
Habilitation Thesis

Concurrency in Distributed Real-Time Systems,

from Unfoldings to Implementability

Thomas Chatain

Defense on Friday, December 13, 2013, 14:00
at ENS Cachan

before the jury composed of:

• Javier Esparza (reviewer)

• Stefan Haar

• Laure Petrucci (reviewer)

• Jean-François Raskin

• Olivier H. Roux

• Jiri Srba (reviewer)

• François Vernadat

Contents

Introduction 3

1 Formalisms for Real-Time Sequential Systems 6
1.1 General Assumptions about the Semantics of Time 6
1.2 Timed Transition Systems . 6
1.3 Timed Automata . 7

2 Formalisms for Real-Time Distributed Systems 9
2.1 About the Semantics of Time in Distributed Systems 9
2.2 Product of Timed Transition Systems 9
2.3 Networks of Timed Automata . 10
2.4 Time Petri Nets . 11
2.5 Partial Order Semantics . 13

3 Dependencies Between Events 16
3.1 Motivation . 16
3.2 Generalization of the Reveals Relation 20
3.3 From ERL Formulas to Occurrence Nets: a Synthesis Procedure 24
3.4 Tight Nets as a Canonical Form for Reduced ONs 26
3.5 A Canonical Contraction for Safe Petri Nets 26
3.6 Conclusion on Reduction and Contraction 29
3.7 Back to Time Petri Nets . 31

4 Behavioral Comparisons Between Real-Time Distributed Sys-
tems 34
4.1 Limitations of Behavioral Comparisons for Sequential Systems . 35
4.2 Concurrent Bisimulations . 36
4.3 Identification of Components . 37
4.4 Behavioral Comparisons Based on Distribution of Actions 38
4.5 Contextual Transition System and Contextual Bisimulation . . . 40

5 Implementability of Real-Time Distributed Systems 43
5.1 A Translation from Safe TPN to NTA which Preserves Distribution 44
5.2 Avoiding Shared Clocks in Networks of Timed Automata 46

1

5.3 Perspectives . 51

Conclusion 55
Summary of Contributions . 55
Summary of Perspectives . 58

2

Introduction

In this thesis I present a synthetic view of a large part of my recent research
work, organized along a main guideline: concurrency in distributed real-time
systems, from unfoldings to implementability. The contributions that I present
were obtained since the beginning of Sandie Balaguer’s PhD, started in Novem-
ber 2009 and defended in December 2012. Supervising her thesis was a great
experience and gave me the opportunity to progress on subjects that I had in
mind and wanted to push forward. Also, as the present habilitation thesis aims
at demonstrating my ability to supervise students, it makes sense that I fo-
cus on the results obtained during Sandie’s thesis. I give an overview of other
contributions in the conclusion.

Information systems have increased dramatically during the last decades.
They have also become more and more complex and difficult to design, maintain
and supervise. Formal methods offer a way to deal with the complexity of these
systems. They are adapted to a variety of domains like design, verification,
model-checking, test and supervision.

But information systems are also more and more often distributed, first be-
cause of the generalization of information networks, but also because inside a
single device, like a computer, the numerous components run concurrently. The
problem is that concurrency is known to be a major difficulty for the use of
formal methods because it causes a combinatorial explosion of the state space
of the systems.

This difficulty comes sometimes with another one due to time when it plays
an important role in the behavior of the systems, for instance when the execution
time is a critical parameter.

These two difficulties, concurrency and real-time, have guided my research
works. Sometimes I have tackled one of these two aspects separately, but in
many of my works, I have dealt with the problems that arise when one studies
systems that are both concurrent and real-time.

In the framework of formal methods for the verification of untimed dis-
tributed systems, studying concurrency not only helped to understand better
the behavior of the systems, but also gave powerful techniques that improve the
efficiency of verification tools. I think for instance of the model checking of LTL
properties using unfoldings [75, 76]. These techniques rely on a well established

3

theory for concurrency and on reference semantics based on partial orders, like
Mazurkiewicz traces [68] or event structures [106].

In the context of real-time distributed systems, one cannot rely on a smooth
concurrency theory like in the untimed, asynchronous case. In particular, the
nice independency relations used in Mazurkiewicz traces do not work: actions
performed on distinct machines may not commute freely because they are or-
dered by their occurrence time. This explains for instance that little literature
exists on partial-order reduction techniques for time Petri nets [107, 115] and
for networks of timed automata [21, 103, 98, 105].

Overview of the Thesis

Chapters 1 and 2 introduce the formalisms of timed automata and networks of
timed automata, time Petri nets and unfoldings.

In the following chapters I present a summary of a large part of my recent
research work, which is organized along a main guideline. Here is an overview
of this guideline.

The largest and most involved contribution of my PhD is certainly the def-
inition of unfoldings for time Petri nets. The main challenge was to marry
unfoldings, which are typically tailored for asynchronous systems, with real-
time constraints, which force a global ordering of events w.r.t. time. In order
to define unfoldings, I had to show that it is possible to define a concurrent
operational semantics which relaxes the ordering between events but still re-
spects the original semantics. Nevertheless the time constraints induce complex
dependencies between events.

As a matter of fact, the usual binary relations between events in unfoldings –
conflict, causality and concurrency – do not suffice to code all the dependencies
between events in a distributed real-time context. But I noticed that special
dependencies between events arise also when defining unfoldings for other ex-
tensions of Petri nets. In particular, a very simple assumption generates logical
dependencies which are not represented directly by conflict, causality and con-
currency: it suffices to restrict the semantics of (classical, low-level) occurrence
nets by considering only maximal runs. Then the occurrence of an event a may
imply the occurrence of an event b which is not a causal predecessor of a. The
reveals relation [84] was introduced to capture these cases. It resembles very
much some of the dependencies that one can observe with real-time systems,
but in a simpler setting. I studied and generalized it. I present some results in
Chapter 3.

Another question that interested me is the comparison between real-time
concurrent formalisms. Many formalisms exist; two of the most popular are
time Petri nets [102] and networks of timed automata [2]. Their expressiveness
has been compared and several transformations have been proposed from one
formalism to the other, but the behavioral comparisons that are used usually

4

do not take concurrency into account. In Chapter 4, I present new behavioral
comparisons based on the distribution of actions.

Finally, I found that the differences between the formalisms are worth being
considered from the point of view of implementability. Indeed these formalisms
use high-level paradigms such as multi-party rendezvous or shared clocks. Im-
plementing them, or simply translating them to lower-level models, requires
introducing new communications e.g. to initiate a rendezvous, or send the value
of clocks. Yet the implementation should keep as much as possible of the con-
currency specified in the high-level model. This is a research topic that I started
investigating quite recently. In Chapter 5, I show the first results and present
many perspectives.

5

Chapter 1

Formalisms for Real-Time
Sequential Systems

1.1 General Assumptions about the Semantics
of Time

Dense Time. I consider dense time semantics where time progresses con-
tinuously. There is another option, not studied in this thesis, which consists
in discretizing the time progress. This is perfectly arguable given that digi-
tal devices are generally conducted by discrete clock signals; moreover analysis
techniques are usually conceptually simpler. On the other hand, dense time is
more general, gives much more concise models and allows one to use efficient
symbolic analysis techniques like DBMs [69, 110, 93], symbolic state classes or
zones.

Time Divergence. I consider only models where time diverges: in every run
that contains infinitely many discrete actions, time diverges to infinity. This
assumption is very usual and comes from the intuition that no physical system
can execute infinitely many actions in finite time.

1.2 Timed Transition Systems

Timed transition systems are used as an abstract low-level formalism to rep-
resent the semantics of higher-level formalisms for real-time sequential systems
like timed automata and the sequential semantics of formalisms for real-time
distributed systems like networks of timed automata or time Petri nets.

Definition 1.1 (Timed Transition System). A timed transition system
(TTS) is a tuple (S, s0,Σ,→) where S is a set of states, s0 ∈ S is the initial

6

state, Σ is a set of actions disjoint from the set R≥0 of non-negative reals, and

→ ⊆ S×(Σ∪R≥0)×S is a set of transitions. We write s
a−→ s′ for (s, a, s′) ∈ →.

Runs and Timed Words. A run is a (finite or infinite) path starting from
the initial state.

When representing a run, we often forget the information about the interme-
diate states and delays, and remember only the sequence (a1, θ1) . . . (an, θn) of
actions with their occurrence dates θi (obtained by summing the delays). This
representation is called a timed word.

The timed language of a TTS is the set of all its runs (represented as timed
words). The timed language can be used as a criterion to compare models. Any-
way, as soon as branching time properties matter, one needs stronger behavioral
comparisons like bisimulation.

Definition 1.2 (Timed bisimulation). Let T1 = (S1, s
0
1,Σ,→1) and T2 =

(S2, s
0
2,Σ,→2) be two TTS. We say that T1 and T2 are timed bisimilar if there

exists a binary relation ≈ between S1 and S2, called timed bisimulation relation,
such that:

• s0
1 ≈ s0

2,

• if s1
a→1 s′1 with a ∈ Σ ∪ R≥0 and s1 ≈ s2, then ∃s2

a→2 s′2 such that

s′1 ≈ s′2; conversely if s2
a→2 s′2 with a ∈ Σ ∪ R≥0 and s1 ≈ s2, then

∃s1
a→1 s

′
1 such that s′1 ≈ s′2.

1.3 Timed Automata

Timed automata [2] are one of the most famous formal models for real-time
systems. They have been deeply studied and very mature tools are available,
like Uppaal [94], Epsilon [50] and Kronos [42].

Definition 1.3 (Timed automaton [2]). A timed automaton (TA) is a tuple
A = (L, `0, C,Σ, E, Inv) where

• L is a set of locations,

• `0 ∈ L is the initial location,

• C is a set of clocks,

• Σ is a set of actions,

• E ⊆ L× B(C)× Σ× 2C × L is a set of edges,

• Inv : L −→ B(C) assigns invariants to locations.

where B(C) denotes the set of clock constraints over the set of clocks C, defined
by the grammar g ::= x ./ k | g ∧ g with x ∈ C, k ∈ N and ./ ∈ {<,≤,=,≥, >}.
Invariants are usually restricted to clock constraints of the form g ::= x ≤ k |
x < k | g ∧ g.

