a run of the underlying timed automaton, i.e., a
finite or infinite sequence of moves in the transition system (with a strict alternation of delay
and discrete moves). The cost of %, denoted cost(%), is the sum of the costs of all the simple
moves along %.

Example 3.2. We consider the weighted timed automaton A depicted on Figure 4, where
we do not distiguish between dashed and plain edges for the moment. When relevant (i.e.,
when the cost is non-null), we decorate each location with a value (like 5 for location `0), that

1Note that we overload the notation cost, which designs both the cost assigned to a transition or a location
in a weighted timed automaton, and the cost assigned to a move in the transition system. It will also be used
to represent the cost of an execution.

6 Patricia Bouyer

`0

5

`1

`2

10

`3

1

-
x62, y:=0

e1

e2
y=

0

e3
y=0

x=2
+1w2

x=2
+7w3

Figure 4: A first small example

represents the cost rate in that location, and we decorate each edge with a value (like +7 for
edge w3), that represents the discrete cost of taking that edge. A possible run in A is:

% = (`0, 0)
0.1−→ (`0, 0.1)

e1−→ (`1, 0.1)
e3−→ (`3, 0.1)

1.9−→ (`3, 2)
w3−→ (,, 2)

The cost of % is cost(%) = 5 · 0.1 + 1 · 1.9 + 7 = 9.4 (the cost per time unit is 5 in `0, 1 in `3,
and the cost of transition w3 is 7).

3.2 Optimization problems

Unlike hybrid systems, in weighted timed automata, cost variables do not constrain the be-
haviours of the system, but are ‘observer variables’ : they give a quantitative information on
the quality (or performance) of an execution, but cannot impact on the possible executions.
Several optimization criteria can then be thought of, like the optimal cost for reaching some
goal in the system, or the optimal mean-cost that can be achieved along infinite executions
of the system. These optimization problems are relevant for instance in scheduling problems,
where the cost evolution can be viewed as resource consumption.

In this subsection we give an overview of the decidability and complexity results for the two
optimization problems we have mentioned. In the next subsection we will give a rough idea
why these results hold.

3.2.1 The optimal cost problem

Intuitively, the optimal cost problem asks what is the optimal cost for reaching the goal locations
in a weighted timed automaton. We assume A = (X,L, `0,Goal, E, cost) is a weighted timed
automaton. The optimal cost for reaching goal locations in A is defined as:

opt costA = inf{cost(%) | % ∈ Runsaccf (A, s0)}

By extension when we will speak of the complexity, we will mean the complexity of the cor-
responding decision problem, which asks, given a threshold c ∈ Q>0, whether opt costA 6 c.
If ε > 0, a run % ∈ Runsf(A, s0) is an ε-optimal schedule in A if opt costA 6 cost(%) 6
opt costA + ε.

ON THE OPTIMAL REACHABILITY PROBLEM IN WEIGHTED TIMED AUTOMATA AND GAMES7

Example 3.3. We consider the weighted timed automaton of Example 3.2 (page 5). There
are basically two choices that can be made: (i) when edge e1 is fired, and (ii) go through `2
or through `3. Writing t for the value of clock x when e1 is fired, the accumulated cost along
plays of the game is either 5t+ 10(2− t) + 1 (through `2) or 5t+ (2− t) + 7 (through `3). The
optimal cost is thus inft62 min(5t+ 10(2− t) + 1, 5t+ (2− t) + 7) = 9, and the optimal time for
firing transition e1 is when t = 0. Then, the best choice is to go through `3.

In this context, the first problem which has been solved already in the early nineties is the
optimal time problem, where the cost represents the time that has elapsed (the cost rates in
locations are equal to 1 — they increase at the same speed as the time — and discrete costs of
transitions are set to 0): the problem then amounts to computing the optimal time for reaching
one of the distinguished goal locations in a timed automaton.

Theorem 3.4 ([33]). The optimal time in timed automata is computable in exponential time.

Applying the further results (theorem 3.6) on weighted timed automata, we can refine this
result, and computing the optimal time in timed automata can actually be solved in polynomial
space. Moreover, we can prove that the corresponding decision problem is indeed PSPACE-
complete (if there is an answer to the reachability problem, we can bound the duration of a
witness run by an exponential, and then answering positively to the decision problem for that
upper bound duration is equivalent to answering the reachability question, which is known to
be PSPACE-hard).

Almost ten years after this first result, the general optimal cost optimal problem in weighted
timed automata has been formulated and solved independently in [6] and in [9].

Theorem 3.5 ([6, 9]). The optimal cost in weighted timed automata is computable (in expo-
nential time).

The algorithm developed in [6] is based on an extension of the classical region automaton,
and yields an EXPTIME upper bound, whereas the algorithm developed in [9] is based on
well-quasi-orders and gives no good information on the complexity of the problem.

Few years later, the precise complexity of that problem has been settled.

Theorem 3.6 ([13]). The optimal cost problem in weighted timed automata is PSPACE-complete.
Furthermore, for every ε > 0, ε-optimal schedules can be computed.

Remark 3.7. Note that the above result also holds when the costs of locations on transitions
are taken in Z = N ∪ −N, the set of integers.

y

3.2.2 The optimal mean-cost problem

The optimal mean-cost problem asks what is the optimal cost per time unit (mean-cost) that
can be achieved (or approximated) in a weighted timed automaton. To define the most general

8 Patricia Bouyer

mean-cost problem, we assume that A is a weighted timed automaton with two cost functions,
say cost and reward (A = (X,L, `0,Goal, E, cost, reward). Then, the optimal mean-cost of A
with respect to cost and reward is formally defined as:

opt costωA = inf{mean cost(%) | % ∈ Runs(A, s0)}

where mean cost(%) is defined as lim inf
n→+∞

cost(%n)

reward(%n)
(%n is the prefix of length n of %). We use

the ‘lim inf’ operator because the limit might not be properly defined. A particular case is when
the reward corresponds to the time elapsed, in which case the value mean cost(%) is the mean
cost per time unit along run %. If ε > 0, a run % ∈ Runs(A, s0) is an ε-optimal schedule in A if
opt costωA 6 mean cost(%) 6 opt costωA + ε. The following result has been proven:

Theorem 3.8 ([15, 16]). Under some restrictions for the reward function, the optimal mean-
cost problem is PSPACE-complete in weighted timed automata. Furthermore, for every ε > 0,
ε-optimal schedules can be computed.

The restrictions mentioned in the above theorem assume the function reward be strictly non-
Zeno, i.e., along any cycle of the region automaton, the reward increases by some positive
lower-bounded amount. If we consider the time elapsed instead of a general reward-function,
this amounts to the classical strongly non-Zeno hypothesis, that is for instance made in [8].

Note that this hypothesis is required to get the above result, as a counter-example to the
algorithm has been exhibited, when this hypothesis is not satisfied, see Example 3.9.

