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Chapter 1

Introduction

When the author of this document was still a child, electronic computers
had been in existence for thirty years but an average person would not per-
sonally have seen or used one. Since then, we have witnessed their gradual
but incessant invasion into our lives, to the point of becoming omnipresent:
laptops, smartphones, embedded systems in cars, etc.

With this development comes an undeniable need for ensuring that com-
puter systems function correctly, and various methodologies have been devel-
oped for this purpose. Software-engineering techniques aim to reduce bugs
in practice through a rigorous production process; or to detect them through
systematic testing, which can find bugs but not guarantee their absence. By
contrast, formal methods provide means for rigorously specifying the desired
behaviour of a system, making a precise model of its actual behaviour, and
then verifying whether that actual behaviour corresponds to the specification.
Thus, one can prove either the presence or the absence of bugs.

Of particular interest is the case where the verification step happens au-
tomatically, i.e. is carried out by a computer. That is a challenging problem,
for reasons that will be explained in a moment. Nonetheless, large progress
has been made towards this end during the last thirty years. This is reflected
by the fact that companies like Intel or Microsoft today employ large teams
of verification specialists.

The two principal scientific challenges to automated verification are the
decidability boundary and the effect of state-space explosion.

As for the first, it is well-known that all non-trivial behavioural properties
of computer programs are undecidable in general, meaning that it is provably
impossible to write a computer program A that analyzes another computer
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program B and tells the user whether B can reach a certain program state,
terminate, or satisfy other non-trivial specifications concerning its behaviour.
More precisely, this is the case when when B can be an arbitrary program
that has all the capabilities of of an ordinary (“Turing-powerful”) computer.
However, when the features of B are restricted, automated verification may
still be possible. It is easy when B can only attain finitely many different
states – it suffices to enumerate them all. Then again, interesting system
often attain infinitely many states, for various reasons: they may handle
data with an infinite domain (e.g., integers), handle an unbounded amount of
data (lists), have infinite control structures (recursion), consist of an arbitrary
number of components or participants (e.g., an network protocol), etc.

Even when the number of possible states is finite, that number may still
be very large. Indeed, a simple program that manipulates a 32-bit integer
variable and nothing else, can a priori have 232 different states. The term
state-space explosion describes the observation that even seemingly simple
systems may have a huge number of different states, rendering näıve meth-
ods for automatic verification infeasible. Apart from data, another common
source of state-space explosion is concurrency, due to the different orders in
which concurrent threads can be executed.

Thus, there are two major endeavours in formal-verification research: (i)
to find cases where automated verification is still possible, and (ii) to make
the techniques efficient for large state-spaces.

As for (i), the idea is to identify the features and specifications, or combi-
nations thereof, that still allow verification, and develop algorithms for that
purpose. Failing this, another approach is to derive approximation tech-
niques for certain subclasses, i.e. algorithms that err only on one side: an
algorithm that over-approximates the reachable state space is guaranteed to
find all existing errors but may report additional spurious ones, whereas an
under-approximating algorithm guarantees correctness only for executions
that do not exceed certain bounds.

As for (ii), one tries to identify ‘smart’ techniques that alleviate the effects
of state-space explosion. Some general ideas in this domain are symbolic
verification, where adequate data structures are used to represent many states
concisely and manipulate them all at once; reduction, where the verification
problem is reduced to a smaller, equivalent one; or abstraction, where part
of the information about B is deliberately omitted, leading to a smaller,
non-equivalent problem whose solution errs only in one direction.

This results reported in this thesis contribute to these realms. My main
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interest has been on algorithmic aspects. This is motivated by the observa-
tion that asymptotic worst-case complexity, often used to characterize the
difficulty of algorithmic problems, is only loosely related to the difficulty en-
countered in solving those problems in practice. Indeed, a good choice of
algorithms and careful implementation can make all the difference between
rendering a problem feasible or infeasible in practice. Well-known exam-
ples include, for instance, SAT checkers to solve NP-complete problems, or
binary decision diagrams for symbolic verification. For this reason, many
papers on which the thesis is built are accomodated by implementations and
experimental results.

Content of this document

This document represents a synthesis of selected parts of my research, car-
ried out since my PhD. This presentation focuses on the two most significant
aspects of my work, each corresponding to one chapter. The two main for-
malisms used in this paper are pushdown systems and Petri nets. Both are
fundamental notions of computation, and both offer, in my opinion, partic-
ularly nice opportunities for combining theory and algorithmics. In both
chapters, I chose to highlight one particular line of research in more detail
and give extended abstracts of the other contributions.

In all these works I have profited greatly from the collaboration with other
colleagues, to whom I extend my heartfelt thanks. They are duly credited in
the beginning of each section in Chapters 2 to 3.

Chapter 2 is dedicated to verification methods for pushdown systems
(PDS). These are finite automata equipped with a stack; since the height of
the stack is not bounded, they represent a class of infinite-state systems that
model programs with (recursive) procedure calls. Fortunately, this interest-
ing class of systems admits automated verification. Already for my PhD
thesis [Sch02a], I investigated model-checking algorithms for PDS and a tool
called Moped implementing these algorithms.

The main line of work presented in this chapter is a framework for weighted
PDS. This was the first research interest I pursued after my PhD and there-
fore had more time than the others to make an impact. It also provided
the basis for the other contributions in this chapter. In a weighted PDS, a
transition rule is equipped with a weight from an idempotent semiring, where
the weight may express quantitative aspects of the action represented by the

9



rule. This allows, for instance, to express general data-flow problems and
has applications in program analysis and verification. In the work originally
presented in [RSJ03, RSJM05], those semirings had to be bounded, i.e. with-
out any infinite descending chains among the weights. Later, the setting was
extended to allow infinite descending chains [KSSK09a].

Various other contributions in this area will be presented more briefly.
The first among these are extensions to concurrent PDS. Verification meth-
ods for concurrent PDS are challenging not only due to state-space explo-
sion, but also because of the decidability boundary. The contributions in this
area are based on the context-bounded approach, where one only considers
executions in which the active process changes no more than a fixed num-
ber of times. We first extended the approach and made it more expressive
[BESS05]. The applicability of the context-bounded approach in its original
form was hampered by the difficulty to combine it with symbolic techniques.
In [SES08], we tackled this problem and developed a variant suitable for
BDD-based methods.

Another contribution in this category was a framework for integrating
counterexample-based abstraction refinement into BDD-based pushdown ver-
ification [EKS06, EKS08b]. I developed some tools in this area: The Wpds
library [Schc] is based on the eponymous formal framework and served as
the basis for a new implementation of Moped. The latter matured into a
user-friendly tool for analyzing Java programs (jMoped) through the work
of Dejvuth Suwimonteerabuth, a PhD student in our group. jMoped also
serves as a test environment for Java programs [SSE05, SBSE07].

Specifying authorizations is another, particularly interesting application
of pushdown systems. Indeed, PDS serve as a suitable model for expres-
sion authorization grants. Such a model has been proposed under the name
SPKI/SDSI standard (RFC 2693). Therefore, algorithms for pushdown reach-
ability provide an implementation of access-control policies. In this chapter,
we study several theoretical and practical aspects of this relationship.

First, weighted PDS can give richer semantics to SPKI/SDSI, which are
relevant in a security-related context, such as privacy, recency, validity, and
trust [SJRS03]. Second, alternating PDS naturally enable intersection of
certificates, a possibility provided for by the RFC, but, due to its apparent
complexity, ignored by all previous algorithms for SPKI/SDSI. While reach-
ability for alternating PDS is EXPTIME-complete in general, we show that
a sensible restriction suitable for this application yields a polynomial subcase
[SSE06]. As a final extension of the formalism, probabilistic PDS are shown
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to be a suitable tool for computing the reputation of individuals within a
group [BESS08].

On the practical side, we showed how to implement SPKI/SDSI autho-
rization in a distributed setting [JSWR06] and how to integrate it into Ker-
beros [WJR+06]. I recently had the opportunity to put this work into practice
in the server used by the computer science department of ENS Cachan to
manage, e.g., courses, students, their marks, etc.

Chapter 3 details the work done on Petri nets. Unlike PDS, which are
primarily suited to express sequential systems, Petri nets model concurrent
systems. My contributions in this area all concern unfoldings. In a nutshell,
the unfolding of a net N is an acyclic version of N in which loops have been
unrolled.

Again, the chapter focuses on one line of work, this time a more recent
one, which went towards improving the conciseness in cases that ordinary
unfoldings cannot handle well: (i) concurrent read access and (ii) choice. For
(i), we investigated the extension of Petri nets with read arcs. This part
includes the development of the necessary theoretical background, [BCKS07,
BCKS08, BBC+10], algorithms and data structures for efficient construction
of such unfoldings [RSB11, BBC+12], their verification [RS12], and finally,
taking into account aspect (ii), their combination with the notion of merged
processes [RSK13].

Other contributions are described more concisely. The first among these
concerns the use of unfoldings in partially observable concurrent systems.
Here, we investigated the use – and efficient computation of – a so-called
reveals relation that allows to determine the occurrence of one event a from
the observation of another event b in a concurrent system, even if a and b are
neither causally nor temporally related [HKS11, HKS13]. We then proposed
an improved diagnosis method for concurrent systems based on Petri net
unfoldings [HRS13].

A minor contribution consisted in showing the impossibility of correctly
constructing finite unfolding prefixes using depth-first search [EKS08a]. An-
other was an efficiency improvement for the construction of net unfoldings
[RS13].

Meanwhile, I developed the tool Mole [Schb], a fast unfolder for Petri
nets. An equivalent tool for nets with read arcs, called Cunf [Rod], was
developed by PhD student César Rodŕıguez during our work on the subject.
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Other contributions not in this thesis

Some other contributions are not represented in the following chapters; they
are briefly listed below:

∙ Together with Javier Esparza and Andreas Gaiser, I investigated al-
gorithms for checking emptiness of Büchi automata, a central problem
in verification. In the automata-theoretic approach to model-checking
linear-time temporal logic [VW86], a temporal specification is violated
if and only if a certain Büchi automaton has an accepting run. We
investigated algorithms for explicit-state model checking where said
automaton is constructed on the fly, of the type popularized by the
tool Spin [Hol04]. We proposed improvements of existing algorithms
that decrease their memory requirements and/or their response time
in case of an accepting run exists, including some algorithms that are
optimal in this respect. The algorithms were investigated from a theo-
retical [SE05] and a practical perspective [GS09].

∙ While I was on leave at Microsoft Research, we investigated a system-
atic approach to discover security holes in the configuration of operat-
ing systems such as Windows XP or SELinux. This work, executed to-
gether with Prasad Naldurg, Sriram Rajamani, and John Lambert, was
published in [NSRL06] and resulted in the tool Netra. This contribu-
tion does concern authorization but from a quite different perspective
than the one discussed in Section 2.3.4, hence its non-inclusion.

∙ Together with Stefan Haar, Serge Haddad, and Tarek Melliti we con-
sidered the problem of active diagnosis [HHMS13]. Here, one is given
a finite-state system with observable and unobservable actions. Di-
agnosis consists in detecting, without ambiguity, whether a fault has
occurred in a partially observed execution. Active diagnosis aims at
controlling the system in order to make it diagnosable. We solve the
problem with a game-theoretic approach that improves previous results
and obtain several complexity results.

∙ Some other papers with minor contributions on my part were with
Javier Esparza and Pierre Ganty on Locality-based Abstractions [EGS05]
and with Martin Sachenbacher on Model-based Test Generation using
Quantified CSPs [SS08].
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∙ A very recent paper with Javier Esparza and Löıg Jezequel [EJS13]
concerns the computation of ‘summaries’ in a concurrent setting, i.e. in
a concurrent system, obtain an automaton that describes the behaviour
of one particular given component in the presence of the others. While
such a summary can be computed using elementary automata theory,
the resulting algorithm suffers from the state-explosion problem, and
we present a solution based on net unfoldings. While this paper fits
thematically into Chapter 3, my contribution to it was minor, so I chose
not to include it there.

∙ On a lighter note, two papers with an educational/recreational purpose,
written together with Markus Holzer, analyze the complexity the puzzle
games Atomix [HS04a] and Reflexion [HS04b], which is shown to range
from NL-complete to PSPACE-complete, depending on which elements
are used in the puzzle.
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Chapter 2

Pushdown systems

Stacks are among the oldest data structures in computer science. The in-
vention of the concept is variously ascribed to Turing [Tur45], Samelson and
Bauer [BS57], or Hamblin [Ham57]. In 1959, Newell et al [NSS59] introduced
the notion of a pushdown automaton (PDA).

A PDA is a machine that can read its input from left to right, has finite
memory (called the control) and has an additional storage tape, called the
stack. The stack has infinite storage capacity, but only the most recently
added symbol is visible, or can be removed.

The early interest of computer scientists into stacks can be attributed
to a number of factors. The languages recognized by PDA are exactly the
context-free languages, which were very useful in specifying and building
parsers for programming languages [ALSU86]. The semantics of a program-
ming language with procedures can be explained by a machine with a stack,
and indeed CPU architectures habitually feature stack registers and related
facilities. Programming languages such as Forth and Postscript are expressly
built around the concept of a stack machine, and to some extent also the Java
Virtual Machine.

Starting in the 1990s, when model-checking started to become a practical
possibility, the pushdown model also became interesting for verification: here,
one is not interested in the words accepted or generated by the automaton but
in its internal behaviour. In this context, we prefer to speak of a pushdown
system (PDS).

This interest stems from the fact mentioned above: PDS can conveniently
model programs with procedures that may call one another, passing pa-
rameters and having global and local variables. Here, the stack is used
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to store information about pending call sites. On the theoretical side, it
was quickly established that most interesting verification problems, includ-
ing model-checking �-calculus, are decidable for PDS [Wal96], however, in
an interesting contrast to finite-state systems, branching-time logics are more
expensive to model-check than linear-time logics. E.g., when the specifica-
tion is fixed, model-checking EF is PSPACE-complete [BEM97] and model-
checking CTL is EXPTIME-complete [Wal00], whereas the problem for LTL
is polynomial [BEM97, FWW97]. On the practical side, efficient algorithms
and tools for pushdown-based verification were developed both in academia
and in industry [BR00]. These initial successes have sparked a large body of
work during the last decade, some of which will be referenced in the remain-
ing parts of this chapter.

This chapter is organized as follows: Section 2.1 recalls basic definitions
and facts about pushdown systems. Section 2.2 highlights the research on
weighted PDS, whereas other contributions are described more concisely in
Section 2.3.

2.1 Basics about pushdown systems

This part gives basic definitions that will be useful throughout the chapter.
It also provides some known results on PDS and some examples.

We write tt and ff for the boolean values true and false and IB := {tt, ff}.
We assume the usual notations for formal languages. Let S be a set called
alphabet. A sequence w = s1 ⋅ ⋅ ⋅ sn, where s1, . . . , sn ∈ S, is called a word
over S. The empty word is denoted by ", and ∣w∣ = n denotes the length
of w. The set of all words over S is denoted S∗, with S+ := S∗ ∖ {"}. A
language over S is a subset of S∗.

A labelled transition system (LTS) is a tuple T = ⟨S,A,→⟩, where S is
a set of states, A is a set of actions, and → ⊆ S × A × S is a transition
relation. If (s, a, s′) ∈ → we say that the system can move from state s to s′

by performing action a and usually write s a−→ s′. If s a−→ s′ for some a, then
s is an immediate predecessor of s′, and s′ is an immediate successor of s.

A path of T is a sequence of states s0 . . . sn (where n ≥ 0) such that there
are transitions si

ai+1−−−→ si+1 for all 0 ≤ i < n. We say that such a path has
length n and is labelled by the word a1 . . . an ∈ A∗. We write s w−→∗ s′ if
there is a path from s to s′ labelled by w.

If s w−→∗ s′ for some w ∈ A∗, then s′ is said to be reachable from s. Given a
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set S ′ ⊆ S, the set pre∗T (S ′) = { s ∣ ∃s′ ∈ S ′, w ∈ A∗ : s w−→∗ s′ } contains the
predecessors of S ′, and the set post∗T (S ′) = { s ∣ ∃s′ ∈ S ′, w ∈ A∗ : s′ w−→∗ s }
contains the successors of S ′.

When we are not interested in the actions of an LTS, we use the simpler
notion of an (unlabelled) transition system ⟨S,→⟩. All the relevant notions
from this subsection are defined analogously for unlabelled transition sys-
tems; we drop the labels from the reachability relations and write s→ s′ and
s→∗ s′, respectively.

Definition 2.1 A finite automaton is a quintuple ℳ = ⟨Q,Γ,→, Q0, F ⟩
such that Q is a finite set of states, Γ is a finite set called the input alphabet,
→ ⊆ (Q × Γ × Q) is a set of transitions, Q0 ∈ Q is a set of initial state,
and F ⊆ Q is the set of final states. The language L(ℳ) accepted by ℳ
is the set of all finite words w such that q0

w−→∗ qf holds for a pair q0 ∈ Q0

and qf ∈ F in the LTS ⟨Q,Γ,→⟩. A language is called regular if and only if
there is a finite automaton which accepts it.

2.1.1 Pushdown systems and reachability

A pushdown automaton is, intuitively, a finite automaton with an additional
stack.that may contain a word over some finite stack alphabet ; its length is
unbounded. In the context of this document, we are rarely interested in the
language generated by a PDA but in its internal behaviour, so we consider a
variant without acceptance condition called PDS.

Definition 2.2 A labelled pushdown system (labelled PDS) is a tuple P =
⟨P,Γ, A,Δ⟩, where P is a finite set of control locations, Γ is a finite stack
alphabet, and A a set of actions. A configuration of P is a pair ⟨p, w⟩ where
p ∈ P and w ∈ Γ∗. The set of all configurations is denoted by Conf (P).

Δ is a finite subset of P×Γ×A×P×Γ∗ called the rules; if ⟨p, , a, p′, w⟩ ∈
Δ, we also write ⟨p, ⟩ a↪−→P ⟨p′, w⟩. This determines a step relation TP as
follows:

If ⟨p, ⟩ a↪−→P ⟨p′, w⟩, then ⟨p, w′⟩ a=⇒P ⟨p′, ww′⟩ for all w′ ∈ Γ∗.

The LTS associated with P then is TP = ⟨Conf (P), A,⇒P⟩.

In the following, we write pre∗P to mean pre∗TP (same for post∗). If the
pushdown system in question is understood, we drop the index P from the
relations ⇒P and ↪→P , from pre∗P and post∗P .
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r1 = ⟨p,A⟩ ↪→ ⟨q, B⟩
r2 = ⟨p,A⟩ ↪→ ⟨p, C⟩
r3 = ⟨q, B⟩ ↪→ ⟨p,D⟩
r4 = ⟨p, C⟩ ↪→ ⟨p,AD⟩
r5 = ⟨p,D⟩ ↪→ ⟨p, "⟩

p,DD

p,DDD q,BDD

q,BD

q,B

p,DADD

p,DCD

p,DAD

p,DC

p,DA

p,CD

p,AD

p,ADD

p,C

p,A

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

p, "

p,D

⋅ ⋅ ⋅⋅ ⋅ ⋅

Figure 2.1: A part of the transition system generated by a PDS.

Also, most of the time we consider unlabelled PDS, i.e. without actions;
we then write P = ⟨P,Γ,Δ⟩ and omit actions from all arrow relations.

Example 2.1 Figure 2.1 shows, on the left-hand side, the rules of a PDS P
with two control locations p, q, stack alphabet {A,B,C,D,E}; on the right-
hand side, an excerpt of the (infinite) transition system TP is shown.

The basic building block for most verification algorithms is reachability
analysis. Given a pushdown system P and a set C ⊆ Conf (P), a backward
(resp. forward) reachability analysis consists of computing the predecessors
of elements of C, i.e. the set pre∗(C) (resp. post∗(C)).

In general, C can be an infinite set. But even when C is finite, the sets
pre∗(C) or post∗(C) may be infinite. For instance, in Figure 2.1, all configu-
rations of the form ⟨p,Dn⟩, for n ≥ 0, are predecessors of the single config-
uration ⟨p, "⟩. So we need a concise representation of infinite configuration
sets, and we use specialized finite automata for this purpose.

Definition 2.3 Let P = ⟨P,Γ,Δ⟩ be a pushdown system. A P-automaton
is a finite automaton A = (Q,Γ,→, P, F ), whose input alphabet is Γ and
whose set of initial states is P . P accepts or recognizes a configuration
⟨p, w⟩ if p w−→∗ qf for some state qf ∈ F in the LTS ⟨Q,Γ,→⟩. The set of
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q

p s2

D D

B s1

Figure 2.2: A P-automaton.

configurations recognised by a P-automaton A is denoted by L(A). A set of
configurations of P is regular if it is recognized by some P-automaton.

