
Non Primitive Recursive Complexity Classes

Simon Halfon, ENS Cachan

August 22, 2014

supervised by Philippe Schnoebelen and Sylvain Schmitz
Team INFINI, LSV, ENS Cachan

1 Introduction / Summary File

The general context

The introduction of Well Structured Transition Systems (WSTS) in 1987 [8], i.e. transition systems that
satisfies a monotony property with respect to some well-quasi-ordering (wqo), has led to an important number
of decidability results of verification problems for several natural models: Petri Nets and VASS and a large
number of their extensions, lossy channel systems, string rewrite systems, process algebra, communicating
automaton, and so on. Surveys of results and applications obtained with this theory can be found in [9, 3, 1, 2].
The main idea behind these decidability results is a generic algorithm that explores a tree that must be finite
by the wqo property: every infinite sequence of configurations of the system (xi)i∈N has an increasing pair,
that is a pair i < j such that xi ≤ xj . Moreover, wqo theory has provided upper bound to these algorithms
by bounding the length of so called bad sequences, (finite) sequences that do not have an increasing pair. The
bounds obtained are non-primitive-recursive, which is unusual in verification. In addition, matching lower
bounds has been proved for several models [19, 6].

The research problem

Considering the growing number of new problems with a non-primitive-recursive complexity, it is natural
to ask for a finer classification, and therefore the formalization of non-elementary complexity classes. This
has been achieved by the introduction of a hierarchy of ordinal-indexed fast-growing complexity classes
(Fα)α [18]. These classes are defined thanks to a family of fast-growing functions (Fα)α that are at the heart
of the extended Grzegorczyk hierarchy, introduced by Löb and Wainer [15]. These functions from N to N are
defined as follows: ∀n ∈ N

• F0(n) = n+ 1,

• Given α an ordinal, Fα+1(n) = Fnα (n) (composition iterated n times)

• Given λ an ordinal limit of the sequence (λn)n∈N, Fλ(n) = Fλn
(n)

Fα is then simply defined as the class of problems that can be solved in deterministic time bounded by F iα
for some fixed i ∈ N. Note that F3 already corresponds to the class of problems solvable in elementary
recursive time. In this report, we will pay a particular attention to the Fω and Fωω classes, respectively

1

the class of Ackermannian and HyperAckermannian problems, i.e. problems that require Ackermannian and
HyperAckermannian time to solve. Unfortunately, these classes are hard to manipulate, too few complete
problems are known (see [18] for a recent survey). One of the current goal of the INFINI Team at LSV is to
build a toolbox of complete problems for these two classes in order to

1. make the notation and manipulation of these classes universal, as in the case of the class NP, today
widely used, which has not always been the case.

2. make easier the manipulations of complete problems for these two classes. As in the case of NP with
the Guide to the theory of NP-completeness [10] by Garey and Johnson, gathering problems coming
from different area, verification, logic, language theory, linear algebra and so on, of computer science
allows one to choose the appropriate Ackermann-complete problem to prove a lower bound, e.g. the
one with the simplest reduction.

For instance, one classical Fωω -complete problem is the problem of reachability for Lossy Channel Systems.
Reductions from this problem can be tedious, it requires to encode the notion of run, in a problem that may
not contain any dynamism. Then proving the correction of the reductions can be difficult, even when the
intuition is simple. A more elegant problem has been introduced and proved Fωω -complete in [5]: the Post
Embedding Problem. It is a variant of the well-known Post Correspondence Problem where equality on words
is replaced by the subword relation. This problem is presented in section 2.

Our contribution

In order to find an “elegant” problem for the Fω class, the first step of this internship was to study variants of
the Post Embedding Problem, that we have introduced and called Regular Integer Problems (see section 3).
In Section 4, we prove the precise complexity of all the problems introduced in section 3. We finally conclude
with a discussion that briefly summarize our results, but also presents all the problems left open along the
way, all the ideas that could not be explored because of time constraints.

This work on Regular Integer Problems led to the submission of an article Integer Vector Addition Systems
with States [12] by Christoph Haase and myself to the 2014 edition of the conference on Reachability Problems
(RP). This article, which gather the main results obtained during my internship, has been accepted.

Arguments supporting its validity

In the end, no completely new Fω problem has been found, but a reformulation of the coverability problem
for lossy counter machines has highlighted new variants of this problem to explore. Among others, this has
led to the submission and acceptance of an article [12], which contains interesting and surprising results, even
if these results are not directly linked to the non primitive recursive complexity classes.

Summary and future work

Many problems worth considering have been left open along the way. Even if they do not all deal with non
primitive recursive complexity, these problems are interesting in different areas. A precise list can be found
in conclusion of this report. In particular, I have considered a completely different problem during the last
month of my internship, for which I could not determine its precise complexity, and that will constitute my
immediate next work. If my intuition is correct, this problem is singular since the basic wqo analysis gives
an upper bound that is too large.

2

Contents

1 Introduction / Summary File 1

2 Preliminaries 4
2.1 General Notations . 4
2.2 Well Structured Transition Systems . 5
2.3 Lossy machines . 5
2.4 Post Embedding Problems . 6

3 Regular Integer Problems 7
3.1 Definitions . 7
3.2 Results . 8

4 Proofs 10
4.1 EIP is NP-complete . 10
4.2 EIPR is NP-hard . 10
4.3 RIP is in NP . 11
4.4 RIPR is in NP . 12
4.5 RIPdir is EXPSPACE-complete . 12
4.6 RIPcodir is EXPSPACE-complete . 13
4.7 RIPRcodir is in EXPSPACE . 13
4.8 RIPRdir and RAIPdir are Fω-complete . 17
4.9 RAIP is Undecidable . 17
4.10 EAIP is Undecidable . 18

5 Conclusion 19

3

2 Preliminaries

In this section, we provide most of the definitions that we rely on in this paper. We first introduce some
general notations, then we remind the fundamental notions of the domain, such as Well Structured Transition
Systems or Counter Machines; and finally introduce more specific definitions on which this work is based,
and state associated results.

2.1 General Notations

Vectors. In the following, Z and N are the sets of integers and natural numbers, respectively, and Nk
and Zk are the set of dimension k vectors in N and Z, respectively. We denote by [k] the set of positive
integers up to k, i.e. [k] = {1, . . . , k}. By Nk×k and Zk×k we denote the set of k × k square matrices
over N and Z, respectively. The identity matrix in dimension k is denoted by Ik and ~ei denotes the i-th
unit vector in any dimension k provided i ∈ [k]. For any k and i, j ∈ [k], Eij denotes the k × k-matrix
whose i-th row and j-th column intersection is equal to one and all of its other components are zero, and
we use Ei to abbreviate Eii. For ~v ∈ Zk we write ~v(i) for the i-th component of ~v for i ∈ [k]. Given
two vectors ~v1, ~v2 ∈ Zk, we write ~v1 ≥ ~v2 iff for all i ∈ [d], ~v1(i) ≥ ~v2(i): it is the product ordering.

