Concurrent semantics for timed distributed
systems
Livrable du projet ANR ImpRo (ANR-2010-BLAN-0317)

Sandie Balaguer, Thomas Chatain, and Stefan Haar
INRIA & LSV (CNRS & ENS Cachan)

This document defines a formalism called timed traces that aims at describing
the concurrent semantics of various models for real-time distributed systems.
This formalism, based on partial orders, provides an alternative to timed words
and takes the distribution of actions into account.

To demonstrate the interest of timed traces, we equip two popular formalisms,
1-bounded time Petri nets (TPN) and networks of timed automata (NTA), with
a concurrent sematics in terms of timed traces and we propose a translation
from TPN to NTA. As opposed to previous approaches, our translation preserves
timed traces rather than only timed words.

This work shows that, even in a real-time setting where the events look more
or less totally ordered by time, partial orders can be relevant and represent the
structural dependencies between events that come from the synchronizations and
the locality of actions.

The document is a preliminary version of

Sandie Balaguer, Thomas Chatain, and Stefan Haar. A concurrency-
preserving translation from time Petri nets to networks of timed automata.

Formal Methods in System Design, 40(3):330-355, 2012.

A Concurrency-Preserving Translation
from Time Petri Nets to Networks of Timed Automata

Sandie Balaguer- Thomas Chatain - Stefan Haar

Abstract Several formalisms to model distributed real-time systeoexist in the litera-
ture. This naturally induces a need to compare their expessss and to translate mod-
els from one formalism to another when possible. The firsnBdrcomparisons of the ex-
pressiveness of these models focused on the preservattbe sequential behavior of the
models, using notions like timed language equivalencenoedi bisimilarity. They do not
consider preservation of concurrency. In this paper we dédifimed traces as a partial order
representation of executions of our models for real-tingridiuted systems. Timed traces
provide an alternative to timed words, and take the distidbuof actions into account.
We propose a translation between two popular formalismisdéscribe timed concurrent
systems: 1-bounded time Petri nets (TPN) and networks cédimutomata (NTA). Our
translation preserves the distribution of actions, thavésrequire that if the TPN repre-
sents the product of several components (called proceseen)each process should have
its counterpart as one timed automaton in the resulting NTA.

Keywords concurrency timed traces time Petri nets networks of timed automata
concurrency-preserving translation

S. Balaguer

LSV, ENS Cachan & CNRS, 61 avenue deBdent Wilson, 94230 Cachan, France
and INRIA Saclay -Hle-de-France, Orsay, France

E-mail: balaguer@lsv.ens-cachan.fr

T. Chatain
LSV, ENS Cachan & CNRS, 61 avenue d@efident Wilson, 94230 Cachan, France
E-mail: chatain@lsv.ens-cachan.fr

S. Haar

LSV, ENS Cachan & CNRS, 61 avenue d@egident Wilson, 94230 Cachan, France
and INRIA Saclay -Hle-de-France, Orsay, France

E-mail: haar@Isv.ens-cachan.fr

2 S. Balaguer, T. Chatain and S. Haar

1 Introduction

Techniques that aim at improving reliability and safety ofeamated systems have dramat-
ically improved during the last thirty years (synthesisdelechecking, test, etc.). Studying
a complex system generally requires the use of multiplenigcies and tools. Consequently
the system must be translated from one formalism to anofier.difficulty is to show
that the different representations are equivalent. Thikkyooposes a translation between
two popular formalisms that describe timed concurrentesyst 1-bounded time Petri nets
(TPN) [25 and networks of timed automata (NTAJ][These formalisms have different
histories but were both designed to model real-time, thsted systems. Moreover they
both handle urgency, which is a key feature without which tmeal-time systems cannot
be modeled correctly.

Both formalisms are supported by a variety of simulation aedfication tools, like
UPPAAL [21], EPsILON [11] and KroNOS [8] for (networks of) timed automata, and
RomMEO [15], TINA [7] and CPN TooLs[19] for time Petri nets.

Because these tools have their specificities, several &welsften used for the design,
analysis or verification of a single system. This usuallyurezs to model the system in
several formalisms, typically TPN and NTA. Therefore salVé&ransformations have been
proposed; we observe the following. (i) The transformatiomainly rely on natural structural
equivalences between the basic elements of the formallBonsnstance, the location of an
automaton corresponds to a place of a Petri net, a transifianPetri net corresponds to
a tuple of synchronized transitions of an NTA, and the timetgrival associated with a
transition of a Petri net becomes a pair (guard, invariang) imed automaton. (ii) Beyond
these natural equivalences, limitations for more gene@ets are not clear. Indeed, the
natural transformations tend to preserve concurrencywBen the transformations become
less immediate, one uses tricks that unfortunately destvagurrency.

Therefore itis not surprising that the first works about falcomparisons of the expres-
siveness of these models do not consider preservation cloc@mcy. In 0], a structural
transformation from TPN to NTA is defined. This transforroatbuilds a timed automaton
per transition of the TPN and preserves weak timed bisirtyldn the other direction,q]
shows that there exist timed automata that are not weakbadtiomnsimilar to any TPN. Ind],
the authors propose a translation from bounded timed-drcrieés (another variant of Petri
nets extended with time) to NTA, based on the decomposifitmemet in sequential compo-
nents that communicate through handshake synchronizgiiothe UPPAAL style). In 27],
another timed extension of Petri nets with intervals on ercensidered. In order to guaran-
tee compositional properties, their Petri nets are tréedho timed automata enriched with
an ad-hoc mechanism of deadlines, which hides the comntionsabetween components
that would be necessary to implement it.

Here we focus on the preservation of concurrency. Since BBiNs and NTA were
designed to model distributed systems, we consider thabmlgttheir sequential behavior
as timed transition systems is relevant, but also theiridiged behavior. This implies that,
if a model represents a system that involves several conmp@rt@en the model should be
structured so that it is easy to identify each componentaarahsformation should preserve
this structure.

Our motivation for this is twofold: first, a transformatios imuch more readable if it
preserves the components and yields a model that is clotlee teal system; second, pre-
serving the components avoids combinatorial explosiohefize of the model and makes
it possible to use modular analysis based on the componemargal order techniques,
which are crucial when one analyzes large distributed syste

Concurrency-Preserving Translation from TPN to NTA 3

In order to formalize preservation of concurrency in theteghof real-time models, we
take into account the distribution of actions over a set o€psses, each process representing
a component which has its own alphabet of actions. When aanabtlongs to several
processes, it represents a synchronization, otherwisaitdacal action.

In the untimed context, Mazurkiewicz tracesq] are defined using an independence
relation that arises naturally from this distribution otians. However, in the presence of
time such relation would have less nice properties becawgseaetions that occur in two to-
tally independent processes may be ordered by their ocoeriane. These orders induced
by causality and by time stamping of events appearl]JnWwhere timed MSCs (Message
Sequence Charts) and MSCs with timing constraints are deresd, and inJ] where the
authors consider distributed timed automata with indepatigd evolving clocks. In24,26],
an independence relation is defined among the actions ofeddtantomaton using a dia-
mond property that takes time into account. This relatiomsisd to define partial order re-
duction techniques that avoid the combinatorial explogidhe analysis of timed automata.
However, the time constraints make this independencearlaéry restrictive. Therefore it
cannot be seen as a general concurrency relation for tingdrayg.

In this article, we define a notion of timed traces as a padider representation of
executions of our models for real-time distributed systentey generalize timed words
and represent the executions of either an NTA or a TPN on wpickesses have been
identified. Then we define a structural transformation frebolinded TPNs to NTA which
preserves timed traces. That is we require that if the TPkesgmts the product of several
components (called processes), then each process hasntegeart as one timed automaton
in the resulting NTA and the distribution of actions among tomponents is preserved.

To this end, we first discuss how to identify processes in a.THi¢ structure of each
process gives a natural transformation into an automatoen We focus on the timed con-
straints and show how to equip the automata with clocks,dguand invariants so that the
resulting NTA preserves the timed traces. We show that thissformation is possible in
general only if we allow the automata to read the states af tieéghbors, which we inter-
pret as a dependency between the processes, that was hiditenTiPN. Notice also that
the decomposition of a PN into components is not always plessHowever, we believe
that most PNs that model real systems are decomposablealtdsknown (seell3]) that
well-formed free-choice nets are decomposable in stroogiynected components.

This paper is organized as follows. Secti®presents centralized timed systems, and
Section3 presents distributed timed systems and introduces tinaeg gt In Sectiod, we
recall how to identify the processes in a Petri net. Lastlfséctions, we propose a transla-
tion from a 1-bounded TPN to a timed bisimilar NTA with the sadistribution of actions.
Finally we discuss extensions and limitations of our tratigh, in particular we define con-
ditions under which our translation can be adapted to awsiltgushared clocks. This article
is a revision and extension of the conference version ofitbik [4].