We say that A is normalized if it does not contain any transition whose
target is an initial state. Note that any P-automaton can be easily trans-
formed into a normalized automaton accepting the same set of configurations,
by adding at most ∣P ∣ states.

Example 2.2 Figure 2.2 shows a normalized P-automaton for the PDS P
from Example 2.1. The regular set of configurations accepted by this automa-
ton is { ⟨q, BD2n⟩ ∣ n ≥ 0 }.

A fundamental result discovered by Büchi [Büc64] and Caucal [Cau92] is
that regularity is preserved by forward and backward reachability.

Theorem 2.1 [Büc64, Cau92] Let P be a PDS and C a regular subset of
Conf (P). Then pre∗(C) and post∗(C) are also regular.

Moreover, the result is constructive: given a normalized P-automaton A
accepting set C, we can transform A into an automaton A′ that accepts either
pre∗(C) or post∗(C). We give the procedure for pre∗, the one for post∗ being
similar. Initially, we set A′ := A. Then we add transitions to A′, according
to the rule below, until no more transitions can be added. The rule is as
follows:

If ⟨p, ⟩ ↪→ ⟨p′, w′⟩ is a rule of P and p′ w′−−→∗ q currently holds in A′,
then add the transition p −→ q (where q is any state of A′).
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(a)

(c)(b)

A

s2

q s1B

D D

p

p,DD

p,DDD q,BDD

q,BD

q,B

p,DADD

p,DCD

p,DAD

p,DC

p,DA

p,CD

p,AD

p,ADD

p,C

p,A

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

p, "

p,D

⋅ ⋅ ⋅⋅ ⋅ ⋅

A

C

DD
A

Bq

p s2

s1

A C

B
D C

Figure 2.3: (a) Application of pre∗ rule to ⟨p,A⟩ ↪→ ⟨q, B⟩; (b) Final au-
tomaton for pre∗(C), where C = { ⟨B,BD2n⟩ ∣ n ≥ 0 }; (c) pre∗(C) in shaded
area, elements of C in darker shade.

Example 2.3 Consider the PDS P from Figure 2.1 and the P-automaton
A from Figure 2.2, which accepts the set C := { ⟨q, BD2n⟩ ∣ n ≥ 0 }. Fig-
ure 2.3 (a) shows an application of the saturation rule to that automaton:
due to the rule ⟨p,A⟩ ↪→ ⟨q, B⟩, the transition ⟨q, B, s1⟩ (shown in bold) in-
duces another transition ⟨p,A, s1⟩ (dotted line), which will be added to the
automaton. Note that s1 could be any state of A, not just a final state. The
final result A′, i.e. the fixpoint of this iteration, is shown in Figure 2.3 (b)
and accepts the shaded area of the transition graph shown in Figure 2.3 (c).
Indeed, for instance ⟨p,DC⟩ is accepted in A′ by the path p D−−→ p C−→ s1 and
is the predecessor of ⟨q, BDD⟩ ∈ C via rules r5, r4, r2, r4, r1, in that order.

In 1997, both Bouajjani et al [BEM97] and Finkel et al [FWW97] gave
cubic algorithms for computing A′. A more precise analysis in [EHRS00]
gave O(∣Q∣2 ⋅ ∣Δ∣), where Q are the states of A and Δ the rule set of P .

The idea for post∗ is analogous: for any rule ⟨p, ⟩ ↪→ ⟨p′, w′⟩, one checks
whether the left-hand side is ‘read’ by the current automaton A′, i.e. p −→ q
for some state q, and if so, one adds a path p′ w′−−→∗ q to A′. The catch is that
w can be of variable length, so one has to insert either an "-labelled transition,
one single transition, or multiple transitions, which requires to introduce
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additional states. It is shown in [EHRS00] that the number of required
additional states is bounded by ∣Δ∣. So although the post∗ algorithm follows
the same idea as pre∗, it has some additional complications that render it
more cumbersome.1

Definition 2.4 Let P = ⟨P,Γ,Δ⟩ be a PDS. We call P normalized if ∣w∣ ≤ 2
for all rules ⟨p, ⟩ ↪→ ⟨p′, w⟩. A tuple ⟨p, , q⟩ ∈ P×Γ×P is called pop triple
if ⟨p, ⟩ ⇒∗ ⟨q, "⟩. A set of configurations C is called basic if C = F × {"},
for some set F ⊆ P . A (normalized) P-automaton A is called basic if it is
of the form ⟨P,Γ, ∅, P, F ⟩, i.e. it accepts C, has no transitions, and no states
other than P.

To simplify the presentation, we argue that any reachability problem for
PDS can be reduced to determining the pop triples of another PDS, using
backwards reachability. For this, it suffices to realize that (1) any PDS can be
normalized; (2) forward reachability can be reduced to backward reachability;
(3) it suffices to consider basic automata. All transformations are folklore,
we just give some pointers. For the following, fix a PDS P = ⟨P,Γ,Δ⟩ and
a regular set C ⊆ Conf (P).

1. The details of this transformation are given in [Sch02b], Theorem 3.1.
It consists in breaking up rules with long right-hand sides into multiple
rules via ‘intermediate’ configurations. We will from now on assume
that all PDS are normalized.

2. For this reduction, one can construct a PDS P−1 that executes the
rules of P ‘in reverse’. Such a construction is given, e.g., in [KSSK09b],
Appendix C. Notice that this reduction also covers the case of weighted
PDS that will be discussed in Section 2.2.

3. The reduction extends P with additional ‘pop’ rules for all transitions
of a normalized P-automaton A accepting C. An execution of this
extended PDS first behaves like P , then simulates A and arrives at a

1The complication of having to introduce additional states for post∗ arises because the
formulation we chose for PDS has asymmetric rules – the length of the left-hand side is
fixed, whereas the length of the right-hand side is variable. In the formulation of PDS used
in [FWW97], pushdown rules are of the form q

a+−−→ q′ (push) or q
a−−−→ q′ (pop). These

rules are symmetric, and the problem does not arise. However, we stick to our formulation
because it is more suitable for modelling procedural programs, see Section 2.1.3.
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final state of A iff the simulation began at a configuration from C. The
details are given in [RSJM05], Section 3.1.1.

Note that these reductions are not necessarily desirable from an efficiency
point of view - in particular they increase the number of control locations,
which, as stated before, contribute quadratically to the pre∗ running time.
Therefore, most papers upon which this document are based, present direct
constructions, including for post∗, rather than the reductions given here.
The limitation to backwards reachability, chosen in this document, serves to
simplify the presentation and showcase more clearly the underlying concepts.

So suppose that we are given P ,A, C, and let A′ be the automaton ob-
tained through the pre∗ computation. From [BEM97] we know the following
fact: if p, q are control locations, then ⟨p, , q⟩ is a pop triple iff p −→ q is a
transition of A′. If A is basic, then all states are control locations, therefore
every transition signifies a pop triple. This motivates the following remark:

Remark 2.1 Let c = ⟨q0, 1, . . . , yn⟩ be a configuration. If A, C are basic,
with A = ⟨P,Γ, ∅, P, F ⟩, then c ∈ pre∗(C) iff there exist q1, . . . , qn−1 ∈ P
and qn ∈ F such that ⟨qi−1, ⟩ ⇒∗ ⟨qi, "⟩ holds for i = 1, . . . , n. In other
words, any path from c to C can be decomposed into n sub-paths, each of
which corresponds to a pop triple and hence a transition qi−1

i−−→ qi, for
i = 1, . . . , n, of A′.

Remark 2.1 gives rise to a different characterization of the pre∗ algorithm
in terms of an equation system. Let X := { [[p, , q]] ∣ p, q ∈ P,  ∈ Γ } be a
set of boolean-valued variables, where [[p, , q]] has the meaning “⟨p, , q⟩ is
a pop triple”. We associate an equation with each variable, where [[p, , q]]?

stands for a symbolic constant evaluating to true iff ⟨p, ⟩ ↪→ ⟨q, "⟩ ∈ Δ:

[[p, , q]] = [[p, , q]]? ∨
⋁

⟨p,⟩↪→⟨r,′⟩

[[r, ′, q]] ∨
⋁

⟨p,⟩↪→⟨r,′′′p⟩
r′∈Q

[[r, , r′]]∧ [[r′, ′′, q]] (2.1)

Intuitively, (2.1) simply lists the all possible cases how ⟨p, ⟩ could be trans-
formed into ⟨q, "⟩. Thus, ⟨p, , q⟩ is a pop triple iff [[p, , q]] is true in the
greatest (in the sense of ff > tt) solution of the equation system. The pre∗

algorithms of [BEM97, FWW97, EHRS00] can then be seen as an efficient
way to solve the equation system (2.1). We shall come back to this analogy
to explain the contributions in Section 2.2.2.
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2.1.2 Related constructions

We mention some similar constructions on related models. To begin with, the
pre∗ computation can be generalized to context-free grammars. Here, the
predecessor relation is defined over sentence forms (containing both variables
and terminals) via productions, i.e., �A is a predecessor of �� if there ex-
ists a production A→ �. Book and Otto showed that backwards reachability
preserves regularity in this case [BO93], and an analogous automata-theoretic
construction takes O(n ⋅ k3) time, where n is the size of the productions and
k the number of automaton states [ERS00]. Of course, forward reachability
does not preserve regularity in this case.

Bouajjani et al [BEM97] presented an extension to alternating PDS.
The basic idea is that pushdown rules can have a collection of right-hand
sides, e.g. ⟨p, ⟩ ↪→ {⟨p1, 1⟩, ⟨p2, 2⟩}, and an execution of the rule creates
one branch for each element of the right-hand side. Then, a configuration c
is considered to be a predecessor of a set C if all branches of an execution
starting at c end up in an element of C. The resulting reachability problem
can be solved by extending the construction of Section 2.1.1 to alternating
automata.

Löding [Löd06] extended the principle to ground tree rewrite systems
(GTRS). Here, the equivalent of a configuration is a labelled tree, and transi-
tion rules describe how one subtree can be replaced by another. Regular sets
of trees can be described by bottom-up tree automata (TA), and a reachabil-
ity algorithm transforms on TA into a TA recognizing the set of predecessor
trees. The diploma thesis of Andreas Gaiser [Gai08], supervised by Javier
Esparza and myself, describes an implementation of this technique with an
application to the analysis of functional programs.

Ong and Hague [HO07] have generalized the reachability analysis for
higher-order PDS, in which configurations can include stacks, stacks of
stacks, etc. More recently, this was extended to collapsible PDS [BCHS12].

Finally, let us remark that the reachability relation between PDS config-
urations can be captured by a transducer. In a nutshell, this is because, for
any pair of configurations such that ⟨p, w⟩ ⇒∗ ⟨p′, w′⟩, the path leading from
one to the other can be decomposed into a ‘pop phase’ and a ‘push phase’.
I.e., there exists a decomposition w = w1w2, w

′ = w3w2 and a location q
such that ⟨p, w1⟩ ⇒∗ ⟨q, "⟩ and ⟨q, ⟩ ⇒∗ ⟨p′, w3⟩. Thus, it suffices to deter-
mine the pop triples of P and P−1. Such a construction was first done by
Caucal [Cau92].
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2.1.3 Modelling programs as PDS

We conclude the introduction by recalling how PDS can be used to model
sequential programs with procedures, which constitutes the principal moti-
vation for studying this model. A more extensive treatment is found, e.g., in
[Sch02b], Section 2.3. The transformation of procedural programs into PDS
exploited by the model checker Moped, which implements a BDD-based
variant of pushdown reachability.

Programs written in languages such as C or Java are typically composed of
a number of procedures. Procedures may call each other, possibly recursively,
passing argument values to the callee or returning values to the caller.

Let us first discuss how to model the control flow of such a program, which
in this case can be seen as a set of flow graphs, where edges are annotated
with the actions of that program, eventually including calls and returns.
In this case, we set the stack alphabet to Γ := N , the set of nodes in all
flowgraphs, and P is a singleton with a dummy element (⋅). Calls/returns
then naturally correspond to push/pop rules, e.g., a rule

⟨⋅, n⟩ ↪→ ⟨⋅, n′n′′⟩

corresponds to an edge from n to n′′ annotated with a call to some procedure
that starts at node n′. Notice that the restriction to right-hand sides of
length 2, introduced in Section 2.1.1, is natural here.

Now suppose that we wish to add data to the model. Programming lan-
guages typically offer global variables, accessible to all procedures, and local
variables, newly instantiated whenever a procedure is invoked and accessible
only to that invocation. Both types of variables can be taken into account
faithfully by encoding them into the control locations and the stack, respec-
tively. Let G be the valuations of the global variables and L those of the
locals (w.l.o.g., we assume a uniform set of variables over all procedures, for
simplicity). Then we set P := G and Γ := N ×L. A call statement now has
the form

⟨g, ⟨n, ℓ⟩⟩ ↪→ ⟨g′, ⟨n′, ℓ′⟩⟨n′′, ℓ′′⟩⟩,

Note how a call statement generates a new set of locals and a return statement
destroys them, while global variables are preserved. The chosen modelling
implies a limitation to finite data types, since P and Γ must be finite.
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bool g=true;

void main()

begin

n0: level1();

n1: level1();

n2: assume(g);

n3: stop;

end

void leveli()

begin

n4: leveli+1();

n5: leveli+1();

n6: return;

end

void leveln()

begin

n7: g := not g;

n8: return;

end

Figure 2.4: Simple program with one boolean variable, where i = 1, . . . , n−1.

Example 2.4 Consider the program in Figure 2.4, which is a variation of a
an example from [BR00]. The program consists of a main function and func-
tions leveli, for i = 1, . . . , n. The program has one global boolean variable
g, so we set P = G = IB. There are no local variables, so we would just set
Γ := {n0, . . . , n8}. For instance, the statement at line n0 would translate to
two rules of the form ⟨b, n0⟩ ↪→ ⟨b, n4n1⟩, for b ∈ IB.

The program in Figure 2.4 does not have any recursive procedure calls. So
it could in principle be handled by a finite-state model checker that ‘inlines’
procedure calls. However, the resulting program would be of size O(2n). On
the other hand, pushdown reachability can check whether it is possible for
the assumption in main to fail; this amounts to testing whether ⟨tt, n0⟩ ∈
pre∗({⟨ff, n2⟩}), which takes O(n) time.

As this example shows, the interest of PDS in verification is twofold:
first, PDS can seamlessly handle recursive procedure calls, which finite-state
model checkers cannot handle faithfully; secondly, PDS model checking can
be more efficient even in the absence of recursion.

Finally, we remark that PDS are expressively equivalent to Boolean Pro-
grams, which were introduced as an abstract domain for model-checking de-
vice drivers inside the SLAM toolkit [BR00], and Recursive State Machines
[AEY01, BGR01]. The latter allow to model programs as a collection of
finite-state machines that may invoke one another; they thus have an ex-
plicit notion of procedure but no explicit separation of control location and
stack.
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r1 = ⟨p,A⟩ 5↪−→ ⟨q, B⟩
r2 = ⟨p,A⟩ 4↪−→ ⟨p, C⟩
r3 = ⟨q, B⟩ 3↪−→ ⟨p,D⟩
r4 = ⟨p, C⟩ 2↪−→ ⟨p,AD⟩
r5 = ⟨p,D⟩ 1↪−→ ⟨p, "⟩
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Figure 2.5: Transition graph with integer weights.

2.2 Weighted PDS

This section reports on the first group of contributions to the verification
of pushdown systems; it is based on results published in [RSJ03, RSJM05,
KSSK09a], presented in two parts.

Section 2.1 summarized reachability analysis on unweighted PDS. The an-
swer given by, e.g., a pre∗ query, is qualitative: it allows to answer whether
a configuration can reach some target or not. An interesting extension is to
ask quantitative questions such as “What is the minimum number of steps to
reach a given configuration?” or “What is the least costly/most secure etc
execution satisfying a certain property?” We first develop some definitions,
then present results for the case of bounded (Section 2.2.1) and unbounded
semirings (Section 2.2.2). That framework allows to answer the aforemen-
tioned questions and has wide-ranging applications for data-flow analysis and
PDS-based verification, discussed in Section 2.2.3.

Example 2.5 Let us reconsider the PDS from Figure 2.1 and suppose that
each execution of a rule incurs a certain cost, e.g. a non-negative integer
number. The costs would naturally be annotated on the rules and give rise to
a weighted transition system. Figure 2.5 shows an example, where the cost
of going from ⟨p,DA⟩ to ⟨p,D⟩ is either 1 + 5 + 3 = 9 (on the direct path),
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or generally 9 + 7i when going through ⟨q, BDi⟩. In this case, it is natural
to ask for the minimal cost of going from one given configuration to another,
as well as for a path realizing that cost.

Example 2.6 Consider the same PDS, but suppose that we want to know
whether a ‘bad’ action (say, r4) occurs on some, all, or none of the paths con-
necting a pair of configurations c, c′. Also, we would be interested in examples
for both cases, where applicable. E.g., for c = ⟨p,DA⟩ and c′ = ⟨p,D⟩, the
paths via ⟨q, B⟩ and ⟨q, BD⟩, respectively, would provide the desired answer.

In both cases, we need an operator to aggregate values along a path (ad-
dition in Example 2.5, logical or in Example 2.6) and another to produce
summaries of multiple paths (e.g., min in Example 2.5). The domain is to-
tally ordered in the first case (so only one witness path is needed), or partially
ordered in the second case (requiring multiple witnesses). This motivates the
following definition:

Definition 2.5 An idempotent semiring is a tuple S = (D,⊕,⊗, 0̄, 1̄), where
D is a set of weights, called the domain of S; 0̄ and 1̄ are elements of D, and
⊕ (the combine operation) and ⊗ (the extend operation) are binary operators
on D such that

1. (D,⊕) is a commutative monoid with 0̄ as its neutral element, and
where ⊕ is idempotent (i.e., for all a ∈ D, a⊕ a = a).

2. (D,⊗) is a monoid with the neutral element 1̄.

3. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D we have

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) .

4. 0̄ is an annihilator with respect to ⊗, i.e., for all a ∈ D, 0̄ ⊗ a = 0̄ =
a⊗ 0̄.

For all a, b ∈ D, we write a ⊑S b iff a ⊕ b = a and a ⊏S b if a ⊑ b
and a ∕= b, omitting the index S when it is understood. We say that the
monoid ⟨D,⊕⟩ (and by extension S) is bounded if the partial order ⊑ does
not contain an infinite descending chain, i.e. no infinite sequence a1 ⊐ a2 ⊐
a3 ⊐ ⋅ ⋅ ⋅ .
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Intuitively, the operator ⊗ is used to connect values along a path, whereas
⊕ computes a summary of multiple values. The annihilator 0̄ has the meaning
of ‘no path exists’. Assuming its existence is no real restriction: a semiring
satisfying (1)–(3), where 0̄ is not an annihilator, can be extended with an
artificial annihilator 0̄′, for which we define 0̄′⊗a = 0̄′ = a⊗ 0̄′ and 0̄′⊕a = a
for all a ∈ D ∪ {0̄′}; in this case, 0̄′ is the new neutral element of ⊕, whereas
0̄ is “almost neutral”, except for 0̄⊕ 0̄′ = 0̄. The issue of distributivity in (3)
will be discussed in Section 2.2.1.

Example 2.7 In Example 2.5, the weights attributed to the rules form part
of a bounded idempotent semiring S1 = ⟨IN ∪ {∞},min,+,∞, 0⟩. In Ex-
ample 2.6, the weights can be expressed by S2 = ⟨2IB,∪,⊗, ∅, {ff}⟩, where
B1 ⊗ B2 := { b1 ∨ b2 ∣ b1 ∈ B1, b2 ∈ B2 }. Here, a weight B ⊆ IB is inter-
preted as carrying information about a set of paths. B contains tt if at least
one of those paths contains the ‘bad’ action, and ff if at least one of them
does not. Notice that ⊑S1 is a total order, while ⊑S2 contains an unordered
pair, i.e. {tt} and {ff}. If r4 is the ‘bad’ rule, we would equip it with the
weight {tt} and all others with {ff}.

A weighted pushdown system is now simply defined as a PDS equipped
with semiring weights.

Definition 2.6 A weighted pushdown system (WPDS) is a tuple W =
⟨P ,S⟩, where P = ⟨P,Γ, D,Δ⟩ is a labelled PDS, whose actions are the
weights of idempotent semiring S = ⟨D,⊕,⊗, 0̄, 1̄⟩. For a word � = d1 ⋅ ⋅ ⋅ dn ∈
D∗, let valS(�) = d1 ⊗ ⋅ ⋅ ⋅ ⊗ dn its associated semiring value; by definition
valS(") := 1̄.

Remark 2.2 In the complexity analyses to follow, we will assume that oper-
ations ⊕ and ⊗ can be carried out in O(1) time, or more precisely in a time
that depends only on the semiring itself but not on the WPDS using it.