Words. An alphabet Σ is a finite set of symbols (or letters). Words over an alphabet Σ are finite sequences
of symbols, the set of all words is denoted Σ∗. The empty word, denoted ε, is the empty sequence. Given
two words u, v ∈ Σ∗, the subword relation u v v holds if u can be obtained from v by erasing some letters,
i.e. if u = u1 · · ·un and u v v then there exist some words v0, . . . , vn ∈ Σ∗ such that v = v0u1v1 · · ·unvn.
A word u ∈ Σ∗ is said to be a prefix of v = v1 · · · vn if there is i ∈ [n] such that u = v1 · · · vi or u = ε,
and u is said to be a suffix if there is a i ∈ [n] such that u = vi · · · vn or u = ε. Given a word v ∈ Σ∗,
the set of all prefixes (resp. suffixes) of v is denoted Pref(v) (resp. Suff(v)). The Parikh image of a word
u is the vector π(u) ∈ N|Σ| such that for i ∈ [|Σ|], π(u)(i) is the number of occurrences of the i-th symbol
of Σ in u (we assume that letters in Σ have been ordered). For instance, two words have the same Parikh
image if and only if one is a permutation of the other. Finally, given a word u = u1 · · ·un, we will denote

by ũ its mirror word ũ = un · · ·u1. The same notation will be used for languages. Note that Pref(u) = S̃uff(ũ).

Morphisms. Given two monoids (A,+, eA), (B,×, eB) with one law, h : A → B is a morphism if for all
a, b ∈ A, h(a+ b) = h(a)× h(b) and h(eA) = eB. Morphisms used in this report use the following structures:

• (Σ∗, ·), where Σ is an alphabet and · denotes the concatenation of words

• (Nk,+), where + is the usual component-by-component addition

• (A → A, o): functions from A to A, with the composition of functions.

Since there is no possible confusion, the structures will be given by their underlying set, the law being the
corresponding one.

Presburger Arithmetic. Recall that Presburger arithmetic (PA) is the first-order theory of the struc-
ture 〈N, 0, 1,+,≥〉, i.e., quantified linear arithmetic over natural numbers. It is well-known that the validity
of an existential Presburger formula is an NP-complete problem, see e.g. [4].

4

2.2 Well Structured Transition Systems

A quasi-ordering is a reflexive and transitive relation. Well-quasi-orderings (wqo) are quasi-orderings that
are well-founded and that do not have infinite antichains, i.e. infinite sequences with pairwise incomparable
elements. The general class of transition systems presenting some monotony with respect to a wqo, called Well
Structured Transition Systems (WSTS), is interesting for mainly two reasons: there are generic algorithms
for solving reachability, coverability, termination or boundedness for models of this class; and many common
models used in computer science, and more particularly in verification, belong to this class.

To defined Well Structured Transition Systems, we must first define transition systems.

Definition 1 (Transition System). A Transition System is a couple (S, T), where S is a possibly infinite set
of configurations and T ⊆ S × S is a transition relation on S.

Given two configurations s, t ∈ S we write s →T t, or simply s → t if T is clear from the context, when
(s, t) ∈ T . The reflexive and transitive closure of →T is denoted by →∗T . A sequence s = s0, s1, . . . , sn = t
such that for all i ∈ [n], si−1 → si is called a run from s to t. We say that t is reachable from s when there
exists a run from s to t, i.e. s→∗ t. Well Structured Transition Systems are ordered transition systems for
which some monotonicity holds.

Definition 2 (WSTS). An ordered transition system (S, T ,4) is a Well Structured Transition System if

1. 4⊆ S × S is a wqo

2. ∀s, s′, t ∈ S. (s 4 t and s→T s′) ⇒ ∃t′ ∈ S. s′ 4 t′ and t→∗T t′

Given W a class of WSTS, we are mostly interested in this report by the two fundamental problems:

W Reachability/Coverability

INPUT: A WSTS (S, T ,4) ∈ W, configurations s0, sf ∈ S
QUESTION: Reachability: Is there a run s0 →∗T sf ?

Coverability: Is there a configuration t ∈ S s.t. s0 →∗T t and sf 4 t ?

The next section introduces two class of WSTS that make the reachability and coverability problems
defined above respectively of Ackermannian and HyperAckermannian complexity.

2.3 Lossy machines

A Lossy Channel System is an automaton that writes to and reads from a FIFO channel that may lose
messages.

Definition 3. A Lossy Channel System (LCS) is a triple L = (Q,Γ,∆). Q a finite set of states, Γ a finite
set of messages and ∆ is a finite set of transitions ∆ ⊆ Q× {!, ?} × Γ×Q.

The associated semantic is an infinite transition system (Q×Γ∗, T) such that for any two states p, q ∈ Q,
w ∈ Γ∗ and a ∈ Γ

• ((p, w), (q, wa)) ∈ T if (p, !a, q) ∈ ∆

• ((p, aw), (q, w)) ∈ T if (p, ?a, q) ∈ ∆

• ((p, w), (p, v)) ∈ T if v v w

5

The third type of transition formalizes the idea of losses in the channel: at any time, some messages can
be erased from the channel. Without this third type of transition, one obtain the usual notion of Channel
Systems, said to be reliable, for which classical verification problems (termination, reachability, coverability,
. . .) are undecidable. Adding these lossy transition makes the transition system monotone for the well-quasi-
ordering: (p, v) 4 (q, w) iff p = q and v v w. Generic wqo analysis to bound bad sequences give a Fωω

upper-bound for the aforementioned classical verification problems in the case of LCS. A matching lower
bound has been proved in [6].

A Lossy Counter Machine is a counter machine whose counters may spontaneously have their value
decreased.

Definition 4. A Lossy Counter Machine (LCM) is a triple M = (Q,C,∆). Q is a finite set of states,
C = {c1, . . . , cd} a finite set of counters, and ∆ a finite set of transitions ∆ ⊆ Q × C × Op × Q, where

Op = {++, --, ?
= 0}

The associated semantic is an infinite transition system (Q×Nd, T) such that for any two states p, q ∈ Q,
~u,~v ∈ Nd and i ∈ [d]:

• ((p, ~u), (q,~v)) ∈ T if (p, ci++, q) ∈ ∆ and for any j ∈ [d], ~v(j) = ~u(j) iff j 6= i, and ~v(i) = ~u(i) + 1

• ((p, ~u), (q,~v)) ∈ T if (p, ci--, q) ∈ ∆ and for any j ∈ C, ~v(j) = ~u(j) iff j 6= i, and ~v(i) = ~u(i)− 1 ≥ 0

• ((p, ~u), (q, ~u)) ∈ T if (p, ci
?
= 0, q) ∈ ∆ and ~u(c) = 0

• ((p, ~u), (q,~v)) ∈ T if v ≤ u for the product ordering on Nd

Once again, the last rule is the one formalizing the losses of the counters. Without this last rule, one obtain
Minsky machines, known to make undecidable the problems we consider. With this lossy rule, the transition
system given by the semantic is well-structured with respect to the well-quasi-ordering: (p, ~u) 4 (q,~v) iff
p = q and u ≤ v for the product ordering. Generic wqo analysis give in this case a Fω upper bound, and a
proof of a matching lower bound can be found in [19].
The two following well-known restriction of counter machines are also used in this report:

• A counter machine with a reliable behavior and no zero-test transition is called a VASS (Vector Addition
Systems With States). It is a fundamental model in verification, whose reachability problem is known
to be decidable [16], but no upper bound has been established. Its coverability problem is known to be
EXPSPACE-complete [17]

• A VASS with only one state (|Q| = 1) is called a VAS (Vector Addition System)

2.4 Post Embedding Problems

This subsection recalls the problems introduced in [5] and the associated results, as a motivation to the
problems defined in the next section. The Post Embedding Problem, and its most interesting extensions, are
decidable variants of the well-known Post Correspondence Problem (PCP):

Post Correspondence Problem

INPUT: Two morphisms u, v : Σ∗ → Γ∗

QUESTION: Is there a word σ ∈ Σ+ such that u(σ) = v(σ) ?

