
Automated applications of Cryptographic Assumptions

Charlie Jacomme
supervised by Gilles Barthes and Benedikt Schmidt, IMDEA software

and Hubert Comon-Lundh, LSV

1. Introduction

General context. The last decades have seen the development of the internet to a point where we use it in our
everyday lifes for operations that can be critical like handling our bank account or buying items. With this kind
of critical operations, we need a secure way to execute them. For example, if you buy something online, nobody
should be able to obtain your credit card number, and if your phone has a GPS chip, you do not want someone
to be able to steal your location.

We see here emerging two important notions of security : confidentiality, which means that an eavesdropper
cannot recover the content of a message, and authentication, which means that the sender of a message is who
it is supposed to be.

This lead to the design of symmetric encryption schemes, where the different parties have a previously shared
secret and they use this secret to encrypt and decrypt some messages. Only someone with the corresponding
secret can decrypt an encrypted message, thus achieving confidentiality, provided they can find a way to share
the secret. Among such schemes we can cite AES or DES.

An encryption scheme can be run on a single computer, but authentication is a property involving programs
running on different locations. This kind of distributed programs is called a protocol. For example, a key exchange
protocol runs on two different computers and allows the computers to share a new secret value. An example of
such a protocol is the NSL protocol, which is actually an interesting example because it was first proposed in
1978 [19] but an attack was found in 1995 and it was then corrected [17]. We see here that designing a protocol
can be an error prone process and a protocol that seems to be secure might be inherently flawed.

A more recent example is the TLS protocol, a widely used authentication protocol. Its first version was
published in 1999, and in the past 17 years many different attacks have been discovered, the protocol being
patched consequently over the years. NSL and TLS are only two examples among many others. The consequence
is clear : protocols and schemes can look secure at first glance but neither intuition nor experience can be trusted
on this. In order to have truly secure protocols, we need some way to prove it formally.

Proven security. At this stage the problem is : given a protocol and a property, can we prove that the protocol
satisfies the property ? It may look like a simple question of model checking but in classical model checking
we usually ensure the safety of a program, i.e that any run of the program will verify some property. In our
problem, the program should verify some property, even when it is running in parallel with any attacker : there
is a universal quantifier over the attacker.

Besides the universal quantification, we need also to precise the range of the quantification : what is an
attacker ? As we cannot provide any guarantee on what happens over the network, we must consider the worst
case scenario and consider that the attacker has full control over it, i.e. can intercept and forge any message.
Furthermore, we also need to define the computation capabilities of the attacker : he might have access to some
super computer, or maybe a quantum calculator, or maybe it is just a basic laptop. If we prove something with
a too weak attacker, the proof is useless in practice, but if we consider an all powerful attacker, we will never
be able to prove any security.

To propose a solution to this question, two main models have been developed and used in the past, relying
on two different assumptions. The first one relies on the Dolev-Yao assumption [10] and is called the symbolic

ALICE

skA, secret

BOB

skB

〈secret, Alice〉pk(skB)

〈secret, Bob〉pk(skA)

Figure 1. Basic handsake protocol

setting. In this model, the idea is to describe precisely what the attacker can do using an inference system. In the
second one, the computational model, the attacker is any probabilistic polynomial time Turing machine (PPT).

The symbolic model. To develop a bit, in the symbolic setting the assumption is basically that the encryption
schemes are unbreakable. Therefore, an attacker can decrypt a cyphertext only if he has the corresponding
secret key. We can then model the messages with terms, where the function symbols capture the cryptographic
primitives. A message could for example be enc(”hello”, secret_key), and "hello" can be obtained from this term
only if one also knows the secret key. Of course, this model is not well suited for the verification of encryption
schemes themselves. It is however relevant to protocol verification. Let us for example consider a simple hand
shake protocol described in figure 1. We use here an asymmetric encryption scheme where anyone can encrypt
with some public-key but only the person with the corresponding secret key can decrypt the message. It can be
represented by the term 〈”hello”〉pk(secret_key). Intuitively, it acts has a locker that anyone can lock but which
can only be opened with a key. Using this encryption scheme we show in figure 1 a basic handshake protocol
where Alice sends some secret to Bob using its public key, and Bob replies to Alice as an acknowledgement.

In the formal model, as the encryption scheme is assumed to be perfect and as the attacker does not know
Alice’s secret key nor Bob’s, we can prove that if the protocol has been completed, then Alice and Bob share a
common secret, which is unknown to the attacker.

This is a toy example where it is quite simple to see what is happening and one can formally prove the
confidentiality of the secret, but in general, in the symbolic model it is impossible to decide if a protocol does
satisfy some property. It is however not an issue in many practical cases and automation of security analysis in
this model has been well-developed for years and several tools [18, 14, 8] have proven their usefulness.

However, if this formal model allows to find specific flaws in the construction of protocols, it does not capture
many of the real world attacks because we assumed the encryption to be perfect. For example, the encryption
scheme might ensure confidentiality of the message but not the integrity, thus allowing the attacker to modify the
message inside the encryption. Let us consider once more the protocol of figure 1, but this time we assume that
the encryption of a pair is the pair of the encryptions : 〈secret, Alice〉pk(skB) = (〈secret〉pk(skB), 〈Alice〉pk(skB)).
Then, there is an attack on the protocol, which allows an attacker to obtain the secret, as shown in figure 2.
Intuitively, Charlie can intercept the message from Alice to Bob and insert his name inside it, so Bob will
reencrypt the message with Charlie’s public key, thus allowing Charlie to obtain the secret and finally forge the
answer to Alice.

This example highlights the limitations of the symbolic model : a protocol found secure under the Dolev
Yao assumption might be broken in the real world if the implementation of the primitives has an unexpected
weakness.

The computational model. To fix the above problem, this second model considers that an attacker is a PPT. We
can then consider the security of a scheme against such attackers and if, in some protocol the encryption scheme

ALICE

skA, secret

CHARLIE

skC

BOB

skB

〈secret, Alice〉pk(skB)

〈secret, Charlie〉pk(skB)

〈secret, Bob〉pk(skC)

〈secret, Bob〉pk(skB)

Figure 2. Attack on the key exchange

does not preserve the integrity, there will be an attacker who can mount the attack. Therefore, the previous attack,
which was ignored in the symbolic model, would be captured in this model.

A direct consequence of considering a probabilistic attacker is that if we want to know if some specific value
is secret, there is always an attacker who can, with some luck, pick at random a key, get the correct value and
break the secrecy. To avoid this problem, we just try to prove that, with high probability, no attacker can break
the secrecy. Moreover, the guarantee provided by a security scheme will always depend on the size of the secret
key. If a secret key is made of only 1 bit, a polynomial attacker will always be able to break it and obtain the
secret just by trying the two possibilities. Therefore, we need to consider probabilities that depend on the size
of some security parameters, classically the secret key, and we then want to prove that some scheme or protocol
guarantees the property with an asymptotically high probability.

Proving such a result is difficult and the classical proof method is by reduction : we assume that some problem
is difficult and then prove the desired result. A classical assumption is for example the Decisional Diffie-Helmann
problem, where we consider that given three group elements ga, gb, gc, the complexity of deciding if c = ab is
high. We then assume that no PPT attacker can solve this problem with a non negligible probability. Given a
scheme and a property, we then reason ad absurdo and assume that we have an attacker, who breaks the property
and try to construct a new attacker using this attacker, who solves DDH.

Proof method in the computational model. The example of the OAEP scheme [21] shows that security proofs
in the computational model are error prone. Therefore, it is wise to design formally verifiable proofs.

In order to formalize the framework, in which such proofs should be carried, the concept of cryptographic
games was introduced [22, 5]. The core idea is to consider the interactions between the attacker and the protocol
or scheme as a game and then perform game transformations until breaking a hardness assumption. Designing
a formal framework for cryptographic game transformations was the starting point of many projects [3, 6, 23,
12].

Proof automation. Once computer verified proof were available, the complexity of the proof search exposed the
need for automation. Computer-aided analysis has been developed a lot in the past years [4, 1, 7, 20]. Cryptoverif
captures a small set of game transformations and thus allows for a lot of automation. However, its drawbacks is
that in many cases we cannot obtain a proof, and we do not know if it is because there is an atack or because we
need some other game transformation. Another stand point was taken with CertiCrypt : it relies on the Coq prover
and can then capture any valid game transformation, but it is a lot more difficult to automate. This difficulty
yield the design of Easycrypt and Zoocrypt which both tried to achieve automation for some specific kind of
schemes or protocols. These tools finally lead to AutoG&P[2], where a new logic is introduced, which captures

a set of possible valid reductions between games, thus allowing to partially explore automatically the possible
proof trees, and enable the automation of a large class of schemes and protocols.