7

`0

`1x ≤ 4

x ≥ 3
a

{x}

x = 4
c

x ≥ 1, b, {x}

Figure 1.1: A timed automaton (the initial location is indicated by an arrow
that is not rooted in any location)

For an edge (`, g, a, r, `′) ∈ E, ` is called the source location, g the guard, a
the action, r the set of clocks to be reset and `′ the target location.

Locations are usually pictured as circles, connected by arcs representing the
edges.

Semantics

We use the following notations:

• For each set of clocks r ⊆ C, the valuation v[r] is defined by v[r](x) = 0 if
x ∈ r and v[r](x) = v(x) otherwise.

• For each d ∈ R≥0, the valuation v + d is defined by (v + d)(x) = v(x) + d
for each x ∈ C.

The semantics of a TA (L, `0, C,Σ, E, Inv) is a TTS whose states are the
pairs (`, v) where ` ∈ L is the current location and v : C −→ R≥0 is a clock
valuation that satisfies the invariant of location ` (we write v |= Inv(`)). The
initial state is (`0, v0), where v0 maps each clock to 0. Two types of transitions
are possible:

• Time delay: ∀d ∈ R≥0, (`, v)
d−→ (`, v + d) iff ∀d′ ∈ [0, d], v + d′ |= Inv(`).

• Discrete action: (`, v)
a−→ (`′, v′) iff there exists an edge (`, g, a, r, `′) ∈ E

such that v |= g and v′ = v[r] and v′ |= Inv(`′).

Example

Figure 1.1 shows a timed automaton with one clock x. The automaton starts in
location `0. After waiting at least 3 time units, it can take transition a, which
resets x to 0. Then it can play b several times, provided it waits 1 to 4 time
units before each occurrence. Eventually, after waiting 4 time units, it can play
c, and then start again with the a. . . So it accepts for instance the timed word
(a, 4.8)(b, 7)(b, 8)(c, 12)(a, 13)(b, 15.3).

8

Chapter 2

Formalisms for Real-Time
Distributed Systems

2.1 About the Semantics of Time in Distributed
Systems

The semantics of time in distributed systems has already been debated. One
problem is to decide whether it is reasonable to assume that the different com-
ponents of a distributed system are ruled by the same global absolute time. It
has been proposed to localize clocks and some authors [1, 71, 21] have even
suggested to use local-time semantics with independently evolving clocks.

Here I stay in the classical setting with perfect clocks evolving at the same
speed. This is a key assumption that provides an implicit synchronization.
Moreover, the problems that I will develop, about dependencies between events
and about implementation of real-time distributed systems, are simply based
on the fact that there is a global time progress, which implies that if time has
progressed for one component of a distributed system, then the other compo-
nents must also have observed time progress of a similar duration, no matter if
they slightly disagree on its measure.

2.2 Product of Timed Transition Systems

A distributed system can usually be viewed as a set of sequential systems,
or components, which sometimes communicate together. Hence one way to
model a real-time distributed system is to model each component separately as
a TTS and specify when they communicate. Then communications are actions
that are performed simultaneously by several components. Such composition
of sequential systems can be given itself a sequential semantics as a product of
TTS. For simplicity, I present only the product of two TTS. The intersection of
their alphabets of actions defines the actions which are synchronizations. Notice

9

x ≤ 3

x ≤ 3

A1

`s

x ≤ 4

A2

x ≥ 1
a

x ≥ 2
s

x = 3
c

x < 1
b
{x}

y ≥ 2
s

x ≥ 1
e

{y}

Figure 2.1: A network of two timed automata. The shared action s is a syn-
chronization. Moreover A1 influences A2 via the shared clock x.

that time progress is also an implicit synchronization.

Definition 2.1 (Product of TTS). The product of two timed transitions

systems T1 = (S1, s
0
1,Σ1,→1) and T2 = (S2, s

0
2,Σ2,→2) is the TTS T1 × T2

def
=(

S1 × S2, (s
0
1, s

0
2),Σ1 ∪ Σ2,→

)
, where → is defined as:

• (s1, s2)
a−→ (s′1, s2) iff s1

a−→1 s
′
1, for any a ∈ Σ1 \ Σ2,

• (s1, s2)
a−→ (s1, s

′
2) iff s2

a−→2 s
′
2, for any a ∈ Σ2 \ Σ1,

• (s1, s2)
a−→ (s′1, s

′
2) iff s1

a−→1 s
′
1 and s2

a−→2 s
′
2, for any a ∈ (Σ1 ∩ Σ2) ∪ R.

There exist many other formalisms which allow to model real-time dis-
tributed systems directly. I introduce two popular formalisms: safe time Petri
nets (TPN) [102] and networks of timed automata (NTA) [2]. These formalisms
have different histories but were both designed to model real-time, distributed
systems. Moreover they both handle urgency, which is a key feature without
which most real-time systems cannot be modeled correctly.

2.3 Networks of Timed Automata

A network of timed automata (NTA) is a composition of n timed automata,
written A1 ‖ · · · ‖ An, with Ai = (Li, `

0
i , Ci,Σi, Ei, Inv i). We denote by Σ =⋃

i Σi the set of actions and by C =
⋃
i Ci the set of clocks.

Shared actions are used to model synchronizations like in products of TTS.
But clocks may also be shared, which means that the automata can also influence
one another via shared clocks.

Semantics

The semantics of A1 ‖ · · · ‖ An is a TTS whose states are the pairs (~̀, v), where
~̀ ∈ L1 × · · · × Ln is the vector of current locations and v : C −→ R≥0 is a

10

valuation of all the clocks that satisfies
∧
i Inv i(`i). The initial state is (~̀0, v0)

with ∀x ∈ C, v0(x) = 0.
Time delay is possible iff it is possible for all the automata:

(~̀, v)
d−→ (~̀, v + d) ⇐⇒ ∀d′ ∈ [0, d], v + d′ |=

∧
i Inv i(`i).

For discrete actions, the intersection of the alphabets of actions determines
which automata participate: in order to play an action a ∈ Σ from a state
(~̀, v), all the automata Ai such that a ∈ Σi must participate by playing an edge

ei = (`i, gi, a, ri, `
′
i); the others do not participate. This leads to the state (~̀′, v′)

where `′i is the target location of ei for every automaton Ai which participated,
`′i = `i for the others, and v′ = v[

⋃
i s.t. a∈Σi

ri].

Example

Figure 2.1 shows a network of two timed automata, where s is a common action.
A1 can play b at time 0.8. This resets the shared clock x. After waiting between
2 and 3 time units, for example at time 3.5, the two automata can synchronize
and play an s. Then A2 must play e while the value of clock x is between 1 and
4, i.e. between 1 and 4 time units after the b. This gives, for instance, the run
(b, 0.8)(s, 3.5)(e, 4.1).

2.4 Time Petri Nets

Time Petri nets are one of the most popular timed extensions of Petri nets. I
give directly the definition of time Petri nets; for untimed Petri nets, just forget
the delay intervals and their role in the semantics, or set all the delay intervals
to [0,∞).

Time Petri nets are supported by many very mature tools like Romeo [81],
TINA and [30].

Definition 2.2 (Time Petri Net [102]). A time Petri net (TPN) is a tuple
(P, T, pre, post , efd , lfd ,M0) where P and T are sets of places and transitions
respectively, pre and post map each transition t ∈ T to its (nonempty) preset

denoted •t
def
= pre(t) ⊆ P and its (possibly empty) postset denoted t•

def
= post(t) ⊆

P ; efd : T −→ N and lfd : T −→ N ∪ {∞} associate the earliest firing delay
efd(t) and latest firing delay lfd(t) with each transition t; M0 ⊆ P is the initial
marking.

A time Petri net is represented as a graph with two types of nodes: places
(circles) and transitions (rectangles). The interval [efd(t), lfd(t)] is written near
each transition (see Figure 3.9).

Semantics of Safe Time Petri Nets

I give a semantics with clocks attached to marked places (or tokens). The
semantics is more often defined with tokens attached to transitions, but when
dealing with partial order semantics, clocks on places are more convenient (see

11

•p1

a[0,∞)

p2

f[3, 5]

p3

b[1, 1]

•p4

c[0, 1]

p6

d [0, 1]

e [1, 2]

p5

Figure 2.2: A time Petri net

[35] and [56] for a detailed study) I consider only safe (or 1-bounded) TPNs, i.e.
TPNs where there is never more than one token in a place. When considering
several tokens in places, several semantics are possible (see again [35]) and most
verification problems become undecidable.

State. A state of a time Petri net is given by a triple (M, dob, θ), where M ⊆ P
is the marking, θ ∈ R is the current time and dob : M −→ R associates a date
of birth dob(p) ∈ R with each token (marked place) p ∈M .

The initial state is (M0, dob0, 0) and initially, all the tokens carry the date

0 as date of birth: for all p ∈M0, dob0(p)
def
= 0.

Transition t is enabled in state (M, dob, θ) if •t ⊆ M . We define its date of
enabling doe(t) as the date of birth of the youngest token in its input places:

doe(t)
def
= max

p∈•t
dob(p) .

Time delay. From state (M, dob, θ), the TPN can wait until time θ′, written

(M, dob, θ)
θ′−θ−−−→ (M, dob, θ′), iff

• time progresses: θ′ ≥ θ; and

• no enabled transition overtakes its maximum delay:
∀t ∈ En(M) θ′ ≤ doe(t) + lfd(t).

Discrete action. Transition t can fire from state (M, dob, θ) if:

• t is enabled: t ∈ En(M); and

• t has reached its minimum firing delay: θ ≥ doe(t) + efd(t);

Firing transition t from state (M, dob, θ) leads to state (M ′, dob′, θ), with M ′
def
=

(M \ •t) ∪ t• and dob′(p)
def
= dob(p) if p ∈ M \ •t and dob′(p)

def
= θ′ if p ∈ t• (by

assumption the two cases are exclusive). We write (M, dob, θ)
t−→ (M ′, dob′, θ).

12

Example

For the TPN of Figure 2.2, a possible run is (a, 0.2)(d, 1)(e, 2.6)(f, 3.4): In the
initial state, a, c and d are enabled. Because the latest firing delay of c and d
is 1, a transition must fire before 1, for instance a at time 0.2. This does not
disable c and d, so another transition must fire before 1, say d at time 1. This
enables e which has to fire after waiting before 1 and 2 time units. The marking
is now {p2, p6}, so b and f are enabled and only one can consume the token in
p2. Because f was enabled at time 0.2 (after the firing of a), it can fire at 3.4.
Transition b, which was enabled at time 2.6 could fire only at time 3.6.