Such a small change as asking for u(σ) to be only a subword of v(σ) (u(σ) v v(σ)) makes the problem
decidable, and even “trivial” (solvable in NL). This problem is known as Post Embedding Problem. Now, a

6

little modification gives a still decidable variant, but with non-primitive recursive complexity: the Regular
Post Embedding Problem (PEP)

Regular Post Embedding Problem (PEP)

INPUT: Two morphisms u, v : Σ∗ → Γ∗, a regular language R ⊆ Σ∗

QUESTION: Is there a word σ ∈ R such that u(σ) v v(σ) ?

This problem has been proved Fωω -complete in [5], by equivalence with the reachability problem for Lossy
Channel Systems. More precisely, the two problems are equivalent with an intermediate problem: a solution
σ to a Regular Post Embedding instance (u, v,R) is said to be directed (resp. codirected) if for any prefix
(resp. suffix) τ of σ, u(τ) v v(τ). The two following problems are Fωω -complete as well.

Directed Regular Post Embedding Problem (PEPdir)

INPUT: Two morphisms u, v : Σ∗ → Γ∗, a regular language R ⊆ Σ∗

QUESTION: ∃σ ∈ R. ∀τ ∈ Pref(σ). u(τ) v v(τ) ?

Codirected Regular Post Embedding Problem (PEPcodir)

INPUT: Two morphisms u, v : Σ∗ → Γ∗, a regular language R ⊆ Σ∗

QUESTION: ∃σ ∈ R. ∀τ ∈ Suff(σ). u(τ) v v(τ) ?

The intuition behind the equivalence between PEPdir and reachability for LCS is that the regular language
R encodes the control state structure of the Lossy Channel System, while the two morphisms give a labeling
for the transitions: v encodes the writing and u the reading. The directed restriction is essential to ensure
that what is read has been written before. The first goal of my internship was to find an Fω-complete problem
of the same shape, it is then natural to follow the same intuition: R will encode the control state structure of
a Lossy Counter Machine, and we need to replace Γ∗ by a structure adapted to encode counters ranging over
the integers (Γ∗ was suited to encode a channel containing words). The next section presents the different
choices of new structure we tried and the different results we obtained.

3 Regular Integer Problems

3.1 Definitions

A natural first attempt of structure to encode k counters is simply Nk. This defines a problem we called the
Regular Integer Problem (RIP)

Regular Integer Problem (RIP)

INPUT: An integer k, two morphisms u, v : Σ∗ → Nk, a regular language R ⊆ Σ∗

QUESTION: ∃σ ∈ R. u(σ) ≤ v(σ) ?

where ≤ denotes the product ordering over Nk (i.e. the order that makes Lossy Counter Machines a
WSTS), and u, v are morphisms for the addition in Nk. Moreover, by taking h = v − u, the problem can be
stated in a more compact way:

Regular Integer Problem (RIP)

INPUT: An integer k, a morphism h : Σ∗ → Zk, a regular language R ⊆ Σ∗

7

QUESTION: ∃σ ∈ R. ~0 ≤ h(σ) ?

Directed and codirected variants are defined as in the case of PEP.
As intended, the regular language R can encode a control state structure, and the morphism h can encode

the additive actions, but not the zero-tests, and indeed, RIPdir can be shown equivalent to coverability for
VASS (see 4.5). In order to encode Lossy Counter Machines, and hence obtain a Fω-complete problem, one
need to consider a more general structure: affine transformations from Zk to Zk. Given A ⊆ Zk×k, we define
the Regular Affine Integer Problem over A:

Regular Affine Integer Problem (RAIP(A))

INPUT: An integer k, a morphism h : Σ∗ → (Zk → Zk), a regular language R ⊆ Σ∗ where ∀a ∈
Σ ,∃A ∈ A ,~b ∈ Zd ,∀~v ∈ Zk. h(a)(~v) = A~v +~b

QUESTION: ∃σ ∈ R. ~0 ≤ h(σ)(~0) ?

Here, h is a morphism for the composition: for any a ∈ Σ, σ ∈ Σ∗, h(aσ)(~v) = h(σ)(h(a)(~v)). We will note
RAIP for RAIP(Zk×k) the full fragment of affine transformations, and RIPR for RAIP({Ik}∪{Ik−Ei | i ∈
[k]}) the fragment of reset transformations, that is diagonal matrices with coefficients among {0, 1}. Moreover,
note that RIP = RAIP({Ik}). Directed and codirected versions are defined as in the previous cases.

Finally, we introduce the restrictions of the problems RIP, RIPR and RAIP where the word solution σ
is asked to belong to Σ+ instead of a language R part of the input:

Existential Affine Integer Problem (EAIP(A))

INPUT: An integer k, two vectors ~v0, ~vf ∈ Zk, a morphism h : Σ∗ → (Zk → Zk) where ∀a ∈ Σ ,∃A ∈
A ,~b ∈ Zd ,∀~v ∈ Zd. h(a)(~v) = A~v +~b

QUESTION: ∃σ ∈ Σ+. ~vf ≤ h(σ)(~vi) ?

These existential problems are named EIP, EIPR and EAIP for the respective restrictions on the set of
matrices A. Unlike in the case of PEP, these problems are not trivial, instead they correspond to coverability
for counter machines without states, namely VAS, possibly extended with resets or affine updates. Note that
there is a little variation: the input now has two extra vectors that replace ~0 in the question. All the problems
defined before are invariant when adding these extra initial and final vectors: they can be encoded in the
regular language. This variation only matters in the existential versions where there is no regular language.

3.2 Results

The following figure summarizes the complexity results obtained for all the problems introduced in the
previous section. The arrows represents all the trivial reductions from one problem to another, since clearly
RAIP(A) reduces to RAIP(B) when A ⊂ B. Note that all the results (upper and lower bounds) below
hold for both unary and binary encoding of integers, and independently of the representation of a regular
language (deterministic or non deterministic automaton, regular language, ...). Proofs of these statements
are postponed to the next section.

As previously mentioned, the directed versions naturally correspond to the coverability problem for
counter machines whose counters values are bounded to stay in N, i.e. VASS, and extensions thereof. Re-
moving this directed constraint can be seen as allowing counters to take negative values, and the existential
versions simply are the stateless versions, i.e. VAS and extensions, with unbounded counters. Surprisingly,
this class of Z-counter machines (with or without states) has been much less studied than the natural num-
ber versions. Hence, we have compacted the results from the two first columns in an article Integer Vector

8

Figure 1: Complexities of the Regular Integer Problems. Arrows represents trivial reductions.