However, even if AutoG&P provides a complete framework for obtaining fully verified proofs, the automation
part still relies heavily on some heuristics. The main issue is that each game transformation can be applied in an
unbounded number of ways. It is then unclear what might be the correct proof search given a game. And even
if we consider only one application of one rule, some of its conditions are sometimes so specific that we cannot
decide if it is possible or not to apply it to a given game, leaving us once again using a heuristic. To say it in
a nutshell, AutoG&P is currently using a heuristic to decide which rule to try to apply, and another heuristic
will say if it is possible or not to apply this rule. The heuristics are fine tuned and allow to obtain automated or
partially automated proofs for some complicated schemes, but replacing some of these heuristics by complete
procedures seems to be necessary to progress further into the automation.

Current issues. One of the main issue correspond to the automated application of cryptographic assumptions.
As we explain later, deciding whether or not a cryptographic assumption is applicable to a given a game requires
to solve symbolic deducibility problems (can an attacker deduce a message given a set of known messages
?). This is actually quite surprising, while trying to automate proofs in the computational model, we suddenly
fall back on a symbolic model problem studied many times before. However, the framework of AutoG&P is
very general, capturing for instance protocols requiring a bilinear map, and the existing results on symbolic
deducibility are not sufficient for AutoG&P. Indeed, we are here dealing with an equational theory, which allows
to perform operations in a multivariate polynomial ring, given that we may have some extra information about
some variables, typically that some of them are different from 0.

Contributions. We mainly present in this report new decision results, allowing to improve the automation of
game transformations.

1) Our first contribution is to give a decision algorithm for deducibility in the AutoG&P setting, an
axiomatized Diffie-Hellman equational theory containing a multi-linear map. This requires solving
deducibility constraint in an extended theory of modular exponentiation for which no procedure was
known before. We then use this algorithm to decide if an assumption can directly be applied to a given
game. This has been implemented and experimented in AutoG&P.

2) We extend the previous decision algorithm to a fragment of game transformation rules : in addition to
directly applying an assumption, we can also create in some cases a sequence of rules, which allows
to apply the assumption. To do so we introduce a new problem, "modulo deducibility", which requires
the attacker to be able to compute a message that has the same probabilistic distribution as the secret.

3) Our third contribution is to provide a criterion to detect when it is not possible to find a sequence of
rules leading to an assumption application. This allows us, when we are not in the fragment of the
previous algorithm, to decide whether or not we should try to find heuristically such a sequence of
rules.

4) Finally we provide with an undecidability result, showing that there will always be a need for heuristics
in the search for game transformations.

Plan. In section 2, we present the framework of AutoG&P and the general problem of applying a cryptographic
assumption and how it relates to deducibility. In section 3 we prove the decidability of deducibility and give
some details about the implementation in section 4. In section 5 we provide with a decision procedure for a
restricted modulo deducibility and give in section 6 an example of its use on a cryptographic problem. Finally,
in section 7 we provide a criterion used to detect when it will be impossible to apply an assumption to a given
game even with many transformations, and in section 8 we conclude with an undecidability result showing that
it is useless to look for some decision procedure.

x : string variable
gi : Gi generator of Gi

_ ∗ _ : Gi ×Gi 7→ Gi, _/_ : Gi ×Gi 7→ Gi multiplication and division in Gi

(_)(_) : Gi × Fq 7→ Gi exponentiation in Gi

0 : Fq, _ + _ : Fq × Fq 7→ Fq,−(_) : Fq 7→ Fq additive group operations for Fq
1 : Fq, _ ∗ _ : Fq × Fq 7→ Fq, (_)−1 : Fq 7→ Fq multiplicative group operations for Fq
ê(_, ..., _) : G1 × ...×Gk 7→ Gt multi-linear map to Gt

Figure 3. Signature of the equational theory E

2. The AutoG&P framework

The goal of AutoG&P is to enable modeling and transforming many different types of games. The syntax
must capture all the possible mathematical constructs that could be used in a scheme or protocol, such as
group operations, bilinear map, logical operations on bitstring... To be able to manipulate such mathematical
constructions and model these operations, we formally define the type of messages and values with a generic
type : expressions.

Expressions. Expressions are built over a Diffie-Hellman equationnal theory E extended with a k-multilinear map
whose signature is presented in figure 3. The source groups Gi are all finite groups of order q ∈ N. A context
C is an expression with a hole that can be filled by an other expression. We classically define an equivalence
relation on expressions based on satisfaction in first-order logic. The expressions e and e′ are equivalent modulo
E , written e =E e

′, if E |= e = e′. Here, E denotes the axioms for our signature consisting of the field axioms
for Fq, the (multilinear) group axioms for Gi, and the usual axioms for the equality. We consider inversion in
Fq, as underspecified, i.e., 0−1 is some arbitrary fixed value in Fq, and we can only simplify x ∗ x−1 to 1 if
x 6= 0 holds. We use Γ |= e =E e

′ to denote (Γ, E) |= e = e′, i.e., E is extended with additional axioms Γ.
We assume the set of axioms Γ consists of (in)equalities on expressions. We write E − X with X a function
symbol to denote the equational theory generated by the equations of E , which do not contains the symbols in
X. Finally, we will use K to denote any field.
Example 1. We can have expressions of the form e1 = g2

1 ,e2 = ê(e1, g
3
2) and e3 = g5

t × e2. We have a direct
matching between the equational theory and the classical group operations in mathematics, and here for example
we have e3 = g5

t × ê(g2
1, g

3
2) = g5

t × ê(g1, g2)2+3 = g5
t × g5

t = g10
t following from the characterization of a

bilinear map.
For an environment σ : string 7→ {0, 1}∗, we can define the natural semantic of an expression, where

JexprKσ is the bitstring corresponding to the mathematical evaluation of the expression where we replace every
variable with the corresponding value given by σ.

Now that we have defined the type of the objects, we can show the syntax of game. We take here a different
approach from the AutoG&P syntax and choose to only consider a restricted fragment of games along with a
new syntax. This is only for ease of presentation and not a limitation, we do not wish to reintroduce the full
AutoG&P syntax, most of which would be irrelevant for the problems we consider. We thus define a new type to
define games, game expressions, which corresponds to expressions extended with equality testing, conditional,
random sampling and attacker call. An attacker call can either be a variable of type PPT, or an explicitly given
attacker, i.e a closed game expression which can take inputs parameters. An explicitly given attacker can still
make calls to some other PPT attackers, and we will call such an attacker a simulator. We write a : D to denote
the sampling of a in D.

Definition 2. A game expression is of the form:

gexpr := expr
| (expr1 = expr2) : bool
| if gexpr1 : bool then gexpr2 else gexpr3

| a1 : D1, . . . am : Dm.gexpr
| B(gexpr1, ..., gexprn)

B := Ak
| λe1 . . . λen.gexpr

In order to formally reason about games, we present the corresponding semantic, which correspond to the
evaluation of a game expression in an environment σ. The environment will map all the variable to a bitstring,
and will map an attacker symbol Ai to a PTT Ai and its random tape ρi. We give below the semantic of a game
expression, assuming that σ gives a value for all the variables appearing in gexpr.

Jexpr1 = expr2Kσ =

{
1 if (Jexpr1Kσ = Jexpr2Kσ
0 or else

Jif gexpr1 then gexpr2 else gexpr3Kσ =

{
Jgexpr2Kσ if Jgexpr1Kσ
Jgexpr3Kσ or else

JAk(gexpr1, ..., gexprn)Kσ = Ak(Jgexpr1Kσ, ..., JgexprnKσ) if σ(Ak) = Ak
Ja1 : D1, . . . am : Dm.gexprKσ = JgexprKσ if σ(ak) ∈ Dk

Jλe1 . . . λen.gexpr(gexp1, ..., gexpn)Kσ = Jgexpr[e1/gexp1 , ...,en /gexpn]Kσ if gexpr closed

We can use the syntactic sugar "let x = _ in", because as we fix the randomness using σ, every call to the
same attacker will return the same value. Then, we can have sequential calls to different attacker either by using
nested calls or using a let binding. Finally, we can simply write a cryptographic game with a game expression,
the semantic of the game expression matching the execution of the game.

