
Verification of cryptographic protocols :
A bound on the number of agents

Antoine Dallon

02/10/2015

Supervisors :
Stéphanie Delaune (Team SECSI - LSV)
Véronique Cortier (Team Cassis - LORIA)

General context
Nowadays, cryptography and security protocols are used everywhere, and public confidence in

credit cards or electronic voting relies on their trustworthiness. As flaws can stay unremarked during
several years, the scientific community has undertaken the automation of their research through formal
methods, or to prove the protocols secure. Two families of models have been introduced : computational
models are based on real properties of cryptographic primitives whereas symbolic models, which I used,
assume perfect cryptography but allow more automation.

In each model, security properties should hold for an arbitrary number of agents involved in an
unbounded number of sessions. This together with the unbounded size of the messages, makes the
verification problem undecidable. Works verification of security properties in the symbolic model search
for decidable classes of protocols and properties, or try to improve automated research of flaws.

Research problem
The goal of my internship was to bound the number of agents implied in an attack. More precisely,

it was to show that there was a small computable number such that for any protocol of some class, if
there exists an attack, then there exists an attack involving less than this number of agents. Such a
bound allows us to forget about universal quantification about the agents, reducing the set of possible
traces of attacks. It helps to focus on other difficulties. This problem had been solved ten years ago
for some properties, like secrecy and authentication, and my work aimed to extend this result to more
recent properties expressed using a notion of equivalence, like strong secrecy and different flavours of
anonymity. Actually, existing work on verification of equivalence-based security protocols does not take
account of an unbounded number of agents. So it seemed natural to ask if and when it was safe to do
so.

1

Contribution
To answer this question, I studied related results. One of those stated that nonces can soundly be

abstracted away for the class of simple protocols (see [6]). I showed that it was possible to deduce
a bound on the number of agents for this class of protocols. Then my goal was to extend this class.
This research led me to several negative results : some extensions were impossible, as shown by some
counter examples I built : in some cases, it was impossible to project agents on others. These examples
gave me a better understanding of the previous proof, enabling me to find more suitable hypothesis. It
was then possible to prove an extension where a new form of the unlinkability property can be stated.
To do that, I had to give a new unlinkability property. I proved with ProVerif that this hypothesis was
consistent with the known flaw on French passport.

Arguments
The validity of the result is based on the proofs I wrote. The main difficulty was to find the agents

that we need to preserve, whereas others may be projected on the same one. To do that, each hypothesis
is necessary, not only because our proof does not work without them, but also because removing these
hypothesis allows to build counter-examples. These counter examples are interesting in themselves,
because they give impossibility results for several extensions.

Moreover, these hypothesis are sufficient to encompass most of real protocols. For these protocols,
the bound is often the lowest possible, that is three for each kind of agents (honest or dishonest), which
is a small number.

Summary and future work
My approach for the names of agents was inspired by a nonce abstraction soundness result for the

class of simple protocols. The result I have shown is more general in the sense that it is true for a more
general class of protocols, and more precise because it includes completeness. But my theorem holds
for names of agents only. So it seems natural to unify these results through a more general theorem.
It seems that the soundness part could also be true for other kinds of data, like public constants. As
the completeness statement is false for nonces, a natural question is to understand when it is true.
Moreover, some real protocols containing else branches are not in our class, but it is not sure that
the result could not be true for those protocols. An important related open problem is to bound the
number of sessions, but it is a lot more difficult and cannot be handled the same way.

2

1 Introduction
Security protocols are distributed programms designed to ensure security properties using crypto-

graphic primitives. Some of these protocols have been found to be flawed years after their deployment,
even for simple kinds of attacks. This has led to the need to automatically verify protocols using formal
methods. Symbolic models have been proposed, e.g. by Dolev and Yao, where cryptography is seen
as black box. Some tools, e.g. ProVerif [4], have been developped to check properties in such models.
However, as the problem of verification of security properties has been shown to be undecidable for an
unbounded number of sessions, e.g. in [11] and [12], they either rely on non-complete approaches or
bound arbitrarly the number of sessions.

A typical formal model is the applied pi-calculus [1]. This process algebra uses terms that are used
to represent cryptographic operations (e.g. symmetric and asymmetric encryption and decryption,
signature). The security properties are either expressed as trace properties, that is properties that
should hold for any execution (such as secrecy or authentication), or as equivalence properties, when
two protocols should be indistinguishable. This second kind of properties may be used to ask typically
that some protocol is as sure as an idealized version, or that it is impossible to distinguish when a
protocol is used by Alice or by Bob. These equivalence properties allow to state e.g. stronger notions
of secrecy, anonymity in private authentication or in electronic voting.

When it is claimed that some protocol ensures some security property, this property should hold
for an unbounded number of agents involved in an unbounded number of sessions. It has been shown
that for trace properties and for some class of protocols, it is sufficient to study the protocol with a
bounded number of agents (see [9]). For trace properties, the bound on the necessary number to verify
secrecy is two (one honest and one dishonest agent) because what is done by an honest agent can
be played by another. The goal of the internship was to bound the number of agents for equivalence
properties. More precisely, it was to find a class of protocols such that between any protocols of this
class, the equivalence holds with any number of agents iff it holds with a bounded number of agents,
where the bound is computable from the protocol.

However, for equivalence properties, we cannot hope to get two agents as a bound, because
disequivalence between protocols may come from a disequality. For example, the two terms
adec(aenc(m,pk(ag1)),sk(ag2)) and m are distinguable iff ag1 6= ag2, where adec and aenc represent
asymmetric decryption and encryption respectively, ag1 and ag2 two names of agent, and (pk(x), sk(x))
the pair of the public key and the private key of agent x. My main contribution is to show that to
prove equivalence between protocols of some class, six agents are sufficient.

Contribution. The first step was to model sessions between an arbitrary number of agents. For
this, I introduce a special frame (sequence of messages) of arbitrary size, that instanciate participant’s
names. Then I show that (for some class of protocols), there exists an attack against equivalence with
some number of agents iff there exists an attack with some bounded and calculable number of agents.
The proof is inspired from [6], where it is shown that it is possible to abstract away nonces. This allows
to forget about the universal quantification on agents, even for an unbounded number of sessions
and an unbounded number of nonces. Most cryptographic primitives are handled, included symmetric
and asymmetric encryption, signature, hash functions, MACs, provided that they can be expressed as
reduction rule of a destructor on constructor terms. The bound on the number of agents depends on
these primitives, the relevant parameter being the size of the maximal set of unifiable-together rules.
For standard primitives, this parameter is one, giving a minimal number of agents of 6 (3 honest and
3 dishonest). But this number can be computed on any equational theory where rules are destructor
on constructor terms.

3

The considered class of protocols is a class of action-deterministic protocols, that is protocols where
two indistinguishable actions cannot be reachable at the same time. They have first been defined in [3],
and they contain simple protocols, where each message is identified by a public session identifier. In
our model, we allow simple else branches containing only an output of a public error. This is sufficient
to model several practical examples such as the biometric passport. Moreover, "if" tests can be done
on disjonctions of conjonctions of equalities. It is quite rare that results on equivalence properties hold
for a class of protocols with else branches or disjunctive conditions. These tests are encoded in the
theory : we have some eqn destructors that test if some equality among n is true and reduce in this
case. Using these destructor increases the bound on the number of agents.

Finally, I consider possible extensions of the result, and I provide several counter-examples. When
general else branches are allowed, it is not possible to get such a result, because tests of difference
can increase arbitrarly the bound. With pure equational theories, it is possible to build terms that are
different iff the agents of a list of arbitrary size are pairwise distinct. When no notion of determinism
is used, it is possible to build protocols where a frame can have several executions that are different
iff an arbitrary number of agents is involved.

2 Model
Protocols are modelled as processes inspired from the applied pi-calculus [1]. They manipulate

terms that represent messages.

2.1 Term algebra
We assume three infinite sets N̂ , X , W. The set N̂ is the set of names. Its elements represent e.g.

nonces, keys and agents. We denote N̂ = N]A where A is the set of the names of agents, and is also
split in two parts : A = AH]AD the set of the names of dishonest and honest agents. We assume that
AH = {agH1 , agH2 , . . .} and AD = {agD1 , agD2 , . . .}. Sometimes, it will be useful to consider only a finite
number of agent names. For any integer k, we denote AHk = {agH1 , . . . , agHk }, ADk = {agD1 , . . . , agDk }
and Ak = AHk] ADk .
X is a set of variables, that refer to data that are learnt by the participants during the execution

of the process or that allow the attacker to instanciate the processes (e.g. with identities of agents).
The set W is a set of variables, disjoint from X , that are used to represent attacker’s knowledge.

Moreover, we assume a signature Σ, that is a set of function symbols together with their arity.
The elements of Σ are split between the set of constructor symbols Σc and destructor symbols Σd :
Σ = Σc]Σd. The set of terms built on data from the set A (e.g. A = N̂ ∪ X , A = N̂ or A =W) from
symbols in Σ is denoted by T (Σ, A).

The set T (Σc,X ∪ N̂) of terms built on names and variables in X is the set of constructor terms.
The terms of T (Σ, N̂) are called ground. We consider some special subsetMΣ of ground constructor
terms, that is MΣ ⊂ T (Σc, N̂). Moreover, we assume that MΣ and T (Σc, N̂)\MΣ are stable by
renaming of names and constants.MΣ is called the set of messages.

Example 1 : We want to modelize symmetric cryptography as a black box. So we will consider two
symbols, enc and dec, where enc represents encryption and dec represents decryption. The symbol
shk /1 will be used to represent a key shared with a server.

So we consider the signature Σ = {enc /2; dec /2; shk /1; ok/0} with constructors
Σc = {enc /2; shk /1; ok/0} and Σd = {dec /2}. Assume that Kab ∈ N , a, b ∈ A ⊂ N̂ . We have that

4

dec(enc(a, shk(b)), shk(b)) ∈ T (Σ, N̂), but it is not a constructor term. The term enc(<< b,Kab >
, enc(< Kab, a >, shk(b)) >, shk(a)) is a constructor term.

We make also a distinction between public and private symbols : Σ = Σpub] Σpriv. The public
symbols are those that are available to the attacker. The private symbols are symbols that are not public
and thus not available to the attacker. A term can be built by the attacker by a recipe R ∈ T (Σpub,W)
where the elements of W refer to messages the attacker knows. As names are initially unknown from
the attacker (recall that they refer to nonces and keys), recipes only refer to W and not to N .

Example 2 : We want to modelize the fact that the attacker cannot know the keys of the agents. So,
we modelize the key as a private symbol. Consider the signature Σ = {enc /2; dec /2; shk /1; ok/0} with
public symbols Σpub = {enc /2; dec /2; ok/0} and Σpriv = {shk /1}. Let w1, w2 ∈ W. R = dec(w1, w2)
is a recipe because dec is a public symbol, but shk(w1) is not because shk is private. An attacker may
decrypt a message refered by w1 with a key refered by w2, but he cannot deduce the key of an agent
refered by w1.

Σ0 is the set of elements of arity zero, that we call constants. We denote Σpub0 = Σ0 ∩ Σpub the
set of public constants. In this set, there is some special subset Σerr0 ⊂ Σpub0 of errors. If Σ̃ is some
subset of Σ, we denote Σ̃− = Σ̃\Σerr0 the set of non-error symbols of Σ̃. For example, Σ−0 is the set of
non-error constants and Σ− the set of non-error symbols. We assume that the set of non-error public
constants, that is (Σpub0)−, is infinite. It allows the attacker to use as much constants he wants.

Example 3 : Consider the signature Σ = {enc /2; dec /2; shk /1;MacError/0}∪{a0/0; a1/0; a2/0; . . .}
with errors Σerr0 = {MacError/0}.

We have Σ0 = {MacError/0; a0/0; a1/0; . . .} and Σ−0 = {a0/0; a1/0; . . .}.

When σ is a substitution, we denote by dom(σ) its domain. Moreover, let u be a term. uσ is the
application of σ on u. We denote by vars(u) the set of variables that occur in u. If u is ground,
vars(u) = ∅ and uσ = u for any substitution σ. We say that the terms u and v are unifiable when
there is a substitution such that uσ = vσ.

Example 4 : Consider the signature :

Σ = {enc /2; dec /2; shk /1} ∪ (Σpub0)−

We define u = enc(<< b, yab >, ybs >, shk(a)) and a substitution :

σ = {yab . Kab; ybs . enc(< Kab, a >, shk(b))}

We have uσ = enc(<< b,Kab >, enc(< Kab, a >, shk(b)) >, shk(a)).

The positions of a term t are defined as usual. Moreover, we also define t|p as the subterm of t at
position p and t[t′]p as the term t where the subterm at position p has been replaced by t′.

Example 5 : If Σ = {enc /2; dec /2;m/0} and u = enc(<< b, yab >, ybs >, shk(a)), then u|1.1.2 = yab
and u[Kab]1.1.2 = enc(<< b,Kab >, ybs >, shk(a)).

To represent cryptographic operations, we use rewriting rules. A rewriting rule is a rule
g(t1, . . . , tn) → t where g ∈ Σd and t1, . . . , tn, t ∈ T (Σ−c ,X). We say that u rewrites into v if there
is a position p ∈ pos(u), a rule g(t1, . . . , tn) → t and a substitution θ such that u|p = g(t1, . . . , tn)θ
and v = u[tθ]p with t1θ, . . . , tnθ ∈ MΣ. In particular, note that rewriting rules can only apply when
subterms corresponding to t1, . . . , tn are constructor terms (eventually with errors).

5

Example 6 : We take Σc = {enc /2} ∪ (Σpub0)−, Σd = {dec /2} together with the rewriting rule
dec(enc(x, y), y) → x. Let k0 and k1 ∈ N . Then dec(enc(m, k0), k0) rewrites into m but
dec(enc(m,dec(m,m)),dec(m,m)) doesn’t rewrite into m because dec(m,m) does not rewrites into
a constructor term.

