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1 Introduction

The necessity to observe, monitor and control complex systems, combined with
the difficulty of partial observation, are a pervasive subject of system theory,
from continuous through discrete settings. We address here two supervisory
tasks in the setting of timed discrete event systems:

• Diagnosis: Given a TDES S that is partially observable and some unob-
servable property φ (a fault condition) on S, use the partial observation
of S’s behaviour to determine whether φ is true or not;

• Control: Given S as above and a target property ψ for S, use the partial
observation of S’s behaviour and a set of allowed control actions on S to
ensure S satisfies ψ.

Here, the observation can concern states or events of S, and control may be
exerted by blocking one or more controllable transitions of S. Typically, φ
represents the occurrence of particular unobservable fault events, and ψ that
the system is in some set of allowed states or allowed behaviours (e.g. expressed
in a suitable temporal logic).

Robustness. The synthesis tasks above may not be solvable for a given DES
in the sense that

• observation may be too sparse or too ambiguous to discern faulty from
non-faulty behaviour, and

• controllable actions may be too few, or too badly distributed , to allow
for effective control in the above sense.
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While these issues remain important when timed DES are considered, both tasks
then also need to face several robustness problems:

• Concurrent behaviours may weaken the capacity of observation, and lead
to a modification of the type of fault conditions that can be diagnosed
(haar-tac10) and of properties that can be ensured via control ; the fine
analysis of partial order semantics is crucial to capture this effect and
make supervision robust.

• Loss or falsification of observations are notoriously hard to handle in su-
pervision; systems and supervisors need to be robust w.r.t. such failures
in both the event and the time domain.

• Imprecisions of behaviour, together with the impossibility to implement
sharp time intervals or points in real-time equipments, pose problems at
the very simulation of behaviour.

In the following, we look at some of these aspects in more detail, give a sketch
of existing literature, and propose some research problems to address.

2 Diagnosis

2.1 The Problems of Diagnosis and Diagnosability

The literature on diagnosis in the above sense for untimed discrete event systems
is vast; see [CL08] for a detailed and ”canonical” introduction. Below follows a
survey of approaches to extend to timed discrete event systems the techniques
of diagnosis for DES, as well as the verification of the possibility of diagnosis,
i.e. diagnosability. Fix an alphabet Σ and a subset ΣO ⊆ Σ of observable
letters; this defines the set of unobservable letters (or events) as ΣU , Σ\ΣO,
and a projection operator PO : Σ∗ → Σ∗O that proceeds by erasing from each
word w ∈ Σ∗ the letters from ΣU while preserving all letters from ΣO in their
original order inherited from w. The essence of diagnosability can be described,
following [CL08], in this way:

Definition 1 (Diagnosability) Assume that a DES S has a live (prefix-closed)
language L(S) (i.e. every word w ∈ L(S) has some extension wa ∈ L(S)). Then
S is not diagnosable w.r.t. unobservable property φ iff for every k ∈ N there
exist wn, w

k
y ∈ L(S) that satisfy

1. wk
y satisfies φ (”yes”) and wn (”no”) does not;

2. wk
y and wn are observationally equivalent, i.e. PO(wk

y) = PO(wn); and

3. there is a prefix wy of wk
y that satisfies φ and such that the suffix of wk

y

after wy has length at least k.
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In other words, the system is undiagnosable iff it is φ-ambiguous, in the sense
that faulty behaviors can remain undistinguishable from healthy behaviors an
arbitrary amount of events after the condition φ arises, e.g. by the occurrence
of an unobservable fault event.

Verification. The first standard tool for verifying whether or not a given
DES is diagnosable is the diagnoser construction found e.g. in [SSL+95, CL08].
Taking as input a finite state machine S with state space X, initial state x0 ∈ X,
transition set T ⊆ X ×X and λ : T → Σ with Σ an alphabet that contains the
distinguished symbol ε (the empty word), define unobservable and observable
transition sets TU and TO as above, and let f ∈ TU be a fault event. Then:

1. take as initial state for the diagnoser the unobservable reach of x0, i.e. the
set of all states reachable in S from x0 without observable events, i.e. only
using ε-transitions.

2. Create one state each for

• every pair (M,y) such that some state s ∈ M ⊆ X can be reached
via some w̄ ∈ T ∗{f}T ∗ with PO(w̄) = w, and M is the unobservable
reach of s;

• every pair (M,n) such that some state s ∈ X can be reached via
some w̃ ∈ T\{f}, and M is the unobservable reach of s

3. Add transitions to reflect those of S and the propagation of the y(es)-label,
and the transition from n to y on ocurrence of f .

From this, the full set of states of the diagnoser is build following the reachability
via transitions and propagating the y-label. One obtains a new automaton -
whose size is generally exponential in the size of T - which contains definite and
indefinite states, depending on reachability (in S) with or without faults under
the same observation. Diagnosability verification then amounts to checking the
obtained automaton for absence of indefinite cycles.

This diagnoser approach - whose technical details we omit here - had as its
main drawback the size of the auxiliary diagnoser structure. The subsequent
development of the verifier (see below) showed that diagnosability checking is
polynomial for untimed automata [YL02], via techniques that can be extended
to a polynomial-time diagnosability check for timed DES (Pan and Hashtrudi-
Zad [PHZ06]) under a set of non-Zeno type conditions. A noteworthy fact is
that the diagnosability problems in both cases reduce to the emptiness problem
for (timed) Büchi automata (Cassez [Cas09]).

The verifier V associated to a labeled DES S is obtained as the synchronous
product two isomorpphic copies S1 and S2, i.e. by fusing all pairs (t1, t2) ∈
T 1
O × T 2

O having the same (observable) label. All executions of V therefore
represent pairs of observationnaly behaviours of S, one of which being performed
by S1 and the other by S2. Denoting f1 and f2 the instances of faults in S1 and
S2, respectively, a violation of diagnosability is witnessed by an infinite run of
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V on which f1 occurs but f2 does not; equivalently, the presence of a cycle in V
that contains f1 but not f2. Let us note in passing that the verifier can be further
reduced by surgery that allows to remove f2 whose exploration is not relevant.
The verifier construction with its comparatively small size (|V | = O(|S|2)) is the
main reason of polynomiality of diagnosability, and for the hegemonial success
in recent years of the verifier (vs diagnoser) method in the literature of the past
years.

Extensions. Apart from the extensions to timed systems related below, let
us indicate that one finds in the literature on DES several equivalent versions,
as well as proper extensions, of Definition 1.

• In particular, one may let k depend on the choice of wn; this is equiva-
lent to Definition 1 in the context of finite state systems but no longer
when infinite state systems are considered. Another definition that, on
the one hand, boils down to Definition 1 in the case of finite automata but
is non-equivalent in general takes as witnesses of non-diagnosability two
observationally equivalent infinite runs.

• k-Diagnosability: Conversely, when Definition 1 is modified by fix-
ing a value of k, one has the notion of k-diagnosabiity. Obviously, k-
Diagnosability implies k + 1-Diagnosability; moreover, Diagnosability in
the sense of Definition 1 implies k-diagnosability for all k > K for some
threshold K ∈ N. A finite state system is either k−diagnosable for some
k ∈ N or not diagnosable at all.

• co-diagnosability: If several observers are available such that each ob-
server i ”sees” a sub alphabet Ti such that i 6= j implies Ti ∩ Tj = ∅, and
each observer makes a verdict on f ′s occurrence, can f be detected by the
disjunction of positive verdicts from the different i ?

• Predictability: Take for simplicity the case where φ is the occurrence
of unobservable fault event f . A system is predictable for f iff, with the
notation of Definition 1, there exists k ∈ N with the property that for any
faulty word wy ∈ L(S) that decomposes as wy = wvf with w ∈ (Σ\{f})∗,
v ∈ (Σ\{f})k, every w′ ∈ L(S) such that PO(w′) = PO(w) has only
extensions with a fault in at most k steps, i.e. w′v′ ∈ L(s) with v′ of
length at least k implies v′ 6∈ (Σ\{f})∗.

• Active diagnosis [SLT98] aims at improving diagnosability by steering the
observed system online, based on the observation thus far, towards be-
haviour that allows definite diagnosis verdicts. One may view this ap-
proach as a dynamic counterpart to works like [CT08b, Cas10] or [PHZ07]
in which one aims at minimizing offline the static set of observation sensors
needed to ensure diagnosability.

• Other extensions concern stochastic systems, which will be considered
later in IMPRO (5.3.); works on timed systems are referred to below.
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2.2 Diagnosis and Diagnosability in Timed Systems

We will focus henceforth on the existing approaches for solving these tasks in
the context of timed DES, starting with diagnosis-related tasks.

• In [BCD05], Bouyer et al consider the problem of diagnosing faults in be-
haviours of timed plants. We focus on the problem of synthesizing fault
diagnosers which are realizable as deterministic timed automata, with the
motivation that such diagnosers would function as efficient online fault
detectors. We study two classes of such mechanisms, the class of deter-
ministic timed automata (DTA) and the class of event-recording timed
automata (ERA). We show that the problem of synthesizing diagnosers in
each of these classes is decidable, provided we are given a bound on the
resources available to the diagnoser. We prove that under this assumption
diagnosability is 2EXPTIME-complete in the case of DTA’s whereas it
becomes PSPACE-complete for ERA’s.

• Like the above, other authors, such as Cassez et al. [Cas09, Cas12, CT08b,
Cas10] and Khoumsi et al [KO09], cast the diagnosis and diagnosability
problems for timed systems in the same framework as those for untimed
ones. [Cas09] considers algorithms for checking diagnosability of discrete-
event systems and timed automata, in both of which cases the diagnosabil-
ity problem reduces to the emptiness problem for (timed) Büchi automata.
Moreover, it is shown that checking whether a timed automaton is diagnos-
able, can also be reduced to checking bounded diagnosability, as is the case
in discrete event systems. [Cas12] show that fault co-diagnosis for both
(untimed) finite automata or FA and timed automata (TA) is PSPACE-
complete, a result that generalizes to dynamic observers in the sense of
[CTA07b, CTA07a, CT08b, Cas10, CT08a], i.e. where observation sensors
can be switched on and off to minimize resource consumption, and that
the codiagnosis problem for TA under bounded resources is 2EXPTIME-
complete. Bouyer et al [BCD05] focus on the problem of synthesizing fault
diagnosers which are realizable as deterministic timed automata, with the
motivation that such diagnosers would function as efficient online fault
detectors. two classes of such mechanisms are studied, namely the class
of deterministic timed automata (DTA) and the class of event-recording
timed automata (ERA). The problem of synthesizing diagnosers in each
of these classes is proved decidable, provided one is given a bound on
the resources available to the diagnoser. Finally, under this assumption
diagnosability is 2EXPTIME-complete in the case of DTA’s whereas it
becomes PSPACE-complete for ERA’s.

• In recent years, Petri net unfoldings have been used to develop diagnosis
in concurrent untimed systems, again extending from the untimed case:
Benveniste et al [BFHJ03, FBHJ05] use un-timed unfoldings to construct
generators explanations for partially observed behaviours; Grabiec et al.
[GTJ+10], Jiroveanu et al [BJ13] extend the unfolding based approach to
time Petri nets.
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• By contrast, Tripakis [Tri02] considers diagnosis of timed automata based
on the observation of finite timed sequences. Delays being treated as
events, time lapses between (observable) events are observable, increasing
discriminating power. Diagnosability is checked in polynomial time via a
twin plant construction.

• We mention in passing that a variety of different settings and approaches
for particular aspects and applications of real-time supervision exist, such
as Meseguer et al. [MPE10] who use interval observation in diagnosis ;
however, such more remote works are outside the scope of this note and
of the project.

2.3 Control of Timed Systems

As in the case of diagnosis, the field of DES control evolved for decades mostly
in the untimed domain; below we will focus on works that extend to the control
of timed systems.

• Maler et al. have introduced the techniques of controller synthesis for real-
time systems in [MPS95], with subsequent developments in [AMPS98];

• An alternative semantics for timed games, where delays are strictly cou-
pled with actions, has been proposed by De Alfaro et al. in [dAFH+03];

• An efficient algorithm for solving timed games is proposed in [CDF+05]
and a reference implementation is available as [BCD+07];

• Bouyer et al. [BDMP03] consider the problem of synthesizing controllers
for timed systems modeled using timed automata, and based on a partial
observation. They show that timed control under partial observability
is undecidable even for internal specifications (while the analogous prob-
lem under complete observability is decidable), and identify a decidable
subclass.