0/0 0/0 11/1 0/0y>0,y:=0

3/2

x=1,x:=0

0/0

y=1,y:=0

0/0

x=1,x:=0

0/0

Figure 5: A counter-example (to the algorithm) when the reward is not strictly non-Zeno

Example 3.9. We consider the weighted timed automaton depicted on Figure 5. We write
α/β to indicate the cost and reward of the locations and the edges. We can notice that the
reward is not strongly non-Zeno, because of the right-most cycle.

In this automaton, for every (infinite) run %, mean cost(%) = +∞, whereas the algorithm (based
on the corner-point abstraction, see next subsection) computes 2.

3.3 The corner-point abstraction

The two decidability results mentioned in the previous subsection can be proven using a refine-
ment of the classical region abstraction construction [4, 5], which is the basic tool for proving
the decidability of many timed models like timed automata. A region is a set of valuations
which are time-abstract bisimilar: it means that if v and v′ are two valuations belonging to the

ON THE OPTIMAL REACHABILITY PROBLEM IN WEIGHTED TIMED AUTOMATA AND GAMES9

same region, for every location `, similar behaviours will be possible from (`, v) and (`, v′). For
the readers not familiar with this construction, we refer to [12, Chap. 2.3] for a presentation of
this classical construction, which uses notations and drawings similar to the current notes.

We first notice that regions are not suitable for computing optimal (mean-)costs because costs
of region-equivalent trajectories may have pretty different costs. For example, the cost of run
% given in Example 3.2 is 9.4 whereas the cost of the (region-equivalent) run delaying 0.9 time
units in `0 and then 2.1 time units in `3 is 13.6. However we are not interested in computing
the costs of all possible runs, but rather to compute extremal (i.e., minimal and/or maximal)
cost values. The idea is then to record the cost of moving through extremal points of the
regions (those points which have integral coordinates). These points are called corner-points,
and will annotate regions. We build a graph, called the corner-point abstraction, which refines
the classical region automaton, and whose states are tuples (`, R, α) where ` is a location of
the original automaton, R is a region, and α is a corner-point of R. There will be a (delay)
transition between (`, R, α) and (`, R′, α′) either when R = R′ and α′ is a (strict) successor of
α, or when R′ is the next successor of R (in the region graph) and α′ = α is a corner of both R
and R′. There will be a (switch) transition between (`, R, α) and (`′, R′, α′) when (`′, R′) is the
region successor of (`, R) by the reset of the transition, and α′ is the image of α by the same
reset. Intuitively, being in state (`, R, α) of this graph will mean that we are in location `, in
region R, close to the extremal point α; And moving from one state to another through a delay
transition means letting time elapse and be close to the designated corners. This construction
is illustrated and explained with some more intuition in Example 3.10.

Example 3.10. We illustrate the notion of corner-points in a two-dimensional clock space.
We assume the reader is familiar enough with the classical region construction of [4, 5], or
refer to [12, Chap. 2.3] for a description of this classical construction, which uses notations
and drawings similar to the current notes. Classical evolution of regions can be schematized
as in Figure 6: when time elapses, regions are visited following time successors (the immediate
successor of a triangular region is a flat region while the immediate successor of a flat region
is a triangular region), and when firing transitions, clocks may be reset, and regions are then
somehow projected into regions of smaller dimensions.

The corner-point abstraction refines the region abstraction and is depicted in Figure 6. Corners
decorating regions are indicated with a black bold dot. We consider the top-left-most region
(R,α) of the figure decorated with the corner in the bottom. When time elapses, it is trans-
formed into the top corner of the same region which is almost one time unit later: thus, as the
cost rate in the current location is supposed to be 3 per time unit, the cost of this move will
be set to 3. The next move is to enter the next region (which is flat) but to stay close to the
same corner: the cost is thus almost 0 (because almost no time has elapsed), that is why we
label the move by 0. And so on. For discrete moves, regions are transformed as usual, and cor-
ners are also projected (the projection preserves the property of extremal points of polyhedra).
Transitions are then labelled with the cost of the transition (7 in our example).

Given a weighted timed automaton A, we write CP(A) for its corner-point abstraction. The
result is a weighted finite graph (whose cost functions will also be denoted cost and reward), in
which it will be possible to solve the (mean-)cost optimality problems [32, 41, 50].

10 Patricia Bouyer

delay transition

discrete transition which resets yy

x

(a) The region abstraction

(R,α)

3
0 0

0

0 0
3

7

7

delay transition
(cost rate 3)

discrete transition which resets y

(discrete cost 7)

(b) The corner-point abstraction

Figure 6: Region vs corner-point abstraction

An important property of this graph is that, given a finite run % : (`0, v0) → (`1, v1) → . . . →
(`n, vn) in A, there exist two finite paths π : (`0, R0, α0) → (`1, R1, α1) → . . . → (`n, Rn, αn)
and π′ : (`0, R0, α

′
0)→ (`1, R1, α

′
1)→ . . .→ (`n, Rn, α

′
n) in CP(A) such that vi ∈ Ri for every i,

αi and α′i are corners of Ri, and cost(π) 6 cost(%) 6 cost(π′). Conversely, for every finite path
π : (`0, R0, α0)→ (`1, R1, α1)→ . . .→ (`n, Rn, αn) in CP(A), for every ε > 0, we can construct
a real run % : (`0, v0)→ (`1, v1)→ . . .→ (`n, vn) in A such that for every index i, vi ∈ Ri, and
|cost(%)− cost(π)| < ε.

There is thus a strong relation between finite runs in A and finite paths in CP(A). Computing
the optimal cost for reaching a given goal in A reduces to computing the optimal cost for
reaching a distinguished set of states in the discrete weighted graph CP(A).

The case of optimal mean-cost needs some more work, the corner-point abstraction can nonethe-
less be used to compute it. We first recall that in a finite weighted graph, the optimal mean-cost
can be computed as the mean cost of a reachable (simple) cycle that minimizes that value [41] —
we call such a cycle an optimal cycle. Then, we prove that the mean-cost of an infinite run
in A cannot be any better than the optimal cycle in CP(A). This can be proven by taking
longer and longer prefixes of an infinite run %, and at the limit, the ratio will always be larger
than the mean-cost of the optimal cycle in CP(A). Write %n for the prefix of length n of %.
Applying the previous result on finite runs, we can construct a finite path πn in CP(A) such
that cost(πn) 6 cost(%n). We can decompose πn into cycles as schematically depicted on Fig-

ON THE OPTIMAL REACHABILITY PROBLEM IN WEIGHTED TIMED AUTOMATA AND GAMES11

ure 7. The linear part of πn is cycle-free, hence has a bounded length, and its cost will somehow

πn:

cycle-free

cycle appearing in πn

Figure 7: Decomposition of a long path in CP(A)

become negligible when n tends to +∞. The mean-cost of every cycle is no better than the
optimal cycle of CP(A). Hence, at the limit, the mean-cost of % will not be better than the
mean-cost of the optimal cycle in CP(A). Conversely, paths in the corner-point abstraction can
be approximated by real runs in the original automaton with costs and rewards that are very
close to the one in the corner-point abstraction. The construction is presented in details in [16].