9

Addition Systems with States [12] that we submitted to the 2014 edition of Reachability Problems (RP). The
paper has been accepted, and is joint to this report. Problems in this article are presented as reachability and
coverability problems for different models of Z-counter machines, with or without states. Finally, it seems
that the codirected versions of the problems do not correspond to a natural verification question over counter
machines, hence the associated complexity results where not presented in the article, but proofs of these can
be found in the next section, except for RAIPcodir which has been left open.

The next section contains a proof for each of the results gathered in the figure above. The two first column
constitutes the content of our RP paper, hence some of the proofs are only sketched, details can be found in
the article itself, which is joint to this report. The NP membership of RIPR constitutes the main result of
the article, along with the complexity of the inclusion problem for Z-counter machines, problem that is not
mentioned in this report.

4 Proofs

Before all, observe that a morphism ranging into Zk has the following property:

Lemma 1. Given h : Σ∗ → Zk, σ and σ′ two words with the same Parikh image, h(σ) = h(σ′).

Proof. Addition on NK is associative and commutative. ut

Unfortunately, this property is lost for morphism ranging into affine transformations over Zk, since compo-
sition of affine transformations is not commutative. However, similar (but weaker) properties will be proved
within the proofs, as it is needed. In the following, we will treat morphisms h : Σ∗ → Zk as morphisms from
Σ∗ to translations over Zk, that is affine transformations using only the identity matrix.

4.1 EIP is NP-complete

In this subsection, it is highlighted that EIP simply is a system of linear equations over the integers. Indeed,
by lemma 1, only the number of letters in the word solution σ is important.

Therefore, the EIP instance (k,~v0, ~vf ,Σ, h) has a solution if and only if there exists a vector ~x ∈ N|Σ∗|

such that ~v0 +
∑
a∈Σ ~x(a) · h(a) ≥ ~vf . It is well known that solving an affine system of equations over N is

NP-complete, and any linear system can be represented as a EIP instance.
Note that if we remove the two vectors ~v0 and ~vf from the input, and ask for h(σ)(~0) ≥ ~0, then an

instance can be solved in P. Indeed, the system becomes
∑
a∈Σ ~x(a) · h(a) ≥ ~0, which can be solved in Q in

polynomial time using linear programming, then one obtain solutions in N by multiplying every equation by
its common denominator.

4.2 EIPR is NP-hard

NP-completeness of EIPR can be deduced from the previous section and section 4.4. However, we prove in
the following that the weaker version of EIPR where the vectors ~v0 and ~vf are removed from the input is
already NP-hard, by reduction from Subset Sum.

Subset Sum is the following problem:

Subset Sum

INPUT: A set S = {s1, . . . , sk} ⊂ N and an integer A ∈ N
QUESTION: Is there a subset X ⊆ [k] s.t.

∑
i∈X si = A ?

Given an instance of Subset Sum, consider the following EIPR instance:

10

• Σ = S ∪ a

• h : Σ∗ → (Zk+2 → Zk+2)

• h(a)(X) = Z ×X + (A,−A, 1, . . . , 1) where Z is the zero matrix

• for any i ∈ [k], h(si)(X) = X + (−si, si, 0, . . . , 0)− Ei+2

Correction of the reduction: there is X ⊆ [k] such that
∑
i∈X si = A if and only if there is a σ ∈ Σ+ such

that h(σ)(~0) ≥ ~0
(⇒) Let X = {si1 , . . . , sip} be a solution of the Subset Sum instance, then σ = asi1 . . . sip is a solution to

the EIPR instance:

h(σ)(0) =

A−

∑
i∈X si

−A+
∑
i∈X si

1− (s1 ∈ X)
...

1− (sp ∈ X)

where si ∈ X is the characteristic function of X applied to si. Since X is a solution to the subset sum instance,
the two first component are null, and since X is a set, 1− (si ∈ X) ≥ ~0, which means that h(σ)(~0) ≥ ~0.

(⇐) Let σ ∈ Σ+ be a solution: h(σ)(~0) ≥ ~0. First observe that the letter a must occur in σ, if not, one
of the k last component of h(σ)(~0) will be negative. Indeed, there must be at least one letter in σ, be it si,
since only the letter a can add to component j + 2, h(σ)(~0)(j + 2) ≤ −1.

Now we can assume that the letter a only occurs once in σ as its first letter, since given any solution
σ = σ′aσ′′, we have:

~0 = h(σ)(~0) = h(aσ′′)(h(σ′)(~0)) = h(σ′′)(h(a)(h(σ′)(~0))) = h(σ′′)(Z × h(σ′)(~0) + h(a)(~0)) = h(aσ′′)(~0)

Thus, aσ′′ is a solution as well. Finally, given a solution in which a occurs only once at first position, each
letter si occurs at most once because of the (i + 2)-th component. Consider X the set of indexes i such
that si occurs in the solution, it is a solution to the Subset Sum instance, indeed both A −

∑
i∈X si and∑

i∈X si −A are greater than 0, which means that A =
∑
i∈X si.

4.3 RIP is in NP

As in the case of EIPR, NP-completeness of RIP can be deduced from NP-completeness for EIPR and RIPR.
However, it is important to note that the proof of NP-membership of RIPR generalizes the commonly known
proof of NP-membership. It consists of showing that:

• It is enough to know the Parikh image of the solution

• Parikh images of a regular language is a semi-linear set that can be computed as an existential Pres-
burger formula

• Testing the satisfiability of an existential Presburger formulas is a NP-complete problem

To show that RIPR can be solved in NP, one essentially needs to adapt these three steps to handle the reset
operation: generalize the definition of the Parikh image and show that the set of generalized Parikh image
of a regular language is still expressible as an existential Presburger formula. The next section informally
describes these steps, details can be found in appendix.

11

4.4 RIPR is in NP

In this section, we describe a NP procedure to solve an instance (k,Σ, h,R) of RIPR. First, we argue that
without loss of generality, we can assume the instance to be of a more specific form. We then sketch a
procedure and give some arguments of correctness. A detailed and more complete proof can be found in the
section 3 of [12] joint in the appendix.

Given a RIPR instance (k,Σ, h,R), we consider the instance (k,Σ∪{r1, . . . , rk}, h′, R′) defined as follows.
For i ∈ [k], let Ri is the i-th reset matrix, i.e. Ri = Ik − Ei, and by convention let R0 = Ik. For any a ∈ Σ,

we know there are ia ∈ [0, k] and ~ba ∈ Zk such that for all ~v ∈ Zk, h(a)(~v) = Ria~v +~ba. Now, h′ and R′ are
such that for any ~v ∈ Zk:

• for a ∈ Σ, h′(a)(~v) = ~v +~ba

• for i ∈ [k], h′(ri)(~v) = Ri~v

• R′ is the language R where every occurrence of a letter a ∈ Σ has been substituted for the word aria ,
except if ia = 0.

These two problems obviously have the same solutions. Intuitively, the second form of the instance just
isolate the resets part from the additive part (both in h and R). This clear distinction between the additive
part, which we known can be solve in NP, and the resets part allows us to deal more precisely with the resets,
in order to “hide” them.