• Bouyer et al. [BCL05] use the timed modal logic Lv to specify control
objectives for timed plants, and show that the control problem for a large
class of objectives can be reduced to a model-checking problem for an
extension (Lcont

v ) of the logic Lv with a new modality. In fact, a fragment
of Lv called Ldet

v is identified, such that any control objective of Ldet
v

can be translated into an Lcont
v formula that holds for the plant if and

only if there is a controller that can enforce the control objective. The
new modality of Lcont

v strictly increases the expressive power of Lv, while
model-checking of Lcont

v remains EXPTIME-complete.

• The problem of minimizing the required observation power, analogous
to that of observation minimization for diagnosis in [CTA07b, CTA07a,
CT08b, Cas10, CT08a], is addressed in [BCD+12].
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• Cassez et al. [CDL+07] consider the problem of controller synthesis for
timed games under imperfect information. Strategies must be based on
a finite collection of observations and must be stuttering invariant in the
sense that repeated identical observations will not change the strategy.

• In Bérard et al. [BHSS12], concurrent games on an extension of Vector
Addition Systems with States are considered. Inhibition conditions are
added for modeling purposes, and asymmetric games are considered; here,
both environment and controller have restricted power but do not have
the same capabilities. The results include :

1. reachability games are undecidable for finite targets,

2. they are 2-EXPTIME-complete for upward-closed targets,

3. safety games are co-NP-complete for finite, upward-closed and semi-
linear targets;

4. moreover, for the decidable cases, a finite representation of the cor-
responding controllers is constructed.

3 Robustness Issues

3.1 On Robustness of Diagnosis and Diagnosability

When both the observation of a timed discrete event system AND the criteria
of diagnosability restricted to its event labels and logical time only, the imple-
mentation of time observation is not a crucial issue. However, in settings where
time enters the definition of the diagnosability problem considered (e.g. is a
fault detected at most ∆ time units after its occurrence ?), one is led to the
problem of observing time in plant monitoring.

Analog vs digital clocks.

Altisen et al. [ACT06]1 study the monitoring and fault-diagnosis problems
for dense-time real-time systems, where observers (monitors and diagnosers)
have access to digital rather than analog clocks. Analog clocks are infinitely-
precise, thus, not implementable : in fact, observation that distinguishes e.g.
between an event occurring at any time t < 1 and its occurrencence at t = 1
can not be implemented by any physical means. Altisen et al. [ACT06] chose
an architecture in which a plant is monitored by an observer that masks system
events (which do not include time information), and synchronizes with a digital
clock that produces time ”tick” events used to ”timestamp” observations. Three
problems are considered:

1. given a plant A, a digital clock ADC and a time bound ∆, check whether
there exists a diagnoser that can detect any fault within ∆ time units after
its occurrence;

1and independently Kumar et al [XJK10]
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Figure 1: default

2. given A and ADC check whether there is such a diagnoser for some ∆;

3. given A, check whether there is a diagnoser for some digital clock ADC

and some ∆.

Given a specification modeled as a timed automaton and a timed automaton
model of the digital clock, a sound and optimal (i.e., as precise as possible)
digital-clock monitor can be synthesized. Also, given plant and digital clock
modeled as timed automata, we can check existence of a digital-clock diagnoser
and, if one exists, how to synthesize it. Finally, there are cases where a digital
clock, no matter how precise, does not exist, even though the system is diag-
nosable with analog clocks. Zad et al [ZKW05] treat the clock tick as an extra
output signal. In their approach, the required estimates for system condition
are updated only when the output changes or when deadlines associated with
output changes expire. Thus updates at every clock tick are not required. This
in many cases results in reduction in online computing requirements and in the
size of the diagnosis system,at the expense of more offline design calculations.

Diagnosis using Time information. The work by Tripakis [Tri02] opens
another, broader set of problems. In fact, when delays are considered as events
and as objects of observation, a finer and generally faster diagnosis can be
attempted. Consider Figure 1; with the conventional naming , u and f are
unobservable event labels with f a fault event, and a is an observable label.
Starting from s1 in time t = 0 with clock c at 0, the system can enter state s4

• state s2 after any timed sequence τ, u, τ, a for τ > 13,

• or state s3 after any timed sequence τ, fτ, a for τ < 5.

Under the DES scheme of diagnosis, where only events are observed, the system
is non-diagnosable since all observations are a. However, in the approach of
Tripakis [Tri02], the observation sequence always is τ, a with delay τ observable;
that is, different values of τ can be distinguished. Hence the diagnoser need only
check whether τ ∈ [0, 5[ - in which case f has definitely occurred - or τ ∈]13,∞[
- in which case f cannot have occurred. Moreover, a decision on occurrence or
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non-occurrence of f is available from reading the global time as early as five
time units after the start.

Outlook : Robustness Issues in Diagnosability

The sensitivity of timed behaviour impacts the task of diagnosis and diagnos-
ability in several ways; we point out the following:

• In any sense of diagnosis, and beyond the choice of robustly implementable
architectures such as the digital clock setup above, one should aim at
understanding robust diagnosability in a broader mathematical form. The
intuition is that ”small enough” perturbations of the time parameters of
system S must preserve its diagnosability (and/or the diagnosis verdicts).
In other words, S must be embedded in a diagnosable neighborhood w.r.t.
an adequate metric topology of systems; the task is to identify conditions
under which these embeddings are available.

• In the context of observable time delays as in Tripakis [Tri02], the sub-
tleties of diagnosis need to be explored more in depth. In particular, it
needs to be checked whether diagnosability in this sense is, or can be made,
robust under perturbations in the temporal parameters.

3.2 Synthesis of robust systems

Checking that a system is robust or implementable is one (already difficult) step
in the verification process. However if one finds that the system is actually not
robust, it is difficult to correct it. So instead of building a system and verifying
a posteriori that it is robust w.r.t. its specification, it would be more efficient
to start with a specification of the system and to directly synthesize a model
that is robustly correct by construction.

The leads to be followed are thus:

• Synthesize systems that are robustly correct, either independently of any
control or such that control can be exerted efficiently and with guaran-
tees of robust reaction from the system. Here again, the use of powerful
mathematical frameworks appears crucial.

• In the line of [XK10] and extending the anlogours work on diagnosis from
[ACT06, XJK10], study controller synthesis for discrete-event systems
augmented by a digital clock.

• Explore properly time-related properties of the system behaviour in de-
vising control strategies that exploit the effect of delays (compare the toy
example in Figure 1) rather than observable events to achieve control
goals.

9



4 Contributions from the ImpRo project

We include two papers written within the project in this deliverable, and ad-
dressing some of the issues outlined in the previous sections.

In [JFLR12], we investigate the issue of the control of parametric timed
systems. In this setting, parameters are used to represent durations, which
could naturally account for the uncertainties on delays introduced by, e.g., an
implementation on some specific hardware. We focus on reachability control
objectives but many interesting properties can be reduced to that setting, in
particular simulation / refinement verification. In the paper, we introduce de-
cidable classes for the existence of parameter valuations satisfying some reach-
ability property and provide a semi-algorithm, extending the one in [CDF+05].

In [BMS12], we solve a robust reachability problem using the framework of
timed games: we are interested in synthesizing “robust” strategies for ensuring
reachability of a location in a timed automaton; with “robust”, we mean that it
must still ensure reachability even when the delays are perturbed by the envi-
ronment. We model this perturbed semantics as a game between the controller
and its environment, and solve the parameterized robust reachability problem:
we show that the existence of an upper bound on the perturbations under which
there is a strategy reaching a target location is EXPTIME-complete.

References

[ACT06] Karine Altisen, Franck Cassez, and Stavros Tripakis. Monitoring
and fault-diagnosis with digital clocks. In 6th Int. Conf. on Applica-
tion of Concurrency to System Design (ACSD’06). IEEE Computer
Society, June 2006.

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller Synthesis
for Timed Automata. In Proc. IFAC Symp. on System Structure &
Control, pages 469–474. Elsevier Science, 1998.

[BCD05] Patricia Bouyer, Fabrice Chevalier, and Deepak D’Souza. Fault
diagnosis using timed automata. In Vladimiro Sassone, editor,
Proceedings of the 8th International Conference on Foundations of
Software Science and Computation Structures (FoSSaCS’05), vol-
ume 3441 of Lecture Notes in Computer Science, pages 219–233,
Edinburgh, Scotland, UK, April 2005. Springer.

[BCD+07] Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel
Fleury, Kim G. Larsen, and Didier Lime. Uppaal-tiga: Time for
playing games! In 19th International Conference on Computer
Aided Verification (CAV 2007), volume 4590 of Lecture Notes in
Computer Science, pages 121–125, Berlin, Germany, July 2007.
Springer.

10



[BCD+12] P. Bulychev, F. Cassez, A. David, K. G. Larsen, J-F. Raskin, and
P-A. Reynier. Controllers with Minimal Observation Power (Ap-
plication to Timed Systems). In Proc. ATVA 2012, 2012.

[BCL05] Patricia Bouyer, Franck Cassez, and François Laroussinie. Modal
logics for timed control. In Mart́ın Abadi and Luca de Alfaro,
editors, Proceedings of the 16th International Conference on Con-
currency Theory (CONCUR’05), volume 3653 of Lecture Notes in
Computer Science, pages 81–94, San Francisco, CA, USA, August
2005. Springer.

[BDMP03] Patricia Bouyer, Deepak D’Souza, P. Madhusudan, and Antoine Pe-
tit. Timed control with partial observability. In Warren A. Hunt,
Jr and Fabio Somenzi, editors, Proceedings of the 15th Interna-
tional Conference on Computer Aided Verification (CAV’03), vol-
ume 2725 of Lecture Notes in Computer Science, pages 180–192,
Boulder, Colorado, USA, July 2003. Springer.
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[KO09] A. Khoumsi and L. Ouédraogo. Diagnosis of faults in real-time
discrete event systems. In Proceedings of the IFAC Symposium
on Fault Detection, Supervision and Safety of Technical Processes
(SafeProcess), Barcelona/Spain, July 2009, 2009.

[MPE10] Jordi Meseguer, Vicen Puig, and Teresa Escobet. Fault diagnosis
using a timed discrete-event approach based on interval observers:
Application to sewer networks. IEEE Transactions on Systems,
Man, and Cybernetics, Part A, pages 900–916, 2010.

[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the Synthesis of Discrete
Controllers for Timed Systems. In Proc. 12th Symp. on Theoretical
Aspects of Computer Science (STACS’95), volume 900 of LNCS,
pages 229–242. Springer, 1995.

[PHZ06] J. Pan and S. Hashtrudi-Zad. Diagnosability test for timed discrete
event systems. In Proc. 18th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI 06), pages 63–72, Wash-
ington, DC, USA, November 2006.

[PHZ07] J. Pan and S. Hashtrudi-Zad. Diagnosability analysis and sensor
selection in discrete event systems with permanent failures. In Proc.
3rd annual IEEE Conference on Automation Science and Engineer-
ing (IEEE CASE 2007), pages 869–874, Scottsdale, Arizona, USA,
September 2007.

13



[SLT98] M. Sampath, S. Lafortune, and D. Teneketzis. Active diagnosis of
discrete event systems. IEEE Transactions on Automatic Control,
43(7):908–929, July 1998.

[SSL+95] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis. Diagnosability of discrete-event systems. IEEE
Transactions on Automatic Control, 40(9):1555–1575, 1995.

[Tri02] S. Tripakis. Fault diagnosis for timed automata. In Proceedings
FTRTFT’02, 2002.

[XJK10] S. Xu, S. Jiang, and R. Kumar. Diagnosis of dense-time systems
using digital clocks. IEEE Transactions on Automation Science
and Engineering, 7(4):870–878, 2010.

[XK10] S. Xu and R. Kumar. Real-time supervisory control of discrete event
systems using digital- clocks. IEEE Transactions on Automatic
Control, 55(9):2003–2013, 2010.