The size of the corner-point abstraction is exponential in the size of the original automaton (a
region R has at most |X| corner-points, where X is the set of clocks of the automaton), i.e.,
as is the size of the region automaton. Using non-determinism, we can guess optimal paths
(respectively cycles) in CP(A), without first computing the full graph. This non-deterministic
algorithm uses polynomial space, hence the PSPACE upper bound for the two optimization
problems. The PSPACE lower bound can be easily obtained by reduction to the reachability
problem in timed automata, for appropriate cost functions.

3.4 Partial conclusion and related work

In this section, we have presented the decidability results for two basic optimization problems
on weighted timed automata. This is really encouraging because the theoretical complexity of
these problems is the same as standard reachability in timed automata.

In the context of (non-weighted) timed automata, regions are not used in implementations,
but a symbolic approach based on zones is preferred and implemented. Similarly, a symbolic
approach for the optimal reachability problem based on priced zones, an extension of standard
zones, has been proposed [43]. The paper [10] reports algorithms and applications of the tool
Uppaal-Cora,2 which is based on this approach. Also, when several cost variables are defined,
it is possible to compute Pareto-optimal points [44]. On the contrary, the optimal mean-cost
is not implemented yet, since no good data structures have been developed. This is however a
very challenging (and non-trivial) line of research.

We should emphasize that the corner-point abstraction is a very interesting abstraction, which
has further been used for solving other optimization problems, like the time-discounted cost

2http://www.cs.aau.dk/~behrmann/cora/publications.html

http://www.cs.aau.dk/~behrmann/cora/publications.html

12 Patricia Bouyer

optimal problem [34] (this extends the classical discounted payoff that we can find in the game
theory literature [50]).

Finally, let us notice that even though one can compute the optimal (mean-)cost in weighted
timed automata, only almost-optimal schedules can be synthesized. The corner-point abtrac-
tions does not allow to compute an optimal schedule, nor to decide that one exists.

4 Optimal reachability in weighted timed games

We have seen the optimal cost and the optimal mean-cost were both computable in weighted
timed automata in polynomial space. This is really encouraging to consider more involved
problems. In this section, we consider the very similar problems, but no more in the context of
closed systems, as in the previous section, but in the context of open systems. An open system
somehow models an interaction between the system itself and the environment it is embedded
in. As often this is modelled as games [49] and we will use some terminology from game theory.

4.1 Weighted timed games

A weighted timed game G = (X,L, `0,Goal, E, cost) is a weighted timed automaton in which
edges are decoupled into controllable edges played by the controller (set Ec ⊆ E) and uncon-
trollable edges played by the environment (set Ee ⊆ E). W.l.o.g. we assume Goal locations are
sink locations with cost 0 per time unit, and a loop on each of the locations with cost 0.

A (controller) strategy in G from the initial state s0 = (`0,0X) is a partial function f that
associates to a finite run % ∈ Runsf(G, s0) a pair (d, e) ∈ R>0×Ec such that edge e can be taken
after delaying d time units after %; it describes the next move to be done after %. A strategy
f is said memoryless if for all runs %, %′ ∈ Runsf(G, s0), last(%) = last(%′) implies f(%) = f(%′).
Memoryless strategies are somehow ‘simple’ strategies that do not take past into account to
make the next decision.

A run % = s0
t1,e1−−→ s1

t2,e2−−→ s2 . . . is compatible with a strategy f whenever for every i, either
(ti+1, ei+1) = f(%≤i),

3 or ti+1 ≤ t and ei+1 ∈ Ee where f(%≤i) = (t, e). That way, a strategy
f defines a set of (maximal) plays denoted playsG(f). The strategy f is winning (for the
reachability goal) if all (maximal) plays of playsG(f) end up in Goal.

The classical reachability game problem asks, given a timed game G, whether there is a winning
controller strategy for the reachability goal. Classical reachability games have been consid-
ered in the context of timed systems in the nineties, and deciding those games is EXPTIME-
complete [8, 36]. For those games, memoryless region-uniform (that is, the same edge is given
by the strategy within a region) strategies are sufficient.

3%≤i is the prefix of length i of %: %≤i = s0
t1,e1−−−→ . . .

ti,ei−−−→ si.

ON THE OPTIMAL REACHABILITY PROBLEM IN WEIGHTED TIMED AUTOMATA AND GAMES13

In the context of weighted timed games, an optimality criterion can be expressed. The cost of
a winning strategy f is defined as:

costG(f) = sup{cost(%) | % ∈ playsG(f)}

Note that if f is a winning strategy, then for every % ∈ playsG(f), cost(%) < +∞. However it
might be the case that costG(f) = +∞.

The aim of the controller is to optimize this value and we want to compute the optimal cost
the controller can ensure, whatever the environment does, which can be formally written as:

opt costG = inf{costG(f) | f winning strategy}

We will consider the two following decision problems:

• the first, called the bounded cost problem, asks, given a threshold c ∈ Q>0, whether there
is some strategy f such that costG(f) 6 c;

• the second, called the optimal cost problem, asks, given a threshold c ∈ Q>0, whether
opt costG ≤ c.

We will also be interested in synthesizing almost-optimal strategies, that is for every ε > 0,
computing a strategy fε which is ε-optimal : opt costG 6 costG(f) 6 opt costG + ε.

Example 4.1. We consider the weighted timed automaton of Example 3.2 (page 5). Dashed
(respectively plain) arrows are now for uncontrollable (respectively controllable) transitions.
Depending on the choice of the environment (going to location `2 or `3), the accumulated cost
along plays of the game is either 5t+ 10(2− t) + 1 (through `2) or 5t+ (2− t) + 7 (through `3)
where t is the delay elapsed in location `0. The optimal cost the controller can ensure is thus
inft62 max(5t+10(2− t)+1, 5t+(2− t)+7) = 14+ 1

3
, and the optimal time for firing transition

e1 is when t = 4
3
. The controller has an optimal strategy, which consists in waiting in location

`0 until x = 4
3
, and in entering location `1. Then, the environment chooses to go either to `2 or

to `3, and finally when the value of x reaches 2, the controller goes to the goal location ,.

Remark 4.2. Let us mention that in the above example, the optimal cost is non-integral,
contrary to the case of closed systems. This means in particular that no region-based technology
(and even corner-point abstraction) can be used to solve optimal timed games.

Until recently [21], these two problems were used with no real distinction. However they can
interestingly easily be distinguished, as shown in Example 4.3.