We say that two games G1 and G2 are equivalent, denoted G1 ' G2 if they have the same, up to negligible,
of giving the same output. More formally :

a1 : D1, ..., an : Dn.gexpr ' a′1 : D′1, ..., a
′
m : D′m.gexpr

′

⇔

∀(Ai), |Prob(σ, σ(ak) ∈ Dk, rhoi : U‖JgexprKσ = 0)

−Prob(σ, σ(ak) ∈ Dk, rhoi : U‖Jgexpr′Kσ = 0)| is negligible

A cryptographic assumption is then given by simply assuming that two specific games are equivalent.
Example 3. The following equivalence expresses the so-called DDH assumption :

(a : Fq, b : Fq.A(ga, gb, gab)) ' (a : Fq, b : Fq, c : Fq.A(ga, gb, gc)

Here, we say that there is no attacker who will be able to return 0 more often if given gab rather than gc. We
say that no attacker can distinguish between (ga, gb, gab) and (ga, gb, gc)

With this syntax, the (incomplete) AutoG&P logic then allows us to prove equivalences on games by
describing valid game transformations. We only present a simplified formalism in figure 4 of a subset of the full
logic, which can be found in [2], with some precondition omitted or simplified for readability.

We use G[e]p to denote the expression in G at position p and we write G{A 7→ B(A)} to denote the game
G in which we replace the attacker symbol A by a simulator B.. The SYM, DEQ and TRANS rules capture
the fact that the ' relation is symmetric, transitive and reflexive. Then, the SWAP rule states that the order of
some independent commands in the game does not matter, the ADD rule allows one to add some sampling or
binding to a game and SUBST allows to replace expressions by some other equal expression. There are two more

Probability judgment:

SYM
G′ ' G
G ' G′

DEQ
G ' G

TRANS(G′)
G ' G′ G′ ' G′′

G ' G′′

Program transformation:

SUBST(p, e)
G[e]p ' G′

G[e′]p ' G′
e =E e

′

Random sampling:

RND(x, e)
G[x/e] ' G′

G ' G′
x:var and e:expr have the same probabilistic distribution

Reduction:

ABSTRACT(B)
G ' G′

G{A 7→ B(A)} ' G′{A 7→ B(A)}
B is a valid simulator for G and G’

Figure 4. Simplified fragment of the AutoG&P logic

H1 = (a : Fq, b : Fq.A(ga, gb, gab)) ' H2 = (a : Fq, b : Fq, c : Fq.A(ga, gb, gc)

Figure 5. The DDH assumption

complex rules, RND allow for instance to replace a uniformly distributed variable by some uniformly distributed
expression.

Finally, the last rules corresponds to the application of an assumption. Let us consider once again the DDH
assumption in figure 5.

Applying this assumptions to a game means that if in the game there is a call to an attacker with expressions
of the form (gx, gy, gxy) with x and y random variables, then you can replace xy by a fresh random variable.
Example 4. Let us assume the DDH assumption of figure 5, we want to prove the 3-PDDH assumption :

G1 = (a : Fq, b : Fq, c : Fq.A(ga, gb, gc, gabc)) ' G2 = (a : Fq, b : Fq, c : Fq, d : Fq.A(ga, gb, gc, gd)

We obtain the following proof tree :

TRANS(G′)

ABSTRACT(B)

DDH
H1 ' H2

G1 ' G′
RND(d,

d

c
)

Deq
G2 ' G2

G′ ' G2

(G1 ' G2)

with
G′ = (a : Fq, b : Fq, c : Fq, d : Fq.A(ga, gb, gc, gcd)

B = λ(A), λe1, e2, e3, d : Fq, A(e1, e2, g
d, ed3)

The difficult part of the proof is to find the valid simulator for the Abstract rule. Given B, it is easy to check
if the application is correct :

H1{A 7→ B(A)} = a : Fq, b : Fq.(λ(A), λe1, e2, e3, d : Fq, A(e1, e2, g
d, ed3))(A)(ga, gb, gab)

= a : Fq, b : Fq.(λe1, e2, e3, d : Fq,A(e1, e2, g
d, ed3))(ga, gb, gab)

= a : Fq, b : Fq.(d : Fq,A(ga, gb, gd, gabd))
= G1

H2{A 7→ B(A)} = a : Fq, b : Fq, c : Fq.(λ(A), λe1, e2, e3, d : Fq, A(e1, e2, g
d, ed3))(A)(ga, gb, gc)

= a : Fq, b : Fq, c : Fq.(λe1, e2, e3, d : Fq,A(e1, e2, g
d, ed3))(ga, gb, gc)

= a : Fq, b : Fq, c : Fq.(d : Fq,A(ga, gb, gd, gcd))
= G′

However, the converse is not true, because we need to check alpha renaming and deducibility in order to know
if there is a simulator.

Given a game G, one can apply the DDH assumption by using the rule ABSTRACT, which requires to find
a simulator B such that G = H1{A 7→ B(A)}. Basically, the idea is to abstract away some part of the game G
by saying that those operations can be made by an attacker that we must give explicitly. The simulator is then a
valid simulator if it corresponds to an actual attacker : it cannot guess any secret value and every expression that
it contains must be computed from its input parameters. It then introduces the classical problem of deducibility
in the symbolic setting. Given a set of terms, can an attacker deduce another term ? More formally, we write
Γ |= e `E e′ if there exists a context C such that Γ |= C[e] =E e

′ . We see here that we have a sufficient
condition in order to have a valid simulator. Indeed, if every expression in the simulator can be deduced from
its inputs we then have contexts that allows us to construct the expressions. Therefore, we can construct the
simulator using these contexts.

3. Unrestricted decidability of axiomatized deducibility constraints

Existing work concerning equational theories with Diffie-Hellman exponentiation always have some restric-
tion. For instance, in [9] they only consider products in the exponents and in [11] they only considers polynomials
with maximum degree of 1 (linear expressions). Here, we try to capture the most general possible instance of
this problem, without any restriction on the terms known to the attacker and allowing the equational theory to
be extended with axioms that are either equalities or inequalities between terms.

Adding inequalities is an important generalization, because in order to deduce the variable b from the set
{a ∗ b, a}, we need the assumption a 6= 0. In our case, when x is in Fq \ 0 we insert the assumption x 6= 0 in
the context.

Let X be a set of public names sampled in Fq , Y be a set of private names sampled in Fq, f1, ...fk, h ∈
K[X,Y] be a set of polynomials over both public and secret names and Γ be a coherent set of axioms.

Our deducibility problem is then to decide if :

Γ |= X, gf1i1 , ..., g
fk
ik
`E ght

We solve this problem in two steps, first by reducing to terms that are only in the target group, and then
solving the problem using Groebner basis techniques. Without loss of generality, we consider here the case of
a bilinear map, to simplify the writing, but the proofs scale up to multilinear maps.

Saturation into the target group. First, we reduce our problem to the case of a single group. This result comes
from the Proposition 1 of [15]. Their constructive proof can be used to obtain the following proposition.

Proposition 5. For any sets X and Y , polynomials f1, ...fn, h ∈ K[X,Y] and groups elements gf1i1 , ..., g
fn
in

,if we
denote (geit) = {ê(gij , gik)|1 ≤ j ≤ k ≤ n, gij ∈ G1, gik ∈ G2}∪{ê(gij , 1)|1 ≤ j ≤ n, gij ∈ G1, }∪{ê(1, gij)|1 ≤
j ≤ n, gij ∈ G2, }, then :

Γ |= X, gf1i1 , ..., g
fn
in
`E ght ⇔ Γ |= X, ge1t , ..., g

eN
t `E−ê ght

We obtain a problem where we only have elements in the target group, we can therefore reduce the general
problem to the single group case.

Reduction to polynomials. The problem at hand is now reduced to solving a non linear multi-variate polynomial
equation, as shown by the following proposition :

Lemma 6. For any sets X and Y , polynomials w1, ...wN , h ∈ K[X,Y]

Γ |= X, gw1
t , ..., gwN

t `E ght ⇔ ∃(ei, gi) ∈ K[X], (∀i,Γ |= gi 6= 0) ∧
∑
i

ei ×
wi
gi

= h

The idea is that the attacker can only put a group element to a power that he fully knows in K, so in the
exponent he can only multiply by polynomials in K[X]. The attacker can also divide by a polynomial if and
only if the axioms implies that it is different from 0.