Assumption of Safe Untimed Support

I have already mentioned that I consider only safe TPNs. Moreover, I require
that even the untimed support is safe, i.e. the TPN remains safe if one replaces
all the earliest firing delays by 0 and all the latest firing delays by ∞.

2.5 Partial Order Semantics

Products of TTS, networks of timed automata and time Petri nets are designed
to model distributed systems. Yet their semantics is usually defined in terms
of timed transition systems or languages of timed words, which means that the
information about concurrency is lost. As an alternative, It is possible to define
partial-order semantics for these models.

Partial order semantics were much more developed for Petri nets than for
other models of concurrency; an explanation is that a category of Petri nets,
called occurrence nets, provides a very natural graphical support for the repre-
sentation of runs, called processes.

The representation of all runs of a Petri net as an unfolding [77] allows one to
avoid the state-space explosion due to interleavings when exploring the runs of a
Petri net. Unfoldings are infinite in general, but can be represented efficiently by
a finite complete prefix [101, 79], for instance to check LTL formulas [75, 76, 89].

Unfoldings were defined for other models of asynchronous systems, like prod-
ucts of transition systems [78], but little literature is available about unfoldings
for distributed real-time systems. We can cite [54, 55, 113] for TPNs and [47, 38]
for NTA.

2.5.1 Partial Order Representation of Runs: Processes

Processes are a way to represent executions of Petri nets so that the actions
(called events) are not totally ordered like in firing sequences: only causality
orders them.

An execution of a Petri net N is represented as a labeled Petri net where
every transition, called event and labeled by a transition t of N , stands for an
occurrence of t, and every place, called condition and labeled by a place p of

13

•p1

a(3)

p2

b(4)

• p4

c (0.8)

p6

p1 p4

•p1

a(0.2)

p2

f(3.4)

p3

• p4

d (1)

e (2.6)

p5

p6

Figure 2.3: Two processes of the time Petri net of Figure 2.2. The occurrence
dates are written in parentheses near the events.

N , refers to a token produced by an event in place p or to a token of the initial
marking. The arcs represent the creation and consumption of tokens.

Because fresh conditions are created for the tokens created by each event,
every condition has either no input arc (if it is an initial condition) or a single
input arc, coming from the event that created the token. Symmetrically, each
place has no more than one output arc since a token can be consumed by only
one event in an execution.

When dealing with time Petri nets, a date is attached to each event. Pro-
cesses of time Petri nets were studied in [6, 7].

Figure 3.1 shows two processes of the time Petri net of Figure 2.2.

Causality and Concurrency. We define the relation ≺ on the events as:

e ≺ e′ def⇐⇒ e• ∩ •e′ 6= ∅. The reflexive transitive closure ≺∗ of → is called the
causality relation. Two events of a process that are not causally related are
called concurrent. For all event e, we denote dee the causal past of e, i.e. the
set of predecessors of e by ≺∗.

2.5.2 Branching Processes and Unfoldings

Here I deal with untimed Petri nets only. Defining branching processes and
unfoldings for time Petri nets poses other difficulties, which I evoke later.

It is possible to superimpose several processes of a given untimed Petri net
in order to represent several runs. The superimposition is done such that the
common prefixes of the processes are merged. Hence one gets a labeled Petri
net called a branching process [74], which remains acyclic, but where conditions
can now have several output arcs, representing the choices between the different
runs. This is formalized by the notion of conflict.

Conflict. Two events e and f of a branching process are in conflict if there
exist two distinct events e′ and f ′ such that e′ ≺∗ e and f ′ ≺∗ f and •e′∩•f ′ 6= ∅.

14

•p1

a

p2

f

p3

b

•p4

c

p6

d

e

p5

p6

b

p1 p4
...

...

p1 p4

a

p2
...

c

p6
...

d

p5
...

Figure 2.4: A prefix of the unfolding of the untimed support of the TPN of
Figure 2.2

Since e′ and f ′ consume the same token, they cannot occur in the same run.
This incompatibility propagates to e and f by causality.

Unfolding. Superimposing all processes of an untimed Petri net N yields a
(usually infinite) branching process, called the unfolding of N . Figure 2.4 repre-
sents a prefix of the unfolding of the untimed support of the TPN of Figure 2.2.

2.5.3 Occurrence Nets

Branching processes, considered simply as Petri nets, form a category that we
call occurrence nets and can be studied as such. They are characterized as
follows.

Definition 2.3 (Occurrence net). An occurrence net (ON) is an untimed
Petri net (B,E, pre, post , B0) such that:

• ∀e ∈ E ¬(e ≺+ e),

• ∀b ∈ B0 @e ∈ E b ∈ e•,

• ∀b ∈ B \B0 ∃!e ∈ E b ∈ e•,

• ∀e ∈ E ¬(e # e),

• ∀e ∈ E |dee| <∞.

Occurrence nets are closely related to the notion of event structures [106].

15

Chapter 3

Dependencies Between
Events

This chapter presents my contributions [11, 12] and [51] on extensions
of the reveals relation and facets reduction obtained during and after
Sandie Balaguer’s PhD, and on my recent contribution [56] about the
semantics of time in extended free choice time Petri nets.

3.1 Motivation

3.1.1 Unfoldings of Time Petri Nets, and how Complex
Dependencies between Events Arise

I worked during my PhD on the definition of unfoldings for time Petri nets
[54, 55].

Figure 3.1 shows a prefix of the unfolding of the time Petri net of Figure 2.2.
Events are parameterized by their possible occurrence time. Symbolic con-
straints indicate the timings compatible with the time constraints of the model.
As there is only one occurrence of each transition in this prefix (apart from b),
we use the symbol θa as a variable that represents the firing time of the event
corresponding to transition a (and respectively for the other events).

Notice the read arc (line with no arrow head) in input of f . Although f
consumes only the token produced by a, firing a is not as sufficient condition
for being able to fire f : if c fires too, it enables b, which has to fire before f , and
then disables f . On the other hand, the read arc indicates that f is possible in
the context where d and e fire.

The symbolic constraint associated with event f is a bit complicated. Its
first line simply says that the delay between enabling and firing of f is in the
interval [3, 5] (since f is enabled at time θa, θf − θa represents the delay). The
second line expresses the temporal ordering between e and f imposed by the
read arc. The explanation for the third line is the following: when f fires,
transition b is enabled; so we have to express that b has not reached its latest

16

•p1

a0 ≤ θa

p2

f
3 ≤ θf − θa ≤ 5

θe ≤ θf
θf ≤ max{θa, θe}+ 1

p3

bθb −max{θa, θc} = 1

•p4

c0 ≤ θc ≤ 1

p6

d 0 ≤ θd ≤ 1

e 1 ≤ θe − θd ≤ 2

p5

p6p1 p4
...

b . . .

p1 p4
...

Figure 3.1: A prefix of the unfolding of the time Petri net of Figure 2.2. Notice
the read arc (line with no arrow head) in input of the event corresponding to
transition f .

firing delay when f fires. Remark that this constraint concerns the firing time
of e, which confirms that f depends on the firing of e and justifies the read arc.

Finally, read arcs are the solution I chose in my PhD thesis. There are other
ways to code these dependencies between events; for instance using larger, non
local symbolic constraints, like in [113].

3.1.2 The Limitations of Conflict, Causality and Concur-
rency

This work on unfoldings of time Petri nets emphasized the limitations of the
structural relations – conflict, causality and concurrency – which are essential
to the theory of unfoldings of untimed Petri nets.

In order to study the complex dependencies between events in the real-
time setting, I propose to compare it with the untimed case. There, all the
dependencies between the events of an occurrence net are described by conflict,
causality and concurrency, and these relations have a clear meaning in terms of
logical dependencies:

• two events are in conflict iff they never occur together in the same run;

• event e is a causal predecessor of event f iff every run containing f also
contains e;

17

• events e and f are concurrent iff there exist runs containing e and f , e and
not f , f and not e, (and of course neither e nor f : just take the empty
run).

In the real-time setting these nice properties do not suffice any more. The
structural conflict on the consumption of tokens is not the only reason for log-
ical incompatibility of two events: they can also be incompatible because they
require incompatible real-time constraints on the execution. Similarly the oc-
currence of an event (for example f in Figure 3.1) may imply the occurrence of
another event (e in Figure 3.1), even if these two events are not causally related.
And many more complex dependencies arise; the read arcs in unfoldings of time
Petri nets make some of them explicit, but others can be deduced only from the
symbolic constraints on the firing times of the events.

Identifying concurrency in distributed real-time systems requires to study
these logical dependencies between events in depth.

Then it is interesting to look carefully at other extensions of the unfolding
theory. Even if they are not as dramatic as the real-time setting, other exten-
sions show some limits of the well known structural relations: conflict, causality
and concurrency.

Colored Petri Nets. One example is the symbolic unfolding of colored Petri
nets, studied in [73] and [52]; there events are parameterized by the colors of
the tokens they consume and create, and two events, which are not structurally
in conflict, may be incompatible simply because they impose constraints on the
colors of tokens in their common past which are not jointly satisfiable. These
new incompatibilities may even be non-binary, i.e. it happens that three events
cannot occur together, while any combination of two of these events is possible.

Contextual Petri Nets. Another kind of incompatibility, also not always
binary, appears in unfoldings of contextual Petri nets, where read arcs model
the reading of a token without consuming it. Unfoldings for contextual Petri
nets were studied in [19, 44, 117, 116, 16]. There

• causality is not sufficient: another relation, called conditional (or weak)
causality has to be introduced to represent the effect of the read arcs;

• the classical definition of conflict is not sufficient either because the condi-
tional causality induces new sources of incompatibility between events. It
is interesting to notice that, while the classic conflict is a binary relation,
the incompatibilities coming from the conditional causality are not binary
any more: in general they involve more than two events.

Maximal Semantics. Finally, a very simple assumption generates logical
dependencies which are not represented directly by conflict, causality and con-
currency: it suffices to restrict the semantics of (classical, low-level) occurrence
nets by considering only maximal runs.

