
PDL on infinite alphabet

Mathieu Lehaut, supervised by Benedikt Bollig and Paul Gastin

LSV, ENS Cachan

The general context

In the context of verification, one is often interested in finding decidable logics to
be able to express and then check specifications. Here we study logics on data-
words, i.e. words on an infinite alphabet, which can be used to model executions
of a program manipulating data. Furthermore, the alphabet comes with a total
order. Several logics have been studied in this context, but they often lack the
ability to use the total order. In the meanwhile, new kinds of automata have
been created in order to work on datawords, such as register automata.

The research problem

We study a new logic which is an extension of PDL on words with a construc-
tor that allows to compare the data of two positions with respect to the total
order. We are interested in the decidability of the satisfiability problem, which
is: given a formula � in the logic, is there a dataword satisfying �? In the con-
text of verification, this allows to check that a specification does not contain
contradictions.

Your contribution

We compare our new logic with the first order logic with two variables that
has already been studied. From this comparison, we deduce that our logic is
undecidable. We then study a fragment of our logic on which we can get back
decidability by reducing to the emptiness problem for some kind of register
automata, which has been proven decidable.

Arguments supporting its validity

Although the complete logic is undecidable, the decidable fragment we study is
still very expressive, and, contrary to other logics, allows the use of the total
order on data. We give some example properties/specifications which can be
expressed in this fragment.

Summary and future work

Our works brings a new decidable logic which can be used to express new kinds
of specifications in the context of datawords. The next step is to extend this to
infinite datawords and datatrees to increase the number of behaviours that can
be modeled and then specified with the logic.
Note: this report is in english as it may serve as the basis for a future article.

1 Introduction

Context In the context of verification, one needs a model and a logic to write
specifications on the model. Here, we are interested in the model of words on
an infinite alphabet consisting of a finite part and an infinite part which comes
equipped with a total order. A dataword is a word on such an alphabet, that is,
each position of the word contains a couple of letters, one from the finite part
and the other from the infinite part.
This model has been studied since [9] in which a new model of automata, able
to deal with infinite alphabets, has been introduced. This model is interesting
in that it allows to model the execution of a program manipulating data: the
successive positions correspond to the successive states of the program, where a
state consists of a control state (= letter from the finite part) and the data being
manipulated (= letter from the infinite part). One can also see a dataword as a
snapshot of an execution of a distributed algorithm, where each position in the
word corresponds to a single process, with the corresponding control state and
data.

Automata Several kinds of automata for datawords have been studied following
[9]: register automata and pebble automata in [11] (as well as some variations
on them), or strong automata and progressive grid automata in [3]. A register
automaton is an automaton which can store the data of the current position in
one of its registers (of which there is a fixed number), and later in the word use the
saved value to make comparisons with the new current data, then possibly store
a new value in the register, and so on. In our works, we will focus on alternating
one-register automata, that is, register automata with only one register to store
data values, but that can use alternation (as in alternating automata for words).

Logics With this model of datawords also come new logics to express properties
or write specifications. One of the minimal requirements for these new logics is
that the satisfiability problem must be decidable: given a formula �, is there a
dataword satisfying �? This problem makes sense in the field of verification as it
asks whether a specification is actually attainable, i.e. that it does not contradict
itself. Among the decidable logics, perhaps one of the most studied is the first
order logic with two variables (FO2) explored in [2]. Its decidability depends on
which predicates are allowed: one can allow a linear order and successor relation
on positions and an equality predicate on data [2], at the cost of not being able
to use the total order on data (adding it makes the logic undecidable), or allow
only a linear order on positions and the total order on data as in [12], at the
cost of not being able to link two consecutive positions. Other decidable logics
include LTL with the freeze operator [4] and PathLogic [5]. Both of these also
cannot refer to the total order on data.

Our contribution In this report we explore a new logic which we call DataPDL
which is an extension of PDL, first defined in [7], adapted to the setting of data-
words by adding an operator that allows to compare the data at two positions

2

according to the total order on data (or equality, inequality, etc.). This logic is
two-way, that is, it can navigate in the word in both directions. It is inspired
from the logic DataPDL defined in [1] which works on tables (2D) as opposed
to words (1D) here.

Outline of this report In Section 2, we write down all relevant definitions. In
Section 3 we first compare DataPDL to FO2 and conclude that DataPDL is
undecidable. We then propose some restrictions to get a fragment DataPDL�.
In Section 4 we prove that this fragment is decidable by reduction to alternating
one-register automata. In Section 5 we discuss one of the restriction defining
DataPDL�.

2 Definitions

2.1 Dataword

Let ⌃ be a finite alphabet of letters and D an infinite domain of data values
equipped with a total order <. We note Comp the set {, <,=, 6=, >,�} of
comparison operators.
A (finite) dataword is a non-empty word w = w0 · · ·wn�1 on (⌃ ⇥ D)⇤ . We
denote by w[i] the i-th letter of w, i.e. the first component of w

i

, and by w.d[i]
the i-th data value of w, i.e. the second component of w

i

.

