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1 Introduction

Robustness requirements for timed systems. A large amount of research has
been devoted to the specification, verification and synthesis of timed and hybrid
systems which has led to:

– classification of problems w.r.t. decidability and complexity;
– design of efficient algorithms and appropriate data structures for verification

and synthesis;
– implementation of tool suites;
– analysis of industrial case studies.

However the theoretical developments have assumed unrealistic perfect behaviors
of the quantitative variables resulting in technical difficulties for the implemen-
tation stage of such systems.

Robustness aims at capturing such features, ensuring taht the a system is able
to resist to small perturbations related to implementation. More precisely, in the
context of timed systems, robustness addresses the problems of clock measure-
ment inaccuracies, relative clock drifts, non instantaneous controller reactions,
etc.

Challenges in robustness (section 2). The current practices adopted for the mod-
elling and specification process do not include robustness. So The first challenge
consists in integrating robustness as a key element in this stage. A second chal-
lenge should be to evaluate robustness of a system as as a function taking as
input a perturbation and returning its quantitative effect on the system. This
would lead to potential certification of systems. In order to reach these goals dif-
ferent aproaches have been proposed and are presented in the next paragraphs.
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Languages for robustness specification (section 3). A first way for introducing a
formal semantics which takes into account time perturbations consists in speci-
fying behaviors in terms of “tubes” instead of single trajectories and study timed
automata w.r.t. this semantics. There are different way to consider tube: either
w.r.t. a global trajectory or at the level of transition firings.

Robust guard-based models (section 4). This approach consists in adding a quan-
titative parameter reflecting the precision of the clock measurement performed
by the implementation. Then the semantics is appropriately adapted. In this
context, given some property one asks whether there exists a precision such that
the model fulfills the property. This problem is solved for the expression of the
property in different temporal logics. One can also search for (near) optimal value
for the required precision. In view of synthesis of robust systems, searchers have
designed transformation algorithms that given some timed model produces an-
other equivalent one which is in addition robust. Only authorizing strict guards
in the transitions of the model is an alternative way to express robustness. So
this approach has been also investigated.

Robust drift-based models (section 5). Guards enlargement has been combined
with another type of perturbations: clock drifts where the evolving rate of clocks
is prone to small variations. The same kind of problems as above are tackled
but are (obviously) more difficult to solve. Thus the studies are often limited to
reachability problems.

Distributed models (section 6). A more radical approach than the drift of clocks
consists in considering asynchronous clocks. This is a typical feature of dis-
tributed systems which are thus good candidates for studying robustness.

Discrete-time clocks and discretization approaches (section 7). Many systems
actually include “discrete-time” clocks sampling continuous-time processes. This
raises specific robustness problems. For instance, given some property to be
satisfied by the system, does there exist a sampling interval for the digital clocks
of a controller that yields the required property. On the other hand, the analysis
of robustness can be conducted through the study of equivalence of the same
model (or between two different models) w.r.t. a discrete-time or a continuous-
time semantics. This research has been also carried on, in the context of the
tube languages.

Platform execution approaches (section 8). Instead of considering robustness at
the semantical level, both the system and the execution platform are specified
in the model. This is an ad hoc but practical approach that has two advantages.
First the plaform can be modelled in full detail. Second standard analysis can
be directly applied. In particular this approach when the platform is a standard
as in the case of PLCs.



Outline of the paper. In the next sections, we successively summarize the most
relevant papers related to the above approaches. Then in section 9, we propose
some directions toward an unifying formal framework for robustness problems.

2 Challenges in robustness

2.1 Summary of [HS06]

Th. A. Henzinger and J. Sifakis. The Embedded Systems Design Challenge.
This theorem-free position paper starts by examining , in the context of Em-

bedded Systems research and design, the current scientific foundations (analyti-
cal vs computational approaches) on the one hand, and the current engineering
practices, with regard to their limitations. In both contexts, the articles identi-
fies widening gaps between the existing approaches, and goes on to call for an
integrated vision and practice. Then, ”two demands on a solution” are discussed,
namely heterogeneity and constructivity.

Citing the definition in the paper, ”Heterogeneity is the property of embed-
ded systems to be built from components with different characteristics.” The
emphasis is here on the fact that (i) the composed systems can have different
execution and interaction semantics, and (ii) the abstractions underlying the
models that are used in the design of composed systems have to be heterogeneous
themselves. The article calls for a metamodeling that ”preserves properties dur-
ing model composition and supports meaningful analyses and transformations
across heterogenerous model boundaries.”

This connects to the second demand, that of constructivity. On the one hand,
the authors ask for construction methods that are adapted to specific contexts
and their constraints (hardware synthesis, architectures,protocols,...), such that
component construction be computationally efficient and ”guarantee correctness
more or less by construction”. Secondly, theories are needed for combining such
results in a methodology for constructing heterogeneous composite systems. Two
kinds of rules are (probably) needed according to the authors , namely compo-
sitionality and noninterference rules.

The article concludes by suggesting the following research action plan :

– Focus must shift from purely functional properties to extra-functional ones,
in particular performance and robustness.

– Performance should be addressed by constructing dedicated components
(schedulers) for resource management, taking into account performance re-
quirements and uncertainties concerning the execution and the environment.

– Robustness needs to be satisfied by each component, in the sense that even
under changed circumstances, required properties continue to be satisfied.
Robustness requirements are transversal and variegated, including resistance
to failures or attacks. The paper calls for development of ”theories, methods,
and tools that support the construction of robust embedded systems without
resorting to [e.g. redundancy or other] ... massive, expensive overengineering.



2.2 Summary of [Hen08]

This is a position paper that aims at establishing embedded systems design as the
key research domain for computer scientists, by highlighting two system char-
acteristics hitherto mostly neglected in software design. These two challenges
from the title, predictability and robustness, are discussed each in one separate
section. In the first, the author advocates to ensure predictability by making
systems deterministic. For the sake of clarification, he presents four possible
sources of non-determinism : input nondeterminism, unobservable implementa-
tion non-determinism, don’t care non-determinism and observable implementa-
tion non-determinism; only the fourth of these needs to be avoided to design
predictable systems. This non-determinism amounts to omitting ”implementa-
tion details that do influence the observable behaviour of the system”, e.g. in
cases where the output depends on the order in which several tasks are scheduled.
The challenge identified as a conclusion reads as follows:

”... to build, on top of nondeterministic system implementations , system
abstractions that are deterministic with regard to nonfunctional properties such
as time and resource consumption.”

It should be noted that probabilistic behaviour is explicitly qualified as a
”general case of deterministic behaviour”, and that the two challenges set forth
by the paper are not concerned with statistical properties.

The robustness challenge is associated to the quest for continuity, in the
following sense:

”A system is continuous if continuous changes in the environment or platform
cannot cause discontinuous changes in the system behaviour.”

The paper thus links robustness of a system with its sensitivity to perturba-
tions, in the spirit of the robustness theory in mathematical statistics or system
and control theory. As with the first challenge, the need to focus on robustness is
used by the author as an argument to conclude that ”embedded systems design..
offers a prime opportunity to reinvigorate Computer Science”.

3 Languages for robustness specification

3.1 Summary of [GHJ97]

The paper studies the results obtained by relaxing the acceptance conditions on
timed automata to accept tubes instead of standard trajectories.

A trajectory is a finite word over Σ × R>0, where the positive real value d
in a pair (a, d) represents the (non null) delay before the action a. The set Traj
of trajectories can be equipped with several metrics involving only the delay or
absolute time sequences of trajectories. For a metric d, the d-tube around trajec-
tory τ with diameter ε is defined by Td(τ, ε) = {τ ′ | d(τ, τ ′) < ε}. The induced
topology is defined in a syandard way: a set O is open if for any trajectory τ ∈ O,
there exists ε > 0 such that Td(τ, ε) ⊆ O. Open sets are called tubes.