We are now in a position to formalize the problems mentioned earlier. As
explained in Section 2.1, this presentation focuses on backwards reachability,
while [RSJM05, KSSK09b] give specialized treatments for both forward and
backward analysis.

Definition 2.7 Let W = ⟨P ,S⟩ be a WPDS with P = ⟨P,Γ, D,Δ⟩ and
S = ⟨D,⊕,⊗, 0̄, 1̄⟩, and let C ⊆ Conf (P) be a regular set. The generalized
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predecessor problem (GPP) for W , C is to compute, for each configuration
c ∈ Conf (P), the value

�(c) :=
⊕
{ valS(�) ∣ c �=⇒∗ c′, c′ ∈ C }.

The GPP problem can be interpreted as a generalized shortest-path prob-
lem on an infinite graph with multiple targets (C) and all configurations as
sources, where �(c) gives the ‘distance’ from c to C.

Again, we need automata to deal with infinite configuration sets:

Definition 2.8 Let W = ⟨P ,S⟩ be a WPDS with P = ⟨P,Γ, D,Δ⟩ and
S = ⟨D,⊕,⊗, 0̄, 1̄⟩. A finite automaton A = ⟨Q,Γ×D,→, P, F ⟩ is called
W-automaton; for convenience, we will denote a transition ⟨s, ⟨, d⟩, s′⟩ as
s −→

d
s′ or s

(d)−−−→ s′. We say that A accepts configuration c = ⟨p, w⟩ ∈
Conf (P) with weight

valA(c) :=
⊕
{ valS(�) ∣ p w−→

�

∗ q, q ∈ F }.

Other notions of P-automata will be silently used for W-automata when
their meaning is clear. To obtain a basic W-automaton from an arbitrary
W-automaton, one uses the same procedure as on page 21, except that the
new rules have weight 1̄. In the computation of valA(c), we use

⊕
∅ = 0̄.

Example 2.8 Consider the automaton shown in Figure 2.6 (a), which is a
W-automaton for the WPDS shown in Figure 2.5 with semiring S1. The
automaton accepts the configurations from set { ⟨q, BD2n⟩ ∣ n ≥ 0 } with
weight 0 and all others with weight ∞.

2.2.1 Bounded semirings

In this section we solve the GPP for the case of idempotent semirings that
are bounded. We first discuss the computation of �(c), then the generation
of witnesses for those values. Afterwards, we discuss some related issues
such as the distributivity condition, how to use the framework in a symbolic
model checker, and a differential variant. A more extensive discussion of
applications and related work is contained in Section 2.2.3. Unless otherwise
stated, the results in this paper stem from work done with Thomas Reps,
Somesh Jha, and David Melski [RSJ03, RSJM05].
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Figure 2.6: (a) W-automaton accepting C := { ⟨q, BD2n⟩ ∣ n ≥ 0 } with
weight 0; (b) automaton accepting each configuration with �(c); (c) PDS
transition graph with weights, C and pre∗(C) indicated by shading.

In this section, fix a WPDSW = ⟨P ,S⟩, where P = ⟨P,Γ, D,Δ⟩ and S =
⟨D,⊕,⊗, 0̄, 1̄⟩ is bounded. Let C be a basic set of configurations. Then the
GPP problem forW , C can be solved by extending the saturation method for
PDS. Again, we first construct an automaton A for C and then transform it
into another automatonA′ by adding transitions and modifying their weights,
until we reach a fixpoint. The saturation rule is given in Figure 2.7.

The following proposition summarizes results from [RSJM05], Section 3.1:

Proposition 2.1 Algorithm 1 terminates, and the resulting automaton A′
accepts each configuration c ∈ Conf (P) with weight �(c). Moreover, the
algorithm can be implemented in O(∣P ∣2 ⋅ ∣Δ∣ ⋅ ℓ) time (cf. Remark 2.2),
where ℓ is the length of the longest descending chain starting at a value that
appears in A′ during the computation.

Notes on the proof In [RSJM05], the proof is through a reduction to
abstract grammar problems [Ram96]. The algorithm is implemented through
a modification of the pre∗ algorithm for PDS. Termination is guaranteed
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Algorithm 1

Input: WPDS W = ⟨P ,S⟩, basic W-automaton A accepting C
Output: W-Automaton A′ representing �(c) for all c ∈ Conf (P).

Set A′ := A; then apply the following rule until fixpoint is reached:

If ⟨p, ⟩ d↪−→ ⟨p′, w′⟩ is a rule and p′ w′−−→
�
∗ q holds in A′, then:

(i) let d′ := valS(d�);

(ii) if A′ contains a transition p −→
d′′

q, replace it by p
−−→

d′⊕d′′
q;

(iii) if no such transition exists, add p −→
d′
q.

Figure 2.7: Saturation rule for solving GPP for bounded semirings.

because every transition can change its value at most a finite number of
times in a bounded semiring, hence the complexity increase (w.r.t. PDS)
by a factor of ℓ. Note that ℓ is well-defined because (i) there are at most
k := ∣P ∣⋅∣Δ∣ transitions in A′; (ii) the weight of a transition can only decrease
from its initial weight; (iii) the initial weight can be a ⊗-product of at most
k rule labels.

Example 2.9 We continue from Example 2.8 with the automaton A in Fig-
ure 2.6 (a). To obtain a basic automaton, we first replace its transitions by
these ‘artificial’ WPDS rules:

r′1 := ⟨q, B⟩ 0↪−→ ⟨s1, "⟩;
r′2 := ⟨s1, D⟩ 0↪−→ ⟨s2, "⟩;
r′3 := ⟨s2, D⟩ 0↪−→ ⟨s1, "⟩.

The result of applying Algorithm 1 is shown in Figure 2.6 (b). In this au-
tomaton, every configuration happens to be accepted by at most one path, so
we can easily read off the results. For instance ⟨p,DC⟩ is accepted in A′ by
the path p D−−→

1
p C−→

13
s1, and indeed, the shortest path to an element of C

is to ⟨q, BDD⟩ ∈ C via rules r5, r4, r2, r4, r1 (and from there to ⟨s1, "⟩ via
r′1, r

′
2, r
′
3), whose total weight is 14.

The procedure can be extended to recover witnesses at the same time,
which explain the value �(c), i.e. for each configuration c a set !(c) ⊆ D∗
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r5

⟨p, ⟨D, 1⟩, p⟩

⟨q, ⟨B, 4⟩, p⟩

r3

r1

⟨p, ⟨A, 9⟩, p⟩

r4

⟨p, ⟨A, 5⟩, s1⟩

⟨q, ⟨B, 0⟩, s1⟩ ⟨s1, ⟨D, 0⟩, s2⟩ ⟨s2, ⟨D, 0⟩, s1⟩

r1

r4

⟨p, ⟨C, 7⟩, s2⟩

r2

⟨p, ⟨A, 11⟩, s2⟩

r4

⟨p, ⟨C, 12⟩, p⟩ ⟨p, ⟨C, 13⟩, s1⟩

r′1 r′2 r′3

Figure 2.8: Witness graph G for recovering GPP witnesses in Figure 2.6.

such that
⊕
{ valS(�) ∣ � ∈ !(c) } = �(c). Notice that ∣!(c)∣ may be larger

than one (Example 2.6), but is guaranteed to be finite because S is bounded.
Due to Remark 2.1, it suffices to identify witnesses for every pop triple

and concatenate them. Roughly speaking, this is achieved by generating a
directed acyclic hypergraph G, called the witness graph, that keeps track of
the rules and automata transitions involved in every iteration of Algorithm 1.
The nodes of G are all weighted transitions generated during the algorithm
(including those that are replaced under case (ii) of the saturation rule). A
hyperedge with a set of zero or more sources T , label r ∈ Δ, and target
t records that rule r and the elements of T were used to generate t (see
[RSJM05], Section 3.1.4 for details).

Example 2.10 Figure 2.8 shows the witness graph G for the previous exam-
ple. For instance, p C−→

7
s2 is generated by using rule r4 = ⟨p, C⟩ 2↪−→ ⟨p,AD⟩

with p A−→
5

s1
D−−→
0

s2. Thus a witness for, e.g., ⟨p,DC⟩ can be obtained by
following the hyperedges backwards and from left to right. For p D−−→

1
p we

obtain just r5, for p C−→
13

s1 we obtain (from bottom to top) r4r2r4r1r
′
1r
′
2r
′
3,

where the latter three rules are artificial and can be ignored.

When the semiring is not totally ordered, the weight of a configuration c
may not be justifiable by a single path, i.e. ∣!(c)∣ ≥ 2. In this case, a node
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r2

⟨p, ⟨A, ff⟩, s1⟩

⟨q, ⟨B, ff⟩, s1⟩ ⟨s1, ⟨D, ff⟩, s2⟩ ⟨s2, ⟨D, ff⟩, s1⟩

r1

r4

⟨p, ⟨C, tt⟩, s2⟩

⟨p, ⟨A, tt⟩, s2⟩

r4

⟨p, ⟨C, tt⟩, s1⟩

r′1 r′2 r′3

⟨p, ⟨A, IB⟩, s1⟩

r2

r1

Figure 2.9: Part of the witness graph for S2; braces omitted around tt, ff.

of Γ may have multiple incoming arcs.

Example 2.11 Figure 2.9 shows a part of the witness graph when S2 (see
Example 2.7) is used instead of S1. Note that the transition at the bottom,
p A−→

IB
s1, has two incoming hyperedges. These allow to recover a path with

value {ff} (i.e. without executing the ‘bad’ rule r4) to ⟨q, B⟩ as well as a path
with value {tt} that does execute r4 (even twice) and ends at ⟨q, BDD⟩.

In general, a witness graph of size n can encode WPDS paths of length
exponential in n. This happens, for instance, when the procedure is applied
to the program in Example 2.4, where for a given value of n, PDS reachability
terminates in O(n) time, but a witness path from the start of main to its
end has length in O(2n).

We shall round off this part by discussing a couple of important variations
and extensions of the framework. Further applications of the framework are
discussed in Section 2.2.3.
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Distributivity

We give an intuition why distributivity is needed in Definition 2.5. As an
example, assume a WPDS with tree rules:

⟨p, ⟩ a↪−→ ⟨p, "⟩ ⟨p, ′⟩ b↪−→ ⟨p, "⟩ ⟨p, ′⟩ c↪−→ ⟨p, "⟩

We set c1 := ⟨p, ′⟩, c2 := ⟨p, ′⟩, and c3 := ⟨p, "⟩}. Then we have two paths
from c1 to c3, i.e. c1

a=⇒ c2
b=⇒ c3 and c1

a=⇒ c2
c=⇒ c3. Accordingly, for the

GPP with C := {c3}, the value of �(c1) is d1 := (a⊗ b)⊕ (a⊗ c) according to
Definition 2.7.

Now, Proposition 2.1 claims that we can obtain this value from an au-
tomaton A′, which contains one transition per pop triple, i.e. p −→

a
p and

p y′−−→
b⊕c

p. By Definition 2.8, the weight of c1 in A′ is d2 := a⊗ (b⊕ c).
Hence, we need the distributivity laws to ensure that d1 = d2. (The case

for the second distributivity law is made by exchanging  and ′ in the rules.)
In [RSJM05], Section 4.4, we explain that the distributivity constraint can
be relaxed to a weaker monotonicity condition for all semiring values a, b, c:

a⊗ (b⊕ c) ⊑ (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c ⊑ (a⊗ c)⊕ (b⊗ c)

In this case, Algorithm 1 will provide ‘safe’ underapproximations, i.e. provide
for each configuration c′ a value d ⊑ �(c′).

Encoding relations

Bounded idempotent semirings (Definition 2.5) are a common framework in
dataflow analysis and fixpoint equations. However, Algorithm 1 may function
correctly in more general cases. We discuss one such case that was not
presented in [RSJM05] but has implicitly been used in Moped all the time.2

Suppose that S = ⟨D,⊕,⊗, 0̄, 1̄⟩ is an idempotent semiring (not neces-
sarily bounded), where the domain D of our semiring contains three subsets
D0, D1, D2 such that

1. ⟨D0,⊕⟩ is a bounded idempotent commutative sub-monoid with neutral
element 0̄;

2. for any d1 ∈ D1, d0 ∈ D0 we have d1 ⊗ d0 ∈ D0;

2A presentation similar to this one was included in [Suw09], Section 4.3.1, under the
heading “Semiring with locals”.
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3. for any d2 ∈ D2, d0, d
′
0 ∈ D0 we have d2 ⊗ d0 ⊗ d′0 ∈ D0.

Moreover, let P be a D-labelled PDS such that for every rule ⟨p, ⟩ d↪−→
⟨p′, w⟩ we have d ∈ D∣w∣. As a consequence, the GPP computation needs to
deal exclusively with weights D0 on transitions. It then suffices to prohibit
infinite descending chains inside D0 to guarantee termination and correctness
of the GPP procedure. Let us call such a pair ⟨W ,S⟩ a partitioned WPDS.

We come back to the question of how to encode programs with data.
Given finite sets of global (G) and local (L) valuations, we suggested in
Section 2.1.3 to encode globals in the control locations and locals in the
stack alphabet; then a call rule has the form

⟨g, ⟨n, ℓ⟩⟩ ↪→ ⟨g′, ⟨n′, ℓ′⟩⟨n′′, ℓ′′⟩⟩,

where n, n′, n′′ describe the control flow, and g, ℓ, g′, ℓ′, ℓ′′ the global and local
values involved in the step. Evidently, the number of such rules can quickly
become huge even for modest sizes of G and L. A remedy is to represent data
values symbolically, e.g., using binary decision diagrams or BDDs [Bry86].
In that setting, a PDS rule describes the control flow, e.g., ⟨⋅, n⟩ ↪→ ⟨⋅, n′n′′⟩,
while all data tuples corresponding to the same flow of control are captured
by a relation R, representable by a BDD. This representation is chosen, e.g.,
in older versions of Moped [Scha] or in Slam [BR00]. An alternative point
of view is to see R as semiring weight in a WPDS.

Now, such relations have different arities. Let us denote Stk [m, n] :=
G × Lm × G × Ln; an element of Stk [m, n] describes the data part of two
configurations that are of stack height m,n, respectively. Then, the relation
for a call rule is of type Stk [1 , 2 ], for a pop rule it is Stk [1 , 0 ]. For a config-
uration c ∈ P × Γn, its weight �(c) in the solution of a basic GPP problem
should logically be of type Stk [n, 0 ], corresponding to the intuition that the
path from c to some c′ ∈ P ×{"} is a concatenation of n pop sequences. This
motivates the definition of a semiring whose domain D is the powerset of∪

n,m≥0

Stk [m, n].

We describe the generalization of a relational ‘join’ operation that computes
the net effect of two subsequent changes to the data configuration. Let us
use ℓ[m,n] as shorthand for ℓm, . . . , ℓn. We call e ∈ Stk [n,m], e′ ∈ Stk [k , p]
compatible if they agree on min{m, k} positions ‘in the middle’, i.e. they are
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of the form e = ⟨g, ℓ[1,n] ; g′, ℓ′[1,m]⟩ and e′ = ⟨g′, ℓ′[1,k] ; g′′, ℓ′′[1,p]⟩. Then, for a
compatible pair e, e′, let

e ⋅ e′ :=

⎧⎨⎩
⟨g, ℓ[1,n] ; g′′, ℓ′′[1,p], ℓ

′
[k+1,m]⟩ if m > k

⟨g, ℓ[1,n] ; g′′, ℓ′′[1,p]⟩ if m = k

⟨g, ℓ[1,n], ℓ′′[m+1,k] ; g′′, ℓ′′[1,p]⟩ if m < k

We can now describe the join operation on d1, d2 ∈ D as follows:

d1 ∘ d2 := { e1 ⋅ e2 ∣ e1 ∈ d1 ∧ e2 ∈ d2 ∧ e1, e2 compatible }

Now, we can state the semiring to be used for BDD operations as S =
⟨D,∪, ∘, ∅, idG⟩, with idG = { (g; g) ∣ g ∈ G } ⊆ Stk [0 , 0 ] as the neutral ele-
ment of ∘. This semiring is unbounded because D is infinite. However, we
obtain a partitioned WPDS if the rule weights respect the aforementioned
encoding of data relations, with Di := Stk [1 , i ] for i ≥ 0. For each configura-
tion c ∈ P ×Γn the GPP solution �(c) is the product of n transition weights
of type D0, which is is of type Stk [n, 0 ]. Thus, the weight for c is can be
seen as its complete data configuration consisting in the globals and n stack
frames with locals.

We conclude that Algorithm 1 is applicable to this setting, and it is used
in current versions of the model checker Moped, which is based on the
aforementioned WPDS library. Notice that for formal reasons, we presented
the ∘ operation in such a way that operands may contain tuples of different
arities. In practice, all relations that appear in the GPP computation are
subsets of some Stk [m, n], for some values of m,n ≤ 2, and can hence be
conveniently implemented as BDDs.

An alternative approach to integrating BDDs into the WPDS framework
has been presented by Lal et al [LRB05] under the name Extended WPDS.
These extend the WPDS framework with so-called merging functions that
take care of saving/restoring locals during a call/return pair.

Differential GPP

The BDDs that appear in typical examples treated by Moped can be quite
large, and the GPP saturation procedure may be forced to update the weight
of some transitions very often, i.e. case (ii) of the procedure, where d′′ is
replaced by dnew := d′ ⊕ d′′. This can happen, e.g., if the underlying control
flow of the WPDS contains a loop. Now, dnew may not differ from d′′ by
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‘much’, so it can be more efficient to propagate the difference between dnew

and d′′ rather than dnew itself. Section 5 of [RSJM05] provides a generic,
differential version of the GPP algorithm that implements this idea (which
is available in Moped).

2.2.2 Unbounded semirings

This section is based on common work with Morten Kühnrich, Jǐŕı Srba,
and Stefan Kiefer, published in [KSSK09a] (short version) and [KSSK09b]
(including proofs). We study a relaxation of the boundedness condition on
semirings, imposed in Section 2.2.1. The notion of resource problems is new
and introduced here to clarify the contribution; this term was not used in
[KSSK09a, KSSK09b].

In order to discuss this contribution and related work, it is first useful
to recall that the GPP problem can be reduced to that of computing the
pop triples, which – for the unweighted case – gives rise to a boolean-valued
equation system, see (2.1). This idea can be extended to the weighted case.

As usual, fix a WPDS W = ⟨P ,S⟩, where P = ⟨P,Γ, D,Δ⟩ and S =
⟨D,⊕,⊗, 0̄, 1̄⟩ is an idempotent semiring. Let X := { [[p, , q]] ∣ p, q ∈ P,  ∈
Γ } be a set of D-valued variables. We associate an equation with each
variable:

[[p, , q]] =
⊕

⟨p,⟩ d↪−→⟨q,"⟩
d ⊕

⊕
⟨p,⟩ d↪−→⟨r,′⟩

(d⊗ [[r, ′, q]])

⊕
⊕

⟨p,⟩
d↪−→⟨r,′′⟩
s∈P

(d⊗ [[r, ′, s]]⊗ [[s, ′′, q]])
(2.2)

Equation (2.2) lists all possible ways how ⟨p, ⟩ can be reduced to ⟨q, "⟩.
Intuitively, and in analogy to (2.1), its value summarizes the paths for that
pop triple. So, when a greatest (⊒S) solution of (2.2) exists and d is the
value of [[p, , q]] in that solution, then we want d to have the value

⟨⟨p, , q⟩⟩ :=
⊕
{ valS(�) ∣ ⟨p, ⟩ �=⇒∗ ⟨q, "⟩ }.

When S is bounded, the desired solution can in principle be found by
initially assigning 0̄ to all variables and then applying Kleene’s fixpoint
method (see below), which eventually terminates at the greatest fixpoint.
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Algorithm 1 is a more efficient solution for this problem, which exploits the
special structure of the equations.

When S is not bounded, the Kleene iteration may not terminate, and the
same applies to Algorithm 1. A first alternative was given by Bouajjani, Es-
parza, and Touili, who studied the case of unbounded semirings, but where
⊗ is commutative [BET03a]. Thereafter, fixpoint equations over idempo-
tent semirings gained more attention in the community: Inspired by work of
Hopcroft and Kozen [HK99], Esparza, Kiefer, and Luttenberger developed
algorithms based on Newton’s method [EKL07b, EKL07a, EKL08], where
the boundedness condition is replaced by !-continuity, requiring that the
infimum of every infinite set exists. Gawlitza and Seidl considered systems
of equations over the integer semiring [GS07a] and rationals [GS07b], and
Leroux and Sutre presented an algorithm for computing least fixed-points
for so-called bounded-increasing functions over integers [LS07].