The first remark is that we can actually compute the set {g|Γ |= g 6= 0}. Indeed, for each axiom f 6= 0,
we can extract a finite set of non zero irreducible polynomials by factorizing them (for example using Lenstra
algorithm [16]). Any non annulling polynomial will be a product of all these irreducible polynomials. We can
then obtain a finite set Gs = (gi) such that

G = {g|Γ |= g 6= 0} = {
∏
g∈Gs

gkg |∀g, kg ∈ N}

With these notations, we can simplify proposition 1, because we know the form of the gi. Moreover, as we
do not want to deal with fractions, we multiply by the common denominator of all the wi

gi
.

Lemma 7. For any sets X and Y , polynomials w1, ...wN , h ∈ K[X,Y]

Γ |= X, gw1
t , ..., gwN

t `E ght ⇔ ∃(ei) ∈ K[X], (kg) ∈ N,
∑
i

ei × wi = h
∏
g∈Gs

gkg

Let us call M = {
∑

i ei × wi|ei ∈ K[X]} the free K[X]-module generated by the (wi). We recall that a
S-module is a set stable by multiplication by S and addition, and that 〈(wi)〉S is the S-module generated by
(wi). We also recall the definition of the saturation :

Definition 8. Given a S-module T, f ∈ S and S ⊂ S′, the saturation of T by f in S’ is :

T :S′ (f)∞ = {g ∈ S′|∃n ∈ N, fng ∈ T

The previous lemma can be reformulated using saturation; if M is the module generated by w1, ..., wN :

Lemma 9.
Γ |= X, gw1

t , ..., gwN
t `E ght ⇔ h ∈M :K[X,Y] (g1...gn)∞

We are now going to prove that the previous membership problem is decidable. The Buchberger algorithm
allows us to compute a Groebner basis of any free K[X]-module [13] and then decide the membership problem.
A Groebner basis is a generating set of a multivariate polynomial module such that when given an ordering on
the monomials, the consecutive multivariate division following the ordering of a polynomial by the Groebner
Basis elements yelds a unique remainder. Moreover, this remainder is 0 if and only if the polynomial belongs
to the module, so we can use this to solve the membership problem.

Example 10. With X = {a, b} and Y = {c}, let us consider the free K[X]-module M generated by the following
Groebner Basis :

GB = {g1 = c2, g2 = abc, g3 = b2}

For any element of K[X,Y], we have that the multivariate division by GB yields a unique remainder. Let us
consider h = b2c2 + a2bc+ ab2c+ a5b3:

h|c2 → r1 = a2bc+ ab2c+ a5b3

r1|abc → r2 = a5b3

r2|b2 → 0

We obtain that h ∈M with :
h = b2g1 + (a+ b)g2 + a5bg3

We then just have to be able to express the saturation of M as such a module, which is done in the following
lemma.

Lemma 11. For any sets X and Y , polynomials f1, ...fn, h ∈ K[X,Y], g ∈ K[X],let M = {
∑

i ei × wi|ei ∈
K[X]} . Then, with t as a fresh variable :

M :K[X,Y] g
∞ = 〈(fi) ∪ ((gt− 1)Y

~j)~j∈{degY (fi)}〉K[X,t] ∩K[X,Y]

Thanks to the previous lemma, we finally get the decidability result :

Theorem 1. For any sets X and Y , polynomials f1, ...fn, h ∈ K[X,Y], group elements gi1 , ..., gin and a set of
axioms Γ we can decide if

Γ |= X, gf1i1 , ..., g
fn
in
`E ght

Proof. To decide if h is deducible, we first reduce to a membership problem with lemma 3 that can be solved
using lemma 4 by computing the 〈(fi)∪ ((gt− 1)Y

~j)~j∈{degY (fi)}〉K[X,t], keep only the elements of the base that
are independent of t and then check if the reduced form of h is 0.

As a side note, being able to decide the deducibility in this setting allows us to decide another classical
formal method problem, the static equivalence. Indeed the computation of the Groebner basis allows us to find
generators of the corresponding syzygies (Theorem 15.10 of [13]), which actually captures all the possible
distinguishers of a frame.

4. Implementation and example

In order to confirm our theoretical results, we decided to implement the Groebner Basis computation and
replace in AutoG&P the heuristic for deducibility by the new decision procedure.

Many implementations of Groebner basis computations can be found online, but all of them are only usable
for polynomial ideal, we thus implemented a version of the Buchberger algorithm for K[X]-module and plugged
it in AutoG&P.

Our main concern was the complexity of the final algorithm, because the saturation squares up the number
of inputs terms and the Groebner Basis can be at worst a double exponential. However, we need to keep in
mind that we are dealing with instances of our problem that come from protocols so they are relatively small
instances. This was actually confirmed when all the examples of AutoG&P ran without any loss of speed with
the new decision procedure rather than the heuristic.

Let us consider the run of the procedure on a toy example (which was not covered by the heuristic). We
have here a bilinear map ê : G1 ×G1 7→ Gt, and the deducibility problem is :

∅ |= gc+d1 , gd1 `E gc
2+c×d+d2

t

The first step is the saturation (Proposition 5), where we basically compute all the possible application of the
map, with for example ê(g1, g

d
1) or ê(gc+d1 , gd1) . We obtain :

∅ |= gc+dt , gdt , g
d2

t , g
(c+d)2

t , g
(c+d)×d
t `E−ê gc

2+c×d+d2

t

We will call x0 = c+ d, ..., x4 = (c+ d)× d the known terms. Here, we are in the case where we do not have
any axioms, so we just have to compute the Groebner basis of the (xi) and try to reduce the secret (Lemma 7
with G = ∅).

To compute the Groebner Basis, we will consider the lexical ordering on the degrees of the monomials, with
the variable d leading. For example : d2 × c > d × c5, because (2, 1) >lex (1, 5). Then, the idea behind the
Buchberger algorithm is to start with a set of polynomials and consider every combination of two polynomials,
which allows to introduce a new leading monomial. Then, we add those new polynomial and repeat the process
until a fixed point is reached. We can see that the max degree of new polynomials introduced is strictly decreasing,
hence the termination.
Example 12. For example, if we consider the pair (d, d+ c), we have that d− (d+ c) = c, so c will be part of
the Groebner Basis. When starting with the set (xi), we finally get the following Groebner Basis :

{x0, ..., x4}
x0←[x1−x0−−−−−−−→ {c, d, d2, (c+ d)2, d(c+ d)} x4← [x4−x2−−−−−−−→ {c, d, d2, (c+ d)2, dc}
x3← [x3−2x4−−−−−−−→ {c, d, d2, c2 + d2, dc} x3← [x3−x2−−−−−−−→ {c, d, d2, c2, dc}

Finally, we can try the successive multivariate division of d2 + c× d+ c2. The division will start by trying
to remove the leading monom, so the first step will be :

d2 + c× d+ c2 − x2 = c× d+ c2

Then, we continue by dividing the remainder, and we obtain :

c× d+ c2 − x4 = c2 = x3

This means that our polynomial is deducible, and from the Groebner Basis we obtain the context :

d2 + c× d+ c2 = x2 + x4 + x3

Finally, reintroducing the bilinear map and going back to the original (xi), we obtain a valid solution of the
deducibility problem :

gc
2+c×d+d2

t = ê(gd1 , g
d
1)× ê(gc+d1 , gd1)−1 × ê(gc+d1 , gc+d1)

5. Decidabilty of the modulo deducibility

Now, we extend the previous section, trying to decide the system that includes both RND and ABSTRACT,
where RND allows to replace a term with another one that defines the same distribution.

Looking for any equivalently distributed set of terms is difficult. Therefore we consider a restricted application,
in which the term u, defining the same distributions as t, is obtained from t by applying an invertible context
which only depends on random variables.

Following this idea, we now introduce the following definitions :

Definition 13. Given a set of random variables X = (xi) and of variables Y, we define Inv(X ∪ Y, xi) as the
set of invertible contexts that only depend on variables in X that are independent from xi.

