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Foreword

The work presented in this memory covers the most significant topics I have been
interested in during my stay at the Laboratoire Spécification and Vérification
(LSV) in Cachan. Somehow, these topics all deal with Separation Logic. This
apparent coherence hides two lines of works driven by completely opposite points
of views. My initial interest for Separation Logic sprang from my phD on spatial
logics. I kept addressing on Separation Logic the questions of expressiveness
and decidability I had been interested in during my phD. The program of this
approach is a kind of deconstruction of Separation Logic that tries to evaluate
to which extend Separation Logic connectives and rules can be embedded in
previously existing ones. This approach probably hides the enthusiasm I have
for all the concepts introduced by Separation Logic, and I am happy that this
memory contains a substantial part on applying these concepts in a constructive
way.

The work presented in the first two chapters could be ranged in my decon-
struction phase. It stemmed from the enthusiasm of Stéphane Demri in learning
Separation Logic, and I regret I did not present the first work we did together
on mixing temporal logics and Separation Logic [1]. Our collaboration really
took off after a question we asked to Rémi Brochenin on the decidability of the
list fragment of the assertion language of Separation Logic – a question that,
despite its naturality, was never even pointed out as an interesting one, mostly
because the magic wand was already abandoned at that time. Rémi Brochenin
spent a short but intense time solving this question, and realized that the un-
decidability proof contained the ingredients for a much more unexpected result,
a connection between Separation Logic and Second Order logic. I regret a lot
that Remi did not write his phD yet, because I am convinced that the results
he obtained could constitute a very valuable phD thesis.

The work presented in the last chapter stemmed from a discussion with Cris-
tiano Calcagno while he visited Cachan at the beginning of Jules Villard’s phD
thesis. We did not imagine how exciting Cristiano’s idea of modeling Sing] in
Separation Logic would be. Perhaps the best surprise in that work was that it
was possible to represent Sing] contracts so concisely in SL – we actually first
rejected the idea to model them, scared about their complexity, but hopefully
changed our mind when we started to understand what they were adding to lo-
cal reasoning. Formalizing all the intuitions we had took quite a lot of time, and
a significant step in that direction was the operational semantics proposed by
Jules in his phD thesis. Still, Jules did not have the time to treat the question
of determinism, which I hope I have clearly addressed now.

I decided to skip the presentation of the Heap-Hop tool, for which I only
contributed in designing and testing some of the examples. In understanding
and hacking the original code of Smallfoot, Jules accomplished an impressive
work, without even saying a word about it to Cristiano or Josh Berdine, in
almost one week. If you don’t know Heap-Hop yet, you are probably missing
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the best part of the work on copyless message-passing, and I recommend you to
download it and to play with the examples.

People that know the LSV may wonder why I do not present a memory on
automata-based model-checking or security. This memory surveys the results I
have obtained on Separation Logic to keep a certain coherence in the presen-
tation, but I wandered around a lot more topics. I do not really regret that
when I consider the quantity of models and techniques that I learned at the
LSV. I would have loved to make the influence of the LSV more visible in this
memory, but this would have revealed too much of the recreative aspect of my
research. Out of the work on temporal logics I already mentioned, I worked with
Sebastien Bardin and Arnaud Sangnier on an unsuspectedly rich topic initiated
by Alain Finkel, namely the analysis of list-manipulating programs through
their translation into counter systems [2] – an approach that proved to be ex-
tremely successful for applications we absolutely missed at that time. Excited
by the work of the security group at LSV, I worked with Jules on a spatial logic
for the applied pi-calculus [3], and I discovered with Ralf Treinen and Florent
Jacquemard how tree automata techniques could be used to solve some decision
problems of this logic [4]. The presence of people like Alain Finkel and Philippe
Schnoebelen in the working group of infinite-state model-checking I belonged
to is the reason why Jules and I formalized the semantics of Sing] contracts in
terms of communicating finite state machines and subsequently studied their
relation with half-duplex dialogs [5]. The work of Stephane Demri on temporal
logics for data words and the work of Luc Segoufin on a similar topic were the
sources of my interest for the decidability of Separation Logic over lists with
data [6]. And there is probably ten times more ideas that all people at LSV put
in my mind and did not concretize yet!

An habilitation defence hopefully is quite rare in a life. And hopefully, a great
jury may turn it into something almost pleasant. I am extremly honoured San-
drine Blazy, Viviana Bono and Philippa Gardner accepted to read this memory,
came to the defence with so many questions, and helped me so much to improve
the first version. I have a special thank to Alain Finkel for accepting both to
be part of the jury and to play as the garant of this habilitation during all
the preparation phase. Finally, I am very grateful to Jean-Christophe Filliâtre
and François Pottier for accepting to join the jury and shed other lights to the
topic. Each of them brought its own key ingredient to the defence and made it
positively unforgettable.
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Chapter 1. Introduction

Chapter 1

Introduction

Separation Logic is now a well established program logic for specifying and
analysing heap-manipulating programs. Since the foundational papers [7, 8, 9],
of O’Hearn, Reynolds and Yang in the early 2000s, it made impressive progresses,
essentially in two directions: it demonstrated how the proofs of sequential pro-
grams could be fully automated, even for large-scale realistic programs, and it
illustrated the strength of local reasoning on challenging small concurrent pro-
grams. Good surveys [10, 11] better explain these contributions as we could do.
The aim of this introduction is only to collect basic definitions, and to emphasize
some specific topics:

1. the completeness of Separation Logic;

2. the reduction of the bi-abduction problem to the entailment problem.

This chapter and the following shows the particular role of the “magic wand”
connective in these questions. The magic wand originates from the early works
on BI [7], but it is largely absent in the recent works on Separation Logic. We
aim to show in this introduction that the magic wand is a powerful and useful
feature of the logic, which is probably a victim of carrying such a big power.

X 1.1 Background on Separation Logic

Memory States

In this manuscript, we adopt the simplified memory model obtained by abstract-
ing away from pointer arithmetic, and considering that all cells are allocated with
at most two fields. We assume infinite sets Loc = {l, . . . } , Var = {x, y, . . . },
and Val = {v, . . . } of respectively locations, variables, and values, that are such
that Val = Loc ] null.

Definition 1.1 (Memory State) A memory state is a pair σ = (s, h) of a
stack and a heap such that
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1.1. Background on Separation Logic

E := (Expressions)
x ∈ Var , (variables)
v ∈ Val (values)

b := (Conditions)
E0 = E1 , E0 6= E1 (equality tests)

p := (Programs)
x := new() , (allocation)
dispose(E) , (disposal)
x := E , (affectation)
x := E.i , (lookup)
E.i := E′ (update)
skip , (neutral)
p0; p1 , (sequential composition)
p0 ‖ p1 , (parallel composition)
while b do p , (iteration)
if b then p0 else p1 (branching)

Figure 1.1: A toy programming language

• s : Var→Val is a total function from variables to values

• h : Loc ⇀ Val× Val is a partial function from locations to pairs of values.

Two memory states σ1 = (s1, h1) and σ2 = (s2, h2) are said disjoint, σ1⊥σ2,
if dom(h1) ∩ dom(h2) = ∅ and s1 = s2 = s; if so, their composition σ1 • σ2 is
(s, h1 ∪ h2). Notations h1⊥h2 and h1 • h2 are defined accordingly. We write
h ≤ h′ if h is a restriction of h′, i.e. there is h′′ such that h • h′′ = h′.

Programming Language

We will consider a toy programming language modeling heap-manipulating pro-
grams, both sequential and concurrent. To keep the presentation simple, we ab-
stract away from common features, like local variables, function calls, or thread
creation1, and consider a rather tiny model (see Figure 1.1). The semantics
of this toy programming language is defined by means of a standard small step
operational semantics p, σ ; p′, σ′ based on interleaving concurrent threads (see
Table 1.2 for the exact definition). A reduction p, σ ; OwnError denotes the

1These features are known to be more or less easily tractable in SL, and we may freely use
them in some examples; their formal treatment is left to the attention to the reader.
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Chapter 1. Introduction

situation in which a program runs into an ownership’s violation. For sequential
programs, ownership violations occur only when a non-allocated pointer is ei-
ther dereferenced, updated, or disposed. For concurrent programs, it also occurs
when two threads concurrently access the same variable or the same cell, either
by reading or writing it (see Table 1.3 for the exact definition).

Programs without ownership’s violation will be sometimes called selfish. Note
that selfish programs are race-free, but the converse is false: a (race-free) con-
current read to a variable or a cell is not selfish. We focus on this subclass of
race-free concurrency with a clear intention: we are convinced that selfish con-
currency is worth a special attention, and that selfish programs present several
advantages over race-free ones. The thread model introduces a fiction of sharing
that disappears when looking at lower levels of abstraction. For instance, two
threads running on different cores may have each a cached local version of the
region of the address space they work with. In this specific case, selfish programs
can be expected to be much more efficient than race-free ones, as the coherence
of caches is much simpler to guarantee, and the economy of message exchanges
across cache managers could be a substantial gain. Another advantage is the
simplicity of distributing garbage collection for selfish programs, which we will
later discuss in Chapter 3. Despite the interest of selfish concurrency, and its
tight connection with separation logic, several questions seem unanswered by the
existing literature. We later discuss two such questions, which are the design
of a proof theory capturing exactly selfish programs, and the relation between
selfishness and determinism for message-passing concurrency.

Assertion Language

We adopt an assertion language of Separation Logic close to the one considered
in the early days [7, 9]; in particular, it includes the “magic wand” connective.

Definition 1.2 (Formula) A formula ϕ of SL is defined by the grammar:

ϕ,ψ := x = y , emp , E0 7→ (E1, E2) , ls(E0, E1) , ϕ ∧ ψ ,¬ϕ ,
ϕ ∗ ψ , ϕ −−∗ ψ , ∃x.ϕ

SL

We adopt the usual notations 6=, ∨ and ∀ for the duals of =, ∧ and ∃. We
use the wildcard notation to abbreviate existentially quantified variables when
they occur exactly once in a formula, i.e. we write E 7→ (−,−) for ∃x1, x2.E 7→
(x1, x2). We moreover abbreviate E 7→ (E′,−) as E 7→ E′, and (x 7→ y, z) ∗ >
as x ↪→ (y, z). We also abreviate ls(x, nil) as ls(x). Finally, we write ϕ −−~ ψ
for the so-called “septraction” connective, defined as

ϕ −−~ ψ , ¬(ϕ −−∗ ¬ψ).
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1.1. Background on Separation Logic

h = {l 7→ (v1, v2)} hf⊥h
x := new(), (s, hf ) ; skip, (s{x := l}, hf • h)

h = {JEKs 7→ (v1, v2)}
dispose(E), (s, hf • h) ; skip, (s, hf )

x := E, (s, hf ) ; skip, (s{x := JEKs}, hf )

h(JEKs) = (v1, v2)

x := E.i, (s, h) ; skip,
(
s{x := vi}, h)

h = {JEK 7→ (v1, v2)} h′ = {JEK 7→ (JE′K, v2)

E.1 := E′, (s, hf • h) ; skip, (s, hf • h′)

h = {JEK 7→ (v1, v2)} h′ = {JEK 7→ ([v1, |E′K)
E.2 := E′, (s, hf • h) ; skip, (s, hf • h′)

JbKs = TRUE

if b then p0 else p1 , σ ; p0 , σ

JbKs = FALSE

if b then p0 else p1 , σ ; p1 , σ

p0 ∼ p′0 p′0, σ0 ; p′1, σ
′
1 p′1 ∼ p1

p0, σ0 ; p1, σ1

p0, σ0 ; p1, σ1

p0; p, σ0 ; p1; p, σ1

p0, σ0 ; p1, σ1

p0 ‖ p, σ0 ; p1 ‖ p, σ1

s{x := v}(y) is v if x = y, otherwise s(y). JxKs , s(x), and JvKs , v.
JE0 = E1Ks , TRUE if JE0Ks = JE1Ks, FALSE otherwise, and JE0 6= E1Ks , ¬JE0 =
E1Ks.
∼ denotes the smallest program equivalence such that ; is associative with neutral
skip, ‖ is commutative and associate with neutral skip, and

while b do p ∼ if b then p; while b do p else skip.

Figure 1.2: The operational semantics (1/2)
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Chapter 1. Introduction

JEKs 6∈ dom(h)

dispose(E), (s, h) ; OwnError

JEKs 6∈ dom(h)

x := E.i, (s, h) ; OwnError

JEKs 6∈ dom(h)

E.i := E′, (s, h) ; OwnError

pi ∼ αi; p
′
i v(α0) ∩ v(α1) 6= ∅

p0 ‖ p1, σ ; OwnError

pi ∼ αi; p
′
i addresss(α0) ∩ addresss(α1) 6= ∅

p0 ‖ p1, (s, h) ; OwnError

p ∼ p′ p′, σ ; OwnError

p, σ ; OwnError

p0, σ0 ; OwnError

p0; p, σ0 ; OwnError

p0, σ0 ; OwnError

p0 ‖ p, σ0 ; OwnError

We range over atomic program (allocation, disposal, affectation, lookup, update) with

α, and write v(α) to denote the set of variables occuring in α. We write addresss(α)

to denote s(v(α)) augmented of the locations occuring as plain text in the expressions

of α.

Figure 1.3: The operational semantics (2/2)

The semantics of the assertion language is standard (see Table 1.4). Infor-
mally, emp denotes a memory state with no cell allocated, x 7→ (x1, x2) de-
notes a memory state with exactly one cell at location x holding values x1 and
x2. The precise predicate ls(x, y) denotes an acyclic singly-linked list start-
ing at x and reaching y by following the first field, thus recursively defined by
(x = y∧ emp) ∨ x 6= y∧∃x′.x 7→ x′ ∗ ls(x′, y). The separating conjunction ϕ∗ψ
asserts that ϕ and ψ hold on disjoint regions of the heap, ϕ −−~ ψ asserts that
the heap is a residue of a model of ψ in which a model of ϕ has been framed
out, and ϕ −−∗ ψ holds for a state σ0 such σ 7→ σ • σ0 transforms any model of
ϕ in a model of ψ.

We say that a formula ϕ is precise if for all (s, h), there is at most one h′ ≤ h
such that (s, h′) � ϕ. As usual, we say that ϕ entails ψ, ϕ � ψ, if all models of
ϕ are also models of ψ. A formula ϕ is consistent, or satisfiable, if ϕ 2 ⊥, and
ϕ is valid, � ϕ, if > � ϕ.
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1.1. Background on Separation Logic

(s, h) � E0 = E1 if JE0Ks = JE1Ks
(s, h) � emp if dom(h) = ∅
(s, h) � E0 7→ (E1, E2) if dom(h) = {JE0Ks)} and h(JE1Ks)) = (JE1Ks, JE2Ks)

σ � ϕ ∧ ψ if σ � ϕ and σ � ψ
σ � ¬ϕ if σ 6� ϕ
σ � ϕ1 ∗ ϕ2 if there are σ1, σ2 s.t. σ = σ1 • σ2, σ1 � ϕ1 & σ2 � ϕ2

σ � ϕ1 −−∗ ϕ2 if for all σ′ s.t. σ′⊥σ, if σ′ � ϕ1, then σ • σ′ � ϕ2

σ � ∃x.ϕ if there is v s.t. σ � ϕ[x←v]
σ � ls(E0, E1) if σ � E0 = E1 ∧ emp or

if σ � E0 6= E1 ∧ ∃x.E 7→ x ∗ ls(x,E1)

Figure 1.4: The forcing semantics of Separation Logic

Proof System

As in any program logic, the essential part of Separation logic is its inference
rules for inferring Hoare triples {ϕ} p {ψ}, where ϕ is the pre-condition assertion,
ψ is the post-condition assertion, and p is a program. In this manuscript, we
adopt a standard proof system including the frame rule, the rule for elimination
of auxiliary variables, and the parallel rule (see the definition on Figure 1.5).
We ignore the rule of conjunction, and the rule of infinite disjunction:

Conjunction
{ϕ1} p {ψ1} {ϕ2} p {ψ2}
{ϕ1 ∧ ϕ2} p {ψ1 ∧ ψ2}

∞-Disjunction
{ϕi} p {ψi} for some i ∈ I

{
∨
i∈I

ϕi} p {
∨
i∈I

ψi}

We omit these rules for two reasons: first, we will show that they are not
necessary for the completeness of Separation Logic (unlike in the proof given by
abstract Separation Logic [12]), and second, taking them into account could be
subject to discussions.2

We write ` {ϕ} p {ψ} when the Hoare triple has a proof using our proof
system.