18

Definition 3.1 (Maximal run). A run ω is maximal if it is maximal w.r.t.
⊆, i.e. no event remains enabled after ω.

Consider events a and c in Figure 3.2(a): we have to observe that a is in
conflict with b and that any maximal run contains either b or c. Therefore, if
a occurs in a maximal run, then b does not occur and eventually c necessarily
occurs. Yet c and a are concurrent.

Another case is illustrated by events a and d in the same figure: because a is
a causal predecessor of d, the occurrence of d implies the occurrence of a; but in
any maximal run, the occurrence of a also implies the occurrence of d because
d is the only possible continuation to a and nothing can prevent it. Then a and
d are actually made logically equivalent by the maximal progress assumption.

Maximal Semantics as a Particular Timed Semantics. An untimed
Petri net can actually be viewed as a special kind of time Petri net where
transitions can be fired after any delay. This absence of time constraints is
usually coded by assigning the firing interval [0,∞) to every transition. Notice
that ∞ is excluded from the interval. One can however propose a semantics to
intervals including ∞: “firing at ∞” simply means “staying enabled forever”.
Hence, a transition with delay interval [0,∞) can fire after any delay, but has
to fire eventually, while a transition with delay interval [0,∞] may fire after any
delay or stay enabled forever.

This allows one to represent untimed Petri nets with general semantics as
TPNs with interval [0,∞] for every transition, and Petri nets with maximal
semantics as TPNs with intervals [0,∞).

Finally, this allows me to view the dependencies that appear between events
of Petri nets under maximal semantics, as a kind of dependencies induced by
(even very weak) time constraints.

3.1.3 Reveals Relation and Facets Abstraction

The reveals relation [84, 85, 11, 12] was introduced to capture dependencies of
the type “if e occurs, then f has already occurred or will occur eventually” in
the sense that any run that contains e also contains f . The reveals relation was
defined initially for the maximal semantics, which is a very natural setting and
still generates rich dependencies.

Here we simply assume that we are in a setting where not all runs are
relevant. So we let Ω denote the subset of runs that we consider, for instance
– but not necessarily – maximal runs. Runs are viewed as sets of events, and
thus Ω is a set of sets of events.

Definition 3.2 (Reveals relation [84]). Given a set Ω of sets of events (these
sets of events intend to be interpreted as runs), we say that event e reveals event
f (in Ω), and write e . f , iff ∀ω ∈ Ω, (e ∈ ω ⇒ f ∈ ω).

As announced, for any events e and f , f ≺∗ e implies e . f , but the converse
does not hold in general. In Figure 3.2(a), we have for instance a . c and a . d
under the maximal semantics, as discussed earlier.

19

1• 2•

a

3

d

7

b

4 5

e

8

f

9

c

6

g

10

h k

11 12

(a) An occurrence net. Squared
events are in the same facet.

1• 2•

acdg

7

bef

8 9 10

h k

11 12

(b) The corresponding re-
duced ON.

Figure 3.2: An ON and its reduction through the facet abstraction.

The reveals relation naturally induces an equivalence relation on events.

Definition 3.3 (Facet [84]). Let ∼ be the equivalence relation defined as:

∀e, f ∈ E, e ∼ f def⇐⇒ (e . f)∧ (f . e), then a facet of an ON is an equivalence
class of ∼.

For example, in Figure 3.2(a), and with the maximal semantics, the ON has
four facets: {a, c, d, g}, {b, e, f}, {h} and {k}. For any facet and for any run,
either all events in the facet are in the run or no event in the facet is in the run.
Therefore, facets can be seen as atomic events and can even be merged together
as shown in Figure 3.2(b). Only conditions at the interface of facets remain.

3.2 Generalization of the Reveals Relation

Stefan Haar introduced the binary reveals relation with the application to di-
agnosis in mind. The idea is: “if I know that a reveals b, and I observe a, then
I can deduce that b has also occurred or predict that it will occur.”

I saw this reveals relation as an interesting way to formalize the dependencies
between events which arise, for instance, in unfoldings of TPNs. But I wanted to
express more general dependencies (typically non binary conflict), so I showed
in that also non-binary dependencies are relevant. We proposed in [11, 12] a
representation of these dependencies using propositional logic and we solved the
associated synthesis problem: given a formula φ, is there an occurrence net N
such that φ describes the set of maximal runs of N ?

Starting from the idea of the reveals relation and the associated facets ab-
straction, we also defined a canonical contraction for safe Petri nets [51] that
merges transitions that occur together in every maximal run.

20

•

•

a′ a

bb′c

Figure 3.3: An occurrence net where the maximal semantics induces a non-
binary dependency: if a and b occur, then c also occurs.

3.2.1 Non Binary Dependencies

We have seen that the causality relation does not explain all the dependencies
between events of the type “if a occurs in a maximal run, then eventually b
also occurs”. The reveals relation was introduced to capture all these binary
dependencies. But they are still not sufficient to describe more complex logical
dependencies between events. Consider the ON of Figure 3.3: causality gives
only the dependencies a ≺ c and a ≺ b′. With the reveals relation we get c . b
and a′ . b. They express that in any maximal run the occurrence of c implies
the occurrence of b and the occurrence of a′ implies the occurrence of b. But
is it true that any set of events that satisfies these constraints, is a maximal
run? The answer is no: for instance {a, b} satisfies these constraints, but is not
a valid maximal run, since c is enabled and does not occur. Actually, all the
maximal runs of this ON satisfy the following constraint: if a and b occur, then
c also occurs.

3.2.2 Representation of General Dependencies

ERL: A Logic for Occurrence Nets

In [11, 12], we introduced a logic, called ERL for Event Reveal Logic, that
describes the properties of the runs of an ON by giving relations between event
occurrences. Events are used as boolean variables: e stands for the presence of
event e in a run.

ERL formulas are defined using the logical connectives ∧ and ¬, the con-
stants true and false, and a set E of event names, which play the role of
variables. Well formed ERL formulas are defined inductively by the following
grammar.

φ ::= true | false | e | ¬φ | φ ∧ φ, where e ∈ E

The semantics is given for a set of events ω ⊆ E and an ERL formula φ. We
write ω |= φ when ω satisfies φ, defined as follows:

• for any event e ∈ E, ω |= e iff e ∈ ω,

• the logical connectives ¬ and ∧ have the usual semantics.

21

From ¬ and ∧ we derive the other logical connectives ∨, → etc. as usual.
Since we are interested in properties of sets of runs, we look at the satisfaction

of ERL formulas by sets of sets of events: for any ERL formula φ and for any
set of sets of events Ω,

Ω |= φ
def⇐⇒ ∀ω ∈ Ω ω |= φ .

We define the set [[φ]] as [[φ]]
def
= {ω ⊆ E | ω |= φ}.

Examples. If Ω denotes the set of maximal runs of the Petri net of Figure 3.3,
we can now express complex dependencies like

• Ω |= (a ∧ b)→ c,

• Ω |= a→ (c ∨ b′),

• Ω |= b′ → (a ∧ ¬c ∧ ¬b),

• Ω 6|= c ∨ b′ because the maximal run {a′, b} ∈ Ω does not satisfy this
formula.

Extended Reveals Relation

Any well-formed formula can be brought into conjunctive normal form:∧
i∈I

(bi,1 ∨ · · · ∨ bi,ni ∨ ¬ai,1 ∨ · · · ∨ ¬ai,mi)

which can also be written as ∧
i∈I

(
∧
a∈Ai

a→
∨
b∈Bi

b)

with Ai = {ai,1, . . . , ai,mi} and Bi = {bi,1, . . . , bi,ni}.
Hence we focus on formulas of the form

∧
a∈A a →

∨
b∈B b, where A and B

are two sets of events. This leads us to define the extended reveals relation.

Definition 3.4 (Extended reveals relation). Let Ω ⊆ 2E be a set of runs,
and A,B two sets of events. We define the extended reveals relation (in Ω)
A _ B as

A _ B
def⇐⇒ Ω |=

∧
a∈A

a→
∨
b∈B

b, or equivalently,

def⇐⇒ ∀ω ∈ Ω A ⊆ ω ⇒ B ∩ ω 6= ∅

Notice that the binary reveals relations a . b correspond to the extended
reveals relations between singletons {a}_ {b}.

22

Examples. If Ω denotes the set of maximal runs of the Petri net of Figure 3.3,
we have for example

• {a, b}_ {c} (every maximal run that contains a and b also contains c),

• {a′}_ {b, b′} (every run which contains a′, contains either b or b′),

• {a, a′}_ ∅ (no run contains a and a′),

• ∅_ {a, b} (every run contains either a or b).

Properties of the Extended Reveals Relation for General and Maxi-
mal Semantics. Remember that the extended reveals relation is interpreted
over a set Ω of runs which satisfy certain properties: for instance maximal runs,
runs compatible with some timed constraints. . .

When one chooses for Ω the set of all runs (general semantics) or the set
of maximal runs (maximal semantics), the extended reveals relation has the
following strong properties. First, every set A of incompatible events (i.e. such
that A _ ∅) contains two incompatible events (i.e. events a, b ∈ A such that
{a, b}_ ∅. Second, the only cause for incompatibility between events is struc-
tural conflict, i.e. {a, b}_ ∅ iff a # b.

These two properties are simple corollaries of the definition of runs. However,
one should consider them as important properties of the general and maximal
semantics and notice that they would not hold, for instance, with a timed se-
mantics nor for contextual occurrence nets [19, 44, 117, 116] used for unfoldings
of nets with read arcs, where weak causality may cause non binary conflicts.
Non binary conflicts have also arisen from symbolic unfoldings of colored Petri
nets [73, 52, 59].

Coding the Set of Runs of an ON as an ERL Formula

For every finite ON N , one can build an ERL formula ΦNmax such that [[ΦNmax]]
is the set of maximal runs of N . By definition, a set of events of an ON
is a general run iff it is conflict-free and closed under causality. We add the
maximality constraint: “for any event a, if a is enabled, then a or an event in
direct conflict with a has to fire”. For a given finite ON N , we get the following
formula ΦNmax:

ΦNmax =
∧

a,b∈E,a≺b

(b→ a) (causal closure)

∧
∧

a,b∈E,•a∩•b 6=∅

(¬a ∨ ¬b) (conflict-freeness)

∧
∧
a∈E

(
(
∧

b∈E,b≺a

b︸ ︷︷ ︸
a enabled

)→ (a ∨
∨

c∈E,•c∩•a6=∅

c)
)

(progress assumption)

The size of the formula is quadratic in the number of events in N .