The first result establishes that all standard metrics define the same set Tube
of tubes.



For a subset L ⊆ Traj, the set of tubes in L is defined by: L̃ = {O ∈ Tube |
O ⊆ L}, where L is the topological closure of L. Thus, L̃ can be identified with

the maximal tube in L which is L
int

, the interior of L.
The authors use a variant of the classical timed automata, with the same

expressive power. For such an automaton A, the tube language of A is the set

[̃[A]]. They obtain the following results :

– The tube emptiness problem is PSPACE-complete.
– There is a timed automaton A which is not tube-determinizable : there is

no Alur-Dill timed automaton which accepts the set [̃[A]].

3.2 Abstract of [HR00]

After introducing a notion of robust acceptance of a path by a timed system, the
authors prove that w.r.t. this definition two classical decision problems remain
undecidable: the universality problem for timed automata and the reachability
problem for rectangular automata.

Let us detail this notion of robust acceptance. First the authors define a
distance d between two trajectories τ, τ ′:

– The distance is infinite if their untimed words do not coincide.
– Otherwise their distance is the maximal time difference between the occur-

rences of corresponding events.

Equipped with this distance, the set of trajectories is a topologic space where the
open sets are called d-tubes (in order to emphasize the distance). The standard
notion of language is the based on trajectory languages; here a tube language is
a subset of tubes. Given a trajectory language L, one defines its corresponding
tube language [L] as the set of tubes included in the closure of L (usually denoted
by L). Observe that the tube language [L] can be identified with the maximal
tube that it contains which is simply the interior of the closure of L, (L)◦.

Timed automata (TA) are called open (resp. closed) if the intervals defined by
their initial condition, preconditions and postconditions are open (resp. closed).
Then, some results from [GHJ97] are recalled

– Given a TA A, one can built a closed TA A such that L(A) = L(A) and an
open TA A◦ such that [L(A◦)] = [L(A)] = [L(A)].

– In a open TA, given an accepted trajectory τ by some path σ, there exists
ε > 0 such that the open ball of center τ and radius ε is accepted along σ.

– Given any TA A, there is no tube O such that L(A) and its complement
L(A)c are dense in O.

– The complement of a tube language L is the set of tubes disjoint from the
maximal tube of L (i.e.

⋃
L). If L is a trajectory language such that there is

no tube O with L(A) and its complement L(A)c dense in O then [L(C)]c =
[L(C)c].



In order to prove the undecidability of the universability problem for tube
languages of TA, one encodes the behaviour of a two-counter machine (counters
C and D) as follows. Disregarding time, a configuration where the current in-
struction is I, the current value of counter C (resp. D) is vc (resp. vd) is encoded
by the word:

BcfBinsEinsIBC(BcEc)vcECBD(BdEd)vdEDEcf

A (possibly illegal) execution is a sequence of configurations.

We now explain the role of time. Given an interval [a, b] we say that (a +
1, b + 1) is generated by [a, b]. First one requires that the time interval of a
configuration takes place inside the interval generated by the time interval of the
previous configuration. Similarly one requires that the intervals corresponding to
the specification of the instruction, counters C and D take place in the interval
generated by the corresponding interval in the previous configuration. When
a counter, say C is unchanged, the same requirements apply to the intervals
corresponding to BcEc

3.3 Summary of [ATM05]

The article deals with imperfect clocks: With a fixed perturbation parameter ε ∈
(0, 1), a perturbed time step (q, ν)

d−→ε (q′, ν′) of A satisfies, for all clocks x, d(1−
ε) ≤ ν′(x) ≤ ν(x)+d(1+ε). Defining perturbed steps etc. in the analogous way,
one obtains t the ε-perturbed language Lε(A) of a TA A as the collection of all
timed words of A corresponding to an ε-perturbed run leading from an initial to
a final state. From results by Henzinger et al. on rectangular (hybrid) automata,
the authors deduce (without detailed proof) that Lε(A) is timed regular. For one-
clock timed automata, a determinization for the perturbed language is given; the
construction is shown to be tight for one-clock TAs but fails in the presence of 2
or more clocks: more precisely, for any ε ∈ [0, 1), an Aε can be found for which
the complement of Aε ε-perturbed language cannot be accepted by any timed
automaton.

Another result given in the paper is the undecidability of the language in-
clusion problem for perturbed automata . More precisely, for any pair (A,B)
of TAs and fixed ε > 0, the problem of deciding whether L(B) ⊆ Lε(A) is de-
cidable for 1-clock automata, yet undecidable in the presence of two or more
clocks. The proof of the latter is sketched as follows : ”Using that property
that using two perturbed clocks one can require two events to be some precise
distance apart, we can encode computations of Turing machines”. The proof
of decidability for 1-clock machines uses the determinization technique devel-
opped in the paper. It allows an application to refinement checking: Let TAs AI
(Implementation) and AS (Specification) be given; one wishes to check whether
L(AI) ⊆ L(AS). If AS is the product of 1-clock automata A1, . . . , Ak, check
whether L(AI) ⊆ Lε(A1)‖Lε(A2) . . . 1‖Lε(Ak), which is decidable by the previ-
ous result.



4 Robust guard-based models

4.1 Summary of [DDR05]

In this work, the author consider the problem of the implementation of timed
automata. The setting considered by the authors is that of a controller reacting
to input events produced by an environment.

Therefore, they first propose the so-called Almost ASAP semantics. Intu-
itively, it consists in firing the transitions as soon as possible (ASAP), relaxed
by the time needed by the digital platform that implements the timed automaton
to process the input sensors. The AASAP (standing for Almost ASAP) seman-
tics of a controller is formally introduced, using an additional parameter ∆ that
represents the relaxation of the instantaneous reactivity. This semantics, quite
complex, precisely describes how input events are stored, and then treated by
the automaton.

The author exhibit an important property of their semantics, called Faster
is Better, and defined as follows: if for some value ∆1 the controller prevents the
environment to enter a set of bad states, then it will also be the case for any
smaller parameter value, that is for any ∆2 < ∆1. This property is important in
the sense that it respects the intuition that if a platform correctly implements a
system, a more powerful platform will also do.

To assess the realism of the AASAP semantics, the authors also define for-
mally an implementation semantics, based on the following realistic modelization
of the platform of implementation. This procedure repeatedly executes what they
call an execution round:

– read current time in the clock register of the CPU
– update the list of input events (read sensors)
– evaluate guards of transitions leaving the current locations. If at least one

evaluates to true, choose non deterministically one of the enabled transitions.
– start next round.

The semantics associated with this modelization involves two parameters,
denoted ∆L and ∆P , representing respectively the maximal duration of an exe-
cution round, and the precision of the clock register of the CPU.

Then, the authors prove a simulation theorem between the two previous
semantics. Given ∆, ∆L, ∆P such that 3∆L + 4∆P < ∆, the AASAP semantics
w.r.t. ∆ simulates the implementation semantics w.r.t. ∆L and ∆P .

The previous result entails that if one can find a positive value of ∆ such
that the AASAP semantics of the controller w.r.t. ∆ prevents the environment
to enter a set of bad states, then for any values of ∆L and ∆P such that 3∆L +
4∆P < ∆, the implementation semantics of the controller w.r.t. ∆L and ∆P

also prevents the environment to enter this set of bad states. This constitutes a
strong theorem of implementability.