Definition 1.3 (Valid Hoare triple) A Hoare triple {ϕ} p {ψ} is said valid,
denoted � {ϕ} p {ψ}, if for all σ � ϕ,

1. p, σ 6;∗ OwnError

2. if p, σ ;∗ skip, σ′, then σ′ � ψ

2The conjunction rule has been pointed as one possible responsible of Reynolds’ paradox [13],
and infinite disjunctions are not part of the syntax of the logic.
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Chapter 1. Introduction

We write fv(p) and fv(ψ) to denote the set of free variables, i.e. occuring in p

or ϕ not under a quantifier, and mv(p) the set of variables modified by p, i.e.

appearing on a left side of an affectation x:=E.

{emp} x:=new() {x 7→ −} {E 7→ −} dispose(E) {emp}

{emp} x:=E {x = E ∧ emp}

{E 7→ (E1, E2)} x:=E.i {x = Ei ∧ E 7→ (E1, E2)}

{E 7→ (−, E2)} E.1:=E’ {E 7→ (E′, E2)}

If
{ϕ ∧ b} p {ψ} {ϕ ∧ ¬b} p’ {ψ}
{ϕ} if b then p else p’ {ψ}

While
{ϕ ∧ b} p {ϕ}

{ϕ} while b do p {ϕ ∧ ¬b}

Sequential
{ϕ} p {χ} {χ} p’ {ψ}

{ϕ} p;p’ {ψ}

Parallel
{ϕ} p {ψ} {ϕ′} p’ {ψ′}
{ϕ ∗ ϕ′} p ||p’ {ψ ∗ ψ′}

mv(p) ∩ fv(ϕ′, p′, ψ′) = ∅
mv(p′) ∩ fv(ϕ, p, ψ) = ∅

Frame
{ϕ} p {ψ}

{ϕ ∗ ϕF } p {ψ ∗ ϕF }
mv(p) ∩ fv(ϕF ) = ∅

Consequence
ϕ � ϕ′ {ϕ′} p {ψ′} ψ′ � ψ

{ϕ} p {ψ}

AVE
{ϕ} p {ψ} x 6∈ fv(p)

{∃x.ϕ} p {∃x.ψ}

Figure 1.5: The proof system of Separation Logic
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1.2. A Discussion on Completeness

X 1.2 A Discussion on Completeness

A long standing problem that was first positively solved by Brookes [14] is
the soundness of Separation Logic for concurrent programs3. Since our toy
programming language is a restriction of the one considered by Brookes – which
includes conditional critical section – we immediately get the following result:

Theorem 1.1 (Soundness) For every ϕ, p, ψ,

if ` {ϕ} p {ψ} then � {ϕ} p {ψ}.

The companion property of the above is the completeness of the proof system,
i.e wether � {ϕ} p {ψ} implies ` {ϕ} p {ψ}. Completeness has been established
for sequential programs – we will discuss this again in Section 2.3. We discuss
here the completeness of Separation Logic in the concurrent case. The first
thing to notice is that all completeness results for program logics dealing with
concurrency usually rely on ghost code modeling the interferences from the
environment. Admitting the introduction of ghost code might be undesirable,
especially if one is interested in the automation of the proofs – it seems that very
little is known about how ghost code can be guessed by a programs’ prover. In
the case of selfish concurrency, however, it could be expected that interferences
from the environment may be unnecessary to model, and that the parallel rule
would do all the work. This is however not the case, because allocation induces a
form of synchronisation between threads: two threads cannot allocate the same
cell in parallel. This specialised synchronisation can be exploited to encode
spin-locks4. The following example program illustrates this phenomenon: the
ownership of a cell z is transferred by the deallocation of a cell x:

1 globals x,x’,y,z;

2 main (){

3 x:=new();

4 x’:=x;

5 producer(x)|| consumer(x’)

3 producer(x){

4 z:=new();

5 // “send z”
6 dispose(x);

7 }

8

9

10

11

12

13 consumer(x’){

14 y:=new();

15 while (y!=x’) do { // spin-lock
16 dispose(y);

17 y:=new();

18 }

19 // “receive z”
20 dispose(z);

21 }

3See also the work on abstract separation logic [12] and a direct proof of soundness[15] for
discussions around Reynold’s paradox, the conjunction rule, and precise predicates.

4We thank Matthew Parkinson for pointing us this problem, which was apparently discovered
by Yang some years ago.
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Chapter 1. Introduction

To get completeness, it may thus be necessary to acknowledge the power of
synchronisation of allocation. For instance, in order to prove the above program,
one may attach a form of ownership transfer to allocation/deallocation primi-
tives in the same vein as other synchronisation primitives (like send and receive
presented in Chapter 3), and consider global variables as resources. One may
also refute this example if one is interest in a program logic with total correct-
ness, because it seems difficult to exploit the synchronisation power of allocation
without introducing a potential divergence. We will show in Section 2.4 that
even for synchronisation-free, terminating programs, the concurrent separation
logic we consider misses extra rules to be complete.

X 1.3 Proof Checking and Frame Inference

We now consider the following problem

Proof Checking Problem
Input: A proof tree of a Hoare triple {ϕ} p {ψ}.
Question: Does ` {ϕ} p {ψ}?

For this problem, a “proof tree” is a tree with edges labeled either with Hoare
triples {ϕ} p {ψ} or with entailments ϕ � ψ, and vertices labeled with the name
of one of the proof rules of Figure 1.5. In the case of completeness, the question
of this problem is equivalent to ”does � {ϕ} p {ψ}?” This problem is thus un-
decidable, otherwise the set of programs that are safe and do not terminate on
initial empty heaps, i.e. the set of programs p such that � {emp} p {⊥}, would
be recursively enumerable. The undecidability of the proof checking problem
is located in the check of the consequence rule, since checking other rules’ ap-
plication goes through rather simple syntactic checks. As a consequence, the
proof checking problem can be decided only if one sacrifices completeness. One
may consider restricting either the class of programs under consideration, or the
proof system, or the logic. But since � {ϕ} skip {ψ} is undecidable, as we will
see in Section 2.3, it is unavoidable to restrict the logic.

The quest for fragments of SL that are expressive enough for proving common
programs, but that also keep a good complexity for the entailment problem,
really started with the preliminary theoretical work [16] giving foundations to
Smallfoot [17, 18]. Before that work, a first investigation [19] was conducted
on fragments of SL that did not include the list predicate5. Symbolic heaps are

5The list predicate is quite common in proofs of academic examples, but surprisingly rare
when verifying large-scale codes. Two facts giving credits to this claim: the analysis of an
IMAP server by the Abductor tool required list segments for only 3% of the procedures it
could analyse [20], and it was not possible, during the ANR AVERILES project, to find
a significant code really in use at EDF that needed to reason on lists. Maybe the efforts
that were turned on lists and other recursive predicates will now focus more on efficiency
for points-to analysis in SL, as suggested by the conclusion of a recent work [20], and the
results of the early days [19] will be reconsidered in this perspective.
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1.3. Proof Checking and Frame Inference

defined as pairs Π ∧ Σ of formulas from the following grammar:

Π := Π ∧Π , x = y , x 6= y (pure formulas)
Σ := Σ ∗ Σ , x 7→ y , ls(x, y) , emp , > (spatial formulas)

Symbolic Heaps

As it has been recently proved, the entailment problem is polynomial-time for
symbolic heaps [21], whereas other studied decidable fragments present always
a higher complexity.

The proof checking problem is however a bit too idealised. In practice, proof
checkers for SL do not take as input a proof tree, but rather an annotated
program, from which they try to reconstruct the proof tree. For this reason, the
design of a good assertion language requires more than showing that entailment
is decidable. We now review the problems that proof checkers have to face in
practice.

All available proof checkers for SL rely on a symbolic execution that gener-
ates “proof obligations”, i.e. instances of the entailment problem. A forward
symbolic execution is a function computing, for a loop-free program p and a
precondition ϕ, the smallest post-condition ψ such that � {ϕ} p {ψ} (backward
symbolic execution would work symmetrically). It is then desirable that the
fragment of SL manipulated by the proof checker is not only decidable, but also
closed under symbolic execution.

Proof checkers often also have to solve the following problem.

Frame Inference Problem
Input Formulas ϕ,ψ.
Question Is there X such that ϕ � ψ ∗X?

This problem might be worked around in some cases, but it becomes unavoid-
able if we want to handle function calls. Note that, if the proof checker runs
a backward symbolic execution, it has to solve another problem (the abduction
problem that we will recall soon). A theoretically “complete” fragment of the
assertion language of SL, with respect to proof checking, would thus enjoy the
following properties:

• decidability of the entailment problem;

• stability by post-conditions (or pre-conditions);

• decidability of the frame inference problem (or the abduction problem).

Symbolic heaps are far from “complete” in that sense: they are for instance
not stable by post-conditions. Consider the Hoare triple {x 7→ y∗ls(y)} x:=y {.}.
Then the expected postcondition x = y ∧ ∃x′.x′ 7→ y ∗ ls(y) cannot be ex-
pressed as a symbolic heap. More generally, symbolic heaps are not closed
under existential quantifications, and thus are not closed under either backward
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or forward symbolic execution. This issue is solved in Smallfoot by coding exis-
tentially quantified variables as ghost variables – note that ϕ � ψ is equivalent
to ∃x.ϕ � ψ when x 6∈ fv(ψ). But still, symbolic heaps do not permit to solve
the frame inference problem in full generality. The fact that symbolic heaps are
syntactically too restricted to be a “complete” abstract domain is pointed out
by the authors of Smallfoot as follows:

“This incompleteness could be dealt with if we instead used the backwards-
running weakest preconditions of Separation Logic. Unfortunately,
there is no existing automatic theorem prover which can deal with
the form of these assertions (which use quantification and the sep-
arating implication −−∗ ). If there were such a prover, we would be
eager consumers of it.”

The following result gives another more formal explanation of the interest of
the magic wand – or more precisely, the septraction – for the purpose of symbolic
execution:

Proposition 1.1 Let ϕ,ψ be two formulas, and let Sol be the set of solutions
of the frame inference problem ϕ � ψ ∗X. Then, ordering Sol with �, we have :

1. if Sol 6= ∅, then it is closed under infinite ∨ and its greatest element is >;

2. if moreover ψ is precise, then it is closed under infinite ∧ and its smallest
element is ψ −−~ ϕ.

In other words, this result states the following: if we had an abstract domain
that included septraction, we could run the forward symbolic execution: starting
from ϕ, a call to a function f() specified as {ϕ1} f () {ϕ2} would go as follows:

1. check entailment ϕ � ϕ1 ∗ >;

2. if the entailment holds, continue with ϕ2 ∗ (ϕ1 −−~ ϕ), otherwise report an
error.

X 1.4 Proof Inference and Abduction

We now briefly review the results obtained on proof inference, which could be
stated as follows:

Proof Inference Problem
Input A program p.
Question Is there ϕ,ψ such that ϕ is consistent and {ϕ} p {ψ} is derivable?

In the case of completeness, this problem is equivalent to the safety of p under
a non-trivial precondition. This problem is thus undecidable in full generality,
but there are several ways to solve it in many practical cases. We mention here
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two possible approaches. The first one resorts to the shape analysis approach,
which roughly consists in a symbolic execution for programs with loops, perform-
ing abstractions from time to time to ensure that only finitely many formulas
are generated [22]. The ideas behind the abstraction are not explained very
conveniently in terms of formulas, and are better explained in terms of graphs
(see for instance Sangnier’s phD thesis [23]). This abstraction can moreover be
kept precise by translating a heap-manipulating program into a bisimilar counter
program [24, 2, 25], where counters represent the length of the list segments.
Several enhancement of this quantitative shape analysis have been proposed, by
Bouajjani & al integrating data in the lists [26], by Cook & al for a lot more
fun problems, like proving termination [27] of sequential programs, or progress
of non-blocking algorithms [28], and more recently by Magill & al for complex
data structures not limited to lists [29].

Another approach is the one based on bi-abduction [30, 31]. This approach
is also based on a symbolic execution and abstractions like the ones of shape
graphs, but the symbolic execution does not report an error when the precon-
dition ϕ of p does not permit to execute it safely, and rather try to guess a ϕ′

such that p can be run over ϕ ∗ ϕ′. In addition to the frame inference problem
we already mentioned, it thus needs to solve the following problem:

Abduction Problem
Input Two formulas ϕ,ψ.
Question Is there X such that ϕ ∗X � ψ and ϕ ∗X is consistent?

The abduction problem has been advocated to be useful for inferring proofs
of not only sequential programs, but also concurrent ones [32]. In a recent work,
Gorogiannis studied the complexity of this problem for symbolic heaps [20].

Again, it is possible to clarify the connection of the abduction problem with
the magic wand:

Proposition 1.2 Let ϕ,ψ be two formulas, and let Sol be the set of solutions
of the abduction problem ϕ ∗X � ψ. Then, ordering Sol with �, we have :

1. Sol is closed under infinite disjunctions; it is moreover closed under infi-
nite conjunctions ∧i∈IXi when the conjunct is consistent.

2. Sol 6= ∅ if ϕ ∗ (ϕ −−∗ ψ) is consistent, and when this is the case, ϕ −−∗ ψ is
the largest element of Sol.
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Chapter 2

Expressiveness of Separation Logic

In the previous chapter, we saw how the separating conjunction and the magic
wand were both needed in the foundations of program verification using Sep-
aration Logic: the separating conjunction enables local reasoning through the
frame rule and the parallel rule, whereas the magic wand can be used internally
to automatically check an annotated programs, and even to infer the annota-
tions.

This chapter presents several results on the expressive power of these two
logical connectives. The point of view is not application oriented, and the aim
of the presentation is simply to evaluate the expressiveness and complexity of
the SL assertion language by relating it to other logics, and not answering the
much more delicate question of the design of efficient abstract domains based
on Separation Logic.

Problems of interest often include either the entailment problem (given ϕ,ψ,
does ϕ � ψ?), or the validity problem (given ϕ, does � ϕ?), or the satisfiability
problem (given ϕ, does it have a model?), or the model-checking problem (given
(s, h) and ϕ, does (s, h) � ψ?). These problems are all equivalent: the three first
problems are equivalent if formulas are closed under all boolean combinators,
which will be the case all the time. The last problem is of a different nature
in general, but here it is always a subproblem of the three others, as for every
s, h, it is possible to define a formula ϕ(s,h) that precisely captures all models
logically equivalent to (s, h). Moreover, if the magic wand is considered, the
three first problems may be reduced to a model-checking problem: for instance,
if ϕ is a closed formula, ϕ is satisfiable if and only if (s, h) � ϕ −−~ >, whatever
(s, h) is.
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X 2.1 Adjunct’s Elimination

The first fragment of SL we consider is the one without first-order quantification
and list predicates:

ϕ := ϕ ∧ ϕ , ¬ϕ , ϕ ∗ ϕ , ϕ −−∗ ϕ , x 7→ y, z , x = y , emp

SLprop

In the early days of Separation Logic [19], the entailment for this fragment was
shown to be decidable but PSPACE-hard. The decidability proof is based on
a small model property: a formula ϕ has a model if and only if it has a model
with n ≤ size(ϕ) cells, where size(ϕ) is linear in the number of variables plus
the number of occurrences of 7→ and emp [19]. The expressivity of this fragment
was later characterized by the following result:

Theorem 2.1 (Adjunct’s Elimination for SL) For every formula ϕ of the
SLprop fragment , there is an equivalent formula in the fragment:

ϕ := ϕ ∧ ϕ , ¬ϕ , (x ↪→ y, z) , (x ↪→ −) , heap size ≥ i , x = y

A Propositional Logic

where heap size ≥ i is defined by ¬emp ∗ · · · ∗ ¬emp︸ ︷︷ ︸
i times

.

This result shows that the magic wand can be eliminated, a phenomenon that
generalizes to other spatial logics [33, 34, 35, 36] and other adjunct connectives
(−−∗ is here the adjunct of ∗). Moreover, since the use of ∗ is very restricted in the
grammar above, SLprop can be translated into a propositional logic. This could
have been interesting for deciding SL entailment by reduction to sat/smt solvers,
and indeed this idea has been pushed a bit further, improving the translation
by coding it into first-order logic [37].