2 Centralized timed systems

Timed automata are a popular formalism for modeling ceizgdltimed systems. Their runs
can be described by timed words, and their semantics candressed as a timed transition
system.

4 S. Balaguer, T. Chatain and S. Haar

2.1 Basics

Definition 1 (Timed Words) A timed word wover a finite alphabeX is a finite or infinite
sequence = (ap,dop)(az,ds)...(an,dn)... s.t. foreach > 0,3 € >, d; € R>p andd;;+1 > d;
(thed;’s are absolute dates). A

A timed languagever 2 is a set of timed words ovel.

Definition 2 (Timed Transition System) A timed transition systenfTTS) is a tuple
(S 0,2,—) where

— Sis a set of states,

— 5 € Sis the initial state,

— 2 is afinite set of actions disjoint frofR>o,

— — CSx (ZUR>p) x Sis a set of edges. A

If (s,e,8) € —, we also writes > &,
An initial pathof a TTS is a possibly infinite sequence of transitigns: 59 Xl % i

5 3 38 The timed wordw = (ao,do) ... (@n,dn)... is said to beacceptedoy the
TTS if there exists an initial pathb such thatl = 3_, 7 for everyi > 0.

Definition 3 (Timed Bisimulation) Let Ty = (51,80, %,—1) and T2 = ($,9, £, —2) be
two TTS and~ be a binary relation ove$; x . We writes; ~ s, for (s1,9) € ~. ~ is a
timed bisimulatiorrelation betweei; andTs if:

— if 5y 31 8] with ae SURsp ands; ~ s, thends, 3, S, such thass, ~ s,; conversely
if 5, -3, with ae S UR>p ands; ~ s, thends; 31 8, such thas, ~ s, A

2.2 Timed automata

The set#(C) of clock constraints over the set of clocksis defined by the abstract syn-
taxg::=xxk|gAg, wherex e C, ke N and € {<,<,=,>,>}. Invariants are clock
constraints of the forny::=x<k|x<k|gAg.

Definition 4 (Timed automaton [3]) A timed automaton (TA) is a tupleA =
(L, %,C, 2 E,Inv) where

— L is a finite set ofocations

— ¢ € L is theinitial location,

Cis a finite set otlocks

2 is afinite set ofctions

— ECLx%(C)x 3 x2 xLis aset oedges

Inv: L — %(C) assignsnvariantsto locations. A

If (¢,9,a,r,¢) € E, we also write/ 98 ¢, For such an edgée, is called thesource
location,g theguard, a theaction r the set of clocks to beesetand?’ thetargetlocation.

Concurrency-Preserving Translation from TPN to NTA 5

b, {x}

@
a c c d
{x} {v}

-

Fig. 1 A network of timed automata (initial locations are indicatgddm arrow that is not rooted in any
location)

SemanticsWe denote by(/,v) a stateof a TA, where? € L is the current location and
v:C — Rg is aclock valuatiorthat maps each clock to its current value. The paw) is a
legal state for the timed automaton only if the valuatiwatisfies the invariant of locatidh
denoted by = Inv(¢). The initial state i/, Vo), wherevp maps each clock to 0. For each
set of clocksr C C, the valuationv[r] is defined by[r|(x) = 0 if x € r andV[r](x) = v(X)
otherwise. For eacth € R>, the valuatiorv+d is defined by(v+d)(x) = v(x) +d for each
xeC.

Let A= (L,%,C,2,E,Inv) be a TA. We defineT (A), the TTS generated bj as
T(A) = (S %,2,—), such that

- S={(l,v) eLx(C—Rxpo) |VEInv()},

- S = (4o, Vo),

— — € Sx (ZUR>p) x Sis defined by
— Action step:(¢,v) 2 (¢, V) iff 3¢ 225 ¢) € E, vI= g,V = V[r] andV & Inv(¢),
— Time delay stepvd € Rxq, (£,v) & (¢,v+d) iff vd’ € [0,d],v+d’ = Inv(?).

A run of a TA Ais a path inT (A) starting insg where time delay steps and action steps
alternate. A timed word iaccepted by Af it is accepted byT (A).

3 Distributed timed systems

Distributed timed systems are systems with several comysr(er processes) that may
perform local actions or synchronize with each other. Wausoon two models for such
systems: networks of timed automata and one of the varidri®eoi nets extended with
time, called time Petri nets, introduced 26]. We first present the sequential semantics of
these systems, as it is usually done. Then we define a pandied semantics which reflects
the distribution of actions over the processes, as an aligaito timed words.

3.1 Networks of timed automata

A network of timed automata (NTA) is a parallel compositioh o timed automata
(A1,...,An), with Ay = (Li,éio,Ci,Zi,Ei,lnvi) (see Fig.1). We denote byC = J;G; the set
of clocks and> = | J; Zj the set of action names. Clocks and action names may be shared

6 S. Balaguer, T. Chatain and S. Haar

Sequential semanticfhe set of synchronizationSync is defined as the set of
(e1,...,en) € (ExU{o}) x --- x (EnU{e})\ {(e,...,®)} such that the same labelis at-
tached to all the edges # e, and for all i such thate = e, a ¢ 3. For any
s=(ey,...,en) €Sync ls = {i € [1..n] | & # ¢} denotes the indices of the automata that
are concerned by the synchronization.

We denote b;(Z, v) a state of an NTA, wheré ¢ Ly x --- x Ly is the vector of current
locations and/is a clock valuation. The semantics of the N/, . .., A,) can be described
as the timed transition syste(8, sp, ~, —) such that

- S={(l,v) e (L1 x---xLn) x (C—=Rx0) |[VE AiInVi(4i)},
— 59 = (£o, Vo) with ¥x € C,vg(x) =0,
— — € Sx (ZUR>p) x Sis defined by
— Action step:(7,v) 3 (7,V) iff
e Js=(eq,...,en) € Syncs.t.Vie [1.n],if a¢ %,/ = {; ande = e,
otherwises = (4;,g,a,ri, /)
o VI= Niei 01, V = V[Uiei rils andv' = Ajep n Invi (4)
— Time delay stepvd € Rxo, (¢,v) - (¢,v+d) iff vd' € [0,d],v+d" = A Invi(4)).

Local vs extended synta¥Ve call local syntaxthe common syntax in which clocks are
local, i.e. every clock can be read and reset by only one aattmm Thus, invariants are of
the formg::=x <k|x< k| gAg, as defined in Subsecti¢h2

We define arextended syntafthat will be used in Secg) in which clocks can be read
by any automaton, and invariants are of the fam=x<k|x<k|gAg|¢|gVag. The
two last constructors are not standard. In an invariafitis‘true if ¢ is a current location,
that is, invariants are evaluated according to the statbeofystem (current locations and
valuation) and not only to the valuation. We denoted{C, L) the set of such constraints
over the set of clock€ and the set of locations.

Other operators that do not extend the expressivenegscah be used, such as the
negation of a location=¢; = Ve, (43 ¢, the implication:! = (x < k) = =¢V (x < k), and
the minimum of a set of clocks: min (x) < k= Vg (X <Kk).

This extended syntax does not change the expressivenesdiversequential seman-
tics. But we will show in Sect5 that, if we consider thelistributedtimed language (see
SubsectiorB.3), the extended syntax enhances the expressiveness of fhe NT

Although it is not generally allowed to share active locasion timed automata, there
are several variants of timed automata that can handle stedtare. For example, timed
automata can be extended with shared variables a®nhL [21] and a boolean variable
can be associated with each location and used to denote aviathlocation is enabled.
In [20], the authors propose another variant, Timed Cooperatungriata, a parallel com-
position of sequential automata where the edges can beeagarith timing constraints of
the formq = 71 (locationq is enabled for time units),q[t] (locationq is enabled for at least
T time units),q{ 7} (locationq s disabled for at most time units) or boolean combinations
of these terms.

3.2 Time Petri nets

Definition 5 (Petri Net) A Petri netis a tuple(P,T,F,Mp) whereP andT are two disjoint
sets, called set gblacesand set oftransitions F C (P x T) U (T x P) is the set ofarcs

Concurrency-Preserving Translation from TPN to NTA 7

@\
@\?}*@7

pAO

Fig. 2 A time Petri net (places are represented by circles and transiare represented by boxes)

connecting places and transitions such tftat T,3p € P s.t. (p,t) € F, andMg C P is the
initial marking. A

Definition 6 (Time Petri Net [25]) A time Petri net(TPN) is a tuple(P, T, F, Mo, efd, Ifd)
where(P, T,F,Mp) is a Petri net andfd: T — R andlfd : T — RU{} associate aparliest
firing delay efdt) and alatest firing delay Ifdt) with each transition. A

Forx e PUT, we define the pre-set afas*x = {y| (y,x) € F} and the post-set ofas
x* ={y|(x,y) € F}. Given a seX C PUT, we define the pre-set and the post-seXais
*X = Uyex *XandX® = Uyex X°.