Given this set of contexts, we can now define the modulo deducibility problem :

Definition 14. Given a set of terms t1, ..., tn, h1, ..hm ranging over random variables X = (xi) and variables
Y = (yi), we say that t1, ..., tn `∗E h1, ..., hm if and only if :

∃(Ci) ∈ Inv(X ∪ Y, xi), t1, ..., tn `E (h1, ..., hm)[Ci(xi)/xi]

Restriction. Solving the previous problem in general is quite complex, because if for instance some h contains
random variables squared, we then also square the context. Thus capturing all the possible sets of terms is
difficult. We therefore consider a restricted instance of the previous problem, where the degree max of the
random variable in h is 1, i.e h is of the form h = px+q with p and q polynomials, and where we only consider
context of the form C[x] = ux+ g with u and g polynomials over variables independent from x.

With this hypothesis the modulo deducibility problem can then be expressed as a mathematical problem.
Formally, we are given X and Y two sets of variables, and a set of random variables T = {t1, ..., tm} ⊂ X∪Y . Let
us call Ix the set of variables that are independent from x. Then, given a set of polynomials f1, ..., fn, q ∈ K[X,Y]
and some polynomials p1, ...pm ∈ K[X ∪ Y \ T] , we are trying to decide if :

gf1 , ..., gfn `∗E g
∑

k pk×tk+q

Reducing to a polynomial problem. Using the same techniques as in the previous lemmas, we obtain the
following reduction into a mathematical problem

Lemma 15. For any set X, Y and T = {t1, ..., tm} ⊂ X ∪ Y , given a set of polynomials f1, ..., fn, q ∈ K[X,Y]
and p1, ...pm ∈ K[X ∪ Y \ T] , we have :

gf1 , ..., gfn `∗E g
∑

k pk×tk+q

⇔

∃ei ∈ K[X], ut, gt, vt ∈ K[It],
∑

eifi =
∑
k

pk(
utk × tk + gtk

vtk
) + q

Given an instance of this problem, we consider the sets :

M = {
∑

eifi|ei ∈ K[X], }

Ntk = {ptku× tk + ptkg|u ∈ K(Itk)∗g ∈ K(Itk)}

With these notation, we obtain the following result :

Lemma 16.

∃ei ∈ K[X], ut, vt ∈ K[It] \ 0, gt ∈ K[It],
∑

eifi =
∑
k

pk(
utk × tk + gtk

vtk
) + q

⇔

M ∩ 〈(Nt), q〉K\0 6= ∅

We are now faced with linear spans of modules, so we need to generalize the Groebner basis techniques :

Lemma 17. The union of the Groebner basis of free disjoint Yi-modules Si is a Groebner basis of the linear
span of the Yi-module.

We can now have the decidability result for one secret but we need to consider the case where we have to
deduce a tuple. Indeed, to apply the assumption, all the terms in the simulator must be deducible at the same
time, i.e with the same bijection applied to the random variables. With the previous result, we use some encoding
technique to bind the bijection to be identical for every secret.

Lemma 18. For any set X, Y and T = {t1, ..., tm} ⊂ X ∪ Y , given a set of polynomials f1, ..., fn, q ∈ K[X,Y]
and for 1 ≤ j ≤ l, qj , pj,1, ...pj,m ∈ K[X ∪ Y \ T], if we set ν1, ..., νm to be fresh variable, we have that :

∃ej,i ∈ K[X, νj], ut, gt, vt ∈ K[It],
∑

ej,ifi =
∑
k

(
∑
j

νj × pj,k)(
utk × tk + gtk

vtk
) + (

∑
j

νj × qj)

⇔

∃ej,i ∈ K[X], ut, gt, vt ∈ K[It],

∑
e1,ifi =

∑
k p1,k(

utk×tk+gtk
vtk

) + q1

...∑
el,ifi =

∑
k pl,k(

utk×tk+gtk
vtk

) + ql

Intuitively, the idea is to try to deduce the secret ν1h1 + ...+ νlhl, we then get only one bijection for every
random variable and thanks to the fresh variables ν we can directly split the solution to obtain one for every
secret hl.

We then finally get the intended decidability result :

Proposition 19. For any set X, Y and T = {t1, ..., tm} ⊂ X∪Y , given a set of polynomials f1, ..., fn, q ∈ K[X,Y]
and for 1 ≤ j ≤ l qj , pj,1, ...pj,m ∈ K[X ∪ Y \ T]

X, gf1 , ..., gfn `∗E (g
∑

k pj,k×tk+qj)1≤j≤l is decidable

Proof. Using lemma 18 we first reduce the problem to the one where we only have one secret. Then, using
lemma 15 and 16 , we reduce the problem to deciding the emptiness of the intersection of the K[X]-module M
and the linear span of the K(It])[1]-modules Nt which we can solve with lemma 17.

6. Example

In this section, we come back to AutoG&P and provide with an example of proofs.
We are given a game G that performs sampling of variables (xi) at its start, and we want to apply to it an

assumption B that samples the variables (yi) and call an adversary with the terms (ti). We propose the algorithm
in figure 6 to obtain useful applications of the assumption on G.

For each mapping σ from (xi) to (yi):
Applying the mapping to G
Put all samplings of the (yi) at the start of G.
Let (hi) be the terms appearing in G
Let (ui) be the random variables in G
and (Ui) their respective independant variables.
For each subset (u′i) of (ui):
If (hi) are all linear w.r.t (u′i):

For each subset (t′i) of (ti):
If (t′i) `∗E (hi):
Let G’ be the game obtained after applying B.
If G’ 6= G, return G’

Endif
Endfor

Endif
Endfor

Endfor

Figure 6. Heuristic for assumption application

Intuitively, given a game and an assumption, there can be many different mapping from the variables of the
assumptions to the variables of the game, so we are going to try all possible cases. Moreover, we may not need

to apply a context to all the random variables, and some terms may not be linear for one subset of random
variables but linear for another, so we also try them all. Once we have a mapping and random variables such that
we obtain a valid modulo deducibility problem, we can try to solve it. However, some application of B might
be useless. For instance, applying the DDH assumption on a simulator that does not use its third components is
useless. Therefore, we are going to try to solve the modulo deducibility for any subset of the public terms, in
order to force the simulator to use the important terms. Finally, we just check if the application of the assumption
is useful before returning the new game.

6.1. DLIN to BDDH

We will now show an example of the algorithm running on a basic example. We consider the assumption :

s1, s2, r1, r2 : Fq.A(g, gs1 , gs2 , gs1r1 , gs2r2 , gr1+r2) ' s1, s2, r1, r2, r : Fq.A(g, gs1 , gs2 , gs1r1 , gs2r2 , gr)

Intuitively, the DLIN assumption allows us to replace r1 + r2 by a fresh random variables in a game.
We want to apply it to the BDDH game:

a, b, c : Fq.A(g, ga, gb, gc, ê(g, g)abc)

The first step is to choose a mapping from the variables of the game to the variables of the assumption. We
consider here the mapping a 7→ s1, b 7→ s2, c 7→ r1. We then need to check if there is a valid simulator B such
that

B(gs1 , gs2 , gs1r1 , gs2r2 , gr1+r2) = A(gs1 , gs2 , gr1 , gs1s2r1t)

We thus obtain the following modulo deducibility problem :

gs1 , gs2 , gs1r1 , gs2r2 , gr1+r2 `∗E gs1 , gs2 , gr1 , g
s1s2r1
t

Solving the problem using our algorithms yields the RND application r1 7→ r1 + r2, which is correct as

ê(gs2 , gs1r1)ê(gs1 , gs2r2) = g
s1s2(r1+r2)
t = gs1s2r1t [r1+r2/r1]

Finally, by using first RND, then ABSTRACT and then the axiom corresponding to DLIN, we prove the
statement corresponding to the BDDH assumption:

s1, s2, r1 : Fq.A(g, gs1 , gs2 , gr1 , gs2r2r1) ' s1, s2, r1, r2 : Fq.A(g, gs1 , gs2 , gr1 , gr2)

We here automatically proved that the BDDH assumption is a consequence of the DLIN.

7. Necessary criterion for the application of an assumption

We presented in the previous section an algorithm which is only complete for some instance of the inference
rules. Therefore, we sometimes need to try to find heuristically a sequence of transformations which will finally
allows us to apply the assumption. This search can be time consuming, and it can be useful to detect quickly
when there is no hope to find such a sequence. We will therefore try to identify a way to detect if it is impossible
to apply an assumption to a game.