We only consider sets of rewriting rules that yield convergent rewriting systems (see [10]), and we
denote by u↓ the normal form of a given term u.

2.2 Process algebra
Definition 1 (Process) : Let Ch be an infinite set of channels. The processes we consider are built
using the following grammar :

P,Q = 0 | !cc′P | (P |Q) | in(c, u).P | out(c, u).P

| new n.P | let y = v inP elseE | phase t.P

where t is an integer, u is a constructor term (u ∈ T (Σc, N̂ ∪ X)), v is a term (v ∈ T (Σ, N̂ ∪ X)),
n ∈ N is a name, c, c′ are channels of Ch and the process E is either 0 or out(c, e), with e an error
(e ∈ Σerr0).

We can define some subclass of restricted processes where errors only occur in else branches, and
agent’s name do not occur. They are built on the following grammar :

P,Q = 0 | !cc′P | (P |Q) | in(c, u).P | out(c, u).P

| new n.P | let y = v inP elseE | phase t.P

where t is an integer, u is a non-error constructor term without agent’s name (u ∈ T (Σ−c ,N ∪X)), v
is a non-error term without agent’s name (v ∈ T (Σ−,N ∪ X)), n ∈ N is a name, c, c′ are channels
of Ch and the process E is either 0 or out(c, e), with e an error (e ∈ Σerr0).

Note that the absence of the if construction is not a real limitation as if y = y′ thenP elseE
can be encoded as letx = eq(y, y′) inP elseE where eq /2 is a destructor, ok /0 is a constructor and
eq(x, x)→ ok is the only rule containing eq. So removing the if is without loss of generality.

Let describe informally the roles of the elements. The process 0 symbolizes the process doing
nothing. Usually, we denote P instead of P.0. The process !cc′P executes an arbitrary number of sessions
of P (like !P in pi-calculus) but the replication rule is a visible one and creates a new channel c′ and
declares it on the previous channel c. Such a notation has been introduced first in [3]. All channels
are public, and we use channel generation to allow the attacker to know which session of the processes
he is executing. The process (P |Q) is used to represent the process executing P and Q in parallel.
new n.P renames n in P to model new elements unknown by the attacker (e.g. fresh keys, fresh nonces
and new agents names). in(c, u).P is a process expecting a message m unifiable with u on channel c
and instantiating u by m in P . out(c, u).P is a process outputing u on channel c and then executing
P . The process letx = v inP elseE is a process trying to reduce v into a message. If it succeeds, then
x is instantiated by v↓ in P and P is executed. If it fails, E is executed. phase t.P is a process that can
only be executed later, when the phase becomes equal to t. When the phase advances, the processes
in previous phase can’t be executed anymore. The channels of Ch are either used in the specification
or used to instantiate the channels during the execution. So we denote Ch0 an infinite set of channels

6

that may be used in specifications of protocols and Chfresh an infinite set of channels that can only
be used to instantiate channels during the execution. We have Ch = Ch0] Chfresh.

We say that a variable x ∈ X is free if it is not in the scope of any "let" or "in" instruction. A
process is ground if it has no free variable. A name n ∈ N is a free name if it is not in the scope of
any new instruction. A channel c ∈ Ch is free if it is not in the scope of any replication (that is, no
!c

′

c occurs for any c′, but it is possible that some !cc′ occurs). Note that a ground process may have free
names and free channels. We may note P (x) a process where x is a free variable and P (a) = P (x)σ
where σ = {x . a} and a is a constant.

Definition 2 : A (restricted) protocol P is a ground (restricted) process that only uses channels of
Ch0.

Example 7 : The Denning Sacco protocol [8] is a key distribution protocol. It can be described infor-
mally as follows :

1. A→ S : A,B

2. S → A : {B,Kab, {Kab, A}Kbs
}Kas

3. A→ B : {Kab, A}Kbs

where S is a trusted server, Kas and Kbs are two keys shared by A and B respectively with the server :
they will be modelized by shk(a) and shk(b). Kab a key created by the server and {m}k represents the
message m encrypted by the key k.

More formally, consider the signature :

Σ = {enc /2; dec /2;<,> /2; shk /1; proj1 /1; proj2 /1} ∪ (Σpub0)−

with all symbols public, destructor symbols dec,proji (i = 1, 2), and rewriting rules dec(enc(x, y), y)→
x and proji(< x1, x2 >)→ xi (i = 1, 2).

Consider two agents names a, b (for example a = agH1 and b = agH2) and define

PA(a, b) = out(c′A, < a, b >). in(c′A, enc(<< b, yab >, ybs >, shk(a)). out(c′A, ybs)

with c′A ∈ Ch0, yab, ybs ∈ X . PA is a protocol, but it is not a restricted protocol because agent’s names
are used.

We can also define :
PB(a, b) = in(c′B , enc(< zab, a >, shk(b)))

where cB ∈ Ch0, zab ∈ X and :

PS(a, b) = in(c′S , < a, b >).newKab. out(c′S , enc(<< b,Kab >, enc(< Kab, a >, shk(b)) >, shk(a)))

where cS ∈ Ch0 and Kab is a name.
The process PDS = PA(a, b)|PB(a, b)|PS(a, b) is a protocol, but not a restricted one.

2.3 Semantics
As we want to define a semantics for the phase, we say that t : P is a phased process if t is a natural

integer and P a process. It is ground if P is ground.
Before defining operationnal semantics, we need to define the configurations, because the semantics

is a relation between configurations. A configuration is a triple (P, φ, t) where :

7

— P is a finite multiset of ground phased processes. The phase of the processes represent the phase
in which they may be used.

— φ is a substitution {w1 . m1, . . . , wn . mn} where each wi is a variable of W and each mi is a
message. We say that φ is a frame. The messages mi represent the knowledge of the attacker.

— t is a natural integer. It is used to represent the current phase. We denote phase(C) = t.
Sometimes, I write P instead of {0 : P} or instead of (0 : P, ∅, 0). I also write t : P instead of {t : P}.

Moreover, we can see substitutions, and in particular frames, as sets of rules w . t. In particular, it is
possible to write φ1 ∩ φ2 the frame such that dom(φ1 ∩ φ2) = {w ∈ dom(φ1) ∩ dom(φ2)|wφ1 = wφ2}
and ∀w ∈ dom(φ1 ∩ φ2), w(φ1 ∩ φ2) = wφ1 = wφ2.

We say that a configuration is a restricted configuration if its phased processes are restricted
processes and if its frame only refers to terms without errors.

The semantics is given by the following rules :

[Null] (t : {0} ∪ P, φ, t) τ−→ (P, φ, t)

[Sess] (t :!cc′P ∪ P, φ, t)
sess(c,chi)−−−−−→ (t : P{chi/c′} ∪ t :!cc′P ∪ P, φ, t)

with chi a new fresh name : chi ∈ Chfresh.

[Par] (t : (P |Q) ∪ P, φ, t) τ−→ (t : P ∪ t : Q ∪ P, φ, t)

[New] (t : new n.P ∪ P, φ, t) τ−→ (t : P{n
′
/n} ∪ P, φ, t)

with n′ a new fresh name in N .

[Input] (t : in(c, u).P ∪ P, φ, t) in(c,R)−−−→ (t : Pσ ∪ P, φ, t)
where R is a recipe and when Rφ↓ is a message unifiable with u with most general unifier σ.

[Const] (t : out(c, a).P ∪ P, φ, t) out(c,a)−−−→ (t : P ∪ P, φ, t) with a ∈ Σpub0 .

[Out] (t : out(c, u).P ∪ P, φ, t) out(c,w)−−−→ (t : P ∪ P, φ ∪ {w . u}, t)

when u ∈MΣ\Σpub0 where w is a new variable of W.

[Pass] (t : letx = v inP elseE ∪ P, φ, t) τ−→ (t : P{v↓/x} ∪ P, φ, t) when v↓∈ MΣ.

[Fail] (t : letx = v inP elseE ∪ P, φ, t) τ−→ (t : E ∪ P, φ, t) when v↓/∈MΣ.

[Plan] (t : phase t′.P ∪ P, φ, t) τ−→ (t′ : P ∪ P, φ, t) where t′ is an integer.

[Phase] (P, φ, t) phase t′−−−→ (P, φ, t′) with t′ > t.

[Clean] (t : P ∪ P, φ, t′) τ−→ (P, φ, t′) when t′ > t.

The rules correspond to the intuitive meaning of the syntax given above. The rule [Null] is the
elimination of the null process. The rule [Sess] allows the attacker to replicate a process that operates
on a new fresh channel. The rule [Par] allows the attacker to use both P and Q when (P |Q) is available.
The rule [Input] allows the attacker to input a message in a process expecting it. The rule [Const] allows
the attacker to get the public constant a to be outputed. The rule [Out] allows the attacker to get a
message from a protocol : this message is added in the attacker’s knowledge. The rule [Pass] allows to
pass into P when v reduces into a message (and instantiate x with v in P). The rule [Fail] allows to
pass into the error branch E when v↓ doesn’t reduces into a message. The rule [Plan] gives the process

8

the phase in which it can continue to be executed. The rule [Phase] allows to increase the phase. The
rule [Clean] allows to eliminate all processes that stay in former phases (as phase can only increase,
they can’t be executed anymore). We assume that changing the phase is observable, so the observable
actions are in, out, sess,phase.

The relation α−→ between configurations defined by the rules above can be extended into its transi-
tive closure α1...αn−−−→. If tr is α where all the τ -actions have been removed, then we write C tr

=⇒ C ′ when
C

α−→ C ′ (and C,C ′ are configurations). The set trace(C) = {(tr, φ)|C tr
=⇒ (P, φ, t) for some multiset

P and some integer t} is the set of traces of the configuration C. We define the bounded variables of a
trace tr as the variables that occur in the (non-error) outputs of tr, and we denote them bv(tr) ⊂ W.
If (P, φ, t) tr

=⇒ (P ′, φ ∪ ψ, t′) it is obvious that dom(ψ) = bv(tr).

Example 8 : Take the process PDS of example 7. Define :

tr = out(c′A, w1). in(c′S , w1). out(c′S , w2). in(c′A, w2). out(c′A, w3). in(c′B , w3)

tr is the trace of an honest execution of (0 : PDS , ∅, 0), that is an execution where the messages have
been transmitted according to the specification. A resulting frame could be :

φ0 = {w1 . < agH1 , ag
H
2 > ;w2 . enc(<< agH2 , k >, enc(< k, agH1 >,Kbs) >,Kas) ;

w3 . enc(< k, agH1 >,Kbs)}

where k is a name (k ∈ N). And so a possible execution of this trace is :

(0 : PDS , ∅, 0)
tr

=⇒ (∅, φ0, 0)

2.4 Trace equivalence
Trace equivalence is a way to state indistinguishability from the point of view of the attacker. It

is very useful to formalize privacy properties. Before defining the trace equivalence, we need to define
static equivalence, that is indistinguishability between frames from the point of view of the attacker.

Definition 3 : Let φ and ψ be two frames. We say that φ is statically included into ψ, and we denote
φ @ ψ, if the three following properties are true :

— dom(φ) ⊂ dom(ψ)
— For all recipe R ∈ T (Σpub,W), if Rφ↓∈ MΣ then Rψ↓∈ MΣ.
— For all recipes R1, R2 ∈ T (Σpub,W), such that R1φ↓ and R2φ↓ are messages, we have that

(R1 = R2)φ implies (R1 = R2)ψ.
We say that φ and ψ are in static equivalence, and we denote φ ∼ ψ, if φ @ ψ and ψ @ φ. Sometimes,
we will also denote CP ∼ CQ or CP 6∼ CQ when the frames of configurations CP and CQ are not in
static equivalence.

Example 9 : Assume that m0 and m1 are public constants. We define :

φ = {w4 . enc(m0, k) ; w5 . enc(m0, k)}

ψ = {w4 . enc(m1, n) ; w5 . enc(m0, n
′)}

We have φ 6∼ ψ because w4φ↓= w5φ↓ but w4ψ↓6= w5ψ↓.

9

We can now define the notion of trace equivalence. Two protocols stay in trace equivalence if
they stay equivalent whatever trace is executed. That is, after every execution, it is impossible for
the attacker to distinguish between the two frames that may have resulted from the execution of the
process.

Definition 4 : Let C and C ′ be two configurations. We have that C is trace-included in C ′, and we
denote C v C ′, if for every (tr, φ) ∈ trace(C), there exists φ′ such that (tr, φ′) ∈ trace(C ′) and φ ∼ φ′.
We say that C and C ′ are in trace equivalence, and we denote C ≈ C ′ if C v C ′ and C v C ′.

We say that tr is a trace of non-inclusion C 6v C ′ if there exists φ such that (tr, φ) ∈ trace(C) but
there exists no φ′ such that (tr, φ′) ∈ trace(C ′) and φ ∼ φ′. We say that tr is a trace of non-equivalence
C 6≈ C ′ if it is a trace of non-inclusion C 6v C ′ or C ′ 6v C.

Note that as I write sometimes P for ({0 : P}, ∅, 0), I may write P ≈ Q instead of ({0 : P}, ∅, 0) ≈
({0 : Q}, ∅, 0).

Note that if phase(C) 6= phase(C ′), then C 6≈ C ′. Indeed, assume wlog that t = phase(C) <
phase(C ′). Then phase(t + 1) is a trace of C but is not a trace of C ′. So we have that C ≈ C ′ iff
C ≈ C ′ and phase(C) = phase(C ′).