2.2 FO2

We consider the first-order logic on datawords, whose atomic predicates are:
x = y + 1, x < y, d(x) < d(y), and a(x) for all a 2 ⌃. The variables (x, y, . . .)
refer to positions in the word. Formula x = y + 1 means that x is the position
immediately following y, and x < y means that y is a position following x,
though not necessarily the next one. Similarly, d(x) < d(y) means that the data
value at position x is smaller that the data value at position y. Finally, a(x)
means that the letter at position x is an a.
These atomic predicates can then be combined with the standard negation (¬),
disjunction (_) and existential quantification (9x.�). From these we can easily
define conjunction (^), implication ()), and universal quantification (8x.�) in
the usual way, as well as atomic predicates for all comparison operators in Comp:
d(x)  d(y) is ¬(d(y) < d(x)), d(x) = d(y) is d(x)  d(y) ^ d(x) � d(y), and so
on.
The full first-order logic is too expressive to be used, so we focus on the fragment
noted FO2 where formulas can only use two variables names. For instance, here
are some properties that can be expressed in FO2:

8x.8y. (x < y) d(x) < d(y))

means that the data values in the word are ordered, while

9x.leader(x) ^ 8y. (x 6= y =) (¬leader(y) ^ d(y) < d(x)))

3

express that there is a unique position labelled leader which holds the maximal
data value.

2.3 DataPDL

The logic DataPDL on ⌃ and D is given by the following grammar:

� ::= a | ¬� | � _ �0 | h⇡i� | h⇡i ./ h⇡0i

⇡ ::= {�}? | |! | ⇡ + ⇡ | ⇡ · ⇡ | ⇡⇤

with a 2 ⌃ and ./ 2 Comp.
We call � a local formula and ⇡ a path formula (or simply a path). Intuitively,
a local formula will be tested at some position in the word, and a path formula
links two positions.
A local formula � = a is true if the letter at the current position is a. ¬ and
_ are the standard negation and disjunction operators. h⇡i� means ”from the
current position, there is a position we can reach following path ⇡, such that
the formula � holds at this position”. Similarly, a formula h⇡i = h⇡0i means
”from the current position, there exist two positions, one that can be reached
following ⇡, and the other following ⇡0, such that the data at these two positions
are equal.”
A path formula is built with (resp.!) which refers to the previous (resp. next)
position in the word, +, ·, ⇤ which are the standard non-deterministic choice,
composition and star operators, and guards {�}? which allow testing local for-
mula in the middle of the path.
We now give the formal semantics. We note w, i |= � to express that the word
w at position i satisfies �. Given a word w, the semantics of a path formula
⇡, noted [[⇡]]

w

, is a binary relation between positions. Let us define these two
notions inductively:

– w, i |= a if w.[i] = a

– w, i |= ¬� if w, i 2 �
– w, i |= � _ �0 if w, i |= � or w, i |= �

0

– w, i |= [⇡]� if for all j such that (i, j) 2 [[⇡]]
w

, w, j |= �

– w, i |= h⇡i ./ h⇡0i if there exists j and j

0 such that
(i, j) 2 [[⇡]]

w

, (i, j0) 2 [[⇡0]]
w

, and w.d[j] ./ w.d[j0]

– [[{�}?]]
w

= {(i, i) | w, i |= �}
– [[]]

w

= {(i, i� 1) | 1  i < |w|}
– [[!]]

w

= {(i, i+ 1) | 0  i < |w|� 1}
– [[⇡ + ⇡

0]]
w

= [[⇡]]
w

[[[⇡0]]
w

– [[⇡ · ⇡0]]
w

= [[⇡0]]
w

� [[⇡]]
w

– [[⇡⇤]]
w

=
S

n�0([[⇡]]w)
n, where ([[⇡]]

w

)n = [[⇡]]
w

� · · · � [[⇡]]
w

n times

A dataword w satisfies �, noted w |= �, if w, 0 |= �.
We define the usual macros: > = a _ ¬a, ? = ¬>, [⇡]� = ¬h⇡i¬�, � ^ �0 =

4

¬(¬� _ ¬�0) for local formulas, ⇡+ = ⇡ · ⇡⇤, and " = {>}? for the path formula
which does not move.
We give two example formulas corresponding to the two examples given in the
FO2 section:

[!⇤]¬
�
h"i > h!+i

�

for the ”ordered data values” property, and

h({¬leader}? ·!)⇤i (leader ^ [!+] ¬leader)
^ ¬h!⇤ · {leader}?i  h!⇤ · {¬leader}?i

for the ”unique and maximal leader” property.

2.4 Alternating one-register automaton

For any set S, we note B+(S) the set of positive boolean combinations of S,
built as follows:

� ::= > | ? | s | �1 ^ �2 | �1 _ �2

for all s 2 S and �1,�2 2 B+(S).
We define when a multiset T of elements of S satisfies � 2 B+(S), written T |= �:

– ; |= >
– {s} |= s

– T |= �1 _ �2 if T |= �1 or T |= �2

– T |= �1 ^ �2 if T = T1] T2 and T1 |= �1 and T2 |= �2

We note Comp? = Comp [{nop} and Store? = {#,nop}.

An alternating one-register automaton (A1RA) on ⌃ and D is a tuple A =
(Q, q0, F,�) with Q a set of states, q0 an initial state, F a set of final states,
and � ✓ Q⇥⌃ ⇥ Comp? ⇥ B+(Q⇥ Store?) is a finite transition relation.
Intuitively, an A1RA acts as an alternating automaton on words which can also
store one value from D in its register, and use it to compare with the data that
appear in the dataword it is reading. A transition � = (q, a, ./,�) can be taken if
the current state is q, the current letter is a, and if ./ 2 Comp then the current
data value is compared to the value stored in the register (if ./ = nop, we skip
this step); if these hold then the automaton continues the computation in the
next position in a set of states satisfying �, where each branch (q, #) stored the
value from the previous position into the register, and each branch (q,nop) kept
the register value unchanged.
Its formal semantics is as follows.