Sequential semanticA marking M of a TPN is a subset d? (we consider 1-bounded
TPNs). A state of a TPN is given b, v) whereM is a marking and’ : T — R>p is a
valuation such that each valuwgt) is the elapsed time since the last time transitiavas
enabled.vg is the initial valuation withvt € T,vp(t) = 0. A transitiont is enabledin a
markingM iff *t C M. For 1-bounded TPNs, if a transitions enabled in a reachable state
(M,v), thent*N(M*t) =0

When defining newly enabled transitions, we use the most camgemantics, called
intermediate semantic§]f t’ is newly enabledy the firing oft from markingM if it is
not enabled by/\ *t (intermediate marking) and it is enabled iy = (M\ *t) Ut® (reached
marking). Formally, we define the predicdtenabledt’,M,t) as follows:

tenabledt’,M,t) <= (*t' C M)A (*t' Z (M\°t))

Lastly, for the firing delays of a transition, we use gi®ng semanticg can fire if it is
enabled and/(t) > efd(t), andt has to firebeforev(t) overtakedfd(t).

With these rules, we are able to define the semantics of a TRNTAscalled marking
TA and introduced in16]. Indeed, the marking TA of the TPRP, T,F, Mo, efd Ifd) is the
TA (L, 4,C, 2, E,Inv) such that

— L C 2P is the set of reachable markings,

— o = Mo,

— each clockk € C is associated with one transition

-2=T,

- E={(M,g,t,r, M) | M = (M*t)Ut*,g=x > efd(t),r = {x/ | tenabledt’,M,t)} },
— for each reachable markind € L, Inv(M) = Auicy (% < Ifd(t)).

8 S. Balaguer, T. Chatain and S. Haar

J
xaéwAXCSZ@

Xa=>0

a
{xa}

Y

MSZA&SZ@

Xg =2 X4 > 2
d d

Fig. 3 The semantics of the TPN of Fig.as a timed automaton

i 17
(a,3)e (d,3) s
(b,4)e

(c.8)
(d,11)e

Fig. 4 A timed trace representing a run of the NTA of Fify.(one possible associated timed word is
(d,3)(a,3)(b,4)(c,8)(d,11))

A timed word is accepted by a TPN iff it is accepted by its magkTA. Figure3 shows the
marking TA of the TPN presented in Fig. We note that concurrency is not explicit in this
automaton, as it naturally gives the sequential semantitiseoTPN, even though we can
observe a diamond (bold edges) that shows the possibléeianergs between actiorssand

C.

A sequential semantics is not adapted to describe distdbsystems because the in-
formation about the distribution of actions over the défier components is lost. We aim
at identifying the components, that we cptbcessesin such systems, and defining their
semantics with new notions such as timed traces and dittdhlimed languages that reflect
the distribution of actions. In an NTA, it is clear that eacliamaton is a process, and we
will see in Sect4 that it is also possible to identify processes in a TPN.

3.3 Timed traces

Once processes have been identified, we can describe thefrdissributed timed systems
astimed tracesWith this definition, each action is associated with a sgtroCesses that
always perform it together and simultaneously, therefomgay be local or shared (synchro-
nizations) Eventgaction occurrences) are partially ordered since two evemdisjoint sets
of processes may not be causally ordered.

Concurrency-Preserving Translation from TPN to NTA 9

Definition 7 (Timed Trace, Distributed Timed Language)A timed traceover the alpha-
bet> and the finite set of processBs= (mm, ...,) is atupleW = (E, x,A, d,proc) where

— E is a countable set @vents

— < C (E x E) is apartial order overE such that, for any ever the set{e¢ cE | € < e}
is finite,

— A :E — X is alabeling function,

— 0:E — R assigns a date to every event such thad; i eo, thend(e;) < d(ep);

— proc: = — 2 is thedistribution of actionghat maps each action to a subsefhf

and such that, for anyin [1..n], < is atotal order onE;, with the following definitions:

— 2y ={ae x| m € proc(a)} denotes the alphabet of process
— Ei={ec E|A(e) € 2i} denotes the set of events that occur on procgss
- <z = <N(E x E).

A distributed timed languagis a set of timed traces. A

Figure4 gives a representation of a timed trace. Each process ssemed by a vertical
line, and each event is represented by a dot or dots connggedorizontal line, depending
on whether it occurs on one process or on several processaselfene € E is also labeled
by the pair(A(e),5(e)). Moreover, events are ordered along each process from phie to
the bottom of the line, and we can see that events on diffggertesses are not always
ordered. For examplda, 3)<(b,4), (b,4) and (d,3) are not ordered, an(b,4)<(d,11)
becauséc, 8) takes them apart by transitivity.

Given an accepted timed woml = (ap,dp) ... (an,dn)... and the distribution of ac-
tions proc over the automata, we can build an accepted timed trace fdfTdan Namely,
E ={ep,...,en,...}, A @and d are such that, for each> 0, A(e) = & and d(e) = d;,
and < is the transitive closure of the relatior’ defined as: for any events and e,

8 <’ e < (i <jAproc(A(ej))nproc(A(ej)) #0).

4 S-subnets as processes for Petri nets

Identifying processes in a TPN is not as immediate as in an.NBLA, in practice, when a
system is modeled as a TPN, the designer knows its physioatste and builds the TPN as
a composition of components that model the subsystems. ayyfa TPN is given without
its decomposition, these components can be identified.

We first define S-subnets as the processes of a Petri net, ardbtomposition of a
Petri net into S-subnets. Then we show how we can find thisrdposition. We borrow
the main definitions from13], where the authors give a method (introduced 1i]) to
decompose a live and bounded free-choice net into such coenp® and we adapt this
method to decompose more general nets.

4.1 Decomposition into S-subnets

Since the notion of process involves only the structure asesdot depend on any time
property, in this section, we consider only the structur@ &fetri net: a net is denoted by
(P, T,F) whereP is the set of placeq; is the set of transitions, arflC (P x T)U(T x P)

is the set of arcs.

10 S. Balaguer, T. Chatain and S. Haar

A net (P T,F) is anS-netif Vt € T, |*t| = |t*| = 1. Thus, an S-net can be seen as an
automaton (places are locations and transitions are ed¢fesyant to decompose a net
in S-nets that cover the net. To do so, we introduce the nati&@subnet

A net (P, T')F’) is a subnetof a netN = (PRT,F) if P CP, T C T and
FF=Fn((PxTHU(T' xP)).

We say that the subnéP’, T’,F’) of N is P-closedif T/ = *P'UP’®. That is, any tran-
sition connected to a place which is in the subnet is also enstibnet. The subnet &f
generatedy a set of placeF’ is the P-closed subn¢®’, T’,F’) of N.

Definition 8 (S-subnet)An S-subnet of a ne\l is aP-closed subnet N= (P', T’,F’) of N
such thalN’ is anS-net

A netN = (P T,F) is decomposablén S-subnets iff there exists a set of S-subnets
{Nz,...,No} with N = (R, Ti,F), such thatJic1. 5 R = P. In this case, the set of S-subnets
is called acoverof N (andUic1.q Ti = T because the S-subnets are P-closed). We are
looking for minimal S-subnets w.r.t. the set inclusion of their generating gdaand we
notice that connected S-subnets are always minimal. Wdsaréomking forminimal covers
i.e. covers such that if one S-subnet is removed, then this netlonger covered.

Note that the notion of S-subnet generalizes the notionajr8ponent presented ihJ]
because we do not impose that the subnet is strongly comhecte

Definition 9 (Incidence matrix) Let N be the net(P,T,F). The incidence matrix
N:(PxT)—{-1,0,1} of N is defined by
—1if (p,t) e F and(t,p) ¢ F
N(p,t) = 1if (p,t) ¢ Fand(t,p) € F
0 otherwise.

An incidence matrix is given in Figh(b). The entryN(p,t) corresponds to the change
of the marking of place caused by the occurrence of transitioiidence, ift is fired from
markingM, the new marking i1’ = M +t, wheret is the column vector oN associated
with t.

Definition 10 (S-invariant [22]) An S-invariant of a neN is an integer-valued solution of
the equatiorX - N = 0.

From the definition of incidence matrix it follows that a mappl : P — N is an S-
invariant iff for every transitiont holdsy pce¢ I (P) = ¥ pete | (P)-

An S-invariantl of a net is calledsemi-positivef 1 > 0 andl # 0. The supportof a
semi-positive S-invariarit, denoted by(l), is the set of placep satisfyingl (p) > 0. Every
semi-positive S-invariartsatisfies’ (1) = (1)°.

In the sequel, we consider S-invariahtsuch that : P — {0,1} (set of places). Notice
that the set of places of a minimal S-subnet is a minimal &fiant, and conversely.