In [KSSK09a], we made another contribution to this area, motivated by
some applications in dataflow analysis. These can be characterized as re-
source problems :

Given a WPDS W = ⟨P ,Si⟩ with integer semiring Si := ⟨ZZ ∪
{∞},min,+,∞, 0⟩ and C ⊆ Conf (P), find the maximal value
k ∈ ZZ such that �(c) ≥ k for all configurations c. If no such
bound exists, set k := −∞.

In this setting, we can interpret weights as resources that are produced and
consumed by the rules. If k ≥ 0, then every path towards C produces all
the resources it consumes. If k < 0, then there is a path that consumes
more than it produces, which may point to a problem in the system under
verification. However, this problem could in principle be fixed providing the
system with −k additional resources. On the other hand, if k = −∞, then
losses can be arbitrarily high, which may indicate serious resource leakage.
Some concrete examples of resource problems are named in Section 2.2.3. A
‘forward’ variation of the problem is to ask whether the system, starting in a
given configuration, has an execution that eventually runs out of resources.
Since this is reducible to a ‘backwards’ problem, we do not discuss it explicitly
(see [KSSK09b], Appendix C, however).

Example 2.12 Let us consider examples with semiring Si. In all cases, we
set C := {⟨q, "⟩}.
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(i) Take a WPDS W1 with Si and three rules:

⟨p,A⟩ 2↪−→ ⟨p,B⟩ ⟨p,B⟩ −3↪−−→ ⟨p, C⟩ ⟨p, C⟩ 2↪−→ ⟨q, "⟩

There is only one chain of rule applications from ⟨p,A⟩ to ⟨q, "⟩, and
the weight becomes negative in between, hence k = −1 in this case.

(ii) For W2, consider the following rules:

⟨p,A⟩ 1↪−→ ⟨p′, "⟩ ⟨p′, A⟩ −1↪−−→ ⟨p′, "⟩ ⟨p′, A⟩ 1↪−→ ⟨q, "⟩

Repeated application of the second rule can cause arbitrarily high re-
source leakage, hence k = −∞.

(iii) Let us consider a third example W3 with:

⟨p,A⟩ 1↪−→ ⟨p,AB⟩ ⟨p,A⟩ 1↪−→ ⟨q, B⟩ ⟨q, B⟩ −2↪−−→ ⟨q, "⟩

Here, one part of the system produces an unbounded number of resources
by pushing Bs onto the stack, but in the second phase, when removing
the Bs, it consumes too many of them, so again k = −∞.

The relation of resource problems to Kleene iteration is a bit subtle: Si is
not bounded, yet Kleene iteration would still terminate on W1 and W2 but
not on W3. But k is finitely negative in W1 and −∞ in both W2 and W3.

The main contribution of [KSSK09a] is an algorithm that detects when
Kleene iteration is not going to terminate and reports this fact to the user,
also indicating a reason for non-termination. If, however, Kleene iteration
does happen to terminate, then our algorithm produces the greatest solu-
tion of the equation system. We identify a family of semirings where non-
termination can be detected quite quickly.

To illustrate the contribution abstractly, one could say that the method
in this section relates to the one from Section 2.2.1 like the Bellman-Ford
shortest-path algorithm [Bel58, For56] relates to Dijkstra’s algorithm [Dij59].
For this to work, we require two algebraic properties of a semiring S: (i) ⊑
is a total order; (ii) S must be inequality-preserving.

Definition 2.9 Let S = ⟨D,⊕,⊗, 0̄, 1̄⟩ be an idempotent semiring. We call
S inequality-preserving if for all a, b, c ∈ D ∖ {0̄} we have that a ∕= b implies
a⊗ c ∕= b⊗ c. A totally ordered, inequality-preserving idempotent semiring is
called a tipi.
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Examples of tipis include Si from above or the semiring over the rationals
between 0 and 1 with multiplication, Sr := ⟨QQ[0, 1],max, ∗, 0, 1⟩.

Let us introduce some notation for the Kleene iteration. For every vari-
able x ∈ X , we let xi denote its value in the i-th iteration, and denote by Xi
the mapping of each variable x to xi. Then for all x ∈ X , we set x0 := 0̄ and
xi+1, for i ≥ 0, the value obtained by substituting all x′ ∈ X by the value x′i
in the equation for x. We say that Xi is a fixpoint of (2.2) if Xi = Xi+1.

The following proposition summarizes results from [KSSK09a]:

Proposition 2.2 Let S be a tipi. Then the Kleene iteration terminates after
at most n+ 1 steps, or not at all, where n = ∣X ∣, i.e.:

(i) The Kleene iteration on (2.2) has a fixpoint iff Xn = Xn+1. If such a
fixpoint exists, then Xn is the greatest solution of (2.2).

If the greatest solution exists, then additionally:

(ii) [[p, , q]]n = ⟨⟨p, , q⟩⟩ holds for all [[p, , q]] ∈ X .

(iii) Let C := F × {"} for some F ⊆ P be a basic set. Construct the
W-automaton A′ = ⟨P,Γ ×D,→, P, F ⟩ with p −→

d
q iff [[p, , q]]n = d.

Then A′ is the solution of the GPP forW , C in the sense that it accepts
each c ∈ Conf (P) with weight �(c).

(iv) Xn can be computed in O(∣P ∣3 ⋅ ∣Δ∣2) time (cf Remark 2.2).

Notes on the proof The proof is in multiple steps. First, in Section 2
we show that (i) holds for any polynomial equation system over tipis with
n variables. This is based on the construction of witness graphs (called
derivation trees in [KSSK09b]) along the same lines as in Section 2.2.1, with
nodes ⟨x, d⟩ ∈ X × D explaining why variable x has value d. Suppose that
xn+1 ∕= xn for some x ∈ X. Then the witness tree for ⟨x, xn+1⟩ has height
n + 1. The proof directly exploits the algebraic properties of tipis to argue
that the witness tree contains a path from ⟨y, d1⟩ via ⟨y, d2⟩ to ⟨x, xn+1⟩ for
some y ∈ X and d1 ⊐ d2 (because of total order). Then the part of the
witness graph between ⟨y, d1⟩ and ⟨y, d2⟩ can be ‘pumped’, which, due to
inequality-preservation, yields ever smaller values for x.

In Section 3 of [KSSK09b] we argue that the fixpoint (if it exists) indeed
gives the desired result and can be used to construct a solution for the GPP.
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The complexity result comes from the fact that it only makes sense to have
a variable [[p, , q]] if there exists at least one rule with ⟨p, ⟩ on the left-hand
side. Thus, the number of variables n is bounded by ∣P ∣ ⋅ ∣Δ∣ and that of the
equation system by ∣P ∣2 ⋅ ∣Δ∣.

If the greatest fixpoint exists, then a witness graph can be constructed as
in Section 2.2.1, while solving the equation system. If such a fixpoint does not
exist, then there is at least one variable x ∈ X such that xn ∕= xn+1. Let us
call such a variable a spoiler.3 These spoilers correspond to possible sources
of problems if, e.g.,W represents a resource problem as explained above, and
reporting these spoilers to the user may help pinpoint the problems. In fact,
it is possible to identify all spoilers and compute the precise values for all
other variables, see [KSSK09a], Remark 1.

Example 2.13 In the WPDS W1 and W2 from Example 2.12, the Kleene
iteration will terminate and for each case produce an automaton A′. To find
the bound k, we are now interested in finding the minimal-weight path in A′
leading from some arbitrary state to q (recall F = {q}). This can be done by
applying the ordinary Bellman-Ford algorithm to A′ interpreted as a graph.
Doing so would yield k = −1 for W1 and k = −∞ for W2.

In the WPDS W3, the variable ⟨p,A, q⟩ will be identified as spoiler and
we can directly conclude that k = −∞.

The aforementioned work by Gawlitza and Seidl [GS07a, GS07b] is in
some aspects closest to ours. It considers richer classes of equations but does
not allow multiplication between variables, used in (2.2). Also, it directly
exploits properties of the integers and rationals while our semirings rely on
more general algebraic properties. Our generalization of Bellman-Ford was
inspired by the one used in [GS07a].

2.2.3 Applications

The weighted PDS framework has a number of applications in verification
and dataflow analysis. Starting with the latter, dataflow analysis is generally
concerned with summarizing, for each node n in the control flow of a pro-
gram, some aspect of the possible memory configurations that hold whenever
control reaches n.

3Called witnesses in [KSSK09a], which has a different meaning in this document.
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int x;

void main()

x = 5;

p();

n3: return;

void p()

if (...)

return;

else if (...)

x = x + 1;

n8: p();

x = x - 1;

else

x = x - 1;

n11: p();

x = x + 1;

fi

Figure 2.10: Example program for analysis of linear-constant propagation.

The seminal work of Sharir and Pnueli [SP81] on interprocedural dataflow
analysis shows how to compute dataflow information capturing only the in-
terprocedurally valid paths, i.e. those paths in which all return statements
lead back to the site of the most recent call, by constructing an appropri-
ate fixpoint equation system. However, [SP81] computes only one dataflow
value for each program point, merging together all the paths that reach it,
regardless of the calling context.

The WPDS framework that we presented in the previous sections pro-
vides new algorithms for interprocedural dataflow analysis. In particular,
the WPDS framework allows to pose dataflow queries with respect to a reg-
ular language of stack configurations.

Example 2.14 Consider the program in Figure 2.10, which has one global
integer variable x. Without making any assumptions on the range of x, we
show in [RSJM05], Section 4.3, how to frame the problem of linear-constant
propagation as a bounded WPDS problem. This allows not only to prove
that the program always terminates with x = 5, regardless of the recursion
depth in procedure p. A WPDS reachability query also allows to determine,
for instance, that x = 5 always holds whenever one enters p with alternating
calls from both recursive sites, i.e. whenever the stack is a word in the regular
language (n8n11)

∗n3.

Conventional interprocedural dataflow-analysis algorithms, by merging
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together all calling contexts, would only be able to provide the answer that
the value of x when entering p can be variable. In [RSJM05], Section 4.2,
we give an algorithm that allows to extract this conventional data-flow infor-
mation from the W-automata produced by Algorithm 1. Thus, the WPDS
framework is strictly more general than conventional data-flow analysis. An-
other contribution over conventional data-flow analysis is the generation of
interprocedural witness paths, which was not considered previously. A pre-
cise and extensive overview of the relation to pre-existing dataflow analysis
procedures is given in [RSJM05], Section 6.

Applications for this exist, for instance, in program understanding, where
users can pose queries about dataflow information with respect to a regular
language of initial stack configurations and/or demand an explanation (in
the form of witness paths) for the values provided by the analysis tool. Also,
program optimizers could make queries about dataflow values in different
calling contexts, allowing them to produce different versions of a procedure
that can be used and optimized separately according to context.

Bounded idempotent semirings can model a variety of standard dataflow
analyses, such as the so-called bitvector problems, e.g. live-variable analy-
sis.4 The applicability of WPDS to other dataflow analyses such as constant
propagation and linear-constant propagation were demonstrated by us in
[RSJM05]. Müller-Olm and Seidl [MOS04] provided an interprocedural ver-
sion of affine-relation analysis, which determines, for each program point n,
the set of all affine relations that hold among program variables whenever n
is executed. This method can be alternatively be framed as a GPP problem
and is now used in the Codesurfer tool for x86 executables [BGRT05].

Resource problems have been identified as a type of application for the
unbounded case in Section 2.2.2. Some examples of such problems are listed
in [KSSK09a], Section 4. These include memory allocations in the Linux
kernel, where the goal is to prevent memory corruption. Another are corre-
spondance assertions [WL93] used in the analysis of authentication protocols.
Here, correct usage of a protocol is specified by annotating programs with
additional labels that form pairs of begin and end statements, which may
be inserted anywhere in the code, i.e. their location in the code may be
unrelated to its syntactic structure. The sequence of begin and end state-
ments along a correct run must be well-formed. Thus, a begin statement

4Bitvector problems in a PDS context were previously adressed by Esparza and Knoop
[EK99] using specialized pre∗ and post∗ queries.
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corresponds to creation of a resource and end to its consumption. A third
application is to test shape-balancedness in context-free language, e.g. to
test whether the XML documents generated by some program are always
well-formed. Here, our framework give an O(n4) algorithm, whereas for a
previous solution [TM07] no complexity bound was known.

In verification, the pushdown-based model checker Moped uses the WPDS
framework to combine PDS with binary-decision diagrams (BDDs); details
of this were discussed in Section 2.2.1. The semiring S1 from Example 2.7
can be used to produce shortest counterexamples or reachability witnesses.

Other uses in verification that have been found for the WPDS framework
are in the analysis of concurrent PDS, where two PDS P1,P2 synchronize via
common actions. Given configurations c1 ∈ Conf (P1) and c2 ∈ Conf (P2),
it is undecidable whether c1, c2 can be jointly reached at the same time, by
reduction from the problem of testing emptiness of the intersection of two
context-free languages [Ram00]. However, �(c1) and �(c2) can be seen as
abstractions or approximations of the context-free languages of synchroni-
sation actions leading to c1 and c2 and can therefore yield a ‘safe’ answer
for joint reachability that only errs on one side. This application was ini-
tially proposed by Bouajjani, Esparza, and Touili in [BET03b, BET03a].
While their approach was formulated in a different framework and under
slightly different algebraic restrictions on semirings, all but one of the ab-
stractions proposed there could be formulated in the bounded WPDS frame-
work, providing a more efficient solution than in [BET03b]; this solution was
subsequently integrated into [BET03a]. Later, Touili and others expanded
this idea into an abstraction-refinement mechanism inside the model checker
Magic [CCK+06].

Finally, Wenner studied an extension of the weighted framework to dy-
namic pushdown networks, using this to solve dataflow problems for a re-
stricted class of concurrent PDS [Wen10].

2.3 Other PDS-related contributions

This chapter summarizes some other contributions related to pushdown sys-
tems. These concern the development of tools (Section 2.3.1), research
on concurrent PDS (Section 2.3.2), an abstraction-refinement scheme (Sec-
tion 2.3.3), and the use of PDS in authorization (Section 2.3.4).
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2.3.1 Tool development

Tools are presented first in this section, since they provided the backbone for
the other contributions. The saturation and witness-generation procedures
for the bounded case shown in Section 2.2.1, along with other related func-
tionality, have been implemented in two libraries called WPDS [Schc]. To
instantiate the framework, all a user has to provide are application-dependent
functions that implement the operations ⊕ and ⊗, which will be appropri-
ately invoked by the libraries. An alternative implementation, made by Reps’
group at Wisconsin is called WPDS++ resp. WaLi [KRML06].

Based on this library, I re-write the tool Moped from the ground up,
which enabled me to give it cleaner, more versatile and structured architec-
ture that other developers could build upon. For instance, Stefan Kiefer, then
a master student in our group, used this framework to integrate an extension
for counterexample-based abstraction refinement (see Section 2.3.3).

Moped then matured into a user-friendly tool for analyzing Java programs
(jMoped), mostly through the work of Dejvuth Suwimonteerabuth, a PhD
student in our group at the time. We turned jMoped into a test environment
for Java programs [SSE05, SBSE07]. The idea of jMoped is to translate Java
bytecode into a PDS, automatically including the the bytecode of available li-
braries if need be. Felix Berger contributed an Eclipse plugin, which Dejvuth
later expanded; more details can be found in his thesis [Suw09].

2.3.2 Verification of concurrent PDS

Pushdown systems as such were conceived as entirely sequential models of
computation with no thought of concurrency at all. However, it is natural
to make the model (and the aforementioned results) applicable also in a con-
current and distributed setting, and this subject has attracted considerable
attention by the verification community in the last decade.

Verification of concurrent PDS is challenging not only due to state-space
explosion, but also due to the decidability boundary. For instance, a system
with two stacks and one common variable is equivalent to a Turing machine.

A very influential approach has been the proposal of context-bounded anal-
ysis by Qadeer and Rehof [QR05], where one only considers executions in
which the active process changes no more than a fixed number of times.
My own contributions in this area pertain to that approach and span two
publications [BESS05, SES08].
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Figure 2.11: (a) CPS executing a transition in thread 2; (b) configuration of
an APN.

Context-bounded reachability analysis The model proposed in [QR05]
is called concurrent pushdown systems (CPS). Configurations of a CPS con-
sist of one control location (from a set G) and multiple, say n, stacks over
alphabet Γ. Every thread operates like a PDS, it can query and manipulate
the common control location and one of the n stacks. Figure 2.11 (a) illus-
trates the idea, where thread number 2 makes a step, changing both control
location and its own stack.

A context is a sequence of transitions working on the same stack, i.e. by
the same thread, and a sequence is k-bounded if it is a concatenation of k
contexts. A k-context-bounded reachability analysis consists in computing
the set of all forwards/backwards reachable states (from some regular set
of initial/final configurations). Qadeer and Rehof justify this idea by citing
experience [QW04] that most concurrency bugs can be found within few
contexts.

Suppose that n = 2 and we start from control location g0 ∈ G and reg-
ular languages ℒ1,ℒ2 ⊆ Γ∗ for the two threads. The reachability algorithm
proposed in [QR05] is as follows: Starting from the tuple ⟨k, g0,ℒ1,ℒ2⟩, one
computes ℒ′ = post∗({g0}×ℒ1) (same for ℒ2) using standard PDS reachabil-
ity [BEM97, FWW97, EHRS00]. This corresponds to one context in the first
thread. So one splits ℒ′ according to control location, i.e. into ∣P ∣ subprob-
lems ⟨k − 1, g,ℒ′ ∩ ({g} × Γ∗),ℒ2⟩, for each g ∈ G, and proceeds recursively
until k contexts have been reached. Intuitively, the recursive computation
resembles a tree, where different branches correspond to different sequences
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of active processes and to different values of G during context switches. This
procedure takes O(k3 ⋅ nk ⋅ ∣G∣k+5) time, when all other, minor parameters
are fixed.

A generalization of CPS This paragraph briefly explains the contribu-
tion of [BESS05], due to common work with Ahmed Bouajjani, Javier Es-
parza, and Jan Strejček.

In [BESS05] we provided some improvements over CPS in terms of com-
plexity bounds and expressive power. In the model that we call APN (asyn-
chronous pushdown network), we replace G by two sets of global and thread-
local control states (G′ and P , respectively). This allows to limit G′ to the
amount really necessary to exchange information between threads, whereas
P can be used, e.g., to model a thread-internal return value in a pop rule.
APN are therefore more concise. Figure 2.11 (b) illustrates the structure of a
configuration of an APN with global control state g′ and thread-local control
states p1, . . . , pn.

A context in an APN is a sequence where the same thread operates on the
global control state, interspersed by local actions of other threads. For this
notion of context we give a forwards reachability algorithm inO(k2⋅nk⋅∣G∣k+2)
time. (Notice that k is supposed to be small, so the improvement from k+ 2
to k + 5 in the exponent matters.)

Moreover, we then consider an extension of the model with unbounded
thread creation (bounded thread creation was allowed in [QR05]). Here, it
turns out that the set of forward reachable configurations is context-free,
whereas backward reachability preserves regularity. We provide algorithms
for both cases.

Symbolic context-bounded analysis While the context-bounded ap-
proach generated some interest in the verification community (see related
work below), actual implementations of the approach were not forthcoming
at first. Its applicability was hampered by the difficulty to combine it with
symbolic techniques, e.g. BDDs: After every individual post∗ computation,
the result is split into ∣G∣ parts that are processed individually – exactly the
opposite of what one intends to do in symbolic model checking.

In joint work with Dejvuth Suwimonteerabuth and Javier Esparza [SES08],
we tackled this problem and developed a variant suitable for BDD-based
methods. The main contribution of that paper is the development of lazy
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splitting. Lazy splitting determines subsets of G that one can continue to
treat in the same branch of the tree (see above), thereby limiting its width;
the subsets can themselves be determined by BDD operations.

The algorithm has been implemented in jMoped, and we report on ex-
periments with Java programs, such as the java.util.Vector class from the
Java library and a Bluetooth driver.

Related work Before and since the publication of the works mentioned
above, there have been many more works on verifying concurrent PDS, and
in particular on context bounding. Some pointers to these are given below,
but the list is necessarily incomplete.

Since reachability is undecidable for concurrent PDS in general, researchers
have tried to either find interesting, restricted subclasses that still allow at
least reachability analysis, or provide approximative solutions for more gen-
eral cases.

In the first category, the proposals include restricting the communication
architecture [BMOT05, ABT08, Wen10], communication via locks used ei-
ther in nested fashion [KIG05] or in lock chains [Kah09], or more recently
asynchronous communication via FIFO channels [HLMS10] with various re-
strictions, e.g. a process may send messages only when its stack is empty.

An example of over-approximative solutions is [BET03a], already dis-
cussed in Section 2.2.3, which computes an abstraction of the language of
synchronization actions in each parallel component. The context-bounded
approach belongs into the class of under-approximations and has been among
the most influential ideas, having spawned several variations and extensions,
e.g. analysis of heap structures [BFQ07] and queue systems [LMP08], bound-
ing only the number of context switches between a push and corresponding
pop [LN11], or fixing other parameters like the number of times a node can
switch between sending and receiving [BE12].