Definition 1. A run ⇢ on a dataword w is a (Q⇥�⇥D)-labelled tree, of height
at most the size of w, such that every node (q, � = (q, a, ./,�), d) of height i < |w|
verifies:

– a = w.[i]

5

– if ./ 2 Comp, then w.d[i] ./ d holds.
– there is a multiset T of couples from Q⇥ Store? satisfying � and a bijection
↵ from T to the children of this node such that ↵(q0, ins) is labelled (q0, �0, d0)
for some �0 2 �, with d

0 = w.d[i] if ins = # and d

0 = d otherwise.

Also, the root must be labelled (q0, �, w.d[0]) for some � 2 �.

A run is said to be accepting if all its leaves of height |w| are in F ⇥�⇥D.
As usual, a dataword w is accepted by A if there exists an accepting run on w,
and the language of A is the set of datawords accepted by A.

Proposition 1. The emptiness problem for A1RA is decidable.

Proof. See [6]. The proof links register automata on datawords with clock au-
tomata on times words. The emptiness problem for alternating one-clock timed
automata has been proven decidable in [10]. ut

Also, as they are alternating, it is easy to check that A1RA are closed under
boolean operations.

Proposition 2. A1RA are closed under union, intersection and complement.

Proof. Union and intersection are done by disjunction and conjunction, while
complement is obtained by exchanging final states with non-final states, > with
?, and _ with ^ in all transitions.

3 Properties of DataPDL

3.1 Relation to FO2

We compare the expressive power of DataPDL with FO2. It is easy to see
that there are properties that can be expressed in DataPDL but not in FO2.
For instance, ”there are two positions with the same data value, and between
these positions there are no b” corresponds to the DataPDL formula h!⇤i(h"i =
h! ·({¬b}?·!)⇤i), but cannot be expressed in FO2 (the intuition is that you
have to use the two variables to remember both positions, and so you would
need a third one to go between those). Even without using data values, one can
express the property ”the word has even length” in DataPDL but not in FO2.
Conversely, we study the other direction.

Proposition 3. For any FO2 formula, one can e↵ectively build a DataPDL
formula which is equivalent with respect to satisfiability.

Proof. Let � 2 FO2 on alphabet ⌃. We first transform � into an equivalent
formula �0 in Scott normal form. See [8] for more details. �0 is a FO2 formula on
an extended alphabet ⌃0:

�

0 = 8x8y.�0 ^
^

1in
8x9y.�

i

6

where �0 and all �
i

are quantifier-free FO2 formula. Now we only have two kinds
of formulas to translate: the 8x8y.� one, and the 8x9y.� one. Without loss of
generality, we can ask that � is in Disjunctive normal form, i.e. � is a disjunction
of clauses, and a clause is a conjunction of atomic formulas or their negations.
There are four kinds of atomic formulas:

1. Constraints on the letter of x (a(x),¬b(x), . . .)
2. Constraints on the letter of y (same with y)
3. Constraints on the relative position of x and y (x < y, x = y + 1, . . .)
4. Constraints on the relative data values of x and y (d(x) < d(y), d(x) 6=

d(y), . . .)

A clause cl is a conjunction of these four kinds of constraints.
Let the constraint cube be the finite set C = ⌃

0 ⇥⌃0 ⇥ {⌧,�1,=,+1,�}⇥ {<
,=, >}. A clause cl translates to a subset C

cl

of points of C which reflects its
constraints: for instance, with ⌃0 = {a, b, c}, cl = ¬a(y)^¬b(y)^y < x^d(x) 
d(y) translates to C

cl

= {a, b, c}⇥ {c}⇥ {+1,�}⇥ {<,=}.
Given some dataword w and two positions x and y of w, x and y satisfy the
constraints of a unique point c in C. If moreover, c is in C

cl

, then we know that cl
is satisfied by these x and y (and the converse holds). We define C

good

the union
over all clauses cl of � of such subsets C

cl

. To each point c = (a, b, p, ./) 2 C we
associate a DataPDL comparison test:

�

c

= h{a}?i ./ h⇡
p

· {b}?i

where ⇡
p

depends on p:

– ⇡⌧ = · +

– ⇡�1 =
– ⇡= = "

– ⇡+1 =!
– ⇡� =! ·!+

The meaning of �
c

is that, for a dataword w, �
c

is satisfied at position x if and
only if there exists a position y such that x and y satisfy the constraints of c.
And so, we translate formulas 8x9y� as

�89 = [(+!)⇤]
_

c2C
good

�

c

and the formula 8x8y� (seen as 8x¬9y¬�) as

�88 = [(+!)⇤]¬

0

@
_

c/2C
good

�

c

1

A

7

The [(+!)⇤] part in both formulas obviously corresponds to the 8x. We claim
that 8x9y� and 8x8y� accept the same datawords as �89 and �88 respectively.

w |= �89 () 8i, 9c 2 C
good

, w, i |= �

c

() 8i, 9c 2 C
good

, 9j, i, j |= c

() 8i, 9j, 9c 2 C
good

, i, j |= c

() 8i, 9j, 9cl, i, j |= cl

() 8i, 9j, i, j |= �

w |= �88 () 8i,¬9c /2 C
good

, w, i |= �

c

() 8i,¬9c /2 C
good

, 9j, i, j |= c

() 8i,¬9j, 9c /2 C
good

, i, j |= c

() 8i,¬9j,¬9c 2 C
good

, i, j |= c

() 8i,¬9j,¬9cl, i, j |= cl

() 8i,¬9j,¬� () 8i, 8j,�

ut

3.2 Undecidability

The emptiness (satisfiability) problem for FO2 has been shown undecidable in [2].
Given Proposition 3, the following result is not surprising:

Proposition 4. The emptiness problem for DataPDL is undecidable.