1 0
x > 1

x := 0

(a)

1 1 0
0<x<1

x:=0

x>0

(b)

Figure 8: Two weighted timed games with optimal cost 1

14 Patricia Bouyer

Example 4.3. Consider the two weighted timed games depicted on Figure 8. In the game on
the left, for every ε > 0, the controller has a strategy to get cost 1 + ε. In the game on the
right, the controller has a strategy to ensure cost strictly less than 1. Hence, in both cases, the
optimal cost is 1, but they generate quite different ‘behaviours’.

4.2 Decidability or undecidability?

In the late nineties, optimal-time timed games (i.e., weighted timed games where cost represents
time elapsing) have been considered [7], and the complexity has been made precise rather
recently [39] using strategy improvement techniques.

Theorem 4.4 ([7, 39]). Optimal-time in reachability timed games is computable. The corre-
sponding decision problem is EXPTIME-complete.

The reason is that the region abstraction needs not be refined to compute the optimal time.

Remark 4.5. Note also that the EXPTIME upper bound could have been computed as fol-
lows: solve the reachability game classically, and record the corresponding memoryless winning
strategy (using for instance a backward algorithm à la [8]), compute the maximal time τ for
winning following that memoryless strategy (this needs to be bounded, otherwise it would not
be winning), and then add an extra clock z which is never reset but is used in a guard z 6 c
(for c chosen non-deterministically not larger than τ) which constrains every transition leading
to a location in Goal. The optimal time is the smallest c for which the transformed game is
winning (because thanks to [7] we know that the optimal time is an integer). Finally as the
value of τ is at most exponential (because the selected winning strategy is memoryless), this
global algorithm only requires exponential time.

y

Then, in [42], optimal timed games (with general costs) are considered, and a doubly-exponential
time algorithm is designed for computing optimal cost (and synthesizing (almost-)optimal
strategies) in acyclic timed games. The algorithm somehow extends classical min/max-algorithms
for discrete games to timed games.

In [1], the 2EXPTIME upper bound mentioned above is improved to an EXPTIME upper bound.
Note that this algorithm computes for every winning state the optimal cost for winning and
provides a (possibly almost) optimal winning strategy. The algorithm which is proposed splits
the state-space into polyhedra on which (roughly) optimal winning strategies are uniform, it is
pretty involved, and relies on nice geometrical properties of the state-space. Moreover, a family
of weighted timed games is given, for which it is unavoidable to split the set of winning states
into an exponential number of pieces.

Theorem 4.6 ([42, 1]). Optimal cost can be computed in EXPTIME in acyclic weighted timed
games. Furthermore, almost-optimal winning strategies can be computed.

As a consequence of the above results, and independently shown in [17] using different technics:

ON THE OPTIMAL REACHABILITY PROBLEM IN WEIGHTED TIMED AUTOMATA AND GAMES15

Theorem 4.7 ([1, 17]). Under some restrictions for the cost function, the optimal cost and
almost-optimal winning strategies can be computed in weighted timed automata.

The restriction made in the above result is quite strong. It says that the cost needs to be
strongly non-Zeno: there is a constant κ > 0 such that every run that is read over a cycle of
the region automaton has cost larger than κ. That means that the longer is a play, the larger
will be its cost; more precisely, if M is a bound on the cost of a given winning strategy (that
we can choose memoryless and region-uniform), then we can unfold the game up to a depth
which ensures that all runs will have cost larger than M , and solve this uncomplete unfolded
game; this will preserve the optimal cost.

The first undecidability result has come as a surprise in [30]! It requires weighted timed games
with five clocks. This result has been improved a bit later using a new encoding requiring only
three clocks [14].

Theorem 4.8 ([30, 14]). The bounded cost problem for weighted timed games with three clocks
or more is undecidable.

Note that, formally, this result does not speak of the optimal cost, but only of the existence of
a strategy whose cost is bounded by some constant (which is the bounded cost problem). This
is some intriguing discrepancy with all known decidability results, which speak of the optimal
cost problem. It has taken almost ten years for finally transferring this undecidability to the
optimal cost problem.

Theorem 4.9 ([21]). The optimal cost problem for weighted timed games with four clocks or
more is undecidable.

In Subsection 4.3, we will describe the undecidability proof of [14], which will help understand
why it is so hard to analyze weighted timed games.

Is that the end of the story?

The previous undecidability result has settled the status of the optimal reachability problem in
arbitrary weighted timed games, and has launched a quest for decidable subclasses of weighted
timed games. The first result in that direction is the following:

Theorem 4.10 ([30]). The optimal cost in single-clock stopwatch timed games4 is computable.

In the restricted case mentioned in the above theorem, the semi-algorithm proposed in [17]
terminates, because roughly, classical regions never need to be split and are thus correct.

4We recall that a stopwatch timed game is a weighted timed game where the cost is stopwatch, that is, can
have rates 0 or 1.

16 Patricia Bouyer

Then, optimal cost in weighted timed games with one clock (but arbitrary cost) has been
proven computable [25] (though in a restricted turn-based framework where locations are either
controllable — i.e. all transitions leaving this location are controllable — or uncontrollable).
The high complexity of the algorithm of [25] has later been improved in [48, 35], and a special
subclass has been exhibited, in which optimal cost can be computed in PTIME. Technics used
in these papers make either use of structural properties of the game (like in [25]) or of value
iteration technics (like [35]).

Theorem 4.11 ([25, 48, 35, 28]). The optimal cost in turn-based single-clock weighted timed
games is computable in EXPTIME (PTIME if only two rates among {0,−d, d} for some d). Note
that the corresponding decision problem is PTIME-hard. Furthermore, for every ε > 0, we can
compute ε-optimal and memoryless strategies.

Another way to get around the undecidability results is to relax on the precision of the compu-
tation. A recent result [21] builds on that idea, and proposes an approximation algorithm for
the optimal cost and for winning strategies. We believe that this is an interesting research direc-
tion: indeed, in all decidability results that have been proven so far, even when the optimal cost
can be computed, only almost-optimal strategies (or schedules, in the case of weighted timed
automata) can be synthesized. Hence, it seems that it is sufficient to compute an (arbitrary)
approximate value of the optimal cost. More precisely, the result can be stated as follows:

Theorem 4.12 ([21]). Under some restrictions over the cost function, an arbitrary approx-
imation of the optimal cost can be computed in weighted timed games. Furthermore, almost-
optimal strategies can be computed as well.

We discuss now the restrictions mentioned in the theorem. They assume that the cost function
satisfies the following condition: there exists some positive κ > 0 such that, if ρ is a run of the
underlying timed automaton which is read over a cycle of the region automaton, then:

(a) either cost(ρ) = 0;
(b) or cost(ρ) ≥ κ.5

This restriction relaxes the strictly non-Zeno hypothesis made in Theorem 4.7, where all runs
are required to satisfy condition (b). We should then insist on two things:

• First, as stated in Theorem 4.7, if (b) is always satisfied, the optimal cost can be computed;

• Then, the undecidability proofs for Theorems 4.8 and 4.9 (presented in Subsection 4.3)
only build games that satisfy the restriction.