On the other hand, SLprop is not a very rich fragment of SL, and a natural
question was whether it could be extended to other fragments of SL. Despite
a proposal for a form of adjunct’s elimination in a procedure for stabilization
under interferences in RGSep [38], procedures for the elimination of −−∗ in SL are
not well-studied. One reason is that adjunct’s elimination is not always possible
in richer fragments of SL. The first negative result was obtained by Yang (and
communicated privately only). Yang showed that the full SL assertion language
of Definition 1.2 does not have the adjunct’s elimination. Let us show now a
counter-example adapted from Yang’s original one. We focus on the following
property – we will later reuse this property in many examples:

ϕ=(x, x′, y, y′) ,
(
ls(x, x′) ∗ ls(y, y′)

)
∧ “dist(x, x′) = dist(y, y′)”

From the embedding of FOLS(∗), the fragment of SL without magic wand, into
monadic second-order logic (see next section), we know that ϕ=(x, x′, y, y′) is
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Figure 2.1: Principle of the encoding of ϕ=(x, x′, y, y′) with two se-
lectors.

not expressible in FOLS(∗). It is thus sufficient to show that ϕ=(x, x′, y, y′) is
expressible in SL to deduce that the adjunct’s elimination does not hold in SL.

Consider the following formulas:

marker(z) , (z 7→ −,−) ∗ > ∧ z 6= x ∧ z 6= y ∧ ¬ (− 7→ z,−) ∗ >
marked1(z) , ∃t.marker(t) ∧ (t 7→ z,−)

marked2(z) , ∃t.marker(t) ∧ (t 7→ −, z)
marked(z) , marked1(z) ∨marked2(z)

marked list1 , ∀z. ls(x, z) ∗ > ⇔ marked1(z)

marked list2 , ∀z. ls(y, z) ∗ > ⇔ marked2(z)

Then ϕ=(x, x′, y, y′) is equivalent to the formula
(
ls(x, x′) ∗ ls(y, y′)

)
∧ ϕ′, with

ϕ′ the formula(
¬∃z.marked(z) ∗marked(z) ∗ >

)
−−~

(
marked list1 ∧ marked list2

)
.

To see why, observe that this formula encodes the scenario depicted on Fig-
ure 2.1: cells called “markers” are allocated by the magic wand. Each marker
cell points to a cell of the x list through its first selector, and points to a cell of
the second list through its second selector; these are precisely the marked cells,
and no cell can be marked twice. Such a set of marker cells can be allocated if
and only the two lists ls(x, x′) and ls(y, y′), which shows the claim.

This counter-example has a limitation: it strongly relies on cells having two
successors, and the question of adjunct’s elimination for cells with one selector
is worth to be raised, as many example programs only manipulate lists. Perhaps
surprisingly, ϕ=(x, x′, y, y′) can be expressed in the Separation Logic for heaps
with pure lists.

Theorem 2.2 (Brochenin’s Counter-Example) Consider SLLS the sepa-
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y

y’

Marking locations (here dotted) are created out of to the two lists by one

application of −−∗. If there are as many marking locations as the length of a list

plus one, this list is markable, i.e. marking locations can be allocated to form

a marking of the list (dashed arrows). The two lists x and y have the same

length if the same set of marking locations make them markable.

Figure 2.2: Principle of Brochenin’s counter-example.

ration logic over memory states with one selector, i.e. the fragment1

ϕ,ψ := x = y , emp , x 7→ y , ls(x, y) , ϕ ∧ ψ ,¬ϕ , ϕ ∗ ψ , ϕ −−∗ ψ , ∃x.ϕ.
SLLS

Then SLLS can express ϕ=(x, x′, y, y′).

Proof sketch. Consider the formulas:

marking(x) , (− 7→ x) ∗ (− 7→ x) ∗ (− 7→ x) ∗ >
marked(x) , ∃y.marking(y) ∗ (y 7→ x) ∗ >

marked list(x) , ∀y.
(
ls(x, y) ∗ >

)
⇔ marked(y)

∧ ¬∃x, y, z.marking(x) ∗marking(y) ∗ x 7→ z ∗ y 7→ z
∧ ∀y.marking(y)⇒ (y ↪→ −)

markable(x) ,
(
¬∃x.(− 7→ x) ∗ (− 7→ x) ∗ >

)
−−~ marked list(x)

markers , ∀x.(− 7→ x) ∗ > ⇒ marker(x)

Then the claim is that the formula(
ls(x, x′) ∗ ls(y, y′)

)
∧ markers −−~

(
markable(x) ∧markable(y)

)
(2.1)

is equivalent to ϕ=(x, y), and cannot thus be expressed without magic wand.

1This result may be strengthened to the equally expressive fragment

ϕ,ψ := x = y , x ↪→ y , ϕ ∧ ψ , ¬ϕ , ϕ −−∗ ψ , ∃x.ϕ

as explained in Section 2.3
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Let us explain all of these formulas step by step, taking intuition from Fig-
ure 2.2: a location is marking if it is pointed by at least three cells, and a location
is marked if it is pointed by a marking cell (note how this definition ensures that
original list cells are not considered as marking). The aim of the final formula is
to assert that the length of the two lists is n for a same n, by introducing n+ 1
unallocated marking locations. We say that a list is marked if all its locations
are marked injectively, and these locations are the only marked ones. We say
that the list is markable if it is possible to add disjoint list segments (hence
forming no new marking location) in such a way that the list becomes marked.
In other words, if all marking locations are unallocated, a list is markable if and
only if there are as many marking locations as the length of the list plus one.

Now the formula 2.1 reads as “there is a set of marking locations disjoint from
the locations of ls(x) and ls(y), such that both ls(x) and ls(y) are markable”,
which ends the proof.

Several other results strengthen the idea that adjunct’s elimination and de-
cidability of logics with the −−∗ connective are rare, in particular in the field of
Context Logic [39] and boolean BI [40]. The major difference with these results
is that they rely on atomic formulas being not specific predicates, but propo-
sitions denoting sets of elements from an arbitrary monoid. These similarities
may not be incidental, but due to the very different semantics of these logics,
it seems hard to formally unify these results – as a matter of fact, all existing
proofs of such results largely differ.

X 2.2 Separation Logic and Monadic Second Order Logic

It seems now quite admitted that symbolic heaps are the fragment of SL that
should be used for automation purpose. But understanding the role of each of
the restrictions they impose on formulas, and how it helps to solve the entailment
problem, should be precised. We already noticed that −−∗ added a facility for
comparing the lengths of two lists, a property that, due to Iosif’s results [41],
quickly leads to undecidability. Before delving more into Brochenin’s results in
the next section, let us take a detour to SLLS without magic wand:

ϕ := ϕ ∧ ϕ , ¬ϕ , ϕ ∗ ϕ , x ↪→ y , x = y , ∀x.ϕ
FOLS(∗)

The following result, largely inspired by a result of Dawar, Ghelli and Gard-
ner [42], shows that FOLS(∗) is strictly more expressive than first-order logic, or
in other words, it does not have the elimination of the separating conjunction.

Theorem 2.3 (List Predicate’s Encoding) The predicate ls(x, y) can be
expressed in FOLS(∗), hence FOLS(∗) is more expressive than FOLS.
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Proof sketch. Consider the formulas

extremities(x, y) , (− 7→ y) ∧ ¬(y 7→ −)
∧ ∀z.z 6= x⇒ z 6= y ⇒

(
(− 7→ z)⇔ (z 7→ −)

)
precisely(ϕ) , ϕ ∧ ¬(ϕ ∗ ¬emp)

ϕ(x, y) , (x = y ∧ emp) ∨ precisely
(
extremities(x, y)

)
The formula extremities(x, y) expresses that y is the end of a list, and the only
possible end of any list, whereas x is the only possible head of any list. In
particular, extremities(x, y) � ls(x, y) ∗ >. The construct precisely(ϕ) turns ϕ
into a precise formula: it characterizes the minimal models of ϕ for the division
ordering. For this reason, ϕ(x, y) is equivalent to ls(x, y).

Since reachability cannot be expressed in first-order logic, the previous ex-
ample complicates a bit the resolution of the entailment problem for FOLS(∗)
– for instance, if we were to transfer it to an SMT solver, we would have to
check how it could deal with reachability. Making a step beyond FOLS leads us
to weak monadic second order logic over heaps with lists (MSOLS), where some
second-order variables quantify over finite sets of locations.

ϕ := ϕ ∧ ϕ ,¬ϕ , ∃x.ϕ , ∃X.ϕ , x ↪→ y , X(x)

MSOLS

Proposition 2.1 ([43]) For all formula ϕ of FOLS(∗), there is an equivalent
closed formula ψ of MSOLS that can be computed in logarithmic space.

The encoding of FOLS(∗) in MSOLS is quite simple (it suffices to observe that
the semantics of FOLS(∗) can be expressed in MSOLS), and it immediately gives
the decidability of the logic due to an old result of Rabin [44].

Proposition 2.2 ([43]) The satisfiability problem of FOLS(∗) is decidable.

Resorting to MSOLS may however look like a bit drastic, and one may look
for something a bit more efficient. This is however not so easy for at least two
reasons. First, the entailment problem for FOLS(∗) already is quite high in the
complexity hierarchy, due to a reduction to the satisfiability of FO over finite
words [45].

Proposition 2.3 ([43]) The satisfiability problem of FOLS(∗) is non-elementary.

The second reason why translating FOLS(∗) into MSOLS would probably be
close to the optimal way of dealing with it is that FOLS(∗) may express lots
of properties that belong to MSOLS , as pointed by Dawar, Ghelli and Gardner
in their study of the spatial logic for graphs [42]. Perhaps the most significant
example in that respect is their encoding of regular languages. Switching to lists
with values, we assume2 that instead of the (x ↪→ y) predicate of pure lists, we
have a predicate (x ↪→ y, a) for each letter a of a finite alphabet Σ.

2This is just for convenience, it would also be possible to represent finite words in pure lists,
although in a more complex way [43].
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Definition 2.1 (Definable language) Let Σ be a finite alphabet, Σ ⊆ Val.
The list encoding hw of a word w = w1 . . . wn ∈ Σ∗ is the list of length n such
that the ith cell of the list contains wi in its second field.

We say that a language L ⊆ Σ∗ is definable in FOLS(∗) (resp. MSOLS) if there
is a formula ϕ of FOLS(∗) (resp. MSOLS) such that for all w ∈ Σ∗, (s, hw) � ϕ
if and only if w ∈ L.

Proposition 2.4 (Dawar & al [42]) Let L ⊆ Σ∗. Then the following are
equivalent:
L is definable in FOLS(∗) ⇔ L is regular ⇔ L is definable in MSOLS.

This result shows that it is not completely clear whether FOLS(∗) is strictly
less expressive than MSOLS . A similar problem was proposed by Dawar, Ghelli
and Gardner for the graph logic [42], and was partly answered by a result of
Marcinkowski [46]. The proof technique of Marcinkowski cannot be adapted to
the SLLS case, and the conjecture of the strictness of the inclusion of SLLS into
MSOLS was settled by Antonopoulos and Dawar only quite recently:

Theorem 2.4 (Antonopoulos & Dawar [47]) FOLS(∗) is strictly less ex-
pressive than MSOLS.

Antonopoulos & Dawar’s result might be expected, this is nonetheless a pre-
cious result, especially if one tried to prove it and experienced how it was em-
barrassingly difficult. One might be tempted to conclude that the FOLS(∗)
fragment has only bad properties: it has a very high complexity (much higher
than for instance symbolic heaps), but its expressivity is significantly limited
with respect to other well-known decidable formalisms.

X 2.3 The Almighty Wand

We now turn our attention again on SLLS , hence to the expressive power of
the magic wand. First, it must be observed that the semantics of −−∗ is not a
sentence of MSOLS , and Brochenin’s counter-example shows that there is no
way to encode SLLS in MSOLS . But the semantics of SLLS is a second-order
sentence, since it quantifies only over first-order functions. We may thus consider
how it related to weak3 second-order logic (SO), where second-order variables
quantify over finite sets of tuples of locations.

ϕ := ϕ ∧ ϕ ,¬ϕ , ∃x.ϕ , ∃X(x1, . . . , xn).ϕ , x ↪→ y , X(x1, . . . , xn)

SOLS

The fact the whole semantics of SLLS is a second-order sentence entails the
following result: for any formula ϕ of SLLS , there is a closed formula ψ of SOLS

3Note that weak SO is not full SO: second-order variables can only denote finite sets of tuples.
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a b

Figure 2.3: An encoding of the binary relation {(a, a), (a, b)}.

that has exactly the same models as ϕ. Brochenin’s tour de force was to show
that the converse is true4, and even more. Let FOLS(−−∗) denote the fragment
of SLLS without ∗, i.e.

ϕ := ϕ ∧ ϕ , ¬ϕ , ϕ −−∗ ϕ , x ↪→ y , x = y , ∀x.ϕ.
FOLS(−−∗)

Theorem 2.5 (Star elimination [43]) SLLS, SOLS, and FOLS(−−∗) have the
same expressive power, and translations among them are logarithmic-space.

The proof of this result is quite tedious. One of the key idea was already
exposed in the counter-example to adjunct’s elimination, when we defined a
formula ϕ=(x, y) that characterises heaps where ls(x, x′) and ls(y, y′) have the
same length. We illustrate the other key idea of the translation on one example:

Example 1 (Encoding a SO quantification) Assume a formula ϕ0(X) of
pure FO, without any occurrence of (. ↪→ .), or emp, and with a free SO variable
X of arity 2 (for instance, ϕ0(X) could be the property “if X is an order relation,
then it has a smallest element”). Let us express ∃X.ϕ0(X) ∧ emp as a formula
of FOLS(−−∗). Building on the counter-example for adjunct’s elimination, we can
define a formula “d(x, x′) = d(y, y′) + 1”, that expresses that the distance from
x to x′ is one more than from y to y′. Consider now the formulas:

max ls(x′, x) , ls(x′, x) ∗ > ∧ ¬
(
(− ↪→ x′) ∨ (x ↪→ −)

)
pair(x, y) = ∃x′, y′.max ls(x′, x) ∧max ls(y′, x) ∧ d(x′, x) = d(y, y) + 1.

The formula pair(x, y) asserts that x and y are the tail of maximal lists of length
n and n+1 respectively. This property associates a binary relation pairh ⊆ Loc2

to any heap h. Moreover, any binary relation can be realized by pairh for some
adequate choice of h. For instance the binary relation {(a, a), (a, b)} over the set
{a, b} can be represented as the heap of Figure 2.3. Thanks to this encoding of
binary relations as heaps, the formula emp∧

(
> −−~ ϕ0(pair)

)
– where ϕ0(pair) is

defined by replacing X(x, y) with pair(x, y) in ϕ0(X) – expresses ∃X.ϕ(X)∧emp.

4 A correspondence between SL and SO was already stated by Kunczak and Rinard [48], but
the separation logic they consider separates n-ary relations, and not heaps. In their case,
all of the expressivity of SO could then be encoded in a separation logic without magic
wand.
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This example shows how it is possible to encode a second-order quantification
inside the heap, based on arithmetic relations. This is of course a very specific
case of second-order quantification, and the generalisation of this idea has to
face several problems that are detailed in the journal version [49].

Note that the result holds for SL, FO(−−∗), and SO, i.e. for the same logics
over heaps with two selector cells and the predicate (x ↪→ y, z). The proof of
Theorem 2.5 indeed adapts very well to the case of several selectors – a direct
proof would also be worth to derive, and would probably be much simpler.

X 2.4 Back to Completeness

A remarkable consequence of the equivalence between SL and SO is the following
result:

Proposition 2.5 (Weakest precondition) Let p be a sequential program,
and ϕ a formula of SL. Then there is a formula ψ of SL such that {ψ} p {ϕ},
and for any other ψ′ such that {ψ′} p {ϕ}, ψ′ � ψ.

Proof sketch. s, h is in the weakest precondition of p, ϕ if and only if:

• there is not a finite run p, s, h;∗ skip, s′, h′ such that s′, h′ � ¬ϕ, and

• there is not a finite run p, s, h;∗ OwnError.