We still give a proof, adapted from the one for FO2, to illustrate what kind
of DataPDL formula is enough to get undecidability.

Proof. We reduce Post’s Correspondence Problem. Let {(u
i

, v

i

) | 1  i  k}
be an instance of PCP on an alphabet ⌃. Let ⌃̄ be a copy of ⌃. For a word
w 2 ⌃⇤, we define w̄ 2 ⌃̄⇤ as the word w where each letter is replaced by its
copy from ⌃̄.
A solution (i1, ..., in) of PCP will be encoded as a dataword:

– whose projection on ⌃ [⌃̄ is u
i1 v̄i1 ...ui

n

v̄

i

n

– such that the data on the ⌃-subword are pairwise di↵erent, in increasing
order, and similarly for the ⌃̄-subword, and with both sequences of data
equal.

For example, if the instance is {(ab, baa), (a, ba), (aba, a)}, the solution 3 · 1 · 2
will be encoded as the dataword:

(a, 1)(b, 2)(a, 3)(ā, 1)(a, 4)(b, 5)(b̄, 2)(ā, 3)(ā, 4)(a, 6)(b̄, 5)(ā, 6)

Now we build a formula � such that � accepts exactly these encodings, meaning
that the language of � is empty if and only if this instance of PCP has no

8

solution.
We use ⌃ as an abbreviation for

W
a2⌃ a, and same for ⌃̄. Without loss of

generality, we can assume that in the solution, each letter from u

i

happens
before its corresponding letter from v

j

.
� has a few points to check:

1. The string projection of w is in {u
i

v̄

i

| 1  i  k}+:

[!⇤ {⌃ ^ []⌃̄}?]
_

i2[1,k]

(u
i

v̄

i

)

2. Data on ⌃ are unique:

[!⇤ ⌃?]¬ (h"i = h!⇤ ⌃?i)

3. Data on ⌃̄ are unique (similar as the previous one)
4. Each letter on ⌃ has a corresponding letter in ⌃̄:

[!⇤ ⌃?]
_

a2⌃
(a ^ h"i = h!⇤ ā?i)

5. Same for ⌃̄ (similar, with the last !⇤ replaced by ⇤)
6. Data on ⌃ are on increasing order:

[!⇤ ⌃?]¬ (h"i > h!⇤ ⌃?i)

7. Same for ⌃̄ (again, similar)

� is the conjunction of all these formulas. We can easily check that a word is
accepted by � if and only if it is a valid encoding of a PCP solution. ut

3.3 Restrictions

Knowing that FO2 is undecidable, some restrictions have been explored to regain
decidability. One can forbid using the order on data values, and instead only
allow equality (and inequality) tests, as in [2]. One can also forbid the successor
relation on positions, leaving only the orders on positions and values, as explored
in [12].
For our logic DataPDL, we propose some restrictions that are orthogonal to that
approach. They will restrict the power of path formulas in comparison tests:
Consider the fragment of DataPDL where comparison test h⇡i ./ h⇡0i follow two
restrictions:

– ⇡ and ⇡0 both use only one direction, left or right (not necessarily the same
for both paths). Which means that if appears in ⇡, then there are no !
in ⇡, except possibly within guards {�}?.

– If ⇡ (resp. ⇡0) is left-oriented, then ⇡ (resp. ⇡0) is non-ambiguous. A path ⇡
is non-ambiguous if for all datawords w, for all positions x of w, |{y | (x, y) 2
[[⇡]]

w

}|  1. In other words, following the path cannot lead to two di↵erent
positions. Right-oriented paths are not restricted.

9

These restrictions can be enforced syntaxically by using the following grammar:

� ::= a | ¬� | � _ �0 | h⇡i� | h⇡di ./ h⇡d

0
i

⇡ ::= {�}? | |! | ⇡ + ⇡ | ⇡ · ⇡ | ⇡⇤

⇡

 ::= {�}? | | ⇡ · ⇡ | F⇡

�

⇡

! ::= {�}? |! | ⇡! + ⇡

! | ⇡! · ⇡! | (⇡!)⇤

where d, d

0 2 { ,!}, and F

⇡

�

is a macro that stands for ({¬�}? · ⇡)⇤ · {�}?,
i.e. ”the first position satisfying � using ⇡ as steps” (which is obviously non-
ambiguous).

Let DataPDL� be this fragment. The two example formulas given earlier
belong in this fragment. Our main theorem, which we prove in the next section,
is the following.

Theorem 1. The emptiness problem for DataPDL� formulas is decidable.

4 Decidability of DataPDL

�

4.1 The construction for a restricted case

Let � be a DataPDL� formula. We want to construct an A1RA A
�

such that the
language L(A

�

) of A
�

is empty if and only if the language L(�) of � is empty.
If � has no data comparison tests, then it is simply a property of words. It is
known that for words, two-way automata are as expressive as one-way automata.
Therefore, in this case, we simply need to translate the PDL formula into a two-
way automaton, turn this into a one-way automaton, and say this automaton is
actually an A1RA which does not use its register, and we win.
Now we explain the intuition on how to deal with comparison tests. To simplify
the proof, we add two new restrictions on comparison tests h⇡i ./ h⇡0i:
– The left hand side path ⇡ must be "
– ⇡

0 must not contain nested comparison tests: ⇡0 cannot contain guards which
themselves contain a comparison test subformula.