The complexity of the approximation is unfortunately not so good (2 exp(|G|) ·
(

1/ε
)|X|

, where

ε is the required precision). However the scheme might probably be improved to be turned into
a reasonably efficient algorithm. This is left as an open problem.

We will now give more details for the undecidability results, and for the approximation scheme.

5Similarly to the strongly non-Zeno hypothesis, we can take w.l.o.g. κ = 1.

ON THE OPTIMAL REACHABILITY PROBLEM IN WEIGHTED TIMED AUTOMATA AND GAMES17

4.3 A glimpse of the undecidability proof

We will present the basic ideas of the undecidability proof proposed in [14] for Theorem 4.8,
which we think is quite instructive. First we consider the two small modules that are depicted
on Figure 9. The module Add+xz (x, y) (respectively Add+(1−x)

z (x, y)) uses z as an extra clock,
lets the values of x and y at the end of the module be the same as at the entry of the module,
increases the cost by x0 (respectively 1− x0) if x0 is the value of x when entering the module.

0 1

x=1,x:=0

y=1,y:=0 y=1,y:=0

z=1,z:=0z:=0

(a) Module Add+x
z (x, y)

1 0

x=1,x:=0

y=1,y:=0 y=1,y:=0

z=1,z:=0z:=0

(b) Module Add+(1−x)
z (x, y)

Figure 9: Two interesting modules

Concatenating these modules, one can implement various cost functions (non-negative linear
combinations of x0, y0, 1 − x0, 1 − y0 and 1). In particular, one can implement the two cost
functions cost1 and cost2 defined as follows:

cost1(x0, y0) = 2x0 + (1− y0) + 2 cost2(x0, y0) = 2(1− x0) + y0 + 1

Now, it is easy to check that 2x0 > y0 implies cost1(x0, y0) > 3, whereas 2x0 < y0 implies
cost2(x0, y0) > 3. Moreover, if 2x0 = y0, then cost1(x0, y0) = cost2(x0, y0) = 3. Hence if we
are in a state with x = x0 and y = y0, and if the choice of the cost function is given to the
environment, it can enforce a cost (strictly) larger than 3 if and only if 2x0 6= y0. Otherwise,
the cost will be 3, whatever is the choice of the environment. This will later serve as a module
to check whether twice the value of x is equal to the value of y. We denote this test module
Testz(2x = y), with the subscript z to indicate that an extra clock z is used in the module.

To simulate a two-counter machine, the idea is to store the value of a counter c into a clock,
whose value will be, at distinguished points in time, 1

2c
. Hence, to store the values of two

counters, one needs two clocks. Assume an instruction increments the first counter, and lets
the second counter unchanged. Assume furthermore that the value of the first counter is c and
is stored in clock x, whereas the value of the second counter is d and is stored in clock y. We
consider the module depicted on Figure 10, which will simulate the above instruction (the value
of the first counter is initially stored in clock x and finally in clock z).

The duration of an execution in that module is one time unit (condition checked by the extra
clock u). It is not difficult to check that the final values for x and y correspond to their initial
values. The final value for z has been non-deterministically guessed during the execution, so
can be anything within the interval [0, 1], say α. An uncontrollable transition leads to the test
module Testy(x = 2z) that we have described earlier. If (and only if) the guess for z has been
correct (or equivalently 2α = 1

2c
) the environment has no strategy to get a cost value larger

than 3.

18 Patricia Bouyer

x= 1

2c

y= 1

2d

z=?

u:=0 z:=0

x=1,x:=0
∨ y=1,y:=0

x=1,x:=0
∨ y=1,y:=0

x= 1

2c

y= 1

2d

z=α

u=1,u:=0

Testy(x=2z)

u=0

Figure 10: Simulation of the instruction which increments c and lets d unchanged

There is no cost labelling locations of the main game, we only add a discrete cost of +3 (or
three time units with cost-rate 1) when reaching the halting state. In that reduction:

the two-counter machine halts if, and only if,
the controller has a winning strategy with cost no more than 3

in the weighted timed game.

It is worth noticing that the described reduction uses four clocks, and not three, as claimed.
However, we can get rid of clock u using the following trick: the value of the second counter d
is now stored by the value 1

3d
(note that the choice of 1

2c
and 1

3d
is arbitrary, it could be 1

pc
and

1
qd

for p and q relatively prime integers). Indeed we can prove that the constraint u = 1 at the
end of the module can be replaced by the constraints that the value of x is a negative power of
2 and the value of y is a negative power of 3. Testing that the value of x is a negative power
of 2 can be done by iteratively multiplying the value of x by 2 (done using the Testy(z = 2x)
module) and eventually reaching 1. Finally the constraint that the last location of the module
be transient is done by adding a positive cost to that location, and requiring the controller to
have a strategy with cost no more than 3.

We can finally notice that the cost in this constructed game is stopwatch (there is no discrete
cost, and all cost rates are 0 or 1).

4.4 A glimpse of the approximation scheme

We quickly describe in this subsection the approximation scheme used in Theorem 4.12. We
fix a weighted timed game G = (X,L, `0,Goal, E, cost), and we split it along regions.6 The
kernel K of G is the part in which all runs have cost 0: it is made of locations with cost-rate 0,
and edges with cost 0. The idea is that sub-runs in K do not impact on the global cost of the
execution, but it does impact on the clock values; on the other hand, sub-runs outside of the
kernel have an important impact on the cost of the execution, hence they cannot be too long.

Using this intuition, we build a semi-unfolding of the game from the initial location: the game

6For every region r, for every transition `
g,Y−−→ `′, we add transitions (`, r)

g∧−→r ,Y−−−−−→ (`′, r′) for every time-
successor region −→r of r, and r′ = [Y ← 0]−→r .

ON THE OPTIMAL REACHABILITY PROBLEM IN WEIGHTED TIMED AUTOMATA AND GAMES19

is unfolded, and once the kernel is entered, a (folded) copy of the kernel is plugged; the game
is unfolded again from the output edges of the kernel. We stop unfolding when the depth of
this semi-unfolding is N = (M + 2) · |R(G)|, where |R(G)| is the size of the region automaton
of G and M is an upper bound on opt costG.

7 This enforces that all runs from the root to a
leaf has a cost larger than what should be generated by an (almost-)optimal strategy. Hence
the optimal cost in the original game and in the semi-unfolding coincide. The construction is
illustrated on Figure 11.

(`,r)

Only cost 0
Kernel K

Only cost 0
Kernel K

(`,r)

Hypothesis:
cost > 0 implies cost ≥ 1

Figure 11: Semi-unfolding of game G

Exact computation

Approximation

Figure 12: Approximation scheme

The approximation scheme then is as follows: an exact min-max algorithm is applied in tree-
like parts of the semi-unfolding; an approximation algorithm is applied in the various copies of
the kernel. This is schematized in Figure 12. We now give more details on each of these steps:

(i) In the tree-like parts of the semi-unfolding. The computation of the optimal cost can be
done using the min-max algorithm of [42] or its refinement of [1].