23

Without the maximality constraint, this formula is similar to the “configu-
ration constraint” used in [90].

For the example of Figure 3.3, one gets the formula:

(a→ c) ∧ (b′ → a) (causality)
∧ (¬a′ ∨ ¬a) ∧ (¬b′ ∨ ¬b) ∧ (¬b′ ∨ ¬c) (conflicts)
∧ (a ∨ a′) (progress assumption for a and a′)
∧ (a→ (c ∨ b′)) (progress assumption for c)
∧ (a→ (b′ ∨ c ∨ b)) (progress assumption for b′)
∧ (b ∨ b′) (progress assumption for b)

3.3 From ERL Formulas to Occurrence Nets: a
Synthesis Procedure

A natural question arises from our formulation of dependencies between events:
given an ERL formula φ, is there an ON where the dependencies between events
(under the maximal semantics) are the ones described by φ? In other words, is
there an ON N such that the set of maximal runs of N is [[φ]]?

This synthesis procedure allows us to understand what shape the dependen-
cies between events can take.

We focus on the synthesis of reduced ONs, i.e. we assume that the formula
does not imply that a variable is true or that two variables are equivalent. In
other words, no formula of the type (φ→ e) or (φ→ (e↔ f) (with e, f variables
of φ) is a tautology.

The synthesis procedure is in two steps:

1. we first construct a net CN(φ) from the formula,

2. then we check if the set of maximal runs of CN(φ) is [[φ]]. This can be

done by checking if (Φ
CN(φ)
max ↔ φ) is a tautology.

The construction is correct in the sense that if the formula φ describes the
set of maximal runs of an occurrence net N , then CN(φ) is a reduced occurrence
net and its set of maximal runs is [[φ]].

Conversely, if the constructed net CN(φ) is not a reduced occurrence net or
if its set of runs is not [[φ]], then our synthesis problem has no solution.

The construction works also for the general semantics. Only in the end we
compare [[φ]] to the set of general runs of CN(φ) instead of the set of maximal
runs.

Importance of Binary Constraints

Remember that ERL formulas and extended reveals relations were introduced
to capture non binary dependencies between events. Therefore it is noticeable
and quite surprising that binary constraints play a central role in our synthesis
procedure: the construction of the net CN(φ) relies only on them. Non binary

24

•

a b

(a) CN(φ1)

c

b

•

a′

a

•

b′

(b) CN(φ2)

Figure 3.4: Two examples of the construction CN(φ)

constraints do matter, but they only come into play at the end of the procedure,
when the executions of the constructed net are compared with the semantics of
the formula.

This paradox is due to the fact that our construction is designed for the
setting of the general and maximal semantics, and for these semantics, the
following property holds: if two nets N1 and N2 over the same set of event
names have the same binary constraints, then they have the same runs, and
consequently they have also the same non binary constraints. Note that this is
again an important property of the maximal and general semantics. It would
not hold for other selections of runs (timed semantics for instance).

Construction of CN(φ)

Let φ be an ERL formula over a set E of variables representing the occurrence
of an event. The net CN(φ) is defined as follows. Its events are the variables
E. Then each binary constraint of the form e → f or ¬(e ∧ f) which is a
logical consequence of φ is represented by a condition connected to the events
concerned by the constraint:

• for each constraint of the form e → f , a condition b is created and con-
nected to e and f such that •b = {f} and b• = {e},

• for each constraint of the form ¬(e ∧ f), an initial condition b is created
and connected to e and f such that b• = {e, f}.

The constructed net CN(φ) is at most quadratic in the number of events (or
variables) in φ.

Actually, in order to get a smaller and more readable synthesized net, it is
possible to represent only minimal binary constraints, i.e. binary constraints
which cannot be deduced from others. This corresponds to keeping only imme-
diate causalities and conflicts in the constructed ON.

Examples

1. Consider the formula φ1 ≡ ¬(a ∧ b). The only binary constraint is the
formula itself. The net CN(φ1) synthesized from this constraint is given

25

in Figure 3.4(a). It is a reduced ON but the empty run, which satisfies φ1,
is not a maximal run of CN(φ1). One concludes that there is no reduced
ON N whose set of maximal runs is [[φ1]].

Actually, φ1 describes the set of general runs of CN(φ1). For the set of
maximal runs, the progress constraint a ∨ b is missing from φ1.

2. For the second example, we take the formula

φ2 ≡ (a→ c) ∧ (b′ → a) ∧ (¬a′ ∨ ¬a) ∧ (¬b′ ∨ ¬b) ∧ (¬b′ ∨ ¬c)
∧ (a ∨ a′) ∧ (a→ (c ∨ b′)) ∧ (a→ (b′ ∨ c ∨ b)) ∧ (b ∨ b′)

that codes the maximal runs of the ON of Figure 3.3 (see page 24). The
minimal binary constraints implied by φ2 are c → a, c → b, a′ → b,
b′ → a, ¬(a ∧ a′) and ¬(b ∧ b′). The net obtained by the synthesis from
these constraints is represented in Figure 3.4(b). By construction, it has
the same maximal runs {a, b, c}, {a, b′} and {a′, b} than the original ON.

3.4 Tight Nets as a Canonical Form for Reduced
ONs

The previous example illustrates that several ONs with very different shape can
have the same maximal runs (a run being understood as a set of event names).
Our synthesis procedure provides a canonical representative for each class of
ONs. An interest of this class is that all the binary dependencies between events
are directly represented in the net as causalities and conflicts. In particular, in
the constructed nets, any reveals relation a . b is explicitly represented by
causal arcs b ≺∗ a. I discuss applications of this canonical form at the end of
this chapter.

3.5 A Canonical Contraction for Safe Petri Nets

One interest of the facets abstraction is to provide a contracted (or reduced)
version of a Petri net which preserves its maximal semantics. We compare with
a simple operation on sequential systems which has a similar effect: Consider
the sequential system shown in Figure 3.5(a). It is given here as a Petri net
for convenience, but easily translated into an equivalent finite automaton of six
states, eight transitions and initial state 0. When in state 0, the system can
perform either a, e, or h. Whatever the choice of the first transition, however,
in each case the second choice is imposed: after a no other transition than b is
possible, after e only f , and after h only i.

In Figure 3.5(b) each of the new transitions is labeled with the transition
chain that it represents. Note that the infinite word hiω is obtained via a single
macro-transition without post-place, since the word has no last transition. Of
course, not all temporal properties of the system are preserved, since not all finite
words survive the contraction: abcg is a word produced by a run in Figure 3.5(a),

26

0•

1

2

3

4

5

a

b

c

d

e

f

g

hi

(a) (A Petri net representation of) an au-
tomaton

0•

2

ab

cgf

def

hiω

(b) Its contraction

Figure 3.5: Contracting automata by removing non-branching states (here 1, 3,
4 and 5)

0• 0′•

1

2

3

4

5

t0t1 t′1

t2 t′2

t3 t′3

t4

t5

(a) A safe Petri net

0• 0′•

1

2

3

4

5

t0t1t′1

t2 t′2

t3t4 t′3t4 tω5

(b) Its canonical contraction. (Place 3 is not used
any more and could be forgotten.)

Figure 3.6: Overview of the canonical contraction of a safe Petri net

but not in Figure 3.5(b) which has no intermediate word between (ab) and
(ab)(cgf). However, one sees quickly that the maximal words – which coincide
with the infinite words – of the original system of Figure 3.5(a) are in bijection
with the infinite words of the contracted system in Figure 3.5(b).

We propose now to combine the ideas shown, on the one hand, in the au-
tomata contraction such as in the example of Figure 3.5, and on the other hand
of the facet contraction in the context of occurrence nets.

3.5.1 Macro-Transitions

For this we identify macro-transitions in safe Petri nets that allow contraction
with preservation of maximal semantics, and thus to give a contracted normal
form for any given Petri net. If the definition is applied to occurrence nets,

27

0• 0′•

1

4

t1 t′1

(a) ψ1

1•

5•t2

2

t5

2 5

t5

2 5

(b) ψ2

0′•

1•

2

4

t′1

t2

(c) ψ3

Figure 3.7: Two examples (ψ1 and ψ2) and a counter-example (ψ3) of macro-
transitions of the Petri net of Figure 3.6(a)

we obtain exactly the facets according to [84, 85, 11, 12]. At the same time,
the reduced net has never more, and generally much fewer, transitions than the
original net.

Technically, a macro-transition ψ of a safe Petri net N is defined as a piece of
partial-order behavior of N which satisfies the property that from any reachable
marking M which enables ψ, any maximal run that starts with a nonempty
prefix of ψ, contains the entire ψ.

As a particular case, any single transition constitutes a macro-transition.
More interesting is the case of facets: any facet of an occurrence net O is a

macro-transition of O.

Examples. Figure 3.7 shows two examples and one counter-example of macro-
transitions of the Petri net of Figure 3.6(a).

• In ψ1 we have two events: an occurrence of t1 and one of t′1. The initial
conditions of ψ1 are mapped to places 0 and 0′ of N . The only reachable
marking of N which contains {0, 0′} is {0, 0′} itself; in {0, 0′}, if one of
the two transitions fires, the other one will necessarily fire in any maximal
run.

• Consider now ψ2: again the only reachable marking of N which contains
{1, 5} is {1, 5} itself. From it, if t2 fires, it is necessarily followed by an
infinite sequence of firings of t5. ψ2 is exactly a prefix of it.

• Concerning ψ3, it is exactly a prefix of every maximal run from {1, 0′}
starting by an occurrence of t2, but not of every run starting by an occur-
rence of t′1 (because t′2 can fire instead of t2).

28

Ψ-contracted net

Given a set Ψ of macro-transitions of a Petri net N , we construct the Ψ-
contracted net N/Ψ by replacing the transitions of N by new transitions which
summarize the macro-transitions.

In a branching process of the contracted net N/Ψ, every event represents an
occurrence of a macro-transition. Expanding every event to the content of the
corresponding macro-transition yields a branching process of N .

3.5.2 Canonical Contraction

Notice that in general not every marking reachable in N is reachable in N/Ψ.
This is actually what allows us to skip some intermediate markings and give a
more compact representation of the behavior of the net.