[YL02] T-S. Yoo and S. Lafortune. Polynomial time verification for diag-
nosability of discrete-event systems. IEEE Transactions on Auto-
matic Control, 47(9):1491–1495, 2002.

[ZKW05] S. Hashtrudi Zad, R.H. Kwong, and W.M. Wonham. Fault diag-
nosis in discrete-event systems: Incorporating timing information.
IEEE Transactions on Automatic Control, 50(7):1010–1015, July
2005.

14



Real-Time Control with Parametric Timed
Reachability Games ?

A. Jovanović ∗∗ S. Faucou ∗∗∗ D. Lime ∗∗ O. H. Roux ∗∗

LUNAM Université.
∗∗ École Centrale de Nantes (e-mail:

aleksandra.jovanovic@irccyn.ec-nantes.fr,
didier.lime@irccyn.ec-nantes.fr, olivier-h.roux@irccyn.ec-nantes.fr).
∗∗∗Université de Nantes (e-mail: sebastien.faucou@univ-nantes.fr)

IRCCyN UMR CNRS 6597

Abstract: Timed game automata are used for solving control problems on real-time systems. A
timed reachability game consists in finding a strategy for the controller for the system, modeled
as a timed automaton. Such a controller says when and which of some "controllable" actions
should be taken in order to reach "goal" states. We deal with a parametric version of timed
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which the existence of a parameter valuation, such that there is a strategy for the controller to
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the corresponding set of parameter valuations.
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1. INTRODUCTION

Formal methods are widely used in the analysis of time
critical systems. For instance, methods such as model-
checking allow the verification of a system by exploring the
state-space of a (timed) model, e.g. a timed automaton.
A prerequisite for these methods is the availability of a
complete model of the system. Thus, it can be difficult to
use them at early design stages, when the whole system is
not fully characterized.

It is sometimes possible to overcome this problem by
using parameters for modeling values that are not fully
characterized yet. To exploit such models, a parametric
approach in automata theory must be used. The analysis
of a parametric model produces symbolic constraints on
the parameters that ensure the correctness of the system.

Parametric control problem The verification problem for
a given model of the system S and a model of the
specification ϕ, consists in checking whether S satisfies ϕ,
which is often written S |= ϕ and referred to as the model-
checking problem. The parametric model-checking problem
for a parametric system S and a parametric specification
ϕ, consists in checking whether there exists a valuation v
of the parameters such that S satisfies ϕ for this valuation,
which is written JSKv |= JϕKv.
The control problem assumes the system is open i.e. we
can restrict the behaviour of S: some events in S are
controllable and the others are uncontrollable, and we
can sometimes disable controllable actions. The control
problem for a system S and a specification ϕ asks the
following: is there a controller C s.t. S × C |= ϕ ? The
parametric control problem for a parametric system S and
? This work was supported by project ANR-2010-BLAN-0317.

a parametric specification ϕ asks the following: is there a
controller C and a valuation v of the parameters s.t. JSKv×
C |= JϕKv ? The associated parametric controler synthesis
problem asks to compute a witness controller C and the
set of valuations V such that ∀v ∈ V , JSKv × C |= JϕKv.
The control problem can be formulated as a game in which
the controller plays against the environment.

Related Work Parametric timed automaton (PTA) has
been introduced in Alur et al. (1993) as an extension of the
timed automaton, Alur and Dill (1994), that allows the use
of parameters instead of concrete values in the clock con-
straints. The emptiness problem for PTA asks: is the set
of parameter valuations, such that an automaton has an
accepting run, empty? The main result is that this problem
is undecidable in general except for some restricted cases.
In Hune et al. (2002), the authors introduce a subclass
of parametric timed automata, called lower bound/upper
bound (L/U) automata, for which the emptiness problem
is decidable.

Timed game automata (TGA), Maler et al. (1995), were
introduced for solving control problems on real-time sys-
tems. TGA are based on the framework of Ramadge and
Wonham (1989), developed for the control of the discrete
event processes. A timed game automaton is essentially
a timed automaton whose set of actions is partitioned
into controllable and uncontrollable actions. Two players,
a controller and an environment, choose at every instant
one of the available actions from their own sets and the
game progresses. A timed reachability game consists in
finding a strategy for the controller: when and which of the
controllable actions should be taken such that, regardless
of what the environment does, the system ends up in



a desired location. Such timed games are known to be
decidable, Maler et al. (1995); Asarin et al. (1998).

Our Contribution We first define parametric timed game
automata (PGA) and introduce their subclasses for which
we prove the decidability of the emptiness problem for
parametric timed reachability game i.e. the existence of
a parameter valuation, such that there is a strategy for
the controller to reach the "goal" state. We then propose
the extension for the parametric case of the algorithm of
Cassez et al. (2005) for solving timed games. It leads to
a semi-algorithm that symbolically computes the set of
corresponding parameter valuations. We end with a case
study that illustrates the use of the new subclass and
proposed algorithm.

2. PARAMETRIC TIMED GAMES

2.1 Basic Definitions

Parametric constraints Let X = {x1, ...xm} be a finite
set of variables modeling clocks. R is the set of real
numbers, Q the set of rational numbers, and Z the set of
integers. A clock valuation is a function w : X 7→ R≥0

assigning a non-negative real value to each clock. Let
P = {p1, ...pn} be a finite set of parameters. A parametric
clock constraint c is an expression of the form c ::= xi −
xj v p | xi v p | c∧c, where xi, xj ∈ X, v∈ {≤, <}, and p
is a linear expression of the form k0 +k1p1 + ...+knpn with
k0, ...kn ∈ Z. A parameter valuation is a function v : P 7→
Q assigning a rational value to each parameter. For any
parametric clock constraint c and any parameter valuation
v, we note JcKv the constraint obtained by replacing each
parameter pi by its valuation v(pi). A pair (w, v) of a clock
valuation and a parameter valuation satisfies a parametric
constraint c, notation (w, v) |= c, if the expression c[w, v],
obtained by replacing each parameter pi with v(pi) and
each clock xi with w(xi), evaluates to true. We denote
by G(X) the set of parametric constraints over X, and
G′(X) a set of parametric constraints over X of the form
c′ ::= xi v p | c′∧c′. If w is a clock valuation and t ∈ R≥0,
we write w+ t for the valuation assigning w(x) + t to each
clock. For R ⊆ X, w[R] denotes a valuation assigning 0 to
each clock in R and w(x) to each clock in X\R.
Note that given an arbitrary order on X∪P , any valuation
(w, v) can be identified to a point in R|P |+|X|, and the set
of valuations (w, v) such that some parametric constraint
c is true is then a convex polyhedron in that space.

Parametric Timed Automata Parametric clock con-
straints are used as guards and invariants in parametric
timed automata.
Definition 1. A Parametric Timed Automaton (PTA) is a
tuple A = (L, l0, X,Σ, P, E, I), where L is a finite set of
locations, l0 ∈ L is an initial location, X is a finite set of
clocks, Σ is a finite alphabet of actions, P is a finite set of
parameters, E ⊆ L×Σ×G(X)× 2X ×L is a finite set of
transitions, and I : L 7→ G′(X) is a function that assigns
an invariant to each location.
Definition 2. (Semantics of a PTA). The concrete seman-
tics of a PTA A under a parameter valuation v, notation
JAKv, is the labeled transition system (Q, q0,→) over Σ ∪
R≥0 where:

• Q = {(l, w) ∈ L× (X 7→ R≥0) | (w, v) |= I(l)}
• q0 = {(l, w0) ∈ Q | l = l0 ∧ w0 : X 7→ 0}
• the transition relation→ is defined as: ∀(l, w), (l′, w′) ∈
Q, t ≥ 0 and a ∈ Σ:

delay transition: (l, w)
t−→ (l, w′) if w′ = w + t

action transition: (l, w)
a−→ (l′, w′) if ∃g ∈ G(X),

R ⊆ X : l
a,g,R−−−→ l′ and (w, v) |= g and w′ = w[R]

A run of a parametric timed automaton A under a pa-
rameter valuation v, is a sequence of alternating de-
lay and action transitions in the semantics of JAKv.
Runs((l, w), JAKv) denotes the set of runs starting in (l, w),
and Runs(JAKv) denotes the set of runs starting in the
initial state (l0, w0). If ρ is a finite run, we denote by last(ρ)
the last state of ρ.

A state (l, w) is said to be reachable if there exists a finite
run ρ ∈ Runs(JAKv) such that last(ρ) = (l, w).

L/U Automata A parameter pi occurs positively (resp.
negatively) in a parametric constraint xi − xj ∼ k0 +
k1p1 + ... + knpn, with ∼∈ {≤, <}, if ki > 0 (resp.
ki < 0). A lower bound (resp. upper bound) parameter
of a parametric timed automaton A is a parameter that
only occurs negatively (resp. positively) in the parametric
constraints of A.
Definition 3. (L/U automaton Hune et al. (2002)). A L/U
automaton is a parametric timed automaton where every
parameter is either a lower or an upper bound parameter.

Let A be a non-parametric timed automaton. Weaken-
ing the guards and invariants in A (decreasing the lower
bounds and increasing the upper bounds on clocks) yields
an automaton whose reachable states include those of A,
and strengthening the guards and invariants in A (increas-
ing the lower bounds and decreasing the upper bounds on
clocks) yields an automaton whose reachable states are a
subset of those of A. Following this fact, decidability of the
reachability-emptiness problem (existence of a parameter
valuation such that a certain state in the automaton is
reachable from the initial state) has been established for
L/U automata (detailed proof in Hune et al. (2002)).

2.2 Parametric Timed Games

We now extend the previous definitions to obtain a more
powerful formalism that allows us to express control prob-
lems. To this end we will parametrize the classical notion
of timed games.
Definition 4. A Parametric (Timed) Game Automaton
(PGA) G is a parametric timed automaton with its set
of actions Σ partitioned into controllable (Σc) and uncon-
trollable (Σu) actions.

As for PTA, for any PGA G and any parameter valuation
v, we obtain a timed game automaton JGKv by replacing
each parametric constraint c in the guards and invariants
by JcKv.
In a timed game, each of the two players acts within its
set of actions according to a strategy. The game being
symmetric, we only give the definitions for Player 1 (the



controller playing with actions in Σc). Since we consider
only reachability properties, as in Maler et al. (1995);
Cassez et al. (2005), invariants restrict the behavior of the
automaton but never force a player to move.
Definition 5. (Strategy). A strategy F over JGKv is a par-
tial function from Runs(JGKv) to Σc ∪ {delay} such that

for every finite run ρ, if F(ρ) ∈ Σc then last(ρ)
F(ρ)−−−→ q

for some state q = (l, w), and if F(ρ) = delay, then there
exists some d > 0 such that for all 0 ≤ d′ ≤ d, there exists
some state q such that last(ρ)

d′−−→ q.

A strategy therefore tells each player, given the history of
the game, whether to play one of its actions or to wait
(delay). We consider only memory-less strategies, where
F(ρ) only depends on the current state last(ρ), and which
are sufficient for timed reachability games, Asarin et al.
(1998), and, as we will show, for our parametric extension.

It should be noted that the uncontrollable actions cannot
be relied on to reach the desired state: the controller has
to be able to reach the desired locations by itself.

An example, shown in Figure 2, and a case-study, pre-
sented in Section 5, illustrate the strategy to reach a
desired location.

The restricted behaviour of JGKv when the controller
plays the strategy F against all possible strategies of the
environment is defined by the notion of outcome.
Definition 6. (Outcome). Let G be a PGA, v be a parame-
ter valuation, and F be a strategy over JGKv. The outcome
Outcome(q,F) of F from state q is the subset of finite runs
in Runs(q, JGKv) defined inductively as:

• the run with no action q ∈ Outcome(q,F)

• if ρ ∈ Outcome(q,F) then ρ′ = ρ
δ−−→ q′ ∈

Outcome(q,F) if ρ′ ∈ Runs(q, JGKv) and one of the
following three condition holds:
(1) δ ∈ Σu,
(2) δ ∈ Σc and δ = F(ρ),
(3) δ ∈ R≥0 and ∀0 ≤ δ′ < δ, ∃q′′ ∈ S s.t.

last(ρ)
δ′−−→ q′′ ∧ F(ρ

δ′−−→ q′′) = delay.
• for an infinite run ρ, ρ ∈ Outcome(q,F), if all the

finite prefixes of ρ are in Outcome(q,F).