Example 10 : Consider the protocols PA and PS of Example 7. We define P ′B and Q′B as :

P ′B(a, b) = !cBc′B
PB(a, b). out(c′B , {m0}zab

)

Q′B(a, b) = !cBc′B
PB(a, b).new k. out(c′B , {m1}k)

where m0,m1 are public constants. The property we have encoded here is a strong secrecy variant
introduced in [7]. Then define :

P =PA(a, b)|P ′B(a, b)|PS(a, b)

Q =PA(a, b)|Q′B(a, b)|PS(a, b)

We consider the trace :

tr = out(c′A, w1). in(c′S , w1). out(c′S , w2). in(c′A, w2). out(c′A, w3).

sess(cB , ch1). in(ch1, w3). out(ch1, w4). sess(cB , ch2). in(ch2, w3). out(ch2, w5)

tr is a trace of both CP = (0 : P, ∅, 0) and CQ = (0 : Q, ∅, 0). We have that (tr, φ0 ∪ φ) ∈ trace(CP)
and (tr, φ0 ∪ ψ) ∈ trace(CQ) where φ0 has been defined in Example 8 and φ and ψ have been defined
in Example 9. We have that φ0 ∪ φ 6∼ φ0 ∪ ψ and P and Q are not in trace equivalence.

The trace tr is the trace of a real attack : once the attacker has observed an honest execution,
he can send once more the last message to the attacker and get him to reuse the same key. Real
implementations of Denning Sacco protocols add time stamps to avoid this attack.

3 Contribution
The goal is to bound the number of agents involved in protocols P and Q to study their equivalence.

Before doing that, we need to define a model for the protocol P using nH honest agents and nD

10

dishonest ones : so, we will add the names of the agents, and some related informations (e.g. their
public or leaked keys) to the attacker’s knowledge, that is in initial frames φk where nH , nD ≤ k.
Then, we will have to prove that there exists k0 such that for any k ≥ 0, (P, φk, 0) ≈ (Q,φk, 0) iff
(P, φk0 , 0) ≈ (Q,φk0 , 0) which will then allow to verify only equivalences with a bounded number of
agents. Finally I consider some extensions and I explain why they are not possible (see section 6.1).

To write the initial knowledge of the attacker, we assume that there are private symbols ag /1,
hon /1, dis /1, that are used to state an information on the agents. ag(x) symbolises the fact that x is
the name of an agent. hon is used to represent honest agents, and dis is used to represent dishonest
agents. We sometimes have to require for a process to be executed with an honest agent only because
attack can only be done against honest session. We also need the predicate dis to give the attacker
the informations he needs about dishonest agents, like their shared keys. To do that, we will add a
dishonest key distribution protocol.

We assume also that there is a public pair function symbol <,> /2, two public destructor symbols
proj1 and proj2, and a rewriting rule proji(< x1, x2 >) −→ xi for each i. To simplify, we will use a
public tuple constructor symbol <, . . . , > together with associated projection, but note that it can be
encoded with the pair and the two projection symbols above. So, let nH , nD be two natural integers.
We define :

φk = {wH1 . < ag1
H , ag(ag1

H),hon(ag1
H) >; . . . ;

wHk . < agkH , ag(agkH),hon(agkH) >;

wD1 . < ag1
D, ag(ag1

D),dis(ag1
D) >; . . . ;

wDk . < agkD, ag(agkD),dis(agkD) >}

Note that if we want to add some constant agent (e.g. a server s) we can for exemple add a :

wS. < s, ag(s),hon(s) >

to the attacker’s knowledge.
For these frames to be useful, we need that the names in the specification of a protocol do not

refer to the names of agents : protocols are instanciated later, by the attacker, through a prefix in
the protocols. Indeed, for a protocol between two agents, we need to add a in(c,< ag(x), ag(y) >) at
the beginning. The attacker can make an input in(c,< ag(ag1

H), ag(ag2
H) >) and the process is then

instanciated as the protocol between ag1
H and ag2

H . Consider our running example :

Example 11 : If we want to use an unbounded number of agents (and of sessions), we have to extend
our signature :

Σ = {ag /1; hon /1; dis /1; shk /1; enc /2; dec /2;MacError/0;<,> /2; proj1 /1; proj2 /1} ∪ (Σpub0)−

where ag,hon,dis and shk are private constructor terms (other symbols and the rules are as in
Example 7).

11

We redefine our processes :

P ′A =!cAc′A
in(c′A, < ag(x1), ag(x2) >).PA(x1, x2)

PHB =!
cHB
c′B

in(c′B , < hon(y1),hon(y2) >).PB(y1, y2).phase 1. out(c′B , {m0}zab
)

QHB =!
cHB
c′B

in(c′B , < hon(y1),hon(y2) >).PB(y1, y2).phase 1.new k. out(c′B , {m1}k)

PDB =!
cDB
c′B

in(c′B , < ag(y′1), ag(y′2) >).PB(y′1, y
′
2)

P ′S =!cSc′S
in(c′S , < ag(z1), ag(z2) >).PS(z1, z2)

Then we define P0 = P ′A|PHB |PDB |P ′S and Q0 = PA|QHB |PDB |P ′S . P0 and Q0 are both restricted
protocols (there is no name of agent in their terms). So it is up to the attacker to instanciate the
protocols by the agents names.

Note that the attacker should be able to get the keys of the dishonest agents. So either we add
these keys in the initial frame φk, or we add a protocol that reveal these keys. In this example, we
need the following dishonest key revealation protocol :

K =

!cKc′K
in(c′K ,dis(x)). out(c′K , shk(x))

Note that the secret keys of the dishonest agents (for asymmetric encryption) can also be handled
this way. Finally, the protocols are P = P0|K and Q = Q0|K.

We will prove our result in several parts. First of all, we will prove that when protocols are equiva-
lents with a lot of agents, they are still equivalent with a smaller number of agents (lemma 1). Then, we
will prove that there is some class of protocols and some integer k0 such that (P, φk0 , 0) ≈ (Q,φk0 , 0)
implies ∀k ≥ k0, (P, φk, 0) ≈ (Q,φk, 0). This will allow us to prove that ∀k, (P, φk, 0) ≈ (Q,φk, 0) iff
(P, φk0 , 0) ≈ (Q,φk0 , 0).

4 Action-determinism
In this section, we present our main hypothesis, called action-determinism, and two consequences

of it.
We say that a protocol is simple if it is written in the following form :

P = !
c′1
c1B1 | . . . | !

c′m
cmBm | Bm+1 | Bm+p

12

where each Bi is a basic processes built on channel ci, that is processes written under the following
form :

Bi = 0 | in(ci, u).P | out(ci, u).P | new n.P | let y = v inP elseE | phase t.P

Note that the protocols written in our examples were all simple protocols.
The main hypothesis for our result is that each action of a given trace can only be used on one

process. More formally :

Definition 5 : Let C be a configuration. We say that C is action-deterministic if ∀ tr,P, φ, t such
that P tr

=⇒ (P, φ, t), ∀t : P, t : Q ∈ P, if P = α.P ′ and Q = β.Q′ then α and β are either not of the
same nature (in, out or !cc′) or don’t occur on the same channel. By extension, we say that a protocol
P is action-deterministic if (0 : P, φ, t) is action-deterministic for any φ, t.

Note that when C tr
=⇒ C ′ with C action-deterministic, then C ′ is action-deterministic. Moreover, if

P is a simple protocol, then it is obvious that P is action-deterministic (at any time, only one action is
reachable on a given channel because basic processes are sequences of actions, and each basic process
works on its own channel).

Most real protocols are action-deterministic because the attacker may often identify processes
and session through session identifiers or IP adresses. Moreover, specifying a protocol as an action-
deterministic process gives more power to the attacker and can be seen as good practice.

For action-deterministic restricted protocols, we can assume that at any point, there are no error
outside else branches, and that in a trace of non-equivalence, the only occurence of an output of error
is in the last action.

Property 1 : Let CP and CQ be two action-deterministic restricted configurations. If CP 6≈ CQ, then
there exists a trace of non-equivalence tr such that there is no error in input or output in tr, except
perhaps in one out(c, e) at the end (that is, if there is an error e occuring in tr, then tr = tr′ . out(c, e)
for some channel c where there is no error in tr′).

Sketch of proof. Any error constant injected in input may be replaced by a non-error public constant
in input without modification of the execution, because restricted protocols do not have errors outside
their else branches. So as errors can only appear in the protocol through inputs, we may assume that
at any step of the execution, there is no error outside else branches. So any out(c, e) occuring in a
trace of non-equivalence may be assumed to refer to an output in an elsse branch reached by the [Fail]
rule. But our small else branches do not help to reach other processes, so they may all be executed at
the end. As our protocols are ation-deterministic, there is only one such reachable out(c, e) at the end,
which allows us to conclude.

Moreover, in action-deterministic processes, there is only one way to execute each trace : that is,
once the trace tr is fixed, there is a unique frame reachable through tr. More formally :

Property 2 : Let P be an action-deterministic protocol. Let tr be a trace, let (P1, φ1, t1) and (P2, φ2, t2)
such that P =⇒tr (P1, φ1, t) and P =⇒tr (P2, φ2, t

′).
Then φ1 = φ2 (up to alpha-renaming).

Sketch of proof. We first show that silent actions can be executed asap without modifying the
resulting frame. This gives us a unique way to execute a fixed trace tr and thus the result.

13

5 Unbounded number of agents

5.1 First steps
The easy part of the theorem is to prove that when protocols are equivalent with th respect to

executions that may involve up to k agents,then they are equivalent with respect to executions that
involve fewer agents. More formally, we have the following lemma :

Lemma 1 : Let P and Q be two restricted protocols. Let k ≤ k′ be two integers. If (P, φk′ , 0) ≈
(Q,φk′ , 0) then (P, φk, 0) ≈ (Q,φk, 0).

For any pair of integers k ≥ k0, we will consider some special set of renamings Fkk0 = {ρ | dom(ρ) ⊂
Ak,AHk ρ ⊂ AHk0 ,A

D
k ρ ⊂ ADk0}. Intuitively, F

k
k0

is a set of renaming that rename only the k first agents,
and that send them on the k0 first.

Now, after lemma 1, we only have to prove that there is a k0 such that (P, φk0 , 0) ≈ (Q,φk0 , 0)
implies ∀k ≥ k0, (P, φk, 0) ≈ (Q,φk, 0). To do that, we consider the following properties :

1. (P, φk0 , 0) ≈ (Q,φk0 , 0)

2. ∀k ≥ k0,∀ρ ∈ Fkk0 , (P, φkρ, 0) ≈ (Q,φkρ, 0)

3. ∀k ≥ k0, (P, φk, 0) ≈ (Q,φk, 0)

To prove our theorem, it is sufficient to prove that (1)⇒ (3). The second one will be an intermediate
step that allows us to handle frame and trace of non-equivalence separately : the modification of the
trace is done by (1) ⇒ (2) and the modification of the frame is done by (2) ⇒ (3). Note that we will
actually get the equivalence between the three properties as (3)⇒ (1) is obvious.

Now, we consider the implication (1)⇒ (2), which is given by the following lemma :

Lemma 2 : Let k ≥ k0 be integers. Let ρ ∈ Fkk0 . If (P, φk0 , 0) ≈ (Q,φk0 , 0) then (P, φkρ, 0) ≈
(Q,φkρ, 0).

Sketch of proof : By definition of Fkk0 , φkρ is a frame where at most k0 different names of honest
agents and k0 different names of dishonest agents appear. So we can assume that the names of agents
occuring in φkρ are those of φk0 : the attacker’s knowledge resulting from the frames is actually the
same. So the reachable configurations are the same with almost the same trace (it is sufficient to
change variables w ∈ dom(φk) into variables w′ ∈ dom(φk0) such that wφkρ↓= w′φk0↓). As traces of
non-equivalence with φkρ may be transformed into traces of non-equivalence with φk0 , the result is
true.

5.2 Bound
The bound k0 depends on the equational theory through a number that indicates how many names

have to be blocked to avoid a term to reduce. More formally, let ρ be a renaming and n a name. We say
that ρ is n-adequat if nρ = n and ∀n′ 6= n, n′ρ 6= n. If N is a set of names, we say that ρ is N -adequat
if it is n-adequat for any n ∈ N . We say that a theory is b-blockable if it is possible to block any
reduction with b names. Formally :

Definition 6 : Let (Σ,R) be a theory. Let MΣ ⊂ T (Σc, N̂) be a notion of messages. We say that
(Σ,R) is b−blockable w.r.t. MΣ if for any t ∈ T (Σ, N̂)\MΣ in normal form, there exists a set of
names N ⊂ N̂ of size at most b such that for any N -adequat renaming ρ, tρ↓/∈MΣ. We say that b the
blocking number of (Σ,R) w.r.t.MΣ if it is the smallest number such that the theory is b-blockable.

14

Any theory with a finite set of rewriting rules is b-blockable for some b and a bound on the blocking
number can be computed :

Property 3 : Let (Σ,R) be a theory with R finite. LetMΣ ∈ T (Σc, N̂) be a notion of messages. Let
b be the maximal number of rules that use the same destructor. Then (Σ,R) is b-blockable w.r.t.MΣ.

This property implies that the theory of our running example is 1-blockable. Actually, it is quite
rare that some destructor may be reduced by several rules, and 1-blockable theories are sufficient
to modelize standard cryptographic primitives like symmetric and asymmetric encryption, signature,
pair, and hash.

Example 12 : Let Σc = {<,> /2, ok/0}, and Σd = {eq3 /6}. Let R be the following set of rewriting
rules :

R = { eq3(x, x, y1, y2, y3, y4)→ ok ; eq3(y1, y2, x, x, y3, y4)→ ok ; eq3(y1, y2, y3, y4, x, x)→ ok }

The theory (Σ,R) is convergent and its blocking number is 3 after property 3 because the 3 rules
have the same destructor at top level position. E.g. the term eq(n1, n

′
1, n2, n

′
2, n3, n

′
3)ρ does not reduce

for any N -adequat renaming ρ with N = {n1, n2, n3}, but it is not possible to choose such a set N of
size 2.

This example can be generalized with a symbol eqn/2n, but the critical number will increase to n.