In this sense we can say that a complete contracted net N/Ψ is more compact
than another N/Ψ′ if all markings reachable in N/Ψ are also reachable in N/Ψ′ .
We define a canonical contracted net N which is optimal w.r.t. this criterion.

The result is a unique contracted safe Petri net with no more macro-
transitions than transitions in the original net. The construction provides a
canonical version for any given safe Petri net, whose maximal behavior offers a
condensed view of the maximal behavior of the original net.

Computing the contraction (with finite representations of the macro-
transitions) is in general costly (computing the reveals relation on the unfolding
of a finite Petri net is PSPACE-complete [85]), but in practice many syntac-
tic sufficient conditions can be used to identify macro-transitions. Hence our
contraction appears as an optimal, canonical contraction, to which other con-
tractions based on macro-transitions can be compared.

3.6 Conclusion on Reduction and Contraction

As announced, the contraction procedure coincides with the facets reduction
when it is applied to an ON.

As illustrated in Figure 3.8, the operation of reduction does not entirely
commute with unfolding. That is, in general, the unfolding U(N) of reduced
Petri net N is coarser, as an occurrence net, than the reduction U(N) of the
original net N ’s unfolding. In the example of Figure 3.8, the facets labeled t2t

ω
5

and t′2t
ω
5 in U(N) are both split into two events of U(N).

However, one retrieves the reduction of U(N) by applying again the reduc-
tion to the unfolding U(N) of the contracted net.

3.6.1 Applications and Related Work

Contraction of Nets

It is known that structural transformations can facilitate verification of some
system properties, as witnessed by e.g. Berthelot [28], Desel and Merceron [66],

29

0• 0′•

t1t′1

1

4

t0

t2

2

t′2

2

t3t4

1 5
...

t′3t4

1 5
...

t3t4

1

5

t′3t4

1 5
...

t2

2

tω5

t′2

2

tω5

(a) The unfolding of the contracted Petri net
of Figure 3.6(b). Remark that the unfolding is
not reduced: the last occurrence of t2 and the
following tω5 are in the same facet (similarly for
t′2 and the following tω5).

0• 0′•

t1t′1

1

4

t0

t2

2

t′2

2

t3t4

1 5
...

t′3t4

1 5
...

t3t4

1 5

t′3t4

1 5
...

t2tω5 t′2t
ω
5

(b) Its reduction (or contraction) is
isomorphic to the reduction of the un-
folding of the Petri net of Figure 3.6(a).

N

U(N)

N

U(N)

U(N)

unfolding

contraction

unfolding

contraction (or reduction)

contraction

Figure 3.8: Unfolding and contraction.

and other works. Our contraction technique preserves properties that depend
only on the language of the maximal runs of the system, such as liveness prop-
erties. It has also been used in [86] for fault diagnosis.

By computing offline the canonical version, verification procedures for any
property that depends only on the maximal run behavior can be run on the
smaller contracted net instead. This could be exploited in predicting (in the
sense e.g. of failure prognosis, see [91]) events that inevitably will occur.

Best and Randell [33] also considered atomicity of subnets in occurrence

30

graphs, focusing on non-interference in the temporal behavior and identifying
atomic and hence contractable blocks of behavior. The structures obtained
can be embedded into non-branching occurrence nets, allowing the approach
to be compared with ours. However, while the construction of facets appears
geometrically similar, the approach of [84, 85, 11, 12] focuses on the question of
logical occurrence regardless of the order in which events occur.

Energy Consumption in Asynchronous Circuits

We have started to discuss with colleagues in Newcastle upon Tyne about using
our canonical contraction technique for estimating the energy consumption in
asynchronous circuits [96]. There, identifying blocks of partial-order behavior
like our macro-transitions, improves the existing techniques by avoiding state
explosion.

Synthesis of Nets

The synthesis problem for Petri nets has been widely studied. It consists in
answering whether, given a behavior, there exists a Petri net with this behavior.
The behavior can be specified as a transition system [27, 67, 8, 46] or a language.
In [62], the behavior is bounded by two regular languages. Most of the time,
the synthesis procedure is based on the notion of region [72, 9].

Synthesis for finite set of labeled partial orders are considered in [26, 25].
Note that our synthesis techniques deals only with finite occurrence nets.

Naturally, one would hope to obtain synthesis procedures for occurrence nets of
arbitrary size, imposing only regularity properties; the set of events would then
be structured by an adequate equivalence relation of finite index. However, the
technical difficulties posed by this general endeavor have not been resolved.

3.7 Back to Time Petri Nets

I come back now to my initial concern about dependencies between events in
time Petri nets. I know that they induce more general dependencies than un-
timed Petri nets with or without the maximal progress assumption. In particular
binary dependencies do not play the same central role. Anyway, some questions
remain. For instance, given an ERL formula, I can use our synthesis procedure
to determine whether it describes the dependencies between events in an un-
timed Petri net (with or without the maximal progress assumption), but I do
not know yet a procedure to decide the same for TPNs. In other words, I do
not know precisely how complex the dependencies in unfoldings of TPNs can
be.

Also, I have not explored how to compute the reveals relation on a timed
occurrence net. This could find applications, for instance in diagnosis or pre-
diction, like in the untimed case.

Finally, it would be worth exploring how the idea of ‘tightening’ a net can
be used in a definition of unfoldings for TPNs. Indeed, tightening forces an

31

• p1 • p2

p3 p4

a [0,∞) b [0, 5] c [3, 4]

d [2, 4]

Figure 3.9: An extended free choice safe time Petri net.

ordering between events, like read arcs in unfoldings of TPN. When putting an
event e in the unfolding of a TPN, the symbolic constraint attached to it may
very well concern the date of some events that will for sure occur (revealed by
e).

3.7.1 The Case of Extended Free Choice (T)PNs

An extended free choice (time) Petri net [31, 65] is a (time) Petri net where
every two transitions t and t′ in conflict, have exactly the same preset:

•t ∩ •t′ 6= ∅ =⇒ •t = •t′ .

Extended free choice Petri nets have been extensively studied and have many
interesting properties. When defining unfoldings of TPNs during my PhD,
I identified this class a simple case where the complex dependencies between
events that I evoked at the beginning of this chapter do not occur.

Then I have expected that extended free choice Petri nets would behave well
also from the point of view of the reveals relations, but for the moment I did
not find any satisfactory result in this direction.

On the other hand, the good properties of extended free choice TPNs were
confirmed by the following nice result.

3.7.2 Back in Time Petri Nets

The time progress assumption is at the core of the semantics of real-time for-
malisms. It simply says that the delay between two consecutive actions must
be non-negative. Zero delays, although not always realistic, are usually allowed
and often used as a convenient modeling feature to decompose an action in two
logical steps; but negative delays are rejected.

However, regarding concurrent transitions, this can be disputable. Indeed,
concurrent transitions can be executed in parallel on remote computers. From
this point of view, their relative execution time does not matter so much as
long as they are really independent and no communication between the remote
devices establishes a causal dependency between them.

32

p1 p2

p3 p4

a (4) c (3)

Figure 3.10: A process of the time Petri net of Figure 3.9. The dates of the
events are in brackets. This process has two linearizations: (c, 3)(a, 4) and
(a, 4)(c, 3). Only the first one is accepted by the classical semantics, but both
are accepted by the relaxed semantics.

In [56], we explore the original idea of simply dropping the time progress
assumption between concurrent transitions in safe TPNs. Of course this gener-
ates new timed words and in general it changes dramatically the semantics of
the model. But in the case of extended free choice TPNs, the relaxed semantics
remains related to the classical semantics in the sense that it produces the same
partial-order executions.

More precisely, every process of an extended free choice TPN N under the
relaxed semantics, is a prefix of a process of N under the classical semantics.
Concerning timed words, this implies that every timed word accepted by N
under the relaxed semantics is a prefix of a permutation of a timed word accepted
by N under the classical clocks-on-tokens semantics.

As an example, consider the TPN of Figure 3.9. The timed word (a, 4)(c, 3)
is accepted by the relaxed semantics: after firing a at time 4, p2 and p3 are
marked, with dob(p2) = 0 and dob(p3) = 4, and the current time is 4. After
that, time may go back to 3, and c can fire. The process shown on Figure 3.10,
which represents this execution, is also the process corresponding to (c, 3)(a, 4),
which is accepted under the classical semantics.

This result establishes a nice relation between partial-order semantics and
time progress assumption and confirms the strong properties of extended free
choice safe time Petri nets when partial order semantics is considered.

Finally, the algorithms for the analysis of timed models construct and solve
systems of linear constraints on temporal parameters (like occurrence time, value
of clock. . .) By relaxing the constraints about time progress, our relaxed se-
mantics would generate fewer inequalities and fewer symbolic states. And it
preserves properties like fireability of a transition or reachability of a place. We
plan to experiment the construction of the symbolic state graph generated by
our semantics and evaluate how much it improves the analysis algorithms.

33

Chapter 4

Behavioral Comparisons
Between Real-Time
Distributed Systems

This chapter presents behavioral comparisons taken from my contribu-
tions on translation from TPN to NTA [14, 15] and on shared clocks in
NTA [13], both obtained during Sandie Balaguer’s PhD.

Behavioral comparisons are a classical tool for the study of formal models.
In a setting like distributed real-time systems, an additional difficulty is to deal
with the variety of models, here at least time Petri nets (TPNs) and networks
of timed automata (NTA). Hence, behavioral comparisons must be able to deal
with heterogeneous formalisms or rely on a common semantics, like timed tran-
sitions systems (TTS).

Then behavioral comparisons allow one to compare the expressiveness of
the formalisms, to switch from a formalism to another, and to reuse techniques
and tools developed initially for one particular formalism. Studying a complex
system generally requires the use of multiple techniques and tools. Consequently
the system must be translated from one formalism to another. The difficulty is
to show that the different representations are equivalent.

Many transformations have been proposed, for instance between TPNs and
NTA; we observe the following.

• The transformations mainly rely on natural structural equivalences be-
tween the basic elements of the formalisms. For instance, the location of
an automaton corresponds to a place of a Petri net, a transition of a Petri
net corresponds to a tuple of synchronized transitions of an NTA, and the
delay interval associated with a transition of a Petri net becomes a pair
(guard, invariant) in a timed automaton.