These additional restrictions will be removed later.

� is a fixed formula. It has a finite number n of subformulas which are com-
parison tests. Let �0, ...,�n�1 be those subformulas. The idea is to isolate these
comparison tests by replacing them with new letters that will mark at which
positions the comparison test holds. Let C = {c0, ..., cn�1} be n new letters,
with each letter c

i

associated to the subformula �
i

. For instance, let

� = [!⇤ ·{¬b}?] (h"i = h!i ^ h ⇤ia)

on alphabet ⌃ = {a, b}. Here, �0 is the subformula h"i = h!i.
We will extract the comparison test by adding a new letter c0 in that way:

�

0 = ([!⇤ ·{¬b}?] (c0 ^ h ⇤ia)) ^ ([!⇤] (c0 , h"i = h!i))

10

on alphabet ⌃0 = {a, b}⇥ 2{c0}. � and �0 are equivalent with respect to satisfia-
bility, however �0 has a nice structure: the left part is simply a formula involving
no data, so the reasoning above applies, and we only have a specific kind of
comparison tests in the right part, which are of the form [!⇤] (c

i

, h"i ./ h⇡i).
In other words, we need to be able to check that the markings are correct.
Formally, � being fixed, let ⌃

�

= ⌃ ⇥ 2C , and ⌧ : (⌃ ⇥ D)⇤ ! (⌃
�

⇥ D)⇤ the
transformation such that

– ⌧(w).d[i] = w.d[i] (data are unchanged)
– ⌧(w).[i] = (w.[i], {c

j

| c
j

holds at position i})

Now let �
⌧

be the formula that is � in which each comparison subformula c

j

is
replaced by the letter test c

j

(for example, if � = [!⇤ ·{a}?]h"i 6= h i, then
�

⌧

= [!⇤ ·{a}?]c0). Then we define

�

0 = �

⌧

^
^

0i<n

[!⇤] (c
i

, �

i

)

Proposition 5. L(�0) = ⌧(L(�))

Proof. ◆: by definition of ⌧
✓: Let w

0 2 L(�0), and w be its projection on (⌃ ⇥ D)⇤. As w

0 satisfies the
right part of �0, the markings of all c

i

are correct, thus w

0 = ⌧(w). We show
that w satisfies � recursively on the structure of �; as � and �

⌧

have the same
structure, only the base case is interesting. So we have that w0 satifies some letter
test c

i

at some position, and we want to show that w satisfies the associated
comparison test �

i

at the same position. But we also know that w

0 satisfies
formula [!⇤] (c

i

, �

i

) and that the data of w and w

0 are the same, which imply
that w satisfies �

i

at that position. ut

Corollary 1. L(�) is empty if and only if L(�0) is empty.

We describe how to build an A1RA whose language is the same as �0. The left
part, �

⌧

, is a formula without data. Following the remark given in the beginning
of this section, there is an A1RA A

⌧

whose language is L(�
⌧

). What remains
is, for each 0  i < n, to build an A1RA A

i

whose language is the language of
subformula [!⇤] (c

i

, �

i

), or said otherwise, A
i

checks that the markings for c
i

are correct. The intersection of A
⌧

and all A
i

then gives the language L(�0). Let
us describe how those A

i

are built.

As A1RA are inherently one-way, the way we deal with left-oriented and
right-oriented paths will be di↵erent. Let us now describe how to build A

i

in the
two di↵erent cases.
Let �

i

= h"i ./ h⇡ i, and c

i

its corresponding marking. ⇡ is a left-oriented PDL
path that does not use data values. So there exists some deterministic word
automaton A

⇡

= (Q
⇡

, q

⇡

, F

⇡

, �

⇡

) such that for every (data)word w, if A
⇡

starts
reading w at position y, A

⇡

is in a final state every time it reaches a position
x such that (x, y) 2 [[⇡]]

w

. As we also asked that ⇡ be non-ambiguous, for all

11

positions x, there is at most one position y such that starting the automaton
A

⇡

at position y leads to x being in a final state. Similarly, there exists some
deterministic word automaton A

nr

= (Q
nr

, q

nr

, F

nr

, �

nr

) that, if started at the
initial position of the word, is in a final state at position x if and only if a position
x has no reachable destination with ⇡, meaning that there is actually no position
y such that (x, y) 2 [[⇡]]

w

, which also implies that, wherever A
⇡

is started, it will
never reach x with a final state. For example, if �

i

= h"i < ha?· 2i, then A
nr

recognize the first two positions (because we cannot go left twice from them)
and all positions where the letter is not a.
Obviously �

i

cannot hold in these positions, so we can modify A
nr

a bit to reject
(by forcing a transition to ?) the words where c

i

is read when in a final state.
This takes care of not reachable positions, so it remains to check whether the c

i

markings are correct for reachable positions.
From A

⇡

, we first define an A1RA A
r

that will check if �
i

holds for all positions
x that can be reached from the position y from which A

r

has been started. Let
A

r

= (Q
⇡

, q

⇡

, Q

⇡

,�

r

) where:

– Q

⇡

, q

⇡

are the same as in A
⇡

, and all states are final.
– �

r

= {(q, (a, s), ;, (�
⇡

(q, a), ;)) | if q /2 F

⇡

}
[{(q, (a, s), ./, (�

⇡

(q, a), ;)) | if q 2 F

⇡

and c

i

2 s}
[{(q, (a, s), .̄/,?) | if q 2 F

⇡

and c

i

2 s}
[{(q, (a, s), .̄/, (�

⇡

(q, a), ;)) | if q 2 F

⇡

and c

i

/2 s}
[{(q, (a, s), ./,?) | if q 2 F

⇡

and c

i

/2 s}

for all (a, s) 2 ⌃ ⇥ 2C , and where .̄/ is the comparison operator opposite to ./
(i.e. <̄ is �, ¯6= is =, etc).
Then let A0

i

= (Q, q0, F,�) be an A1RA, whose role consists in launching A
r

simultaneously at all positions, be defined as:

– Q = {q, q0}]Q

⇡

– q0 = q

– F = Q

– � = �

r

[{(q, ", ;, (q
⇡

, #) ^ (q0, ;))}1
[{(q0, (a, s), ;, (q, ;))}

And finally, A
i

is the conjunction of A0
i

and A
nr

.

Proposition 6. A
i

accepts w

0 if and only if the markings of c
i

are correct.

Proof. The only way a computation can fail is by following a transition that
leads to ?, as it can easily be checked that in any case, some transition is
available. These transitions happen in two cases: either A

nr

found that the
current position is not reachable and claims to satisfy c

i

, which is a contradiction
; or A

r

has been started from some position y (from which it kept the value in the

1 We allow ourselves "-transition to simplify a bit the description, but those can be
eliminated using the usual way

12

register), and later at position x, A
r

is in a state that is final for A
⇡

, which means
that y is the only position such that (x, y) 2 [[⇡]]

w

, and then either x claims to
satisfy �

i

(c
i

is marked) but the test with the register fails (or alternatively, the
opposite test .̄/ succeeded), or it claims not to satisfy �

i

(c
i

is not marked) but
the test actually succeeded, both of which are contradictions. Conversely, these
are the only possible ways of contradicting the markings. Thus, A

i

fails if and
only if there is a contradiction in the markings. ut

The case of right-oriented paths is a bit di↵erent.
Let �

i

= h"i ./ h⇡!i. Again, ⇡ is a right-oriented PDL path that does not use
data values, so let A

⇡

= (Q
⇡

, q

⇡

, F

⇡

, �

⇡

) be a deterministic automaton recogniz-
ing ⇡. This time, we have to define two di↵erent A1RA to check when c

i

holds
and when it does not. Let A+

i

= (Q+
, q

+
, F

+
,�

+) where:

– Q

+ = {q+} [Q

⇡

– F

+ = ;
– �

+ = {q+, (a, s), ;,> | if c
i

/2 s}
[{(q+, (a, s), ./,>) | if c

i

2 s and q

⇡

2 F

⇡

}
[{(q+, (a, s), ;, (�

⇡

(q
⇡

, a), ;)) | if c
i

2 s}
[{(q, (a, s), ./,>) | 8q 2 F

⇡

}
[{(q, (a, s), ;, (�

⇡

(q, a), ;)) | 8q 2 Q

⇡

}

Let A�
i

= (Q�, q�, F�,��) where:

– Q

� = {q�} [Q

⇡

– F

� = Q

�

– �

� = {q�, (a, s), ;,> | if c
i

2 s}
[{(q�, (a, s), ./,?) | if c

i

/2 s and q

⇡

2 F

⇡

}
[{(q�, (a, s), .̄/, (�

⇡

(q
⇡

, a), ;)) | if c
i

/2 s and q

⇡

2 F

⇡

}
[{(q�, (a, s), ;, (�

⇡

(q
⇡

, a), ;)) | if c
i

/2 s and q

⇡

/2 F

⇡

}
[{(q, (a, s), ./,?) | 8q 2 F

⇡

}
[{(q, (a, s), .̄/, (�

⇡

(q, a), ;)) | 8q 2 F

⇡

}
[{(q, (a, s), ;, (�

⇡

(q, a), ;)) | 8q 2 Q

⇡

\F
⇡

}

In both automata, q+ (resp. q�) play the role of q
⇡

and also checks that
c

i

is marked (resp. not marked), otherwise it accepts because it is the other
automaton’s job to check this. This is why the transition with q

+ (q�) and the
following transitions with q 2 Q

⇡

look similar.

Lemma 1. For any w, if A+
i

(resp. A�
i

) is launched at position x, then it does
not accept if and only if c

i

is marked (resp. not marked) and this marking is
incorrect.

Proof. A+
i

fails if and only if there is no witness y such that (x, y) 2 ⇡ and
w.d[x] ./ w.d[y], i.e. �

i

does not hold. Conversely, A�
i

fails if and only if there is
such a witness. ut

Now we define A
i

= (Q, q0, F,�) whose job is simply to launch A+
i

and A�
i

at each position:

13

– Q = {q0, q1}]Q

+]Q

�

– F = {q0, q1}] F

�

– � = �

+]��
[{(q0, ", ;, (q1, ;) ^ (q+, #) ^ (q�, #))}
[{(q1, (a, s), ;, (q0, ;))}

Proposition 7. A
i

accepts w if and only if the markings of c
i

are correct.

Proof. Consequence of Lemma 1.

Note that as we reduce to the emptiness of A1RA, this decision procedure
has non-elementary complexity.

4.2 Returning to the general case

We added two restrictions to simplify the construction:

– the left hand side path is "
– there are no nested comparison tests

We will now explain the intuition for how to deal with the general case.