Given a game G containing attacker calls A1(gt11 , ..., gt1n1), ..., Am(gtm1 , ..., gtmnm), we denote ExA(G) =
{tij |1 ≤ i ≤ m, 1 ≤ j ≤ ni}. Less formally, ExA(G) represents all the arguments that are given to the attackers
called in G. We recall that the syzygy of a set of terms is the set of relations between those terms, and we denote
it Syz. Formally, given a ring S:

SyzS(f1, ..., fn) = {(ei)1≤i≤n ∈ S|
∑

ei × fi = 0}

With those notations, we define an interesting reduction.

Definition 20. Given a game G with exponential terms over S, we say that G ≈ G′ is an interesting reduction
if and only if :

SyzS(ExA(G′)) (SyzS(ExA(G))

The intuition behind this definition is that when we do a reduction, we want to reduce the set of possible
knowledge of the attacker. A direct way to do this is to reduce the different relations that exist between the
terms, and this corresponds exactly to reducing the syzigies of the terms. At first, just considering the relations
between terms and not the terms themselves might sound strange, but for example we may have a game with an
attacker call A(γ1, ..., γn) and an assumption which allows us to replace γn by a fresh random variable. Then, if
γn was previously complicated we may think that we won something, but actually we won something only if γn
was related to some other γ. In the other case, from the point of view of the attacker, γn was already equivalent
to a random variable, and thus the reduction did not allow us to make any progress.

From this definition, we then want to try to identify a criterion allowing us to detect efficiently in what cases
it is impossible to do an interesting reduction by applying a specific assumption.

We consider that we want to apply the hypothesis G1 ≈ G2 to some game G.
Let us assume we do have an interesting application of G1 onto G. Then, we have B such that :

SyzS(ExA(G2{A 7→ B(A)})) (SyzS(ExA(G1{A 7→ B(A)}))(1)

G ≈ G1{A 7→ B(A)}(2)

We are now going to focus on the case where the terms are only group elements, i.e we can obtain an
algebraic criterion.

7.1. Sub case : Polynomial assumption

We are given as set of variables X, a set of variable Y and polynomials P1, ..., Pn, c ∈ K[X̄],Q1, ..., Qm ∈
K[Ū]. We then consider :

assumption : (X : Fq.A1(gP1 , ..., gPn)) ' (X : Fq.);A2(gP1 , ..., gPn−1 , gc))

game : G = Y : Fq.A(gQ1 , ..., gQm)

We have an interesting application of the assumptions on G only if :

∃eij ∈ K[Z̄],∃R ∈ SyzK[Ū]((Qi)1≤i≤m){
R((

∑
j eijPj)1≤i≤m)

¬R((
∑

j≤n−1 eijPj + einc)1≤i≤m)

Intuitively, the relation R corresponds to the relation extracted from equation (1) which must be satisfied on
one side and not the other in order to have the strict inclusion.

R((
∑

j eijPj)1≤i≤m) can be written under the form ∃ei ∈ K[Z̄], 0 =
∑
ekR

′
k where every R′k is a product

of Pi. This is interesting because we then become independent from the contexts.
If we do have an interesting application, then

Syz((R′k))K[Z̄] \ SyzK[Z̄]((R
′
k)[

c/Pn]]) 6= ∅

We obtain here a way to detect if it is possible or not to apply an assumption to a game. This is an algebraic
criterion that is applicable only to game with only polynomials term, but we can also extract from other general
games a sub case on which this criterion may yield result.

7.2. Examples

Many classical assumptions only consider polynomials in exponent, with for example :

• DDH: a, b, ab
• k-lin: x1, ..., xk, r1x1, ..., rkxk, (r1 + ...+ rk)
• BDDH: x, y, z, xy, xz, yz, x2, y2, z2, xyz
• k-PDDH (Party) : x1, ..., xk, (x1...xk)
• k-EDDH (Exp) : x, xk

We will use our criterion to see if there is a possible reduction between 3-PDDH and DDH

3-PDDH on DDH. We want to apply the 3-PDDH assumption on DDH, so we have : P1 = a, P2 = b, P3 =
c, P4 = abc,Q1 = a,Q2 = b,Q4 = ab Then, there is only one ∃R ∈ SyzK[a,b]((Qi)1≤i≤m), with R : Q3 −
Q1Q2 = 0. Thus, R is captured by

∃ei, fi, gi ∈ K[Z̄], (
∑

eiPi)− (
∑

fiPi)(
∑

giPi) = 0

Once we devellop the relation, we obtain that :

(R′k) = (P1, P2, P3, P4) ∪ PiPj |1 ≤ i ≤ j ≤ 4

So we consider the two sets :
SyzK[Z̄](a, b, c, abc, a

2, b2, c2, (abc)2, ...)

SyzK[Z̄](a, b, c, d, a
2, b2, c2, d2, ...)

If we do the actual computation using the Buchberger algorithm which allows to compute the syzygies, we see
that the difference is empty. More intuitively, with a degree argument we can see that replacing abc by d does
not introduce a new relation, because we only replace unrelated terms of degree 4 by terms of degree two with
a fresh variable, and thus unrelated to others.

In conclusion, there is no sequence of rule of AutoG&P such that 3-PDDH can be applied to DDH in an
interesting way. This does not mean that in general DDH is not a consequence of 3-PDDH because AutoG&P
is not complete, but it means that it is useless to try to find a proof of DDH using 3-PDDH in the AutoG&P
logic.

We thus obtained a criterion that can be used to decide whether or not we should try to prove heuristically a
statement when it does not fall in the complete fragment of our algorithm for the application of an assumption.

8. Undecidability of the AutoG&P logic

We presented previously two ways to guide the proof search in AutoG&P. There is still a lot of work that can
be done in order to improve these heuristics, but this also raises the question : can we find a decision procedure ?
The theorem bellow provides with a negative answer :

Theorem 2. There is no decision procedure for the AutoG&P logic.

The full encoding of the halting problem into this problem can be found in appendix B.

9. Conclusion

Using Groebner Basis and symbolic methods techniques, we gave in this report two new ways to improve
the proof search in the AutoG&P framework. A natural next step is to keep improving these heuristics as much
as we can. However, we need to remember that this model is incomplete, and even in this incomplete model
there is no decision procedure for the proof search. These two facts may point in an another direction : to enable
automation in the computational model, we might need a completely different approach. New models might be
developed in the future, but it is a difficult path.

References

[1] G. Barthe et al. Formal Certification of Code-Based Cryptographic Proofs. Cryptology ePrint Archive,
Report 2007/314. http://eprint.iacr.org/2007/314. 2007.

[2] Gilles Barthe, Benjamin Grégoire, and Benedikt Schmidt. “Automated Proofs of Pairing-Based Cryp-
tography”. In: Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications
Security. CCS ’15. Denver, Colorado, USA: ACM, 2015, pp. 1156–1168. ISBN: 978-1-4503-3832-5. DOI:
10.1145/2810103.2813697. URL: http://doi.acm.org/10.1145/2810103.2813697.

[3] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella-Béguelin. “Formal Certification of Code-Based
Cryptographic Proofs”. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2009. ACM, 2009, pp. 90–101. URL: http://dx.doi.org/10.1145/1480881.1480894.

[4] Gilles Barthe et al. “Computer-Aided Security Proofs for the Working Cryptographer”. In: 2011, pp. 71–90.
[5] Mihir Bellare and Phillip Rogaway. “The Security of Triple Encryption and a Framework for Code-

Based Game-Playing Proofs”. In: Advances in Cryptology - EUROCRYPT 2006: 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 -
June 1, 2006. Proceedings. Ed. by Serge Vaudenay. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 409–426. ISBN: 978-3-540-34547-3. DOI: 10.1007/11761679_25. URL: http://dx.doi.org/10.1007/
11761679_25.

[6] Bruno Blanchet. “A Computationally Sound Automatic Prover for Cryptographic Protocols”. In: Workshop
on the link between formal and computational models. Paris, France, June 2005.

[7] Bruno Blanchet. A Computationally Sound Mechanized Prover for Security Protocols. Cryptology ePrint
Archive, Report 2005/401. http://eprint.iacr.org/2005/401. 2005.