34

•p0

a[0,∞)

p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

p3

(a) A time Petri net

•p0

a

p1

d

p4

b b

•p2

c

p3

(b) A decomposition of its un-
timed support into S-subnets

Figure 4.1: Decomposition in components

• Beyond these natural equivalences, limitations for more general models
are not clear.

Indeed, the natural transformations tend to preserve concurrency. But when
the transformations become less immediate, one uses tricks that unfortunately
destroy concurrency.

Therefore it is not surprising that the first works about formal comparisons
of the expressiveness of these models [24, 41, 49, 112, 23] do not consider preser-
vation of concurrency. In [49], a structural transformation from TPN to NTA
is defined. This transformation builds one timed automaton per transition of
the TPN and preserves weak timed bisimilarity. In the other direction, [22]
shows that there exist timed automata that are not weakly timed bisimilar to
any TPN. [29] shows that equipping TPNs with priorities reduces the gap with
timed automata.

Because I work on several aspects of distributed real-time formalisms, I
am interested in comparisons between these formalisms. For instance, I am
interested in comparing the dependencies that appear in TPNs with those that
appear in NTA, and unfoldings of TPNs with unfoldings of NTA.

More recently, I have tackled problems related to the implementability of
distributed real-time systems (I describe this in the next chapter). Here also I
need to study transformations from high-level models to lower-level ones, which
are closer to what physical devices can execute. Then I need tools to formalize
how these transformations preserve the specified behavior.

4.1 Limitations of Behavioral Comparisons for
Sequential Systems

Consider the TPN of Figure 4.1(a). Although this is not explicitly specified in
the model, it is very reasonable to think that it models a distributed system

35

p0, p2xa ≤ ∞∧ xc ≤ 2

p1, p2xd ≤ 2 ∧ xc ≤ 2

p4, p2xc ≤ 2

p0, p3 xa ≤ ∞

p1, p3 xd ≤ 2 ∧ xb ≤ 0

p4, p3

xa ≥ 0
a

{xd}

xc ≥ 1, c

xc ≥ 1, c, {xb}

xa ≥ 0
a
{xb, xd}

xd ≥ 2
d

xb ≥ 0

b
{xa, xc}

xd ≥ 2
d

xc ≥ 1, c

Figure 4.2: The semantics of the TPN of Figure 4.1(a) as a timed automaton

made of two components, shown on Figure 4.1(b), which communicate via the
common transition b.

It can however be translated to a timed automaton called marking TA and
introduced in [82]. The result is shown in Figure 4.2. The marking TA of a
TPN (P, T, pre, post ,M0, efd , lfd) is the TA (L, `0, C,Σ, E, Inv) where the set of
actions Σ is T , the set of locations is the set of reachable markings (L ⊆ 2P),
with the initial location `0 = M0. One clock xt ∈ C is associated with each
transition t (they could alternatively be associated with places). For every
marking M and every transition t enabled in M , we draw an edge from M to
M \ •t) ∪ t• with the guard xt ≥ efd(t). This edge resets the clocks of all the
transitions newly enabled by the firing of t. Finally, every location M has an
invariant

∧
•t⊆M xt ≤ lfd(t), which ensures that no enabled transition overtakes

its latest firing delay.
The marking TA of a TPN is strongly timed bisimilar to the TPN. Yet we

note that concurrency is not explicit in this TA, as it naturally mimics the
sequential semantics of the TPN, even though we can observe a diamond (bold
edges) that shows the possible interleavings between actions a and c.

Here I focus on the preservation of the semantics w.r.t. distribution. Since
both TPNs and NTA were designed to model distributed systems, I consider
that not only their sequential behavior as timed transition systems is relevant,
but also their distributed behavior.

4.2 Concurrent Bisimulations

The limitations of behavioral comparisons for distributed systems have already
been identified, and more powerful comparisons were proposed. The notion of

36

concurrent bisimulation was developed in the Petri net community [32, 114],
essentially in the 90’. The idea is to rewrite the definition of bisimulation and
focus on the simulation of partial order runs rather than single actions. There-
fore a system that performs a and b concurrently can be distinguished from a
sequential system that can perform ab and ba. This allows one to distinguish, for
example, the behavior of a Petri net with concurrent actions, from the sequential
behavior represented by its marking graph.

These works consider only fully asynchronous untimed systems. I started to
think of generalizing these notions in order to capture behavioral comparisons
between real-time distributed systems. I visited Lucia Pomello (who is one of
the main authors of concurrent bisimulations) and Luca Bernardinello in Milano
in February 2013 and I proposed to look at networks of timed automata.

It was natural to assume that, when one compares two NTA, one first as-
sume that the two NTA have the same number of automata and try to match
the automata of one NTA with the automata of the other, such that their alpha-
bets of actions Σi correspond. We discovered that, in this setting, concurrent
bisimulation

• can easily be extended to the real-time setting,

• but coincides exactly with usual sequential bisimulation between the two
systems.

This limits, to my eyes, the interest of concurrent bisimulations, but also
confirms the importance of identifying components and comparing models w.r.t.
their decompositions into components.

4.3 Identification of Components

Dealing with the distributed behavior of models implies that, if a model rep-
resents a system that involves several components, then the model should be
structured so that it is easy to identify each component.

In order to formalize behavioral comparisons in the context of real-time
distributed models, we take into account the distribution of actions over a set
of components, each component having its own alphabet of actions.

As NTA are built as compositions of timed automata, it is natural to identify
each automaton as one component. This gives an immediate decomposition of
the model into components.

4.3.1 S-subnets as Components for Petri Nets

Identifying components in TPNs is not as immediate as in an NTA. Neverthe-
less, in practice, when a system is modeled as a TPN, the designer knows its
physical structure and builds the TPN as a composition of components that
model the subsystems. Anyway, if a TPN is given without its decomposition,
these components can be identified.

37

(b, 2)

(c, 2)

(c, 4)

(a, 1)

(a, 2)

(d, 4)

π1 π2

Figure 4.3: A timed trace representing a run of the TPN of Figure 4.1(a), with
two components (π1 and π2) and actions a, b, c and d. Actions a and d are
local to component π1, c is local to π2 and b is a synchronization of the two
components.

Given a TPN N = (P, T, pre, post , efd , lfd ,M0), we proposed in [14, 15] to
focus on its untimed support (P, T, pre, post ,M0) and to decompose it in S-
subnets. Each S-subnet N ′ = (P ′, T ′, pre ′, post ′,M ′0) is induced by a subset
of places P ′ ⊆ P and all the connected transitions and has the property that
for every transition t ∈ T ′, |pre ′(t)| = |post ′(t)| = 1; moreover exactly one

place must be marked in the initial marking, defined as M ′0
def
= M0 ∩ P ′. Hence

every S-subnet can be viewed as an automaton where the active location is the
marked place. Therefore we consider these S-subnets as the appropriate notion
of components for TPN.

The question is to decompose a given Petri net into a set of S-subnets which
cover the net. This is not always possible. Decomposition algorithms (for sim-
ilar decompositions) are described in [65, 87, 61] and rely on the notion of
S-invariants [95] defined using the incidence matrix of the nets. The number of
places in the decomposition is never more than |P |2 and the number of transi-
tions never more than |T | × |P |.

Figure 4.1(a) illustrates the decomposition of a Petri net in S-subnets.

4.4 Behavioral Comparisons Based on Distribu-
tion of Actions

Once distributed real-time formalisms come with a distribution of actions over
identified components, it is possible to incorporate this information into the
definition of new behavioral comparisons.

We defined in [14, 15] a notion of timed trace as a partial order representation
of executions of our models for real-time distributed systems. Timed traces
represent executions of either NTA or TPN on which components have been
identified. Each action is associated with a set of components that always
perform it together and simultaneously, therefore it may be local or shared
(synchronizations).

38

`0x1 ≤ ∞

`1x1 ≤ 2

∧ Inv(`1, b)

`4

`2x2 ≤ 2

`3Inv(`3, b)

x1 ≥ 0
a

{x1}

x1 ≥ 2

d

{x1}

x1 ≥ 0
b
{x1}

x2 ≥ 1
c

{x2}

x2 ≥ 0
b

{x2}

Inv(`1, b) ≡ ¬`3 ∨ x1 ≤ 0 ∨ x2 ≤ 0
Inv(`3, b) ≡ ¬`1 ∨ x1 ≤ 0 ∨ x2 ≤ 0

Figure 4.4: An NTA which is distributed timed (strongly) bisimilar to the TPN
of Figure 4.1(a). Such NTA can be computed automatically from the TPN by
a procedure described in next chapter.

Every timed word over the alphabet of actions Σ induces a corresponding
timed trace.

Figure 4.3 gives a representation of a timed trace. Each component is repre-
sented by a vertical line, and each event is represented by a dot or dots connected
by a horizontal line, depending on whether it occurs on one component or on
several components. Each event is also labeled by a pair indicating its action
label and its occurrence date.

We can now define behavioral comparisons for real-time distributed models.

Definition 4.1. Two models are distributed timed language equivalent if they
have the same distribution of actions and accept the same timed language (and
then the same timed traces).

Of course one can also combine the distribution of actions with other behav-
ioral equivalences like bisimulation.

Definition 4.2. Two models are distributed timed bisimilar if they have the
same distribution of actions and are timed bisimilar.

These definitions allow us to distinguish for instance between the TPN N
of Figure 4.1(a) (given with its decomposition into components), and the timed
automaton obtained from its marking graph, depicted in Figure 4.2. On the
other hand, N remains equivalent to the NTA of Figure 4.4, which has two
components and the same distribution of actions than N .

39

p0x ≤ 1

p1 p2

A1

q0y ≤ 2

q1 y ≤ 3 q2y ≤ 3

q3 q4 q5 q6

A2

y ≤ 2

r1 y ≤ 3 r2y ≤ 3

A′
2

x = 1
d

x = 1
e
{x}

y = 2
c

y = 2
c

y = 3∧
x = 2

a

y = 3∧
x = 3
b

y = 3∧
x = 2

b

y = 3∧
x = 3
a

y = 2
c

y = 2
c

y = 3
a

y = 3
b

Figure 4.5: A1 ‖ A2 and A1 ‖ A′2 are distributed timed bisimilar but A2 and A′2
do not have the same behavior in the context of A1.