Let us sketch how to express this in SO. First, observe that a finite sequence
(pi, si, hi)i=0...l can be represented as some term tree (considering that only
finitely many variables should be cared about for s, a finite run can be rep-
resented as a finite term). Obviously, the quantification over a term can be
expressed in weak SO (this is a particular case of a graph). Then, the check
that a term denotes a valid run can be easily expressed in SO, as the definition
of ; is definable in SO. Finally, two more things need to be expressible in SO:
whether s0, h0 is isomorphic to s, h, and whether sl, hl � ϕ. This can be done
for any reasonable encoding of a pair (s, h) as a term.

The expressibility of weakest preconditions is the key of the completeness of
Hoare logic. The proof technique can be easily adapted to Separation Logic,
and yields the following result:

Theorem 2.6 (Completeness) Let p be a sequential program, and ϕ,ψ be
SL formulas. Then the following three statements are equivalent:

1. � {ϕ} p {ψ}.

2. ` {ϕ} p {ψ} according to the rules of Figure 1.5.

3. {ϕ} p {ψ} is derivable without the rules for auxiliary variables and the
frame rule, using instead the backward axioms of Figure 2.4.
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{∀x.
(
(x 7→ −) −−∗ ϕ

)
} x:=new() {ϕ} {(x 7→ −) ∗ ϕ} dispose(x) {ϕ}

{∃x.x = y ∧ ϕ} x:=y {ϕ} {∃x.
(
y ↪→ (x,−)

)
∧ ϕ} x:=y.1 {ϕ}

{∃x.
(
y ↪→ (−, x)

)
∧ ϕ} x:=y.2 {ϕ}

{∃x1, x2.
(
x 7→ (x1, x2)

)
∗
((
x 7→ (y, x2)

)
−−∗ ϕ

)
} x.1:=y {ϕ}

{∃x1, x2.
(
x 7→ (x1, x2)

)
∗
((
x 7→ (x1, y)

)
−−∗ ϕ

)
} x.2:=y {ϕ}

where x1 and x2 are “fresh” variables, i.e. do not occur in ϕ and differ
from x and y.

Figure 2.4: Axioms for weakest preconditions of atomic commands

Proof sketch. (2) ⇒ (1) is by soundness of SL. Backward axioms are derivable
from the small axioms using the frame rule and the rule for auxiliary variables,
hence (3) ⇒ (2). The proof of (1) ⇒ (3) goes as follows: it is proved by
induction on p that {ϕ} p {ψ} is derivable in the particular case where ϕ is the
weakest precondition. Then the result holds for the general case by consequence
rule. The inductive cases (while, if, sequence) are by definition of the weakest
precondition and rely on the consequence rule. The base cases are by hypothesis.

This result strengthens the one from [12], which rely on infinite disjunctions.
The elimination of the AVE and frame rules could probably be obtained in a
more effective way, for instance by means of a rewrite system on proof trees that
postpone these rules in a similar way as the cut rule in sequent calculi5.

This completeness result is still... incomplete. First, because it does not say
anything about programs with function calls or concurrency, and second because
it does not evaluate how the application of the frame rule may reduce the size of
a proof, which are precisely the features that are expected to make the strength
of Separation Logic.

We observed in Section 1.2 that SL was incomplete for concurrent selfish pro-
grams due to possible synchronisations on cell’s allocation and deallocation, and
raised the question of the completeness of SL for synchronisation-free programs
(in particular, terminating programs). We conclude this section by an example

5The possibility of postponing the frame rule seems a very general property, and would
probably also hold for the parallel rule, the rule for function calls, the anti-frame rule, etc.
On the other hand, the possibility of postponing the rule of auxiliary variables seems much
more dependent of the proof system: for instance, it cannot be posponed after the parallel
rule.
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program that illustrate the difficulties in deriving the completeness of SL even
in this case.

Consider a program that :

1. first starts with two disjoint lists x and y of the same length,

2. then traverses each of the lists in parallel,

3. then traverses again the two lists simultaneously, in a same loop, halting
when the last cell of x has been reached.

More precisely, we consider the following program:

1 traversal(z){

2 local z’;

3 z’:=z;

4 while(x’!= NULL) z’:=z’.1;

5 }

6 main{

7 {traversal(x) || traversal(y)}

8 while(x!=NULL) {

9 x:=x.1; y:=y.1;

10 }

11 }

Let us introduce the property

ϕ=(x, y) ,
(
ls(x) ∗ ls(y)

)
∧ “length(x) = length(y)”,

hence stating that the heap contains precisely two allocated lists of the same
length, starting at x and y respectively, and sharing no cells. Then

{ϕ=(x, y)} main {y = null} (2.2)

is valid – observe that the precondition ϕ=(x, y) is crucial, because the test in
the while loop on line 7 does not suffice to prevent from an illegal dereferencing
or a memory leak.

To prove the valid Hoare triple (2.2), it seems to be hard to avoid to intro-
duce a ghost variable, if we want to use a proof system that is sound for our
selfish semantics – by this, we exclude proof systems that allow concurrent read
accesses, like the ones using permissions or rely-guarantee.

Assume by absurd that there is such a proof of (2.2) without a ghost variable,
i.e. without applying the AVE rule. Then it must induce a proof of

{ϕ=(x, y)} traversal (x,x ’, t )|| traversal (y,y ’, u) {ϕ=(x, y)} (2.3)

But such a proof is impossible: the only rules that can be applied first are the
frame rule, the consequence rule, or the parallel rule. Clearly, no cells can be
framed out, nor any pure assertion, so the only possible application of a frame
rule is with emp as a frame, and can be eliminated. Then a proof of (2.3) starting
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with the application of the consequence rule (possibly without changing pre and
post conditions), followed by the parallel rule requires to exhibit ϕ1, ϕ2 such
that

� (ϕ1 ∗ ϕ2)⇔ ϕ=(x, y) (a)
ϕ1 � ls(x) ∗ > (b)
ϕ2 � ls(y) ∗ > (c)

– (b) and (c) comes from the right formulas being the weakest preconditions
of the traversal procedure. It can be seen then that x 6= y ∧ x 7→ null and
x 6= y ∧ x 6= y′ ∧ (y 7→ y′ ∗ y′ 7→ null) should then respectively entail ϕ1 and ϕ2,
hence the contradiction with (a).

If we use the AVE rule, if we assume that variables can store naturals, and if
we allow some more expressivity of the logic to talk about these naturals, then
a proof seems amenable. Let us introduce the property

ψ=(x, z) , ls(x) ∧ “length(x) = z”,

hence expressing that the heap precisely contains a list starting at x, and that
this has the same length as the natural number stored in z. Then, in order to
prove (2.3), we may introduce a ghost variable z using AVE and prove

{ψ=(x, z)∗ψ=(y, z)} traversal (x,x ’, t )|| traversal (y,y ’, u) {ψ=(x, z)∗ψ=(y, z)}
(2.4)

which can be proved applying the parallel rule – note that sharing a ghost
variable or a ghost cell is sound with respect to the selfish semantics, because
concurrent read accesses to such resources do not really occur at runtime.

All the assumptions that permitted this proof are quite reasonable, but it
might be interesting to reject the hypothesis that ψ=(x, z) is expressible in the
assertion language. For instance, we may consider proving this program in a
tool that does not support anything else than pure list heaps. One may consider
to encode the counter z via a ghost list of the same length as the two other lists,
and then share this list when the parallel rule is applied – note again that sharing
a ghost list is sound. But now, in order to allocate this ghost list, it seems we
need to allow to introduce ghost code.

One may expect that SL extended with a rule for ghost code introduction
would be complete, due to similar results for Owicki-Gries and rely-guarantee
program logics. This may be a bit disapointing, because ghost code seems pretty
hard to guess automatically, and delicate to check being actually “ghost” in some
circonstances, and moreover because ghost code may be thought as required
in other proof systems to better handle interferences from the environment,
which do not occur for selfish programs. All in all, it seems hard to design a
proof system that exactly captures selfish programs6, despite the interest of this
subclass of race-free programs.

6At best, one can conjecture that RGSep, restricted to read interferences, would capture
exactly the race-free programs.
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X 2.5 Extensions with Data

So far, we exploited very little of the second field of cells. This second field has
several interests: the modeling of doubly-linked lists, the modeling of non-linear
recursive data structures (like trees), but also the modeling of simple lists with
data. We discuss here how to deal with this last kind of heaps. We hence
consider heaps h : Loc ⇀ Val × Val of lists with data, i.e. heaps such that the
second fields contain invalid heap addresses only, or, in other words, states s, h
such that s, h � ∀x.(− ↪→ −, x)⇒ ¬(x ↪→ −,−). We also consider the extension
of FOLS(∗) with the predicate (x ↪→ y, z) dealing with the second field:

ϕ := ϕ ∧ ϕ , ¬ϕ , (x ↪→ y, z) , x = y , ϕ ∗ ϕ , ∃x.ϕ
FO(∗)

and write FOdat(∗) to denote the theory of FO(∗) over heaps of lists with data.
The following result shows that this small extension already provides too much
expressive power:

Theorem 2.7 ([6]) The satisfiability problem is undecidable for FOdat(∗).

This result comes from the ability to encode the FO theory of finite totally
ordered sets equipped with an equivalence relation (S,<,∼), or equivalently the
FO theory of finite data words. Even the first-order theory of these structured
is undecidable – it is unclear whether restricting the logics to two variables
would make the logic decidable, like in the FO case [50]. It is however desirable
to provide an extension of SL that could deal with lists with data, and more
precisely sorted lists, and programs manipulating them. Having this purpose in
mind, one may assume that Val = N (or Val = Z), and seek a fragment of SL
that may compare values that appear in the second fields of cells. The design of
such a fragment should moreover allow to express properties that may be needed
by the proofs or example programs. We introduced the following fragment:

pred := (x ↪→ y, z) , x
≥
↪→ y , x

≤
↪→ y , x ≤ val(y) , x ≥ val(y)

ϕ := pred , ϕ ∧ ϕ , ¬ϕ , ϕ ∗ ϕ , ∃x.ϕ
FOsort(∗)

where underlined variables denote variables that are not quantified in any con-
text. The new predicates allow to compare the values of one cell with either the

value of its successor’s cell (
≥
↪→,

≤
↪→) or with the value of a cell at a program’s

variable (x ≤ val(y), x ≥ val(y)). The formal semantics of these new predicates
is:

s, h � x
≥
↪→ y if s(x), s(y) ∈ dom(h) and snd(h(x)) ≥ snd(h(y))

s, h � x ≥ val(y) ifs(y) ∈ dom(h) and s(x) ≥ snd(h(y))
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List Predicate’s Elimination SLLS , FOLS(−−∗), MSOLS ,FOLS(∗)

Figure 2.5: Summary of the results of this chapter

Example of properties that can be stated in FOsort(∗) are thus “there is an
ordered list starting at x”, or “all values of the sorted list starting at x are
smaller than the ones of the ordered list starting at y”, but it cannot be said
that a list contains pairwise distinct values. FOsort(∗) seems actually expressive
enough to run a symbolic execution of a program merging two sorted lists [6].
It is also a decidable logic:

Theorem 2.8 ([6]) The satisfiability problem for FOsort(∗) is decidable.

The decidability proof goes by reduction to MSOLS – note that the actual
values of the second field can be abstracted, since only their order constraints
do matter. This is probably yet not very satisfactory, as the complexity of the
problem is, like in the case of pure list, non-elementary.
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Chapter 3

Copyless Message Passing

Sing] is an experimental programming language developed for the design of
the Singularity operating system [51]. All kernel processes in Sing] share their
address space with each others, but a form of memory protection of each process
is enforced at compile-time. These so-called “software isolated processes” (SIP)
are thus a bit like selfish threads, in the sense of selfishness we introduced in
Chapter 1. Sharing the address space among processes has several benefits
over a paranoid hardware memory protection. The one that interests us is the
following: message-passing across processes can be implemented in a copyless
way, in the sense that, whenever a message is sent from one process to an other,
a mere pointer to the memory region of the content of the message is inserted
in the communication buffer.

This form of message-passing gives much better performances than a copy-
ing approach of message-passing, but it complicates the static analysis of the
selfishness of the programs at compile-time. To help the compiler in his task,
Sing] presents an interesting mechanism of contracts. These contracts may ex-
press conditions like “if I receive a message order, then I will answer it with a
message acknowledgment”, and are thus a human-readable, specialized form of
rely-guarantee reasoning for message exchanges.

We intend now to model these two aspects of Sing], copyless message-passing
and contracts, in the framework of Separation Logic.

X 3.1 A model of Sing]

In Sing], processes communicate through channels. A channel is composed of
a pair of two endpoints. An endpoint can be used to send messages to its peer
endpoint, or to receive messages from it, exactly like UNIX sockets. Commu-
nications are asynchronous FIFO like in TCP. Endpoints are heap objects like
others, which implies two things: they are dynamically allocated and disposed,
and they can be sent in messages as any other heap objects, yielding a form of
mobility.
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m ∈ Σ := cell , list , ack, close me, . . . (Message Tags)
p := (Programs)

x := new() ,dispose(E) , x := E ,
x := E.i , E.i := E′ , skip ,
while b do p , if b then p0 else p1 ,
p0; p1 , p0 ‖ p1 ,

(see Chapter 1)

(e, f) = open(C) (allocation)
close(E,F ) , (disposal)

send(m,E, ~E) , (sending)
~x := receive(m,E) , (reception)

switch


~x1 := receive(m1, E1) : p1

. . .
~xn := receive(mn, En) : pn

 (scanning)

Figure 3.1: Syntax of a toy programming language with message
passing

X 3.1.1 A Toy Programming Language

We consider the toy programming language of Figure 3.1, obtained by adding
four new primitives and a new language construct to the toy programming lan-
guage of Chapter 1. The primitive (e, f) = open(C) allocates a channel and
stores its two endpoints in the variables e and f ; this channel is ruled by a
contract C, which will be later explained. The primitive close(e, f) deallocates
the channel (e, f) in a symmetric way1. The command send(m, ~E) sends a
message tagged with m, over endpoint E, and with as many extra parameters
~E = E1, . . . , En as required by the arity of the tag m. Symmetrically, the com-
mand ~x = receive(m,E) receives a message tagged with m over endpoint E, and
store the value of its parameters in ~x. The switch construct scans the incomming
buffers of the Ei and branches on one of the case ~xi = receive(mi, Ei) : {p} such
that mi is the tag of the first out message of the incoming buffer of Ei.

Example 2 The following program illustrates a very simple usage of the com-
munication primitives2:

1This treatment of closure differs from Sing], where each endpoint is “closed” separately: in
Sing], the first call to close(e) sends a special message towards the other endpoint, and the
second close(f) really closes the channel. Example 3 shows how this mechanism can still
be represented in our model.

2For the sake of this example, we admit here and elsewhere in other examples a standard
construct for local variables, which we omitted from the formal syntax for conciseness
reason.
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1 local e,f in

2 (e,f)=open(C);

3 send(string ,e,x);

4 y = receive(string ,f);

5 close(e,f);

This program is operationally equivalent to y := x. Note how the copyless aspect
manifests itself here: x and y point to the same array of characters. By contrast,
for a copying semantics, the above program would be equivalent to something like
y := string copy(x).

Let us now consider a relatively more complex example that illustrates the
interaction between heap-manipulation and message-passing, as well as the in-
terest of the switch construct.

Example 3 The following program features a producer/consumer general schema:

1 send_and_dipose_list(x){

2 local e,f;

3 (e,f) := open(C);

4 producer(x,e) || consumer(f)

5 }

6 producer(x,e){

7 local t;

8 while x != null {

9 t := x->next;

10 send(cell ,e,x);

11 x := t;

12 receive(ack ,e);

13 }

14 send(close_me ,e,e);

15 }

16

17

18 consumer(f){

19 local y,e;

20 while true {

21 switch {

22 y := receive(cell ,f) : {

23 dispose(y); send(ack ,f);}

24 e := receive(close_me ,f) : {

25 break }

26 }

27 }

28 close(e,f);

29 }

The left thread sends the list ls(x) cell by cell to the right thread, and this
one immediately deallocates the cells it receives, and sends an acknowledgment.
When the end of the list is reached, the left thread sends its endpoint to the
other thread to inform it that the traversal is finished and that it can close the
channel.