Proposition 1 A Petri net(P,T,F) is decomposable in S-subnets iff there exists a set of
S-invariants{ Xy, ... X,} such that

— Vie[l.n,%:P—{0,1}, (1)

- Vie[l.nVteT, Z Xi(p)= > X(p)€{0,1})
pest pete

- VpeP, Xi(p) > 1 (the set covers the net). (3)

ie[l.n]

Concurrency-Preserving Translation from TPN to NTA 11

Proof (=) Assume P is decomposable in S-subnets, then there existoérsS-subnets

Ni = (R, T,), withi € [1..n], such thatJ; R = P. We can choosemappingsX; : P — {0, 1}
such that for each plage Xi(p) = 1 if p € R, andX;(p) = 0 otherwise. Sinc#; is an S-net,
for each transitiont, [R N°t| = |[RNt*| = 1if t € T; and O otherwise. Therefore, for each
transitiont, ¥ peet Xi(P) = ¥ pere Xi(p), Which characterizes an S-invariant. Moreover, this
sum equals 0 or 1. Lastly, since each place is in at least dreesof places, for each place
P YienXi(p) = 1.

(<) Assume now that there exists a set of S-invarigiXs ..., X, } which satisfies the
three conditions of Progdl. We show that then subnets generated by eak) with i in
[1..n], are S-subnets that covisr We denote them b}, = (R, T, F), with B = (X) and
Ti = *(X;) = (X)°*. By constructionN; is a P-closed subnet &f. Moreover, since for each
placep, Xi(p) € {0,1}, p € (X;) implies thatX(p) = 1, andp ¢ (X;) implies thatX;(p) = 0.
That is, for each transitioty [*t NR[= [t N (X)| = ¥ peet Xi(p) = 1 0r O, from (2). Ift €
Ti = (X)°®, then*t N (X) # 0 and we must hav&t N (X)| = 1. In the same way, if € T,

[t* NR| = 1. HenceN; is an S-net. Lastly, tha S-subnets cover the net because for each
placep, Fici1.n Xi(P) > 1, which implies that there existsn [1..n] such thatp € (X;), that

is Uiepp..m (Xi) = P. O

When the net is decomposable, there exists dlset.. I} of minimal S-invariants that
is @ minimal cover of the net. Such a set gives a decomposifitime net in the S-subnets
generated by the minimal S-invariants. Note that this dgamition is not unique and that
a place may be shared by several S-subnets, as shown by tiglegan Paragrapht.1
below.

The number of tokens in an S-subnet is constant. Thus, arbi@sinitially marked
with one token represents an automaton where the activedada the marked place. Such
subnet is called @rocess If the S-subnet is initially marked witim tokens, then it cor-
responds tan processes with the same structure but not necessarilyngtamt the same
place, and these processes do not synchronize with eaats.ofleesimplify, we only con-
sider 1-bounded PNs, but we explain how the procedure cartbeded to k-bounded PNs
in Subsectiorb.1 Lastly, notice that the conservation of the number of tekieneach S-
subnet implies that unbounded PNs are not decomposable.

Decomposition algorithmSome algorithms for the computation of minimal S-invars&ant
can be found in12] where they are called p-semiflows. Therefore, it is possiblcompute
the setX of minimal S-invariants with values 0,1} from a given incidence matrii.
Hence, Algorithml below describes how a net can be decomposed.

Decomposition example®Below are some examples of decomposition. In Exanmplbe
net is decomposable, the decomposition is unique and s@oegpbelong to several compo-
nents. In Exampl@, the net is decomposable, the decomposition is not uniqukepkaces
belong to only one component. Lastly, in ExamB)ehe net is not decomposable.

Example 1We want to decompose the net shown in Bi@). To this purpose, we determine
its minimal S-invariants with values if0,1}.

With the incidence matrix given in Fig(b), we obtain the following non-zero minimal
S-invariantsX; =1 100000, X, =[0011011, andX3=[001110 0. These
S-invariants cover the net, therefore the net is decompesabey also form a minimal
cover (if one S-invariant is removed, the net is no longereced), therefore they give a
decomposition of the net. Hence the net is decomposablesithtiee S-subnets generated

by the sets of place@la pZ} (Xl)’ {p3a P4, Pe, p7} (Xz), and{ P3; Pa, p5} (X3)! see F|g5(C)

12 S. Balaguer, T. Chatain and S. Haar

Data: incidence matrixN
Result minimal setS of minimal S-subnets that covers the net if the net is decompmsab
empty set otherwise
begin
S« 0;
X « set of minimal S-invariants with values {®,1}, computed fronN;
if X does not cover the néten
| return S;
end
while X is not a minimal covedo
foreach X in X do
if X \ {X} covers the nethen
X = X\ {X};
break;
end
end

end

foreach X in X do

S+ subnet generated b,
S+ SuU{S};

end
return S;

end

Algorithm 1. Decomposition algorithm

—

h to 13 4 15
pi/ 1-1 0 0 O
‘\A ‘/“_-‘—‘ p2l-1 1 0 0 O
psf 0-1 0 0 1
ﬁ ps) 0 1-1 0 O
psi 0 0 1 0-1
v\‘ i é psl 0 0 0 1-1
p;f O 0 1-1 O
(a) A decomposable net (b) Its incidence matrix

ONI /H
Lo

(c) Its decomposition

Fig. 5 A net which is decomposable in S-subnets, its incidence mainiet its decomposition

Example 2We want to decompose the net shown in). With the incidence matrix
given in Fig.6(b), we obtain the following non-zero minimal S-invarian¥s:=[10101Q,
X2=[100101,X3=[011010andXs=[01010 1 The netis covered, therefore
decomposable, and there are two minimal coets Xa} and {Xp, X3}, therefore two de-
compositions. The two components of the decompositionngdye{ X1, X4} are denoted in
Fig. 6(a) by different line types: the arcs of the S-subnet generayeb, p3, ps} (X1) are
represented by dashed lines, and those of the one geneyaf{ed,lp4, ps} (X4) are repre-
sented by plain lines. In the second possible decomposipoand p, are switched.

Concurrency-Preserving Translation from TPN to NTA 13

1 b 13 44

pi1j—-1-1 0 O

" ""j} p; -1-1 0 0

AN ,/// ps| 1 0-1 0

‘ T psl 0 1 0-1

- 0 1 1 0

(P2 EZ 100 1
(a) A decomposable net (the different line (b) Its incidence matrix

types denote the arcs of the two different
components of one decomposition)

Fig. 6 A net which is decomposable in S-subnets and its incidencexmatr

@

Fig. 7 A non decomposable net

Example 3Consider the net of Figl. Any S-subnefN’ containingp, must also contain its
input and output transitiorts andt,. Then it must contain an input place terand an output
place fortp, which are necessarily; andps. This means that the only candidate for being a
S-subnet containingy is the entire net, but it is not an S-net sirigdas two input places.
This can also be seen by computing the S-invariants fromnitidence matrix: there is no
non-zero solution with values if0,1} (but there are some with valuesify for example
[11 2)). Therefore, this net is not decomposable.

4.2 Size of the decomposition.

Assume netN = (P, T,F) is decomposable im S-subnetsNy,...,N,, such thatN; =

(R, Ti,F) is the subnet generated By The number of places in the decomposition is equal
0 Yicin |IR| and is at mostP]2 because a place may be shared by several components
and no more thafP| components are needed to cover the net. And the number ai-tran
tions isy (1. [Til and is at mosfT | x |P| for the same reason. But these upper bounds are
pessimistic since generally there are fewer componentdeamghlaces and transitions are
duplicated in all components.

5 Translation from time Petri net to network of timed automata

A TPN can be translated in a TA which accepts the same timedsn@ee Fig3). But we
would like to translate it in an NTA which accepts the sameetirtraces. In this section, we
propose a structural translation from a TPN to an NTA, basethe decomposition in pro-
cesses. Therefore, this translation deals with TPNs whois@ed support islecomposable
Moreover, in this section, we consider only TPNs whose uatirsupport is 1-bounded, in
order to simplify the explanation, but the procedure carlyebe extended to TPNs whose
untimed support ik-bounded and still decomposable, as explained in Subse@tio In

14

S. Balaguer, T. Chatain and S. Haar

Subsectior6.2, we will discuss an extension to deal with bounded TPNs whogened
support is unbounded and therefore not decomposable.

5.1 Procedure

Our procedure translates a time Petri ngtinto a network of timed automata and relies on
a decomposition of the untimed support.af into S-subnets (that may be obtained using
Algorithm 1). Therefore, our procedure is not (at least directly) agtile if the net is not
decomposable. We also require that each S-subnet is Iyitreirked with one token (we
discuss the case when S-subnets are not marked, or markednaie than one token in
Subsectior6.1). For our example of FigR, we get the subnets shown in F&(a).

Each S-subnet determines a process in the time Petri net #indewtranslated into

a timed automaton. We focus now on the treatment of time caings in order to get a
network of timed automata which has the same distributedditanguage asf".