As we are interested in reachability games, we want to
consider only the runs in the outcome that are “long
enough” to have a chance to reach the goal: a run ρ ∈
Outcome(q,F) is maximal if it is either infinite or there
is no delay d and no state q′ such that ρ′ = ρ

d−−→ q′ ∈
Outcome(q,F) and F(ρ′) ∈ Σc (the only possible actions
from last(ρ) are uncontrollable actions), or ρ is an infinite
run. We note MaxOut(q,F) the set of maximal runs for
state s and strategy F .
We can now define the notion of winning strategy.
Definition 7. (Winning strategy). Let G = (L, l0, X,Σ

c ∪
Σu, P, E, I) be a PGA and goal ∈ L. A strategy F
is winning for the location goal if for all runs ρ ∈
MaxOut(q0,F), where q0 = (l0, w0), there is some state
(goal, w) in ρ.

Similarly, a state s is winning (for the controller) if it
belongs to a run in the outcome of a winning strategy.

In the parametric case, non-existance of a winning strategy
can be solved by the modification of a model, as illustrated
in the case-study, Section 5.
Definition 8. Emptiness problem for parametric timed
reachability game for PGA is the problem of determining
whether the set of parameter valuation, such that there is
a strategy for the controller to reach the desired state, is
empty.

The emptiness problem for PTA is known to be unde-
cidable, Alur and Dill (1994). As PGA extend PTA, the
following theorem stands.
Theorem 1. The emptiness problem for parametric timed
reachability game for PGA is undecidable.

We accordingly extend the subclass of L/U automata of
Hune et al. (2002) to define a subclass of parametric game
automata for which this problem is decidable.

3. L/U REACHABILITY TIMED GAMES

The parameters are partitioned into two sets. The first set
P l contains parameters that are used as lower bounds in
the guards on the controllable transitions and as upper
bounds in the guards of the uncontrollable transitions.
The parameters from the other set, Pu, are used as
upper bounds in the controllable and lower bounds in
the uncontrollable transitions. This is a natural way of
making the controller more powerful by restricting possible
behaviors of the environment (and vice-versa). We assume
that invariants are non-parametric constraints.
Definition 9. (L/U game automata). A L/U game automa-
ton G = (L, l0, X,Σ

c ∪ Σu, P, E, I) is a parametric game
automaton in which:

• the set of parameters P is partitioned as P l and Pu;
• each parameter p ∈ P l occurs only negatively (resp.

positively) in the guards of controllable (resp. uncon-
trollable) transitions;
• each parameter p ∈ Pu occurs only positively (resp.

negatively) in the guards of controllable (resp. uncon-
trollable) transitions;
• for each location l, I(l) contains no parameter.

We will now prove that the existence of a parameter
valuation, such that the controller has a winning strategy,
is decidable for L/U games.

Let (λ, µ) represent a parameter valuation such that λ
applies to lower bound parameters, and µ applies to upper
bound parameters. Let G[(0,∞)] represent the (extended)
parameter valuation of G such that each parameter pui ∈
Pu is set to ∞, and each parameter pli ∈ P l is set to 0. In
this way we obtain a timed game automaton, for which the
existence of a winning strategy is known to be decidable.
Lemma 1. Let G be a L/U game automaton. There exists
a parameter valuation (λ, µ) such that a goal state is
enforceable in JGK(λ,µ) with a strategy F , if and only if
a goal state is enforceable in G[(0,∞)] using the same
strategy F .

Proof. We are searching for the value for upper bound
parameters such that all runs of a given strategy F remain
winning. For lower bound parameters, zero valuation is a



possible solution. Note that each run of a winning strategy
necessarily reaches a goal state in finite time and with a
finite number of discrete actions.

To find the upper bound value, we introduce in the system
a new clock x0 that serves only to measure the time elapsed
from the start. Consider first the untimed runs of F .
Since there is a finite number of edges, there is a finite
number of possible untimed runs. For each of those runs we
measure its sufficient duration in a timed case of G[(0,∞)].
A sufficient duration is obtained when the uncontrollable
transitions are taken as late as possible in each state (which
means just before we should take a supposed controllable
transition in that state) and the controllable transitions
are taken when F says. Since F is winning, each run i will
reach a goal location at some time xi0 = Ti.

We take the maximal value, Tmaxi , for the upper bound
parameters, and 0 for the lower bound parameters. In
this valuation, no matter what the environment does, all
guards will be satisfied so that we can take the controllable
actions at the supposed time. Hence, all runs of the
strategy F remain winning. �

Based on Lemma 1, we can formulate the following theo-
rem.
Theorem 2. The emptiness problem for parametric timed
reachability game for L/U game automata is decidable.

If we think in terms of control it may not be very realistic
to be allowed to forbid uncontrollable transitions using the
values of their parameters. It may actually even seem a bit
far-fetched to parametrize uncontrollable actions at all. A
consequence of the previous result however, is that for the
subclass of L/U game automata with no parameter in the
guards of uncontrollable transitions, the problem of the
emptiness of the set of valuations such that the controller
has a winning strategy is decidable too.

In the context of games however, having a game as
symmetric as possible, including parametrization of guards
makes sense. We will now explore the case in which we
nonetheless impose that the parameter valuations never
set the guards of the uncontrollable transitions to false:
we can restrict their behaviour but not to the point of
uniformly forbidding the transition.

Consequently, all the guards on the uncontrollable tran-
sitions that contain a parameter as a lower (resp. upper)
bound have to contain a constant as a non-strict upper
(resp. lower) bound. Non-strict inequalities are mandatory
so that a clock can take the value equal to the constant as
a single time point in the emptiness test. The guards on
the controllable transitions have no other restriction than
the L/U condition.

We also limit the parametric linear expression in the con-
straints of uncontrollable transitions to just one parame-
ter.
Definition 10. (Restricted L/U game automata). A restricted
L/U game automaton is a L/U game automaton in which
the guards of the uncontrollable transitions are constraints
of the form k ≤ x ≤ Ka or Ka ≤ x ≤ k, where x ∈ X,
a ∈ P , k ∈ Q and K ∈ Z.

We will now establish the decidability of the emptiness
problem for this subclass of L/U game automata. Recall
that the parameters pui ∈ Pu (resp. pli ∈ P l) are used
as the lower (resp. upper) bounds in the guards on the
uncontrollable transitions. Let min(pui ) be the minimal
constant that appears as an upper bound in the guards
containing pui as a lower bound, andmax(pli) be a maximal
constant that appears as a lower bound in the guards con-
taining pli as an upper bound. Let Gr[max,min] represent
a valuation of G that assign 0 (resp.∞) to each lower (resp.
upper) bound parameter that appears only in controllable
transitions, and max(pli) (resp. min(pui )) to every other pli
(resp. pui ) bound parameter.
Lemma 2. Let Gr be a restricted L/U game automaton.
There is a parameter valuation (λ, µ) such that a goal state
is enforceable in JGrK(λ,µ) with a strategy F , if and only
if the goal state is enforceable in Gr[max,min] using the
same strategy F .
Proof. Again we look for the value for upper bound
parameters appearing only in the guards on controllable
transitions. Parameter valuations (λ, µ), that assign values
max(pli) andmin(pui ) to parameters pli and pui , that do not
appear in controllable transition guards, is a solution. For
those parameters, plk and puk , that appear only in guards
of controllable transitions, valuations (λ, µ) assign 0 and
Tmaxi , respectively, where the value Tmaxi is obtained from
Gr[max,min] as in the proof for Lemma 1. �

Similarly, the next theorem follows Lemma 2.
Theorem 3. The emptiness problem for parametric timed
reachability game for restricted L/U game automata is
decidable.

The use of L/U game automata is shown in the case-study,
5, presenting a copper annealing controller.

4. SYMBOLIC STATE-SPACE EXPLORATION

For timed reachability games, a strategy for the controller
is synthesized using the backwards algorithm for solving
timed games, Maler et al. (1995). We now define the
needed operations.

Let X ⊆ Q and a ∈ Σ. The action predecessor
of X, Preda(X) = {(l, w) | ∃(l′, w′) ∈ X, (l, w)

a−−→
(l′, w′)}, is extended for the controllable and uncontrol-
lable action predecessors of X in a timed game automa-
ton: cPred(X) =

⋃
c∈Σc Predc(X) and uPred(X) =⋃

u∈Σu Predu(X), respectively. The action successor is
defined as follows Posta(X) = {(l′, w′) | ∃(l, w) ∈
X, (l, w)

a−−→ (l′, w′)}.
Timed successors and timed predecessors of X are defined
by X 1= {(l, w + d) | (l, w) ∈ X ∧ (w + d) |= I(l)},
X $= {(l, w − d) | (l, w) ∈ X}, respectively.
We also define a safe-timed predecessors operator Predt(X1, X2).
A state (l, w) is in Predt(X1, X2) if from (l, w) we can
reach (l′, w′) ∈ X1 by time elapsing and along the path
from (l, w) to (l′, w′) avoid X2, formally:

Predt(X1, X2) = {q′ ∈ Q | ∃d ∈ R≥0 s.t. q d−→ q′, q′ ∈
X1 and Post[0,d](q) ⊆ Q\X2}, where Post[0,d](q) = {q′ ∈
Q | ∃t ∈ [0, d] s.t. q t−→ q′}



The controllable predecessors operator is defined as follow:

π(X) = Predt(X ∪ cPred(X), uPred(X))

In practice, the analysis of timed automata is based on
the exploration of a finite graph, the simulation graph.
The nodes of the simulation graph are symbolic states
S = (l, Z), where l ∈ L and Z is a subset of a clock-
space RX≥0 defined by a clock constraint, called zone.
Relation −→ defines the edges of the simulation graph as
(l, Z)

a−−→ (l′, Z ′), if there is a transition (l, a, g, R, l′) ∈ E,
and Z ′ is a zone successor by an edge of Z.

4.1 Algorithm for Solving Timed Games Cassez et al.
(2005)

In Cassez et al. (2005), the authors present a symbolic
on-the-fly algorithm for solving timed reachability games,
which is based on the simulation graph and given in
Figure 1. This algorithm consists of a forward computation
of the simulation graph and a backward propagation of
information of winning states (the states from which there
is a strategy to reach the goal location). The Waiting set
represents a list of edges in the simulation graph waiting
to be explored. The Past set contains all symbolic states
that have already been encountered. The winning status
of a symbolic state S is represented by Win[S], a subset
of the symbolic state S which is currently known to be
winning. The dependency set of S, Depend[S], contains a
set of edges (predecessors of S), which must be re-added
to Waiting set when a new information about Win[S] is
obtained. Whenever an edge e = (S, α, S′) is considered
with S′ belonging to Passed, it is added to a dependency
set of S′ in order that a possible future information about
additional winning states of S′ may be back propagated
to S. Since zones are used as underlying data structure,
all the steps of the algorithm are carried out efficiently.
Finally, upon the termination of the algorithm, set Win∗

contains all the winning states of the simulation graph.

4.2 Extension for parameter synthesis

The algorithm of Cassez et al. (2005), being on-the-fly,
stops as soon as the initial state becomes winning. In
the parametric case we are rather interested in computing
all the conditions on parameters such that there exists
a winning strategy to reach the goal state. That is why
our extension of the algorithm removes the condition (of
the while loop) S0 ∈ Win[S0], and it is not on-the-
fly. Also, we have chosen to “parametrize” the algorithm
of Cassez et al. (2005), instead of the plain backwards
fixpoint computation of Maler et al. (1995), because the
added forward exploration pre-constrains the parameters,
with conditions allowing for the reachability of symbolic
states, and therefore makes the backward propagation
more efficient.

Parametric Symbolic States To modify this algorithm so
as to compute parameter valuations, we use an extended
notion of symbolic state in which we have a location and a
parametric zone Z - a polyhedron constraining both clocks
and parameters together, i.e., a set of pairs (w, v) satisfying
a parametric clock constraint.