In parallel with our work on BDD-based context-bounded analysis, Lal
et al [LTKR08] published another approach based on weighted transducers.
Moreover, some work has gone towards reducing concurrent reachability to
sequential reachability [QW04, LR09, LMP09].

2.3.3 Abstraction-refinement for symbolic PDS

This section gives a brief account of work done together with Javier Esparza
and Stefan Kiefer [EKS06, EKS08b]. We studied counterexample-guided
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abstraction refinement (CEGAR) in the context of a symbolic pushdown
model checker like Moped.

CEGAR is a powerful, generic methodology for verification of systems
with large or infinite state spaces, introduced by Clarke et al [CGJ+00]. In
principle, the goal is to check whether a certain target state s is reachable
in some LTS T . If the state space is very large, one can subdivide the
states into equivalence classes and obtain an LTS T≡ over their quotient set
through existential abstraction, then analyze T≡ instead. Since T≡ is an
overapproximation, this can yield a ‘spurious’ counterexample, e.g. a path to
s that is not possible in T . This path is then used to refine the equivalence
classes, and the process repeats, until either the target state s is shown to
be unreachable or a real counterexample emerges.

In [EKS06, EKS08b] we studied this approach in the context of push-
down model checking where relations are encoded as weights in a WPDS
(see Section 2.2.1). The input language of Moped, called Remopla, al-
lows to specify a program with procedures, basic data types like integers and
booleans, and, e.g., arrays over those types. Statements, such as guards or
assignments, are translated into BDDs in standard fashion. We then wish
to apply CEGAR in order to reduce the amount of work that the model
checker needs to do. In the parlance of the explanation above, our LTS T
is represented by a weighted PDS W with BDDs, and T≡ by another such
weighted PDS W≡ with smaller BDDs.

A nice feature of weighted PDS in this context is the witness graph dis-
cussed in Section 2.2.1. Recall that this witness graph allows to explain the
weight �(c) of a given configuration c inW≡. If c represents the target config-
uration, then �(c) contains the data configurations that can hold at c, and the
witness graph provides a path in the PDS for all those data configurations.
We simulate those paths to check whether at least one of them corresponds
to a path inW . If that is the case, we can terminate and say that the target
configuration is reachable. Otherwise, the witness graph is ‘spurious’, and
we need to refine the abstraction. Thanks to the structure of the graph, we
can obtain all spurious counterexamples in the current abstraction and refine
the equivalence relation to eliminate them all in the next iteration, including
in the case of recursive procedure calls.

Figure 2.12 shows a simple example (without procedure calls) where we
want to know if the error is reachable. If, in the initial abstraction, all data
is discarded, then the witness graph shows two counterexamples, one that
passes through the loop once, and one that skips it. This witness graph is
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1: X := X ⋅ (X + 1)
2: while Y odd do

3: Y := Y + 1
4: if (X + Y ) odd

then goto error

5: end

X := X ⋅ (X + 1)

2 ≡ {X even}
{(X even ∨ Y odd) ∧ (X even ∨ Y even)}

3 {X even ∨ Y even}

2′ {X even ∨ Y odd}

4

(Y even)

{X + Y even}

(X + Y odd)

(Y even)

error {ff}

(Y odd)

Y := Y + 1

1 {tt}

Figure 2.12: Program and witness graph annotated with weakest inter-
polants.

spurious, in fact the error is unreachable. The corresponding witness graph is
shown on the right-hand side of Figure 2.12. Using standard BDD operations,
one can compute, for each node n, either the strongest postcondition In (i.e.
the facts that are guaranteed to hold after executing the paths leading to that
node), or the weakest precondition Jn for making the rest of the trace after n
infeasible. Figure 2.12 shows the weakest preconditions as annotations next
to each node.

In [McM03], McMillan proposed to use Craig interpolation to automatize
abstraction refinement. Given a spurious counterexample path, Craig inter-
polation provides, at each point n along the path, a predicate I that talks
only about the variables at point n. Such a predicate is called an interpolant,
and it will be added to the refinement of T≡. If chosen carefully, this addition
guarantees that the spurious path is ruled out in the future.

[McM03] uses SAT checkers, and the interpolant for a pair F ∧ G is
obtained from a resolution proof for insatisfiability of F ∧G. In [EKS08b], we
use BDDs instead. We show that the two families of predicates (strongest and
weakest, In and Jn) are both suitable for ruling out spurious paths. Moreover,
we show that the computation of Craig interpolants works well with BDDs.
We also introduce another kind of interpolants, called conciliated, which lie
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between the strongest and weakest interpolant but are simpler in the sense
that they talk about fewer variables.

Based on these two components – exploitation of witness graphs and
Craig interpolants – the approach was integrated into Moped, and [EKS08b]
provides a number of detailed case studies, together with several case studies.

Related work CEGAR has been used in several other software model
checkers, such as Slam [BR01], Blast [HJMS02], or Magic [CCG+03].
The approach in [EKS08a] differs from these by the consistent use of BDDs.
For instance, the Slam model checker [BR01] uses BDDs to represent the
abstraction (T≡) but theorem proving to obtain the predicates. Magic does
not use BDDs at all, but relies on SAT solvers and theorem provers.

2.3.4 Authorization systems

The main issues in access control of shared computing resources are au-
thentication, authorization and enforcement. The first aspect concerns the
identification of principals. The second aspect demands the formulation of a
policy detailing which access rights should be granted to each principal. En-
forcement addresses the problem of implementing the authorization during
an execution. Here we discuss the second aspect.

To explain the necessity of a sophisticated authorization system with clear
formal semantics, let us start with a concrete example: The computer science
department at ENS Cachan runs a server (“serveur pédagogique”) used by
teachers and students to manage administrative aspects, marks for courses,
ECTS credits, and so on. Every course belongs to a certain diploma (L3, M1,
or M2). Teachers and students belong to various different establishments
scattered over Paris and surroundings, who are jointly running a master
programme.

Naturally, not all users in this system have the same rights, e.g. a student
may not change his own marks. Thus, it becomes necessary to specify which
users may exercise which functionalities on certain objects in the system. The
initial system for granting authorization that was implemented on the server
assigned to each user a set of rôles; he could be teacher, student, director,
admin, etc. This worked to some extent, but it was not readily possible to
require that, e.g., a teacher can change only the marks in his own course.
Later, a second, more flexible system for managing access rights was installed,
which permitted, e.g. to relate the access rights of a teacher or a student to
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his own courses. However, the system knew only a few such relations, which
were hardcoded. Also, the precise semantics of this authorization system was
neither documented nor evident in all cases.

As so often, formal methods came to the rescue. In fact many interesting
features for specifying access rights can be readily expressed using pushdown
systems and variations thereof.

For instance, the director in charge of some diploma should be able to
change certain settings in the courses belonging to that diploma. Suppose
that course C belongs to the M2, and Alice is the director of the M2. In
this simple example, to determine whether Alice has access to C, one could
compute the join between two relations (cours-diploma and diploma-director)
and check whether that contains the pair ⟨C,Alice⟩.

Let us regard another modelling, based on pushdown systems:

∙ the authorization certificate becomes a ‘push’ rule:

⟨C, access⟩ → ⟨C, diploma director⟩;

∙ the relation certificates become ‘pop’ rules:

⟨C, diploma⟩ → ⟨M2, "⟩

and
⟨M2, director⟩ → ⟨Alice, "⟩.

Then, checking whether Alice has access to C is equivalent to checking
whether in the resulting PDS, we have ⟨C, access⟩ →∗ ⟨Alice, "⟩.

We see therefore that we have two kinds of data or ‘certificates’ that
govern access rules: relations describe facts about the world, e.g. who is
teacher of which course, who is director of which lab or manager of a certain
diploma; or which course belongs to which diploma. These relations can
be referred to and joined together using authorizations. An authorization
grants a certain functionality (above: access) over a certain object (above:
course C ). It is possible to attach multiple functionalities to the same object,
e.g., a restricted “view” of the course page for the students, or “modify” the
settings of the course, the exam etc, which would be accessible only for the
teachers. The words view and modify would simply replace access in the
example above. In all cases, the authorization problem reduces to querying
a pop triple in an underlying PDS. Moreover, the witness graph produces a
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chain of certificates leading from the resource to the user and constitutes a
valid proof for access. This framework has a clear, simple semantics and is
yet very flexible; new functionalities can simply be added as a new keyword.
New relations can also be added in a modular way.

Moreover, once one exploits the full expressiveness of PDS, one obtains
more flexibility in specifying access rights, surpassing simple joins. Indeed,
the SPKI/SDSI standard for expressing authorizations [EFL+99] (published
as RFC 2693), is as expressive as pushdown systems. Hence, reachability al-
gorithms for PDS solve the authorization problem for SPKI/SDSI (or for the
serveur pédagogique). Let us note that SPKI/SDSI was designed for open-
world scenarios, where public-key cryptography is used to sign certificates.
Indeed, a principal is identified with his public key in certificates, and a prin-
cipal’s certificates are signed using his private key. In this way, the veracity
of a certificate chain can be checked by any person in the middle, who may
not even know the identitities of the persons involved. It suffices to execute
the cryptographic primitives, using the key that is part of the certificate to
verify that its signature is genuine.

It was initially observed by Jha and Reps [JR02] that pushdown systems
are a suitable formal model for expressing authorizations in the SPKI/SDSI
framework. We expanded on this thought by studying several extensions of
pushdown systems and their counterparts in authorization. The work in this
area was done with many people: Ahmed Bouajjani, Javier Esparza, Somesh
Jha, Thomas Reps, Stuart Stubblebine, Dejvuth Suwimonteerabuth, and Hu
Wang.

Weighted PDS [SJRS03] The framework of bounded idempotent semir-
ings allows to annotate certificates with additional information, for instance
concerning privacy, recency, validity, or trust. In this way, one can compute
whether a user has an access right while minimizing the amount of sensitive
information given away in the process.

Intersection certificates [SSE06] Alternating PDS allow to introduce
“intersection certificates”: a user may obtain an access if he belongs to the
intersection of two groups. Indeed this possibility was also mandated for
in RFC 2693. We show that the corresponding reachability problem is ex-
ponential in general but remains polynomial if intersection is restricted to
authorization certificates.
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Practical Steps [JSWR06, WJR+06] To improve the practicability of the
approach, we show how to implement SPKI/SDSI authorization in a dis-
tributed setting, i.e., where certificates are distributed over various servers.
We discuss how to carry out the pre∗ or post∗ procedure in a distributed way
in this case. Another aspect concerns the integration into Kerberos.

Reputation systems [BESS08] In a related vein, we use the weighted
pushdown framework with probabilities. We show how this can be used
to compute the reputation of individuals within a group, for instance in
academia, where individuals can distribute their trust to various conferences,
journals, etc, and the trust allocated to these entities is in turn distributed to
the authors who publish in those venues. For instance, we used the system to
compute the approximative reputation of the PC members of the conference
this paper was published in.

Finally, a subset of this functionality is nowadays being used to han-
dle access control inside the “serveur pédagogique”. The programming for
this implementation was carried out together with Paul Gastin and Audrey
Halbert.
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Chapter 3

Petri nets

Concurrency poses particular problems for the design and verification of sys-
tems. In Section 2.3 we mentioned the combination of pushdown techniques
with concurrency. The combination of these two components poses a serious
challenge for designing formal methods that are at the same time decidable,
efficient, and permit to model meaningful classes of systems.

However, concurrent systems are challenging to design and analyze even
without additional sources of complication. This holds true especially when
a system consists of many components running at different, often impre-
dictable speeds. This may result in astronomically many different orderings
of execution, making the behaviour difficult to predict and bugs difficult to
find or reproduce. Some of these orderings are important to understand the
behaviour of a system. Let us imagine n components in parallel sharing
a variable p, where the first action of process i (for i = 1, . . . , n) consists
in setting p := i. It seems clearly important to regard the different orders
of execution, or – depending on context – at least remember which process
modified p last. On the other hand, let us imagine n processes, each with
one action that is entirely independent of the other processes. In this case,
the order of execution seems unimportant, and we would not be inclined to
explore all 2n interleavings.

The challenge, then, in automated verification of concurrent systems, is
to design methods that can distinguish between interesting and uninteresting
interactions. In this chapter, we base our endeavours on Petri nets. Origi-
nally introduced by Carl Adam Petri [Pet62] in his PhD thesis, they are a
natural way to model concurrent systems, in which dependencies and causal-
ities between components and actions are directly visible in the structure of
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Figure 3.1: Petri net modelling a simple mutex protocol.

the model. Moreover, Petri nets have an appealing graphical representation.
Many different variants of Petri nets have been proposed in the literature;
here, we use simple place/transition nets. They consist of two type of nodes
called places (usually round) and transitions (usually square). Places can
carry tokens, whose distribution over the places, called marking, define the
current state, symbolizing, e.g., control flow, variables, resources, etc. Tran-
sitions represent actions, and tokens can flow along the arcs, which connect
places and transitions, symbolizing the consumption and/or production of
resources. We point to Reisig’s book [Rei98] for a survey on modelling and
analysis methods for Petri nets.

Example 3.1 Figure 3.1 shows a small Petri net modelling two processes
competing to enter a critical section (places p3, p7), where p4 takes the role
of a semaphore protecting the access.

In Richard Mayr’s hierarchy of prefix-rewrite systems [May98], Petri nets
are the parallel counterpart to PDS: while PDS replace one sequence in the
prefix of a term by another sequence, Petri nets replace one parallel expres-
sion by another. But the two classes are far from being duals, concurrent
systems have fundamentally different properties, and hence their verification
faces completely different algorithmic challenges. This holds even when we
regard the particular subclass of bounded nets, where no reachable marking
contains a place occupied by more than k tokens, for some k (for k = 1, one
speaks of safe nets).

The techniques in this chapter are based on unfoldings. An unfolding U
of a net N is obtained, roughly speaking, by unrolling its loops. Thus, in
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Figure 3.2: Initial part of the unfolding of the net in Figure 3.1.

general, U is infinite. Figure 3.2 shows the initial part of the unfolding for
the net in Figure 3.1. Unfoldings were initially an object of semantic interest
[NPW81], as the concurrent counterpart of a computation tree. McMillan
[McM92] showed that they could be interesting for verification purposes be-
cause for a bounded net N , a finite prefix P of U suffices to recover all
reachable markings. This is interesting because U and P are structurally
acyclic, so reachability is NP-complete for P but PSPACE-complete for N .
McMillan’s result was followed up by Esparza et al [ERV02], showing that
one can always obtain a prefix whose size is bounded by the number of reach-
able markings of N , and is usually much smaller. Therefore, unfoldings may
serve as a basis for further analyses. There is a large body of work describing
their construction, their properties, and their use in various fields; see [EH08]
for an extensive survey.

Example 3.2 Figure 3.2 shows an unfolding prefix P of the net N from
Figure 3.1. Note that places and transitions of P are labelled with places
and transitions of N , and Figure 3.2 shows these labels.

The development of algorithms and tools [Schb, Kho] for unfoldings has
mostly concentrated on bounded Petri nets, and we follow this tradition.
Thus, we are not concerned with finding decidable yet expressive enough
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subclasses of Petri nets, but concentrate instead on algorithmic aspect as
well as efficient data structures and algorithms.

Before going to the technical details of the contributions, we first intro-
duce basic notations and facts about Petri nets and unfoldings in Section 3.1.
The line of work that I chose to highlight in this chapter is presented in Sec-
tion 3.2 and concerns the attempts to make unfoldings more concise and
hence efficient to use. Other contributions related to Petri nets are summa-
rized in Section 3.3.

3.1 Basics of c-nets and unfoldings

The material presented in this section covers introductory material about
nets and their unfoldings. In order to make this material applicable to the
entire chapter, the introduction is made in terms of c-nets, which are more
general than Petri nets, following [MR95, BCM98, BCM01]. Notions that
are more specific to c-nets or the special case of Petri nets are deferred until
Section 3.2 and Section 3.3, respectively. Section 3.2 also provides more
background and motivation for studying c-nets.

3.1.1 Contextual nets

A contextual net is a Petri net extended with read arcs, which allows tran-
sitions to check for tokens without consuming them.

Definition 3.1 A contextual net (c-net) is a tuple N = ⟨P, T, F, C,m0⟩,
where P and T are disjoint sets of places and transitions, F ⊆ (P × T ) ∪
(T ×P ) is the flow relation, C ⊆ P ×T is the context relation, and m0 ⊆ P
is the initial marking. A pair ⟨p, t⟩ ∈ C is called read arc. N is called finite
when the P and T are finite. A Petri net is a c-net without read arcs.

A marking of N is a function m : P → IN. A set m ⊆ P (such as m0)
is equivalently treated as the marking where for all p ∈ P we set m(p) = 1 if
p ∈ m and m(p) = 0 otherwise.

Example 3.3 Figure 3.3 (a) shows the usual graphical representation of a
c-net. Read arcs are depicted as undirected arcs, such as ⟨p, b⟩ and ⟨p, c⟩.
We say that b and c read from p, whereas a produces a token on p and d
consumes one.

58



(c)(b)

p1

(a)

b

a

p
c

d

b

a
p

d

c b

a
p2

c

d

Figure 3.3: (a) C-net N ; (b) its plain encoding; (c) its PR-encoding.

For x ∈ P ∪T , we call ∙x := { y ∈ P ∪T ∣ (y, x) ∈ F } the preset of x and
x∙ := { y ∈ P ∪ T ∣ (x, y) ∈ F } the postset of x. The context of a place p
is defined as p := { t ∈ T ∣ (p, t) ∈ C }, and the context of a transition t
as t := { p ∈ P ∣ ⟨p, t⟩ ∈ C }. These notions are extended to sets as usual.
For the sake of simplicity, we assume for any transition t that its context is
disjoint from its preset and its postset, i.e. ∙t ∩ t = ∅ and t∙ ∩ t = ∅.

A set A ⊆ T of transitions is enabled at marking m if for all p ∈ P ,

m(p) ≥ ∣p∙ ∩ A∣+

{
1 if p ∩ A ∕= ∅
0 otherwise

Then A can occur (or fire/be executed), leading to markingm′, wherem′(p) =
m(p)−∣p∙∩A∣+ ∣∙p∩A∣ for all p ∈ P . We call ⟨m,A,m′⟩ a step of N . When
A is a singleton {t}, we simply say that t is enabled/fires etc.

Intuitively, the notion of enabledness requires that for every place p, m
holds one token for each transition t ∈ A that consumes p, plus an additional
token if at least one transition reads from p. This means that a token cannot
be read and consumed at the same time, and our notion of step does not
require that actions in A happen completely synchronously. Contextual nets
with this notion of enabling were initially introduced by Montanari and Rossi
in [MR95]. A different notion of enabling that allows reading and consuming
a token simultaneously is used, e.g., by Janicky und Koutny in [JK91].

Example 3.4 Consider the c-net in Figure 3.4. Under our notion of step,
the initial marking enables either t1 or t2 but not {t1, t2}. One transition
disables the other, so t3 can never fire.

Denoting the set of markings by INP , we can associate with N an LTS
(see Section 2.1) T sN = ⟨INP , 2T ,→s⟩, where m A−→s m

′ if ⟨m,A,m′⟩ is a step
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of N , and another LTS T iN = ⟨INP , T,→i⟩, where m t−→i m
′ if ⟨m, {t},m′⟩ is

a step of N . The LTS T sN is the step semantics of N , whereas T iN represents
its interleaving semantics, also called the reachability graph.

A marking m is said to be reachable in N if m0
�−→∗i m for some � ∈ T ∗.

A marking m is n-safe if m(p) ≤ n for all p ∈ P . A c-net N is said to be
n-safe if every reachable marking of N is n-safe. It is called bounded if there
exists an n such that N is n-safe. A 1-safe net is simply called safe, and in
this case we treat markings as sets.

3.1.2 Encodings

We present some encodings from c-nets into Petri nets that preserve their
interleaving semantics or even their step semantics. Consider again the c-net
N in Figure 3.3 (a). Place p has two transitions b, c in its context, modelling
a situation where, e.g., two processes have read-only access to a common
resource p. The step {b, c} can occur in N after executing a.

The plain encoding of N is shown in Figure 3.3 (b). It is obtained by
replacing every read arc by a pair of directed flow arcs. The interleaving
semantics of this net is identical to that of N . However, its step semantics is
not, because the aforementioned step {b, c} cannot occur; it has to be divided
into two steps {b} and {c} that can happen in either order.