However, it remains to be able to analyze the AASAP semantics. Therefore
the authors present a last construction, which turns the AASAP semantics of
an automaton A w.r.t. ∆ into a syntactic construction of A. More precisely,



they build a new timed automaton A′ in which guards and invariants are pa-
rameterized by ∆. They prove that the new timed automaton (equipped with
its standard semantics) simulates the AASAP semantics of A, and conversely.

In addition, in the last construction, the parameter ∆ is only used to en-
large guards. This construction can thus be seen as the guard enlargement of
another timed automaton. This last construction thus builds a link between the
AASAP semantics and the guard enlargement operation introduced by Puri in
[Pur98,Pur00].

Finally, they present how to analyze this last parameterized timed automaton
using the tool HyTech, without any guarantee of termination however.

4.2 Summary of [BMR06]

This paper studies the robust model-checking problem for LTL (or more gener-
ally ω-regular) properties. The model of robustness is the one studied in [DDMR08],
that is, guards are enlarged by some parameter ∆, and the problem is to decide
whether there exists a bound ∆0 such that the system with guards extended by
any ∆ ≤ ∆0 satisfies the property.

To solve this problem for LTL and ω-regular properties and a given TA A,
we proceed as follows:

– first we construct an extended region automaton Γ (A), which contains all
standard transitions of the region automaton, and has extra transitions,
called γ-transitions which roughly represents cycles that can be used to add

extra behaviours in the automaton. There is a transition (`, r)
γ−→ (`, r′)

whenever r ∩ r′ 6= ∅ ( · is the topological closure) and furthermore (`, r′)
is in an SCC. This extended region automaton represents the behaviours of
A∆ for ∆ > 0 small enough.

– then we check the property on Γ (A). Properties that can be checked are
roughly all universal (‘all behaviours should satisfy the property’) untimed
properties, this is in particular the case of LTL. There is an equivalence
betweenA robustly satisfies φ (in the senseA∆ satisfies φ for∆ small enough)
and Γ (A) satisfies φ.

This procedure yields optimal complexity bounds for the robust model-checking
problem (PSPACE for LTL).

4.3 Summary of [BMR08]

This paper is also interested in the robust model-checking problem, as proposed
in [DDMR08]. In terms of decidability, this paper proves that the robust model-
checking problem is decidable for Bounded-MTL and coFlat-MTL, fragments
of MTL that have been considered recently. Furthermore the complexity is the
same as the standard model-checking problem.

The method to prove this result is new, and relies on the construction of
a CAROT (a class of channel automata) C which will behave like A∆. The



idea is the following: we will add n clocks to the system, whose values will be
separated by 1

n (clock xi will have value α+ i
n mod 1). They will not be tested

by the automaton A. However for a guard x ≤ c + ∆ to be satisfied, it will be
sufficient to check that either x ≤ c or c < x < c + 1 but at most one clock xi
will have fractional part between 0 and the fractional part of x. Of course this
kind of constraints cannot be used in timed automata, but we will use channel
automata to take advantage of this remark.

We can encode regions by words as follows. The region 0 < x < y < 1 ∧ 1 ≤
z ≤ 2 ∧ z = y + 1 can be encoded by the word {x}{y, z} and the information
int(x) = int(y) = 0 and int(z) = 1 (int( · ) denotes the integral part). When
time elapses the next region to be reached is 0 < x < 1 ∧ y = 1 ∧ z = 2, which
is encoded by the word {x} and the information int(x) = 0, y = 1 and z = 2.
Then the next region is encoded by the word {y, z}{x} with the information
int(x) = 0, int(y) = 1 and int(z) = 2. We see here that time elapsing can
be simulated by the behaviour of a channel, where we read from the head the
clocks with largest fractional part and write clocks with smallest fractional part
at the tail of the channel. Now the extra clocks xi that we have mentioned above
will be represented by a special symbol, say ∆ on the channel. For instance, we
may have the word ∆2{x}∆3{y, z}∆ on the channel, with extra information on
the integral part. An enlarged constraint y ≥ 2−∆ can now be checked on this
encoding as follows: either y ≥ 2, or y < 2 but int(y) = 1 and there is at most
one ∆ on the right of y on the channel.

It is proven that this channel automaton simulates the enlarged automata
(the more ∆’s on the channel the smallest is the parameter in the enlarged
guards). Using this encoding the robust model-checking problem is solved for
fragments of MTL (timed properties).

4.4 Summary of [DK06]

The paper considers the follwowing problem, first introduced and solved in [Pur98]
and [Pur00]: given a timed automaton A and a safety objective given as a set
Bad of states that should be avoided, does there exist a positive value ∆0 such
that, when all guards are enlarged by ∆0, the set Bad is not reachable.

While this problem has been solved by Puri (see also [DDMR04],[DDMR08])
using a region-based algorithm, the objective of the authors is to propose a zone-
based algorithm. This question is relevant as it is well-known that for timed
systems, while region-based approaches are useful to prove decidability results,
they do not offer algorithms that are suitable for implementation. One thus often
aims at developing an alternative algorithm based on zones which, though it may
have a higher theoretical complexity, will be much more efficient in practice.

In this work, the authors consider the restricted setting of Puri (closed guards,
so-called progress cycles, bounded clocks) and in addition, though it is not made
explicit in their paper, they only handle the case of flat timed automata, i.e.
such that each location of the automaton lies on at most one cycle. We will
detail below why this restriction is important.



The approach of Puri is based on a precise study of cycles. Indeed, an in-
finitesimal guard enlargement may only have an effect through the repetitive
firing of a cycle. The resulting algorithm is based on the cycles of the region
graph: considering a forward reachability analysis in the region graph, every cy-
cle in the region graph that is around a neighbour region (of what has been
computed as reachable so far) is added to the set of reachable regions.

To extend this approach to zones, the authors introduce the notion of stable
zone of a cycle ρ of the automaton. It is defined as the set of valuations that
have both infinitely many successors and predecessors through the cycle ρ. It
can be expressed as the intersection of the two greatest fixpoints νX.Postρ(X)
and νX.Preσ(X), where Postσ (resp. Preσ) denotes the operator computing the
successors by ρ (resp. the predecessors by ρ).

They prove that the stable zone of the cycle ρ contains all the cycles in
the region graph whose support is ρi for some i ≥ 1. This yields the following
procedure:

– compute the stable zone for each cycle ρ in the timed automaton A
– perform a symbolic forward analysis of A using zones. Each time a stable

zone is “touched” (i.e. the intersection is non empty), add the full stable
zone to the set of reachable zones.

Considering this algorithm, it appears that the first step requires to enumer-
ate all the cycles of the automaton, which can terminate only if the automaton
is flat.

4.5 Summary of [JR11]

This work suscribes to the setting og guard enlargement by a parameter ∆. Most
of the works in this setting aim at deciding whether there exists a positive value
∆0 such that some property is verified.

This guard enlargement enjoys the following monotonicity property: the set
of runs increases with the value of ∆. This property implies that for different kind
of properties (safety, LTL), as soon as a property is verified for some parameter
value ∆0, it also holds for any parameter value ∆ ≤ ∆0.

It is thus natural to consider the optimization problem raised by this mono-
tonicity property: is it possible to compute the largest of value of ∆ for which
the property is verified?

In this work, the authors consider this problem for the case of safety proper-
ties. The approach proposed is based on the use of parametric zones to effectively
compute the parametric reachability set of a timed automaton. Parametric zones
have been introduced in different works. The parametric zones used in this work
only have a single parameter (∆), and are monotone in this parameter.

The results presented in this work do not apply to the full class of timed
automata, but only to the restricted setting of flat timed automata. This restric-
tion is due to the fact that the algorithm proposed can be seen as a parametric
extension of the one of [DK06], which already holds only for flat timed automata.