Interactions between message-passing and heap manipulations are subtle. Let
us observe a few facts about Example 3. On the one hand, it can be observed
that the two instructions dispose(x) and send(ack,f) on line 23 can be executed
in any order. But one should be careful when commuting message-passing and
heap-manipulating instructions. Consider on the other hand the variant of the
program of Example 3 where the local variable t is omitted, and the lines 9. . . 11
become
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9 send(cell ,e,x);

10 x := x->next;

11

Then this program is not safe any more, as the following scenario is possible: the
producer executes line 9 in this new code, then the consumer receives the cell x
and dispose it, and finally the producer dereferences a non-allocated pointer on
line 10.

The notion of ownership better explains the difference between the two mes-
sages: the sending of the cell message transfers the ownership of the cell x from
the producer to the consumer, and for this reason, it would not be possible to
dereference x in the producer after the cell message has been sent. We say
that the heap region consisting of the cell is the footprint of the message. By
contrast, the ack message has an empty footprint, transfers no ownership, and
acts as a pure synchronization. It can thus freely commute with the disposal. It
may further be observed that one may simplify the program and not exchange
a ack message3 on lines 12 and 23.

X 3.1.2 Ownership is not just in the Eye of the Asserter

Remember that Sing] has to deal with processes, and not threads. In particular,
it must be possible for the operating system to reclaim the memory used by
a process when this one dies, even if other processes keep running and try to
interact with this process (note that processes can be killed at any point in time).
The operating system should thus garbage collect the cells that were owned by
the dead process, but not the ones that may be used by other processes in the
future.

In order to determine ownership, Sing] cannot rely only on the static anal-
ysis at compile-time (again, think of processes being abruptly killed). Enough
runtime information must thus be maintained to determine ownership – for
instance, each cell can be tagged with a process-id.

When a piece of heap is sent, its ownership information must be updated; and
if this piece of heap contains endpoints, then the owner of the messages that are
waiting to be received on these endpoints should be updated as well, because of
the following transitivity rule:

Transitivity
Rule

when a process owns an endpoint, it also owns
the messages that are waiting to be received on
that endpoint.

Note that the transitivy rule may potentially slow down message exchanges
significantly. Indeed, when an endpoint is passed, the update of the ownership
information requires to recursively examine all messages of all queues whose

3In Sing], the ack message is required in order to ensure that the queue of incoming messages
over f is bounded, and can thus be allocated once for all at channel’s allocation – but other
implementations of channels, e.g. based on lists, would not show this limitation.
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1 main (){

2 local e,f,e’,f’;

3 (e,f) := open(C);

4 (e’,f’) := open(C);

5 producer(e,f,e’) || consumer(f’)

6 }

7 producer(e,e’,f’) {

8 local x;

9 x:=new();

10 send(cell ,e’,x);

11 send(endpoint ,e,f’);

12 }

13 consumer(f) {

14 local f’,x;

15 f’ := receive(endpoint ,f);

16 x := receive(cell ,f’);

17 dispose(x);

18 }

Figure 3.2: Producer/Consumer with one indirection: an example of
the recursivity of ownership transfer.

mem_leak_generator (){

local x,e,f;

x:=new();

(e,f) = open(C);

send(cell ,e,x);

send(endpoint ,e,f);

}

mem_leak_gen2 (){

local e,f,e’,f’;

(e,f) = open(C);

(e’,f’) = open(C’);

send(endpoint ,e,f’);

send(endpoint ,e’,f);

}

Figure 3.3: Two examples of distributed memory leaks

ownership changes. For instance, on the program of Figure 3.2, when the own-
ership of the endpoint f ′ is passed to the consumer (line 11), the ownership of
the cell x should be immediately transferred to the consumer by application of
the transitivity rule.

X 3.1.3 Shallow Ownership Transfer

In some situations, it is impossible to determine how the ownership information
should be updated. This occurs for instance in the program mem_leak_generator

of Figure 3.3. This program sends two messages in the queue of f : first the cell
x, then the endpoint f . Applying the transitivity rule does not help deciding
who is the owner of the endpoint f at the end of the program. The same occurs
in the program mem_leak_gen2() above, illustrating how circular reasoning with
the transitivity rule are not restricted to the sole case of sending an endpoint
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over its peer. Note also that such situations of undetermined ownership are
memory leakages, since they will not be handled by any process-wide garbage
collector.

These ownerless cells could be declared owned by the operating system and
treated by a system-wide garbage collector. But Sing] avoid a system-wide
garbage collection for such cells, as endpoint mobility is restricted as follows:

Shallow
Ownership
Transfer

when an endpoint ε is sent, its incoming queue
should be empty, and should remain empty until
ε has been received.

Shallow ownership transfers could be also stated as follows: “the transitivity
rule never needs to be applied”. Observe that the examples on Figure 3.3 are
not shallow ownership tranfers, nor the example on Figure 3.2, nor the same
example in which the two send operations would be commuted.

Aside the problem of ownerless cells, another motivation for adopting shal-
low ownership transfers is probably efficiency: the shallow ownership transfer
hypothesis ensures that sending is constant-time.

Shallowness of ownership transfers would be hard to ensure by static analysis
without any further restrictions. To check that an ownership transfer is shallow,
Sing] compiler needs indeed to ensure a prophecy on the uses of the peer ε′ of
the endpoint ε that is sent: no message can be sent on ε′ until ε will be received.
Ensuring this prophecy directly is hard, especially with local reasoning, because
ε′ is in general owned by a process p′ that differs from the process p that sends
ε. A solution is to rely on communication contracts, but before we explain this
solution, we should first explain the main purposes of communication contracts.

X 3.1.4 Communication Contracts

Communication contracts are similar to session types [52], and like other types,
their purpose range from documentation of the code to runtime-safety of some
specific operations – in the case of contracts, communications.

Let us briefly review some communication errors that contracts can prevent.
First of all, contracts intend to prevent deadlocks. Defining deadlocks as a
unique notion, like “absence of progress”, is quite subtle and not fully informa-
tive. We rather provide some examples of deadlocks on Figure 3.4 and will later
formalize some of these deadlocks.

Circular Wait This is probably the most familiar deadlock: a group of processes
wait for each others, and no leader emerges.

Head-to-Head The head-to-head deadlock finds its name from MPI program-
ming. It occurs when two processes simultaneously send a message to each
other, which get stuck if message-passing is implemented by a rendez-vous
synchronisation. It tends to be avoided in asynchronous message-passing
as well to ease the portability of the code; the absence of head-to-head
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deadlocks corresponds to half-duplex communications, and will be later
studied in Section 3.3.

Unspecified Reception A process can get stuck in a switch construct if the tag
of the first available message in the queue is not one of those that are
listed in the switch construct4.

Buffer Overflow Deadlocks may happen if send operations are blocking until a
receive operation frees a slot for a new message in the queue5

To complete the description of the problems that contracts might help to solve,
we should mention orphan messages (see Figure 3.4), which occur when a
channel is closed although it contains some pending messages.

Let us now introduce some intuitions on how these problems can be solved by
communication contracts in Sing]. Contracts themselves are quite simple: they
are finite-state automata labeled with send and receive actions describing the
protocol of the conversations occuring on the channels they type.

Definition 3.1 (Contracts) A contract is a tuple C = (Q,Σ, δ, q0, F ) such
that:

• Q is a finite set of states;

• Σ is a finite set of message tags;

• ∆ ⊆ Q× {!, ?} × Σ×Q is the set of transitions;

• q0 ∈ Q is a distinguished initial state;

• F ⊆ Q is a set of distinguished final states.

The dual C of C is the contract obtained by swapping ! and ? in all transitions.

Example 4 Consider again the program of Example 3. Then a contract de-
scribing the underlying protocol could be the following:

4If we were not to forbid unspecified receptions, we could consider two ways of handling these
“deadlocks”: either the process stops waiting and escapes as soon as it can determine that
the pattern-matching is not exhaustive, but then the programmer should have written some
code to catch the exception, or it accepts to pick a message that is not the first one in the
queue, like in Erlang [53], but then it is possible to wait for such a message forever. All in
all, preventing unspecified receptions seems a pretty clean and efficient discipline.

5This of course depends on whether the implementation of the queue forces it to be bounded,
and how overflows are prevented. Due to slack inelasticity [54], deadlocks might be caused
by adopting too large buffer bounds. An important benefit of contracts is not just that
they ensure buffer boundedness, but also that one may derive from them the exact buffer
bounds.
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1 circular_wait () {

2 (e,f) := open(C);

3 {

4 receive(m1 ,e); [..]

5 ||

6 receive(m2 ,f); [..]

7 }

8 }

9

10 head_to_head () {

11 (e,f) := open(C);

12 {

13 send(m1,e); [..]

14 ||

15 send(m2,f); [..]

16 }

17 }

18

19 orphan_message(x) {

20 (e,f) := open(C);

21 send(cell ,e,x);

22 close(e,f);

23 }

24

25 unspecified_reception(x) {

26 (e,f) := open(C);

27 send(list ,e,x)|| consumer(f);

28 }

29 consumer(f) {

30 local x,e;

31 switch {

32 x:= receive(cell ,f):{

33 dispose(x);}

34 e:= receive(close_me ,f):{

35 close(e,f);}

36 }

37 }

38

39 buffer_overflow(x,y) {

40 (e,f) := open(C);

41 // buffer_size(e,f)= 1 msg

42 send(cell ,e,x);

43 send(cell ,e,y);

44 }

Figure 3.4: Different forms of communication errors in message-
passing programs

contract C {
initial state 1 {

! cell → 2;
!close me → 3;

}
state 2 {

?ack → 1;
};
final state 3 {};

};

1 2

3

!cell

?ack

!close me

Preparing the next sections, let us give now some intuitions on how contracts
are used to prevent communication errors. Basically, Sing]’s compiler executes
the two following verifications:

1. All the contracts provided by the programmer are admissible. A contract is
admissible if it satisfies some syntactical restrictions, which mainly ensures
that the contract as a standalone executable object is safe. Contracts can
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indeed be executed as communicating finite state machines (CFSM), and
may or may not feature some of the communication errors we mentioned.

2. The program is contract obedient : communications inside the program
follow the protocol prescribed by the contract: essentially, this means
that the CFSM semantics is a sound over-approximation of the program’s
semantics.

Formalizing these two conditions is the purpose of two sections: the check
for contract obedience will be explained by means of an extension of the proof
system of SL in Section 3.2, and the admissibility will be explained in terms of
CFSM in Section 3.3.

X 3.1.5 A word on Merro’s locality condition

Let us now look back at the problem of ensuring that ownership transfers are
shallow. Since contracts avoid full-duplex communications, the shallowness of
ownership transfer is equivalent to the following property:

Half-Duplex, Shallow
Ownership Transfer

after receiving an endpoint, the first ac-
tion on it must be a send action.

Half-Duplex shallow ownership transfers are thus a weakening of the locality
condition in the π-calculus [55], which imposes that for ever after an endpoint
has been received, it can only be used for sending. The two conditions can
be considered as motivated by the same problem: determining to whom a sent
message should be addressed. There is however a slight difference: the locality
condition in π-calculus ensures that there is always at most one receiver on
a given channel – which is the case in Sing] even without shallow ownership
transfer, due to selfishness. However, shallow ownership transfers ensure that
there is always at least one receiver on a given channel – a problem specific to
the asynchrony of communications in Sing].

The restriction to shallow ownership transfers raises the question of the ex-
pressive power that is lost by adopting this restriction. Interestingly, Merro
showed that all choice-free, guard-free processes of the asynchronous π-calculus
can be represented in the local fragment using a form of linear forwarders [56].
A similar result would probably hold for Sing] purged of some problematic fea-
tures, like equality tests on endpoints. On the other hand, if we only consider
selfish programs, the results we present in forthcoming Section 3.5 suggest that
non-shallow ownership transfers increase the expressive power of the program-
ming language.
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X 3.2 A Proof System for Copyless Message-Passing

X 3.2.1 Assertion Language

In order to extend the proof system of SL to our model of Sing], we first need to
extend the assertion language so as to deal with endpoints. Two informations
may be required about a given endpoint e: first, its peer endpoint f , and second,
its contract C and the contract’s state q in which it currently is. We thus extend
the assertion language with the predicate

e
ep7→(C{q}, f)

that characterises such an endpoint. That’s all we need. We could also have
considered keeping some information about the content of the queues, but this
is submitted to interferences from the environment when a thread only owns one
of the two endpoints, and a closure of the queues’ contents under interferences
à la RGSep would be necessary6; contracts just do this in a more specialized
and user-friendly way.

X 3.2.2 Proof Rules

We need now to provide new inference rules for the four new instructions of
our toy programming language. Allocation and disposal of a channel are rather
straightforward: when the endpoints are allocated, they are placed in the initial
state of the contract, and can be assumed as peer of each other. Conversely, for
closing a channel, the two endpoints must be peer of each other, and be in a
same final state of the contract.

q = init(C)

{emp} (e, f):=open(C) {e ep7→(C{q}, f) ∗ f ep7→(C{q}, e)}

q ∈ finals(C)

{E ep7→(C{q}, F ) ∗ F ep7→(C{q}, E)} close (E,F) {emp}

Sends and receives are a bit more complicated. We need to handle two things:
the ownership transfer and the obedience to the contract. Regarding ownership
transfer, it is necessary to precise which part of the heap is transferred. For
this, we consider that each message tag m will be associated with a formula
ϕm(~x) of the same arity as m that describes the footprint of the message. Then
a send acts as deallocating the footprint in the local state, and conversely a
receive corresponds to an allocation of the footprint in the local state. For what

6Instead of interferences, we could also relax the notion of program “state” and keep some
information on the past send messages or the future received messages. This is the approach
followed by Appel & al [57].
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concerns contract obedience, it is checked that the contract of the endpoint
contains a transition tagged like the message that is sent or received. This leads
to the following proof rules:

q
!m−→ q′ ∈ transitions(C)

{E ep7→(C{q}, F ) ∗ ϕm( ~E)} send(m,E, ~E) {E ep7→(C{q′}, F )}

q
?m−→ q′ ∈ transitions(C)

{E ep7→(C{q}, F )} ~x := receive(m,E) {E ep7→(C{q′}, F ) ∗ ϕm(~x)}

Example 5 The variation around Example 2 described below can be proved
with the new small axioms:

1 message cell(x) {x 7→ −}
2 contract C {

3 initial state 1 {!cell ->2;};

4 final state 2 {};

5 }

6 main (){

7 {emp}
8 x:=new();

9 {x 7→ −}
10 (e,f)=open(C);

11 {(x 7→ −) ∗ e ep7→(C{1}, f) ∗ f ep7→(C{1}, e)}
12 send(cell ,e,x);

13 {e ep7→(C{2}, f) ∗ f ep7→(C{1}, e)}
14 y := receive(cell ,f);

15 {(y 7→ −) ∗ e ep7→(C{2}, f) ∗ f ep7→(C{2}, e)}
16 close(e,f);

17 {y 7→ −}
18 dispose(y)

19 {emp}
20 }

On Example 5, note how the contract’s state of an endpoint evolve after every
operation. The above contract forbids head-to-head deadlocks (messages cannot
be sent on f), buffer overflow (only one message can be sent, thus allocating a
buffer of size one never causes a buffer overflow), and message orphans (if the
cell message were not received before closure, f would not be in the final state
when the axiom of close is applied). However, the following example shows that
circular waits are not ruled out by the contract in our proof system:

1 main (){

2 {emp}
3 (e1,f1):= open(C);

4 (e2,f2):= open(C);

5 foo(e1 ,f2) || foo(e2 ,f1);

6 close(e1,f1);

7 close(e2,f2)

8 {emp}

9 }

10

11 foo(e,f) {

12 {e ep7→(C{1},−) ∗ f ep7→(C{1}, })
13 _ := receive(cell ,f);

14 send(cell ,e,new ());

15 {e ep7→(C{2},−) ∗ f ep7→(C{2}, })
16 }

Worst, even with one channel, circular waits are possible (consider for instance
swapping lines 12 and 14 in Example 5). Circular waits just cannot be ruled out
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by contracts7. But the good news is that unspecified receptions can: whenever
a switch construct occurs, we can check that the scanned endpoint8 is in a
contract’s state that guarantees that no message is missed by the listed cases9.
The rule below formalizes that check:

∀q m−→ q′ ∈ transitions(C), m ∈ {m1, . . . ,mn}
∀i = 1 . . . n, {E ep7→(C{q},−) ∗ ϕ} ~xi := receive(mi, E); pi {ψ}
{E ep7→(C{q},−) ∗ ϕ} switch{. . . ~xi := receive(mi, E) : pi . . . } {ψ}

Example 6 Consider the annotations for the program of Example 3:

1 send_and_dipose_list(x){

2 {ls(x, nil)}
3 local e,f;

4 (e,f) := open(C);

5 producer(x,e) || consumer(f)

6 {emp}
7 }

6 producer(x,e){

7 {ls(x, nil) ∗ e ep7→(C{1},−)}
8 local t;

9 while x != null {

10 t := x->next;

11 {x 7→ t ∗ ls(t, nil) ∗ e ep7→(C{1},−)}
12 send(cell ,e,x);

13 {ls(t, nil) ∗ e ep7→(C{2},−)}
14 x := t;

15 receive(ack ,e);

16 }

17 {e ep7→(C{1},−)}
18 send(close_me ,e,e);

19 {emp}
20 }

21

22

23 consumer(f){

24 local y,e;

25 while true {

26 {f ep7→(C{1},−)}
27 switch {

28 y := receive(cell ,f) : {

29 {(x 7→ −) ∗ f ep7→(C{2},−)}
30 dispose(y); send(ack ,f);}

31 e := receive(close_me ,f) : {

32 {f ep7→(C{3}, e) ∗ e ep7→(C{3}, f)}
33 break }

34 }

35 }

36 {f ep7→(C{3}, e) ∗ e ep7→(C{3}, f)}
37 close(e,f);

38 {emp}
39 }

Then the loop invariant of the consumer ensures that f is in contract’s state 1
at the entry of the switch construct, thus by contract C either a cell or close_me

message can be received, but no other message, and thus no unspecified reception
can occur.