Now, assume we are given such an instance of RIPR, that is an instance (k,Σ′, h,R) where Σ′ can be split

in Σ′ = Σ∪{r1, . . . , rk} such that for any i ∈ [k] and ~v ∈ Zk, h(ri)(~v) = Ri~v; and for any a ∈ Σ there is ~b ∈ Zk

such that h(a)(~v) = ~v +~b. The key to the NP procedure is that for a word σ1r1σ2 ∈ Σ′, the first component
of h(σ1r1σ2)(~v) is the same as the first component of h(σ2)(~v). In consequence, only the last occurrence of
a reset ri has an importance for the i-th component. This motivates the following decomposition.

Lemma 2. Given σ ∈ Σ′∗ = (Σ ∪ {r1, . . . , rk})∗, there are an integer p ∈ [k], a permutation f : [k] → [k]
and p words σi such that

σ = σprf(p+1)σp+1 · · · rf(k)σk

where for all i ∈ [p, k], σi ∈ Σ ∪ {rf(i+1), . . . , rf(k)}

This definition decomposes a word σ in at most k parts, which is polynomial of the input. This de-
composition is our new Parikh image: the generalized Parikh image consists of at most k + 1 vectors, and
a permutation. Generalizing the construction provided in [20] to build an existential Presburger formula
expressing the Parikh image of a given regular language is not difficult. Finally, we obtained the same three
ingredients as for the NP-membership proof for RIP. Details on this procedure can be found in appendix, in
section 3 of [12].

4.5 RIPdir is EXPSPACE-complete

In this section, we prove that RIPdir and coverability for VASS are inter-reducible. The second problems is
known to be EXPSPACE-complete [17], which gives the complexity of RIPdir. The intuition behind the proof
is once again the same: the regular language R is just a control state structure, and the morphism h is just
the actions on counters performed by transitions.

Proposition 1. There is a logarithmic-space reduction from RIPdir to coverability for VASS

12

Proof. Given an instance (k,Σ, h : Σ∗ → Zk, R) of RIPdir, and A = (Q,Σ,∆, q0, F) an automaton that
recognizes R, we can assume that F is a singleton: otherwise it is enough to add a new state qf , a new letter

e, and transitions from states in F to qf labeled by e, then define h(e) = ~0. we now consider the VASS
V = (Q, k,∆′) where ∆′ is given by: for any p, q ∈ Q, a ∈ Σ, (p, a, q) ∈ ∆ iff (p, h(a), q) ∈ ∆′. We claim that
there is σ ∈ R such that h(τ) ≥ ~0 for any prefix τ of σ if and only if there is a run in V from (q0,~0) to (qf , ~v)

for some ~v ∈ Nk, that is, if and only if qf is coverable from (q0,~0) in V.
Indeed one can easily show by induction over the length of σ that: there is a run from q0 to q in A such

that for every prefix τ of σ, h(τ) ≥ ~0 if and only if there is a run from (q0,~0) to (q, h(σ)) in V. Applying this
for a σ ∈ R, we obtain the desired result since A has only final state qf . ut

Proposition 2. There is a logarithmic-space reduction from Coverability for VASS to RIPdir

Proof. Given a VASS V = (Q, k,∆) and two states q0, qf , consider the following RIPdir instance: (k,∆, h :
∆∗ → Zk, R) where:

• For any δ = (p,~v, q) ∈ ∆, h(δ) = ~v

• R is the language recognized by the automaton A = (Q,∆,∆, q0, {qf})

Obviously, the same invariant as in the previous proof holds, hence the result. ut

These two reductions emphasizes how RIPdir simply is a reformulation of the coverability problem for
VASS, in the same way that PEPdiris a simple reformulation of the reachability problem for Lossy Channel
Systems.

4.6 RIPcodir is EXPSPACE-complete

In the previous section, RIPdir has been proved EXPSPACE-complete. The same complexity holds for
RIPcodir, since the two problems are inter-reducible. The proof is completely inspired of the proof that
PEPdir and PEPcodir are equivalent: the idea is to read the run backward, so that suffixes become prefixes.
Since addition is commutative and associative, the final value of the counters is preserved (c.f. lemma 1).

Given (k,Σ, h,R) an instance of RIPdir, we consider the instance (k,Σ, h, R̃) of RIPcodir, where R̃ is the
language of mirror words in R. Given an automaton recognizing R, an automaton recognizing R̃ can be built
in logarithmic-space, it is sufficient to replace every transition (p, a, q) by (q, a, p) and inverting initial and
final states.

Now, by lemma 1, since σ and σ̃ have the same Parikh image, h(σ) = h(σ̃). Moreover, τ is a prefix of σ
if and only if τ̃ is a suffix of σ̃. These two facts ensure the correction of the reduction. The reduction from
RIPcodir to RIPdir is exactly the same.

4.7 RIPRcodir is in EXPSPACE

Both in the case of PEP and RIP, the directed and codirected versions of the problem turned out to
be equivalent, because the target structure of the morphism(s) enjoyed some property of stability when
considering the mirror operation on words of the source structure. For instance, a morphism h : Σ∗ → Zk
satisfies h(σ) = h(σ̃). This is no longer the case when the target structure is Zk → Zk equipped with the
composition law, as this law is not commutative. As a result, there are no reason for RAIPdir and RAIPcodir
(resp. RIPRdir and RIPRcodir) to be equivalent. And indeed they are not in the case of RIPR: RIPRdiris a
Fω-complete problem, as proved in subsection 4.8, while RIPRcodir is only EXPSPACE-complete, as proved

13

in this subsection. The EXPSPACE part is by a reduction to RIPdir, while the EXPSPACE-hard part is trivial
by the natural reduction from RIPcodir to RIPRcodir.

Proposition 3. There is a logarithmic-space reduction from RIPRcodir to RIPdir

Proof. As in the case of RIPR, we can without loss of generality assume an instance of RIPRcodir to be of
the form (k,Σ′, h,R) with Σ′ = Σ ∪ {r1, . . . , rk}, h(ri) being the i-th reset and h(a) being only additive for
a ∈ Σ. With a similar reduction, we can further assume Σ′ = Σ1 ∪ Σ2 ∪ · · · ∪ Σk ∪ {r1, . . . , rk}, where all
the Σi are indexed copies of an alphabet Σ, such that h(ai)(~v) = ~v + λai~ei; in other words, h(ai) is not only
additive, but moreover only adds on the i-th component.

From such an instance, we can build the following RIPdir instance: (3k,Σ′′ ∪ {#}, h′,# · R′), where
R′ ⊂ Σ′′.