More precisely, a pumping lemma is introduced, which allows to accelerate
the computation of the greatest fixpoints defining the stable zone (see the sum-
mary of [DK06]). This gives an algorithm for the parametric computation of
the stable zone. This is used to derive an algorithm computing the parametric
reachability set, that is the reachability set of A enlarged by ∆, for all values of
∆. This set can be represented as finite union of parametric zones.

This computation allows to derive the optimal value for ∆ (for any safety
objective). In addition, it is shown that this value is a rational number.

4.6 Summary of [BMS11]

In this paper the approach using channel machines for robust model-checking
is investigated further (see Section 4.3). A pumping lemma is proven for chan-
nel automata obtained via the reduction of [BMR08]: there are many ∆’s on
the channel, and what we pump are ∆’s. This allows to obtain for instance a
tighter bound for ∆0 (mentioned in Section 4.2) than what was computed for
instance in [DDMR08]. In particular, it shows that the robust model-checking
for A reduces to the standard model-checking of A∆0

, and this yields an optimal
PSPACE bound.

Furthermore the pumping lemma is extended to general timed automata, in-
cluding those with non-progress cycles (it is worth recalling here that all previous
works on robust model-checking assumed progress cycle in the automaton, which
means that every clock was reset on every cycle). This implies the decidability of
the robust model-checking problem for general timed automata (in PSPACE),
for LTL or ω-regular properties.

4.7 Summary of [San11]

This paper is interested in checking the robustness of timed automata against
guard enlargement in the sense of [DDMR08]. Rather than robust model-checking
a given property, the problem solved in this paper is checking untimed language
equivalence between a given timed automaton A and its enlargement A∆ for
some ∆ > 0.

The main result is the decidability of this problem for timed automata with
progress cycles and bounded clocks, in exponential space, and in polynomial
space for a deterministic class of timed automata. The paper shows that a given
timed automaton A preserves its untimed language for some enlargement pa-
rameter ∆ > 0 if, and only if it does so for ∆0, which only depends on the size
of the automaton. The algorithm then consists in checking untimed language
equivalence between A and A∆0

.

4.8 Summary of [BLM+11]

In this paper the robust implementation problem is investigated. The main result
is that for any timed automaton A, we can construct another timed automaton B



which is a robust implementation of A. Robust implementation can take several
meanings in this context. However one requirement is that A and B are strongly
timed bisimilar. Another requirement is that behaviours in B∆ and B are in
relation: it can be that B∆ is safe if B is, or that B and B∆ are ε-bisimilar
(that is, delays should be matched up to ε). Another result is that we can always
construct sampled implementations from a timed automaton.

These constructions are based on the region automaton, with an appropriate
granularity.

4.9 Summary of [SBM11]

This paper is interested in the robust implementation problem: how to modify
a given timed automaton so that its semantics is preserved (in some sense)
under guard enlargements? The main idea is to shrink the guards of the timed
automaton, that is, enlarge by a negative amount, so that for small enough
guard enlargement, the semantics is strictly included in that of the original
automaton. Given appropriate shrinking and enlarging parameters, this always
ensures that the behaviours of the implementation (new automaton) are included
in the behaviours of the specification (original automaton). However, the new
automaton may become blocking, or it may not contain desired behaviours. The
main result is that one can decide (and compute) shrinking parameters for all
guards, so that the resulting timed automaton (a) is non-blocking, or (b) it can
time-abstract simulate the original automaton, or both. Problem (a) is decidable
in PSPACE and in NP when the number of edges per location is bounded by a
constant, while Problem (b) is decidable in EXPTIME. One can also decide in
EXPTIME whether both properties can be satisfied by a set of parameters.

The algorithm is based on parameterized shrunk zones, that is, zones whose
facets are shrunk by parameters. The new data structure introduced in order
to represent these zones is difference bound matrices (DBM) with parameter-
ized expressions using the operations max and plus. It turns out that when one
applies an operation on a parameterized DBM (such as, time predecessors, inter-
section, normalization...), one always obtains a parameterized DBM where new
parameters can always be expressed combining the old parameters using only
maximization a sum. Based on this observation, the paper shows that the syn-
thesis of shrinking parameters satisfying the desired properties can be reduced
to solving equations in the max-plus algebra.

The paper also revisits the program semantics of [WDR04], and studies a
simpler variant. A second result shown here is that when a timed automaton is
shrinkable, that is, when non-blockingness and/or time-abstract simulation hold
for a given set of shrinking parameters, then these properties are preserved by
the program semantics of the shrunk timed automaton. Thus, the existence of
shrinking parameters satisfying the above properties is a sufficient condition of
the implementability in a detailed specific platform.



4.10 Summary of [Doy07]

Laurent Doyen. Robust parametric reachability for timed automata. Information
Processing Letters 102(5):208-213, Elsevier, 2007

A parametric timed automaton or PTA consists of the ingredients of a TA
plus a finite set of parameters from a common domain P; the parameters are
allowed to appear in invariants or guards of the PTA. The parametric reachability
problem (PRP) is to determine whether or not for a given location lf the set of
parameter valuations κ which make lf reachable is empty. Previous results from
the literature had shown that the PRP is decidable under certain constraints,
in particular if only one clock is compared to parameters, but is undecidable in
general for dense time. The starting point of the present article is the question
whether this undecidability is owed only to the fact that closed guards and
invariants are admitted, i.e. equality constraints like x = c or weak inequalities
like x ≤ c. To this end, the author defines open PTAs as PTAs in which, on the
contrary, all guards and invariants are formed by conjunctions of formulas x > c
and x < c, with c either a parameter or a nonnegative integer constant. Yet the
main result (theorem 2) of the paper states that PRP in dense time is undecidable
even for open PTAs. In other words, PTA are ”robustly indecidable” wrt the
PRP: even the fact of making the system model robust by removing equality
based constraints does not lift the undecidability of PRP.

The proof of theorem 2 proceeds by constructing, from a given 2-counter
machine M , an open PTA AM that simulates M. Five clocks and two parameters
are sufficient for this, and AM has as many locations as there are states in M :
To every state qi, i = 0, . . . ,m of M corresponds a location li of AM , such that
lm is reachable iff M halts (i.e. reaches qm). The theorem thus covers the class
of open PTA with ≥ 2 parameters and ≥ 5 clocks; whether or not undecidability
still holds with fewer clocks and parameters is left open.

4.11 Summary of [CHP08]

This paper is related to two-player concurrent timed games with parity objec-
tives. First recall that in this setting, at each turn, the two players independen-
taly propose a time delay and an action, and the action with the action with the
shorter delay is chosen.

The paper contains a first part in which are presented results on the com-
plexity of these games. These results are based on an original reduction of these
games to turn-based, finite-state parity games (this reduction is based on the
region graph construction). As this is not related to robustness, we do not detail
more this part.

In a second part, the authors are interested in the robustness of the winning
strategies they synthesize. The definitions they consider perturb the strategy in
two different manners:

– a jitter εj : if player 1 proposes to play action a after a delay d ≥ 0, then
player 2 can pick another delay d′ ≥ 0 such that |d− d′| ≤ εj



– a response time εr: player 1 must propose delays d ≥ max(0, εr − δenv),
where δenv is the delay since the last action of the environment

Intuitively, the jitter corresponds to the precision of the controller in the
delays it chooses, and the response time represents the delay that must exist
between an action of the environment and the response of the controller.