7One way of preventing circular waits is to forbbid one thread to own more than one endpoint
at a time, which is arguably a bit drastic. Another, richer, solution is to introduce a
hierarchy on channels, see Leino and Muller [58].

8Well, we did not prevent from scanning several endpoints in a same switch construct, but
we will never meet this situation in this presentation; see Villard’s thesis [59] for a possible
treatment of switches on a group of endpoints.

9Our rule for the switch construct differs in its form from small axioms – it embeds some
of the frame rule in it. Handling a more algebraic external choice p ⊕ p′ would surely be
cleaner, but we leave open the question of such a cleaner formalization.
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The careful reader will have noticed that some ingredients are missing in our
proof system to build a proof out of the annotations of Example 6. The first
problem is the precondition of close(e,f) in consumer’s code. We really need to
know that e and f are peers of each other, but the side condition of the parallel
rule that prevents variable sharing forces us to forget the peer information at the
entry of functions producer and consumer. The fix is simple: the footprint of the
close_me message must not only say that an endpoint is transferred, it should
also precise that this endpoint is the peer of the endpoint that will receive
the message. We achieve that with a special keyword dst allowed in message
footprints only:

1 message cell(x) {x 7→ −}
2 message ack {emp}
3 message close_me(e) {e ep7→(C{3}, dst)}

The second problem is a more severe one: the Hoare triple of send(close_me,e,e)
(line 18) is not derivable from the send rule! We must fix this with a second rule
to handle the specific case of an endpoint sent over itself. As a consequence, we
need to update the rules of send and receive as follows:

q
?m−→ q′ ∈ transitions(C)

{E ep7→(C{q}, F )} ~x := receive(m,E) {E ep7→(C{q′}, F ) ∗ ϕm(~x)[dst←E]}

q
!m−→ q′ ∈ transitions(C)

{E ep7→(C{q}, F ) ∗ ϕm( ~E)[dst←F ]} send(m,E, ~E) {E ep7→(C{q′}, F )}

q
!m−→ q′ ∈ transitions(C)

{E ep7→(C{q}, F ) ∗
(
E

ep7→(C{q′}, F ) −−∗ ϕm( ~E)[dst←F ]
)
} send(m,E, ~E) {emp}

Provided our semantics will validate the entailment

e
ep7→(C{q}, f) ∗ f ep7→(C ′{q′}, e′) � e = e′

these new rules are enough for the examples we presented so far. But we may
be a bit worried atfer missing such subtelties in our first trial: are these rules
“complete” in some sense? An answer is “no”, as we will see in Section 3.5.

X 3.2.3 Soundness

The first check we should have is that our proof system is at least sound, in the
same sense as for Theorem 1.1. There are several ways of reaching such a goal.
Probably the most attractive one would be to establish soundness by means
of Rely-Guarantee Separation Logic. To do this, we would have to consider a
particular implementation of queues in the heap, a particular implementation
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of open, send, receive, and close, a particular definition of a concurrent abstract
predicate E

ep7→(C{q},−), etc. This is surely possible, and it would probably be
interesting if we were to prove a given implementation of Sing] channels, but it
also has a lot of pitfalls, like the modeling of the switch construct, or the rule for
sending an endpoint over itself. Out of that, there is also an important reason
for not proving soundness by means of RGSep: we expect to eventually prove
more than the soundness of our proof system. We indeed want to show that
this proof system can be used to guarantee the safety of provable code, which
includes absence of memory violations, races, memory leaks, and deadlocks.
The soundness of RGSep would guarantee the absence of memory violations,
but even inferring the absence of races from RGSep would require some extra
work, not talking about memory leaks and deadlocks.

In addition to RGSep, we could consider proving the soundness of our proof
system by means of abstract separation logic [12]; this is indeed the first proof
of soundness that we developed for our proof system [60]. This semantics has
some interesting aspects – for instance, it introduces some “tags” on cells that
can be thought as an abstraction of the ownership information that exists in
the internals of Sing]. But it is arguably less concrete than Villard’s one, due
to the algebraic formulation needed by abstract separation logic. Villard’s se-
mantics also presents the advantage of modeling switch receives, whereas the
first semantics did not distinguish internal and external choices. We choose to
present here the second proof of soundness developed by Jules Villard in his
phD thesis [59].

Villard defined an operational semantics that is based on an extension of
the state model of Chapter 1. This state model contains on the one hand
logical informations and on the other hand the information on the contents
of the queues. Since a message may contain endpoints, and the state of an
endpoint should describe the messages in its queues, it could be expected that
our state model would have to cope with a certain circularity similar to the state
models for locks in the heap [61, 62]. Although this circularity could be treated
with domain theory, or Appel & al indirection’s theory [63], Villard followed a
different approach that does not show any circularity in the definition of the
state model.

Let us now recall Villard’s semantics. For presentation purpose, we adopt dif-
ferent names and notations (inspired by RGSep), and do not consider variables
as resources. In addition to the sets Loc of cell locations, and Var of variables,
we assume infinite sets Endpoint = {ε, . . . } of endpoint locations, MsgTag =
{m, a, b, . . . } of message tags, Ctt of contract identifiers, and CttState = {q, . . . }
of identifiers of contract’s states.

The state model is formally defined on Figure 3.5. A state is a tuple σ =
(s, h, h ) of a stack s, a “local” heap h, and a “global” heap h . The local heap
is partitioned into a cell heap and an endpoint heap. The endpoint heap contains
the logical information about a given endpoint – namely its peer, its contract,
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State , Stack× Heap× Heap (states)

Stack , Var→ Val (stacks)

Heap , CHeap× EHeap (local heaps)

CHeap , Loc ⇀fin Val× Val (cell heaps)

EHeap , Endpoint ⇀fin Endpoint× Ctt× CttState (endpoint heaps)

Heap , Endpoint→ Endpoint× Buffer (global heaps)

Buffer , (MsgTag × Val∗ × Heap)∗ (buffers)

where Val = Loc + Endpoint + . . . and E∗ denotes the set of finite se-
quences of elements of E .

Figure 3.5: State Model

and its contracts’ state. The content of the incoming buffer of an endpoint is not
modeled in the local heap (which would create the aforementioned circularity),

but in the global heap: h associates to each endpoint a buffer buf, modeled as
a finite sequence of messages. A message is then a tuple (m,~v, h) of a message
tag m, a tuple of values ~v of the same arity as the one of the message tag m,
and a local heap h modeling the footprint of the message.

We adopt the expected composition h • h′ of local heaps; this yields a com-

position of states (s, h, h ) • (s′, h′, h′ ) defined as (s, h • h′, h ) when h • h′ is

defined, s = s′, and h = h′ , undefined otherwise. We write ftp
(
h
)

for the
set of local heaps that appear as footprints in the buffers of the global queues’
state h . The semantics of formulas on logical states is the expected relation

s, h � ϕ; it is extended to states as s, h, h � ϕ if s, h � ϕ. We assume a
proof environment Γ that associates to each contract identifier a contract, to
each contract’s state identifier a contract’s state, and to each message tag m a
footprint formula ϕm.

Definition 3.2 (Consistent States) A state σ = (s, h, h ) is said consis-
tent with respect to a proof environment Γ, Γ ` σ, if it satisfies the following
conditions:

Finiteness the set of ε ∈ Endpoint such that h (ε) is not the empty sequence is
finite;

Disjointness the composition of local heaps flat(σ) = h•  
h′∈ftp

(
h
)h′ is defined;

Duality for all ε1, ε2, ε3 such that h (ε1) = (ε2, buf1) and h (ε2) = (ε3, buf2),
ε1 = ε3; if flat(σ)(ε1) = (ε′2, C, q), then ε2 = ε′2; if moreover flat(σ)(ε2) =

49



3.2. A Proof System for Copyless Message-Passing

(ε3, C
′, q′), then Γ ` C ′ = C;

Footprints’ correctness for all ε ∈ Endpoint, if

h (ε) =
(
ε′ , (m1, ~v1, h1) . . . (mn, ~vn, hn)

)
,

then s, hi � ϕmi(~vi)[dst←ε] for all i = 1 . . . n.

Villard’s operational semantics is a small-step semantics of a form similar to
the one of Fig 1.2; it defines a binary relation:

p, σ ;
Γ

result where result := p′, σ′, (normal execution)

OwnError, (ownership violation)
ProtoError (contract violation)
MsgError (communication error)

Two things should be observed about this semantics:

• it is parametric in the environment Γ;

• it introduces two new error states ProtoError and MsgError.

The parametricity in the environment Γ can be explained as follows: when a
message is sent, its footprint, as determined10 by Γ, is transfered from the local
heap to the global heap. As we already discussed it, it may be desirable to keep
the ownership transfer “purely logical”, and we may seek a semantics that is
independent of the proof environment Γ. We later solve this issue. Figure 3.6
shows the formal definition of the operational semantics of send and receive in
the case of a safe execution. The semantics of send and receive introduce an
intermediate instruction skipελ whose role is to modify the contract’s state of
the endpoint ε, following a transition labeled with λ. The rest of the definition
of the semantics of send and receive is in charge of the ownership transfer.

Let us now comment the two new error states: ProtoError is modeling a
violation of a communication contract, and MsgError is modeling a communi-
cation error. Contracts violations occur either at send/receive when the message
tag is not allowed by the contract, or at channel’s closure when the two endpoints
are not in a same final state, or in a switch construct if the listed cases are not
exhaustive with respect to what is prescribed by the contract. Communication
errors occur either in a switch construct when the tag of the first-out message is
not listed (unspecified reception), or at a channel’s closure if a message is still
in one of the queues (message orphan). The rules generating errors are listed
on Figure 3.7.

Theorem 3.1 (Soundness [59]) Assume {ϕ} p {ψ} has a proof. Then, for
all σ � ϕ, the following holds:

10We assume that formulas of messages’ footprints are precise, otherwise falling into Reynolds’
paradox, see [59]; similarly, we assume that contracts are deterministic automata.
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ε, ε
′

not in dom
(
flat(s, h, h )

)
h (ε) = (ε

′
,−) q0 = init(C) s

′
= [s | e 7→ ε), f 7→ ε

′
] h

′
= ε 7→ (ε

′
, C, q0)), ε

′ 7→ (ε, C, q0)

(e, f) = open(C), (s, h, h ) ;
Γ

skip, ((s
′
, h • h′, h )

h
′

= {ε1 7→ (ε2,−), ε2 7→ (ε1,−)} JEiKs = εi

close(E1,E2), (s, h • h′, h ) ;
Γ

skip, (s, h, h )

JEKs = ε J~F Ks = ~v h (ε) = (ε
′
,−) h (ε

′
) = (ε, buf) hm � ϕm(~F )[dst←ε′]

skipε!m, (s, h, h ) ;
Γ

skip, (s, h
′ • hm, h ) h

′
=

[
h | buffer(ε

′
)←buf.(m,~v, hm)

]
send(m,E,~F ), (s, h, h ) ;

Γ
skip, (s, h

′
, h
′

)

JEKs = ε h (ε) =
(
ε
′
, (m,~v, hm).buf

)
s
′

= [s | ~x 7→ ~v] h
′

=
[
h | buffer(ε)←buf

]
~x=receive(m,E), (s, h, h ) ;

Γ
skipε?m, (s

′
, h • hm, h′ )

h(ε) = (ε
′
, C, q) q

λ−→ q
′ ∈ transitions(C) h

′
= [h | control(ε)←q′]

skipελ, (s, h, h ) ;
Γ

skip, (s, h
′
, h )

~xi=receive(mi, Ei) ;
Γ

skip, σ
′

switch{. . . , case ~xi=receive(mi, Ei) : {pi}, . . . }, σ ;
Γ
pi, σ

′

Figure 3.6: Operational semantics: safe executions.

1. p, σ 6;
Γ

∗OwnError

2. p, σ 6;
Γ

∗ProtoError

3. if p, σ;
Γ

∗skip, σ′, then σ′ � ψ.

Remark Proving the soundness of the parallel rule naturally enforces to extend
the operational semantics with a rule modeling interferences (see Villard [59]).
For presentation purpose, we omit the rule of interferences for now, as it requires
some theory on contracts. The above soundness result is still true without this
rule – the soundness for the semantics with interferences implies the soundness
for the semantics without interferences.

The reader might have expected that the proof system would rule out the
MsgError. Nevertheless, this is not the case in general:

Example 7 Consider the following program

1 producer(e){

2 local x;

3 x:=new();

4 send(cell ,e,x);

5 send(close_me ,e,e)

6 }

51



3.2. A Proof System for Copyless Message-Passing

buffer( h )(JEiKs) not empty for some i ∈ {1, 2}

close(E1,E2), (s, h, h ) ;
Γ

MsgError

h(JEiKs) = (−, C, qi) q1 6= q2 or q1 /∈ finals(C)

close(E1,E2), (s, h, h ) ;
Γ

ProtoError

h (JEiKs) undef or h (JEiKs) 6= (JE2−iKs,−,−, ) for some i ∈ {1, 2}

close(E1,E2), (s, h, h ) ;
Γ

OwnError

JEKs = ε

h (ε) = (ε
′
,−) skipε!m, (s, h, h ) ;

Γ
skip, (s, h

′
, h ) ∀hm � h′, s, hm 6� ϕm(~F )[dst←ε′]

send(m,E, ~F ), (s, h, h ) ;
Γ

OwnError

h(ε) = (−, C, q) 6 ∃q′. q λ−→ q
′ ∈ transitions(C)

skipελ, (s, h, h ) ;
Γ

ProtoError

h(ε) undefined

skipελ, (s, h, h ) ;
Γ

OwnError

h (JEKs) = (−, (m,−,−).buf) m 6∈ {m1, . . . ,mn}

switch{. . . , ~xi=receive(mi, E) : pi, . . . }, σ ;
Γ

MsgError

h(JEKs) undefined

switch{. . . , ~xi=receive(mi, E) : pi, . . . }, σ ;
Γ

OwnError

h(JEKs) = (−, C, q) ∃m 6∈ {m1, . . . ,mn}. q
?m−→ q

′ ∈ transitions(C)

switch{. . . , ~xi=receive(mi, Ei) : pi, . . . }, σ ;
Γ

ProtoError

Figure 3.7: Operational semantics: errors.

7

8 consumer(f){

9 local e;

10 send(ack ,f);

11 switch {

12 e:= receive(close_me ,f) :

13 close(e,f);

14 }}

This program has an unspecified reception error at runtime – the first cell mes-
sage is not caught by the consumer. But this program has a proof! To see how
it can be proved, consider the following contract:
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contract C {
initial state 1 {

! cell → 2;
?ack → 2;

}
state 2 {

!close me → 3;
};
final state 3 {};

};

1 2 3

!cell

?ack

!close me

Note that this program also has a head-to-head deadlock (see Section 3.1.4).
Although head-to-head deadlocks may not be considered as real ”deadlocks”
depending on the implementation of channels, it must be considered as a real
“error” in the contract’s approach. To better explain this point, we go now into
the details of contracts.