The place-replication encoding, or PR-encoding [VSY98] is shown in Fig-
ure 3.3 (c) and remedies this situation. The structure of N is modified so
that every place p in the context of n ≥ 1 transitions t1, . . . , tn is substituted
for places p1, . . . , pn. Transitions producing or consuming p will produce or
consume p1, . . . , pn instead. Moreover, transition ti (for i = 1, . . . , n) con-
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sumes and produces place pi instead of p. Thus, every reader of p has its
own private copy of it. This preserves both the interleavings and the step
semantics of N (in the sense of isomorphism).

This discussion shows that c-nets are no more expressive than Petri nets
w.r.t. the usual semantics and could be seen as syntactic sugar for the PR-
encoding. Notwithstanding this, treating c-nets directly has advantages for
the unfolding approach, as we will see shortly.

3.1.3 Occurrence nets, unfoldings, and prefixes

We introduce a class of nets that satisfies certain acyclicity constraints, called
occurrence nets. Fix a net N = ⟨P, T, F, C,m0⟩ for the rest of the section.

Definition 3.2 The causality relation on N , denoted <, is the least transi-
tive relation over P ∪ T that includes F and satisfies t < t′ if t∙ ∩ t′ ∕= ∅, for
all t, t′ ∈ T . For x ∈ P ∪ T , we write [x] for the set of causes of x, defined
as { e ∈ E ∣ e ≤ x }, where ≤ is the reflexive closure of <.

In Figure 3.3 (a) we have, e.g., a < p, p < d, and a < b. Occurrence nets
are acyclic w.r.t. the relation <.

Definition 3.3 N is called occurrence net if it satisfies the properties:

(i) every place p has at most one producer, i.e. ∣∙p∣ ≤ 1;
(ii) the causal relation < is irreflexive (hence ≤ is a partial order);
(iii) <-minimal places are the initial marking, i.e. m0 = { p ∣ ∙p = ∅ };
(iv) for every transition t there is a reachable marking m that enables it.

Example 3.5 Figure 3.2 and Figure 3.3 (a) show two occurrence nets. Fig-
ure 3.3 (b) and (c) are not occurrence nets, because their causality relation
is not acyclic, and neither is Figure 3.4 because t3 can never fire.

Note that condition (iv) of Definition 3.3 deviates from usual definitions of
occurrence nets (e.g., [EH08, BCM98, BBC+12]) in that it is an operational
rather than a structural condition. We will clarify this structural definition
in Section 3.2 and Section 3.3 for c-nets and Petri nets separately. In all
cases, the idea is that for every transition there should be some execution
that contains it. Also, since < is acyclic no transition can fire twice in any
execution.
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We can now define the unfolding of N . Intuitively, it is a safe, acyclic,
and in general infinite c-net, where loops of N are “unrolled”. Like before,
this definition has an operational flavour:

Definition 3.4 The unfolding of N is a tuple ⟨UN , ℎ⟩ consisting of an oc-
currence net UN := ⟨B,E,G,D, m̂0⟩, and a mapping ℎ : (B ∪E)→ (P ∪ T ).
(For convenience, we often equate an unfolding with its underlying net UN .)
We call the elements of B conditions, and those of E events; ℎ maps con-
ditions to places and events to transitions. We extend ℎ to sets, multisets,
and sequences in the usual way; ℎ applied to a marking of UN (a set) yields
a marking of N (a multiset).

Conditions are tuples ⟨p, e′⟩, where p ∈ P and e′ ∈ E ∪ {⊥}, and events
are tuples ⟨t,M⟩, where t ∈ T and m ⊆ B. We set ℎ(⟨p, e′⟩) := p and
ℎ(⟨t,m⟩) := t, respectively. A set m of conditions is called concurrent, writ-
ten conc(m), if UN has a reachable marking m′ s.t. m′ ⊇ m.

Then UN is the smallest net containing the following elements:

∙ if p ∈ m0, then ⟨p,⊥⟩ ∈ B and ⟨p,⊥⟩ ∈ m̂0;

∙ for any t ∈ T and disjoint sets m1,m2 ⊆ B with conc(m1 ∪ m2),
ℎ(m1) = ∙t, and ℎ(m2) = t, we have e := ⟨t,m1 ∪m2⟩ ∈ E, and for all
p ∈ t∙, we have ⟨p, e⟩ ∈ B. Moreover, G and D are such that ∙e = m1,
e = m2, and e∙ = { ⟨p, e⟩ ∣ p ∈ t∙ }.

Example 3.6 Figure 3.5 shows the unfoldings of the nets from Figure 3.3,
where ℎ is implicitly indicated by the labels of conditions and events.

The net UN represents all possible behaviours of N , and in particular a
marking m is reachable in N iff some m̂ with ℎ(m̂) = m is reachable in UN .
For the case where N is bounded, we are interested in computing an initial
part of UN that has the same property.

Definition 3.5 A set X ⊆ E is called causally closed if [e] ⊆ X for all
e ∈ X. A prefix of UN is a net P = ⟨B′, E ′, G′, D′, m̂0⟩ such that E ′ ⊆ E
is causally closed, B′ = m̂0 ∪ (E ′)∙, and G′, D′ are the restrictions of G,D
to (B′ ∪ E ′). The prefix P is called marking-complete if for all markings m
of N , m is reachable in N iff there exists a marking m̂ reachable in P such
that ℎ(m̂) = m.
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Figure 3.5: Unfoldings of the three nets from Figure 3.3.

In other words, a prefix is a causally closed subnet of UN . It is known that
if N is finite and bounded, then there exists a finite marking-complete prefix.
A finite, marking-complete prefix then preserves all reachable markings of N ,
while often being rather smaller than its reachability graph. For instance,
in Figure 3.3 (a), if we replaced b, c by n transitions reading from p, then
the net would have O(2n) reachable markings, but the unfolding would still
be isomorphic to the net itself. In general, the size of a marking-complete
unfolding prefix is – asymptotically – somewhere between the size of the net
and its reachability graph.

3.2 Making unfoldings more efficient

Unfoldings deal well with state-space explosion due to concurrent interleav-
ings of independent actions because they simply leave independent actions
as they are, without deciding their order of execution. This can be best
seen in the example evoked in the beginning of the chapter, where we have
n processes, each with one action that is entirely independent of the other
processes. In this case, the interleaving semantics gives an LTS with 2n states
but the unfolding of the corresponding Petri net would be of size O(n).

Especially for the case of Petri nets, this has sparked a large body of
research. Constructions of finite prefixes for safe or bounded Petri nets are
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Figure 3.6: Logical AND-gate as a c-net.

found in [McM92, ERV02, KKV03], unfoldings-based verification algorithms
[MR97, Hel99, KK00, EH01, ES01] and tools have emerged [Schb, Kho].

However, there are other sources of state-space explosion that traditional
unfoldings do not cope well with. One is due to the fact that concurrent read
accesses cannot be appropriately modeled in Petri nets and must be encoded
indirectly, as we discussed in Section 3.1.2.

Consider again Figure 3.3, and let us call events labelled by b and c
“readers”, and events labelled by d “consumers”. Intuitively, the readers
are as independent as the n processes in our previous example. This is not
recognized by traditional Petri net unfoldings, however, and the discussed
encodings end up exploring every combination of different readers. Figure 3.5
shows the unfoldings of the nets from Figure 3.3. If we replaced b, c by n
readers, there would be (a) n readers and one consumer in the contextual
unfolding; (b) O(n!) readers and consumers in the plain unfolding; and (c) n
readers but 2n consumers in the PR-unfolding. Even for a minimal marking-
complete prefix, the numbers would remain virtually the same, only in (b)
the number of readers and consumers becomes O(2n) instead of O(n!).

Read arcs are a natural extension of Petri nets. They have been used,
e.g., to model concurrent database access [Ris94], concurrent constraint pro-
grams [MR94], priorities [JK91], and asynchronous circuits [VSY98]. Fig-
ure 3.6 shows the encoding of a logical AND-gate as a c-net.

Due to this, it seems reasonable to study a direct unfolding technique for
c-nets. Unfoldings of c-nets were introduced independently by Baldan et al
in [BCM98, BCM01] and Vogler et al in [VSY98]. The latter provided a first
unfolding procedure for a restricted subclass called read-persistent. In this
subclass, a net must not have a reachable marking enabling two transitions
t, t′ such that one reads from a place p and the other consumes it. This is a
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severe restriction; for instance, the net in Figure 3.3 (a) does not satisfy it. A
general but non-constructive procedure was proposed by Winkowski [Win02].

This section reviews the development of a general solution for c-net un-
foldings, from the development of an abstract algorithm (Section 3.2.1) to
concrete algorithms and data structures (Section 3.2.2), verification tech-
niques (Section 3.2.3), and the combination with merged processes (Sec-
tion 3.2.4). It represents joint work with Paolo Baldan, Alessandro Bruni,
Andrea Corradini, Victor Khomenko, Barbara König, and César Rodŕıguez.
While this author’s contribution to the abstract algorithm was of secondary
importance, his focus was on the development of the other components. The
tool Cunf, which implements the techniques described herein, was made by
César Rodŕıguez.

3.2.1 An abstract algorithm

In this section, which is based on [BCKS07, BCKS08], we develop a generic al-
gorithm for constructing finite marking-complete prefixes for bounded c-nets.
For the rest of the section, we fix a finite bounded c-net N = ⟨P, T, F, C,m0⟩
and its unfolding ⟨UN , ℎ⟩ with UN = ⟨B,E,G,D, m̂0⟩.

We have seen that c-net unfoldings can be more compact than corre-
sponding Petri net unfoldings. This advantage comes at the expense of a
richer structure that contains some novel effects w.r.t. Petri net unfoldings.

Consider Figure 3.5 (a). Event d can happen after b has fired, or after c
has fired, or both, or none. So event d “summarizes” these four situations
that would be represented by multiple events in Figure 3.5 (b) and (c), and
we say that d has multiple histories. These histories will play a central role
in our algorithm. We give some definitions to capture them formally.

Definition 3.6 [BCM98] Let e, e′ ∈ E be two events. We say e is a direct
causal predecessor of e′, written e <⋅ e′, if e∙ ∩ (∙e′ ∪ e′) ∕= ∅. We write
e ↗↗ e′ ( direct asymmetric conflict) if e ∩ ∙e′ ∕= ∅. Moreover, if e ∕= e′ and
∙e ∩ ∙e′ ∕= ∅, then we say that e and e′ are in direct symmetric conflict,
written e #i e

′.
Finally, e, e′ are in asymmetric conflict, written e ↗ e′, iff either (i)

e <⋅ e′, or (ii) e ↗↗ e′, or (iii) e #i e
′. For a set of events X ⊆ E, ↗X

denotes the relation ↗∩ (X ×X).

In Figure 3.5 (a), we have a <⋅ b and a <⋅ d as well as b ↗↗ d. Direct
symmetric conflict does not occur in (a) but in part (b) of the figure, e.g.,
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between the topmost pair of events labelled b and c. All of these are also
subsumed by the notion of asymmetric conflict. An asymmetric conflict
implies a scheduling constraint: if both e, e′ occur in a run, then e must
occur first. In case (iii) this is vacuously true, as e, e′ cannot both occur.

Definition 3.7 A configuration of the unfolding UN is a finite, causally
closed set of events C such that ↗C is acyclic. Conf (UN ) denotes the set of
all such configurations. The cut of a configuration C is the marking reached
in UN by a run of C, i.e. Cut(C) := (m̂0 ∪ C∙) ∖ ∙C. The marking of C is its
image through ℎ: Mark(C) := ℎ(Cut(C)).

A set of events is a configuration iff all its events can be ordered to
form a run that respects the scheduling constraints given by ↗. If such
a configuration C contains a unique event e that must fire last, then we
call C a history of e. For instance, in Figure 3.5 (a), the sets C0 = {a, d},
C1 = {a, b, d}, C2 = {a, c, d}, and C3 = {a, b, c, d} are configurations. In all
of them, d must fire last, so they are histories of d. In contrast, {a, b, c} is a
configuration but not a history for any event.

Definition 3.8 Let e ∈ E and C a configuration with e ∈ C. We call the
configuration C[[e]] := { e′ ∈ C ∣ e′(↗C)∗e } the history of e in C. Moreover,
Hist(e) := { C[[e]] ∣ C ∈ Conf (UN ) ∧ e ∈ C } is the set of histories of e.

E.g., in Figure 3.5 (a), Hist(d) = {C0, C1, C2, C3}. If N is a Petri net, then
read arcs are absent and Hist(e) = {[e]} is a singleton for all events of UN .

The latter observation is important because it implies that the stan-
dard algorithm for obtaining a marking-complete prefix for Petri nets (e.g.,
[ERV02]) does not work. We briefly review this algorithm: it maintains the
current prefix P and a set M of markings. Initially P contains only m̂0 and
M = {m0}. Then it adds one event e at a time (applying the inductive part
of Definition 3.4). If Mark([e]) /∈ M , then e and its postset are added to P
and Mark([e]) to M . Otherwise e is declared a cutoff, and neither e nor its
causal successors are explored. It terminates when no more events can be
added (due to cutoffs).

This procedure is implicitly parametrized by an order≺ on configurations:
If in one iteration, the algorithm has the choice between multiple events, it
will pick one such that [e] is minimal w.r.t. ≺. The precise details of ≺ are
out of scope for this document. We merely remark that ≺ must be chosen
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Figure 3.7: (a) A safe c-net; and (b) an incomplete unfolding prefix.

carefully to guarantee that one obtains a marking-complete prefix. Typically,
one chooses a so-called adequate order [ERV02].

As Figure 3.7 shows, this procedure does not apply to c-nets. Part (a) of
the figure shows a c-net, part (b) the prefix obtained with the procedure above
(the choice of ≺ does not matter here), with the ℎ-label of all conditions and
events indicated in its name. Event t13 is marked as cutoff because Mark([t13])
equals the initial marking. Hence, the marking {p2, q2}, reachable in (a), has
no correspondence in (b). This shows that it is not sufficient to consider
just Mark([e]) for all events e. Instead, every event may contribute multiple
reachable markings to the unfolding, one per history, and should be accepted
as non-cutoff if at least one history contributes a new marking to the prefix.
Notice, however, that events can have an infinite number of histories (because
of read arcs), so this observation is not sufficient in itself.

The main contribution of [BCKS08] is an algorithm producing a marking-
complete prefix of UN by lifting the procedure above to enriched events, i.e.
pairs ⟨e,H⟩ such that e ∈ E and H ∈ Hist(e). A re-phrased version of that
algorithm is given in Figure 3.8, where � represents the enriched events that
are part of P and � those that are cutoffs.

Algorithm 2, applied to Figure 3.7, would discover two histories for t13,
i.e. H1 = {t11, t12, t13} and H2 = {t11, t12, t13, u11}. Enriched event ⟨t13, H1⟩ will be
declared cutoff (added to �), whereas ⟨t13, H2⟩ is added to �. This gives rise
to two more events t21, t

2
2 (not shown) before the algorithm terminates.
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Algorithm 2

Input: Bounded c-net N = ⟨P, T, F, C,m0⟩, ordering ≺
Output: P = ⟨B′, E ′, G′, D′, m̂0⟩

Set m̂0 := { ⟨p,⊥⟩ ∣ p ∈ m0 }; B′ := m̂0;
set M := {m0}, � := ∅, and � := ∅.
Repeat the following until termination:

1. Identify the set PE of enriched events ⟨e,H⟩ such that
(i) ⟨e,H⟩ /∈ � ∪ � and
(ii) for all e′ ↗ e with e′ ∈ H we have ⟨e′, H[[e′]]⟩ ∈ �.

2. If PE = ∅, terminate.

3. Choose and remove ⟨e,H⟩ from PE so that H ≺-minimal in PE.

4. if Mark(H) ∈M then add ⟨e,H⟩ to � and go to (i);

5. otherwise, add Mark(H) to M , add ⟨e,H⟩ to �;
if e not yet in E, add e and e∙ to P as per Definition 3.4.

Figure 3.8: Abstract algorithm for marking-complete c-net prefix

Proposition 3.1 summarizes the main results (mostly) of [BCKS08]:

Proposition 3.1 If N is finite and bounded and ≺ is an adequate order in
the sense of [ERV02], then Algorithm 2 terminates and produces a marking-
complete prefix P of UN .

Notes on the proof: The statement follows from Theorems 1, 2, and 3
in [BCKS08]. Requirement 1.(ii) in Algorithm 2 is related to the notion of
closedness (Definition 12, Lemma 1) and implies that any possible exten-
sion (member of PE ) ⟨e,H⟩ can be constructed from other extended events
already present in �. The order ≺ used in [BCKS08] is actually the partial or-
der originally used by McMillan [McM92] where C1 ≺ C2 iff ∣C1∣ < ∣C2∣, which
was shown to be inefficient for Petri nets in [ERV02]. The lifting to general
adequate orders, allowing smaller prefixes, was done in [RSB11, BBC+12].
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3.2.2 Efficient construction of c-net unfoldings

This section describes the endeavours made to develop an efficient, con-
crete algorithm for implementing Algorithm 2. It is based on publications
[BBC+10, RSB11, BBC+12], where the latter is a journal article integrating
the two former papers.

Algorithm 2 comes at a price: it is, a priori, rather more complex than
comparable algorithms for Petri nets, e.g. [ERV02]. In particular, it requires
to annotate every event e with some of its histories, i.e. sets of events. So
it was not immediately clear whether the approach could be implemented
with reasonable efficiency, and how. For the interesting subcase of safe c-
nets, the interest of computing a complete contextual prefix was in question
from a practical point of view: while the prefix can be exponentially smaller
than the complete prefix of the corresponding PR-encoding, the intermediate
structure used to produce it has asymptotically the same size (for bounded
nets in general, this is not the case, see [BCKS08], Section 4). For instance,
the c-net unfolding of Figure 3.5 (a) is much more compact than the unfolding
of the PR-encoding in Figure 3.5 (c), but event d in the former has four
histories corresponding to the four d-labelled events in the latter.

Let us fix a finite, bounded c-net N = ⟨P, T, F, C,m0⟩ and its unfolding
⟨UN , ℎ⟩, where UN = ⟨B,E,G,D, m̂0⟩, as in Section 3.2.1.

The main challenges to building an efficient unfolder were the following:

(I) to identify the set PE of possible extensions ⟨e,H⟩ in step 1 of Algo-
rithm 2;

(II) which data structures to use to store and process histories efficiently
and compactly.

Problem (I) has two subproblems: how to identify an event e, and how
to identify a history H. For the first, Definition 3.4 tells us to identify
two sets of conditions m1,m2 such that conc(m1 ∪ m2) and suitable other
properties hold. In the case of Petri nets, it is known that conc(m) holds iff
conc({p, q}) holds for all pairs p, q ∈ m. Unfortunately this is not the case for
c-nets, as Figure 3.9 shows: any two conditions from the set m = {d1, d2, d3}
are reachable by firing two appropriate events among e1, e2, e3, but conc(m)
does not hold.1

1Incidentally, {e1, e2, e3} would be a step in the semantics of [JK91] – see Section 3.1
– hence conc(m) would hold under that alternative semantics. This is not a general
phenomenon, however.
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Figure 3.9: Example showing that conc(⋅) is not a binary relation for c-nets.
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Figure 3.10: Asymmetric-conflict predecessors of e for history construction.

As for identifying a history of a given event e, step 1.(ii) of Algorithm 2
gives us a hint: it should decompose into (and hence can be constructed from)
already identified extended events for the ↗-predecessors of e. Consider
Figure 3.10 and its elements in relation to event e. Event e1 does not satisfy
e1 ↗∗ e and therefore must not be part of any history of e. Events e2, e3, e4
are causal precedessors (<⋅) of e and therefore must be included in any history,
more precisely one of their histories must be included in H. As for e5, it is
not a causal predecessor of e but e5 ↗↗ e holds. Thus e5 (and one of its
histories) can be included in H.

This hints at a solution for problem (II): a history H for e can be stored
in memory by pointing from e to the histories of its ↗-predecessors used
to construct H. This data structure, which we call history graph, allows to
share common parts of different histories and has other useful properties; we
refer the reader to [BBC+12], Section 6.1 for details.

As for problem (I), the solution for both subproblems at once is the
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concept of enriched conditions : a condition c together with the history of
its producing event, its readers, or some combination thereof. Let us first
classify relations between configurations:

Definition 3.9 Let C, C ′ ∈ Conf (UN ). We write C ⊑ C ′ (C can evolve into
C ′) if (i) C ⊆ C ′ and (ii) no pair e1 ∈ C, e2 ∈ C ′ ∖ C satisfies e2 ↗ e1.
Moreover, C, C ′ are said to be in conflict, written C # C ′, when there is no
configuration C ′′ verifying C ⊑ C ′′ and C ′ ⊑ C ′′.

Interestingly, ⊑ is not simply subset inclusion: for instance, in Fig-
ure 3.5 (a), {a, d} and {a, b, d} are configurations, but {a, d} ⊑ {a, b, d} does
not hold: once d is fired, it is too late for b. In this case, {a, d} # {a, b, d}
holds; both configurations cannot converge to a common future.