• Σ′′ = (
⋃
i∈[k] Σi) ∪ {ui++, ui--, vi++, vi-- | i ∈ [k]}

• R′ is the mirror language of R, R̃, where occurrences of ai ∈ Σi are replaced by the regular expression
e1 = (ui-- · ai · ui++) + (vi-- · vi++), and occurrences of ri are replaced by the regular expression
e2 = (ui-- · vi++) + (vi-- · vi++)

• For ai ∈ Σi, h
′(ai) = h(ai) (h′(ai) is null over the 2k extra dimensions)

• h′(ui++)(~v) = ~v + ~ek+i, h
′(ui--)(~v) = ~v − ~ek+i

• h′(vi++)(~v) = ~v + ~e2k+i, h
′(vi--)(~v) = ~v − ~e2k+i

• h′(wi++)(~v) = ~v + ~e2k+i, h
′(wi--)(~v) = ~v − ~e2k+i

• h′(#)(~v) = ~v +
∑k
i=1 ~ek+i

Intuitively, a word in R′ is just a word in R backward, so that suffixes become prefixes, this way, the
codirected constraint becomes a directed constraint. Besides, observe that as in the case of RIPR, only the
last reset on a component has an importance: h(σ1riσ2)(~0)(i) = h(riσ2)(~0)(i). In order to keep track of resets
on dimension i for i ∈ [k], component k+i is equal to 1 when no reset has occurred on the i-th component and
0 otherwise. Component 2k + i behaves as the boolean negation of component k + i. Together, component
k+ i and 2k+ i are able to simulate zero-tests: only one of the two can be decreased. Letters ui++ and ui--
are used to modify component k + i, while letters vi++ and vi-- are used to modify component 2k + i.

.

.

.

.

.

. .

.

ui--

ai

ui++

vi--

vi++

ui--

vi++

vi--

vi++

Figure 2: Diamonds to recognize the expressions e1 and e2

14

Correction of the reduction:

∃γ solution to the original RIPRcodir instance ⇔ ∃σ solution to the RIPdir instance

(⇒) This direction simply is a simulation: we inductively define a function f : Σ′∗ → Σ′′∗ such that for any
γ ∈ Σ′∗ which is a solution to the RIPRcodir instance, #f(γ) is a solution to the RIPdir instance. f is defined
as follows: for any i ∈ [k]

• f(ε) = ε

• Given γ ∈ Σ′∗ with no occurrence of ri and ai ∈ Σi, f(ai · γ) = f(γ) · ui--aiui++

• Given γ ∈ Σ′∗ in which ri occurs at least once and ai ∈ Σi, f(ai · γ) = f(γ) · vi--vi++

• Given γ ∈ Σ′∗ with no occurrence of ri, f(ri · γ) = f(γ) · ui--vi++

• Given γ ∈ Σ′∗ in which ri occurs at least once, f(ri · γ) = f(γ) · vi--vi++

Now, to show that f maps solutions to solutions, we show by induction on γ the following five invariants:
for any i ∈ [k]

Invariant 1 If ri does not occur in γ then h′(#f(γ))(~0)(k + i) = 1

Invariant 2 If ri occurs in γ then h′(#f(γ))(~0)(k + i) = 0

Invariant 3 h′(#f(γ))(~0)(k + i) = 1− h′(#f(γ))(~0)(2k + i)

Invariant 4 h(γ)(~0)(i) = h′(#f(γ))(~0)(i)

Invariant 5 If every suffix γ′ of γ satisfies h(γ)(~0) ≥ ~0 then every prefix of #f(γ) satisfies h′(#f(γ))(~0) ≥ ~0.

The last invariant applied to some γ ∈ R clearly entails this direction of the correction of the reduction.

• If γ is empty, the property holds since h′(#)(~0) satisfies the five invariants.

• If ri does not occur in γ, then h′(#f(aiγ))(~0) = h′(ui--aiui++)(~0) + h′(#f(γ))(~0). Since ri does not
occur in γ, h′(#f(γ))(~0)(k + i) = 1 by induction hypothesis. Therefore h′(#f(aiγ))(~0)(k + i) = 1,
hence h′(#f(γ))(~0)(k+j) = h′(#f(aiγ))(~0)(k+j) for any j ∈ [2k], which gives the three first invariant
by induction hypothesis. Moreover, ri does not occur in γ, which means that h(aiγ)(~0)(i) = h(ai)(~0) +
h(γ)(~0), and the same relation holds for h′, thus the forth invariant holds. Finally, any component except
the i-th and (k+ i)-th ones are positive by induction hypothesis, the i-th one is positive assuming that
every suffix of aiγ makes h positive by invariant 4, and as noted earlier h′(#f(γ))(~0)(k+ i) = 1, which
ensures that h′(#f(γ) · ui--)(~0)(k + i) = 0 ≥ 0.

• If ri occurs in γ, then h′(#f(aiγ))(~0) = ~0 + h′(#f(γ))(~0), thus the three first invariant holds by
induction hypothesis. Moreover, h(aiγ)(~0) = h(γ)(~0). Formally, γ = γ1riγ2, and h(aiγ1riγ2)(~0) =
h(r1γ2)(h(aiγ1)(~0)) = h(γ2)(~0) = h(γ)(~0). Hence the forth invariant holds. Finally, since ri occurs in
γ, invariant 2 and 3 of the induction hypothesis gives h′(#f(γ))(~0)(2k+ i) = 1, which justifies that h′

stays positive under the action of vi--vi++.

15

• If ri does not occur in γ, then h′(#f(riγ))(~0) = ~e2k+i − ~ek+i + h′(#f(γ))(~0). Thus, the three first
invariants hold. Moreover, h(riγ)(~0) = h(γ)(~0) and the first k components are unchanged in h′, so the
forth invariant holds. Finally, since ri does not occur in γ, h′(#f(γ))(~0)(k + i) = 1, which entails the
last invariant.

• If ri occurs in γ, then h′(#f(riγ))(~0) = ~0 + h′(#f(γ))(~0), hence the three first invariants hold, and
for the same reason as in the previous case, the forth one holds as well. Finally, since ri occurs in γ,
h′(#f(γ))(~0)(2k + i) = 1, which justifies that h′ remains positive under the action of vi--vi++.

(⇐) Given A an automaton that recognizes R, it is easy to build an automaton A′ that recognizes R′, by
reversing the direction of every edge in A, swapping initial and final state, and then replacing every edge by
the corresponding “diamond” from figure 2. Now define P(A) the set of all runs in A that are suffix of some
accepting run, i.e. the set of runs recognizing Suff(R). Similarly, define P(A′) the set of all runs in A′ that
are prefix of some accepting run, and that moreover do not end inside a diamond. In this configuration,
there is a natural map f : P(A′)→ P(A): a part of a run using either the left or right branch of a diamond is
mapped to the original edge of A that was replaced by this diamond in A′. A run τ of length n in P(A) has
exactly 2n antecedents by f , since every step in τ corresponds to two possible paths in A′ (the two branches
of the diamond). Also define A′(ρ) ∈ Σ′′∗ as the word read by the run ρ ∈ P(A′) in the automaton A′, and
similarly A(τ) ∈ Σ′∗. Note that f is surjective, thus every word in Suff(R) can be obtained as A′(f(ρ)) for
some ρ ∈ P(A′).

Observe that there is no such mapping from Σ′′∗ to Σ′∗, which motivates that we work on runs, and not
simply on words. For instance, if R = ai + ri + bi, then in the corresponding A′, the word σ = vi-- · vi++ is
recognized by three different runs: the one using the right branch in the first diamond, the second one using
the right branch in the second diamond, and the third one using the right branch in the third diamond. The
images by f of these three runs read in A the three different words ai, ri and bi. Therefore, each accepting
run in A′ reading a solution to the RIPdir instance can be mapped to a solution to the RIPRcodir instance,
but a solution to the RIPdir instance can be mapped to potentially several solutions. More precisely, we
show that if a run ρ ∈ A′ such that #A′(ρ) is a solution to the RIPdir instance, then A(f(ρ)) is a solution
to the original RIPRcodir instance.