Initialization:
Passed← {S0} where S0 = {(l0,0)} 1;
Waiting ← {(S0, α, S′) | S′ = Postα(S0) 1};
Win[S0]← S0 ∩ ({Goal} ×RX≥0);

Depend[S0]← ∅;

Main:
while ((Waiting 6= ∅) ∧ (S0 /∈Win[S0])) do
e = (S, α, S′)← pop(Waiting);
if S′ /∈ Passed then
Passed← Passed ∪ {S′};
Depend[S′]← {(S, α, S′)};
Win[S′]← S ∩ ({Goal} ×RX≥0);

Waiting ←Waiting ∪ {(S′, α, S′′) | S′′ = Succα(S′)};
if Win[S′] 6= ∅ then Waiting ←Waiting ∪ {e};
endif

else (* reevaluate *)
Win∗ ← Predt(Win[S] ∪

⋃
S

c−→T
Predc(Win[T ]),⋃
S

u−→T
Predu(T\Win[T ])) ∩ S;

if (Win[S] (Win∗) then
Waiting ←Waiting ∪Depend[S];
Win[S]←Win∗;

endif
Depend[S′]← Depend[S′] ∪ {e};

endif
endwhile

Fig. 1. Symbolic On-the-fly Algorithm for Timed Reacha-
bility Games, Cassez et al. (2005)

The algorithm requires some specific operations on sym-
bolic states. We straightforwardly extend them for this
extended notion of symbolic state.
Definition 11. (timed successors, timed predecessors, reset).
Let Z be a set of valuations (w, v) for the clocks and the
parameters. We define:

• timed successors Z 1= {(w′, v) | ∃t ≥ 0 ∧ ∃(w, v) ∈
Z s.t. w′ = w + t}
• timed predecessors Z $= {(w′, v) | ∃t ≥ 0∧∃(w, v) ∈
Z s.t. w′ = w − t ∧ ∀xi ∈ X, w(xi) ≤ 0}
• reset Z[R] = {(w′, v) | ∃(w, v) ∈ Z s.t. w′ = w[R]}

Note that if the set of parameters is empty, we have exactly
the usual definition of timed successors, timed predecessors
and reset.

Let JZKv define a (non-parametric) zone obtained from a
parametric zone Z for a fixed parameter valuation v.
Lemma 3. For any set of valuations on both clocks and
parameters Z:

JZ 1Kv = JZKv 1 (1)
JZ $Kv = JZKv $ (2)

JZ[R]Kv = JZKv[R] (3)

Here we state only the proof for timed successors, since
the other two are done in the same way.

Proof. We will prove both inclusions:
1. JZ 1Kv ⊆ JZKv 1
Suppose that w′ ∈ JZ 1Kv. Then (w′, v) ∈ Z 1 and
by definition of a timed successor, ∃t ≥ 0 such that
w′ = w + t and (w, v) ∈ Z. Therefore w ∈ JZKv, and
then {w} 1⊆ JZKv 1. Since w′ = w+ t ∈ {w} 1, we finally
have w′ ∈ JZKv.
2. JZKv 1⊆ JZ 1Kv



Suppose that w′ ∈ JZKv 1. Then ∃t ≥ 0 such that w′ = w+
t and w ∈ JZKv, i.e., (w, v) ∈ Z. By definition of a timed
successor, this is exactly (w′, v) ∈ Z 1 or, equivalently,
w′ ∈ JZ 1Kv. �

For the union, intersection and difference set operations
we only state the lemma:
Lemma 4. For any set of valuations on both clocks and
parameters Z1 and Z2:

JZ1 ∪ Z2Kv = JZ1Kv ∪ JZ2Kv (4)

JZ1 ∩ Z2Kv = JZ1Kv ∩ JZ2Kv (5)

JZ1\Z2Kv = JZ1Kv\JZ2Kv (6)

The zone successor by an edge, Z ′ = Succα(Z), in the sim-
ulation graph, is obtained, for a transition (l, a, g, R, l′) ∈
E, by intersecting a source zone Z with the corresponding
transition guard g, reseting clocks in reset set R, letting
time elapse, and intersecting with target location invari-
ants. The result, Z ′, is a zone as well, since zones are closed
under intersection, reset, and timed successor operations.
Definition 12. (Zone successor). A zone successor by an
edge, Z ′ = Succα(Z), is defined as:

Succα(Z) = (Z ∩ g)[R] 1 ∩ I(l′) (7)

Using previous lemmas we can modify the zone successor
operator for the parametric zones.
Lemma 5. For any set of valuations on both clocks and
parameters Z:

JSuccα(Z)Kv = Succα(JZKv) (8)

Proof. Following Lemma 3 and Lemma 4 :
JSuccα(Z)Kv = J(Z ∩ g)[R] 1 ∩ I(l′)Kv = J(Z ∩ g)[R] 1Kv ∩
J I(l′)Kv = J(Z ∩ g)[R]Kv 1 ∩J I(l′)Kv = J(Z ∩ g)Kv[R] 1
∩JInv(l′)Kv = (JZKv∩JgKv)[R] 1 ∩JI(l′)Kv = Succα(JZKv)
�

Now we can modify, in the same manner, the operators
needed for solving timed games.
Lemma 6. For any set on valuation on both clocks and
parameters Z:

JPreda(Z)Kv = Preda(JZKv) (9)

Proof.

We will prove both inclusions:
1. JPreda(Z)Kv ⊆ Preda(JZKv)
Suppose that w ∈ JPreda(Z)Kv. Then (w, v) ∈ Preda(Z)
and by definition of action predecessor, ∃w′ such that
(l, w)

a−−→ (l′, w′) and (w′, v) ∈ Z. Therefore w′ ∈ JZKv,
and then w ∈ Preda(JZKv).
2. Preda(JZKv) ⊆ JPreda(Z)Kv
Suppose that w′ ∈ Preda(JZKv). Then ∃w such that
(l′, w′)

a−−→ (l, w) and w ∈ JZKv, i.e., (w, v) ∈ Z.
By definition of action predecessor, we have (w′, v) ∈
Preda(Z), which gives us w′ ∈ JPreda(Z)Kv. �

The safe-timed predecessors operator can be expressed as
(detailed proof in Cassez et al. (2005)):
Predt(Z1, Z2) = (Z1 $ \Z2 $) ∪ ((Z1 ∩ Z2 $)\Z2) $ (10)

Lemma 7. For any set of valuations on both clocks and
parameters Z1 and Z2:

JPredt(Z1, Z2)Kv = Predt(JZ1Kv, JZ2Kv) (11)

The proof is similar to the one of Lemma 5, and it applies
to a safe-timed predecessor expressed by equation (10).

Now we have all the necessary operations modified for
the parametric symbolic state-space, and we can prove
the correctness of the parametric algorithm. Upon the
termination of our semi-algorithm the following theorem
stands:
Theorem 4. For a PGA G, and a desired state goal, there
exists a winning strategy for a parameter valuation func-
tion v if and only if (l0, w0) ∈ JWin[S0]Kv.
Proof. Win(G) is a set of winning states in G. The
iterative process of the algorithm is given by Win0 = goal
andWinn+1 = π(Winn). We have thatWin0 = JWin0Kv,
because goal = {goal×RX≥0}, and therefore is not affected
by a parameter valuation function.

We apply a timed predecessors operator in a paramet-
ric domain and by Lemma 7 we have: π(JWinnKv) =
Jπ(Winn)Kv = JWin(n+1)Kv. The least fix point obtained
is JWin∗Kv, and JWin∗Kv = JWin(G)Kv (proved in Maler
et al. (1995)).

A state (l, w) is winning if it belongs to JWin(G)Kv, thus
there is a winning strategy for G if (l0, w0) ∈ JWin(G)Kv.
An invariance property of the algorithm for solving timed
games Cassez et al. (2005), WinJSKv ⊆ Win(JGKv), has
been proven in Cassez et al. (2005). We can adapt the
proof for the parametric case and show that JWin[S]Kv ⊆
JWin(G)Kv, for some S = (l, Z), where Z is a paramet-
ric zone. We have that WinJSKv = JWin[S]Kv, because
Win[S] ⊆ S. By the induction hypothesis, we may assume,
in the non-parametric case, that WinJS′Kv ⊆ WinJGKv,
when S

a−−→ S′. Zone Z ′, of the state S′, is the suc-
cessor of the zone Z. Since we have, by Lemma 5, that
Succα(JZKv) = JSuccα(Z)Kv, we may also assume that
JWin[S′]Kv ⊆ JWin[G]Kv. Then, by the monotonicity
of Predt it follows that JWin∗Kv ⊆ J(π(Win(G))Kv ⊆
JWin(G)Kv. Then, the property holds when we update
JWin∗Kv ← JWin[S]Kv.
If S = S0 and (l0, w0) ∈ JWin[S0]Kv then (l0, w0) ∈
JWin∗Kv, hence, there is a strategy to reach a goal state
in JGKv, and it can be extracted from JWin∗Kv. �

The termination of our parametrization of the algorithm
of Cassez et al. (2005) is not guaranteed. In the case of
termination however, if the initial state belongs to a set
of winning states, the correct set of constraints on the
parameters is obtained and a winning strategy can be
extracted from the set of winning states.

Example We consider the same example as in Cassez
et al. (2005), but we parametrize the model in order to
obtain a L/U game automaton (Figure 2). It has one clock
x, controllable (ci) and uncontrollable (ui) actions and two
parameters a and b: a appears positively in the guards of
the controllable transitions c1 and c4 and negatively in
the guard of the uncontrollable transition u1; b appears
positively in the guard of the uncontrollable transition u3.
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Fig. 3. Simulation graph
of PGA of Figure2

The reachability game consists in finding a strategy for
the controller that will eventually ends up in the location
Goal.

We will now explain how the algorithm works. Although
the algorithm of Cassez et al. (2005) is an interleaved
combination of a forward computation and a backward
propagation, for the sake of simplicity, we will start from
a simulation-graph and show the back-propagation of
winning states.

After the computation of a simulation graph, shown in
Figure 3, the backward algorithm starts from the symbolic
winning subset (Goal, x ≥ 2). By a controllable action (c2)
predecessor, we obtain (loc2, x ≥ 2). Computing the timed
predecessors removes the constraint x ≥ 2, and computing
the controllable predecessors adds x ≥ b in order not to
end-up in loc3 by u3. The resulting state is (loc2, x ≥ b).
One of the controllable transitions taking us to loc2 is c4.
A controllable action predecessor (c4) adds a constraint
x ≤ a. A constraint on the parameters derived in this
state is a ≥ b. This contraint is back-propagated to the
preceding states. The (safe) timed predecessors give us the
state (loc4, x ≥ 0 ∧ a ≥ b).
We obtain successively the following sets of winning states:
(loc3, x ≥ 0 ∧ a ≥ b), (loc2, (x ≥ b) ∨ (x ≥ 0 ∧ a ≥ b)) and
(Init, (x ≤ a)∧

(
(x < 1∧a ≥ b)∨x ≥ 1

)
∧
(
(x ≥ b)∨(x ≥ 0∧

a ≥ b)
)
. The last one simplifies to (Init, (x ≤ a ∧ a ≥ b)).

4.3 Winning Strategy

In this section we show how to extract the winning strategy
from the set of winning states.
Theorem 5. If there exists a winning strategy for the
parametric timed game automaton G, then there exists
a memory-less winning strategy for G.

Proof. If there exists a winning strategy for the paramet-
ric timed game automaton then there exists a parameter
valuation v such that this winning strategy exists. For this
parameter valuation v, we obtain a timed game automaton
JGKv, for which the winning strategy obtained by the
algorithm is memory-less, since it suggests to a controller
to either delay or take a controllable action in each state,
Maler et al. (1995). �

Thanks to this theorem, it is easy to extract the memory-
less winning strategy from the set of winning states as
follows: a controllable action predecessor give us the state
from which a corresponding controllable action should be
taken, while timed predecessor further gives us the state
where we should delay.

Let us go back to the previous example. The set of states
(loc2, x ≥ 2) is the controllable action predecessor from
(Goal, x ≥ 2) by action c2. Then the winning strategy is: in
all states (loc2, x ≥ 2) the controllable transition c2 should
be taken immediately, and in (loc2, x ≥ 0), we should
delay until x ≥ 2. The controllable action predecessor from
loc2 takes us to a state (loc4, x ≥ b ∧ x ≤ a), deriving a
constraint a ≥ b. From that state an action c2 should be
taken immediately, and timed predecessor gives the state
(loc4, x ≥ 0, a ≥ b) in which we should delay until x ≥ b.
Since we can not influence the uncontrollable transitions
if we end-up in loc4, controllable transition c4 should be
taken as soon as x ≥ b is satisfied, and with the condition
a ≥ b we are sure that u3 cannot be fired again.