[8] Bruno Blanchet. “Automatic Verification of Security Protocols in the Symbolic Model: the Verifier ProVerif”.
In: Foundations of Security Analysis and Design VII, FOSAD Tutorial Lectures. Ed. by Alessandro Aldini,
Javier Lopez, and Fabio Martinelli. Vol. 8604. 2014, pp. 54–87.

[9] Yannick Chevalier et al. “FST TCS 2003: Foundations of Software Technology and Theoretical Computer
Science: 23rd Conference, Mumbai, India, December 15-17, 2003. Proceedings”. In: ed. by Paritosh K.
Pandya and Jaikumar Radhakrishnan. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. Chap. Decid-
ing the Security of Protocols with Diffie-Hellman Exponentiation and Products in Exponents, pp. 124–135.
ISBN: 978-3-540-24597-1. DOI: 10.1007/978-3-540-24597-1_11. URL: http://dx.doi.org/10.1007/978-3-
540-24597-1_11.

[10] D. Dolev and A. C. Yao. “On the Security of Public Key Protocols”. In: Proceedings of the 22Nd Annual
Symposium on Foundations of Computer Science. SFCS ’81. Washington, DC, USA: IEEE Computer
Society, 1981, pp. 350–357. DOI: 10.1109/SFCS.1981.32. URL: http://dx.doi.org/10.1109/SFCS.1981.32.

[11] Daniel J. Dougherty and Joshua D. Guttman. “Decidability for Lightweight Diffie-Hellman Protocols”.
In: IEEE 27th Computer Security Foundations Symposium, CSF 2014, Vienna, Austria, 19-22 July, 2014.
2014, pp. 217–231. DOI: 10.1109/CSF.2014.23. URL: http://dx.doi.org/10.1109/CSF.2014.23.

[12] Nancy Durgin, John Mitchell, and Dusko Pavlovic. “A Compositional Logic for Proving Security Properties
of Protocols”. In: J. Comput. Secur. 11.4 (July 2003), pp. 677–721. ISSN: 0926-227X. URL: http://dl.acm.
org/citation.cfm?id=959088.959095.

[13] David Eisenbud. Commutative Algebra: with a view toward algebraic geometry. Vol. 150. Springer Science
& Business Media, 2013.

[14] Steve Kremer and Robert Künnemann. “Automated Analysis of Security Protocols with Global State”. In:
2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014. 2014,
pp. 163–178. DOI: 10.1109/SP.2014.18. URL: http://dx.doi.org/10.1109/SP.2014.18.

[15] Steve Kremer, Antoine Mercier, and Ralf Treinen. “Reducing Equational Theories for the Decision of Static
Equivalence”. In: Journal of Automated Reasoning 48.2 (2012), pp. 197–217. DOI: 10.1007/s10817-010-
9203-0. URL: https://hal.inria.fr/inria-00636797.

http://eprint.iacr.org/2007/314
http://dx.doi.org/10.1145/2810103.2813697
http://doi.acm.org/10.1145/2810103.2813697
http://dx.doi.org/10.1145/1480881.1480894
http://dx.doi.org/10.1007/11761679_25
http://dx.doi.org/10.1007/11761679_25
http://dx.doi.org/10.1007/11761679_25
http://eprint.iacr.org/2005/401
http://dx.doi.org/10.1007/978-3-540-24597-1_11
http://dx.doi.org/10.1007/978-3-540-24597-1_11
http://dx.doi.org/10.1007/978-3-540-24597-1_11
http://dx.doi.org/10.1109/SFCS.1981.32
http://dx.doi.org/10.1109/SFCS.1981.32
http://dx.doi.org/10.1109/CSF.2014.23
http://dx.doi.org/10.1109/CSF.2014.23
http://dl.acm.org/citation.cfm?id=959088.959095
http://dl.acm.org/citation.cfm?id=959088.959095
http://dx.doi.org/10.1109/SP.2014.18
http://dx.doi.org/10.1109/SP.2014.18
http://dx.doi.org/10.1007/s10817-010-9203-0
http://dx.doi.org/10.1007/s10817-010-9203-0
https://hal.inria.fr/inria-00636797

[16] A.K. Lenstra. “Factoring multivariate polynomials over finite fields”. In: Journal of Computer and System
Sciences 30.2 (1985), pp. 235 –248. ISSN: 0022-0000. DOI: http://dx.doi.org/10.1016/0022-0000(85)90016-
9. URL: http://www.sciencedirect.com/science/article/pii/0022000085900169.

[17] Gavin Lowe. “An attack on the Needham-Schroeder public-key authentication protocol”. In: Information
Processing Letters 56.3 (1995), pp. 131 –133. ISSN: 0020-0190. DOI: http://dx.doi.org/10.1016/0020-
0190(95)00144-2. URL: http://www.sciencedirect.com/science/article/pii/0020019095001442.

[18] Simon Meier et al. “The TAMARIN Prover for the Symbolic Analysis of Security Protocols”. In: Pro-
ceedings of the 25th International Conference on Computer Aided Verification. CAV13. Saint Petersburg,
Russia: Springer-Verlag, 2013, pp. 696–701. ISBN: 978-3-642-39798-1. DOI: 10.1007/978-3-642-39799-
8_48. URL: http://dx.doi.org/10.1007/978-3-642-39799-8_48.

[19] Roger M. Needham and Michael D. Schroeder. “Using Encryption for Authentication in Large Networks
of Computers”. In: Commun. ACM 21.12 (Dec. 1978), pp. 993–999. ISSN: 0001-0782. DOI: 10.1145/
359657.359659. URL: http://doi.acm.org/10.1145/359657.359659.

[20] Adam Petcher and Greg Morrisett. “The Foundational Cryptography Framework”. In: Principles of Security
and Trust - 4th International Conference, POST. Ed. by Riccardo Focardi and Andrew C. Myers. Vol. 9036.
Lecture Notes in Computer Science. Springer, 2015, pp. 53–72.

[21] Victor Shoup. “OAEP Reconsidered”. In: Advances in Cryptology — CRYPTO 2001: 21st Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 19–23, 2001 Proceedings. Ed. by
Joe Kilian. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 239–259. ISBN: 978-3-540-44647-7.
DOI: 10.1007/3-540-44647-8_15. URL: http://dx.doi.org/10.1007/3-540-44647-8_15.

[22] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint
Archive, Report 2004/332. 2004.

[23] Nikhil Swamy et al. “Secure distributed programming with value-dependent types”. In: Proceeding of
the 16th ACM SIGPLAN international conference on Functional Programming. Ed. by Manuel M. T.
Chakravarty, Zhenjiang Hu, and Olivier Danvy. ACM, 2011, pp. 266–278. ISBN: 978-1-4503-0865-6.
DOI: 10.1145/2034773.2034811. URL: http://research.microsoft.com/apps/pubs/default.aspx?id=150012.

http://dx.doi.org/http://dx.doi.org/10.1016/0022-0000(85)90016-9
http://dx.doi.org/http://dx.doi.org/10.1016/0022-0000(85)90016-9
http://www.sciencedirect.com/science/article/pii/0022000085900169
http://dx.doi.org/http://dx.doi.org/10.1016/0020-0190(95)00144-2
http://dx.doi.org/http://dx.doi.org/10.1016/0020-0190(95)00144-2
http://www.sciencedirect.com/science/article/pii/0020019095001442
http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://dx.doi.org/10.1145/359657.359659
http://dx.doi.org/10.1145/359657.359659
http://doi.acm.org/10.1145/359657.359659
http://dx.doi.org/10.1007/3-540-44647-8_15
http://dx.doi.org/10.1007/3-540-44647-8_15
http://dx.doi.org/10.1145/2034773.2034811
http://research.microsoft.com/apps/pubs/default.aspx?id=150012

Appendix

1. Proof of section 3 and 5

Lemma 9.
Γ |= X, gw1

t , ..., gwN
t `E ght ⇔ h ∈M :K[X,Y] (g1...gn)∞

Proof. We recall that :

M :K[X,Y] (g1...gn)∞ = {x ∈ K[X,Y]|∃k ∈ N, (g1...gn)k × x ∈M}

⇒
We have

∑
i ei × wi = h

∏
g∈Gs g

kg . So, with K = max(kg), we just have to multiply both side by
∏
g g

K−kg

to get
h

∏
g∈Gs

gK =
∑
i

∏
g

gK−kgei × wi ∈M

Which proves that h ∈M :K[X,Y] (g1...gn)∞.
⇐
If h ∈M :K[X,Y] (g1...gn)∞, we instantly have (ei) ∈ K[X], k ∈ N such that :

h
∏
g∈Gs

gkg =
∑
i

eifi

Lemma 11. For any sets X and Y , polynomials f1, ...fn, h ∈ K[X,Y], g ∈ K[X],let M = {
∑

i ei × wi|ei ∈
K[X]} . Then, with t as a fresh variable :