5.3 Main result
The lemma 3 is the most difficult part of the theorem. It allows us to prove (2)⇒ (3), and to get

our main theorem :

Lemma 3 : Let (Σ,R) be any finite convergent theory and MΣ be a notion of messages such that
(Σ,R) is b blockable w.r.t. MΣ, and denote k0 = 2b + 1. Let k ≥ k0 be an integer. Let P and Q be
two action-deterministic restricted protocols. Then :

[∀ρ ∈ Fkk0 .(P, φkρ, 0) ≈ (Q,φkρ, 0)]⇒ (P, φk, 0) ≈ (Q,φk, 0)

Sketch of proof. We consider a trace of non-equivalence tr and we assume it is a trace of non-
inclusion P 6v Q. Thanks to property 1, we assume that no error occurs in tr except perhaps in the
last action. Then tr passes in P so it still passes in P after any renaming (because renaming preserves
equality and so succeeding tests) except if the last action is an output of error : in this case, we need
to preserve at most b names to make the final test fail. Regarding the Q side, we have to preserve a
failing let (that is the fact that a [Fail] rule is used instead of a [Pass] one), or a non-reducing term,
or a disequality. Each of them can be preserved by keeping at most b names. So we have at most 2b
names (of honest and of dishonest agents) to preserve, and we need 2 : one to project all honest agents,
and one to project all dishonest agents. It implies that we need at most 2b + 1 names of each kind
(honest or dishonest) of agents.

Now, we are ready to prove our main theorem :

Theorem 1 : So let (Σ,R) be a b-blockable convergent theory w.r.t. the notion of messages MΣ.
Denote k0 = 2b + 1. Let k ≥ k0 be an integer. Let P and Q be two action-deterministic restricted
protocols. Then ∀k ∈ N, (P, φk, 0) ≈ (Q,φk, 0) iff (P, φk0 , 0) ≈ (Q,φk0 , 0).

15

Proof : Thanks to lemma 1, it is sufficient to prove (P, φk0 , 0) ≈ (Q,φk0 , 0) ⇒ ∀k ≥ k0, (P, φk, 0) ≈
(Q,φk, 0).

But lemma 2 gives us that (P, φk0 , 0) ≈ (Q,φk0 , 0) ⇒ ∀k ≥ k0,∀ρ ∈ Fkk0 , (P, φkρ, 0) ≈ (Q,φkρ, 0),
and ∀k ≥ k0,∀ρ ∈ Fkk0 , (P, φkρ, 0) ≈ (Q,φkρ, 0)⇒ ∀k ≥ k0, (P, φk, 0) ≈ (Q,φk, 0) by lemma 3.

6 Scope of the result

6.1 Counter examples
We have assumed that our processes have only else branches of a certain kind, and it may seem

arbitrary, as for our action-determinism hypothesis, and the form of our rules (that is, destructors
on constructor terms). However, these hypothesis are necessary in the sense that it is not possible
to extend our result to processes with non-restricted else branches, to pure equational theories or to
non-action deterministic protocols.

Our examples rely on non-computability of a bound on the size of a solution of the Post Corres-
pondance Problem (PCP). We use a classic example for undecidability, and we add a list of agents
that increases with the size of the solution. Then, at the end, we find a way to do that the protocols
are not equivalent iff the agents of this list are pairwise distinct. In this section, I explain the counter
example with general else branches. For a more formal description of this example and the others,
see appendix B.

The first step is to encode the PCP problem with our list (represented by z` and < ag(xnew), z` >).
At the end, the two protocols will be different after verification that all agents were distincts. Consider
the alphabet A and let (ui, vi)1≤i≤n ∈ A? be an instance of PCP. We consider the following protocols
specified intuitively. They can easily be encoded as action deterministic processes.

The following process allows the attacker to build inductively a solution of PCP. The first line gives
an first tile and the others allow to build bigger words.

PPCP =

→ enc(<< u1, v1 >, end >, kPCP)

ag(xnew), enc(<< x, y >, ` >, kPCP)→ enc(<< xu1, yv1 >,< ag(xnew), z` >>, kPCP)

. . .

ag(xnew), enc(<< x, y >, ` >, kPCP)→ enc(<< xun, yvn >,< ag(xnew), z` >>, kPCP)

The following protocols check whether a solution of the PCP instance has been reached and that
the list x` has been approved (yes and no are public constants).

Pcheck =

< enc(<< x, x >, x` >, kPCP), enc(x`, kapproved) >→ yes

16

Qcheck =

< enc(<< x, x >, x` >, kPCP), enc(x`, kapproved) >→ no

Now, we have to ensure that the list x` is approved iff its elements are pairwise distinct. A list
(represented as a pair of a head element and a tail list) can be approved iff it only contains pairwise
distinct agent names. Pinit is used to allow any list containing only one element.

Pinit =

< ag(x), end >→ enc(< ag(x), end >, kapproved)

Then, Pdiff is used to check that the elements of a pair are distinct.

Pdiff =

< ag(x), ag(y) >→ [let z = eq(x, y) in 0 else enc(< x, y >, kdiff)]

Now, Pdecompose is used to get bigger lists. That is, when a list < x, y > and < x′, y > are approved,
then < x,< x′, y >> is also approved if x 6= x′. Indeed, a pair of elements of < x,< x′, y >> may be
a pair of elements of y, or x and an element of y, or x′ and an element of y, or the pair < x, x′ >.

Pdecompose = < enc(< x, x′ >, kdiff), enc(< x, y >, kapproved), enc(< x′, y >, kapproved) >

→ enc(< x,< x′, y >>, kapproved)

Then it is obvious that we can only get enc(x, kapproved) if we know x0 and x is a sublist of x0

containing only agent names with elements pairwise distinct. The only part that remains to prove is
that we may have to use it for arbitrary long lists of public keys.

Now define (with the ! notation of pi-calculus) :

P =!Pinit|!Pdiff |!Pmain|!PPCP |!Pcheck

Q =!Pinit|!Pdiff |!Pmain|!PPCP |!Qcheck
These encoding can be made more realistic at the price of less readability. Indeed, the variables ag(x)

can be written all at the beginning, or the protocol Pdiff can be seen as a server signing < x, y >. With
some more care, these protocols can be expressed as action-deterministic processes (see appendix B.1).

There is an attack when the PCP instance has a solution, and the list involved in this attack is
of the same size (in number of tiles) as the solution. But no bound on the size of the PCP attack is
computable, so the number of agents involved in an attack is not computable.

17

Other counter examples : The counter-example with pure equational theories relies on the fact
that with pure equationnal theories, it is possible to build inductively two big terms tP and tQ that
will be different iff the elements of some list of arbirary size are pairise distinct. The counter example
with non-action-deterministic protocols is based on the same idea as the one with else branches except
that non-determinism is used instead of else branches. In this setting, the protocols P and Q can be
used deterministically if there are enough agents, but they become non-deterministic if they are used
with agents that are not pairwise distinct.

These three counter examples show that our hypothesis are natural. Note that if we cannot use
general else branches, the error branches and the eq(x1, . . . , x2n) constructions allow us to handle a
large class of else branches.

6.2 Unlinkability
We inherit limits of our action-determinism hypothesis : most of the unlinkability encodings are

not possible, because there is not the same number of replications both sides. Consider for example
the passport protocol. The encoding of the unlinkability property is as follows :

! new ke.new km.!(P |R) ≈! new ke new km(P |R)

where P is the protocol played by the passport and R the protocol played by the reader. The left
handside is the real protocol (an unbounded number of keys involved in an unbounded number of
sessions) and the right handside is an ideal model (an unbounded number of keys used only once).
We cannot handle this equivalence because our replications are visible, but we can encode another
property, roughly :

∀k, (P ∪ phase 1. (!P (alice) | !R(alice)), φk, 0) ≈ (P ∪ phase 1. (!P (bob) | !R(bob)), φk, 0)

where P is a set of processes in phase 0 that represent an unbounded number of passport being read.
We consider the passport protocol of [2] and its unformal description is as follows :

1. R→ P : GetChallenge

2. P → R : Nt

3. R→ P : (M0 = {Nr, Nt,Kr}ke,mac(M0, km))

4. P checks the mac. If it does not correspond to the term M0, MacError is sent.
5. If it corresponds, M0 is decrypted with ke and the nonce Nt is checked.
6. If Nt is not the nonce created at step 2, NonceError is sent.
7. If it is the same nonce :
8. P → R : M ′{Nt, Nr,Kt}ke

ke and km are keys, Nt is a nonce created by the attacker, Nr is a nonce created by the reader,
and Kt is an established key created by the passport.

More formally, consider the following signature :

Σ ={ag /1; ke /1; km /1; mac /2; enc /2; dec /2; eq /2;

<,> /2; proj1 /1; proj2 /1;MacError/0;NonceError/0} ∪ (Σpub0)−

18

where the private symbols are ag, ke, km, the errors are MacError and NonceError and
the destructors are dec, eq and proji (i = 1, 2). The associated rules are :

R = {dec(enc(x, y), y)→ x ; proji(< x1, x2 >)→ xi (i = 1, 2) ; eq(x, x)→ ok /0}

where ok ∈ (Σpub0)−. We also assume that there is some public non-error constant GetChallenge.
Now, define the following processes :
The reader part :

Reader(x0) =

out(c′R, GetChallenge).

in(c′R, ynt).

newNr.newKr;

let ym = enc(<< Nr, ynt >,Kr >, ke(x0)) in

out(c′R, < ym,mac(ym, km(x0)) >).

in(c′R, yf)

The passport part :

Passport(x0) =

in(c′P , GetChallenge).

newNt. out(c′P , Nt).

in(c′P , (xme, xmm)).

let yTestMac = eq(xmm,mac(xme, km(x0)) in

(

let yTestNonce = eq(Nt,proj2(dec(xme, ke(x0)))) in

(letxdec = dec(xme, ke(x0)) in

let ynr = proj1(proj1(xdec)) in

let ykr = proj2(xdec) in

newKt. let z = enc(<< Nt, ynr >,Kt >, ke(x)) in

out(c′P , < z,mac(z, ke(x0)) >))

else out(c′P , NonceError)

)

else out(c′P ,MacError)

19

Then define the restricted protocols :

P = !
c0R
c′R

in(c′R, ag(x0))Reader(x0)

|!c
0
P

c′P
in(c′P , ag(x1))Passport(x1)

|phase 1. in(cH , < hon(xP),hon(xQ) >).(!
c1R
c′R
Reader(xP)|!c

1
P

c′P
Passport(xP))

Q = !
c0R
c′R

in(c′R, ag(x0))Reader(x0)

|!c
0
P

c′P
in(c′P , ag(x1))Passport(x1)

|phase 1. in(cH , < hon(xP),hon(xQ) >).(!
c1R
c′R
Reader(xQ)|!c

1
P

c′P
Passport(xQ))

The property we want to check is ∀k, (P, φk, 0) ≈ (Q,φk, 0). This property is expressed with our
hypothesis, and our main theorem 1 applies : it is sufficient to show (P, φ3, 0) ≈ (Q,φ3, 0. In the version
here, there is a replay attack : if the attacker chooses xP = alice and xQ = bob in phase 1 and replays
a message (me,mac(me, km(alice))) that he has seen in phase 0, then he will get NonceError in P
but MacError in Q. This can be fixed by using only one constant Error instead of ErrorMac and
ErrorNonce.

7 Conclusion
My theorem, whose proof is inspired by [6], is more general because it is true for a more general

class of protocols, and more precise because it includes completeness. But it holds for names of agents
only. So it seems natural to unify these results through a more general theorem. As the soundness
result does not rely on specificities of agent names, it is also natural to try to extend it for all kind of
atomic data, including public constants or keys. It would also be interesting to understand when the
completeness statement is true. Moreover, it would probably be possible to extend the proof to other
kinds of else branches that occur inside real protocols. It is also an open problem to bound the number
of sessions, but it is a lot more difficult and cannot be handled the same way.

20

Références
[1] Martín Abadi and Cédric Fournet. Mobile values, new names, and secure communication. In

Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’01, pages 104–115, New York, NY, USA, 2001. ACM.

[2] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Analysing unlinkability and ano-
nymity using the applied pi calculus. In 2nd IEEE Computer Security Foundations Symposium
(CSF’10). IEEE Computer Society Press, 2010.

[3] David Baelde, Stéphanie Delaune, and Lucca Hirschi. Partial order reduction for security pro-
tocols. In Luca Aceto and David de Frutos-Escrig, editors, Proceedings of the 26th International
Conference on Concurrency Theory (CONCUR’15), Leibniz International Proceedings in Infor-
matics, Madrid, Spain, September 2015. Leibniz-Zentrum für Informatik. To appear.

[4] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In 14th
IEEE Computer Security Foundations Workshop (CSFW-14), pages 82–96, Cape Breton, Nova
Scotia, Canada, June 2001. IEEE Computer Society.

[5] Rohit Chadha, Ştefan Ciobâcă, and Steve Kremer. Automated verification of equivalence proper-
ties of cryptographic protocols. In Helmut Seidl, editor, Programming Languages and Systems —
Proceedings of the 21th European Symposium on Programming (ESOP’12), volume 7211 of Lecture
Notes in Computer Science, pages 108–127, Tallinn, Estonia, March 2012. Springer.

[6] Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. Checking trace equivalence : How
to get rid of nonces ? In Peter Ryan and Edgar Weippl, editors, Proceedings of the 20th Euro-
pean Symposium on Research in Computer Security (ESORICS’15), Lecture Notes in Computer
Science, Vienna, Austria, September 2015. Springer. To appear.

[7] Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. Decidability of trace equivalence
for protocols with nonces. In Proceedings of the 28th IEEE Computer Security Foundations
Symposium (CSF’15), pages 170–184, Verona, Italy, July 2015. IEEE Computer Society Press.

[8] J. Clark and J. Jacob. A survey of authentication protocol literature : Version 1.0. 1997.
[9] Hubert Comon-Lundh and Véronique Cortier. Security properties : Two agents are sufficient.

Science of Computer Programming, 50(1-3) :51–71, March 2004.
[10] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science. Elsevier, 1990.
[11] Shamir Even and Oded Goldreich. On the security of multi-party ping-pong protocols. In IEEE

Symp. on Foundations of Computer Science, 2001.
[12] Durgin Lincoln Mitchell, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. Undecida-

bility of bounded security protocols. 1999.