Given σ ∈ R′ such that h′(#µ)(~0) ≥ ~0 for any µ ∈ Pref(σ), and a run ρ in A′ recognizing σ, let τ = f(ρ)
and γ = A(τ). The following invariants hold: for all ρ′ ∈ P(A′) prefix of ρ, let µ = A′(ρ′) and ν = A(f(ρ′)),
and for any number i ∈ [k]:

Invariant 1 h′(#µ)(~0)(k + i) ∈ {0, 1}

Invariant 2 h′(#µ)(~0)(k + i) = 1− h(#µ)(~0)(2k + i)

Invariant 3 h′(#µ)(~0)(k + i) = 0 if and only if ν) does not contain the letter ri ∈ Σ′

Invariant 4 h′(#µ)(~0)(i) = h(ν)(~0)(i)

Once these invariants proved, the forth invariant entails what needs to be proved: since #σ is a directed
solution, h′(#µ)(~0) ≥ ~0, which means h(ν)(~0) ≥ ~0. Since by construction of A′, every suffix of γ is indeed
obtained this way, γ is a codirected solution.

We show these four invariants by recursion on the length of µ. Initially, all four invariants hold for
h(#)(~0). If they hold for a prefix µ, then we must show that they hold for

1. µ1 = µ · ui-- · ai · ui++,

2. µ2 = µ · vi-- · vi++,

16

3. µ3 = µ · ui-- · vi++

1. By induction hypothesis, we know h′(#µ)(~0)(k + i) ∈ {0, 1}. If it is equal to 0, then ui-- cannot be
read: we would have h(#µui--)(~0)(i) = −1, which is impossible since σ is a directed solution. Hence
it is equal to 1, and h(#µ)(~0) and h(#µ · ri-- ·ai · ri++)(~0) differs only on the i-th component, thus the
three first invariants hold for µ1. Moreover, ν1 can only be ai · ν, and since ri does not occur in ν by
induction hypothesis, the forth invariant is satisfied by µ1.

2. This time, for h′(#µ2)(~0)(2k+ i) to be positive, we must have h′(#µ)(~0)(2k+ i) = 1, and by the third
invariant, ri occurs in ν. As mentioned earlier, the word vi--vi++ can be obtained for different ν2:
ν2 = aiν for any ai ∈ Σi, or ν2 = riν. But since ri occurs in ν, all possible ν2 satisfy invariant 4.

3. The last case is handled without difficulties with the same arguments seen in the previous cases.
ut

4.8 RIPRdir and RAIPdir are Fω-complete

As in the case of RIPdir, RIPRdir simply is a reformulation of the coverability problem for VASS with resets,
which is equivalent to coverability/reachability for Lossy Counter Machines. Thus RIPRdir is Fω-complete.
Besides, RAIPdir is, also by the same reduction, just a reformulation of the coverability problem for VASS
with affine updates. Since it is known how to simulate affine updates only with resets, the two problems are
equivalent, and RAIPdir is Fω-complete as well.

4.9 RAIP is Undecidable

Undecidability of RAIP has been announced in [7]. This result has been obtained by J. Reichert and has
not yet appeared in written format. For the sake of completeness, here we first repeat Reichert’s argument.
Note that the following reduction gives undecidability not only of RAIP in its general form, but even for a
fixed k greater than 4, and with only diagonal matrices.

Undecidability is shown via reduction from the undecidable Post Correspondence Problem (PCP). Given
u1, . . . , un, v1, . . . , vn ∈ {0, 1}∗, PCP asks whether there are some i1, . . . , ip (p > 0) such that ui1 · · ·uip =

vi1 · · · vip . Below, we define a RAIP instance (4, {0, 1, 0̃, 1̃,#}, h,R) that has a solution if, and only if, there
is a solution to the above PCP instance:

q0 qfA:
#

u1ṽ1

uiṽi

unṽn

#

Figure 3: The automaton A recognizing R

A is an automaton describing the regular language R. It has n self-loops on q0, and each of these loops
is labeled by a word w = uiṽi. This, of course, actually corresponds to a path with |w| states such that the

17

path reads w. We now define h as:

h(0)(~v) =

2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

~v h(0̃)(~v) =

1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2

~v

h(1)(~v) =

2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

~v +

1
0
−1
0

 h(1̃)(~v) =

1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2

~v +

0
1
0
−1

h(#)(~v) = ~v +

−1
−1
1
1

The idea is that a word σ ∈ R must end by a sequence of #. Moreover, h is such that for any word σ,

the two first component of h(σ)(~0) are the opposite of the two last component. Therefore, the only way to
obtain h(σ)(~0) ≥ ~0 is by having h(σ)(~0) = ~0. This technique of doubling the dimension to handle reachability
with coverability can actually be generalized to any Z-counter machine, as proved in [12]. From these two
observations we deduce that a run ρ reading a word σ in A must make the two first components equal (thus
the two last ones as well) when leaving state q0. In other words, the largest prefix σ′ of σ that does not
contain the symbol # must be such that h(σ′)(~0)(1) = h(σ′)(~0)(2). Thinking of counter values encoded in
binary, the counters represent the concatenation of the ui and the vi, respectively, since in binary, multiplying
by 2 corresponds to concatenating 0, and multiplying by 2 and adding 1 corresponds to concatenating 1.
Looping non-deterministically on q0, the machine “guesses” an order to make the two counters, i.e., words,
equal.

Note that the only matrices appearing in A are diagonal, and of dimension 4. Thus RAIP is already
undecidable for diagonal matrices of fixed dimension 4.

4.10 EAIP is Undecidable

In this subsection, we prove that EAIP is undecidable, by reducing the problem RAIP. Given an instance
(k,Σ, h,R) of RAIPand an automaton A = (Q,Σ,∆, q0, F) for R, we consider the instance (k + |Q| +
3,~0,~0,∆ ∪ {⊥}, h′) of EAIP, where h′ is given below. Given ~v ∈ Zk+|Q|+3, define ~v(i) for i ∈ [k] as usual,
i.e. the i-th component of ~v, ~v(q) for q ∈ Q as the (k + i)-th component of ~v, if q is the i-th state of Q, and
~v(F), ~v(G) and ~v(H) for the three last components. Given ~v ∈ Zk+|Q|+3, h′ is defined as:

• Let ~w = h′(⊥)(~v), we have: ~w(i) = 0 for i ∈ [k], ~w(q) = −1 if q = q0, and 0 otherwise. The three last
component are given by ~w(F) = ~v(F)− 1, ~w(G) = 2~v(G) and ~w(H) = 1.

• For δ = (p, a, p′) ∈ ∆, let ~w = h′(δ)(~v). The k first components of ~w are those of h(a)(~v). The |Q| next
ones are given by ~w(q) = 2~v(q) + 2(p = q)− (p′ = q), where given two states p, q ∈ Q, (p = q) is equal
to 1 if p = q and 0 otherwise. Finally, ~w(F) = ~v(F) + (p′ ∈ F), where q ∈ F equals 1 if q is in F , 0
otherwise; ~w(G) = 2~v(G) + ~v(H)− 1; ~w(H) = ~v(H)− (p′ ∈ F).