7Such a bound can be precomputed by selecting a memoryless region-based winning strategy and by com-
puting its cost.

20 Patricia Bouyer

(ii) In the kernels. A kernel surprisingly generates complex behaviours, even though cost can-
not increase, and in particular the optimal cost cannot be computed. We therefore assume
we have computed cost functions at the output edges, which correspond to approxima-
tions of the optimal cost one can achieve from those edges. Those functions are smooth
enough to be under- and over-approximated by piecewise-constant functions, which are
constant over a refinement of the standard set of regions (that is, regions obtained with a
smaller granularity). Given such a piecewise constant function (which is an under- or an
over-approximation), the game played in a kernel becomes a standard (non-weighted, since
cost is 0 everywhere) timed game with an extended reachability winning condition: the
preference order over output edges is given by the piecewise-constant function (the smaller,
the better). Applying results on standard timed games, we easily get that those games
can be solved, based on the given refinement of the regions. Hence, a piecewise-constant
(under- or over-approximated) cost function can be computed at each entry of the current
copy of the kernel.

Note that (arbitrary) almost-optimal winning strategies can be computed in parallel with an
approximation of the optimal cost.

Remark 4.13. We would like to point out that, in the games used in the undecidability proofs,
there is a single kernel, which corresponds to the simulation of the two counter machine (that
is, before leaving to a test gadget). And the piecewise-constant approximations (roughly)
correspond to bounding the counters (that is, we can then not distinguish between large values
of the counters).

4.5 Partial conclusion and remarks

In this section, we have presented the problem of optimal timed games, where the aim of the
controller is to optimize the cost for reaching some designated set of goal locations, whatever
the environment does. The general problem is unfortunately undecidable, and only restricted
classes of systems yield decidability.

We believe an important new insight has been given by an approximation scheme for computing
arbitrary approximations of the optimal cost and of corresponding winning strategies. Having
in hand these approximations is probably enough in practice. Also, even when the optimal
cost can be computed, there is no algorithm to compute an optimal winning strategy, hence an
approximation is sufficient.

Current work includes investigating further the approximation scheme, and developing a sym-
bolic algorithm that could be used in practice. One would also like to extend the scheme to
the whole class of weighted timed games (with no restriction on the cost).

Finally, notice that average-time and mean-payoff objectives have been considered as well in the
context of timed games, and while average-time optimal strategies can be computed [40], mean-
cost optimal strategies cannot be computed, but interesting subclasses can be exhibited [27].

ON THE OPTIMAL REACHABILITY PROBLEM IN WEIGHTED TIMED AUTOMATA AND GAMES21

5 Back to the task graph scheduling example

We come back to the example we have described in Section 2.

A first model of the system, which ignores energy consumption is given by the (natural) product
of the timed automata depicted on Figure 13. Each processor has three locations, which indicate
whether the processor is idle, or is doing an addition or a multiplication. Timing constraints for
the operations are given by clock constraints. The ti’s are Boolean variables that are initially
set to 0, and when a task is finished, it is set to 1 (or true): task T4 requires tasks T1 and T2
to be finished before it can start, hence the Boolean constraint ‘t1 ∧ t2’ when starting Task T4.
Automata synchronize on labels in a standard way. On this model, one can ask whether there
is a schedule that manages to compute the arithmetical expression, and exhibit one. One can
also ask what is the time-optimal schedule. This is actually the second schedule of Figure 3.

P1:
idle+ ×

x := 0

add1

x := 0

mult1

x = 2

done1

x = 3

done1

P2:
idle+ ×

y := 0

add2

y := 0

mult2

y = 5

done2

y = 7

done2

(a) A first model of the two processors

T4: t1 ∧ t2
addi

t4 := 1

donei

T5: t3

addi

t5 := 1

donei

(b) Models for the tasks T4 and T5

Figure 13: A first model of the system as a timed automaton

One can refine the models of the processors by adding energy consumption information in
the model, as is done on Figure 14(a): locations are decorated using the nominal information
of the processors. The global product is now a weighted timed automaton, and we can find
energy-optimal schedules using this model. The third schedule on Figure 3 is energy-optimal.

Another refined model of the processors is given on Figure 14(b). In this model, we assume the
timing information is not precise, and an operation that takes 2 picoseconds can actually be
performed within a delay of δ ∈ [1, 2] time units. This is modelled using uncontrollable edges
(the controller cannot decide how long it will take to do the operation, but should adapt to
any delay). The global product is now a timed game, and one looks for winning strategies, and
even optimal winning strategies if one mixes the two last models.

22 Patricia Bouyer

P1:
+10+90 +90

x := 0

add1

x := 0

mult1

x = 2

done1

x = 3

done1

P2:
+20+30 +30

y := 0

add2

y := 0

mult2

y = 5

done2

y = 7

done2

(a) As a weighted timed automaton

P1:
idle+ ×

x := 0

add1

x := 0

mult1

1 ≤ x ≤ 2

done1

2 ≤ x ≤ 3

done1

P2:
idle+ ×

y := 0

add2

y := 0

mult2

4 ≤ y ≤ 5

done2

6 ≤ y ≤ 7

done2

(b) As a timed game

Figure 14: Two refined models of the processors

6 Conclusion

Weighted timed automata and games have been extensively studied in the past fifteen years.
We have given here an overview of results which have been obtained on the optimal reachability
problem. While this problem can be solved reasonably efficiently for automata, it is undecidable
in the case of weighted timed games. Some restricted classes of games have been described,
for which the optimal reachability problem can be solved. More importantly (we believe), a
large class of games has been described, for which an arbitrary approximation of the optimal
cost can be computed. We believe this is a direction of research which should be investigated
further.

There are some other problems that have been studied on the model of weighted timed automata
and games. Few years back, temporal logics have been extended with cost constraints, yielding
the logics WCTL [29, 22, 23] and WMTL [26], but results are mostly negative. We will not
expand on those works here.

Another line of research extends the original models by allowing costs that can be negative
or positive. Main challenges are now to synthesize schedules or strategies that will ensure
indefinite safe operation with the additional guarantee that energy will always be available,
yet never exceeds a possible maximum storage capacity. This energy management problem has
been studied in [20, 18, 24], yielding various decidability and undecidability results. We do not
expand either in these notes.

Finally we point out another (less recent) survey on the topic of these notes, see [19].

ON THE OPTIMAL REACHABILITY PROBLEM IN WEIGHTED TIMED AUTOMATA AND GAMES23

Acknowledgements

This work is supported by ERC Project EQualIS (FP7-308087). I would like to thank all my
co-authors, who have worked with me on the model of weighted timed automata and games,
and especially Nicolas Markey for our longstanding collaboration on that subject.