This involves three steps:

Each S-subnet is translated into an automaton preseitgistyucture (places become
locations and transitions become edges). Each edge isthlméth the name of the
corresponding transition.

. Time is added by providing each automaton with a singlelcka This clock is reset on

each edge. The idea is that the value;ajives the time elapsed in the current location.
On each edge, ifa,b] is the firing interval of the corresponding transition, wed ad
guardx; > a, and if the transition is not shared, we add an invanart b on the source
location.

Then, we have to deal with the synchronizations (trasrsstwith several input places).
Such transitions have to fire if they are enabled and thesstdiring delay is reached.
On our example, see Fig(b), we can stay ir{¢1,¢3) as long as mifv(x1),v(x2)) <0
(because mifv(xy),V(x2)) is the elapsed time sindavas enabled anéd (b) = 0). Thus,
we addinv(/1,b) = /3= (X3 <0VXx2 < 0) =43V (X1 <0Vx2 <0)andlnv(¢s,b) =
/1= (X1 <0Vx2 <0)=—l1V(xg <0Vx2 <0)in the invariants of, and/3 (actually
we only need to add this “global” invariant to the invariahbae of the source locations
concerned by the synchronization).

Formally, a TPN.4#" = (P, T,F, Mo, efd,Ifd) with n processes can be translated in the

NTA (Aq,...,Aq) with, for alliin [1.n], A = (L;,£%,C, 5, Ej, Inv;) where

— Li = R (places of theé'" subnet),

- Qis s.t.{} = RN Mo,

- C={x1,..., %},

— 3 =T, (transitions of the!" subnet),

— Ejisthe setof edge®,g,t,r,p') s.t.t €T, {p} =*tNPR, {p'} =t*NR, g=x > efd(t),

andr = {x},
Invi : B — %(C,P) assigns invariants to locations svip € B, Invi(p) = A Inv(t),
tep®
wherelnv(t) = (A p) = miln(xk) < Ifd(t), with |t = {i € [1..n] | t € Ti} the set of
t

p/eot kE
indices of the subnets that contain

That is, Invi(p) ensures that we cannot overtake the latest firing delay oinabled

transition which is in the post-set @f Notice thatinv;(p) uses the extended syntax (see

Concurrency-Preserving Translation from TPN to NTA 15

xp >0 X1 >0 X2 >0 X2 > 1
a b b c
\E E/ {xa} {xa} {x} {x}
f X1 < 2 Inv(¢3,b) @
01 A Inv({1,b) > 2
d
@ {xa}

' Inv(41,b) = —l3Vvx; <0Vvx2 <0
p4© |ﬂV€3,b)Eﬁfl\/X1§0\/X2§0
(a) Decomposition in processes (b) Resulting NTA

Fig. 8 Translation of the TPN of Fig2

SubsectiorB8.1): automator; can read the clocks of the other automata, but does not reset
them and it can also read the current location of the othe@maaita in its invariants.

In the rest of this section, we first prove that this translais correct w.r.t. the preser-
vation of the distributed timed language and we discussitteeds the resulting NTA, then
we show that the use of the extended syntax is necessary ammdy some cases when
the local syntax is sufficient.

Proposition 2 The initial 1-bounded time Petri net” and the network of timed automata
- which results from the translation have the same distribuiemed language (are timed
bisimilar with the same distributions of actions).

Proof A marking of 4" can be identified with a vector of current locations 6f A place
may correspond to several locations in the NTA, but in thisecd it is active in one au-
tomaton, then it is active in all the automata where it appdadeed, for any transition
any place irt® is in a component (because the net is covered} adlso in this component
(because the components are P-closed). Therefore, thg @ifinin .4~ corresponds to a
synchronization otnin ..

For anyi in [1..n], we notep; = M N B the current location of automatd®. We first
show the following equivalence:

veE A Invi(p) <= MeT,tCM = v(t) <Ifd(t)) (1)

1<i<n
Indeed, by constructionInvi(pi) = Atepe ((Apest P) = Tin(xk) < Ifd(t)). Thus,
VE Ai<i<nInVi(pi) is equivalent tort € T s.t.(*tNM # D) A (*t C M), mln((X)) < Ifd(t).
Then*tNM # 0 can be removed, and by construction, wherenabledv()= rkniln(v(xk)).
€l

Moreover the guard;(t) associated with the edge labeledthiy automatord, is built
so thatg;(t) = x; > efd(t), and again, whehis enabledy (t) = miln(v(xi)), which gives:
Ielt

MeET,tCM = (v): Adit) < v(t) Zefd(t)> (2)

i€|t

16 S. Balaguer, T. Chatain and S. Haar

Then we define a relatio? between states of” and states of/” as follows:

i€l

(M,V) Z (M, V) <= (VteT,‘th = v(t) = min(v(x)))

Note thatZ is not a bijection because the clocks of the automata do moégmond to the
clocks of the transitions, and a state ¢f may correspond to several statess6f We want
to show thatZ is a timed bisimulation.

We first observe thatMo, Vo) # (Mo, Vo) and we show that, from any correspondent
states(M,v) Z (M, v), the same executions are possible.

Delay step.Assume that there existse R-o such thatM, v) (M,v+d). Then,vd’ €
[0,d],v+d" = Ar<icnInvi(pi). Equation {) implies thatv +d’ is an admissible valuation
for markingM, and(M,v+d) Z (M,v +d).

Similarly, if there existsl € R-o such tha{M, v) Lt (M,v+d), then,(M,v+d) is also
an admissible state fo#” and(M,v+d) Z (M,v +d).

Action step.Assume now that there exists an acttosuch that(M,v) 4 (M’,V), andl;
is the set of indices of the processes that perforifhen, there existe = (e1,...,ey) €
(EaU{e}) x --- x (EnU{e}) s.t.Vi € [1..n],

if i ¢ lt, thene = e andp; = pf

{me%AMEﬁ
otherwiseg = (pi,gi,t,ri, p{) s.t. ¢ g =x > efd(t),
ri={x}

andv): /\ielt gh {Ulelt] andv’): /\I InVI (p|)

(M,v) Z (M, v) implies that transitiont is firable from (M,v), because it is
enabled 1t = {pi | i € Ik}) and its firing delays are respected (because BHf (
and @)). This transition leads to stateM” v') s.t. M” = (M*t) Ut* = M’, and

, s O if tenabledt’,M,t),
weT, Vi) = v(t') otherwise.

By constructionyi € [1..n],V(x)) = 0if i € It, andV(x;) = v(x;) otherwise. That is, for
each transitiott/, mln(\/(i)) =0if lyNlg#0and mlr(\/) = irr€1|in(v(xi)) otherwise.

t/

Then, for eacienabledtransmont/ we dIStInngh two cases:

1. t’ is newly enabled by the firing dffrom markingM (tenabledt’,M,t) holds). That
means that the last token to enatdleas been created bythat is,l; N 1; # 0. Therefore,
V() =0= mlin(\/(xi)).

el

2. t’ was enabled before the firing bfThat impliesly N; # 0 (because there is one token
by process and the tokens 1ti have not been moved by the firing 9f Therefore,

VI(t') = v(t') =min(v(x)) = min(v(x)).

Thereforey’ is an admissible valuation fél’ and(M’,V') Z (M’, V).
Similarly, if there existd € T such thatM, v) 4 (M’;v’) then, we can take synchro-

nizationt: (M, v) — (M’,V'), such that this synchronization is shared by the automatesevh

indices are irl, and for anyi, V(x;) = 0 if i € Iy andV/(x;) = v(x) otherwise. That is, for

any transitiont’, mln(\/(i) =0if ltNly # 0, and mlr(\/ X)) = mlln((xi)) otherwise.
I€ly

Therefore, ift’ is enabled,ErIm(l\/ X)) =V'(t), and(M’,\/) Z (M'V).
| t/

Concurrency-Preserving Translation from TPN to NTA 17

We have shown tha# is a timed bisimulation between the TTS.gf and.”. More-
over, there is a bijection between the processegadnd those of” and we have the same
distribution of actions between the processes. Therefdfeand.” accept the same dis-
tributed timed language. O

5.2 Size of the network of timed automata

Once the decomposition is computed, we directly have thetstre of the timed automata.
Thus the NTA has at mo#®|? locations andT | x |P| edges (see last paragraph of Séc).
The number of edges is exaclfycr |lt|.