The authors introduce two different notions of robust strategy:

– a strategy is limit-robust if each play can be perturbed by a positive jitter
(but it may be a different jitter for each play)

– a strategy is bounded-robust for a jitter εj and a response-time εr if its moves
satisfy the response-time condition of εr, and if they can be perturbed by
the jitter εj

Then the authors present two constructions to reduce the existence of limit-
robust (resp. εj-εr bounded-robust) strategies to that of standard strategies.
More precisely, given a timed game G:

– in the first construction, they build a new timed game G′ such that player
1 has a winning strategy in G′ if, anf only if, he has a limit-robust winning
strategy in G,

– in the second construction, given two values εj , εr, they build a new timed
game G′′εj ,εr such that player 1 has a winning strategy in G′′εj ,εr if, and only
if, he has an εj-εr bounded-robust winning strategy in G.

Finally, note, as mentioned by the authors in their paper, that “the question
of the existence of a lower bound on the jitter for which a game can be won with
a bounded-robust strategy remains open”. The results presented in the paper do
not give clues on how to solve this problem, as the jitter εj and the response-time
εr are explicitely used in the second construction.

5 Robust drift-based models

5.1 Summary of [DDMR04] and [DDMR08]

The second paper is a long version of the first one, with full (and improved)
proofs. Both papers build on the earlier papers [Pur98] and [Pur00], in which
the following parametric-robustness question is raised and solved: given a timed
automaton A, does there exist positive values for ε0 and ∆0 such that A, under
an enlarged and drifting semantics where guards are enlarged by ∆ < ∆0 and
clocks drift by ε < ε0, remains safe.

While the paper [Pur00] first focuses on clock drifts only, and then extends
the results to the general case, the paper [DDMR08] focuses on guard enlarge-
ment, and then extend to the general case. The techniques used in both papers
are very similar (and are sketched below), but the proofs in [Pur00] are some-
what sketchy (see the proof of Lemma 6.6) and sometimes wrong (Lemma 6.4,
corrected in [DDMR08, Lemma 16]).

The main result of the papers are the following:



– under the enlarged semantics (guard enlargement, drifts, or both), and un-
der some technical restrictions (especially to timed automata for which any
cycle in the region automaton resets all the clocks—this is the so-called
progress-cycle assumption), the set of configurations that are reachable for
any positive values of the parameters is region-definable. Moreover, this set
is the same if considering only guard enlargement, or only clock drifts, or
both.

– that set can be computed in polynomial space, by adding new transitions
to the region automaton (the presentation as an extension of the region
automaton was only made explicit in [BMR06], but it directly follows from
the results in these papers). We add a new transition from a region (l, r) to
a region (l, r′) whenever there is a cycle (in the region graph) on (l, r′), and
r and r′ are neighbour regions.

– When the set of configurations that are reachable for any positive values of
the parameters does not intersect a (zone-)set of bad configurations, then
we can effectively build positive values of the parameters for which this is
the case. In other terms,⋂

∆>0

Reach(A∆) ∩B = ∅ ⇔ ∃∆ > 0. Reach(A∆) ∩B = ∅.

The techniques used to prove these results are as follows:

– the analysis of limit cycles in the timed automaton, which are cycles in the
timed automaton (hence returning back to the exact initial configuration)
cycling (possibly several times) along a cycle of the region automaton. Given
a cycle p in the region automaton, Lp is the set of points in the initial
region p0 of p which have a path (following p, possibly several times) back
to themselves. From any point in p0, Lp is reachable and co-reachable (in
the classical semantics).

– under the enlarged semantics (for any positive enlargement), for any two
points a and b in Lp, there is a path from a to b: this is proved “by hand”
(i.e., by explicitly building a path) that for any point a and b in p0 that are
close enough, it is possible to modify any cycle from a to a in order to get a
path from a to b in the enlarged timed automaton.

Combining this with the previous result, we get that under the enlarged
semantics, the set of reachable configurations for any positive enlargement
is included in the set of reachable region in the extended automaton.

– Completeness is obtained by showing that any finite-length trajectory in
the enlarged automaton can be mimicked by a trajectory in the original
automaton, both trajectories visiting the same sequence of transitions and
always remaining at a distance of at most ε from each other, provided that the
enlargement is small enough (compared to ε and the size of the automaton).
This is proved using parametric DBMs.



5.2 Summary of [SF07] and [SFK08]

We only report on the second paper: the first paper is a one-page poster pa-
per that appeared in the proceedings of TIME’07. The corresponding 11-page
research report is fully included in the second paper.

The authors follow the approach of [Pur98], by considering drifting clocks
in timed automata. The difference is that they restrict to finite runs (and then
generalize to infinite runs in resynchronizing systems).

For finite run drifting clocks, robust safety is defined as follows: given an
integer n (corresponding to the maximal length of the runs to be considered),
there exists ε0 such that no bad state is reachable under the ε-drifting semantics,
for 0 < ε < ε0. Not very surprisingly (contrary to what the title indicates), given
a bound on the length of the runs, it is always possible to find a positive ε0 for
which the accumulated drift will not be sufficient to really reach new sets of
states. The only newly reachable configurations are in the neighbouring regions,
so that when the timed automaton only has closed gards, safety is equivalent to
finite-run robust safety (Theorem 1).

In a second part (which is the main difference between [SFK08] and [SF07]),
the authors introduce a model of timed automata in which clocks are regularly
(at least once every µ time units) resynchronized (with imprecision ∆). Applying
the previous results, provided that µ and ∆ are small enough, safety robustness
is again shown equivalent to plain robustness.

6 Distributed models

6.1 Summary of [Kri99]

Distributed Timed Automata (DTA) have been introduced by P. Krishnan in
1999. He considers networks of timed automata with the particular assumption
that time is local to each automaton. Each automaton owns a set of clocks which
only the owner can reset, but everyone may check the value of everyone’s clocks
(local read/write, distant read). At any given instant the global time is a vector
of real values (i.e. the collection of the time at each agent).

6.2 Summary of [DL07]

Here, the semantics is given as usual by a Timed Transition System (TTS). In
time passage transitions, all components evolve independently one of the other,
the local times being incremented independently, which will increment the global
time with the sum of local increments. The paper considers the timed languages
defined by accepting paths of such TTS. It is proved that the class of timed
languages defined by DTA is strictly larger that the timed languages of timed
automata (TA). This class is proved to be equivalent to the languages defined by
a particular class of stopwatch automata, called partitioned stopwatch automata.
We can thus retain that DTA are more expressive that TA. It is also proved that
the class of DTA is not closed under intersection.



6.3 Summary of [ABG+08]

This paper provides a framework for distributed systems with independently
evolving local clocks (DTA). Each component of the distributed system is mod-
eled by a timed automaton. Each clock is said to belong to exactly one of the
components. All clocks belonging to the same timed automaton evolve at the
same rate. However clocks belonging to different components are allowed to
evolve at rates that are independent of each other. Now, clocks belonging to a
component can be read/checked by another component but a clock can only be
reset by the component it belongs to. Thus, the different components interact
with each other only through reading of each other clocks.

Since time values on different components are completely unrelated, the pa-
per focuses on studying the underlying untimed behaviors of these distributed
timed automata rather than their timed behaviors. Thus, clocks (and time it-
self) are synchronization tools rather than being a part of the observation.
This is a crucial point where this work departs from previous works, such as
[Pur00,DDMR04]. This also explains why the DTA differ from hybrid automata.

Different semantics are considered for (1) negative specifications, i.e., if some
bad system configuration be reached under some choice of local time rates, and
(2) positive specifications, i.e., checking if a system exhibits some good behav-
ior under all relative clock speeds. The universal semantics (used to guarantee
that the system always exhibits a positive specification) describes the behaviors
exhibited by the system no matter how time evolves in the individual compo-
nents. While the existential semantics (used to check if system avoids a negative
specification), is the set of behaviors that the system might exhibit under some
(bad) choice of local time rates. The main results are:

– Model checking DTA against regular negative specifications is decidable.
This is proved by defining a finite equivalence relation over the set of con-
figurations of a distributed timed automaton, using which it is proved that
the existential semantics always yields a regular set of untimed behaviors.