21

A Proofs

A.1 Action-determinism
A.1.1 First property

Our goal is to prove property 1. It gives a way to handle errors in our class of protocols.

Lemma 4 : Let e be an error. Let C0 be a configuration and s be a sequence of actions. Let a be a
non-error public constant that does not appear in the set of rewriting rules R, in C0 or in s (it exists
as (Σpub0)− is infinite). Let E : C0

s−→ C1 be an execution where the rule [Fail] is never used. Then

E′ : C0
s′−→ C ′1, the execution E where all occuring e outside else branches have been replaced by a, is

still an execution. Note that s′ is the sequence of actions s where all occurences of e have been replaced
by a, and C ′1 is C1 where all occurences of e outside else branches have been replaced by a, including
in the frame.

Proof : Let do the proof by induction on the execution E. If E is the empty execution, then it is
obvious because the error e does not appear outside else branches. So assume that E is not the empty

execution. Then assume E : C0
s0−→ C1

α−→ C2 such that C0
s′0−→ C ′1 is an execution. Let α′ be α where

e has been replaced by a if it occurs. As E was an execution, there exists a process P on which the
action α was performed in C1 by E. If P ′ is P where each occurence of e outside else branches have
been replaced by a, then α′ is executable on P ′ because else branches are not reachable without using
the [Fail] rule.

Lemma 5 : Let C0 be a configuration. Let s be a sequence of actions. Let E : C0
s−→ C1 be an

execution containing the rules [Fail] and [Const] where the second corresponds to the out(c, e) action
reached by the [Fail] rule for some error constant e. Then Ẽ : C0

s̃−→ C̃1 = C1 ∪ {ti : letx =
v inP else out(c, e)} (v↓ is not a message) is an execution, where Ẽ is the execution E where the [Fail]
and [Const] rules have been removed, and s̃ is the sequence of actions s where the τ and the out(c, e)
corresponding to the [Fail] and [Const] rules have been removed.

Proof : Obvious by induction on the execution E (it is sufficient to execute E only removing the
[Fail] and [Const] rules).

Lemma 6 : Let C0 be a configuration and s be a sequence of actions. Let E : C0
s−→ C1 be an

execution. Then there is an execution Ê : C0
ŝ−→ Ĉ1 that is the same as E, except that each occurence

of e for e ∈ Σerr0 not coming from an else branch has been replaced by some non-error public constant
ae.

Proof : We do the proof by induction on the number of [Fail] rules used. If there is no such rule, we
only have to rename each error occuring outside else branches into a new non-error public constant by
lemma 4. Assume that we have the result for k such rules. Then consider an execution E with k + 1
such rules. We can remove a [Fail] rule by lemma 5 to get an execution E′ where there are only k
[Fail] rules, and then use our induction hypothesis on this execution to get another execution E′′.
Now, at the point where the [Fail] and [Const] have been removed, it is obvious that it is still possible
to get [Fail] and [Const] executed because the correspond {t : let v inP else out(c, e)} is still reachable
(where v↓ is not a message). So we add them and we get the execution Ê.

22

Lemma 7 : Let C be a configuration. Let a be some non-error public constant that does not occur in
C or in the set of rewriting rules R. Let e be some error that does not occur outside else branches in
C. Then the execution E′, that is E where a has been replaced by e, is still an execution.

Proof : It can be done as in lemma 4 : replacing a by e does not change the execution because after
changing e was only in out(c, e) in else branches.

Now prove the main property :

Property 1 : Let CP and CQ be two action-deterministic restricted configurations. If CP 6≈ CQ, then
there exists a trace of non-equivalence tr such that there is no error in input or output in tr, except
perhaps in one out(c, e) at the end (that is, if there is an error e occuring in tr, then tr = tr′ . out(c, e)
for some channel c where there is no error in tr′).

Proof : Assume that CP 6≈ CQ. Wlog, we can assume that CP 6v CQ. We define the size of a trace
as the sum of its length and the number of occuring errors (in inputs or in outputs out(c, e)), and we
consider a trace of non-inclusion tr of minimal size.

As tr is a trace of non-inclusion, there is an execution EP : CP
tr

=⇒ C1
P of minimal length such that

for ∀EQ : CQ
tr

=⇒ C1
Q, we have C1

P 6∼ C1
Q.

Assume that there is some error e occuring in tr.
By lemma 6, ÊP is an execution of CP with trace t̂r. As t̂r has no error e in input (error e has been

replaced by non-error public constant ae), error e only occurs in else branches during execution ÊP .

If it exists, consider an execution CQ
t̂r

=⇒ C ′Q (if it does not exist, then the result is true). Then by

lemma 7, there is an execution CQ
tr

=⇒ C1
Q (replacing back ae by e). As tr is a trace of non-inclusion,

we have C1
Q = (Q, ψ, t) 6∼ C1

P = (P, φ, t). Assume wlog that there is a recipe R such that Rψ↓ is a
message, but Rφ↓ is not, then call R′ the recipe R where e has been replaced by a, call ψ′ the frame of
CQ and φ′ the frame of CP . As a and e does not occur in rewriting rules, we have that R′ψ′↓ reduces
as a message, but R′φ′↓ doesn’t reduce.

So t̂r is still a trace of non-equivalence between CP and CQ. As t̂r has no error e in input, but only
in out(c, e), and by minimality, it is also the case of tr (else t̂r has a smaller size than tr).

As tr has only error e in output, and as e only occurs in else branches of CP and CQ, at any point
of an execution of tr, the error e only occurs in else branches. So by our ad absurdum hypothesis, there
is an out(c, e) in tr : tr = tr0 . out(c, e). tr1 with tr1 not empty.

So denote tr = tr0 .α. By minimality, tr0 is executable in CQ (else it is a smaller trace of non-
equivalence). So assume that tr0 = tr1 . out(c, e). tr2 where tr2 may be empty. As e only occurs in else
branches and tr0 is executable in both CP and CQ, it is only executable after a [Fail] operation in
both CP and CQ. So lemma 5 applies, and tr1 . tr2 is still executable in CP (resp. CQ), and out(c, e)
is executable in the resulting configuration C2

P (resp. C2
Q) whereas α is executable in C2

P (resp. in C
2
Q

iff α was executable in CQ). By action-determinism of CP , α 6= out(c, e) and tr1 . tr2 .α is still a trace
of non-inclusion (as the resulting frame is the same as this of tr). But tr1 . tr2 .α is of smaller size than
tr which is impossible.

So out(c, e) does not appear in tr0. If it appears in tr, then tr = tr0 . out(c, e).

A.1.2 Second property

Our goal is to prove property 2. Roughly, it says that for action-deterministic protocols, the trace
determines the frame (up to α-renaming).

23

To do that, we have to introduce a new notion. We say that the execution C s−→ C ′ is asap if the
invisible actions are performed as soon as possible. More formally :

Definition 7 : Let C,C ′ be two configurations, s be a sequence of actions. We say that the execution
C

s−→ C ′ is asap when :
— If C ′ s′−→ C ′′ and s′ is a sequence of silent actions, then s′ = ε.

— If C s0−→ C0
α−→ C ′0 is a prefix of C s−→ C ′ with α visible, and if C0

s′0−→ C ′′0 with s′0 silent, then
s′0 = ε.

The following lemma says that in our setting, the executions can be asap because once silent actions
are available, it is useless to wait to do them.

Lemma 8 : For any execution C
s−→ (P, φ, t), there exists an asap execution C

s′−→ (P ′, φ, t) with
the same visible trace.

Proof : To prove this lemma, we will prove by induction on the visible trace tr of the execution that
for any execution C

s−→ (P, φ, t), there exists an asap execution C
s′−→ C ′ = (P ′, φ, t) with same

visible trace tr such that no visible action is removed if we replace s by s′. More formally, we have
toprove that the execution C s′−→ C ′ has the following properties :

1. If C ′ s′′−→ C ′′ = (P ′′, φ′, t) and s′′ is a sequence of silent actions, then s′′ = ε.

2. If C
s′0−→ C0

β−→ C1 is a prefix of C s′−→ C ′ with β visible, and if C0
s′′−→ C1 with s′′ silent, then

s′′ = ε.
3. If t′ : Q ∈ P with t′ > t, or with t′ = t and Q = β.Q′ with β visible, then t′ : Q ∈ P ′.
If tr = ε, then the second point of the definition is obvious, because there is no visible action at all.

So we only have to prove the first and the last point.
Let prove the first.
Let C = (P0, φ0, t0). Let C s−→ (P, φ, t) be a silent execution. As there are no visible actions in s,

we have that φ = φ0 and t = t0. We only have to prove that there is a silent execution C s′−→ (P ′, φ0, t0)
and no silent action can be executed from this resulting configuration.

Let tx : Q ∈ P0 be a phased process. We can assign an integer N(tx : Q) to each of them as follows :
— N(tx : Q) = 1 when tx < t0
— N(tx : Q) = 0 when tx > t0
— N(t0 : 0) = 1
— N(t0 : (Q1|Q2)) = 1 +N(t0 : Q1) +N(t0 : Q2)
— N(t0 : new n.Q′) = 1 +N(t0 : Q′)
— N(t0 : let y = v inQ′ elseE) = 1 +max(N(t0 : Q′), N(t0 : E))
— N(t0 : phase tx.Q

′) = 1 +N(tx : Q′)
— N(t0 :!cc′P) = 0.
— N(t0 : α.Q′) = 0 when α is visible.
It is obvious that this number is defined and non negative. By extension, we can call N(P) =∑
tx:Q∈P N(tx : Q). As s and P0 are finite, N(P) is defined, finite and non negative. Moreover, when

E : (P0, φ0, t0)
s′−→ (PE , φ0, t0) is a non-empty silent execution, we have N(P0) > N(PE). So there is

a non-negative minimal such N(PE) (that is, an integer N such that ∀E,N(PE) ≥ N and there is an
execution E such that N(PE) = N).

24

Assume ad absurdum that N > 0. Then there is a silent execution E : C
s′−→ (PE , φE , tE) such that

N(PE) = N > 0. So there is a tx : Q ∈ PE such that N(tx : Q) > 0. We are in one of the following
cases :

— N(tx : Q) = 1 and tx < t0
— N(t0 : 0) = 1
— N(t0 : (Q1|Q2)) = 1 +N(t0 : Q1) +N(t0 : Q2)
— N(t0 : new n.Q′) = 1 +N(t0 : Q′)
— N(t0 : let y = v inQ′ elseE) = 1 +max(N(t0 : Q′), N(t0 : E))
— N(t0 : phase tx.Q

′) = 1 +N(tx : Q′)

But for each of these cases, there exists a reduction τ such that tx : Q
τ−→ t′x : Q′ with N(tx :

Q) ≥ 1 + N(t′x : Q′) and so there is a E′ such that E is a prefix of E′ and N(PE′) < N which is a
contradiction. So N = 0.

That is, there exists an execution C
s′−→ (P ′, φ0, t0) and N(P ′) = 0. Let t : Q ∈ P ′. Then

N(t : Q) = 0 and t : Q is of one of the following forms :
— N(tx : Q) = 0 when tx > t0
— N(t0 : α.Q′) = 0 when α is visible.
So no silent action can be performed, which proves the first point. But we only have executed silent

actions, and we have executed all of them, so visible actions available after s are also available after
s′, which proves the last point.

Now assume that tr = tr0 .α where α is some visible action. The execution E0 : C
tr

=⇒ (P, φ, t)
rewrites :

C
s0−→ (P0, φ0, t0)

α.s1−→ (P, φ, t)

By induction hypothesis, there exists an asap execution E : C
s′0−→ (P ′0, φ0, t0) with the same visible

trace tr0 as C s0−→ (P0, φ0, t0). By the third item of the induction hypothesis, α is executable after E
on the same t : Q if α 6= phase t′ (if α = phase t′, the execution only increases the phase). Wlog, if
α = out(c, w) then t : out(c, u).Q′ ∈ P0 ∩ P ′0 and :

(P ′0, φ0, t0)
α−→ (P ′′0 , φ0 ∪ {w . u} = φ, t0 = t)

Now, we can apply the case tr = ε to get an execution E′ : (P ′′0 , φ1, t1)
s′1−→ CE′ = (PE′ , φ, t) is

asap. Consider the execution :

E′′ : C
s′0−→ (P ′0, φ0, t0)

α−→ (P ′′0 , φ1, t1)
s′1−→ CE′

Then E0 and E′′ have the same visible trace and the same resulting frame φ. Moreover, the first and
third item of the induction hypothesis are true because they are true for E′. So we only have to prove
the second item. Let β be some visible action of tr. If β 6= α, then the second item of the induction
hypothesis on E gives the result. If β = α, then the first item of the induction hypothesis on E gives
the result.

Lemma 9 : Let C be an action-deterministic configuration. Let C s1−→ (P1, φ1, t1) and C s2−→ (P2, φ2, t2)
be two asap executions with the same visible trace tr. Then (P, φ, t) =α (P ′, φ′, t′).