Let �
i

= h⇡i ./ h⇡0i be a comparison test where ⇡ is not restricted to ",
however the other restrictions (no nested comparison tests, one direction only,
non-ambiguous if left-oriented) still apply.

Proposition 8. One can e↵ectively build an A1RA A
i

which accepts a dataword
if and only if the c

i

markings are correct.

Proof. There are four di↵erent cases depending on the orientation of ⇡ and ⇡0:

The cases h⇡ i ./ h⇡0!i and h⇡!i ./ h⇡0 i are symmetrical, so let us assume
that ⇡ is the left-oriented path. In order to check this kind of test, we compose
the two constructions defined earlier: the automaton starts by lauching A

nr

and
simultaneously launches A

r

at every position, as before. However, instead of
making tests when ending in a final state, A

r

simply branches to A+ and A�.
This is done by replacing any transition p ! q where q 2 F

⇡

by a transition
p ! q ^ q

+ ^ q

� with the same letter. The only time a value is stored in the
register is at the beginning of A

r

, so the comparisons in A+ and A� will refer
to this value.

In the case h⇡ i ./ h⇡0 i, the idea is to start (A
⇡

,A
⇡

0) at every couple
(y, y0) of positions in the word. In other words, for every positions y < y

0 in w,
there is a branch where the automaton started A

⇡

at position y and later on
started A

⇡

0 at position y

0, and vice-versa. The data value is stored when the
first automaton is started, and a comparison is done when the second starts. If
./ holds and A

⇡

was started before A
⇡

0 , then we reject only if both are in a
final state, and at that position c

i

is not marked. Conversely, if .̄/ holds, then
we reject if both are in a final state and c

i

is marked. If A
⇡

0 was started before

14

dataword

Ai •
#

A⇡ •
ci?

A⇡0 •
./

⇡ ⇡0

Fig. 1. An illustration for the case left-right

dataword

Ai •
#

A⇡ •
./

A⇡0

•
•
ci?

⇡

⇡0

Fig. 2. An illustration for the case left-left

A
⇡

, we just need to take care of reversing the direction of the comparison, i.e.
< becomes >,  becomes � and vice-versa.

Sadly the case h⇡!i ./ h⇡0!i is a bit more di�cult, as the paths may be
ambiguous, which means there are potentially many ”candidate” couples of po-
sitions. At every position, we start both A

⇡

and A
⇡

0 , and we remember whether
c

i

was marked at that position or not.
In the case where c

i

was marked, whenever any of the two automata reaches a
final state, it can non-deterministically stop or continue. If it chose to stop, it
stores the current value, then waits for the second automaton to reach a final
state and non-deterministically choose to stop, at which point a comparison is
made according to which automaton stopped first (if A

⇡

stopped first, the com-
parison is ./, else it’s the reversed one). The computation accepts only if both
automata chose to stop at some point and the comparison test held (the two
positions where the automata stopped give a witness proving �

i

).
In the case where c

i

was not marked, the construction is a bit similar: when any
of the two automata reaches a final state, it both co-non-deterministically stops
and continues. In the branch where the automaton stopped, it stores the cur-
rent value, waits for a branch where the second automaton stops, and then tests
whether ./ holds (or the reversed comparison depending on who stopped first).
This time, a computation fails only if there is a branch where both automata
stopped and the comparison test held (which gives a witness proving �

i

while c
i

was not marked).

ut

15

dataword

Ai •
ci?

A⇡ •
#
A⇡0

•
./

⇡

⇡0

Fig. 3. An illustration for the case right-right

Now let us consider a comparison test subformula in which paths may contain
comparison tests themselves. As we have seen how to deal with the case when
paths do not contain nested comparison tests, we can recursively convert every
nested test into a c

i

so that every �
i

is a path containing no comparison tests.
For instance, the formula h"i < h! ·{h"i > h!⇤i}?· !i is divided into two
markings:

– First c0 corresponds to �0 = h"i > h!⇤i
– Then c1 corresponds to �1 = h"i < h! ·{c0}?·!i

with the corresponding A0 and A1. The rest of the construction remain un-
changed.

5 A separation theorem for DataPDL

In the DataPDL� fragment, we ask that paths in comparison tests must be
restricted to a single direction. This may seem very restrictive, but we show that
actually every path can be transformed into several paths each using a single
direction. The intuition is that a path without comparison tests is equivalent
to a two-way automaton, which we will ”split” into multiple one-way automata
using the usual crossing sequences construction.

Proposition 9. A formula h⇡i ./ h⇡0i where ⇡ and ⇡0 contain no comparison
tests is equivalent to a disjunction of formulas of the form h⇡

i

i ./ h⇡0
i

i ^ �
i

where ⇡
i

and ⇡0
i

are paths using only one direction, and �
i

is a formula without
comparison tests.