Notice that the order of exploration of the winning states
leads to different winning strategies. As an example, apply-
ing controllable predecessor from (loc2, (x ≥ b) ∨ (x ≥ 0 ∧
a ≥ b)) to Init can lead to both strategies from Init:

(1) doing c1 in all states (Init, x) with x ≤ a;
(2) delaying in all states (Init, x) with x < b and x ≤ a

and doing c1 for all states with x ≥ b and x ≤ a
(recall that b ≤ a).

Thus, a whole winning strategy consists in:

• doing c1 in all states (Init, x) with x ≤ a
• delaying in all states (loc2, x) with x < 2
• doing c2 in all states (loc2, x) with x ≥ 2
• doing c3 in all states (loc3, x)
• delaying in all states (loc4, x) with x < b
• doing c4 in all states (loc4, x) with x ≥ b and x ≤ a

(recall that b ≤ a).

5. CASE STUDY

Let us consider the Copper Annealing Controller depicted
in Figure 4. Annealing, in metallurgy and materials sci-
ence, is a heat treatment wherein a material is altered,
causing changes in its properties such as strength and
hardness. It is a process that produces conditions by
heating to above the critical temperature, maintaining a
suitable temperature, and then cooling.

The parametric timed automaton shown in Figure 4 has
two clocks x and y, two parameters a and b, controllable
(ci) and uncontrollable (ui) actions. Action c1 stops the
heater to maintain the temperature. Actions c2 and c3
start and stop the cooler, respectively. The copper is
observed by sensors that produce uncontrollable actions:
u1 is raised when the copper could be softer: it should be
heated a bit more; u2 is raised when the copper is too hard:
the process must stop; u3 is raised when the copper is soft
enough: it should be cooled as soon as possible; u4 is raised
when the copper is too soft: the process must stop.

The parameter a means that a heating stage is followed
by a maintaining stage whose duration is at least 10 time
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Fig. 4. A Copper Annealing Controller model

units longer than the heating duration. The parameter b
comes from the dynamics of the system. For a copper wire
heated during at least b time units, the values given by
sensors u1 and u4 are relevant and guaranteed during b
time units after the end of the heating stage.

The reachability game consists in finding a strategy, that
will eventually end up in the location Goal. Actually, for
this model, we obtain that there is no winning strategy for
this game since it is impossible to prevent the transition
u1 from the locality Maintain and then the locality Bad1

is always reachable after some loops (c1.u1)∗ followed by
u2.

Then the model of the controller must be corrected. Since
heating a bit more the copper, when it is possible, is not
necessary, we can delete the transition u1 (another way
would consist in controlling the transition from Maintain
to Heat when action u1 occurs by adding a locality and
two controllable actions). Thus, there exists a winning
strategy if and only if (b < 100) ∧ (a > 40) ∧ (a > b)
and the set of winning states obtained by the algorithm is:

• (Heat, (x ≥ 0) ∧ (y ≥ 0) ∧ (y < 100) ∧ (b < 100) ∧
(a > 40) ∧ (a > b)),
• (Maintain, (x ≥ 0) ∧ (y > 50) ∧ (y ≤ 200) ∧ (b ≤ y −
x ≤ a+ 10) ∧ (y − x < 100) ∧ (a > b)),
• (Cool, (x > b) ∧ (0 ≤ y ≤ 300) ∧ (b ≤ y − x ≤ a +

10) ∧ (y − x < 100)),
• (Goal, y ≥ 280∧ (b ≤ y−x ≤ a+10)∧ (y−x < 100)).

Intuitively, the condition b < 100 allows to avoid Bad1

by ensuring that the locality Heat can be left before
the condition y ≥ 100 becomes true; the condition a >
40 allows to avoid Bad2 by ensuring that the locality
Maintain can be reached with y > 50 and the condition
a > b allows to avoid Bad3. A winning strategy extracted
from the winning set consists in:

• delaying in all states (Heat, x, y) with y ≤ 50 or x < b
• doing c1 in all states (Heat, x, y) with y > 50 and
x ≥ b
• delaying in all states (Maintain, x, y) with y < 200
• doing c2 in all states (Maintain, x, y) with y = 200
• delaying in all states (Cool, x, y) with y < 280
• doing c3 in all states (Cool, x, y) with 280 ≤ y

6. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced parametric timed game
automata and their subclasses (L/U and restricted L/U
game automata), for which the emptiness problem of
parametric timed reachability game is decidable. We have
also adapted the algorithm for solving timed games from
Cassez et al. (2005) for the parametric case. When the ini-
tial state is winning, a set of constraints on the parameters
is obtained together with a set of winning states.

Although the subclass of PGA proposed might seem overly
restricted, in practice it is not rare that only one or two
values are parametrized and we search for all their possible
valuations, as shown in our case-study.

Our model can be put in use for deciding timed alter-
nating simulation in parametric domain, which serves to
model real-time controller synthesis problems. Simulation
can also be accompanied by a logical characterization,
Bozzelli et al. (2009): if TGA A is simulated by TGA
B then whenever a formula holds in A, it also holds in
B. In Bulychev et al. (2009), a notion of weak alternating
simulation, that preserves controllability with respect to
ATCTL, between two timed game automata has been
introduced. Problem of checking given notion of simulation
has been reduced to solving timed reachability game and
an on-the-fly algorithm for solving this game is proposed.
In the parametric case, this algorithm could give the con-
straints on the parameters such that the weak alternating
simulation holds between two timed game automata (for
example, an abstract model and its refinement).
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Abstract. Reachability checking is one of the most basic problems
in verification. By solving this problem, one synthesizes a strategy that
dictates the actions to be performed for ensuring that the target location is
reached. In this work, we are interested in synthesizing “robust” strategies
for ensuring reachability of a location in a timed automaton; with “robust”,
we mean that it must still ensure reachability even when the delays
are perturbed by the environment. We model this perturbed semantics
as a game between the controller and its environment, and solve the
parameterized robust reachability problem: we show that the existence
of an upper bound on the perturbations under which there is a strategy
reaching a target location is EXPTIME-complete.

1 Introduction

Timed automata [2] are a timed extension of finite-state automata. They come
with an automata-theoretic framework to design, model, verify and synthesize
systems with timing constraints. One of the most basic problems in timed
automata is the reachability problem: given a timed automaton and a target
location, is there a path that leads to that location? This can be rephrased in the
context of control as follows: is there a strategy that dictates how to choose time
delays and edges to be taken so that a target location is reached? This problem
has been solved long ago [2], and efficient algorithms have then been developed
and implemented [13, 18].

However, the abstract model of timed automata is an idealization of real timed
systems. For instance, we assume in timed automata that strategies can choose
the delays with arbitrary precision. In particular, the delays can be arbitrarily
close to zero (the system is arbitrarily fast), and clock constraints can enforce
exact delays (time can be measured exactly). Although these assumptions are
natural in abstract models, they need to be justified after the design phase. Indeed
the situation is different in real-world systems: digital systems have response
times that may not be negligible, and control software cannot ensure timing
constraints exactly, but only up to some error, caused by clock imprecisions,
measurement errors, and communication delays. A good control software must be
robust, i.e., it must ensure good behavior in spite of small imprecisions [11, 12].

? This work has been partly supported by project ImpRo (ANR-10-BLAN-0317)



In this work, we are interested in the synthesis of robust strategies in timed
automata for reachability objectives, taking into account response times and
imprecisions. We propose to model the problem as a game between a controller
(that will guide the system) and its environment. In our semantics, which is
parameterized by some 0 < δP ≤ δR, the controller chooses to delay an amount
d ≥ δR, and the system delays d′, where d′ is chosen by the environment satisfying
|d − d′| ≤ δP . We say that a given location is robustly reachable if there exist
parameters 0 < δP ≤ δR such that the controller has a winning strategy ensuring
that the location is reached against any strategy of the environment. If δP
and δR are fixed, this can be solved using techniques from control theory [3].
However δP , δR are better seen as parameters here, representing imprecisions in
the implementation of the system (they may depend on the digital platform on
which the system is implemented), and whose values may not be available in the
design phase. To simplify the presentation, but w.l.o.g., we assume in this paper
that δ = δP = δR; our algorithm can easily be adapted to the general case (by
adapting the shrink operator in Section 3).

Note that this semantics was studied in [6] for timed games with fixed pa-
rameters, where the parameterized version was presented as a challenging open
problem. We solve this problem for reachability objectives in timed automata:
we show that deciding the existence of δ > 0, and of a strategy for the controller
so as to ensure reachability of a given location (whatever the imprecision, up
to δ), is EXPTIME-complete. Moreover, if there is a strategy, we can compute a
uniform one, which is parameterized by δ, using shrunk difference bound matrices
(shrunk DBMs) that we introduced recently [17]. In this case, our algorithm
provides a bound δ0 > 0 such that the strategy is correct for all δ ∈ [0, δ0]. Our
strategies also give quantitative information on how perturbations accumulate
or can compensate. Technically, our work extends shrunk DBMs by constraints,
and establishes non-trivial algebraic properties of this data structure (Section 3).
The main result is then obtained by transforming the infinite-state game into a
finite abstraction, which we prove can be used to symbolically compute a winning
strategy, if any (see Section 4).

By lack of space, technical proofs have been omitted; they can be found in [5].

2 Robust reachability in timed automata

2.1 Timed automata and robust reachability

Given a finite set of clocks C, we call valuations the elements of RC≥0. For a subset
R ⊆ C and a valuation v, v[R← 0] is the valuation defined by v[R← 0](x) = v(x)
for x ∈ C \R and v[R← 0](x) = 0 for x ∈ R. Given d ∈ R≥0 and a valuation v,
the valuation v + d is defined by (v + d)(x) = v(x) + d for all x ∈ C. We extend
these operations to sets of valuations in the obvious way. We write 0 for the
valuation that assigns 0 to every clock.

An atomic clock constraint is a formula of the form k � x �′ l or k � x−y �′ l
where x, y ∈ C, k, l ∈ Z∪{−∞,∞} and �,�′ ∈ {<,≤}. A guard is a conjunction
of atomic clock constraints. A valuation v satisfies a guard g, denoted v |= g, if
all constraints are satisfied when each x ∈ C is replaced with v(x).



Definition 1 ([2]). A timed automaton A is a tuple (L, C, `0, E), consisting of
finite sets L of locations, C of clocks, E ⊆ L× ΦC × 2C × L of edges, and where

`0 ∈ L is the initial location. An edge e = (`, g, R, `′) is also written as `
g,R−−→ `′.

Standard semantics of timed automata is usually given as a timed transition
system. To capture robustness, we define the semantics as a game where perturba-
tions in delays are uncontrollable. Given a timed automaton A = (L, C, `0, E) and
δ > 0, we define the perturbation game of A w.r.t. δ as a two-player turn-based
timed game Gδ(A) between players Controller and Perturbator. The state space
of Gδ(A) is partitioned into VC ∪ VP where VC = L × RC≥0 is the set of states

that belong to Controller and VP = L × RC≥0 × R≥0 × E is the set of states
that belong to Perturbator. The initial state is (`0,0) and belongs to Controller.
The transitions are defined as follows: from any state (`, v) ∈ VC , there is a
transition to (`, v, d, e) ∈ VP whenever d ≥ δ, e = (`, g, R, `′) is an edge such that
v + d |= g. Then, from any such state (`, v, d, e) ∈ VP , there is a transition to
(`′, (v + d+ ε)[R← 0]) ∈ VC , for any ε ∈ [−δ, δ].

We assume familiarity with basic notions in game theory, and quickly survey
the main definitions. A run in Gδ(A) is a finite or infinite sequence of consecutive
states starting at (`0,0). It is said maximal if it is infinite or cannot be extended.
A strategy for Controller is a function that assigns to every non-maximal run
ending in some (`, v) ∈ VC , a pair (d, e) where d ≥ δ and e is an edge enabled at
v + d (i.e., there is a transition from (`, v) to (`, v, d, e)). A run ρ is compatible
with a strategy f if for every prefix ρ′ of ρ ending in VC , the next transition
along ρ after ρ′ is given by f . Given a target location `, a strategy f is winning
for the reachability objective defined by ` whenever all maximal runs that are
compatible with f visit `.