Proof : First, note the following obvious fact :

25

Fact 1 : If t : P, t : Q ∈ Q, (t : P, ∅, t) τ−→ (t : P ′, ∅, t) and (t : Q, ∅, t) τ−→ (t : Q′, ∅, t) then the two
following executions result in the same configuration (up to alpha-renaming) :

(Q = Q0 ∪ t : P ∪ t : Q,φ, t)
τ−→ (Q0 ∪ t : P ′ ∪ t : Q,φ, t)

τ−→ (Q0 ∪ t : P ′ ∪ t : Q′, φ, t)

(Q = Q0 ∪ t : P ∪ t : Q,φ, t)
τ−→ (Q0 ∪ t : P ∪ t : Q′′, φ, t)

τ−→ (Q0 ∪ t : P ′′ ∪ t : Q′′, φ, t)

Now, let do the proof by induction on tr.
If tr = ε, P =α P ′ because the operations of both executions are exactly the same up to order

which implies that resulting configurations are equal up to alpha-renaming from fact 1.
If tr = tr0 .α, then assume it is true for tr0 and consider the following rewriting of executions

E1 : C
s1−→ (P1, φ1, t1) and E2 : C

s2−→ (P2, φ2, t2) respectively :

E1 : C
s′1−→ C ′1 = (P ′1, φ′1, t′)

α−→ C ′′1
s′′1−→ C1

E2 : C
s′2−→ C ′2 = (P ′2, φ′2, t′)

α−→ C ′′2
s′′2−→ C2

By induction hypothesis the configurations C ′1 and C ′2 are equal (up to alpha-renaming). If α = phase t′,
then after α only the phase has changed. Else, as C is action-deterministic, there exists only one
β1.Q1 ∈ P ′1 and β2.Q2 ∈ P ′2 that correspond to α (channel names are chosen by the attacker in the
frame so they cannot be alpha-renamed). So, after s′1.α and s′2.α the configurations are still the same
both sides (up to alpha-renaming) : the multiset are the same because we have done exactly the same
transformation, and the frames are the same because the new frame depends only on the β1 (which are
the same up to alpha-renaming) and of the previous frame that are both equal (upto alpha-renaming).
Now, we only do all the τ -actions that can remove some silent operation, so the frames stays equal
and the multisets of processes too (up to α-renaming). This proves the lemma.

This allows us to prove property 2 :

Property 2 : Let P be an action-deterministic protocol. Let tr be a trace, let (P1, φ1, t1) and (P2, φ2, t2)
such that P =⇒tr (P1, φ1, t) and P =⇒tr (P2, φ2, t

′).
Then φ1 = φ2 (up to alpha-renaming).

Proof : By lemma 8, there exist two asap executions E1 and E2 that correspond respectively to the
execution that reaches (P1, φ1, t1) and (P2, φ2, t2) with tr. By lemma 9 applied to E1 and E2, φ1 = φ2

(up to alpha renaming).

A.2 Unbounded number of agents
A.2.1 First steps

We will have to consider frames that are equal up to repetition. The next lemma will help to handle
them as if they were equal.

Definition 8 : Let φ0 ⊂ φ1 be two frames. We say that φ1 is an extension of φ0 if the variables
that do not occur in φ0 refer to terms that are refered by another variable in φ0, that is ∀w ∈
dom(φ1)\dom(φ0),∃w′ ∈ dom(phi0), wφ1 ↓= w′φ0 ↓. Let tr be a trace where the occuring variables
are those of dom(φ1) ∩ bv(tr) and s be the corresponding sequence of actions. We say that tr? (resp.

26

s?) is a restricted version of tr (resp. s) if it is the trace tr (resp. sequence of action s) where each
w ∈ dom(φ1)\dom(φ0) has been replaced by some w′ ∈ dom(φ0) such that w′φ0↓= wφ1↓. Similarly, for
any recipe R, we say that R? is a restricted version of R if it is R where each w ∈ dom(φ1)\dom(φ0)
has been replaced by some w′ ∈ dom(φ0) such that w′φ0↓= wφ1↓. When φ1 is an extension of φ0, it is
obvious that such restricted versions exist.

We have the following lemma :

Lemma 10 : The following properties are true :
1. Let φ0 ⊂ φ1 be two frames (φ1 is not necessarily an extension of φ0). Let tr be a trace such that

bv(tr)∩dom(φ1) = ∅ and such that the variables occuring in tr are only those of dom(φ0)∪bv(tr).
Then :

(P, φ1, t)
tr

=⇒ (P ′, φ1 ∪ φ, t′) iff (P, φ0, t)
tr

=⇒ (P ′, φ0 ∪ φ, t′)

2. Assume that φ1 is an extension of φ0. Let tr be a trace and tr? be any restricted version of tr.
Then :

(P, φ1, t)
tr

=⇒ (P ′, φ1 ∪ φ, t′) iff (P, φ0, t)
tr?

=⇒ (P ′, φ0 ∪ φ, t′)

3. Let φ0 ⊂ φ1 be two frames (φ1 is not necessarily an extension of φ0). Let φ and ψ be two frames
such that dom(φ) = dom(ψ) and dom(φ) ∩ dom(φ1) = ∅. Then :

φ1 ∪ φ ∼ φ1 ∪ ψ ⇒ φ0 ∪ φ ∼ φ0 ∪ ψ

4. Assume that φ1 is an extension of φ0. Let φ and ψ be two frames such that dom(φ) = dom(ψ)
and dom(φ) ∩ dom(φ1) = ∅. Then :

φ0 ∪ φ ∼ φ0 ∪ ψ iff φ1 ∪ φ ∼ φ1 ∪ ψ

Proof : The first and the second item are almost the same, so I only prove the second one, which is
the hardest.

So let prove the ⇒ part of the second item. We will do an induction on the sequence of actions s
(both visible and silent) such that (P, φ1, t)

s−→ (P ′, φ1 ∪ φ, t′) and prove that (P, φ0, t)
s?−→ (P ′, φ0 ∪

φ, t′) where s? is a restricted version of s corresponding to tr?.

If s = ε then P ′ = P, φ = ∅ and t = t′ so it is obvious.
Now assume that s = s′.a. We have that :

(P, φ1, t)
s′−→ (P ′, φ1 ∪ φ′, t′)

a−→ (P ′′, φ1 ∪ φ′′, t′′)

By induction hypothesis, we have also that :

(P, φ0, t)
(s′)?−→ (P ′, φ0 ∪ φ′, t′)

Assume that a is a silent action. Then assume wlog that it corresponds to a passing let : P ′ =
P ′0 ∪ t′ : letx = v inP elseQ and (P ′′, φ1 ∪ φ′′, t′′) = (P ′0 ∪ t′ : P{v↓/x}, φ1 ∪ φ′, t′). Then we can apply
exactly the same rule on (P ′, φ0 ∪ φ′, t′) and get (P ′0 ∪ t′ : P{v↓/x}, φ0 ∪ φ′, t′).

Assume now that a is a visible action. If a = in(c,R) for some recipe R and some channel c, then
P ′ = P ′0∪ t′ : in(c, u).P with u and R(φ1∪φ′)↓ unifiable and (P ′′, φ1∪φ′′, t′′) = (P ′0∪ t′ : Pσ, φ1∪φ′, t′)

27

where σ is the most general unifier of u and R(φ1 ∪ φ′)↓. Then, as a is visible, a occurs on tr? : the
corresponding instruction is in(c,R?). By hypothesis, R? is a restricted version of R, so it is obvious
that R?(φ0 ∪ φ′)↓= R(φ1 ∪ φ′)↓.

So R(φ0 ∪ φ′) and u are still unifiable, and their most general unifier is still σ. So :

(P ′0 ∪ t′ : in(c,R?).P, φ0 ∪ φ′, t′)
in(c,R?)−→ (P ′ ∪ t′ : Pσ, φ0 ∪ φ′, t′)

If a = out(c, w) for some w, then P ′ = P ′0 ∪ t′ : out(c, u).P and (P ′′, φ1 ∪ φ′′, t′′) = (P ′0 ∪ t′ :
P, φ1 ∪ φ′ ∪ {w . u}, t′). So :

(P ′0 ∪ t′ : out(c, w).P, φ0 ∪ φ′, t′)
out(c,w)−→ (P ′ ∪ t′ : Pσ, φ0 ∪ φ′ ∪ {w . u}, t′)

The other cases (when a = sess(c, chi) or a = phase t′′) are obvious and can be handled the same
way.

The converse (that is the ⇐ part) can be proved the same way.

So now prove the third item.
Let φ and ψ be two frames such that dom(φ) = dom(ψ) and dom(φ)∩ dom(φ1) = ∅. It is sufficient

to prove that :
φ1 ∪ φ @ φ1 ∪ ψ =⇒ φ0 ∪ φ @ φ0 ∪ ψ

Assume that φ1 ∪ φ @ φ1 ∪ ψ.
Let R be a recipe such that R(φ0 ∪ φ)↓∈ MΣ. Then, vars(R) ∈ dom(φ0) ∪ dom(φ) and R(φ1 ∪ φ)

is defined because dom(φ) ∩ dom(φ1) = ∅. So R(φ1 ∪ φ)↓= R(φ0 ∪ φ)↓∈ MΣ. As φ1 ∪ φ @ φ1 ∪ ψ,
R(φ1 ∪ ψ)↓∈ MΣ. But vars(R) ∈ dom(φ0) ∪ dom(ψ) so R(φ0 ∪ ψ)↓= R(φ1 ∪ ψ)↓∈ MΣ.

The case R1 = R2 is exactly the same.

Now prove the fourth item. The ⇐ part is a consequence of item 3. So we only prove the ⇒ part.
We assume that φ0 ∪ φ @ φ0 ∪ ψ.

Let R1, R2 be two recipes such that (R1 = R2)(φ1 ∪ φ), R1(φ1 ∪ φ)↓∈ MΣ and R2(φ1 ∪ φ)↓∈ MΣ.
Then, take R?1 and R?2 two restricted versions of respectively R1 and R2 (it exists). R?1(φ0 ∪ φ)↓=
R1(φ1∪φ)↓, and R?2(φ0∪φ)↓= R2(φ1∪φ)↓. So (R?1 = R?2)(φ0∪φ), R?1(φ0∪φ)↓∈ MΣ. As φ0∪φ @ φ0∪ψ,
(R?1 = R?2)(φ0∪ψ). But R?1(φ0∪ψ)↓= R1(φ1∪ψ)↓ and R?2(φ0∪ψ)↓= R2(φ1∪ψ)↓ so (R1 = R2)(φ1∪ψ).

The case R(φ1 ∪ φ)↓∈ MΣ is exactly the same.

It allows us to prove lemma 1 :

Lemma 1 : Let P and Q be two restricted protocols. Let k ≤ k′ be two integers. If (P, φk′ , 0) ≈
(Q,φk′ , 0) then (P, φk, 0) ≈ (Q,φk, 0).

Proof : It is sufficient to prove that if (P, φk′ , 0) v (Q,φk′ , 0) then (P, φk, 0) v (Q,φk, 0). Assume
that (P, φk′ , 0) ≈ (Q,φk′ , 0). Let tr be such that (P, φk, 0)

tr
=⇒ (P, φk ∪ φ, t). Up to an α-renaming of

variables, we can assume that bv(tr) ∩ dom(φk′) = ∅.
Then tr is a trace where only the elements of bv(tr) ∪ φk occur. So by lemma 10 (item 1) we have

that (P, φk′ , 0)
tr

=⇒ (P, φk′ ∪ φ, t). By trace inclusion, we have that (Q,φk′ , 0)
tr

=⇒ (Q, φk′ ∪ ψ, t) for
some ψ with φk′ ∪ φ ∼ φk′ ∪ ψ.

But by lemma 10 (item 1), we have that (Q,φk, 0)
tr

=⇒ (Q, φk ∪ ψ, t). Moreover,we have dom(φ) =
dom(ψ) and dom(φ) ∩ dom(φk′) = ∅, so by lemma 10 (item 3), we have that φk ∪ φ ∼ φk ∪ ψ.

28

Now, our goal is to prove lemma 2, which we recall :

Lemma 2 : Let k ≥ k0 be integers. Let ρ ∈ Fkk0 . If (P, φk0 , 0) ≈ (Q,φk0 , 0) then (P, φkρ, 0) ≈
(Q,φkρ, 0).

Proof : Let k ≥ k0 be integers. Let ρ ∈ Fkk0 . It is sufficient to prove that if (P, φk0 , 0) v (Q,φk0 , 0)
then (P, φkρ, 0) v (Q,φkρ, 0).

Up to a bijective α-renaming, the names occuring in φkρ are names of φk0 (because there are at most
k0 different names in φkρ as ρ ∈ Fkk0). Up to a bijective α-renaming of variables, we can assume that the
variables in dom(φkρ)∩ dom(φk0) refer to the same terms, that is ∀w ∈ dom(φkρ)∩ dom(φk), wφkρ =
wφk0. We can also assume that for each variable w′ ∈ dom(φkρ) = dom(φk), there is a variable
w ∈ dom(φk)∩dom(φk0) such that (w = w′)φkρ (it is possible upto a bijective α-renaming of variables
because each names of φkρ are names of φk0). We have that φkρ is an extension of φkρ ∩ φk0 .

Let tr be a trace such that (P, φkρ, 0)
tr

=⇒ (P ′, φkρ ∪ φ, t). Let tr? be a restricted version of tr. We
apply lemma 10 (second item) and we get :

(P, φkρ ∩ φk0 , 0)
tr?

=⇒ (P ′, (φkρ ∩ φk0) ∪ φ, t)

Up to a bijective α-renaming, tr? is such that bv(tr) ∩ dom(φk0) = ∅. Moreover, the variables
occuring in tr are only those of dom(φkρ ∩ φk0) ∩ bv(tr). So by the lemma 10 (first item), we have :

(P, φk0 , 0)
tr?

=⇒ (P ′, φk0 ∪ φ, t)

But (P, φk0 , 0) ≈ (Q,φk0 , 0), so there is a multiset Q′ and a frame ψ such that :

(Q,φk0 , 0)
tr?

=⇒ (Q′, φk0 ∪ ψ, t)

With φk0 ∪ φ ∼ φk0 ∪ ψ.
Now, we can apply the converse of lemma 10 (item 1) :

(Q,φk0 ∩ φkρ, 0)
tr?

=⇒ (Q′, (φk0 ∩ φkρ) ∪ ψ, t)

As φk0 ∩ φkρ ⊂ φk, the proof of lemma 10 (item 3) applies and (φk0 ∩ φk) ∪ φ ∼ (φk0 ∩ φk) ∪ ψ.
As tr? is still a restricted version of tr, we can now apply the lemma 10 (item 2) :

(Q,φkρ, 0)
tr?