M :K[X,Y] g
∞ = 〈(fi) ∪ ((gt− 1)Y

~j)~j∈{degY (fi)}〉K[X,t] ∩K[X,Y]

Proof. ⊂
Let there be v ∈M :K[X,Y] g

∞ = {x ∈ K[X,Y]|∃k ∈ N, gk × x ∈M}. Then, we have k such that gk × v ∈M .
The following equalities shows that v is in the right side set.

v = gktkv − (1 + gt+ ...+ gk−1tk−1)(gt− 1)v

Indeed, gktkv ∈MK[X, t], so we have (ei) ∈ K[X, t] such that

gktkv =
∑
i

eifi

Moreover, gk × v ∈ M and g ∈ K[X] implies that degY (v) ⊂ {degY (fi)}. So we do have (e′i) ∈ K[X, t] and
(~ji) ⊂ {degY (fi)} such that

(1 + gt+ ...+ gk−1tk−1)(gt− 1)v =
∑

e′i(gt− 1)Y
~ji

Finally, we have
v ∈ 〈(fi) ∪ ((gt− 1)Y

~j)~j∈{degY (fi)}〉K[X,t] ∩K[X,Y]

⊃
Let there be v ∈ 〈(fi) ∪ ((gt − 1)Y

~j)~j∈{degY (fi)}〉K[X,t] ∩ K[X,Y]. Then we have (ei), (e
′
i) ∈ K[X, t] and

(~ji) ⊂ {degY (fi)} such that :
v =

∑
i

eifi +
∑
i

e′i(gt− 1)Y
~ji

We have that v ∈ K[X,Y], so v is invariant by t. So, if we subsitute t with 1
g , we have that

v =
∑
i

ei(X,
∑

eifi =
∑
k

pk(
utk × tk + gtk

vtk
)frac1g)fi

Let us consider gk the common denominator of all those fractions and call e′′i = gkei ∈ K[X]. We then finally
have that :

gk × v =
∑
i

e′′i fi ∈M

Which means that :
v ∈M :K[X,Y] g

∞

2. Proof of 8

We are given a Turing machine (Q,Γ, B,Σ, q0, δ, F) and an initial configuration (w0, q0, w1). For every
symbol in Γ and in Q, we consider the homonym variable picked at random in the field K. Then, we define an
encoding of word over Γ ∪Q using tuples:

∀w ∈ (Γ ∪Q)∗, ŵ =

{
a if w = a ∈ (Γ ∪Q)

(t̂, a) if w = a.t

We define w̄ = ŵm with wm being the mirror of w. For a set of symbol T = (t1, ..., tn), we define Pick(T)
such as the set of all possible sequence commands such that we at least sample all the t :

Gen = {a : D}∗

Pick(T) = {G|G ∈ Gen ∧ ∀t ∈ T, (t : Fq) ∈ G}

We add to the equationnal theory a free private function symbol f and for any configuration (w′0, q
′, w′1), we

define a corresponding class of game :

Conf(w′0, q
′, w′1) = RND∗({Init; e = A(Γ∪Q);Finish; ; |e =E f(ŵ′0, q

′, w̄′1)∧Init ∈ Pick(Γ∪Q), F inish ∈ Gen})

Lemma 21. For any configuration (w′0, q
′, w′1), Conf(w′0, q

′, w′1) is stable by SUBST and RND.

Proof. Let there be G = Init; f(ŵ′0, q
′, w̄′1)← A();Finish; ;∈ Conf(w′0, q

′, w′1)

• SUBST The class of game is defined modulo the equational theory, so substituting terms is not a problem.
We also remark, that as f is a free function symbol, only trivial substitution are possible.

• RND Trivial by the definition.

Lemma 22. For any configurations (w′0, q
′, w′1) 6= (w′′0 , q

′′, w′′1),

Conf(w′0, q
′, w′1) ∩ Conf(w′′0 , q

′′, w′′1) = ∅

.

Proof. Let us call S((Ct)t∈T) = {C′t(t)/t|t ∈ T} the set of substitution defined by a list of context. If we have
an element in both classes, then we have a term e and two invertible contexts Ct,C ′t for all t ∈ Γ∪Q such that :

f(ŵ′0, q
′, w̄′1)[S((Ct))] =E e =E f(ŵ′′0 , q

′′, w̄′′1)[S((C ′t))]

By applying the inverse substitution of each of the Ct on the equation, we obtain new invertible contexts C ′′t
such that :

f(ŵ′0, q
′, w̄′1) =E f(ŵ′′0 , q

′′, w̄′′1)[S((C ′′t))]

f is a free function symbol, so we have ŵ′0 =E ŵ′′0 [S((C ′′t))] ∧ q′ =E q
′′[S((C ′′t))] ∧ w̄′1 =E w̄′′1 [S((C ′′t))]. On

the left hand side, we only have tuple of symbols, so the only possible contexts are the identity, and then the
configurations must be equal which is a contradiction.

By adding the correct assumptions, we will show that the halting problem is equivalent to finding a proof
for a security experiment. The core assumption is that two consecutive configurations must be equivalent. So,
for any transition in δ of the form (q, a) 7→ (q′, a′,→) and any letter b, we add the assumption :

T : Fq.f((left, a), q, (b, right)) = A(f(w0, q0, w1)) ' T : Fq.f(((left, a′), b), q′, right)) = AO1(f(w0, q0, w1))

O1 is the oracle which contains the full delta table and on any input f(w′0, q
′
0, w

′
1) gives back the next

configuration. We also add similar assumptions for the other types of transitions.

Proposition 23. Let there be (B, q′, B) a final configuration.

(w0, q, w1)→∗ (B, q′, B)⇔ ∃C1 ∈ Conf(w0, q, w1), C2 ∈ Conf(B, q′, B).C1 ' C2

Proof. ⇒

Let us assume that (w0, q, w1)→δ (w′0, q
′, w′1) in one transition. Then, we take the simplest representative of

each classes where Init only contains the necessary samplings and Finish is empty and considering the assumption
corresponding to δ, we obtain the result by applying ABSTRACT,SYM,ABSTRACT and using the assumption.
Then, if we have a sequence of transition, we use TRANS to introduce the next step of the sequence, the right
premise being discharged by the previous proof and the left premise is discharged by interacting with the next
transition, until we obtain the last transition and use DEQ.
⇐

We have two Representative C1 and C2 and a proof tree of the statement. We want to prove that the prob-
ability is 0, so the proof We consider the proof modulo the classes of configuration, i.e we remove all the
SUBST and RND operations and we obtain a proof on the classes of games such that the proof only contains
SYM,DEQ,TRANS,ABSTRACT and axioms. This reduction is possible thanks to the two lemmas.

If we consider all the leafs of the proof tree, they are either DEQ or axioms. If we do not have axioms in the
proof a statement of the form C1 ' C2 with C1 ∈ Conf(w0, q, w1), C2 ∈ Conf(w′0, q

′, w′1) is computationally
false and as the core logic is correct we cannot prove it. So we must use axioms to prove this, and if we can
do it with only one axiom, then we have that (w0, q, w1)→δ (w′0, q

′, w′1).
By induction on the size of the proof, if we must use several axioms, we consider the TRANS rule closest to

the root. This TRANS rule must be used to introduce a game which is inside a configuration class or else the proof
is impossible, and then by induction on the two premises we obtain two sequences (w0, q, w1)→∗ (w′0, q

′, w′1)
and (w′0, q

′, w′1)→∗ (B, q′, B), so finally we do have : (w0, q, w1)→∗ (B, q′, B)

	Introduction
	The AutoG&P framework
	Unrestricted decidability of axiomatized deducibility constraints
	Implementation and example
	Decidabilty of the modulo deducibility
	Example
	DLIN to BDDH

	Necessary criterion for the application of an assumption
	Sub case : Polynomial assumption
	Examples

	Undecidability of the AutoG&P logic
	Conclusion
	Appendix
	Proof of section 3 and 5
	Proof of 8