– Checking emptiness and universality for the universal semantics are undecid-
able. This is shown by a reduction from Post’s correspondence problem. This
result is further strengthened to a bounded case, where there are restrictions
on the relative time rates.

– Finally, to be able to synthesize and verify positive specifications, a more
intuitive reactive semantics is introduced. Here, the behaviour of the system
is controlled in a step-by-step manner, depending on how time progresses
on each local component. Thus, the resulting behaviours always satisfy a
positive specification. By defining an equivalent alternating automaton it is
shown that the reactive semantics always yields a regular set of behaviours.

6.4 Summary of [OLS11]

Considering distributed clocks rises the question of the subclass of distributed
event clock automata (EDTA) that was addressed recently. Interestingly, it ap-
pears that EDTA have the same expressive power than event clock TA, contrary



to what it happens for DTA. The distributed nature of clocks do not impact the
behaviors of event clock automata, confirming the effect of forgetting induced
by the ECA.

7 Discretization approaches

7.1 Abstract of [HMP92]

The main goal of the paper is to establish conditions ensuring that the satisfac-
tion of a property by a timed system is equivalent in dense and discrete time
settings.

Given a set of real timed sequences Π, the authors define two “integral”
operators:

– Z(Π) ⊆ Π the subset of sequences with integer dates (i.e. considering only
the sequences compatible with a discrete-time semantic).

– [Π] = {[ρ]ε | ρ ∈ Π ∧ 0 ≤ ε < 1} where [·]ε is defined as follows. Let
ρ = (e1, τ1) . . . (en, τn), then [ρ]ε = (e1, τ

′
1) . . . (en, τ

′
n) with τ ′i = min(n | n ∈

N ∧ τi ≤ n+ ε). This operator associates with every sequence of Π a set of
sequences indexed by 0 ≤ ε < 1 with integer dates stamped by a clock whose
is incremented as soon as the absolute date is strictly greater than n+ ε for
all n ∈ N. By definition (choosing any ε), Z(Π) ⊆ [Π].

Given a timed system S (resp. a formula ϕ) [[S]]R (resp. a formula [[ϕ]]R)
denotes the real sequences generated by S (satisfying ϕ). The discrete-time se-
mantics is obtained by applying the operator Z.

So more formally, the goal of the paper is to find a sufficient condition to
obtain the equivalence:

[[S]]R ⊆ [[ϕ]]R iff Z([[S]]R) ⊆ Z([[ϕ]]R)

The authors introduce two useful definitions.

Definition 1 (Digitization and inverse digitization).
Π is closed under digitization iff [Π] ⊆ Z(Π) (implying the equality) which is
in fact equivalent to [Π] ⊆ Π.

Π is closed under inverse digitization iff ∀ρ timed sequence [ρ] ⊆ Π ⇒ ρ ∈ Π.

The main theorem is the following one.

Theorem 1. If [[S]]R is closed under digitization and [[ϕ]]R is closed under in-
verse digitization then the equivalence above holds.

Proof.
By monotonicity of Z operator, [[S]]R ⊆ [[ϕ]]R implies Z([[S]]R) ⊆ Z([[ϕ]]R).



Assume Z([[S]]R) ⊆ Z([[ϕ]]R).
By digitization property of S:

[[[S]]R] = Z([[S]]R) ⊆ Z([[ϕ]]R) ⊆ [[ϕ]]R

Let any ρ ∈ [[S]]R, using the previous line we have

[ρ] ⊆ [[ϕ]]R

By inverse digitization property of ϕ:

ρ ∈ [[ϕ]]R

ut

Then the authors identify a class of timed transition systems which is closed
under digization and a subset of formulas of MTL which is closed under inverse
digitization (including relevant properties like some cases of bounded invariance
and bounded response properties).

Finally they propose for every formula ϕ of MTL a strenghthened and a
weakened version of ϕ both closed under inverse digitization thus enabling “ap-
proximate” model-checking of ϕ in the discrete-time setting.

7.2 Summary of [OW03]

The paper studies links between digitization (and inverse digitization) as in-
troduced in [HMP92] and robust acceptance as proposed in [GHJ97] for timed
automata.

The authors consider the set Traj of (weakly monotonic) finite timed traces
over some alphabet Σ. For a subset L of Traj, Z(L) denotes the subset of
sequences in L with integer dates. A classical observation is that integral timed
traces over Σ are in a one-to-one correspondance with untimed traces over the
alphabet Σ ∪ {

√
}.

For a (mixed) timed automaton A, the subset of Traj of sequences accepted
by A is denoted by [[A]], with Z([[A]]) for the subset of sequences with integer

dates and [̃[A]] for the set [[A]]
int

of robust traces obtained by tube acceptance.

An open timed automaton is a timed automaton in which all clock constraints
in guards are open (i.e. use only < or >) and a closed timed automaton is a timed
automaton in which all clock constraints in guards are closed (i.e. use only ≤ or
≥).

For a timed automaton A, it is easy to build from the region automaton an
untimed automaton A

√
accepting Z([[A]])

√
.

The language which is not regular (taking into account the fact that no ε-
transitions are permitted) is {(a, k1)...(a, kn) | n ∈ N, ki ∈ N for i = 1, 2, . . . , n}.

The results are presented in the tables below, borrowed from the paper. The
emptiness and robust emptiness problem are decidable.
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Fig. 1. The counter-example

A [[A]] = ∅ ? [̃[A]] = ∅ ?
Mixed Decidable Decidable

The integral emptiness problem is decidable but whether the integral robust
emptiness problem is decidable is open.

A Z([[A]]) = ∅ ? Z([̃[A]]) = ∅ ?
Mixed Decidable ?

The universality problem is only decidable for open timed automata under
the standard semantics.

A [[A]] = Traj ? [̃[A]] = Traj ?
Mixed Undecidable Undecidable
Open Decidable Undecidable
Closed Undecidable Undecidable

The integral universality problem is only decidable under the standard se-
mantics.

A Z([[A]]) = Z(Traj) ? Z([̃[A]]) = Z(Traj) ?
Mixed Decidable Undecidable

Denoting by CUD (resp. CUID) the closure under digitization (resp. inverse
digitization), closure under digitization is only decidable under the standard
semantics.

A [[A]] CUD ? [̃[A]] CUD ?
Mixed Decidable Undecidable
Open Decidable Undecidable
Closed Yes Undecidable



Closure under inverse digitization is undecidable for mixed and closed timed
automata under the standard semantics and otherwise holds.

A [[A]] CUID ? [̃[A]] CUID ?
Mixed Undecidable Yes
Open Yes Yes
Closed Undecidable Yes

Finally, the status of the tick languages is investigated:

Property Z([[A]])
√

Z([̃[A]])
√

Regular ? Yes No
Recursive ? Yes Yes

7.3 Summary of [Bey01a,Bey01b,BLN03]

These papers present the work leading to the development of the tool Rabbit, for
the verification of timed systems using a discretization approach and symbolic
data structures (i.e. BDD) to cope with the large state spaces.

The FME 2001 paper [Bey01a] defines the particular automata which are
used by the tool (called Cottbus timed automata, which are classical TA with
syntactic support to define a system compositionally). The paper then addresses
the problem of discretization for closed timed automaton, i.e. a timed automaton
in which all clock constraints in guards are closed and use only ≤ or ≥ and ∧.