=⇒ (Q′, φkρ ∪ ψ, t)

We apply the lemma 10 (item 3) and we get that φkρ ∪ φ ∼ φkρ ∪ ψ.

A.2.2 Bound

Let (Σ,R) be a finite theory. We define the critical number c of (Σ,R) as the maximal size of a
subset A ⊂ R such that all left hand side of rules of A are unifiable. That is :

c = max{#A | ∃σ, ∃u,∀(` −→ r) ∈ A, `σ = u}

We have the following lemma :

29

Lemma 11 : Let (Σ,R) be a convergent theory with critical number c. Let MΣ ∈ T (Σc, N̂) be a
notion of messages. Then (Σ,R) is c−blockable w.r.t.MΣ.

Proof : Assume t ∈ T (Σc, N̂) in normal form, t /∈MΣ. Then as T (Σc, N̂)\MΣ is stable by renaming,
we can take N = ∅. Else, there is some destructor in t. Consider a position p where t = C[g(t1, . . . , tj)]p
with g a destructor and t1, . . . , tj constructor terms. Denote u = g(t1, . . . , tj).

Assume that there are renamings ρi and rules `i → ri that may reduce uρi. That is, there is a
substitution σi such that uρi = `iσi. As u is a ground term, we can assume that dom(σi) ⊂ vars(`i).
Let denote n0 be a name and ρ0 such that nρ0 = n0 for any n. We have uρ0 = uρiρ0 = `iσiρ0. As
dom(σi) ⊂ vars(`i) and as we can assume that the variables used in rules are distinct, we define σ by
xσ = xσiρ0 if x ∈ vars(σi) (σ = (]iσi)ρ0 if we see substitutions as sets : see subsection 2.3). We have
uρ0 = `iσ for each i. So all the `i are unifiable together : there are at most c rules `i → ri.

Consider the rule `i → ri. As t is in normal form, u is in normal form and so the rule `i → ri
does not apply. As `i → ri applies to uρi but not to u, it means that there are two positions p1 6= p2

such that `i|p1 = `i|p2 = x and two leaf positions q1 > p1 and q2 > p2 such that u|q1 6= u|q2 but
uρi|q1 = uρi|q2 . u|q1 and u|q2 are names (else renaming can’t create equality). Denote ni = u|q1 . For
any ni-adequat renaming ρ, uρ|q1 6= uρ|q2 and so uρ|p1 6= uρ|p2 so `i → ri do not apply to uρ.

Also denote N the set of the names ni. As there is a name by rule and at most c rules, N has size
at most c. For any N -adequat renaming ρ, none of the rules `i → ri applies to uρ. As the rules `i → ri
are the only rules that could apply to uρ, we have that uρ↓= uρ. But rules of R contain exactly one
destructor in top level position, so tρ↓= Cρ[g(t1ρ↓, . . . , tjρ↓)] is not a constructor term and a fortiori
not a message for any N -adequat renaming ρ.

As rules have exactly one destructor in top level position, note that the maximal subset A ⊂ R
such that c = #A is a subset of rules that have the same destructor at top level position (because only
these rules may be unifiable). So c is smaller than the maximal number of rules that have the same
destructor at top level position, which is a proof of :

Property 3 : Let (Σ,R) be a theory with R finite. LetMΣ ∈ T (Σc, N̂) be a notion of messages. Let
b be the maximal number of rules that use the same destructor. Then (Σ,R) is b-blockable w.r.t.MΣ.

A.2.3 Renaming lemma

The following lemma states that when a trace without errors are executable in some configuration
C, then this same trace is executable in the configuration Cρ where ρ ∈ Fkk0 .

Lemma 12 : Let k ≥ k0. Let ρ ∈ Fkk0 . Let tr be a trace where no error occurs. We assume wlog that
in such a case, the failing let tests are not evaluated (it is useless to evaluate them).

If (P, φk, t)
tr

=⇒ (P ′, φ, t′) then (P, φkρ, t)
tr

=⇒ (P ′ρ, φρ, t′).

Proof : We will prove that if (P, φk, t)
s−→ (P ′, φ, t′) then (P, φkρ, t)

s−→ (P ′ρ, φρ, t′) by induction on
the sequence of actions s.

If s = ε it is obvious.
If s = s′.a, we have (P, φk, t)

s′−→ (P ′, φ′, t′) a−→ (P ′′, φ′′, t′′). By induction hypothesis, we also have

(P, φkρ, t)
s′−→ (P ′ρ, φ′ρ, t′).

Assume that a is a silent action. Wlog, we assume that a corresponds to a passing let. Then
P ′ = P ′0∪ t′ : letx = v inP elseQ, P ′′ = P ′0∪ t′ : P{v↓/x} (where v↓ is a message), φ′′ = φ′ and t′′ = t′.

30

Then (P ′ρ, φ′ρ, t′) = (P ′0ρ ∪ letx = vρ inPρ elseQ,φ′ρ, t′). v↓ ρ = vρ↓ as messages are constructor
terms stable by renaming, so Pρ{vρ↓/x} = (P{v↓/x})ρ. We can do the τ -action and we get :

(P ′0ρ ∪ letx = vρ inPρ elseQ,φ′ρ, t′)
τ−→ (P ′0ρ ∪ (P{v↓/x})ρ, φ′ρ, t′)

Now, assume that a is a visible action. If a = in(c,R) then : P ′ = P ′0∪t′ : in(c, u).P , P ′′ = P ′0∪t′ : Pσ
(where σ is the most general unifier of Rφ′↓ and u), φ′′ = φ′ and t′′ = t′.

So P ′ρ = P ′0ρ ∪ t′ : in(c, uρ).Pρ. Rφ′σ↓= uσ↓ so (Rφ′σ)ρ↓= (uσ)ρ↓ and (Rφ′ρ)(σρ)↓= (uρ)(σρ)↓.
So Rφ′ρ and uρ are unifiable and :

(P ′0ρ ∪ t′ : in(c, uρ).Pρ, φ′ρ, t′)
in(c,R)−→ P ′0ρ ∪ t′ : (Pρ)(σρ), φ′, t′)

and (Pρ)(σρ) = (Pσ)ρ.

The other cases are obvious and can be handled the same way.

A.2.4 Difference of recipes lemma

Lemma 13 : Let R1, R2 be two recipes and φ a frame such that R1φ↓ and R2φ↓ are messages and
(R1 6= R2)φ. Then there exists a name n such that any n-adequat renaming ρ verifies that (R1 6= R2)φρ.

Proof : Note that for any renaming ρ, R1φρ↓= R1φ↓ ρ as messages are constructor terms. If (R1 6=
R2)φ, then either R1φ↓ and R2φ↓ don’t share the same constructors (and then any renaming will
preserve that) or there is at least a leaf position p such that R1φ↓|p 6= R2φ↓|p. If there is a constant
in one of those positions, this constant won’t be modified by any renaming. Else, there are two names
n1 = R1φ↓|p and n2 = R2φ↓|p. Let ρ be any n1-adequat renaming. Then R1φ↓ρ = R1(φρ)↓ and
R2φ↓ρ = R2(φρ)↓ and so R1(φρ)↓|p = n1 6= n2 = R2(φρ)↓|p.

A.2.5 Main Lemma

Now, we can prove lemma 3 :

Lemma 3 : Let (Σ,R) be any finite convergent theory and MΣ be a notion of messages such that
(Σ,R) is b blockable w.r.t. MΣ, and denote k0 = 2b + 1. Let k ≥ k0 be an integer. Let P and Q be
two action-deterministic restricted protocols. Then :

[∀ρ ∈ Fkk0 .(P, φkρ, 0) ≈ (Q,φkρ, 0)]⇒ (P, φk, 0) ≈ (Q,φk, 0)

Proof : It is sufficient to show that (P, φk, 0) 6v (Q,φk, 0) =⇒ ∃ρ ∈ Fkk0(P, φkρ, 0) 6v (Q,φkρ, 0).
So assume that (P, φk, 0) 6v (Q,φk, 0). Let tr be a trace of non-inclusion of minimal length :

(P, φk, 0)
tr

=⇒ (P, φ, t)

As P and Q are action-deterministic 1, we can assume that we are in one of the following cases :

1. There exists a frame ψ (unique by lemma 2) such that (Q,φk, 0)
tr

=⇒ (Q, ψ, t), but there are
two recipes R1, R2 such that R1φ↓∈ MΣ, (R1 = R2)φ but (R1 6= R2)ψ.

1. See [5] and property 2

31

2. There exists a frame ψ (unique by lemma 2) such that (Q,φk, 0)
tr

=⇒ (Q, ψ, t), but there is a
recipe R such that Rφ↓∈ MΣ, but Rψ↓/∈MΣ.

3. There exists no frame ψ such that (Q,φk, 0)
tr

=⇒ (Q, ψ, t).
In the first and second cases, the disequivalence comes from the frame so by minimality of tr, the

last action is an output. In particular, it is not an error and by property 1, there is no output of error
in tr.

First case : R1φ↓∈ MΣ, (R1 = R2)φ but (R1 6= R2)ψ. By lemma 13, there exists a name n such
that for any n-adequat renaming ρ we have (R1 6= R2)ψρ. If n ∈ N , then any renaming ρ ∈ Fkk0 is
n-adequat. Else, n ∈ Ak. Wlog, assume n = agH1 . Then call ρ the renaming such that agHi ρ = agH2 for
each k ≥ i ≥ 2 and agDi ρ = agD1 for each i ≤ k. We have ρ ∈ Fkk0 as k0 = 2b+1 ≥ 3. After lemma 12, we

have (P, φkρ, 0)
tr

=⇒ (Pρ, φρ, t) and (Q,φkρ, 0)
tr

=⇒ (Qρ, ψρ, t). We have still (R1 = R2)φρ (renaming
can only create more equalities and messages are stable by renaming) and (R1 6= R2)ψρ (lemma 13).

Second case : Rψ ↓/∈ MΣ : there is a set of at most b names N such that for any N -adequat
renaming ρ we have Rψρ↓/∈ MΣ. If n ∈ N , then any renaming ρ ∈ Fkk0 is n-adequat. Else, n ∈ Ak.
N contains kH honest agents and kD dishonest ones with kH + kD ≤ b. Wlog, we can assume that
N = {agH1 , . . . , agHkH , ag

D
1 , . . . , ag

D
kD
}. Define ρ such that agHi ρ = agHkH+1 for each k ≥ i ≥ kH + 1 and

agDi ρ = agDkD+1 for each k ≥ i ≥ kD + 1. We have ρ ∈ Fkk0 as k0 = 2b + 1 ≥ b + 1 ≥ max(kH , kD) + 1.

After lemma 12, we have (P, φkρ, 0)
tr

=⇒ (Pρ, φρ, t) and (Q,φkρ, 0)
tr

=⇒ (Qρ, ψρ, t). We have still
Rφρ↓∈ MΣ (messages are constructor terms stable by renaming) and Rψρ↓ (lemma 11).

Last case : tr doesn’t pass in Q. By minimality, the non-passing action is the last one : tr = tr0 .α
and by property 1 tr0 does not contain any output of error. Assume that there is some ρ ∈ Fkk0 such
that tr passes in (Q,φkρ, 0) (if not, we get the result). There are four subcases :

— The action α is not an error and is not executed in (Q,φk, 0) because there is a unique failing
let (by action-determinism) that prevents it.

— The action α is an error and is not executed in (Q,φk, 0) because the corresponding let doesn’t
fail.

— The action α is an error and is not executed in (Q,φk, 0) because there is a unique (by action-
determinism) failing let that prevents it.

— The action α is an input (α = in(c,R)) and is not executed in (Q,φk, 0) because Rψ↓ does not
unify with the unique (by action-determinism) corresponding in(c, v).

First subcase. Consider the failing let : letx = v inQ′ elseE. Then by lemma 11, there is a set
N of b names such for that any N -adequat renaming ρ, we have vρ↓/∈ MΣ. We can define such a
renaming ρ ∈ Fkk0 as in previous case. Then by lemma 12 we get that tr passes in (P, φkρ, 0) but not
in (Q,φkρ, t).

Second subcase. As the corresponding let passes in (Q,φk, 0), it will pass in each (Q,φkρ, 0) as
messages are stable by renaming, so this subcase cannot happen.

Third subcase. α is the output of an error and tr0 .α is executed in (P, φk, 0) so there is a failing test
in P . By lemma 11, this test may be preserved failing with the set N1 of b names (that is, the test fails
in (P, φk, 0) for any N1-adequat renaming ρ). There is a failing let that prevents α to be executed in the
Q side : by lemma 11, there is a set N2 of b names such that this test may be preserved failing for any
N2-adequat renaming. Define N = N1 ∪N2. If n ∈ N , then any renaming ρ ∈ Fkk0 is n-adequat. Else,

32

n ∈ Ak. N contains kH honest agents and kD dishonest ones with kH +kD ≤ 2b. Wlog, we can assume
that N = {agH1 , . . . , agHkH , ag

D
1 , . . . , ag

D
kD
}. Define ρ such that agHi ρ = agHkH+1 for each k ≥ i ≥ kH + 1

and agDi ρ = agDkD+1 for each k ≥ i ≥ kD + 1. We have ρ ∈ Fkk0 as k0 = 2b + 1 ≥ max(kH , kD) + 1.
By lemma 12 we get that tr0 passes in both (P, φkρ, 0) and (Q,φkρ, 0), the final error α is executable
in the P side (because the corresponding let is still failing as ρ is N1-adequat) but not in the Q side
(because the preventing let is still failing as ρ is N2-adequat).