Then, the timing information is provided by as many clockspascesses, that is at
most|P| clocks. There is one clock comparison on each edge, bedaeigeiards are of the
form x; > Ifd(t). Moreover, eachnv(t) contains|li| clock comparisons (because the min
ranges ovefl| clocks).Inv(t) can be attached only to one of the input places lnécause
a state is legal as long as the valuation satisfies all theianta of the current locations,
thus, ift is enabled and one of its input places carfi@gt), Ifd(t) cannot be overtaken.
Therefore, if we attach eadnv(t) to only one of the input places of we havey 1 |l
clock comparisons in the invariants. To conclude, the sizb@®timing information given
by the clock comparisons is proportional to the number okedg

5.3 Know thy neighbor!

Our translation produces a network of timed automata whadepts the same distributed
timed language (and which is timed bisimilar). But we use &erded syntax (see Sub-
section3.1) in which each automaton can read the state (location arak)ctdf the other
automata. We show that the use of this extended syntax iSsege

Proposition 3 Given a TPN.4" with its processes, in general, there does not exist any NTA
. using the local syntax such that” and.”” have the same distributed timed language.

For example, Figd shows two timed tracé4 andW’ representing the beginning of two
possible runs, without synchronization, for the TPN of Fig. 2. Any NTA . using the
local syntax and acceptingy andW’ would also accept the timed trace built by composing
the projection ofW onto 75 and the projection ofV’ onto 7 (see Fig.9). But this timed
trace is not accepted hy".

To prove Prop3, we first give some definitions about timed traces, and a letaa
will be used in the proof.

Timed linearization and projectionA timed linearizationof a timed trace is a possible
execution expressed as a timed word which respects bothatlsalcorder and the order
imposed by the time stamping.

A timed traceW can be defined as a tup(le, proc) wherew is a timed linearization of
W, see Fig4 and its caption that gives one timed linearization of thestirtrace represented
in the figure.

The projectionof a timed traceé/V onto processs, denoted by is defined as the
projection of a linearization diV, w, onto %;, denoted by, :

— ifw=g, thenwy =¢

18 S. Balaguer, T. Chatain and S. Haar

m 7] m ™
(a,0)
(c.1)
(d,2)e (c,2)
W w/
il)
(a,0)
(c.1)
(d,2)
\N\Tfl H\N\/nz

Fig. 9 Two accepted timed traces and one non accepted timed tra¢eefdPiN of Fig.2

(61,9)~V\/IZi ifae

- ifw=(a,8)-w, thenw, = {V\/lZi otherwise

Juxtaposition of timed wordsThe juxtapositionof n timed wordswy || Wz || -« || wy is the
timed trace oven processed) such that for eachin [1..n], if %; denotes the set of actions
that appear inv;, thenW s, = w;.

We denote by a network ofn timed automatdAy, ..., A,), and byRg () the set of
all timed traces representing admissible runsAfwithout synchronization, and stopping
at datef.

Lemmal Let . be a network of n timed automata that do not read the state @f th
other automata, then, for any timed traces,W. , W, € Rg() (not necessarily different),

Wl\r(l H HWn|nh € RG(Y)

Proof (Lemmal) In 6, the automata have not yet synchronized, that is their rioppsg
at datef are independent, and they could have performed any othdssithie sequence of
actions, stopping at dat without synchronization. O

Proof (Prop.3) Assume that the two automata corresponding to the two psesesf the
TPN_# of Fig. 2 are not able to read the current location and the clock of ther@utoma-
ton. Then, for any two timed trac&¥ andW’, representing two admissible runs without
synchronization, stopping at dafie the timed trac&\|, || V\/"n2 represents also an admissi-
ble run.

If we choose, as in Fig.9, W = (w,proc) and W' = (W, proc), with w =
(a,0)(d,2)(c,2),w = (c,1) andproc= {(a, 1), (b, {78, ®}), (c,), (d,) } (With 6 =2),
thenW, || V\/|’7T2 = ((a,0)(c,1)(d, 2),proc) (see Fig.9) should represent an admissible run
for . and.#". Which is false because as soorcéss been performeldmust be performed
immediately. Therefore, the local syntax (see Subse&itymust be extended. O

5.4 TPNs with good decompositional properties

Prop.3 states that in general any NTX having the same distributed timed language as a
given TPN.4", uses the extended syntax defined in Subse&ithn.e. the automata of”

Concurrency-Preserving Translation from TPN to NTA 19

have to read information about the state of the others. Treistes a dependency between
the automata, which is not as strong as in the case of a symeghtmn on a common action,
since it is asymmetric: only one automaton reads. Still, veei@erested in identifying the
cases where the automata do not need to read informatiomthieatate of their neighbours,
which we regard as a good decompositional property.

We did not find an algorithm that decides in general if TPNhas this property and we
do not know if it is decidable. However, we present a simpfé@geant condition, which can
be detected by reachability analysis on the marking TAJ6f We show how our construc-
tion can be easily adapted in this case, to avoid readingrdbon about other automata.

A class of TPN with good decompositional properties.

Proposition 4 Let.# be a 1-bounded TPN which is decomposable, and such that for an
transition t, there exists a place p b which is always the last place to be marked among
°t when t becomes enabled, then there exists an JT&ith the local syntax and with the
same distributed timed language a6.

Proof We use the same translation as before and choose tdraftd only in Invi(p)

(this can be done, as explained in the third step of the w@#ns). By construction,

Inv(t) = (Apest P) = rkniln(xk) <Ifd(t)). In this case(Apc+ P') is always true irinv;(p)
€lt

— because ip is marked, then all places M are marked — ant&l rln(n(xk)) =V(X) = V(t).
€l

Therefore, for any in [1..n] and for any place in R, Invi(p) can be expressed with the
local syntax. O

This property can be expressed in CTL and checked on the ngailtd: for any tran-
sitiont and for any place € °t we check whether the formulG(p e M < *t C M) is
satisfied (the formula has to hold for at least one placd)of

For example, consider the TPN of Fi0(a) Without studying the timing constraints,
the translation gives the NTA of Fig.0(b), where the invariants of locatiordg and/3 read
the state of the other automaton. But when we look at the gmaonstraints, we can see
that location/; is always activated before locatidg, i.e. /3 = /1, that isb is enabled as
soon a¥3 is marked. Therefore, the invariant associated Wwittan be placed oriz only
and simplified. Indeed, there is no need to réadince we know it is marked and no need
to readx; since mir{xy,X2) = X2. Eventually, we get the NTA of FidlO(c)

Some more complicated exampl&¥e believe that the class of TPN with good decomposi-
tional properties that we described above captures mosegbractical cases in which one
can avoid reading information about other components. dba is that most often, when
there is a variable delay before several components syniz@on a common action, this
delay is due to one of the components (which may typically lagimg for some input),
while the other components are simply waiting; then therniave that triggers the synchro-
nization can be associated to the component that is redperfisr the delay, and it will not
need to read any information about the state of the othecanitassume that the others are
ready to synchronize.

On the other hand, if the delay is really due to several corapt then it is very likely
that none of the components have enough information lotalbe able to trigger the syn-
chronization without reading information about the stdtéhe others. This observation is
not always verified: we now show an example for that, but wéaigonvince the reader that
this kind of examples is not very likely to occur in practice.

20

S. Balaguer, T. Chatain and S. Haar

IOo pz

(a) Initial TPN
!
X1 <4
a b
{xa} {xa}

X1 < <4
2 >5
{Xl} {Xl} {Xz} {Xz}
—|€3\/X1<3 ﬁﬁl\/X1<3
VXo < 3 VX < 3

(b) Result of the procedure of Subsectmf

Xo>5
b
{x2} {x2}

Xp <3

(c) Result of the translation when observ-
ing thatb is always enabled as soon ps

is marked

Fig. 10 A TPN that can be translated in an NTA with the local syntax

Consider the example depicted in Fig.(a) wherea and are parameters for the val-

ues of the constants. This TPN can be decomposed into twoartengs (see the example of
Fig. 6(a), which is very similar). These two components will be tratestl into two automata
A; (plain lines in the figure), with clock;, andA, (dashed lines), with clocky. Here, after
the occurrence df, eithera occurs orb occurs.

For the first example, we assume that 8. Then, whatever transition occurs between

a andb, t will be enableda time units after the firing of’. Therefore a clock’ can be
added in one of the automata, reset whidines, and used in the invariant of one of the input
locations oft as the conditioX’ < a (see Fig11(b)).

Now, let us assume that # 3. If a occurs, therp; is marked immediately, anp; is

markedf time units later. In this casqy must be disabled immediately amgd must be
disabled afte time units. Ifb occurs, therp; is marked immediately, anph is markeda
time units later. In this cas@, must be disabled immediately apg must be disabled after
a time units. Therefore, in order to respect the latest firiatag oft, whent is enabled, it
suffices to attacky < 3 to p2 andx; < a to p; (see Figl1(c).