X 3.3 A Theory of Sing] Contracts

The first thing we need is a proper semantics for contracts. It could be done in
terms of a process algebra, like it is the tradition for session types, but we adopt
here a more direct approach and give a semantics in terms of communicating
finite state machines.

We assume a contract C = (Q,Σ,∆, qinit, F ). The set of configurations of C
is defined as

Conf(C) , Q×Q× Σ∗ × Σ∗.

Intuitively, a configuration γ = (q0, q1, w0, w1) corresponds to a situation where
the endpoint ε0 ruled by C is in contract’s state q0, its peer ε1 is in q1, the
incoming queue of ε0 contains a sequence of message tags w0, and the incoming
queue of ε1 contains a sequence of message tags w1. Contracts’ configurations
permit to introduce an operational semantics for contracts. We say that a con-
figuration γ = (q0, q1, w0, w1) may evolve to a configuration γ′ = (q′0, q

′
1, w

′
0, w

′
1),

γ→γ′, if γ results in γ′ after one endpoint has either sent or received a message
in a contract obedient way. This is expressed formally as follows (note that the
contract C0 of ε0 is C, whereas the contract C1 of ε1 is C): γ→γ′ if and only if
there is some i ∈ {0, 1}, and some m ∈ Σ such that:

• either qi
!m−→ q′i ∈ ∆i, and the following holds:

– w′i = wi

– q′1−i = q1−i

– w′1−i = w1−i.m;

• or qi
?m−→ q′i ∈ ∆i, and the following holds:
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– m.w′i = wi

– q′1−i = q1−i

– w′1−i = w1−i.

Definition 3.3 (Semantics of Contracts) The set

JCK ,
{
γ ∈ Conf(C) | (qinit, qinit, ε, ε)→∗γ

}
is called the set of reachable configurations of C.

Example 8 The set of reachable configurations of the contract C of the pro-
gram sending a list cell by cell (Example 3) is as follows:

JCK =
{

(1, 1, ε, ε) , (2, 1, ε, cell ) , (2, 2, ε, ε) ,
(2, 1, ack, ε) , (3, 1, ε, close me) , (3, 3, ε, ε)

}
.

1

3

2
! cell

!close me ?ack

⇐
⇒ 1

3

2
? cell

?close me!ack
1, 1, ε, ε 2, 1, ε, cell

2, 2, ε, ε2, 1, ack, ε

3, 1, ε, close me 3, 3, ε, ε

Example 9 Similarly, the set of reachable configurations of the contract

1 2 3

!cell

?ack

!close me

of Example 7 is depicted below:

1, 1, ε, ε 2, 1, ε, cell 3, 1, ε, cell .close me 2, 2, ε, ε 3, 2, ε, close me

1, 2, ack, ε 2, 2, ack, cell 3, 2, ack, cell .close me 3, 3, ε, ε

The unspecified reception that occured in Example 7 can be directly observed on
the semantics of its contract: it corresponds to the configurations (2, 2, ack, cell )
and (3, 2, ack, cell .close me): in these configurations, the endpoint ruled by C
is in state 2, and waits for the message close_me, but this one is blocked by the
message cell. More generally, several properties of the programs can be directly
expressed with the semantics of C.
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Definition 3.4 (Contract’s Safety) A contract C is said safe if it satisfies
the following conditions:

Buffer’s Boundedness JCK is finite.

Absence of Unspecified Receptions For all γ = (q0, q1, w0, w1) ∈ JCK, for all

i ∈ {0, 1}, if γ 6→ and wi = m.w′, then there is qi
?m−→ q′i ∈ transitions(Ci)

for some q′i.

Absence of Message Orphans For all γ = (q0, q1, w0, w1) ∈ JCK, if q0 = q1 ∈
finals(C), then w0 = w1 = ε.

Absence of Head-to-Head Deadlocks For all γ = (q0, q1, w0, w1) ∈ JCK, if
q0 = q1 ∈ finals(C), then wi = ε for some i ∈ {0, 1}.

Contracts that are not safe should not be used for proving programs: it is
always possible to reproduce an error that occurs in a contract inside a program
typed by this contract; conversely, we will later see that, due to subject reduction
(Proposition 3.2), the absence of a kind of error in a contract implies the absence
of this kind of errors in the programs it types.

Then the question is: how do we recognize that a contract is safe? The notion
of safe contract that has now11 been adopted by Sing] compiler is somehow the
following:

Definition 3.5 (Admissible Contracts) A contract C is said admissible if
it satisfies the following conditions:

Determinism if q
λ−→ q1 and q

λ−→ q2, then q1 = q2.

Uniform Choice if q
λ1−→ q1 and q

λ2−→ q2, then either λ1 =!m1 and λ2 =!m2,
or λ1 =?m1 and λ2 =?m2.

Boundedness for all cyclic path q = q0
λ0−→ q1

λ1−→ . . .
λn−→ qn = q, there is

i, j ∈ {0, . . . n} such that λi =!mi and λj =?mj.

It can be shown that this notion of admissible contract is sound, and even
complete in our sense of safety. Let det(C) denote the contract C ′ obtained
from C by determinisation of the underlying finite-state automaton through the
standard powerset construction.

Proposition 3.1 ([5]) A contract C is safe if and only if det(C) is admissible.

11In a first version of Sing], the condition on uniform choice of Definition 3.5 was missing.
The need of this condition was pointed out by Stengel and Bultan [64]).
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The “only if” part of this result may be familiar to the communities of infinite-
state model-checking and session types12. The reverse direction may be a bit
surprising, and should be little commented. For it to be true, it is crucial
that we restrict our attention to contracts without head-to-head deadlocks, aka
half-duplex 13 contracts. The conditions taken in Definition 3.5 may also be
justified by considering contracts as safe when they are either realizable [64],
or synchronizable [68], but then only one implication of Proposition 3.1 can be
proved.

To conclude, we should precise the relationship between contracts and our
toy programming language. Two things should be explained: first, how the
semantics of a contract over-approximates, in a certain sense, the one of the
programs it types – this property is often called subject reduction in session
types – and second, how the absence of errors in the contract’s semantics ensures
the absence of communication errors in the programs it types.

Consider a program’s state σ = (s, h, h ) and an endpoint ε such that

flat(s, h, h )(ε) is defined, and assume flat(s, h, h )(ε) = (ε′, C, q). We can
construct the set conf(σ, ε) of configurations of C that reflect the contracts’
states of ε and ε′ and their queue’s content according to σ: given a buffer
buf = (m1, ~v1, h1) . . . (mn, ~vn, hn) we write w(buf) for the word m1 . . .mn; then
conf(σ, ε) is the set of configurations (q, q′, w(buf), w(buf’)) such that

• buf and buf’ are the incoming buffers of ε and ε′, i.e. h (ε) = (ε′, buf)

and h (ε′) = (ε, buf’);

• if flat(s, h, h )(ε′) is defined, then it is equal to (ε, C, q′), otherwise q′ is
arbitrary.

Note that there are only two forms of set conf(σ, ε): either it is a singleton, or
it is a set of the form

⋃
q′∈Q{(q, q′, w, w′} for some q, w and w′.

Definition 3.6 (Well-Typed State) A consistent state σ is said well-typed
if for all ε, C such that flat(σ) � ε

ep7→(C{−},−) ∗ >, it holds that

conf(σ, ε) ∩ JCK 6= ∅

In other words, a program state σ is well-typed if the informations it gives
on the contracts and contract’s states of the endpoint on one side, and on the
queue’s content on the other side, can be seen as reachable configuration of the

12The analysis of dual communicating finite state machines goes back to the work of Gouda,
Manning and Yue [65], and their results were unconsciously rediscovered – and extended –
in the context of asynchronous session types quite recently [66].

13Half-duplex communications have been shown to be much more tractable to analysis than
full-duplex ones; in particular, JCK can be coded as a regular language, and all properties
listed above can be checked in polynomial-time, even if the two machines are not dual one
of each other [67], and even under some exotic semantics of buffers that are not FIFO [5].
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contract. Another possible definition, that would avoid the CFSM semantics,
would be that a state σ is well-typed if it can be reached by a contract-obedient
program.

Proposition 3.2 (Subject Reduction) For all proof environment Γ, for all
programs p, p′ and for all states σ, σ′, if the following holds:

1. p, σ 6;
Γ

∗ProtoError, and

2. p, σ ;
Γ
p′, σ′, and

3. σ is well-typed,

then σ′ is well-typed.

We can now present the interference rule of the operational semantics we did
not present with the other rules – recall that this rule is needed in the proof of
soundness of the parallel rule. Interferences should model changes that occur in
the global heap14 due to other threads’ steps. We may over-approximate these
interferences as follows:

s, h, h′ is consistent and well-typed

p, (s, h, h ) ;
Γ
p, (s, h, h′ )

The reader maybe observed that subject reductions holds even if the contracts
are not admissible. Contract safety shows up instead with this soundness result:

Proposition 3.3 (Soundness of Contracts) For all proof environment Γ,
for all programs p, p′ and for all states σ, σ′, if the following holds:

1. p, σ 6;
Γ

∗ProtoError,

2. σ is well-typed, and

3. Γ maps all contract identifiers to admissible contracts,

then p, σ 6;
Γ

∗MsgError.

14Interferences over global variables could be considered as well, but they must be defined
with some care to keep the soundness of the rule of auxiliary variables. Since we may prove
the soundness of the parallel rule without considering interferences on global variables, we
simply skip them.
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X 3.4 Memory Leaks and Communication Errors

We informally argued that our proof system would forbbid not only memory vi-
olations and races, but also memory leaks, some forms of deadlocks (namely
unspecified receptions, head-to-head deadlocks, and buffer overflows15), and
message orphans.

We investigate how to formalize this claim. Three things must be defined:

• a “realistic” operational semantics that do not depend on the proof envi-
ronment Γ (see discussion in Section 3.1.2),

• a formal notion of program safety,

• a formal notion of a proof of safety.

First, we adopt for our “realistic” operational semantics almost the same
as the one we presented, except for two things: we do not want to keep the
information on contracts and ownership at runtime, and we do not want inter-
ferences.16 We define Γ0 as the proof environment that maps all message tags m
to the footprint formula ϕm , emp, and all contract’s identifiers to the universal
contract:

contract universal {
initial final state s {
!m1→s; ?m1→s; . . . ; !mn→s; ?mn→s;
}
}

Then we define our realistic semantics as the one parametrized by Γ0, and we
simply write; when we mean that;

Γ0

is derivable without using the interference

rule. Note that p, σ ; ProtoError is impossible by definition of the universal
contract.

Second, we define program safety as the absence of errors and an extra condi-
tion capturing the absence of memory leaks for terminating17 programs. We call
support of a global heap h the set of endpoints such that h (ε) = (−, buf) for

some non-empty sequence buf. We say that a state σ = (s, h, h ) is unallocated

if dom(h) = support( h ) = ∅.

Definition 3.7 (Program Safety) A program p is said safe if for all unal-
located state σ:

15To ease the presentation, we sticked to Villard’s semantics and did not model head-to-head
deadlocks and buffer overflows in the operational semantics. We let the reader convince
himself that modeling them as MsgError would preserve Proposition 3.3 and would let us
formally show our claim.

16Just because interferences may cause memory leaks.
17It would be nice to formalize the absence of memory leaks for non-terminating programs as

well, but we expect that it would require some extra machinery.
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1. p, σ 6;∗OwnError;

2. p, σ 6;∗MsgError;

3. if p, σ ;∗ skip, σ′, then σ′ is unallocated.

The third point is the most subtle one: we may think that a program p is
provable safe if there is a proof of {emp} p {emp} in a proof environment Γ
mapping contracts identifiers to admissible contracts. But this is not the case
in general.

Example 10 The program mem_leak_generator of Figure 3.3 can be proved as
follows:

1 message cell(x) {x 7→ −}
2 message endpoint(f) {∃e.e ep7→(C{3}, dst) ∗ f ep7→(C{2}, e)}
3 contract C {

4 initial state 1 {!cell ->2;};

5 state 2 {!endpoint - >3;};

6 final state 3{}

7 }

8 mem_leak_generator (){

9 {emp}
10 local x,e,f;

11 x:=new();

12 (e,f) = open(C);

13 {(x 7→ −) ∗ e ep7→(C{1}, f) ∗ f ep7→(C{1}, e)}
14 send(cell ,e,x);

15 send(endpoint ,e,f);

16 {emp}
17 }

Remember how Sing] associates to each cell and endpoint a process that owns
it. Villard’s operational semantics slightly differs from this approach, in that
cells and endpoints are owned either by a process, or a message – in other words,
our proof system is not compatible with the transitivity rule we introduced in
Section 3.1.2. The part of the memory hold by messages is likely to be invisible
in our proof system when it forms a cycle of ownership – a cycle of ownership
happens in a situation like “a message m1(~v1, h1) owns an endpoint ε2 that owns
a message m2(~v2, h2) that owns ... that owns the endpoint ε1 that owns m1”.
To prove the absence of memory leaks, we thus need to forbbid such cycles of
ownership. More precisely, we should only forbid the cycles that will be invisible
– some of them are visible, namely the ones for which at least one peer of one
of the endpoints involved in the cycle is not owned by the cycle.

Definition 3.8 (Admissible proof environment) We say that a proof en-
vironment Γ is admissible if

• Γ maps all contract identifiers to admissible contracts
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• Γ maps all message tags to precise footprint formulas

• Γ does not allow invisible leaks, i.e there is no state σ = (s, h, h ) such
that:

1. σ is consistent and well-typed with respect to Γ

2. dom(h) = ∅

3. σ is allocated, i.e support( h ) 6= ∅.

4. for all ε ∈ support( h ), flat(σ)(ε) and flat(σ)(ε′) are defined, where
ε′ is such that flat(σ)(ε) = (ε′,−,−).

Several other ways of formalizing the absence of invisible leaks have been
proposed, either in logical terms, following the approach of Gotsman & al for
locks in the heap [61] (see also Villard’s phD thesis [59]), or in terms of well-
foundedness, an approach followed by Bono & al for a session-typed process
algebraic model of Sing] [69].

Theorem 3.2 (Safety) For all program p, for all admissible proof environ-
ment Γ, if {emp} p {emp} is provable then p is safe.

In practice, Definition 3.8 is too abstract to be used directly. We now formalize
the fact that restricting to shallow ownership transfers guarantees the absence
of ownership cycles.

Definition 3.9 (Shallow Ownership Transfer) We say that a proof envi-
ronment Γ ensures (half-duplex) shallow ownership transfers if Γ maps contract
identifiers to admissible contracts, and, for all footprint formula ϕm associated

to a message identifier m, for all state (s, h, h ), for all ε, if

• s, h � ϕm, and

• h(ε) = (ε′, C, q)

then q is a send state in C, i.e. there are no m′, q′ such that q
?m′−→ q′ ∈

transitions(C).

Proposition 3.4 If a proof environment Γ ensures shallow ownership transfer,
then it does not allow invisible leaks.

X 3.5 Determinism and Beyond

Provable programs might have more properties of interest than the ones we con-
sidered so far. In this section, we investigate the “confluence” of computations.
It can be observed that our form of race-free message-passing seems to induce
more than race-freedom: since at most one thread has the right to receive a
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given sent message, it is difficult to figure out how two threads could compete
for the access to a resource, like it is the case with other synchronisation prim-
itives. This form of concurrency has been called either “deterministic” [70] or
“pipe-lined” [57] concurrency, but with the exception of Sassone & al [71], no-
body really tried to formalize how this notion relates to selfishness. These works
raise several interesting questions: are provable programs deterministic in some
sense? Or can they encode locks and other synchronization primitives? And
if our framework does not allow to encode standard synchronisation primitives,
how can it be relaxed?

Before we formalize the confluence property, let us observe that our treatment
of allocation makes our programs intrinsically non-deterministic. For instance,
the internal choice p+ q can be encoded as:

1 choice(p,q){
2 local x,y;

3 x:=new(); free(x);

4 y:=new(); free(y);

5 if x=y then p else q;
6 }

There are several ways of answering this issue18, we will choose a rather simple
one and just assume that the programs we consider do not use allocation’s
instructions new and open.