Proof. Let � = h⇡i ./ h⇡0i be such a formula. As ⇡ and ⇡0 are data-free paths,
they are equivalent to some two-way automaton which we will call A (for ⇡) and
B (for ⇡0). These automata start at current position x, move in the dataword,
and accept some positions, i.e. reach some final state at these positions. Without
loss of generality, suppose they each have a single initial state q

A
0 and q

B
0 and a

single final state q

A
f

and q

B
f

. Let us focus on A for the moment.
Suppose that position y is accepted by A, and let us take some shortest path
leading to q

f

at position y. This path gives a sequence of states q0 · q1 · · · qn · q
f

,

16

where each state is also annotated with the direction (left or right) in which the
word was read at that moment. A position z visited in this path may have been
visited several times, so let C

z

be the crossing sequence of z, that is, the sequence
q

i1 · · · qik of states in which A crossed position z, as well as the direction they
were following. The same state with the same direction cannot appear twice in
C
z

, otherwise that would imply the existence of a shorter accepting path. Thus,
crossing sequences have size at most 2 · |Q| (and so there is a finite number of
them). Let us call C0 the crossing sequence of x and C

f

the one of y. C0 starts
with q0, and has odd length if and only if q0 is directed towards y. Similarly,
C
f

ends with q

f

, and has odd length if and only if q
f

is directed away from x.
For all positions z strictly between x and y, C

z

has odd length, and for all other
positions, C

z

has even length.
We can verify that the crossing sequences of two consecutive positionsmatch each
other by checking a few local conditions involving the two crossing sequences and
the letter at their respective positions. Intuitively, these conditions only check
that there exists some transitions in A which are used to get from one side to
the other.
The one-way automata we will build has these crossing sequences as state space,
starts from some initial crossing sequence C0, and simply guesses the sucessive
crossing sequences while checking they match, until it reaches a final crossing
sequence C

f

, thus only one pass will be necessary. Suppose that C0 and C
f

are
fixed. There are two symmetric cases, either C0 is to the left of position C

f

,
or to the right. For instance, suppose it is the first case. Then we build three
automata:

– A!(C0, Cf) that only moves forward, starting at state C0, guessing matching
crossing sequences, until it reaches C

f

then stops.
– A!(C

f

) that also only moves forward, starting at C
f

, and ending on the
empty crossing sequence.

– A (C0) that only moves backward, starting at C0, and also ending on the
empty crossing sequence.

The first automaton guesses the part of the path that is between C0 and C
f

, while
the two other respectively guess the parts of the path that are after C

f

and before
C0. Put together, these three guessed parts recreate the original path followed
by A. In the case where the respective position of C0 and C

f

are reversed, the
three automata simply have their direction reversed. With this, we have that for
any formula , hAi is equivalent to:

_

C0,Cf

d2{ ,!}

⇣
hAd(C0, Cf) · {hAd(C

f

)i>}?i ^ hAd̄(C0)i>
⌘

that is, we simply guess C0, Cf , and the direction d (we note d̄ the opposite
direction), then we guess the three parts of the path, and the formula is tested
at the end of the part between C0 and C

f

. We do the same construction for the
other two-way automaton B. Put together, we can now translate the original

17

comparison test � = h⇡i ./ h⇡0i:

� hAi ./ hBi

_

C0,Cf

,C00,C
0
f

,

d,d

02{ ,!}

⇣
hAd(C0, Cf) · {hAd(C

f

)i>}?i ./ hBd

0
(C00, C0f) · {hBd

0
(C0

f

)i>}?i

^
⇣
hAd̄(C0)i> ^ hBd̄

0
(C00)i>

⌘⌘

All these automata are one-way, so they can be translated back into a PDL path
using only one direction. ut

6 Conclusion and discussion

We introduced a new logic on datawords of which a fragment is decidable. This
fragment is expressive enough to express some properties such as ”data are in-
creasing” or ”there is a leader with maximal value”, while also being able to
express regular properties such as ”the word has even size”, which could be of
interest for model-checking.
Some possible axes for future research include extending our results to the set-
tings of infinite datawords as well as datatrees, in order to increase the number
of behaviours that can be modeled. Infinite datawords may model the execu-
tion of a reactive program, a program that always reacts to inputs from the
environment, while datatrees may simulate branching programs.

References

1. Cyriac Aiswarya, Benedikt Bollig, and Paul Gastin. An automata-theoretic
approach to the verification of distributed algorithms. arXiv preprint
arXiv:1504.06534, 2015.

2. Miko laj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc
Segoufin. Two-variable logic on data words. ACM Transactions on Computational
Logic (TOCL), 12(4):27, 2011.

3. Christopher Czyba, Christopher Spinrath, and Wolfgang Thomas. Finite automata
over infinite alphabets: Two models with transitions for local change. In Interna-
tional Conference on Developments in Language Theory, pages 203–214. Springer,
2015.

4. Stéphane Demri and Ranko Lazić. Ltl with the freeze quantifier and register
automata. ACM Transactions on Computational Logic (TOCL), 10(3):16, 2009.

5. Diego Figueira. A decidable two-way logic on data words. In Logic in Computer
Science (LICS), 2011 26th Annual IEEE Symposium on, pages 365–374. IEEE,
2011.

6. Diego Figueira, Piotr Hofman, and S lawomir Lasota. Relating timed and register
automata. Mathematical Structures in Computer Science, pages 1–29, 2010.

7. Michael J Fischer and Richard E Ladner. Propositional dynamic logic of regular
programs. Journal of computer and system sciences, 18(2):194–211, 1979.

18

8. Erich Grädel and Martin Otto. On logics with two variables. Theoretical computer
science, 224(1):73–113, 1999.

9. Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical
Computer Science, 134(2):329–363, 1994.

10. Slawomir Lasota and Igor Walukiewicz. Alternating timed automata. ACM Trans-
actions on Computational Logic (TOCL), 9(2):10, 2008.

11. Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines
for strings over infinite alphabets. ACM Transactions on Computational Logic
(TOCL), 5(3):403–435, 2004.

12. Thomas Schwentick and Thomas Zeume. Two-variable logic with two order re-
lations. In International Workshop on Computer Science Logic, pages 499–513.
Springer, 2010.

19