Definition 3.10 Let c be a condition. A generating history of c is ∅ if
c ∈ m̂0, or H ∈ Hist(e), where {e} = ∙c. A reading history of c is any
H ∈ Hist(e) such that e ∈ c. A history of c is any of its generating or
reading histories or H1 ∪ H2, where H1 and H2 are histories of c verifying
¬(H1 # H2). In the latter case, the history is called compound. For any
history H of c, the pair ⟨c,H⟩ is called enriched condition.

For instance, in Figure 3.5 (a), condition p has four histories: {a} is
generating, {a, b} and {a, c} are reading, and {a, b, c} is compound.

We now introduce a binary relation between enriched conditions, which
has useful properties as we will soon see.

Definition 3.11 Two enriched conditions ⟨c,H⟩, ⟨c′, H ′⟩ are called concur-
rent, written ⟨c,H⟩ ∥ ⟨c′, H ′⟩, iff ¬(H # H ′) and c, c′ ∈ Cut(H ∪H ′).

Intuitively, if ⟨c,H⟩ ∥ ⟨c′, H ′⟩, then H,H ′ have a common future and
neither of them consumes c or c′. E.g., in Figure 3.9, we have:

∙ ⟨c1, ∅⟩ ∕ ∥ ⟨d1, {e1}⟩ because c1 /∈ Cut({e1});

∙ ⟨d1, {e1}⟩ ∕ ∥ ⟨d2, {e2}⟩ because {e1} # {e2};

∙ ⟨c1, ∅⟩ ∥ ⟨d3, {e3}⟩ and ⟨d1, {e1}⟩ ∥ ⟨d2, {e1, e2}⟩.
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The relation ∥ turns out to have useful properties to solve problem (I):
let m = {c1, . . . , cn} be a set of conditions, then there exists a set of enriched
conditions X = {⟨c1, H1⟩, . . . , ⟨cn, Hn⟩}, with � ∥ �′ for any pair �, �′ ∈ X, if
and only if conc(m). Moreover, the existence of X implies that H1∪⋅ ⋅ ⋅∪Hn

is a configuration.
All the above amounts to saying that to obtain an enriched event ⟨e,H⟩,

one identifies (i) one history Hc for each c ∈ ∙e and (ii) one generating history
Hc for each c ∈ e, such that ⟨c,Hc⟩ ∥ ⟨c′, Hc′⟩ holds for all pairs c, c′ ∈ ∙e∪ e.
The union of these histories plus e itself then is a history for e.

We developed two basic approaches for choosing such histories, each with
one variation. Here, we only give a short summary and state the most elegant
of the formulations, which is also the one used by default in the tool Cunf.

∙ In [BBC+10], we developed an approach we later called lazy. There,
only generating and reading histories are kept in memory, and com-
pound histories are constructed ‘on demand’, i.e. in case (i) above a
compound history for c ∈ ∙e is represented as a set of reading histories.

∙ In [RSB11], we developed the eager approach: it keeps all enriched
histories in memory, including compound. Thus, one literally chooses
one history represented as such for every c ∈ ∙e in (i) above.

The journal version, [BBC+12], presents in Section 5 a synthesis of the two
approaches, which represent a time/space tradeoff. Their relative merits are
discussed in [BBC+12], Section 5.4, and we give constructed examples where
one approach outperforms the other in both directions.

There is one further catch: the same enriched event ⟨e,H⟩ may be ob-
tained through (many) different combinations of enriched conditions. Con-
sider the unfolding in Figure 3.11. Condition c has n + 1 different reading
histories: H0 := ∅, H1 := {e1}, . . . , Hn := {e1, . . . , en}, while c′ has one
single history H := Hn, and ⟨c,Hi⟩ ∥ ⟨c′, H⟩ holds for all i = 0, . . . , n. How-
ever, in all cases, Hi ∪H = H, so there exists a multitude of possibilities to
construct the enriched event ⟨e,H ∪ {e}⟩.

Since such ambiguity causes needless exploration work in an unfolding
tool, we propose amendments for both approaches to allow one single de-
composition per event in [BBC+12], Section 5.3. For the lazy approach, this
entails the introduction of another relation called subsumption (∝), while the
eager approach admits an elegant representation with just a single relation
that we call asymmetric concurrency. Here, we summarize only the latter:
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Figure 3.11: Example where the same history for e can be composed in
multiple ways.

Definition 3.12 Let � = ⟨c,H⟩ and �′ = ⟨c′, H ′⟩ be two enriched conditions.
We say that � is asymmetrically concurrent to �′, written � // �′ iff � ∥ �′
and c ∩H ′ ⊆ H.

Notice that // is an asymmetric relation, saying that all readers of c in
H ′ must be in H. In Figure 3.11, it implies, e.g., that ⟨c,Hn⟩ // ⟨c′, Hn⟩, but
¬(⟨c,Hi⟩ // ⟨c′, Hn⟩) for any i < n. As a result, we obtain a unique decom-
position for each possible extension. The following proposition is stated as
Corollary 2 in [BBC+12].

Proposition 3.2 The pair ⟨e,H⟩ with ℎ(e) = t is an enriched event iff there
exist sets Xp, Xc of enriched conditions such that

1. ℎ(Xp) = ∙t and ℎ(Xc) = t;

2. Xp contains arbitrary enriched conditions, Xc generating conditions;

3. Xp ∪Xc contains exactly one enriched condition for every c ∈ (∙e∪ e);

4. � // �′ for � ∈ Xp and �′ ∈ Xp ∪Xc;

5. � // �′ or �′ // � for all �, �′ ∈ Xc;

6. finally, H = {e} ∪
∪
{H ′ ∣ ⟨c,H ′⟩ ∈ Xp ∪Xc }.

Moreover, for any enriched event ⟨e,H⟩ there exists exactly one pair of sets
Xp, Xc satisfying properties 1–6.

Finally, an unfolding tool can efficiently identify possible extensions if the
relations ∥ and // (or ∝) are kept in memory. This calls for fast procedures
to compute and incrementally update the relations whenever the current
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prefix is extended by new (extended) events and conditions. This is indeed
possible and usually amounts to a small number of set operations per event.
While the existence of these operations is crucial for the efficient operation
of an unfolding tool, we refrain from a detailed presentation at this point;
the reader is referred to Propositions 4, 5, 7, and 8 in [BBC+12].

Finally, the techniques were implemented (by César Rodŕıguez) in an
unfolding tool called Cunf, which operates on safe c-nets (the benchmarks
we were interested in were all safe). Much attention was given to optimizing
the implementation. In [RSB11] and [BBC+12], Section 7, we report on
experiments. Some of the main conclusions are summarized below:

∙ As expected, the runtime performance of the lazy approach degraded
in the presence of many compound conditions. The memory savings in
those cases (ca. 60%) did not seem to outweigh the loss in run-time,
which was in orders of magnitude. Therefore, we preferred the eager
approach.

∙ The eager approach consistently outperformed the unfolding of the PR-
encoding in terms of runtime.

∙ The eager approach and the unfolding of the plain encoding handle
all examples from a standard set of benchmarks gracefully, but the
resulting c-net unfoldings can represent the state space much more
concisely.

Moreover, we conducted encouraging experiments with asynchronous cir-
cuits. Logic gates have a natural encoding in c-nets (cf. Figure 3.6). We
give a simple example to illustrate their benefits. We consider a grid of
n := k × k AND-gates, shown in Figure 3.12 for k = 3. The inputs for the
AND-gates are at the left and top of the figure, and outputs propagate to
the right and towards the bottom. Inputs may switch freely between high
and low. We then used Cunf to construct complete unfolding prefixes of
the corresponding c-nets and their plain encodings, and observed that signal
changes may be propagated to the bottom right in many different orders,
which are distinguished by Petri-net unfoldings but not by c-net unfoldings.
Hence, unfoldings of the plain nets were of exponential size in n, while the
contextual ones were linear. Moreover, Cunf built the latter ones in time
O(n3), see Figure 3.12; in this case, also the PR-encoding is efficient.
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Figure 3.12: Unfolding times for the plain, PR, and contextual net encodings
of the AND-gate networks of size n := k × k.

3.2.3 Verification of c-net unfoldings

Having achieved an efficient construction to obtain a finite, marking-complete
prefix P for a c-net N , we now discuss how P can help to verify properties
of N . The material in this section is a brief summary of [RS12].

Let N = ⟨P, T, F, C,m0⟩ be a net, ⟨UN , ℎ⟩ its unfolding, and P =
⟨B,E,G,D, m̂0⟩ a prefix of UN . For simplicity we assume that N is safe.2

As stated before, the initial interest in unfoldings lay in the fact that,
while P is in general larger than N , it is in general smaller than the reach-
ability graph. Moreover, it is known [McM92] that deadlock or reachabil-
ity checking are PSPACE-complete for N but NP-complete for P .3 Thus,
the unfolding technique represents a time/space tradeoff for verifying c-nets.
This tradeoff is particularly attractive when testing multiple properties of
the same net because P needs to be constructed only once.

In the past, various efforts have been made to exploit this fact for the case
of Petri nets, using reductions to different NP-complete problems: McMil-
lan [McM92] employed a branch-and-bound technique, Heljanko [Hel99] a
stable-models encoding, and Melzer and Römer [MR97] used mixed inte-
ger linear programming, later improved by Khomenko and Koutny [KK00,
KK07]. Esparza and Schröter [ES01] devised an ad-hoc algorithm based on
additional information obtained while computing the unfolding.

Given the emergence of powerful SAT solvers like Minisat [ES03] since

2Section 4.5 in [RS12] outlines how to extend to the case of bounded nets.
3McMillan’s result holds for the case of Petri nets (without read arcs), but the hardness

result trivially holds for c-nets, too. For the upper bound, this section provides polynomial
encodings from P into SAT.
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then, we prefer to reduce to SAT instead. The encoding is also natural be-
cause unfoldings are safe nets, so the marking of a place naturally translates
to a boolean variable. Indeed, SAT solving has already been proposed for the
similar problem of model-checking merged processes [KKKV06], and [EH08]
gives an explicit SAT encoding for Petri net unfoldings. In [RS12], we lifted
these encodings to c-nets. This is briefly sketched below with some opti-
mizations. As for the latter, we concentrate on optimizations that exploit
structural information of the net, while leaving optimizations at the logical
level to the SAT solvers (which are extremely good at them).

The SAT problem is as follows: given a formula � of propositional logic
in conjunctive normal form (CNF), find whether there exists a satisfying
assignment that makes � true. We discuss the following problem:

Deadlock checking: Does N have a deadlock, i.e. a marking in which
no transition can fire? This amounts to asking whether P contains a
configuration C with no transition enabled in Mark(C). We construct a
formula �dead

P that is satisfiable iff such a configuration exists.

The formulae for properties like reachability or coverability are very similar,
and we refer the reader to [RS12], Section 4.4, or [BBC+12], Section 8.

�dead
P is defined over variables e for e ∈ E and p for p ∈ P as:

�dead
P := �causal

P ∧ �sym
P ∧ �asym

P ∧ �mark
P ∧ �dis

P

The first three constraints enforce a satisfying assignment to represent a con-
figuration C, and �mark

P extracts Mark(C), which �dis
P verifies to be deadlocked.

Most of these subformulae are straightforward and we omit them here, except
the most interesting one, �asym

P .

Asymmetric conflict loops �asym
P treats conditions (i) and (ii) of Defini-

tion 3.6, i.e. e <⋅ e′ and e↗↗ e′. Let us define the relation R := <⋅ ∪↗↗. Our
task is to identify cycles in the relation R. Note that this requirement is new
w.r.t. encodings for Petri nets, which cannot contain such cycles.

Example 3.7 We first demonstrate that such cycles occur naturally in well-
known examples: Consider Figure 3.13, which shows the beginning of an
unfolding of Dekker’s mutual-exclusion algorithm [Ray86] (only some events
of interest are shown). In the beginning, both processes indicate their interest
to enter the critical section by raising their flag (events e1, f1). They then
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Figure 3.13: Partial unfolding of Dekker’s algorithm algorithm with asym-
metric cycles.

check whether the flag of the other process is low (events e2, f2) and if so,
proceed (e3) and possibly repeat (e4, e5). If both processes want to enter the
critical section (ℎ′2), some arbitration happens (not displayed). Two conflict
cycles in this example are e1 <⋅ e2 ↗↗ f1 <⋅ f2 ↗↗ e1 and f1 <⋅ f ′2 ↗↗ e3 <⋅
e4 <⋅ e5 ↗↗ f1.

Several encodings have been proposed in the literature for acyclicity con-
straints [CGS09] that are of size O(n2) or O(n ⋅ log n), for n := ∣R∣. Since this
is by far the most costly part of the encoding, we discuss some optimizations
in [RS12], Section 4.1, the most interesting of which are:

∙ Any cycle in R must contain at least two instances of ↗↗. So we can
replace R by the relation R′ := { (e, g) ∣ ∃f, ℎ : e ↗↗ f ≤ g ↗↗ ℎ },
which contains a cycle iff R does.

∙ We operate in two phases: first, we invoke the SAT checker without the
constraint �asym

P . This may result in false positives, i.e. a configuration
containing a cycle in R. If the SAT solver comes up with such a spurious
deadlock, we repeat with �asym

P properly included. This simple trick was
very useful, with only 2% false positives in over 100 examples.

Reduction of stubborn events We discuss one other optimization that
palliates a problem of SAT checkers. Consider the occurrence net shown in
Figure 3.14. If event e1 fires, then nothing can prevent e2, e3, e4, and e5 from
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Figure 3.14: Stubborn events.

firing. Thus, any configuration leading to a deadlock must either contain all
five events or none of them. However, e1 is not guaranteed to fire due to the
white event that consumes from its context.

Modern SAT solvers are very efficient at unit propagation, i.e. known or
tentative truth values are propagated to simplify other clauses [ES03]. In the
SAT encoding for Figure 3.14, a SAT solver can immediately decide that e2
must fire when e1 does. However, unit propagation is not able to detect that
e3 and e4 are logical implications of e1. When an unfolding contains many
such situation, the SAT checker becomes unnecessarily inefficient.

On the other hand, such information is easy to detect on the unfolding
structure. Before calling the SAT solver, we identify stubborn events e, i.e.
those satisfying (∙e ∪ e)∙ = {e}. Intuitively, once all events preceding e have
fired, then firing e is unavoidable to find a deadlock, and in Figure 3.14,
events e2, e3, e4, e5 are all stubborn. We eliminate such stubborn events from
�dead
P by ‘merging’ them appropriately with their predecessors. The details

are given in [RS12], Section 4.2.

Experimental evaluation Section 5 of [RS12] reports on experimental
evaluation. Of course, the advantage of c-nets over Petri nets becomes arbi-
trarily large when using examples where the compactness advantages of the
former are fully realized (e.g., in cases like Figure 3.5 or Figure 3.12). We also
study a set of standard examples commonly used in the unfolding literature
and compare against the best known previous method for unfoldings-based
deadlock checking [KK07]. Even for these examples, which work already very
well for traditional unfolding techniques, we obtain a time saving of 30% over-
all (unfolding+verification), and a speed-up factor of 2 for the verification
phase alone.
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. . .

Figure 3.15: A Petri net with exponentially large unfolding prefix.

3.2.4 Contextual merged processes

This section describes the integration of c-net unfoldings with merged pro-
cesses. It reports on work published in [RSK13].

As we have seen, contextual net unfoldings cope well with two sources of
state-space explosion: concurrency and concurrent read accesses. Recently,
a data structure has emerged that deals with a third source of explosion,
i.e. choices. Consider Figure 3.15 and suppose that there are n pairs of
transitions. There is a conflict between each pair of transitions, and they
lead to different markings. Thus, there will be no cutoffs, and the smallest
marking-complete unfolding prefix for that net will be of size O(2n).

In [KKKV06], Khomenko et al provided a remedy for this problem, called
merged processes. The idea behind these is to fuse certain conditions and
events of a Petri net unfolding together, according to criteria that we will
detail in a moment. For instance, the merged process of the net in Figure 3.15
is isomorphic to that net. From a practical point of view, this makes perfect
sense – the resulting structure is acyclic, like an unfolding, and therefore
enjoys some of the same advantages as the unfolding itself; e.g., reachability
can be polynomially encoded as a SAT formula. In [KM11], Khomenko and
Mokhov presented a direct construction method for merged processes.

Although merged processes and c-nets are two complementary techniques
that attack different sources of state-space explosion, there are some striking
similarities: a single event may have multiple different “histories”, and as we
shall see, merging may create cycles in the flow relation, similar to the cycles
in the asymmetric conflict relation of c-nets; yet, in a marking-complete
merged process every marking remains reachable through a non-cyclic firing
sequence. Hence, the combination of the two techniques is not only possible,
but also is very natural, and in the remainder of the section, we will present
such a combination, called contextual merged processes, or CMPs. A central
notion is that of occurrence depth:

Definition 3.13 Let x be a condition or event of some occurrence net. The
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Figure 3.16: (a) A net; (b) its unfolding; (c) its unravelling.

occurrence depth of x, denoted od(x), is the maximum number of ℎ(x)-
labelled nodes in any path in the directed graph ⟨m̃0 ∪ [x] ∪ [x]∙, <⋅⟩ starting
at any initial condition and ending in x.

This relation is identical to the one given in [KKKV06, KM11] except that
the relation <⋅ also takes into account causal dependencies from read arcs. As
an example, consider Figure 3.16 (b), which contains the unfolding of the net
in Figure 3.16 (a). Among the p2-labelled conditions, od(c4) = od(c7) = 1
and od(c8) = 2.

A CMP is now obtained in two steps: first, one fuses together all condi-
tions that have the same label and occurrence depth, and secondly, one then
fuses together all events that have the same environment (preset, context,
postset) after the first step.

Definition 3.14 Let N = ⟨P, T, F, C,m0⟩ be a c-net and denote its un-
folding or a prefix of it as P = ⟨⟨B,E,G,D, m̃0⟩, ℎ⟩. Define a net Q =

⟨B̂, Ê, Ĝ, D̂, m̂0⟩, where B̂ ⊆ P ×N , Ê ⊆ T × 2
bB × 2

bB × 2
bB, and a mapping

ℏ : B ∪ E → B̂ ∪ Ê as follows:

∙ for b ∈ B, ℏ(b) := ⟨ℎ(b), od(b)⟩; set B̂ := ℏ(B);

∙ for e ∈ E, ℏ(e) := ⟨ℎ(e), ℏ(∙e), ℏ(e), ℏ(e∙)⟩; set Ê := ℏ(E);
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∙ Ĝ, D̂ are such that for every ê = ⟨t,Pre,Cont ,Post⟩ ∈ Ê we have
∙ê := Pre, ê := Cont, ê∙ := Post;

∙ m̂0(⟨p, d⟩) := ∣m̃0 ∩ { b ∈ B : ℎ(b) = p, od(b) = d }∣.

Moreover, let ℎ̂ : B̂ ∪ Ê → P ∪ T be the mapping of the node from Q to
N given by projecting the nodes of Q to their first components. We call
Merge(P) := ⟨Q, ℎ̂⟩ the merged process of P. The merged process ℳN :=
Merge(UN ) of the unfolding of N is called the unravelling of N .

Example 3.8 [KKKV06] Figure 3.16 (c) shows the merged process of the
unfolding in Figure 3.16 (b). Here, we fuse the pairs c4, c7 and c5, c6 in the
first step, where conditions ⟨p, d⟩ are written pd. No events are fused in the
second step in this example. Instead, there are two copies each of t3 and t4
that differ only in the occurrence depth of the conditions that they output to.

Example 3.8 demonstrates a consequence of merging: in general, a merged
process is not acyclic. For instance, the unravelling ℳN in Figure 3.16 (c)
admits the firing sequence v1v3v4, ending up with a token on p12. We remark
that the corresponding events in the unfolding UN , e1e3e4, are not a valid
firing sequence. On the other hand, the non-cyclic sequence v1v3v5 rectifies
the situation: one ends up with a token on p22, and e1e3e5 is a valid firing
sequence in UN .

Moreover, not even all acyclic firing sequences inℳN correspond to valid
sequences in UN . For instance, the firing sequence v1v6 is possible in ℳN
but e1e6 is not possible in UN . Indeed, the sequence v1v6 does not “feel right”
because it puts a token onto p23, i.e. the copy of p3 with occurrence depth 2,
before having put a token onto p13.

These examples pose the question whether we can give a characterization
of the “reasonable” executions inℳN . Definition 3.15 shall answer this ques-
tion. Fix N = ⟨P, T, F, C,m0⟩ as a bounded c-net, ⟨UN , ℎ⟩ as its unfolding,

with UN = ⟨B,E,G,D, m̂0⟩, and ⟨QN , ℎ̂⟩, where QN = ⟨Ê, B̂, Ĝ, D̂, m̂0⟩ is
the corresponding merged process, i.e. Merge(PN). The places of QN are
called mp-conditions and its transitions mp-events.