Concurrency-Preserving Translation from TPN to NTA 21

[0,0] [a,q]

_)C _)_) O
e
/// ™ Vi

[
’ ®

0,0] [B,B]
(a) Initial TPN
o X< o
X X2 > ot
ngq{f%/"@‘\f\\ i t
)Otz{)_(z_})@\\\a,{xz} /,/”““)Q
X1 <0 X <a

_)Ct’,{xl,x’}

a, {Xl}

(b) a = B. NTA with the local syntax but one more clock

Xo < a
b, {2} g X2 > a,ty, {x}
X2§0,/// \\\\XZSB
) & ¢
—> —-————> -————>
A IO O ®

X1 <a ¢
g 2O
a, {x1} X1 > Bty {x1}

(c) a # B. NTA with the local syntax

Fig. 11 A TPN that can be translated in an NTA with a local syntax. Ttes @f the two components are
drawn differently

6 Discussion and examples
6.1 Dealing with decomposable TPNs whose untimed suppk+b@inded

The translation procedure was given for TPNs whose untimegat is a decomposable
PN such that each S-subnet is initially marked with one tpkeih we mentioned the pos-
sibility to translate also TPNs whose untimed support isodgmosable and such that the
S-subnets may not be marked or be marked with more than oera.t8lelow, we describe

the procedure on an example.

Consider a net such that an S-subnet is initially marked witine than one token. The
untimed support of the TPN of Fig2(a)is decomposable into the two S-subnets generated
by {p1, P2, P3, Pa} and{ps, ps}. Since one S-subnet is initially marked with two tokens, it
corresponds to two processesand7e with the same structure. Moreover, since a transition

22 S. Balaguer, T. Chatain and S. Haar

pl
10 10]
1.1] [t] ‘

tz 11 [0,00)

10 10
p4

(a) Initial TPN with two S-subnets but three processes

X3 <1
» < 10 1 . _
> 104,50 z>lOt12X2_ V((Hf2avia YA (a2 Ve < D)
‘—' —(l)—
{x1} {Xz}
X >1 X1>1 X%>1 Xo>1 x3>1 x3>1
a1 t21 ta2 t2o 1| |22 |t5
{xa} {x1} {x2} {x2} {xa}| | {xs} |{xs}
X1>10t31 X2>10t32
X1 <1 Xo < < 1 X2 <10

(b) Resulting NTA where two automata have the same structurdifberent initial locations

Fig. 12 A TPN whose support is a decomposable PN such that one S-dslimigally marked with 2 tokens
and its translation into an NTA

needs only one token in each one of its input places to be ethahland s need not know
the state of each other. That is, each one of them will modetturse of one token in the
net.

In Fig. 12(b), we labeled differently the actions in the first two automé&tadenote that
they do not synchronize with each other. And since the thiotgss synchronizes d,
the edge labeled by in the associated automaton is duplicated to denote the dwsile
synchronizations wittp ; andty».

Notice that this approach also applies to Petri nets sudfathd-subnel; is not marked
initially (and hence will never be marked). There is no pssceorresponding tid; and there
will be no corresponding TA. Moreover, for any other S-sutidethat shares a transition
with N, this transition will never fires, and this is ensured by thet that edges are du-
plicated in as many versions as possible synchronizatams,since there is no possible
synchronization, there will be no edge denoting this ti@msin the TA associated witNj.

6.2 Dealing with bounded TPNs whose untimed support is unded

The conservation of the weighted sum of the tokens in an &diant (see 13]) shows that
unbounded PN are not decomposable. Moreover, not all 1desiRNSs are decomposable,
although we think that, most models of real systems are.

However, our method can be adapted to some temporally ldaoufPNs whose un-
timed support is unbounded. The idea is to modify the undeglynbounded net so that
it becomes decomposable and to adapt the timing informatidine NTA to preserve the
semantics of the original TPN/. We use complementary places: for a placéhe comple-

Concurrency-Preserving Translation from TPN to NTA 23

mentary placep, is built such thatp= p**p, p* = *p\ p°*, andp is marked iff p is not.
For a placep, let the predicat®C(p) denote thap is not covered by any S-component, i.e.

NC(p) < (VX:P—{0,1},X-N=0 = X(p)=0).

Then, we can transform the untimed unbounded PNimeq= (P, T, F,Mp) into a bounded
PN._+/ (P, T,F',Mp) where

untimed —

— PP=PU{p| NC(p)}, i.e. for each place that is not covered by any S-component, a
complementary placp is added,

— F'=FU{(p,t) INC(p) A (t,p) € F}U{(t,p) INC(p) A (p;t) € F},

— Mg =MoU {p|NC(p) A p ¢ Mo}.

For example, consider the 1-bounded TPWN of Fig. 13(a)without the dashed items
(taken from R3]). Its untimed support is unbounded, but the timing comstsgprevent there
being more that one token ios. Even though the net is not decomposable without modi-
fication, in the structure of the net, we can identify threggpdhe S-subnets generated by
{p1, P2}, and{ ps, pa} and the subnet generated g} which is not a valid component, be-
cause itis not an S-net. Therefore, we add a complementacg pbps to make the untimed
PN 1-bounded, by restricting the number of tokens in plact® 1. With this new placey
has to wait for the occurrence Bfbefore occurring again. That is, the boundedness that was
ensured by the timing constraints.iff, is now ensured in the untimed PM ;. .qby the
complementary places. Notice also that the following pssgan holds.

Proposition 5 A timed run of 4" from which the occurrence dates are removed is a run of

/
untimed

Proof We define a relation? which associates a (valid) statel,v) of .4 with a stateM’
of A imeq @Nd Show tha#Z is a simulation. Namely,

(M,v) ZM" < M =M\ {5|NC(p)Ap¢ M}.

First, (Mo, vo) Z M holds. Second, assume thas firable from stat€M, v) which is
Z-related to statd!’. Thent is also enabled iV =M U{p | NC(p) A p ¢ M}. Indeed, in
N imea 1T there is a complementary plagen the input places df, then in./", pet®\ °t,
and since the TPN/ is 1-boundedp ¢ M andp € M’. Whent fires in.//, it leads to state
(M1, v1) such thaM; = (M °t) Ut® (regardless ob1). And whent fires in 4, eq it l€ads
to markingM; such that
Mi — (M/ \ o/t) Uto/

= (MU{pINC(p)Ap¢ M\ (tU{p|NC(p)Apet®*t}))

U (t*U{p|NC(p)Ape " t\t}),
because by definition off{ ;g PE 't < pet®*tandpet” < pe *t\t*. Since
{p| NC(p)} is disjoint fromM, °t andt®, this can be simplified in
Mi = (M*t)Ut*) U{P|NC(p) Ape (M (t*\ 1)) U(*t\t*)}
and lastly, sincéM \ (t*\ *t)) U (*t\t*) = (MU*t)\t* = (M\ *t) Ut* = My,
M7 =M1U{p|NC(p) A p ¢ M1}. Therefore(My,v1) Z M;. O

But if the timing delays of /" are added to4{, .i,,.q POth TPNs will not have the same
timed semantics. For instance, on our example, the timed wo#4)(t1,5) (P, 7)(t2,8)(V,9)
is no longer accepted. However, the transformation is osgduo find a decomposition of
the net and now our translation can be adapted.

24 S. Balaguer, T. Chatain and S. Haar

X1 2 17tl7 {Xl}
12 _, x <2

X1 <5
P CD\A L= X1 >4V, {x1}

,5 v, pe)
/_\/—\
/ —)lps\X2§4
) N
pS\ .v'
Xo > 3,P

)EBA] -
(X3 > 3), P, {xs}

71 (X3 20)71:27({)(3})
(& A temporally 1-bounded (b) Resulting NTA where information be-
TPN (withoutps) tween parenthesis can be removed

Fig. 13 Translation of a structurally unbounded TPN

Proposition 6 Let.4 be a 1-bounded TPN whose untimed support is unbounded.r&the
A nimeqdefined above is decomposable, then there exists an NTAheigatne distributed
timed language as/".

Proof If A, imeqlS decomposable, we choose a decomposition such that @aph forms

a component. Then we adapt the translation: each compoogesponds to an automaton
and the timing information is added in the same way as in Siiogse5.1, but without
considering the new places because the time spent in thasespis not relevant for the
semantics of the TPN. That is, for each new placéhere is no clock reset in the ingoing
edges ofp, no guard on the outgoing edges @mfno invariant onp, and p appears in no
invariant. In this way, we get an NTA with the same distrilaltiened language as the initial

TPN. O

In the context of our example, this results in the NTA of Fig§3(b) We
decide to attachlnv(P) to ps, and since we notice that, in4’, if ps is
marked, thenps is also marked (i.e., in the NTA miry,X3) = X2), we sim-
plify this invariant: Inv(P) = (psA p3) = min(xz,X3) <4 = ps= %2 <4, and therefore
Inv(ps) = INV(P) A ps = X2 < 4.

6.3 Reverse translation

Let us now consider the reverse translation, i.e. from an KIA TPN. There exist trans-
lations, for example ing], from a TA into a weak timed bisimilar TPN, but we want to
preserve the distributed timed language, that is, when aveskate an NTA into a TPN, we
want to preserve the mapping between the processes. THigsrtipat we should be able to
translate each automaton in a TPN which is an S-net with dkentand then compose the
obtained nets.