Last subcase. Assume that Rψ↓ does not unify with u, but Rψρ↓ does. Note that as we are not
in the second case and Rφ ↓ is a message, we have that Rψ ↓ is a message. In particular, it is a
constructor term and Rψρ↓= Rψ↓ρ. It means that there is a variable x at two leaf positions p and q in
u such Rψ↓|p 6= Rψ↓|q. By lemma 13, there is a name n such that any n-adequat renaming ρ verifies
Rψρ↓|p 6= Rψρ↓|q. If n ∈ N , then any renaming ρ ∈ Fkk0 is n-adequat. Else, n ∈ Ak. Wlog, assume
n = agH1 . Then call ρ the renaming such that agHi ρ = agH2 for each k ≥ i ≥ 2 and agDi ρ = agD1 for
each i ≤ k. We have ρ ∈ Fkk0 as k0 = 2b + 1 ≥ 3. By lemma 12, we get that tr0 still passes in both
(P, φkρ, 0) and (Q,φkρ, 0), but the final input only passes in the P side (it does not pass in the Q side
because the unique corresponding input is not unifiable with Rψ↓ as ρ is n-adequat).

B Counter-examples
In this section, I explain some of our hypothesis. First of all, I explain why we cannot consider

protocols with general else branches. Another restriction of our model is that our rules use destructor
on top-level positions only : in particular, g(t1, . . . , tn) does not reduce if t1, . . . , tn are not constructor
terms. There is also some counter example when we remove this hypothesis. Finally, our result is not
true for non action-deterministic protocols.

B.1 Else branches
We first explain why our reduction result does not hold in the presence of (non-trivial) else branches.

This is a more formal version of the counter-example presented in section 6.1.
Assume that {enc /2,dec /2, <,> /2,proj1 /1,proj2 /1, eq /2, ok/0, ag /1} ⊂ Σ. Recall that R is a

set of rewritting rules that apply on constructor terms only. Assume that R contains rules naturally
associated to the specified elements of Σ (e.g. eq(x, y) −→ ok). We assume also that there is some
special public constant end.

Consider the following protocol :
The three first parts of the protocol are used to approve some lists, represented as a pair of a head

element and a tail list. A list can be approved iff it only contains pairwise distinct public keys. Pinit is
used to allow all list containing only one element.

Pinit =

in(c1, < ag(x), end >)

out(c1, enc(< ag(x), end >, kapproved))

33

Then, Pdiff is used to check that the elements of a pair are distinct.

Pdiff =

in(c2, < ag(x), ag(y) >).

let z = eq(x, y) in 0

else out(c2, enc(< x, y >, kdiff))

Now, Pdecompose is used to get bigger lists. That is, when a list < x, y > and < x′, y > are approved,
then < x,< x′, y >> is also approved if x 6= x′. Indeed, a pair of elements of < x,< x′, y >> may be
a pair of elements of y, or x and an element of y, or x′ and an element of y, or the pair < x, x′ >.

Pdecompose =

in(c3, enc(< x, x′ >, kdiff)).

in(c3, < enc(< x, y >, kapproved), enc(< x′, y >, kapproved) >)

out(enc(< x,< x′, y >>, kapproved))

A more formal version of the PCP part :

PPCP =

out(c4, enc(<< uinit, vinit >, end >, kPCP))

in(c4, ag(xnew))

in(c4, enc(<< x, y >, ` >, kPCP))

out(c4, enc(<< xu1, yv1 >,< ag(xnew), ` >>, kPCP))

. . .

out(c4, enc(<< xun, yvn >,< ag(xnew), ` >>, kPCP))

For readability purposes, we separate the checking part from the general one. There are two versions
of it (one in P and one in Q). We assume that yes and no are public constants.

Pcheck =

in(c5, enc(<< x, x >, x` >, kPCP))

in(c5, enc(x`, kapproved))

out(c5, yes)

34

Qcheck =

in(c5, enc(<< x, x >, x` >, kPCP))

in(c5, enc(x`, kapproved))

out(c5, no)

Then define :
P =!

c′1
c1Pinit|!

c′2
c2Pdiff |!

c′3
c3Pmain|!

c′4
c4PPCP |!

c′5
c5Pcheck

Q =!
c′1
c1Pinit|!

c′2
c2Pdiff |!

c′3
c3Pmain|!

c′4
c4PPCP |!

c′5
c5Qcheck

Recall that the frame φk has been defined in section 3. We have :

1. ∀k, (P, φk, 0) ≈ (Q,φk, 0) iff the corresponding PCP instance has no solution.
2. If (P, φk, 0) 6≈ (Q,φk, 0) for some k, then the element matching variable x` of Pcheck and Qcheck

is a list of N − 1 public keys where N is the number of tiles of a solution of the corresponding
PCP instance.

3. The adversary can built enc(x`, kapproved) from x` iff it contains only distinct public keys.

So we need that 2k ≥ N − 1 (because there are 2k public keys in φk), where N is the number of
tiles of a solution of the corresponding PCP instance, which is not calculable.

Note that this example is also a counter-example in the case of reachability properties : instead of
equivalence, we could have asked for the secret of a constant that would take the place of yes/no.

B.2 Pure equational theories
We want to explain why we need to consider only theories with destructors on constructor terms.
Consider Σ = {enc /2; dec /2;m/0} and R = {dec(enc(x, y), y) −→ x}. Wlog, we can assume there

is another function symbol decenc /3 with a rule decenc(x, y, y) −→ x : indeed, define decenc(x, y, z) =
dec(enc(x, y), z). Here, we assume a standard equational theory, that is that the rules also apply when
subterms have destructors. For example, decenc(m,dec(a, b),dec(a, b)) reduces into m.

Then, let n1, n
′
1, . . . , nk+1, n

′
k+1 be some names. We define t1P :n1,n′

1,...,nk+1,n′
k+1

and t1Q:n1,n′
1,...,nk+1,n′

k+1

inductively as follows :
— t1P :n1,n′

1
= decenc(m,n1, n

′
1) and t1Q:n1,n′

1
= decenc(m,n′1, n1)

— Denote tkP :n1,n′
1,...,nk,n′

k
= decenc(m, t1, t

′
1) for some t1 and t′1, and tkQ:n1,n′

1,...,nk,n′
k

= decenc(m, t2, t
′
2)

for some t2 and t′2. We have :

tk+1
P :n1,n′

1,...,nk+1,n′
k+1

= decenc(m,decenc(nk+1, t1, t
′
1),decenc(n′k+1, t1, t

′
1))

and :
tk+1
Q:n1,n′

1,...,nk+1,n′
k+1

= decenc(m,decenc(nk+1, t2, t
′
2),decenc(n′k+1, t2, t

′
2))

Then, it is easy to show that for all ρ, tkP :n1,n′
1,...,nk,n′

k
ρ 6= tkQ:n1,n′

1,...,nk,n′
k
ρ iff n1ρ 6= n′1ρ, . . . , nkρ 6=

n′kρ.

35

So, letK be an integer andN be a set of terms of sizeK. Define n1, n
′
1, . . . , nk, n

′
k (with k = K(K−1)

2)
such that the pairs (ni, n

′
i) are all the non-oriented pairs of distinct elements of N . Then define :

tNP = tkP :n1,n′
1,...,nk,n′

k

tNQ = tkP :n1,n′
1,...,nk,n′

k

Then for any ρ, tNP ρ = tNQρ iff Nρ has cardinal K.
The existence of such terms make lemma 13 false. Moreover, lemma 11 is also false : the term

decenc(m, tNP , t
N
Q)ρ doesn’t reduce iff Nρ has cardinal K which can be chosen arbitrary big. We can

imagine protocols P and Q that builds terms tNP and tNQ inductively under encryption, where N is a
set of names of agents, and such that (P, φk, t) 6≈ (Q,φk, t) iff tNP 6= tNQ , that is iff k ≥ K. But as this
K may be chosen arbitrarily, the bound depends of the protocol.

B.3 Action-determinism
Recall that φk has been introduced in section 3. We design here protocols P and Q without else

branches, such that (P, φk, 0) 6≈ (Q,φk, 0) for some big enough k but such that no bound on k is com-
putable. That is, ∀k, (P, φk, 0) ≈ (Q,φk, 0) is not always true, but it is not possible to compute (from
the equational theory or from the protocols) a k0 such that ∀k, (P, φk, 0) ≈ (Q,φk, 0) ⇒ (P, φk0 , 0) ≈
(Q,φk0 , t). So no extension of theorem 1 can be proved.

Let (ui, vi)i be an instance of PCP. We have public constants yes, no, end, public channels c1, . . . , c5,
and private keys kPCP ,K,K ′.

Here, the idea is the same as in subsection B.1 for else branches. There are no else branch, but
the construction (if x = true thenP | if x = false thenQ) plays a similar role. As in subsection B.1,
the three first processes are used to approve some list. So the first step is to approve the smallest lists
(here encryption is randomized by a nonce n).

Pinit = in(c1, < x, end >).new n. out(c1, senc(<< yes, n >,< x, end >>,K ′)))

Now, we cannot check that two element of a pair are different, but we ensure that the output may
be different for equal inputs. Note that the pair < x, x > can pass in the second branch (but trace
inclusion ask some property to be true for any execution, that is whatever branch the input passes).
But only a pair of equal elements may be unapproved (marked by "no").

Pdiff =

(in(c2, < x, x >).new n. out(c2, senc(<< no, n >,< x, x >>,K)))

|(in(c2, < x, y >).new n. out(c2, senc(<< yes, n >,< x, y >>,K)))

The third part is used to approve the complete list. A list is unapproved (marked by "no") iff
one of its sublist is unapproved, or if the studied pair is unapproved. Note that here, there is no
non-determinism : once known the marks yes and no of the inputs, there is only one possible result.

The protocol Pmain can be read as a truth table : there are three four parallel branches that represent
a raw, whereas the three inputs represent the variable columns and the final output represent the result
column. The first input gives informations on the pair x, y (has it been approved ?), the second input
gives informations on the list < x, z` > and the last input gives informations on the list < y, z` >.
From these informations, the list < x,< y, z` >> is computed and approved or not according to the
following rules :

36

— First raw : if the pair < x, y > (first input) has been unapproved, then the output is not
approved.

— Second raw : if the list < x, z` > (second input) has been unapproved, then the output is not
approved.

— Third raw : if the list < y, z` > (third input) has been unapproved, then the output is not
approved.

— Last raw : if the pair < x, y >, the lists < x, z` > and < y, z` > have been approved, then the
output is approved.

The Pmain process is as follows :

Pmain =

(

in(c3, senc(<< no, zn >,< x, y >>,K)). in(c3, senc(<< z1, z
′
n >,< x, z` >>,K

′)).

in(c3, senc(<< z2, z
′′
n >,< y, z` >>,K

′)).new n. out(c3, senc(<< no, n >,< x,< y, z` >>>,K
′))

|
in(c3, senc(<< zbool, zn >,< x, y >>,K)). in(c3, senc(<< no, z′n >,< x, z` >>,K

′)).

in(c3, senc(<< z2, z
′′
n >,< y, z` >>,K

′)).new n. out(c3, senc(<< no, n >,< x,< y, z` >>>,K
′))

|
in(c3, senc(<< zbool, zn >,< x, y >>,K)). in(c2, senc(<< z1, z

′
n >,< x, z` >>,K

′)).

in(c3, senc(<< no, z′′n >,< y, z` >>,K
′)).new n. out(c3, senc(<< no, n >,< x,< y, z` >>>,K

′))

|
in(c3, senc(<< yes, zn >,< x, y >>,K)). in(c2, senc(<< yes, z′n >,< x, z` >>,K

′)).

in(c3, senc(<< yes, z′′n >,< x, z` >>,K
′)).new n. out(c3, senc(<< yes, n >,< x,< y, z` >>>,K

′))

)

The following process is exactly the same as in B.1. It creates a link with a PCP instance.

PPCP =

out(c4, enc(<< uinit, vinit >, end >, kPCP))

in(c4, ag(xnew))

in(c4, enc(<< x, y >, ` >, kPCP))

out(c4, enc(<< xu1, yv1 >,< ag(xnew), ` >>, kPCP))

. . .

out(c4, enc(<< xun, yvn >,< ag(xnew), ` >>, kPCP))

We now explain how P and Q differ. The second input in P can only be done if the list is marked
with "no" (that is, if the list is "unapproved") whereas the corresponding input can be done in Q
whatever the mark. So the protocols will not be equivalent if it is possible to get some list that may
not be unapproved in the P side : that will only be possible if all of its elements are distincts.

37

Pcheck =

in(c4, enc(<< x, x >, x` >, kPCP))

in(c4, enc(<< no, zn >, x` >,K
′))

Qcheck =

in(c4, enc(<< x, x >, x` >, kPCP))

in(c4, enc(<< zbool, zn >, x` >,K
′))

Then define :
P =!

c′1
c1Pinit|!

c′2
c2Pdiff |!

c′3
c3Pmain|!

c′4
c4PPCP |!

c′5
c5Pcheck

Q =!
c′1
c1Pinit|!

c′2
c2Pdiff |!

c′3
c3Pmain|!

c′4
c4PPCP |!

c′5
c5Qcheck

Recall that the frame φk has been defined in section 3, and note the following points :
1. When the PCP instance has a solution, there is an attack. We build the solution with a list of

public keys pairwise distincts, then we use Qdiff only with pairs of nonces that are different,
so the only possible execution in the P side is to do the same. Then we get senc(<< yes, zn >
, x` >,K

′) both sides. It passes the input in the Qcheck side but not in the Pcheck side.
2. It is obvious that everything that can be done in Pcheck can also be done in Qcheck. As the only

difference between P and Q is between Pcheck and Qcheck, everything that can be done in the
P side can be done in the Q side. That is, ∀k, (P, φk, 0) v (Q,φk, 0).

3. For φk with 2k ≤ N where N is the smallest size of the solution of the PCP problem, when
checking the list, we have to use Pdiff on a pair x, x (because we test all pairs and we cannot
have all pairs distincts if the public keys are not pairwise distincts). So, in the P side, we can
get the "no" with our pair, and thus at the end, we can make the input, and so we can make
no difference between P and Q, because (P, φk, 0) v (Q,φk, 0) by 2 and (Q,φk, 0) v (P, φk, 0)
for 2k ≤ N .

So we have to use a k such that 2k ≥ N , but N is not computable.

38