The goal is to prove location equivalence of the automata under continuous or
discrete semantics. To this end, the authors define a relation associating to any
continuous clock assignment its discrete integer representative. v′ is an integer
assignment representative of v in the continuous interpretation if there exists a
γ ∈ R such that either v′−1+γ < v < v′+γ (basic case) or v′−1+γ < v and v′

is the greatest constant used in a guard of the automaton plus one. The second
case allows to abstract away divergent cases by a representative that is one above
the highest clock constant. The proof is then quite straightforward, and proves
location equivalence, i.e. a location is reachable under discrete semantics iff. it
is reachable under continuous semantics.

The authors mention several other similar proofs of equivalence between dis-
crete and continuous semantics, in particular Henzinger, Manna and Pnueli’s
seminal work on discrete clocks [HMP92] and Popova’s work on time Petri
nets [PZ91].

They also cite a CONCUR’98 paper by Asarin, Maler and Pnueli [AMP98],
which addresses the following problem (excerpts from abstract): ”given a digital
circuit composed of gates whose real-valued delays are in an integer bounded in-
terval, is there a way to discretize time while preserving the qualitative behavior
of the circuit?”



This problem is described as open in J.A. Brzozowski and C-J.H. Seger’s
book ”Asynchronous Circuits” (1994). When preservation of qualitative behav-
ior is interpreted in a strict sense, as having all original sequences of events with
their original ordering we obtain the following two results: 1) For acyclic (com-
binatorial) circuits whose inputs change only once, the answer is positive: there
is a constant N , depending on the maximal number of possible events in the
circuit, such that if we restrict all events to take place at multiples of N , we
still preserve qualitative behaviors. 2) For cyclic circuits the answer is negative:
a simple circuit with three gates can demonstrate a qualitative behavior which
cannot be captured by any discretization. Nevertheless [AMP98] shows that a
weaker notion of preservation, similar to that of [HMP92], allows in many cases
to verify discretized circuits with N = 1 such that the verification results are
valid in dense time.

Given this equivalence between discrete and continuous analysis for these
models, the paper [Bey01b] presents the tool Rabbit, that includes verification
of reachability properties using a BDD based approach. Clocks are simply inte-
ger variables with a domain ranging from 0 to the highest constant the clock is
compared against in a transition guard. The paper compares favorably compares
a BDD encoding of the discrete system to dedicated encodings of the continuous
semantic. This paper also points to other references describing a heuristic for
variable ordering in the BDD, and a CEGAR style loop for incremental refine-
ment of a specification expressed in Cottbus automata. This refinement relation
includes support for time constrained systems.

The CAV’03 paper [BLN03] is a shorter and perhaps more mature presen-
tation of the same information as in [Bey01b], including more comparisons to
tools such as Uppaal or RED.

7.4 Summary of [MLR08]

This paper addresses the class of bounded Petri nets with stopwatches (SwPNs),
which is an extension of T-time Petri nets (TPNs) where time is associated with
transitions. Contrary to TPNs, SwPNs encompass the notion of actions that can
be reset, stopped and started. Models can be defined either with discrete-time
or dense-time semantics. Unlike dense-time, discrete-time leads to combinatorial
explo- sion (state space is computed by an exhaustive enumeration of states).
We can however take advantage from discrete-time, especially when it comes to
SwPNs: state and marking reachability problems, undecidable even for bounded
nets, become decidable once discrete-time is considered. Thus, to mitigate the
issue of combinatorial explosion, we now aim to extend the well-known symbolic
handling of time (using convex polyhedra) to the discrete-time setting. This is
basically done by computing the state space of discrete-time nets as the dis-
cretization of the state space of the corresponding dense-time model. First, we
prove that this technique is correct for TPNs but not for SwPNs in general: in
fact, for the latter, it may add behaviors that do not really belong to the evolu-
tion of the discrete-time net. To overcome this problem, we propose a splitting of
the general polyhedron that encompasses the temporal in- formation of the net



into an union of simpler polyhedra which are safe with respect to the symbolic
successor computation. We then give an algorithm that computes symbolically
the state space of discrete-time SwPNs and finally exhibit a way to perform
TCTL model-checking on this model.

The paper contains proofs that the decomposition is valid and preserves
properties of interest, in this case TCTL. A way to understand the paper is
that DBM cannot encode arbitrary polyhedra (i.e. time zones), but splitting the
polyhedra for a time zone into smaller convex polyhedra allows a) to preserve the
semantics b) to use existing verification techniques. The proof material shows
that it is sufficient to preserve the semantics that we consider polyhedra that
cover one time unit. Figure 2 shows how a time zone is split into smaller convex
polyhedra.

Fig. 2. Illustration of the effects of a splitting procedure. Poly represents the temporal
domain associated to a symbolic class of a discrete-time ITPN. DBM split(Poly) cor-
responds to a potential decomposition of this polyhedron into a union of DBMs such
that Disc(Poly) = Disc(DBMsplit(Poly)) (i.e. the discrete semantics are preserved).

7.5 Summary of [CHR02]

A comparison of control problems for Timed and Hybrid Systems (Cassez, Hen-
zinger and Raskin): In the first half, the authors review and compare several
known formalisms and results for the control of Timed and Hybrid systems.
In the second half, some new results regarding the comparisons and one un-
decidability result are proved. The models considered are tractable subclasses
of hybrid automata, namely rectangular automata (RA for short), initialized
rectangular automata (iRA) and timed automata (TA), in decreasing order of



expressive power. In TA all real-valued variables have constant derivative 1; in
RA the derivatives of all variables are bounded by constants from above and
below and in iRA these bounds are allowed to change only when the variable is
reset.

For the model of control, two broad distinctions are made between dense and
discrete time. Dense time control semantics is defined by splitting here each move
into a continuous, time-elapse step (made by the plant) and a discrete-action,
instantaneous step (made by the controller). The discrete-time or sampling se-
mantics is obtained by fixing a number β > 0 and requiring that each continuous
step take exactly β units of time; thus, the plant evolves continuously while the
controller observes the system every β time units and makes a discrete action
only then. Within both the above models, two further distinctions are made: in
the discrete time case, between known and unknown sampling rate depending on
knowledge β and in the case of dense time between known and unknown switch
conditions, depending on knowledge of a set of predicates based on which the
controller makes its discrete steps.

A control relation κ of a transition system H (a TA/iRA/RA) assigns every
state to a non-empty subset of actions such that, from every state there is a
transition with some action in this set. Thus the semantics of H under κ is the
set of states reachable in H under the control relation κ. Fixing an RA H, a
(polyhedral) set of its states R, the problems considered in the paper are:

1. The known sampling rate control problem (KSR for short) for discrete se-
mantics, asks if given a sampling rate β, there exists a control relation κ
such that R is not reachable in β-sampled semantics of H under κ.

2. The unknown sampling rate control problem (USR for short) for discrete
semantics, asks if there exists a β > 0 such that the above statement holds.

3. The known switch conditions dense-time control problem (KSC for short)
asks if there exists a control relation κ such that R is non-reachable in the
dense-time semantics of H under κ. That is, given a set of predicates P on the
plant state at each controller state, can an unsafe plant state be prevented
by a controller choosing switch conditions from P?

4. The unknown switch conditions dense-control problem (USC for short) asks
if there exists such a set of predicates P on the plant state such that the
above holds (formalizing this is a bit more complicated).