A time S-net with one token is less expressive than a TA with dock because it can
be translated in a TA with one clock which accepts the samedilanguage. Thus, itis less
expressive than a TA with two clocks, according 1&][] We can even strengthen this by

Concurrency-Preserving Translation from TPN to NTA 25

x>1,a x>4,b
-0 O O

Fig. 14 A TA that cannot be translated in a time S-net with one token

proving that some TA with one clock cannot be translated iitefitime S-net with one token
(see Prop7). Therefore, only a very small class of TA can be translated.

Proposition 7 Time S-nets with one token are strictly less expressiveTthAamith one clock.

Proof Assume that the TA of Fig. 14 can be translated in a finite time S-net with one token
which accepts the same timed language, callédThen, in./", finitely many states can be
reached after having fired @ We denote these states §y= ({pi},0) with i € [1..n]. The
clocks of the enabled transitions have been reset.

Now, assume that we can reaglby firing a at some daté,;. Then, the only possible
continuation froms; is to delay duringd; = 4 — 6; and fireb. That is,(a, 61) is the only
possible way to reach (otherwise, we would have another possible continuatiomf).

Therefore, each stagecan only be reached by executiagt one daté;, and from each
s only one continuation is possible. This implies that has afinite numberof admissible
runs wherea#\ hasinfinitely many. ThusA cannot be translated in a time S-net with one
token. O

If we impose for example that each TA has one clock which istrea each edge, that
the invariant are of the form < n and that the guards are of the fosx® m, then the TAs
can be translated into time S-nets, but even in this simpe,dle composition of these
components into a TPN with the same semantics as the inifialislnot always possible.

6.4 Conclusion and outlook

Usability in practice. We have translated some example time Petri nets with thel&tion
proposed in 10] and with our translation, and we have usedR4AL (see R1]) to check a
reachability property on the resulting networks of timetbauata.

Although our translation only works for TPNs whose untimaggort is bounded, and
does not always give a model in theebhAL style (with handshake synchronizations), it
generally produces networks with fewer automata, becdugsettanslation produces+ 1
automata for an initial net witlm transitions. And we think that our translation gives an
NTA which is more readable, since the components are clédelytified, and closer to the
original model.

Regarding the number of clocks, we also generally have feleeks because we have
one clock by process instead of one clock by transition. Buhantioned in10], UPPAAL
only considers the active clocks during the verificationolr case, in a given state, all
clocks are active and with the translation d0], the number of active clocks is equal to the
number of enabled transitions in the corresponding marihgorem 3 in 10]). Therefore,
we can have fewer active clocks if there are some conflicts.

Lastly, we have shown an extension of the translation praeetb deal with some
bounded TPNs whose support cannot be decomposed. Once wieeggttucture of the
automata, the method that assigns the time constraintsecapdied with only some minor
modifications.

26 S. Balaguer, T. Chatain and S. Haar

Towards identification of concurrency in timed systefBis work is a starting point for a
more advanced study of concurrency in timed systems. Indmedturrency in timed sys-
tems involves both causality and the time stamping of evéinmnsitions that appear as
concurrent in an untimed model may not remain independerinvitime constraints are
added. First, time constraints may easily force a tempad®ring between them. But, even
worse, the occurrence of a transition may have consequencggparently concurrent tran-
sitions due to time constraints: this is what happens in &M ©f Fig.2 where firingc after
delay 1 from marking{p1, p2} preventsd from firing (because it forces to fire earlier).
In our translation, the necessity to allow the automata &l the states of their neighbors
highlights these complex dependences between differentpses.

Acknowledgements This work is partially supported by the FARMAN project EM&Ion funded by ENS
Cachan and the French ANR projects DOTS and ImpRo.

References

1. Akshay, S., Bollig, B., Gastin, P.: Automata and logicstfored message sequence charts. In: Foun-
dations of Software Technology and Theoretical Computeerga (FSTTCS)LNCS vol. 4855, pp.
290-302. Springer, New Delhi, India (2007)

2. Akshay, S., Bollig, B., Gastin, P., Mukund, M., Narayanniar, K.: Distributed timed automata with
independently evolving clocks. In: International Confere on Concurrency Theory (CONCURNCS
vol. 5201, pp. 82-97. Springer, Toronto, Canada (2008)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoreticdomputer Scienc&262), 183-235 (1994)

4. Balaguer, S., Chatain, Th., Haar, S.: A concurrencygmsg translation from time Petri nets to net-
works of timed automata. In: International Symposium on TenlpRepresentation and Reasoning
(TIME), pp. 77-84. IEEE Computer Society Press, Paris, Frd2010)

5. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Whetiraed automata weakly timed bisim-
ilar to time Petri nets? Theoretical Computer Scief@g2-3), 202—220 (2008)

6. Berthomieu, B., Diaz, M.: Modeling and verification of timepgndent systems using time Petri nets.
IEEE Transactions on Software Engineerit¥3), 259-273 (1991)

7. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool TINAonstruction of abstract state spaces for Petri
nets and time Petri nets. International Journal of ProdndRiesearcd2(14), 2741-2756 (2004)

8. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, Savine, S.: Kronos: a model-checking tool
for real-time systems. In: International Conference on Coempdiided Verification (CAV),LNCS vol.
1427, pp. 546-550 (1998)

9. Byg, J., Joergensen, K., Srba, J.: An efficient transiatibtimed-arc Petri nets to networks of timed
automata. In: International Conference on Formal EngingeviethodsL.NCS vol. 5885, pp. 698—716.
Springer-Verlag (2009)

10. Cassez, F., Roux, O.H.: Structural translation from #ati nets to timed automata. Journal of Systems
and Software (2006)

11. Cerans, K., Godskesen, J.C., Larsen, K.G.: Timed modeifi&geion - theory and tools. In: International
Conference on Computer Aided Verification (CAYNCS vol. 697, pp. 253—-267. Springer (1993)

12. Colom, J.M., Silva, M.: Convex geometry and semiflows in RFEENA comparative study of algorithms
for computation of minimal p-semiflows. In: Proceedings of théhl@ternational Conference on Ap-
plications and Theory of Petri Nets, pp. 79-112. Springeniag, London, UK (1991)

13. Desel, J., Esparza, J.: Free choice Petri nets. Cambyicigersity Press, New York, USA (1995)

14. Diekert, V., Rozenberg, G.: The Book of Traces. Worlce8tific Publishing Co., Inc., River Edge, NJ,
USA (1995)

15. Gardey, G., Lime, D., Magnin, M., Roux, O.H.: Romeo: A taml &nalyzing time Petri nets. In: Inter-
national Conference on Computer Aided Verification (CAMNCS vol. 3576, pp. 418-423. Springer
(2005)

16. Gardey, G., Roux, O.H., Roux, O.F.: State space computatid analysis of time Petri nets. Theory
and Practice of Logic Programmir@g3), 301-320 (2006)

17. Hack, M.: Analysis of production schemata by Petri netsastdr's thesis, Massachusetts Institute of
Technology, Cambridge, USA (1972)

Concurrency-Preserving Translation from TPN to NTA 27

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Henzinger, T.A., Kopke, P.W., Wong-Toi, H.: The exprespower of clocks. In: International Collo-
quium on Automata, Languages and Programming (ICALP), pp. 4291995)

Jensen, K., Kristensen, L.M., Wells, L.: Coloured peé&is and cpn tools for modelling and validation
of concurrent systems. International Journal on SoftwamdsTir Technology Transfer (STTB(3-4),
213-254 (2007)

Lanotte, R., Maggiolo-Schettini, A., Peron, A.: Timedperating automata. Fundamenta Informaticae
43, 153-173 (2000)

Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutsheternational Journal on Software Tools for
Technology Transfer (STTT)(1-2), 134-152 (1997)

Lautenbach, K.: Liveness in Petri nets. Tech. rep., IBebaft fr Mathematik und Datenverarbeitung,
Bonn, Germany (1975)

Lime, D., Roux, O.H.: Model checking of time Petri nets gdinme state class timed automaton. Journal
of Discrete Event Dynamic Systems (JDEDB)(2), 179—205 (2006)

Lugiez, D., Niebert, P., Zennou, S.: A partial order seticarapproach to the clock explosion problem
of timed automata. Theoretical Computer ScieB4§(1), 27-59 (2005)

Merlin, P.M.: A study of the recoverability of computingssems. Ph.D. thesis, University of California,
Irvine (1974)

Niebert, P., Qu, H.: Adding invariants to event zone angtta. In: International Conference on Formal
Modelling and Analysis of Timed Systems (FORMATENCS vol. 4202, pp. 290-305. Springer (2006)
Sifakis, J., Yovine, S.: Compositional specificationiofed systems (extended abstract). In: Sympo-
sium on Theoretical Aspects of Computer Science (STACS)38@—359. Springer-Verlag, London,
UK (1996)