Proposition 3.5 (Strong confluence) Let p, σ be such that p is allocation-
free and p, σ 6; OwnError. If p, σ ; p1, σ1 and p, σ ; p2, σ2, then there are
p′, σ′ such that p1, σ1 ; p′, σ′ and p2, σ2 ; p′, σ′.

p, σ

p1, σ1 p2, σ2

p′, σ′

It is pretty clear that strong confluent programs, when they terminate for one
scheduling, terminates for all scheduling, and always in the same final state.
To prove Proposition 3.5, we would have liked to rely on abstract separation
logic [12]. We indeed observed that it is possible to restrict the framework of
local functions so as to ensure that provable programs are confluent. Assume
that every atomic command c has a denotational semantics of the form JcK :
State→P (State)>, where State is a separation algebra, and JcK is such that:

(1) ∀σ1, σ2 ∈ Σ, f(σ1 • σ2) v f(σ1) ∗ {σ2} (locality [12])
(2) ∀σ, σ′, σFΣ, σ′ ∈ f(σ) and σ⊥σF implies σ′⊥σF (non-expansion)

18One answer would be to consider each allocated cell as “fresh”, and to consider states
as nominal sets, which is the approach adopted for instance by Yang and Birkedal [72]
(following Benton and Leperchey [73]).
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Then any selfish program is strongly confluent. Note that the semantics of
x:=new() in abstract separation logic is a local, but expanding function.

Despite this interesting framework, the only proof we have of Proposition 3.5
is a direct proof. The first semantics we introduced [60] and that was based on
abstract separation logic is based on local but expanding function, so we cannot
really use this framework. Villard’s semantics seems also difficult to cast into
the framework of abstract separation logic19. Maybe we did not find the right
approach, or maybe there is some intrinsic difficulty to fit in this framework.

Proposition 3.5 shows the impossibility to encode locks or non-deterministic
choice by provable functions using channels. Let us now explain what we should
add to our proof system to handle them. Consider the following protocol imple-
menting a non-deterministic internal choice between Paul (p1) and Peggy (p2):
Paul and Peggy are in a dark room sitting around a table. On the table, there
is a bag that initially contains a token. Paul scrabbles for the bag, and once
he found it, he opens it. If the token is there, Paul takes it out, put the bag
back on the table, and starts executing. If the token is not in the bag anymore,
Paul has to stop. Peggy does exactly the same on her side. In our toy program-
ming language, this encoding of the internal choice p+ q goes like the following
program:

1 contract C { 1 2 3
!bag !bag

}

2

3 choice(p1,p2){

4 (e,f):= open(C);

5 send(bag ,e,1);

6 grop(p1) || grop(p2)

7 }

8 grop(p){

9 local i;

10 i:= receive(bag ,f);

11 if (i=1) then {

12 send(bag ,e,0);

13 p
14 }

15 else close(e,f);

16 }

The problem for proving this program is that the rule for receptions forces both
Paul and Peggy to own f , which contradicts the parallel rule. One solution20

could be to use fractional permissions for sharing endpoints, and consider that
Paul (resp. Peggy) has half of the ownership of f . Then, the rule for send
and receive actions on shared endpoints should assert that these actions are
permitted even if only a fraction of the endpoint is owned, but then it should
not change the contract’s state (an action that changes the contract’s state is
like a “write” on a shared cell, it must be forbidden as it breaks the consistency
of the local views of the contract’s state of the endpoint). But even with such a
support for permissions, it would not be possible to prove the above program,

19In the case of a concurrent receive on ε and send on ε’s peer, it is necessary to split the
incoming queue of ε, which complicates the definition of the separation algebra.

20A quite similar solution exists in session types, calledunrestricted qualified types [74]. To the
best of our understanding, unrestricted qualified types could be represented by fractionnal
permissions, but not the other way around (because when a channel runs in unrestricted
mode, it remains unrestricted forever).
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because the actions on endpoints e and f precisely change the contract’s state.
A different approach would be to consider that e and f are “owned by the

bag” in the above example: when the bag is first put on the table, the ownership
of e and f would be lost, so when they start neither Paul nor Peggy owns f .
Later, when Paul (resp. Peggy) catches the bag, he also gets the right to open
it, i.e. f . In other words, we may admit that the ownership of an endpoint ε
could be granted a posteriori by the success of a reception on this endpoint ε.
Formalizing this form of reasoning gives us the following rule:

q
!m−→ q′ ∈ transitions(C)

{emp} ~x := receive(m,E) {E ep7→(C{q′}, F ) ∗
(
E

ep7→(C{q}, F ) −−∗ ϕm(~x)[dst←F ]
)
}

which is a symmetric of the send rule used for handling the close_me messages.

Example 11 Let us apply this new to derive a proof of the encoding of internal
choice.

1 message bag(i) {e ep7→(C{3− i}, f) ∗ f ep7→(C{2− i}, e)}
2 choice(p1,p2){

3 {emp}
4 (e,f):= open(C);

5 {e ep7→(C{1}, f) ∗ f ep7→(C{1}, e)}
6 send(bag ,e,1);

7 {emp}
8 grop(p1) || grop(p2)

9 {emp}
10 }

11 grop(p){
12 {emp}

13 local i;

14 i:= receive(bag ,f);

15 {e ep7→(C{3− i}, f) ∗ f ep7→(C{3− i}, e)}
16 if (i=1) then {

17 send(bag ,e,0);

18 {emp}
19 p
20 }

21 else close(e,f);

22 {emp}
23 }

The rule is applied on line 14: initially, nothing is owned (not even the endpoint
f , see line 12), but after the reception of the message bag, the endpoint f is
owned.

Similarly, it is possible to use this extended rule for receive to provide encod-
ings of locks in the heap, synchronization barriers, broadcast, and others [75].
The reader may find the extended rule for receives a bit disturbing, because it
somehow goes against the natural intuition: one may consider that attempting
to receive on an endpoint should require to own it first. We give two different
answers to this criticism.

The first answer tries to formalize the intuition that “something must be
owned for attempting to receive”. Assume we decompose the endpoint’s predi-
cate in two smaller ones as follows:

e
ep7→(C{q}, f) ⇔ e

ep7→C{q} ∗ e
ep7→ f.

The first predicate provides the ownership of the control’s state, and the second
one the ownership of the endpoint’s capability. Then an alternative proof of the
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above example could be to let Paul and Peggy own a fraction of the capability
to use e and f (hence the precondition of grope(p) would be e

ep7→.5 f ∗ f
ep7→.5 e),

and consider that owning a fractional permission on the capability allows to
‘attempt” receiving. Note however that it still requires to consider that the
ownership of the endpoint’s state is given by the bag message, so we cannot
avoid to extend the receive rule. However, such a reasoning would have an
advantage on the proof presented in Example 11, because the proof Example 11
requires a proof environment that is not admissible as it allows memory leaks.

The second answer is that the extended receive rule makes sense because
one should authorize to attempt to receive on a channel without owning it,
as it may be a natural way of modeling certain protocols. Consider that the
IP address “192.168.12.1:23” is a valid endpoint location. Then it may make
sense to consider that clients using this IP address do not “own” this address:
they just know it. In the code of Figure 3.8, we illustrate this idea a bit more in
detail: we assume a bind(ip) primitive returning a channel (ip, f), and show how
a negociated connection to a service offered at this IP address can be modeled
and proved using the extended rule for receive.

Non-determinism can thus be introduced in two ways: either adopting per-
missions, or adopting a more symmetric view of send and receive. Example 11
suggest that permissions alone may sometimes be limited; conversely, it is not
clear how far the second approach can be pushed without adopting permissions.
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Client and Server

1 server (){

2 local f,e’,ip;

3 {emp}
4 ip:= < <192.168.12.1:23 > >;

5 f:= bind(ip);

6 {ip ep7→(C{1}, f) ∗ f ep7→(C{1}, ip)}
7 listen(f);

8 {f ep7→(C{2}, ip)
9 while(true) {

10 e’:= accept(f);

11 {f ep7→(C{2}, ip) ∗ e′ ep7→(C′{q0},−)}
12 spawn service(e’);

13 {f ep7→(C{2}, ip)}
14 }

15 }

16

17

18

19

20 client (){

21 local f’;

22 {emp}
23 f’:= connect (192.168.12.1:23);

24 {f ′ ep7→(C′{q0},−)}
25 run_service(f’);

26 }

27 // Messages

28 message is_listening {dst ep7→(C{1},−)}
29 message connect(ep)

30 {dst ep7→(C{2},−) ∗ ep ep7→(C′{q0},−)}
31 // Connection ’s Contract

32 contract C { 1 2

?is listening

!connect

33 }

34 // Service ’s Contract

35 contract C’ {initial state q0 . . .}

“System calls”

1 listen(f){

2 local e’;

3 {ip ep7→(C{1}, f) ∗ f ep7→(C{1}, ip)}
4 send(is_listening ,f);

5 {f ep7→(C{2}, })
6 }

7

8 accept(f){

9 local e’;

10 {f ep7→(C{2},−)}
11 e’:= receive(connect ,f);

12 {f ep7→(C{2}, ip) ∗ ip
ep7→(C{2}, f)

13 ∗ e′ ep7→(C′{q0},−)}
14 send(is_listening ,f);

15 return e’;

16 {f ep7→(C{2},−) ∗ e′ ep7→(C′{q0},−)}
17 }

18 connect(ip){

19 local e’,f’;

20 {emp}
21 receive(is_listening ,ip);

22 {ip ep7→(C{2},−)}
23 (e’,f’) := open(C’);

24 {ip ep7→(C{2},−) ∗ e′
ep7→(C′{q0}, f ′)

25 ∗ f ′ ep7→(C{q0}, e′)}
26 send(connect ,ip,e’);

27 {f ′ ep7→(C{q0},−)}
28 return f’;

29 }

30

31

32

33

34

Figure 3.8: A model of a negociated connection to a server
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Chapter 4

Perspectives

Completeness and Conciseness of Separation Logic

The completeness result we presented (see Theorem 2.6) is very unsatisfactory,
as it does not say anything about programs with function calls and concurrent
programs, which are precisely the kind of features that motivates local reasoning.
Local reasoning requires to adopt a lot of proof rules (the frame rule, the AVE
rule, the parallel rule, the higher-order frame rule, the anti-frame rule, etc).
These new proof rules “complete” the proof theory, as they allow to show more
example programs, but the completeness of a given proof system with respect to
a certain class of programs has at best been timidly raised. We are particularly
interested in understanding which rules would yield a complete proof system for
the subclass of race-free programs we called “selfish” programs.

The completeness results we stated show that some proof rules (namely the
frame rule and the AVE rule) can be eliminated from the proof system in the case
of sequential programs. This is also a quite unsatisfactory result. Even if some
proof rules can be eliminated, it would be interesting to better formalize how
they make the proofs of programs more concise. Among others, the importance
of ghost variables and ghost code in proofs is extremely clear in practice, but
very obscure from a theoretical point of view. If ghost code turned to be a
fundamental feature for completeness or conciseness, this would probably raise
difficult problems in automatic verification (how a ghost code can be efficiently
checked to be “ghost”? how a ghost code can be automatically guessed, like
other annotations are guessed? etc).

We hope to further extend our study of completeness issues to give a more
precise answer to these questions.

Enriching Contracts

An active field of research consists in extending contracts, or more precisely
session types, with facilities for describing multi-party sessions, roles, full-duplex
communications, correlations among values of messages, etc. On the one hand,
Sing] contracts can be considered as already expressive enough – weren’t they
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successfully used for specifying a whole operating system? On the other hand,
while playing with some example programs, we experienced several limitations
of Sing] contracts (one example needs the contract to express that consecutive
messages contain consecutive cells of a list, another needs to model counters in
a protocol that is not even half-duplex). We expect to develop and integrate
richer forms of contracts in our proof system and in tool implementations.

Proving Copying Message-Passing

We showed that local reasoning and the ownership concept were useful to analyse
copyless message-passing. This form of message-passing is not, however, the
most popular one – although the development of multi-cores may be currently
leading program designers to pay more attention about it. Perhaps the most
popular framework for message-passing programming is the message-passing
interface (MPI). While reading through some tutorials on MPI, we discovered
that it could be very useful to run a ownership analysis on MPI programs.

Indeed, MPI programs do not share their address space, but from time to
time they delegate the ownership of a memory region to the MPI library. For
instance, after a call to a non-blocking asynchronous send or receive, a memory
block is scheduled to be read or written by the MPI library at some undefined
point in the future. The memory block should thus not be incorrectly accessed
afterwards, and, to express that, such primitives could be seen as transferring
the ownership of the memory block from the process to the library. These calls to
asynchronous non-blocking communications are usually followed at some point
later in the program code by a call to a wait primitive, which returns only when
the MPI library has finished to read or fill the memory block. Similarly, this
wait could be considered as a transfer of the ownership of the memory block
from the MPI library to the program.

It would be interesting to develop automatic techniques for local reasoning on
MPI code. Impressive progresses on local reasoning for C code may suggest that
it may be not such a complicated task, but on the other hand, the semantics of
MPI seems almost as cumbersome as the one of C, and a serious modeling of
MPI should probably be conducted with a lot of care.

Local Reasoning in Security

Local reasoning has just started to emerge in the area of security [76], and it is
difficult to predict how it will play its role there. One question that might be of
interest is how Shannon’s information can be tracked as a “resource”, or in other
words, how the separation of information, i.e. the probabilistic independence,
can be addressed by local reasoning. This question becomes interesting for
security if information ownership entails a form of privacy1. A natural model

1 This is not entirely clear: Separation Logic is a logic for collaborative concurrent programs,
and the form of ownership it usually deals with corresponds to a form of agreement be-
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Chapter 4. Perspectives

of information as resource arises from the set of finite ponderations of concrete
states of the form p1.σ1 + · · ·+ pn.σn: when they are equiped with the following
composition law2

(p1.σ1 + · · ·+ pn.σn) • (p′1.σ
′
1 + · · ·+ p′mσ

′
m) ,

∑
i,j.σi⊥σ′j

pi.p
′
j .σi • σ′j

ponderations of states form a separation algebra. The random instruction can
be seen as “allocating information” in this resource interpretation: if rand(x)
denotes a variable containing a random value, then the random instruction ad-
mits the small axiom {emp} x := random() {rand(x)}, and, by application of
the frame rule, the independence of the random value of x with respect to any
other random value is ensured. The difficulty faced by this approach is the rep-
resentation of information sharing. It seems possible to represent sharing with
permissions, and to prove for instance a simple concurrent version of an oblivi-
ous transfer [77], but it is not completely clear that it is the right way to do it,
nor which resource model could support it. One may look for another resource
model, possibly inspired by other models of information and knowledge, like
the frames of the applied π-calculus [78] of Abadi and Fournet, where sharing
is allowed by syntactically unbound names occuring in terms, or the shadow
semantics [79] introduced by Morgan, where the randomness of shared variables
is distinguished from the one of unshared variables. We already defined a form
of separation over applied-pi frames [3, 80, 4] that could be useful to give some
foundations to an assertion language for information-processing programs, but
to be honest, this is far from giving us more than very vague intuitions on how
information could be modeled as a resource.

tween all trusted parties involved in the process, whereas cryptography has to deal with
competitive concurrent programs.

2To avoid renormalization, and to preserve the cancelative axiom of separation algebras, one
should take (p1.σ1 + · · · + pn.σn) ⊥ (p′1.σ

′
1 + · · · + p′mσ

′
m) if for all i, j, either σi⊥σ′j or

pi.p
′
j = 0
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[43] Rémi Brochenin, Stéphane Demri, and Étienne Lozes. On the almighty
wand. In Michael Kaminski and Simone Martini, editors, Proceedings of
the 17th Annual EACSL Conference on Computer Science Logic (CSL’08),
volume 5213 of Lecture Notes in Computer Science, pages 323–338, Berti-
noro, Italy, September 2008. Springer. Cited on pages 26, 28.

[44] M. Rabin. Decidability of second-order theories and automata on infinite
trees. Transactions of the American Mathematical Society, 41:1–35, 1969.
Cited on page 26.

75



Bibliography

[45] L. Stockmeyer. The complexity of decision problems in automata theory
and logic. PhD thesis, Department of Electrical Engineering, MIT, 1974.
Cited on page 26.

[46] Jerzy Marcinkowski. On the expressive power of graph logic. In Zoltán Ésik,
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