References

[1] R. ALUR, M. BERNADSKY, P. MADHUSUDAN, Optimal Reachability in Weighted Timed
Games. In: Proc. 31st International Colloquium on Automata, Languages and Programming
(ICALP’04). Lecture Notes in Computer Science 3142, Springer, 2004, 122–133.

[2] R. ALUR, C. COURCOUBETIS, N. HALBWACHS, TH. A. HENZINGER, P.-H. HO,
X. NICOLLIN, A. OLIVERO, J. SIFAKIS, S. YOVINE, The Algorithmic Analysis of Hy-
brid Systems. Theoretical Computer Science 138 (1995) 1, 3–34.

[3] R. ALUR, C. COURCOUBETIS, TH. A. HENZINGER, P.-H. HO, Hybrid Automata: an
Algorithmic Approach to Specification and Verification of Hybrid Systems. In: Proc. Workshop
on Hybrid Systems (1991 & 1992). Lecture Notes in Computer Science 736, Springer, 1993, 209–
229.

[4] R. ALUR, D. L. DILL, Automata for Modeling Real-Time Systems. In: Proc. 17th International
Colloquium on Automata, Languages and Programming (ICALP’90). Lecture Notes in Computer
Science 443, Springer, 1990, 322–335.

[5] R. ALUR, D. L. DILL, A Theory of Timed Automata. Theoretical Computer Science 126 (1994)
2, 183–235.

[6] R. ALUR, S. LA TORRE, G. J. PAPPAS, Optimal Paths in Weighted Timed Automata. In:
Proc. 4th International Workshop on Hybrid Systems: Computation and Control (HSCC’01).
Lecture Notes in Computer Science 2034, Springer, 2001, 49–62.

[7] E. ASARIN, O. MALER, As Soon as Possible: Time Optimal Control for Timed Automata. In:
Proc. 2nd International Workshop on Hybrid Systems: Computation and Control (HSCC’99).
Lecture Notes in Computer Science 1569, Springer, 1999, 19–30.

[8] E. ASARIN, O. MALER, A. PNUELI, J. SIFAKIS, Controller Synthesis for Timed Automata.
In: Proc. IFAC Symposium on System Structure and Control . Elsevier Science, 1998, 469–474.

[9] G. BEHRMANN, A. FEHNKER, TH. HUNE, K. G. LARSEN, P. PETTERSSON, J. ROMIJN,
F. VAANDRAGER, Minimum-Cost Reachability for Priced Timed Automata. In: Proc. 4th In-
ternational Workshop on Hybrid Systems: Computation and Control (HSCC’01). Lecture Notes
in Computer Science 2034, Springer, 2001, 147–161.

[10] G. BEHRMANN, K. G. LARSEN, J. I. RASMUSSEN, Priced Timed Automata: Decidability
Results, Algorithms, and Applications. In: Proc. 3rd International Symposium on Formal Methods
for Components and Objects (FMCO’04). Lecture Notes in Computer Science 3657, Springer,
2004, 162–186.

24 Patricia Bouyer

[11] G. BEHRMANN, K. G. LARSEN, J. I. RASMUSSEN, Optimal Scheduling using Priced Timed
Automata. ACM Sigmetrics Performancs Evaluation Review 32 (2005) 4, 34–40.

[12] P. BOUYER, From Qualitative to Quantitative Analysis of Timed Systems. Ph.D. thesis, Univer-
sité Paris Diderot, France, 2009.

[13] P. BOUYER, TH. BRIHAYE, V. BRUYÈRE, J.-F. RASKIN, On the Optimal Reachability
Problem. Formal Methods in System Design 31 (2007) 2, 135–175.

[14] P. BOUYER, TH. BRIHAYE, N. MARKEY, Improved Undecidability Results on Weighted
Timed Automata. Information Processing Letters 98 (2006) 5, 188–194.

[15] P. BOUYER, E. BRINKSMA, K. G. LARSEN, Staying Alive as Cheaply as Possible. In: Proc.
7th International Workshop on Hybrid Systems: Computation and Control (HSCC’04). Lecture
Notes in Computer Science 2993, Springer, 2004, 203–218.

[16] P. BOUYER, E. BRINKSMA, K. G. LARSEN, Optimal Infinite Scheduling for Multi-Priced
Timed Automata. Formal Methods in System Design 32 (2008) 1, 2–23.

[17] P. BOUYER, F. CASSEZ, E. FLEURY, K. G. LARSEN, Optimal Strategies in Priced Timed
Game Automata. In: Proc. 24th Conference on Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS’04). Lecture Notes in Computer Science 3328, Springer, 2004,
148–160.

[18] P. BOUYER, U. FAHRENBERG, K. G. LARSEN, N. MARKEY, Timed Automata with
Observers under Energy Constraints. In: Proc. 13th International Conference on Hybrid Systems:
Computation and Control (HSCC’10). ACM Press, 2010, 61–70.

[19] P. BOUYER, U. FAHRENBERG, K. G. LARSEN, N. MARKEY, Quantitative analysis of
real-time systems using priced timed automata. Communication of the ACM 54 (2011) 9, 78–87.

[20] P. BOUYER, U. FAHRENBERG, K. G. LARSEN, N. MARKEY, J. SRBA, Infinite Runs in
Weighted Timed Automata with Energy Constraints. In: Proc. 6th International Conference on
Formal Modeling and Analysis of Timed Systems (FORMATS’08). Lecture Notes in Computer
Science, Springer, 2008, 33–47.

[21] P. BOUYER, S. JAZIRI, N. MARKEY, On the Value Problem in Weighted Timed Games. In:
Proc. 26th International Conference on Concurrency Theory (CONCUR’15). LIPIcs, Leibniz-
Zentrum für Informatik, 2015. To appear.

[22] P. BOUYER, K. G. LARSEN, N. MARKEY, Model-Checking One-Clock Priced Timed Au-
tomata. In: Proc. 10th International Conference on Foundations of Software Science and Com-
putation Structures (FoSSaCS’07). Lecture Notes in Computer Science 4423, Springer, 2007,
108–122.

[23] P. BOUYER, K. G. LARSEN, N. MARKEY, Model Checking One-clock Priced Timed Au-
tomata. Logical Methods in Computer Science 4 (2008) 2:9.

[24] P. BOUYER, K. G. LARSEN, N. MARKEY, Lower-Bound Constrained Runs in Weighted
Timed Automata. In: Proc. 9th International Conference on Quantitative Evaluation of Systems
(QEST’12). IEEE Computer Society Press, 2012, 128–137.

ON THE OPTIMAL REACHABILITY PROBLEM IN WEIGHTED TIMED AUTOMATA AND GAMES25

[25] P. BOUYER, K. G. LARSEN, N. MARKEY, J. I. RASMUSSEN, Almost Optimal Strategies
in One-Clock Priced Timed Automata. In: Proc. 26th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’06). Lecture Notes in Computer Science
4337, Springer, 2006, 345–356.