Observe that we require at any state (`, v), that Controller should choose a
delay d ≥ δ and an edge e that is enabled after the chosen delay d. The edge
chosen by Controller is always taken but there is no guarantee that the guard
will be satisfied exactly when the transition takes place. In fact, Perturbator can
perturb the delay d chosen by Controller by any amount ε ∈ [−δ, δ], including
those that do not satisfy the guard. Notice that G0(A) corresponds to the standard
(non-robust) semantics of A. We are interested in the following problem.

Problem 1 (Parameterized Robust Reachability). Given a timed automaton A
and a target location `, decide whether there exists δ > 0 such that Controller
has a winning strategy in Gδ(A) for the reachability objective `.

Notice that we are interested in the parameterized problem: δ is not fixed
in advance. For fixed parameter, the problem can be formulated as a usual
timed game, see [6]. Our main result is the decidability of this parameterized
problem. Moreover, if there is a solution, we compute a strategy represented by
parameterized difference-bound matrices where δ is the parameter; the strategy
is thus uniform with respect to δ. In fact, we provide a bound δ0 > 0 such that
the strategy is winning for Controller for any δ ∈ [0, δ0]. These strategies also
provide a quantitative information on how much the perturbation accumulates
(See Fig. 3). The main result of this paper is the following:



Theorem 2. Parameterized robust reachability is EXPTIME-complete.

Checking parameterized robust reachability is different from usual reacha-
bility checking mainly for two reasons. First, in order to reach a given location,
Controller has to choose the delays along a run, so that these perturbations
do not accumulate and block the run. In particular, it shouldn’t play too close
to the borders of the guards (see Fig. 3). Second, due to these uncontrollable
perturbations, some regions that are not reachable in the absence of perturbation
can become reachable (see Fig. 4). So, Controller must also be able to win from
these new regions. The regions that become reachable in our semantics are those
neighboring reachable regions. The characterization of these neighboring regions
is one of the main difficulties in this paper (see Section 3.5).

2.2 Motivating example: robust real-time scheduling

An application of timed automata is the synthesis of schedulers in various
contexts [1]. We show that robust reachability can help providing a better schedu-
lability analysis: we show that schedulers synthesized by standard reachability
analysis may not be robust: even the slightest decrease in task execution times
can result in a large increase in the total time. This is a phenomenon known as
timing anomalies, first identified in [9].

Consider the scheduling problem described in Fig. 1, inspired by [16]. Assume
that we look for a greedy (i.e., work-conserving) scheduler, that will immediately
start executing a task if a machine is free for execution on an available task. What
execution time can guarantee a greedy scheduling policy on this instance? One
can model this problem as a timed automaton, and prove, by classical reachability
analysis, that these tasks can be scheduled using a greedy policy within six time
units. However the scheduler obtained this way may not be robust, as illustrated
in Fig. 1(b). If the duration of task A unexpectedly drops by a small amount
δ > 0, then any greedy scheduler will schedule task B before task C, since the
latter is not ready for execution at time 2− δ. This yields a scheduling of tasks
in 8− δ time units.

0 1 2 3 4 5 6 7 8

M2

M1 A

C B

D E

(a) A has duration 2.

0 1 2 3 4 5 6 7 8

M2

M1 A

B C

D E

(b) A has duration 2− δ.

Fig. 1. Consider tasks A,B,C of duration 2 and D,E of duration 1. Dependences
between tasks are as follows: A → B and C → D,E, meaning e.g. that A must be
completed before B can start. Task A must be executed on machine M1 and tasks
B,C on machine M2. Moreover, task C cannot be scheduled before 2 time units (which
could be modelled using an extra task). Fig. 1(a) shows the optimal greedy schedule for
these tasks under these constraints, while Fig. 1(b) shows the outcome of any greedy
scheduler when the duration of task A is less than 2.



Our robust reachability algorithm is able to capture such phenomena, and
can provide correct and robust schedulers. In fact, it would answer that the tasks
are not schedulable in six time units (with a greedy policy), but only in eight
time units.

2.3 Related work: robustness in timed automata and games

There has been a recent effort to consider imprecisions inherent to real systems
in the theory of timed systems. In particular there has been several attempts to
define convenient notions of robustness for timed automata, see [14] for a survey.

The approach initiated in [15, 8, 7] is the closest to our framework/proposition.
It consists in enlarging all clocks constraints of the automaton by some parame-
ter δ, that is transforming each constraint of the form x ∈ [a, b] into x ∈ [a−δ, b+δ],
and in synthesizing δ > 0 such that all runs of the enlarged automaton satisfy a
given property. This can be reformulated as follows: does there exists some δ > 0
such that whatever Controller and Perturbator do in Gδ(A), a given property
is satisfied. This is therefore the universal counterpart of our formulation of
the parameterized robustness problem. It has been shown that this universal
parameterized robust model-checking is no more difficult (in terms of complexity)
than standard model-checking. This has to be compared with our result, where
complexity goes up from PSPACE to EXPTIME.

Another work that is close to ours is that of [6]. The authors consider general
two-player (concurrent) games with a fixed lower bound on delays, where chosen
delays can be changed by some fixed value δ. It is then shown that winning
strategies can be synthesized: In fact, when δ is fixed, the semantics can simply be
encoded by a usual timed game, and standard algorithms can be applied. Whether
one can synthesize δ > 0 for which the controller has a winning strategy was left
as a challenging open problem. We partially solve this open problem here, under
the assumption that there is a single player with a reachability objective. The
extension to two-player games (with reachability objective) is ongoing work, and
we believe the techniques presented in this paper can be used for that purpose.

Finally, [10] studies a topological and language-based approach to robustness,
where (roughly) a timed word is accepted by the automaton if, and only if, one
of its neighborhoods is accepted. This is not related to our formalization.

3 Shrinking DBMs

3.1 Regions, zones and DBMs

We assume familiarity with the notions of regions and zones (see [4]). For two
regions r and r′, we write rl r′ if r′ is the immediate (strict) time-successor of r.
A zone is a set of clock valuations satisfying a guard.

We write C0 for the set C ∪ {0}. A difference-bound matrix (DBM) is a
|C0| × |C0|-matrix over (R× {<,≤})∪ {(∞, <)}. A DBM M naturally represents
a zone (which we abusively write M as well), defined as the set of valuations v



such that, for all x, y ∈ C0, writing (Mx,y,≺x,y) for the (x, y)-entry of M , it holds
v(x)− v(y) ≺x,y Mx,y (where v(0) = 0). For any DBM M , let G(M) denote the
graph over nodes C0, where the weight of the edge (x, y) ∈ C20 is (Mx,y,≺x,y).
The normalization of M corresponds to assigning to each edge (x, y) the weight
of the shortest path in G(M). We say that M is normalized when it is stable
under normalization.

3.2 Shrinking

Consider the automaton A of Fig. 2, where the goal is to reach `3. If there is
no perturbation or lower bound on the delays between transitions (i.e., δ = 0),
then the states from which Controller can reach location `3 can be computed
backwards. One can reach `3 from location `2 and any state in the zone X =
(x ≤ 2) ∧ (y ≤ 1) ∧ (1 ≤ x− y), shown by (the union of the light and dark) gray
areas on Fig. 3 (left); this is the set of time-predecessors of the corresponding
guard. The set of winning states from location `1 is the zone Y = (x ≤ 2), shown
in Fig. 3 (right), which is simply the set of predecessors of X at `2. When δ > 0
however, the set of winning states at `2 is a “shrinking” of X, shown by the dark
gray area. If the value of the clock x is too close to 2 upon arrival in `2, Controller
will fail to satisfy the guard x = 2 due to the lower bound δ on the delays. Thus,
the winning states from `2 are described by X ∩ (x ≤ 2− δ). Then, this shrinking
is backward propagated to `1: the winning states are Y ∩ (x ≤ 2− 2δ), where we
“shrink” Y by 2δ in order to compensate for a possible perturbation.

An important observation here is that when δ > 0 is small enough, so that
both X ∩ (x ≤ 2− δ) and Y ∩ (x ≤ 2− 2δ) are non-empty, these sets precisely
describe the winning states. Thus, we have a uniform description of the winning
states for “all small enough δ > 0”. We now define shrunk DBMs, a data structure
we introduced in [17], in order to manipulate “shrinkings” of zones.

3.3 Shrunk DBMs

For any interval [a, b], we define the shrinking operator as shrink[a,b](Z) = {v |
v + [a, b] ⊆ Z} for any zone Z. We only use operators shrink[0,δ] and shrink[−δ,δ]
in the sequel. For a zone Z represented as a DBM, shrink[0,δ](Z) is the DBM
Z− δ ·1C×{0} and shrink[−δ,δ](Z) is the DBM Z− δ ·1C×{0}∪{0}×C , for any δ > 0.

Our aim is to handle these DBMs symbolically. For this, we define shrinking
matrices (SM), which are nonnegative integer square matrices with zeroes on
their diagonals. A shrunk DBM is then a pair (M,P ) where M is a DBM, P is a

`1 `2 `3
x≤2

y:=0

x=2
∧1≤x−y

Fig. 2. Automaton A

x

y

x

y

Fig. 3. Winning states in `2 (left) and in `1 (right)



shrinking matrix [17]. The meaning of this pair is that we consider DBMs M−δP
where δ ∈ [0, δ0] for some δ0 > 0. In the sequel, we abusively use “for all small
enough δ > 0” meaning “there exists δ0 > 0 such that for all δ ∈ [0, δ0]”. We also
adopt the following notation: when we write a statement involving a shrunk DBM
(M,P ), we mean that the statement holds for (M−δP ) for all small enough δ > 0.
For instance, (M,P ) = Pretime ((N,Q)) means that M − δP = Pretime ((N − δQ))
for all small enough δ > 0. In the same vein, shrunk DBMs can be re-shrunk,
and we write shrink((M,P )) (resp. shrink+((M,P ))) for the shrunk DBM (N,Q)
such that N − δQ = shrink[−δ,δ](M − δP ) (resp. N − δQ = shrink[0,δ](M − δP ))
for all small enough δ > 0.

It was shown in [17] that when usual operations are applied on shrunk DBMs,
one always obtain shrunk DBMs, whose shrinking matrices can be computed. We
refer to [4, 17] for the formal definitions of these operations.

Lemma 3 ([17]). Let M = f(N1, . . . , Nk) be an equation between normalized
DBMs M,N1, . . . , Nk, using the operators Pretime, UnresetR, ∩, shrink and shrink+

and let P1, . . . , Pk be SMs. Then, there exists a SM Q such that (M,Q) is normal-
ized and (M,Q) = f

(
(N1, P1), . . . , (Nk, Pk)

)
. Moreover, Q and the corresponding

upper bound on δ can be computed in polynomial time.

3.4 Shrinking constraints

x=y=1

y:=0

r1 r3r0

r′0

r2

Fig. 4. Perturbing one transition

Consider a transition of a timed au-
tomaton, as depicted on the figure at
right. From region r0, the game can
reach regions r1, r2, r3, depending on
the move of Perturbator. Therefore, in
order to win, Controller needs a win-
ning strategy from all three regions. One can then inductively look for winning
strategies from these regions; this will generally require shrinking, as exemplified
in Fig. 3. However, not all shrinkings of these regions provide a winning strategy
from r0. In fact, r1 (resp. r3) should not shrink from the right (resp. left) side:
their union should include the shaded area, thus points that are arbitrarily
close to r2. In order to define the shrinkings that are useful to us, we introduce
shrinking constraints.

Definition 4. Let M be a DBM. A shrinking constraint for M is a |C0| ×
|C0| matrix over {0,∞}. A shrinking matrix P is said to respect a shrinking
constraint S if P ≤ S, where the comparison is component-wise. A pair 〈M,S〉
of a DBM and a shrinking constraint is called a constrained DBM.