Definition 3.15 A multiset of mp-events Ĉ is an mp-configuration of QN
if there exists a configuration C of UN verifying ℏ(C) = Ĉ.

Example 3.9 According to Definition 3.15, {v1, v3, v5} is an mp-configuration
but not, e.g., {v1, v6} or {v1, v3, v4}.
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The main technical contribution in [RSK13] is Proposition 3.3 that char-
acterize mp-configurations in structural terms rather than indirectly via UN ,
for the case of safe nets. (This problem is still open for bounded nets even in
the case without read arcs.) Such a characterization is important in practice
– it is a necessary building block to construct merged processes directly and
also required, e.g., for verification purposes – recall in Section 3.2.3 we relied
on encoding a configuration in SAT.

Proposition 3.3 If N is safe, a set of mp-events Ĉ is an mp-configuration
of QN iff it satisfies the following conditions:

1. ∀ê ∈ Ĉ : ∀ĉ ∈ ∙ê ∪ ê : (ĉ ∈ m̂0 ∨ ∃ê′ ∈ ∙ĉ : ê′ ∈ Ĉ), and

2. ↗bC is acyclic, and

3. for k ≥ 1, pk+1 ∈ Ĉ∙ implies pk ∈ m̂0 ∪ Ĉ∙ and there exists a path in
the directed graph (m̂0 ∪ Ĉ ∪ Ĉ∙, <i) between pk and pk+1.

The first constraint in Proposition 3.3 imposes an adaptation of causal
closure. Unsurprisingly, given the previous examples, the other two con-
straints forbid cycles and impose a “no gap” constraint, e.g. it is not allowed
for a run to put a token on pk+1 without having visited pk before, for some
mp-condition p and k > 0:

A key detail in both results is that acyclicity of ↗ prohibits, at the
same time, asymmetric conflicts inherent to c-net unfoldings (Figure 3.9)
and cycles in the flow relation introduced by merging (Figure 3.16 (c)).

We currently do not have a direct implementation of the approach (this
is still ongoing). For the time being, one can construct CMPs indirectly by
constructing a c-net unfolding and compress it according to Definition 3.14.
This allowed us to collect some data on the size of the CMPs that we can
expect. In [RSK13], Section 5, we report the sizes of unfoldings and merged
processes of c-nets, their plain encodings, and their PR-encodings. Over
a standard set of benchmarks, CMPs were consistently the most compact
among these six data structures. However, the merged processes of the plain
encoding were not much bigger in all cases except one. The savings over
unfoldings are quite significant, however, in many cases.

We carried out a case study on the mutual exclusion algorithm by Dijkstra
[Dij65], which we modelled as a c-net. This model is quite interesting for us
because it exemplifies both effects that we are trying to handle with CMPs:
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Table 3.1: Unfolding and MP sizes of Dijkstra with n threads.

Net Merged Processes Unfoldings

n ∣T ∣ Ctx Plain PR Ctx Plain PR

2 18 31 42 40 35 54 54
3 36 64 113 121 131 371 364
4 60 105 220 278 406 2080 1998
5 90 155 375 582 1139 10463 9822
6 126 214 589 1198 3000 49331 44993

O(n2) O(n2) O(n3) O(n3) O(3n) O(5n) O(5n)

to enter the critical section, a thread needs to repeatedly check the variables
of the other threads, and in fact multiple processes may check the same
variable at the same time (concurrent read access). Moreover, the threads
can make some non-deterministic choices. More details are given in [RSK13],
Section 5.2. Table 3.1 reproduces the table of results, showing the number
of (mp-)events in merged processes/unfoldings on the basis of c-nets and
their two encodings, respectively. The growth of the CMP is in the order
of O(n2), where n ist the number of processes; indeed the size of the net
itself is quadratic, so the behaviour of the CMP is linear w.r.t. the net. The
other merged processes are also of polynomial size, approximately O(n3).
The different unfolding types are all of exponential size here.

3.3 Other contributions

This section gives brief descriptions of some other research. They concern
the unfoldings of Petri nets, i.e. without read arcs. For these, I wrote a
tool called Mole, based on earlier work by Stefan Römer, which produces
a finite complete prefix of a safe Petri net. It was the basis for some of the
experimentation mentioned in the following subsections.

Let N = ⟨P, T, F,m0⟩ be a Petri net. (We omit the context-relation C,
which is ∅.) In this case, some definitions become slightly simplified. The
following facts are well-known (see, e.g., [EH08]): Consider Definition 3.2.
If there are no read arcs, then the causality relation < becomes just the
transitive closure of F .
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Figure 3.17: An occurrence net illustrating the reveals relation.

Let N = ⟨B,E,G, m̂0⟩ be an occurrence net. In Definition 3.6, e <⋅ e′
iff e∙ ∩ ∙e′, and the relation ↗↗ is empty. Let x, x′ be conditions or events.
We define x # x′ if there exist events e ≤ x and e′ ≤ x′ such that e #i e

′,
and x ∥ y iff neither x < y, nor x > y, nor x # y. Let m = {c1, . . . , cn}
be a set of conditions. If c ∥ c′ holds for all pairs c, c′ ∈ m, then conc(m)
holds (in contrast to c-nets, recall Figure 3.9). Finally, a configuration C
(Definition 3.7) now becomes simply a finite, causally closed set of events,
such that ¬(e # e′) for any pair e, e′ ∈ C. The ‘evolves’ relation between
configurations reduces to a subset relation, i.e. C ⊑ C ′ iff C ⊆ C ′.

3.3.1 The reveals relation

This section contains a short summary of work on the reveals relation with
Stefan Haar and Christian Kern [HKS11, HKS13]. Given an occurrence
net N = ⟨B,E,G, m̂0⟩, we study the following relation between events a, b:
event a is said to reveal event b if, whenever a occurs, the occurrence of b is
inevitable, be it before, after, or concurrently to a. Thus, the reveals relation
does not generally imply a causal relation.

In this context, we consider executions that satisfy a criterion of weak
fairness, i.e., an event that is enabled forever must eventually fire. E.g., in
Figure 3.17, if ever there is a token on condition 3, then d must fire eventually
because there is no other event competing for the token on 3. Under this
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interpretation, if we write a ⊳ b for “a reveals b”, then we have the following
examples in Figure 3.17:

∙ a ⊳ d (see above); d ⊳ a;

∙ e ⊳ f (because e ⊳ b and b ⊳ f);

∙ ℎ ⊳ f , but ¬(f ⊳ ℎ);

∙ a ⊳ c, and c ⊳ a.

The weak-fairness semantics is rather natural for occurrence nets – a weakly
fair execution corresponds to a maximal configuration of an occurrence net,
be it finite or infinite. This gives rise to a simple characterization of the
reveals relation in terms of conflicts. For an event x, let #[x] := { y ∣ x # y }
denote all the events that are in (symmetric) conflict with x. In a maximal
run, if none of the events in #[x] occurs, then x must eventually occur. Thus,
we obtain the following characterization for two events x, y (see [Haa10]):

x ⊳ y if and only if #[x] ⊇ #[y]

In other words, x reveals y if the occurrence of x rules out all the events that
could prevent y. On the other hand, if we can find an event that is in conflict
with y but not x, i.e. some z with ¬(x # z) and y # z, then x ⊳ y does not
hold, and we call z a witness for x, y.

The reveals relation was introduced by Haar in [Haa07, Haa10]. Its mo-
tivation lies in the study of systems that are partially observable. Suppose,
for example, that we are observing the visible part of some ongoing execu-
tion of a Petri net. By exploiting structural properties of unfoldings and
their explicit notions of causality, conflict, etc, we can often deduce from
one observed event e that another event e′ must be part of the current run,
sometimes even if e′ is in the future of e, in a different component, or causally
unrelated.

We now summarize the main results. The first proposition corresponds
to Theorem 2 in [HKS13]. It says that in an unfolding UN of a safe Petri
net one can decide x ⊳ y by inspecting a finite prefix of UN . In the following,
we call height of an event x (written ℋ(x)) the length of the longest chain
of causally related events ending at x. The value K(m) means the maximal
height of an event in a marking-complete prefix for net N with m as initial
marking.
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Proposition 3.4 Let N = ⟨P, T, F,m0⟩ be a safe Petri net, let its unfolding
be UN = ⟨B,E,G, m̂0⟩, and let K := max{K(m) ∣ m ⊆ P }. For any two
events x, y such that ¬(x ⊳ y), there exists an event z such that

(1) ¬(x # z) and y # z;

(2) ℋ(z) ≤ n+K − 1, where n := max(ℋ(x),ℋ(y)).

Notes on the proof: The idea of the proof is relatively simple, but the
details are not quite trivial. We show that if there exists a witness z whose
height is larger than anticipated in (2), then we can perform some ‘surgery’ on
the unfolding to obtain another witness with smaller height. Proposition 3.4
considerably improves the previous bound, given in [Haa10], for the size of
the finite prefix needed to decide whether x reveals y. While the previous
bound seemed to make this decision impracticable, the new bound gives much
more hope to determine the relation in practice. In [HKS13] we give a class
of examples showing that the new bound is tight.

The following proposition corresponds to Theorem 3 in [HKS13].

Proposition 3.5 Given a safe Petri net N and two events x, y of its un-
folding, it is PSPACE-complete do decide whether x ⊳ y holds.

Notes on the proof: The hardness proof is by a simple reduction from the
coverability problem. The technique for the upper bound is more interesting:
we assume that the cones [x] and [y] are given. Having excluded some trivial
cases (like y < x), we then try to find a witness for x, y. Thanks to Proposi-
tion 3.4 we can bound the depth of our search. However, we cannot simply
construct the unfolding up to that height, which would not be possible in
polynomial space. Instead, we non-deterministically simulate a run of the
unfolding, remembering only the current cut. Part of the cut can be inside
the given part [x]∪ [y], other conditions in the cut may be ‘beyond’ [x]∪ [y],
and of these we just need to track their height.

The third main result in [HKS13] is an algorithm that computes the
entire reveals relation on a given, finite occurrence net. The algorithm can
be implemented completely with bitset operations and consists of three passes
over the prefix; in the first, one computes the causal relation, in the second the
conflict relation, and finally in the third the reveals relation. The algorithm
takes cubic time w.r.t. the size of the prefix.
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3.3.2 Weak diagnosis

Continuing in the vein of partially observable systems with weakly fair se-
mantics, this section reports on a method for diagnosis, resulting from joint
work with Stefan Haar and César Rodŕıguez, published in [HRS13].

Fault diagnosis is a classical problem in runtime analysis of systems. We
are given a system, e.g., an LTS, whose possible behaviours we know precisely.
However, its executions are only partially observable. In a typical automata-
theoretic setting, the actions of the LTS are partitioned into observable and
unobservable actions. The latter typically contains a special action called
fault. Classically, the task of the observer is to determine, given a sequence
of observable actions, whether a fault has occurred in that sequence.

Fault diagnosis has been studied in many variants. Here we study it for
the setting where the LTS is given in form of a safe Petri net. We also slightly
alter the goal: Instead of asking whether a fault has happened in the past,
we wish to know whether all weakly fair runs that are compatible with our
observations contain a fault, even if the fault has not yet occured but will
inevitably do so in the future.

Having a concurrent model also opens the possibility for different setups
of sensors and supervisors. In our setting we allow a multitude of sensors
that report their observations to a single supervisor. Technically, we allow
the observations to form a labelled partial order.

Asynchronous diagnosis of safe Petri nets with an unfolding-based ap-
proach has previously been presented by [BFHJ03] and [EK12]. Both use
Petri net unfoldings under certain restrictions: [BFHJ03] accepts partial-
order observations, but refuses models with unobservable loops; [EK12] ac-
cepts the latter, thanks to dedicated cutoff criteria, but refuses the former.
Our work uses both features, additionally accounting for weak fairness in the
diagnosis procedure.

In Section 3.3.1, the notion that some event has become inevitable having
seen another is expressed through a binary relation between events. For
diagnosis purposes, this binary relation is conceptually replaced by a more
general notion of extended reveals [BCH11].

Without going into the technical details of the paper, we discuss the
most important notions. The observations made about the system are rep-
resented as a labelled partial order �. The actual behaviour of the system is
represented by the unfolding of the underlying safe net. We say that a con-
figuration C of that unfolding explains � if the LPO of � can be embedded
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into the causal structure of C. Then we ask whether all maximal (i.e. weakly
fair) runs containing such an explanation also contain a fault event (equation
(6) in [HRS13]).

It is more convenient to formulate (6) in negated and hence existential
form: Does there exist an explanation of our observation that can be con-
tinued forever with a fault-free run? Before we solve this problem, we have
to overcome two obstacles: (i) an observation pattern � can have infinitely
many explanations due to unobservable loops; (ii) an explanation has, in
general, infinitely many continuations that must be handled finitely. Both
problems are treated separately using two different cutoff criteria. While the
technique for (i) is similar to [EK12], i.e. a restriction to so-called succinct
explanations, the cutoff technique for (ii) is novel. Having reduced diagnosis
to an existential, finite problem, we discuss how to solve it by computing
adequate unfolding prefixes and encoding the entire problem into SAT. An
actual implementation of the approach does not yet exist, and would still
require some engineering effort so resolve certain practical issues, which we
detail in the paper.

3.3.3 A note on depth-first-search order

Algorithm 2 is parametrized by an ordering≺ between configurations that de-
termines the order in which (enriched) events are added to the prefix. When
one produces a finite marking-complete prefix, then ≺ influences the precise
shape of the outcome. More interestingly, it can also determine whether the
result is really a marking-complete prefix or not!

McMillan [McM92] originally showed that the order ≺M defined by C1 ≺M
C2 iff ∣C1∣ < ∣C2∣, is correct, i.e. leads to a marking-complete prefix. This order
is partial, i.e., it is not determined for configurations of the same size. As
Esparza et al [ERV02] showed, this may lead to a marking-complete prefix
larger than the reachability graph itself. However, if one replaces ≺M by
an order that is total and adequate, then the algorithm terminates with a
complete prefix, and they propose one such order, which we call ≺ERV . The
precise details of ≺ERV not important at this point – what matters is that
≺ERV refines ≺M , i.e. compares by size first. In a certain sense, this means
that the construction proceeds in breadth-first manner: first all events e with
size ∣[e]∣ = 1, then with size 2, 3, etc.

Adequate orders are known to be correct, but sometimes other search
strategies would be desirable, e.g., when the solution is known to lie at a
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Figure 3.18: Counterexample net for depth-first unfolding.

certain depth in the unfolding. Unfortunately, as a short contribution by
Javier Esparza, Pradeep Kanade, and myself [EKS08a] shows, depth-first
search (DFS) may lead to incorrect results. More precisely, let us call depth-
first an ordering that has the following property: If P is the current prefix
and e the latest event added to P , then the possible extensions enabled by
e will be explored before any other possible extension of P . We shall give a
small net that, when unfolded under any depth-first ordering, misses at least
one marking in the finished prefix.

The net is shown in Figure 3.18. Without going into all details, the reader
can convince himself that:

∙ From the initial marking, the net can either execute A,B, T , ending
with a token on place p; or A,C,E,H (back to the initial marking), or
B,D, F,G (ditto).

∙ Depending on its inital choice, a depth-first unfolder will find either
the loop A,C,E,H followed by (because the next A is now cutoff) the
other loop B,D, F,G (or vice versa). After the second loop, the third
instances of A,B are going to be cutoffs.

∙ Only at that point will depth-first search fall back to the initial B (resp.
A) that was not considered in the beginning. But this, too, is now a
cutoff because of the earlier B. So A,B are never executed in parallel
inside the prefix, so T is never included in the final prefix.
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3.3.4 Improved detection of possible extensions

In Section 3.2.2, we discussed an efficient algorihm for constructing a c-
net unfolding. Part of this effort was the development of a concurrency
relation between enriched conditions. Keeping this information in memory,
i.e. whether � ∥ �′ for all pairs of enriched conditions, allows to determine
possible extensions very quickly. For instance, Cunf uses this trick.

An analogous technique, but with a concurrency relation between condi-
tions (i.e., without histories) is used in tools for Petri nets without read arcs
such as Mole or Punf. They keep the concurrency relation ∥ in memory,
updating it whenever new conditions are added to the unfolding. On the
other hand, the concurrency relation often dominates the memory footprint
of the unfolder, since it is quadratic in the number of events.

For this reason, the tool Punf (by Victor Khomenko) has an option
to drop the concurrency relation from memory and determine such queries
by inspecting directly the structure of the prefix computed so far. It goes
without saying that this is more time-consuming, so Khomenko and Koutny
[KK01] made a proposal to soften the impact. Whenever we have added a
new event e := ⟨X, t⟩, i.e. with preset X ⊆ B and label t ∈ T , then we
proceed in two steps

1. For each place p ∈ ∙(t∙∙)∖t∙, determine the set C(p, e) of p-labelled con-
ditions ⟨x, p⟩ that are concurrent with e. For p ∈ t∙, we set C(p, e) :=
{⟨e, p⟩}

2. For all t′ ∈ t∙∙, use the sets C(p, e) to discover new possible extensions,
i.e., find coverable subsets X ′ with ℎ(X ′) = t′ and add these to the
possible extensions.

The proposal by Khomenko and Koutny concerns the second step: sets
C(p, e) and combinations thereof are intelligently re-used when possible by
building so-called preset trees.

A recent short paper with César Rodŕıguez concerned an improvement
for step 1 instead [RS13]. It exploits structural properties of unfoldings
more stringently than before. In a safe net, e.g., no two conditions labelled
by the same place p are concurrent. Instead, they must be either causally
related or in conflict. The causal relation <, restricted to these conditions,
forms therefore a forest, which we call the p-forest. Within this forest, we
can exploit certain structural laws, for instance: if c # e and c < c′, then
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c′ # e, and hence c′ /∈ C(p, e). We exploit several such laws to speed up the
computation of C(p, e) and report on experiments on standard benchmarks.
These are quite encouraging: our new algorithm runs 3.5 times faster than
Punf (when the latter is run without remembering the concurrency relation).
It also runs faster than Mole (with concurrency relation) in half of the cases,
using on average half as much memory. Over the set of all benchmarks,
however, Mole remains two times faster than the new algorithm. Also,
further improvements to our algorithm are possible, e.g. the combination
with preset trees.

91



92



Chapter 4

Conclusion

This document summarizes my research in verification and, more generally,
formal methods. It covers a range of various topics: sequential and concurrent
systems; finite and infinite state systems; techniques like symbolic model
checking, counterexample-guided abstraction refinement, unfoldings, SAT;
and various applications like verification, data-flow analysis, authorization,
or diagnosis.

My main interest in all this has been in algorithmic aspects; to under-
stand, exhibit, and put to good use basic principles of computation. For
instance, the bounded WPDS framework is built on very simple principles,
yet it allows to extract answers to complex questions and has found many
applications. For c-net unfoldings, which seemed much more complicated to
deal with than the traditional case, we finally managed to find a single binary
relation, called asymmetric concurrency, describing the solution to the main
algorithmic problem for an efficient implementation. I am also pleased to
have found a concrete use for my work on authorization systems inside our
own teaching department, to name another example.

Pushdown model checking has become a vast field during the last decade,
to the point where it is becoming difficult to keep track of the developments,
the relationship between the different models, and the overarching principles
behind them. By comparison, unfolding techniques have been getting less
attention by the verification community.

Another technique that deals with state-space explosion due to concur-
rency is partial-order reduction. This technique has been highly successful
due to a large amount of algorithmic engineering, notably embodied in the
tool Spin. Work on the unfolding approach has focused on Petri nets, and
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while there exist efficient tools for that, Petri nets are a relatively general
low-level formalism, so these techniques do not exploit properties of higher
language features. By contrast, Spin comes with its own modeling language
having an explicit notion of process, communication channels, and variables.
Indeed, the reduction techniques implemented in Spin exploit the specific
properties of these features. This would seem to be a viable perspective for
unfoldings, too. For instance, towards the end of [RSK13], we sketched how
locks could be handled in unfoldings if one integrated them directly into the
formalism. So an interesting direction of research would be a generalization
of unfoldings to higher-level formalisms.

A current direction of research that I would be interested in pursuing
further is the recently begun work on active diagnosis [HHMS13]. Here, one
is given a partially observable system and aims at controlling it in order
to make it diagnosable. This is a natural and motivating problem with
interesting connections to automata and game theory. We have only started
the work on this subject, so there remain important open questions and
perspectives for extension.
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[Rod] César Rodŕıguez. Cunf. http://www.lsv.ens-cachan.fr/
∼rodriguez/tools/cunf/.
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