[26] P. BOUYER, N. MARKEY, Costs are Expensive! In: Proc. 5th International Conference on
Formal Modeling and Analysis of Timed Systems (FORMATS’07). Lecture Notes in Computer
Science 4763, Springer, 2007, 53–68.

[27] R. BRENGUIER, F. CASSEZ, J.-F. RASKIN, Energy and mean-payoff timed games. In: Proc.
17th International Conference on Hybrid Systems: Computation and Control (HSCC’14). ACM,
2014, 283–292.

[28] T. BRIHAYE, G. GEERAERTS, S. N. KRISHNA, L. MANASA, B. MONMEGE,
A. TRIVEDI, Adding Negative Prices to Priced Timed Games. In: Proc. 25th International
Conference on Concurrency Theory (CONCUR’14). Lecture Notes in Computer Science 8704,
Springer, 2014, 560–575.

[29] TH. BRIHAYE, V. BRUYÈRE, J.-F. RASKIN, Model-Checking for Weighted Timed Automata.
In: Proc. Joint Conference on Formal Modelling and Analysis of Timed Systems and Formal
Techniques in Real-Time and Fault Tolerant System (FORMATS+FTRTFT’04). Lecture Notes
in Computer Science 3253, Springer, 2004, 277–292.

[30] TH. BRIHAYE, V. BRUYÈRE, J.-F. RASKIN, On Optimal Timed Strategies. In: Proc. 3rd
International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’05).
Lecture Notes in Computer Science 3821, Springer, 2005, 49–64.

[31] E. M. CLARKE, E. A. EMERSEN, Using Branching Time Temporal Logic to Synthesize Syn-
chronization Skeletons. Science of Computer Programming 2 (1982) 3, 241–266.

[32] TH. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, Introduction to Algorithms. The MIT
Press, Cambridge, Massachusetts, 1990.

[33] C. COURCOUBETIS, M. YANNAKAKIS, Minimum and Maximum Delay Problems in Real-
Time Systems. Formal Methods in System Design 1 (1992) 4, 385–415.

[34] U. FAHRENBERG, K. G. LARSEN, Discounting in Time. In: Proc. 10th International Work-
shop on Verification of Infinite-State Systems (INFINITY’08). Electronic Notes in Theoretical
Computer Science 253(3), 2009, 25–31.

[35] T. D. HANSEN, R. IBSEN-JENSEN, P. B. MILTERSEN, A Faster Algorithm for Solving One-
Clock Priced Timed Games. In: Proc. 24th International Conference on Concurrency Theory
(CONCUR’13). Lecture Notes in Computer Science 8052, Springer, 2013, 531–545.

[36] TH. A. HENZINGER, P. W. KOPKE, Discrete-Time Control for Rectangular Hybrid Automata.
Theoretical Computer Science 221 (1999), 369–392.

[37] TH. A. HENZINGER, P. W. KOPKE, A. PURI, P. VARAIYA, What’s Decidable about Hybrid
Automata? In: Proc. 27th Annual ACM Symposium on the Theory of Computing (STOC’95).
ACM, 1995, 373–382.

[38] TH. A. HENZINGER, P. W. KOPKE, A. PURI, P. VARAIYA, What’s Decidable about Hybrid
Automata? Journal of Computer and System Sciences 57 (1998) 1, 94–124.

26 Patricia Bouyer

[39] M. JURDZIŃSKI, A. TRIVEDI, Reachability-Time Games on Timed Automata. In: Proc. 34th
International Colloquium on Automata, Languages and Programming (ICALP’07). Lecture Notes
in Computer Science 4596, Springer, 2007, 838–849.

[40] M. JURDZIŃSKI, A. TRIVEDI, Average-Time Games. In: Proc. 28th Conference on Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS’08). LIPIcs, Leibniz-
Zentrum für Informatik, 2008, 340–351.

[41] R. M. KARP, A Characterization of the Minimum Mean-Cycle in a Digraph. Discrete Mathe-
matics 23 (1978) 3, 309–311.

[42] S. LA TORRE, S. MUKHOPADHYAY, A. MURANO, Optimal-Reachability and Control for
Acyclic Weighted Timed Automata. In: Proc. 2nd IFIP International Conference on Theoretical
Computer Science (TCS 2002). IFIP Conference Proceedings 223, Kluwer, 2002, 485–497.

[43] K. G. LARSEN, G. BEHRMANN, E. BRINKSMA, A. FEHNKER, TH. HUNE, P. PETTERS-
SON, J. ROMIJN, As Cheap as Possible: Efficient Cost-Optimal Reachability for Priced Timed
Automata. In: Proc. 13th International Conference on Computer Aided Verification (CAV’01).
Lecture Notes in Computer Science 2102, Springer, 2001, 493–505.

[44] K. G. LARSEN, J. I. RASMUSSEN, Optimal Conditional Scheduling for Multi-Priced Timed
Automata. In: Proc. 8th International Conference on Foundations of Software Science and Com-
putation Structures (FoSSaCS’05). Lecture Notes in Computer Science 3441, Springer, 2005,
234–249.

[45] A. PNUELI, The Temporal Logic of Programs. In: Proc. 18th Annual Symposium on Foundations
of Computer Science (FOCS’77). IEEE Computer Society Press, 1977, 46–57.

[46] J.-P. QUEILLE, J. SIFAKIS, Specification and Verification of Concurrent Systems in Cesar. In:
Proc. 5th International Symposium on Programming . Lecture Notes in Computer Science 137,
Springer, 1982, 337–351.

[47] J.-F. RASKIN, An Introduction to Hybrid Automata, chapter Handbook of Networked and Em-
bedded Control Systems. Springer, 2005, 491–518.

[48] M. RUTKOWSKI, Two-Player Reachability-Price Games on Single-Clock Timed Automata. In:
Proc. 9th Workshop on Quantitative Aspects of Programming Languages (QAPL’11). Electronic
Notes in Theoretical Computer Science 57, 2011, 31–46.

[49] W. THOMAS, Infinite Games and Verification. In: Proc. 14th International Conference on Com-
puter Aided Verification (CAV’02). Lecture Notes in Computer Science 2404, Springer, 2002,
58–64. Invited Tutorial.

[50] U. ZWICK, M. PATERSON, The Complexity of Mean Payoff Games on Graphs. Theoretical
Computer Science 158 (1996) 1–2, 343–359.

	1 Introduction
	2 An example: The task graph scheduling problem
	3 Optimal reachability in weighted timed automata
	3.1 Weighted timed automata
	3.2 Optimization problems
	3.2.1 The optimal cost problem
	3.2.2 The optimal mean-cost problem

	3.3 The corner-point abstraction
	3.4 Partial conclusion and related work

	4 Optimal reachability in weighted timed games
	4.1 Weighted timed games
	4.2 Decidability or undecidability?
	4.3 A glimpse of the undecidability proof
	4.4 A glimpse of the approximation scheme
	4.5 Partial conclusion and remarks

	5 Back to the task graph scheduling example
	6 Conclusion
	References