Shrinking constraints specify which facets of a given zone one is (not) allowed
to shrink (see Fig. 5). A shrinking constraint S for a DBM M is said to be
well if for any SM P ≤ S, (M,P ) is non-empty. A well constrained DBM
is a constrained DBM given with a well shrinking constraint. We say that a
shrinking constraint S for a DBM M is normalized if it is the minimum among
all equivalent shrinking constraints: for any shrinking constraint S′ if for all SMs
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(a) A constrained DBM 〈M,S〉 and its representation (b) A shrinking of 〈M,S〉

Fig. 5. Consider a zone defined by 0 < x < 3, 0 < y < 3, and 0 < x − y < 2. Let
the shrinking constraint S be defined by S0,y = 0, Sx,y = 0, and Sz,z′ =∞ for other
components. The resulting 〈M,S〉 is depicted on the left, as a matrix (where, for
convenience, we merged both matrices into a single one) and as a constrained zone
(where a thick segment is drawn for any boundary that is not “shrinkable”, i.e., with
Sz,z′ = 0). On the right, the dark gray area represents a shrinking of M that satisfies S.

P , P ≤ S ⇔ P ≤ S′, then S ≤ S′. One can show that any shrinking constraint
can be made normalized, by a procedure similar to the normalization of DBMs.
Lemma 5 shows that shrinking constraints can be propagated along operations
on DBMs. This is illustrated in Fig. 6.

Lemma 5. Let M,N,N ′ be normalized non-empty DBMs.

1. Assume that M = Pretime (N), M = N ∩N ′, or M = UnresetR(N). Then, for
any normalized well shrinking constraint S for M , there exists a well shrinking
constraint S′ for N such that for any SM Q, the following holds: Q ≤ S′ iff
the SM P s.t. (M,P ) = Pretime ((N,Q)) (respectively, (M,P ) = (N,Q) ∩N ′
or (M,P ) = UnresetR((N,Q))) satisfies P ≤ S.

2. Assume that M = N ∩N ′. For any well shrinking constraint S for N , there
exists a shrinking constraint S′ for M such that for any SM Q, the following
holds: Q ≤ S′ iff a SM P ≤ S s.t. (N,P ) ∩ N ′ ⊆ (M,Q). Moreover, if
(N,P ) ∩N ′ 6= ∅ for all SMs P ≤ S, then S′ is well.

Let us comment on Fig. 6(a), and how it can be used for our purpose. Assume
there is an edge guarded by N (the whole gray area in the right) without resets.
In the non-robust setting, this guard can be reached from any point of M (the
whole gray area in the left). If we have a shrinking constraint S on M , and we

= Pretime







(a) (M,P ) = Pretime ((N,Q))

= ∩

(b) (M,P ) = (N,Q) ∩N ′

Fig. 6. The figures illustrate the first item in Lemma 5. In each case, DBMs M , N and
N ′ are fixed and satisfy the “unshrunk” equation. The thick plain segments represent
the fixed shrinking constraint S. The dashed segments represent resulting constraint S′.
For any SM Q, we have Q ≤ S′ iff there is an SM P ≤ S that satisfies the equation.



want to synthesize a winning strategy from a shrinking of M satisfying S, then
Lemma 5 gives the shrinking constraint S′ for N , with the following property:
given any shrinking (N,Q), we can find P ≤ S with (M,P ) = Pretime ((N,Q))
(hence, we can delay into (N,Q)), if, and only if Q satisfies Q ≤ S′. The problem
is now “reduced” to finding a winning strategy from 〈N,S′〉. However, forward-
propagating these shrinking constraints is not always that easy. We also need to
deal with resets, with the fact that Controller has to choose a delay greater than
δ > 0, and also with the case where there are several edges leaving a location.
This is the aim of the following developments.

3.5 Neighborhoods

We now consider constrained regions, which are constrained DBMs in which the
DBM represents a region. Fig. 4 shows that if Controller plays to a region, then
Perturbator can reach some of the surrounding regions, shown by the arrows. To
characterize these, we define the set of neighboring regions of 〈r, S〉 as,

Nr,S =
{
r′
∣∣∣ r′ l∗ r or r l+ r′, and ∀Q ≤ S. r′ ∩ enlarge((r,Q)) 6= ∅

}

where enlarge((r,Q)) is the shrunk DBM (M,P ) such that v+[−δ, δ] ⊆M−δP for
every v ∈ r− δQ. This is the set of regions that have “distance” at most δ to any
shrinking of the constrained region (r, S). We write neighbor〈r, S〉 =

⋃
r′∈Nr,S

r′.

Lemma 6 (Neighborhood). Let 〈r, S〉 be a well constrained region. Then
neighbor〈r, S〉 is a zone. If N is the corresponding normalized DBM, there exists
a well shrinking constraint S′ such that for every SM Q, Q ≤ S′ iff the SM P
defined by (r, P ) = r ∩ shrink((N,Q)), satisfies P ≤ S. The pair 〈N,S′〉 is the
constrained neighborhood of 〈r, S〉, and it can be computed in polynomial time.

Constrained neighborhoods are illustrated in Fig. 7.

neighbor





 = neighbor





 =

Fig. 7. Constrained neighborhood of two constrained regions. Notice that inside any
shrinking of the constrained region, there is always a valuation such that a perturbation
of [−δ, δ] moves the valuation to any region of the neighborhood.

3.6 Two crucial properties for the construction of the abstraction

The following lemma characterizes, given a constrained region 〈r, S〉, the set of
constrained regions 〈r′, Sr′〉 such that any shrunk region satisying 〈r′, Sr′〉 can
be reached by delaying from some shrunk region satisfying 〈r, S〉.



Lemma 7. Let 〈r, S〉 be a well constrained region, and r′ be a region such that
r l∗ r′. Then the following properties are equivalent:

1. there exists a well shrinking constraint S′ (which can be computed in poly-
nomial time) such that for every SM Q, Q ≤ S′ iff the SM P such that
(r, P ) = r ∩ shrink+(Pretime ((r′, Q))), satisfies P ≤ S;

2. neighbor〈r, S〉 ⊆ Pretime (r′);

Note that this lemma may not hold for all r′ with r l r′. Consider the
constrained region 〈r, S〉 on the right of Fig. 7, and let r′ be the first triangle
region above r: any valuation arbitrarily close to the thick segments will be in
r− δP for any P ≤ S, but it can only reach r′ by delaying less than δ time units.

Lemma 8. Let 〈r, S〉 be a well constrained region, and let R ⊆ C. Let N be the
set of neighboring regions of 〈r, S〉, and N ′ = {r′[R← 0] | r′ ∈ N}. Then, there
exist well shrinking constraints Sr′′ for all r′′ ∈ N ′ such that for any (Qr′′)r′′∈N ′ ,
we have Qr′′ ≤ Sr′′ for all r′′ ∈ N ′ iff there exists P ≤ S such that

(r, P ) ⊆ r ∩ shrink(
⋃

r′∈N
(r′ ∩ UnresetR((r′′, Qr′′)))).

with r′′ = r′[R← 0]. Moreover, all 〈r′′, Sr′′〉 can be computed in polynomial time.

This lemma gives for instance the shrinking constraints that should be satisfied
in r1, r2 and r3, in Fig. 4, once shrinking constraint in r′0 is known. In this case, the
constraint in r′0 is 0 everywhere since it is a punctual region. The neighborhood N
of r′0 is composed of r′0 and two extra regions (defined by (0 < x < 1) ∧ (x = y)
and (1 < x < 2) ∧ (x = y)). If there are shrinkings of regions r1, r2, r3 satisfying
the corresponding shrinking constraints (given in the lemma), and from which
Controller wins, then one can derive a shrinking of r′0, satisfying its constraint,
and from which Controller wins. In the next section, we define the game RG(A)
following this idea, and explain how it captures the game semantics for robustness.

4 A finite game abstraction

Let A = (L, C, `0, E) be a timed automaton. We define a finite turn-based game
RG(A) on a graph whose nodes are of two sorts: square nodes labelled by (`, r, Sr),
where ` is a location, r a region, Sr is a well shrinking constraint for r; diamond
nodes labelled similarly by (`, r, Sr, e) where moreover e is an edge leaving `.
Square nodes belong to Controller, while diamond nodes belong to Perturbator.
Transitions are defined as follows:

(a) From each square node (`, r, Sr), for any edge e = (`, g, R, `′) of A, there is a
transition to the diamond node (`, r′, Sr′ , e) if the following conditions hold:

(i) r l∗ r′ and r′ ⊆ g;
(ii) Sr′ is such that for all SMs Q, Q ≤ Sr′ iff there exists P ≤ Sr with

(r, P ) = r ∩ shrink+(Pretime ((r′, Q)))



(b) From each diamond node (`, r, Sr, e), where e = (`, g, R, `′) is an edge of A,
writing N for the set of regions in the neighborhood of (r, Sr) and N ′ =
{r′[R ← 0] | r′ ∈ N}, there are transitions to all square nodes (`′, r′′, Sr′′)
with r′′ ∈ N ′, and (Sr′′)r′′∈N ′ are such that for all SMs (Qr′′)r′′∈N ′ , it holds
Qr′′ ≤ Sr′′ for every r′′ ∈ N ′ iff there exists P ≤ Sr such that

(r, P ) ⊆ r∩shrink(
⋃

r′∈N
(r′∩UnresetR((r′′, Qr′′))) (where r′′ = r′[R← 0])

Intuitively, the transitions from the square nodes are the decisions of Controller.
In fact, it has to select a delay and a transition whose guard is satisfied. Then
Perturbator can choose any region in the neighborhood of the current region,
and, after reset, this determines the next state.

Note that RG(A) can be computed, thanks to Lemmas 7 and 8, and has
exponential-size. Observe also that RG(A) is constructed in a forward manner:
we start by the initial constrained region (i.e. the region of valuation 0 with the
zero matrix as shrinking constraint), and compute its successors in RG(A). Then,
if Controller has a winning strategy in RG(A), we construct a winning strategy
for Gδ(A) by a backward traversal of RG(A), using Lemmas 7 and 8. Thus, we
construct RG(A) by propagating shrinking constraints forward, but later do a
backward traversal in it. The correctness of the construction is stated as follows.

Proposition 9. Controller has a winning strategy in RG(A) if, and only if there
exists δ0 > 0 such that Controller wins Gδ(A) for all δ ∈ [0, δ0].

Note that as we compute a winning strategy for Controller (if any) by
Proposition 9, we can also compute a corresponding δ0. One can show, by a
rough estimation, that 1/δ0 is at worst doubly exponential in the size of A.

Let us point out an interesting intermediary result of the proof: given a
winning strategy for Perturbator in RG(A), we show that there is a winning
strategy for Perturbator in Gδ(A) that keeps the compatible runs close to borders
of regions where shrinking constraints are 0.

y=1

y:=0

y=
1∧z
≤2

y=1∧z>2

z=3

z=3

Fig. 8. Conjunction

The upper bound of Theorem 2 is a conse-
quence of the above proposition, since RG(A)
has exponential size and finite reachability
games can be solved in time polynomial in the
size of the game. The EXPTIME lower bound
is obtained by simulating an alternating-time
linear-bounded Turing machine. Simulation
of the transitions is rather standard in timed-
automata literature (though we must be care-
ful here as delays can be perturbed). The
difficult point is to simulate conjunctions: this is achieved using the module
of Fig. 8. From the initial state, Controller has no choice but to play the first
transition when y = 1. Perturbator can either anticipate or delay this transition,
which will determine which of the dashed or dotted transitions is available next.
This way, Perturbator decides by which end the module is exited.



5 Conclusion

We considered a game-based approach to robust reachability in timed automata.
We proved that robust schedulers for reachability objectives can be synthesized,
and that the existence of such a scheduler is EXPTIME-complete (hence harder
than classical reachability [2]). We are currently working on a zone-based version
of the algorithm, and on extending the techniques of this paper to the synthesis
of robust controllers in timed games, which will answer an open problem posed
in [6] for reachability objectives. Natural further works also include the synthesis
of robust schedulers for safety objectives. This seems really challenging, and the
abstraction we have built here is not correct in this case (it requires at least a
notion of profitable cycles à la [7]). Another interesting direction for future work
is to assume imprecisions are probabilistic, that is, once Controller has chosen a
delay d, the real delay is chosen in a stochastic way in the interval [d− δ, d+ δ].
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