Theorems 1, 2, state that the “unknown” versions (2,4) are more general than
the “known” counterparts (1,3). Decidability results are known, except for USR:

System KSC USC KSR
TA dec [MPS95] dec [MPS95] dec [HWT92]
iRA dec [HHM99] undec [HKPV98] dec [HK99]
RA undec [HHM99] undec [HHM99] dec [HK99]

The new results in this paper are:

– Unknown sampling rate control (USR) is not as powerful as dense-time con-
trol(KSC/USC): shown by constructing a TA that can be controlled by



known or unknown switch conditions dense-time controllers to avoid a Bad
location, but not by any discrete-time controller, no matter how fast it is.

– Dense-time control with known switch conditions (KSC) are not as powerful
as known sampling rate control (KSR): shown by a simple TA construction.

– It is stated that the USR problem is undecidable for TA (and hence for
iRA and RA) by showing the undecidability of the following problem: does
there exist β > 0 such that, given a TA H and a set of states R, R is not
reachable in the β-sampled semantics of H. But, in fact what is proved to
be undecidable is the following related problem (let us call it USR’):
Does there exist a β > 0 such that given a TA H and a set of states R, R is
reachable in the β-sampled semantics of H.

This problem is significant in its own right but its not clear how it implies USR.
In any case, proving this undecidability forms the main proof of the paper and
is done by a reduction from the reachability problem for 2-counter systems. The
proof encodes unbounded values of counters c using the difference between two
clocks x, y. First part is to design a TA sampled at rate 1

β that simulates runs of

a 2-counter machine with counter values less than bβc, as follows: if x ≥ y, then

c = (x − y)β and if x < y, then c =
(
bβ+1c
β − (y − x)

)
β. The maximal value

that can be encoded with x, y ∈ [0, 1] for counter c is then exactly bβc. Thus, by
increasing β arbitrarily large counter values can be encoded, which is the crucial
property. By resetting x, y at every sampling point it is ensured that x − y is
always a multiple of 1

β and when overflow occurs it goes into a deadlock non-final
state. In the second part, state reachability problem for 2-counter machines is
reduced to the USR’ problem for TA, completing the proof.

8 Platform execution approaches

8.1 Summary of [AT05]

This paper questions whether implementability issues in timed automata should
really be handled at the semantical level (as proposed in [GHJ97,Pur98,DDMR04]).
Instead, it proposes a modelling approach, where the execution platform is fully
described6 (as timed automata), with digital clocks, positive response time. This
platform runs in parallel with a discretized version of the timed automaton un-
der study, sending tick events when the modelled CPU is ready to apply a new
transition in the automaton.

This approach allows for a very precise modelling of the execution platform:
for instance, the digital clock can be exactly periodic (incremented by ∆ every
∆ time units), drifting (incremented by ∆ after some delay in [∆− ε,∆+ ε]), ...
Similarly, the CPU can trigger transitions in the automaton more-or-less peri-
odically and regularly.

6 Notice that in particular, the problem is not the parameterized problem of deciding
the existence of an execution platform, but the problem of verifying that a given
platform is fine.



Obviously, the composition of all these automata can be checked using Up-
pAal of Kronos, as it is made of plain timed automata. Controller synthesis
techniques can also be applied quite directly. The authors do not report on their
experiments, and it is not clear whether this will be efficient in practice: first,
time in the original timed automaton is discretized, leading to a (possibly huge)
timed automaton with discrete variables. This automaton is then composed with
several (admittedly small) timed automata modelling the platform, resulting in
a possibly enormous automaton.

Finally, the authors study the question whether “faster is better” in their
approach: this property states that if a timed automaton is “correct” (safe, say)
on some execution platform, it will remain correct on a faster platform. This
property holds of the semantical approaches of [Pur98,DDMR04]. It is not the
case here: actually, already for the sampled semantics, refining the sampling time
may introduce new (and possibly incorrect) behaviours. The same holds here,
as this modelling approach is able to encode the sampling semantics.

8.2 Summary of [Die01]

This paper introduces a formal modelisation for simple programs implemented
on programmable logic controllers (PLC). This configuration is often used in
industry for the implementation of real-time systems.

A PLC is a hardware device with a minimalist operating system that basically
and repeatedly reads input signals, compute new outputs and produce output
signals accordingly. The duration of sych a cycle can vary with the program, the
number of inputs and outputs and the different PLCs available.

An important feature is that inputs are received asynchronously and period-
ically polled for by the OS before computing the outputs.

The combination of the program and hardware is modeled as PLC-automata,
which are syntactically Moore machines equipped with:

– an upper bound ε for the duration of cycles;
– a function Se giving for each state q a set of input signals to ignore (for some

time);
– a function St giving for each state q the duration during which signals in
Se(q) will be ignored.

So the programs modeled by PLC-automata are very simple: they have a
state which can be updated according to the inputs and they can ignore some
inputs for some time upon changing states.

The semantics of PLC-automata is given using duration calculus (DC) [CHR91]
and also using timed automata, thus defining a subclass of TA that is imple-
mentable with PLCs, if ε is big enough.

The paper also shows, in terms of DC, how PLC-automata can be composed
in terms of synchronisation (input sharing on the same PLC), pipelining (chain-
ing) and transmission (communication through some medium).

Finally the modelisation is illustrated on a leaking gas burner case-study.



9 Towards a formalization of robustness problems

9.1 The models and their semantics

We first need to distinguish between two types of models: those used for the
implementation systems and those intended for the specifications. In both cases,
we also have to describe the semantics for these models. The different semantics
are given by a type and relevant parameters.

The models considered here include explicit time constraints, with the pos-
sible addition of other quantitative features. Therefore, they can be timed au-
tomata (TA) or networks of timed automata (NTA), time or timed Petri nets
(TPN or TdPN), and possibly hybrid automata (HA) and weighted timed au-
tomata (WTA).

For such a model S, we denote the semantics by [[S]]typex where type is the
type of the semantics and x ∈ X is the chosen value of the parameters in a set
X.

Implementation models. We list some possible types of semantics with the asso-
ciated parameters.

– A discrete-time semantics which means that the clocks are observed
every δ time units. Here the main parameter of this semantics is δ.

– A monitoring semantics which means that the system is executed by a
monitor whose capabilities constitute the parameters of the semantics: the
maximal cycle lengths, the reaction delay, etc.

– A perturbed semantics where the parameters could be the precision and
the drift of the clocks.

– A distributed semantics where the parameters describe the kind of syn-
chronization between processes.

Specification models. Similar semantics also exist at the specification level. How-
ever here the parameters correspond to the required features (precision, delay,
etc.). Generally these models are more abstract and are more powerful, for in-
stance the mechanisms of time control could be infinitely precise.

9.2 Expression of the properties of the models

9.3 Relation between models

We also need an approximation relation R between models, given for instance
by ε-(bi)simulation or some metrics (like trace distance), and a property specifi-
cation language P like for instance a set of safety properties, a timed or untimed
temporal logics, game logics or (bi)-simulations.



9.4 Formalization of the robustness problems

With these notations, two main problems can be stated: the first one concerns
the verification of an implementation (possibly w.r.t. a given property), while
the more difficult second one addresses the question of implementation synthesis
(also w.r.t. some property).

Given an implementation semantics [[·]]impx , a specification semantics [[·]]absy ,
and a relation R, the verification problem is, for some suitable definition of �:

∀x ∃y ∀S ∃S ′ such that ([[S]]impx � [[S]]absy ) ∧R(S,S ′)

while the synthesis problem is

∀y ∃x ∀S ′ ∃S such that ([[S]]impx � [[S]]absy ) ∧R(S,S ′)

Variants of the problem can be related to some P:

∀x ∃y ∀S ∀ϕ∃S ′ such that ([[S ′]]impx |=abs
y ϕ⇒ [[S]]absy |=imp

x ϕ) ∧R(S,S ′)
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