The proof of correction is not detailed. It is similar to the one given for RIPRcodir, the invariants being
given by the following intuition: a word σ ∈ Σ is a solution to the RAIP instance if and only if any accepting

18

run ρ for σ in A is a solution to the EAIP instance. The k first components in h′ store the value of the
morphism h. The |Q| next components ensure that ρ is a valid run in A. The F component makes sure
that h′ is negative until the run reaches a final state. The reduction assumes that all final states in A are
deadlocks, i.e. a final state is only reached when the run is over, not before. The idea to forbid transitions
is that the effect of the multiplication by two on a negative component cannot be compensate to be positive
ever again, which acts as a zero test.

5 Conclusion

During this internship, we reformulated a classical coverability problem for some class of (positive) counter
machines as a variant of the Post Correspondence Problem, where we look at the effect of words in a regular
language on a morphism h ranging from words to vectors of integers. Although the two problems are the
same, this new point of view highlighted new variants of counter machines and counter machines problems.
The first variant is the class of counter machines where counters are allowed to take negative values. Even if
the idea does not seem exotic, the class have not received much attention. We filled this gap by submitting
an article, Integer Vector Addition Systems with States [12] whose first main result is the NP upper bound for
reachability and coverability of so called Z-VASS with resets, i.e. VASS whose counters can take arbitrary
values in Z, equipped with an operation of reset. Not only the low complexity compared to the natural number
version, which is Ackermann-complete for coverability, and undecidable for reachability, is surprising, but also
the fact that adding resets to the model do not increase the complexity, since reachability and coverability
for regular Z-VASS already is NP-complete. The second main result of this article is the exact complexity of
the inclusion problem for Z-VASS (with or without resets).

The second variant is the codirected versions of the problems. Although it seems natural to wonder what
effects replacing prefixes by suffixes can have in the word morphism formulation, it is unlikely to think of
the codirected problems from the counter machine point of view. And indeed, these problems have never
been considered. This new formulation of a known problem therefore allowed new variations. However, the
problems are not motivated (yet ?), which is why they are not mentioned in the article.

Moreover, many more problems are suggested by this single reformulation. The most challenging one
would be to find a class A of matrices that makes RAIP(A) Fω-complete. We know that for any {Ik−Ei | i ∈
[k]} ⊆ A ⊆ Dk (the set of diagonal matrices), RAIP(A)dir is a Fω-complete problem, and RAIP(A) is NP-
hard. It would be interesting to find such a class for which RAIP(A) is a Fω-complete problem, it would
satisfy the same equivalence as between PEP and PEPdir. One good candidate could be the set of matrices
with only one “1” per row and column, zeros elsewhere.

We also let some problems unsolved, as it is the case for RAIPcodir, but also RAIP for a fixed dimension
of 2 or 3: we established undecidability for a fixed dimension of at least 4, and the one-dimensional problem is
known to be PSPACE-complete [7]. This idea of fixing the dimension could be applied to problems considered:
what happens to the complexity of RIP if the natural number k is no longer part of the input ? An other
open problem has been suggested in [12], where the inclusion problem for the stateless version of Z-VASS
has been given a NP lower bound and a ΠP

2 (second level of the polynomial hierarchy) upper bound.
Finally, I have spent the last month of my internship working on a different problem: the trace universality

for labeled VASS. Given a VASS V whose transition are labeled by letters from an alphabet Σ, the trace
set of V noted T (V) ⊂ ±∗ is the set of words w such that there exists a valid run in V labeled by w. The
problem has first been proved decidable in [14] using generic WSTS techniques, then a Fω lower bound has
been given in [13] by reduction from lossy counter machines, and finally, generic wqo analysis gives a Fωω

membership. I have tried alternatively to prove either a Fωω lower bound or a Fω upper bound, without
success. However, I am now convinced that the problem actually is Fω-complete, but can not yet provide

19

a proof for it. This would make this problem particularly useful since it would be a member of the Fω-
complete class that requires a finer algorithmic analysis than just bounding the bad sequences. It may then
help concluding on the complexity of other problems for which the wqo analysis do not give tight upper
bounds.

References

[1] Parosh Aziz Abdulla. Well (and better) quasi-ordered transition systems. Bulletin of Symbolic Logic,
16(4):457–515, 2010.

[2] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. Algorithmic analysis of pro-
grams with well quasi-ordered domains. Inf. Comput., 160(1-2):109–127, 2000.

[3] Nathalie Bertrand and Philippe Schnoebelen. Computable fixpoints in well-structured symbolic model
checking. Formal Methods in System Design, 43(2):233–267, 2013.

[4] I. Borosh and L.B. Treybing. Bounds on positive integral solutions of linear Diophantine equations.
Proc. AMS, 55:299–304, 1976.

[5] Pierre Chambart and Ph. Schnoebelen. Post embedding problem is not primitive recursive, with appli-
cations to channel systems. In FSTTCS, pages 265–276, 2007.

[6] Pierre Chambart and Ph. Schnoebelen. The ordinal recursive complexity of lossy channel systems. In
LICS, pages 205–216, 2008.

[7] A. Finkel, S. Göller, and C. Haase. Reachability in register machines with polynomial updates. In Proc.
MFCS, volume 8087 of LNCS, pages 409–420, 2013.

[8] Alain Finkel. A generalization of the procedure of karp and miller to well structured transition systems.
In ICALP, pages 499–508, 1987.

[9] Alain Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theor. Comput.
Sci., 256(1-2):63–92, 2001.

[10] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[11] S. Ginsburg and E.H. Spanier. Semigroups, Presburger formulas and languages. Pac. J. Math., 16(2):285–
296, 1966.

[12] Christoph Haase and Simon Halfon. Integer vector addition systems. CoRR, abs/1406.2590, 2014.

[13] Piotr Hofman and Patrick Totzke. Trace inclusion for one-counter nets revisited. CoRR, abs/1404.5157,
2014.

[14] Petr Jančar, Javier Esparza, and Faron Moller. Petri nets and regular processes. Journal of Computer
and System Sciences, 59(3):476 – 503, 1999.

[15] Wainer S.S. Löb, M.H. Hierarchies of number-theoretic functions. ii. Archiv für mathematische Logik
und Grundlagenforschung, 13:97–113, 1970.

20

[16] E. W. Mayr. An algorithm for the general Petri net reachability problem. In Proc. STOC, pages 238–246,
New York, NY, USA, 1981. ACM.

[17] C. Rackoff. The covering and boundedness problems for vector addition systems. Theor. Comput. Sci.,
6(2):223–231, 1978.

[18] Sylvain Schmitz. Complexity hierarchies beyond elementary. CoRR, abs/1312.5686, 2013.

[19] Ph. Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines and reset Petri nets. In
Proc. MFCS, volume 6281 of LNCS, pages 616–628, 2010.

[20] H. Seidl, Th. Schwentick, A. Muscholl, and P. Habermehl. Counting in trees for free. In Proc. ICALP,
volume 3142 of LNCS, pages 1136–1149, 2004.

21