4.5 Contextual Transition System and Contex-
tual Bisimulation

In some cases, even distributed timed bisimulation is not sufficient. Consider
the two NTA A1 ‖ A2 and A1 ‖ A′2 represented in Figure 4.5. Note that clock
x, which is reset by A1, is also read by A2. The situation is asymmetric and
we consider that x is actually owned by A1 and only read by A2. The two
NTA A1 ‖ A2 and A1 ‖ A′2 have the same distribution of actions and are timed
bisimilar. Yet, A2 and A′2 do not have the same behavior in this NTA.

Intuitively A2 needs to read x when in q1 or in q2 at time 3, because the
value of x determines whether it will perform a or b. Notice by the way that
this reading is really mandatory because, depending on the choice done by A1

at time 1, the value of x at time 3 is either 2 or 3.
On the other hand, A′2 has no choice at time 3.
As a matter of fact, when A2 takes an edge labeled by c, his choice determines

the action that it will play at time 3, but it has to read the remote x to know
the result. On the other hand, when A′2 takes an edge labeled by c, it chooses
alone the action that it will play at time 3.

Anyway A1 ‖ A′2 is bisimilar to A1 ‖ A2. Here the bisimulation relates
(p1, q1) to (p1, r1) and (p2, q1) to (p2, r2). Hence it indicates which c one of
the systems must take at time 2 to simulate the other, but this choice is done
according to the state of the whole system. This is not suitable if we take the
point of view of a component that does not have a global view of the system.

Because of the distributed nature of the system, a component cannot observe
the moves and the state of the other and must choose its local actions according
to its partial knowledge of the state of the system.

What we see here is that, if we focus on the point of view of A2 and A′2, these
two automata do not have the same behavior. Therefore we need a behavioral
comparison that distinguishes A2 from A′2.

If the systems were defined as products of two automata, it would be possible

40

to impose bisimilarities A1 ≈ A′1 and A2 ≈ A′2. But this is not appropriate here
for two reasons:

• this would be unnecessarily strong: assume for simplicity that, like in the
previous example A1 = A′1; composing A2 or A′2 with A1 restricts their
behavior, and there is no problem if they differ on a part of their behavior
that is anyway prevented by A1;

• moreover the semantics of a component in isolation is not well defined
when there are shared clocks. There would be a problem also with TPNs,
since the delay intervals concern all the components that participate in a
transition: they do not restrict the behavior of a single component taken
in isolation.

What we need is that A1 in the context of A2 behaves like A′1 in the context
of A′2. We formalize this idea by the notion of contextual timed transition system
(contextual TTS).

4.5.1 Contextual Timed Transition System

For simplicity, we stay in the framework of networks of two components.
We defined in [13] the contextual TTS of A2 in the context of A1, denoted

TTSA1
(A2). It is a TTS with transitions labeled either by positive reals (for

time passage) or by actions of A2. Each state of TTSA1(A2) is a pair (S1, s2)
where s2 is a state of A2 and S1 is a nonempty set of states of A1. Such a state
can be seen as the knowledge of A2 at a time of the execution: it knows in which
precise state s2 it is currently, but it does not know precisely the state of A1;
therefore the set S1 stores all the possible states for A1 according to what A2

has observed.
To illustrate contextual TTS, consider A1 and A2 of Figure 4.5. The initial

state is
(
{(p0, x = 0)}, (q0, y = 0)

)
. From this contextual state, A2 waits 2 time

units and we reach the contextual state
(
{(p1, x = 2), (p2, x = 1)}, (q0, y = 2)

)
.

Indeed, during this delay, A1 has to perform either e (which resets x), or d.
Now, from this contextual state, we can take an edge labeled by c, and reach(
{(p1, x = 2), (p2, x = 1)}, (q1, y = 2)

)
. After a delay of one time unit, we get(

{(p1, x = 3), (p2, x = 2)}, (q1, y = 3)
)
. Lastly, a can be taken, because it is

enabled by ((p2, x = 2), (q1, y = 3)) in the NTA, and the reached contextual
state is

(
{(p2, x = 2)}, (q3, y = 3)

)
.

This notion of contextual TTS resembles the powerset construction used in
game theory to capture the knowledge of an agent about another agent [109].
Also in timed games under partial observability [36, 64], similar techniques
are used to partition states based on the observation. Finally, reasoning about
knowledge of agents is the aim of epistemic logics [80], which have been extended
to real-time in [118, 70].

41

x ≤ 1

A1

y ≤ 2

A2

y ≤ 2

A′
2

x = 1, d

x = 1, e, {x}

y = 2 ∧ x = 2, a

y = 2 ∧ x = 1, b

y = 2, a

y = 2, b

Figure 4.6: TTSA1
(A2) and TTSA1

(A′2) are bisimilar, and yet A1 ‖ A2 is not
bisimilar to A′1 ‖ A′2.

Contextual Bisimulation Alone is not Enough

One could now expect that the two bisimilarities TTSA1
(A2) ≈ TTSA′1(A′2)

and TTSA2(A1) ≈ TTSA′2(A′1), when they hold, imply global bisimilarity. This
is wrong in general.

In the example of Figure 4.6, we have TTSA1
(A2) ≈ TTSA1

(A′2) (here also
A′1 = A1), and yet A1 ‖ A2 is not bisimilar to A′1 ‖ A′2.

To summarize, we have seen with the example of Figure 4.5 that global
bisimulation does not imply contextual bisimulations, and we see now that the
converse is not true either. Nevertheless, an interesting case arises.

Unrestricted Contextual TTS

We say that there is no restriction in TTSA1
(A2) if whenever a local step is

possible from a reachable contextual state, then it is possible from all the states
(s1, s2) that are grouped into this contextual state. In the example of Fig-
ure 4.6, there is a restriction in TTSA1

(A2) because we have seen that a is
possible only from ((p2, x = 2), (q1, y = 3)), but not from all the states merged
in
(
{(p1, x = 3), (p2, x = 2)}, (q1, y = 3)

)
.

The class of models which yield unrestricted contextual TTS is interesting
because, in the case of NTA, it generalizes the class of NTA without shared
clocks: NTA without shared clocks have no restriction, but shared clocks do not
always induce restriction, see next chapter.

Moreover, when there is no restriction, contextual bisimulations correspond
to global bisimulation.

Lemma 4.1 (Unrestricted Contextual TTS Preserve Bisimulation).
Let A1 ‖ A2 and A′1 ‖ A′2 represent two systems with the same distribution of
actions. If there is no restriction neither in TTSA1(A2) nor in TTSA′1(A′2),
then

A1 ‖ A2 ≈ A′1 ‖ A′2 ⇐⇒
{

TTSA1(A2) ≈ TTSA′1(A′2) ∧
TTSA2

(A1) ≈ TTSA′2(A′1) .

42

Chapter 5

Implementability of
Real-Time Distributed
Systems

This chapter (as well as the previous one) is based on my contributions
[14, 15] and [13] obtained during Sandie Balaguer’s PhD. I view them
as first contributions about implementability of real-time distributed sys-
tems, which is the topic I would like to develop in priority in the coming
years. Therefore, I conclude this chapter with several perspectives on
the subject.

Formal models for real-time systems, like timed automata [2] and time Petri
nets [102], have been extensively studied and have proved their interest for the
verification of real-time systems. On the other hand, the question of using these
models as specifications for designing real-time systems raises some difficulties.
One of those comes from the fact that the real-time constraints introduce some
artifacts and because of them some syntactically correct models have a formal
semantics that is clearly unrealistic. One famous situation is the case of Zeno
executions, where the formal semantics allows the system to do infinitely many
actions in finite time. But there are other problems, and some of them are
related to the distributed nature of the system. These are the ones I tackle in
priority.

One approach to implementability problems is to formalize either syntacti-
cal or behavioral requirements about what should be considered as a reasonable
model, and reject other models. Another approach is to adapt the formal se-
mantics such that only realistic behaviors are considered.

These techniques are preliminaries for dealing with the problem of imple-
mentability of models. Indeed implementing a model may be possible at the
cost of some transformation, which make it suitable for the target device. By
the way these transformations may be of interest for the designer who can now

43

use high-level features in a model of a system or protocol, and rely on the trans-
formation to make it implementable. After defining the transformations one has
to formalize how they preserve the specified behavior, or how far they are from
it.

In the following sections, I present two transformations. Their correctness
is expressed w.r.t. the behavioral comparisons defined in the previous chapter.

5.1 A Translation from Safe TPN to NTA which
Preserves Distribution

Several translations have been proposed between timed extensions of Petri nets
and NTA. First, recall that every safe TPN can be translated to a strongly
timed bisimilar TA (see Figure 4.2).

My motivation for looking at transformations from TPN to NTA is to ques-
tion implementability of TPNs on distributed architectures. To this respect, I
consider NTA closer to implementation than TPN because components are well
identified in NTA and also because clocks are assigned to components, which
is a useful information if one is to implement a system. However, clocks may
be shared; then implementation is more difficult, but at least the presence of
shared clocks is a clear signal for an implementation difficulty. Next section is
dedicated to this problem.

Preserving the distribution of actions is also interesting for other reasons:
first, a transformation is much more readable if it preserves the components
and yields a model that is closer to the real system; second, preserving the
components avoids combinatorial explosion of the size of the model and makes
it possible to use modular analysis based on the components or partial order
techniques, which are crucial when one analyzes large distributed systems.

Here I show how a TPN which is decomposable into components (see Sec-
tion 4.3.1) can be translated to an NTA which respects the decomposition. How
to decompose the TPN is not the purpose here: I assume that the decomposi-
tion is known and focus on the problem of coding the time constraints of the
TPN using the syntax of NTA.

The result is an NTA which is distributed timed bisimilar (see Definition 4.2,
page 39) to the original TPN.

Some transformations in the literature have considered preserving some
properties of distribution. In [45], the authors propose a translation from
bounded timed-arc Petri nets (another variant of Petri nets extended with time)
to NTA, based on the decomposition of the net in sequential components that
communicate through handshake synchronizations (in the Uppaal style). This
translation is at the origin of the development of tool TAPAAL [63] for verifi-
cation of timed-arc Petri nets. In [111], another timed extension of Petri nets
with intervals on arcs is considered. In order to guarantee compositional proper-
ties, their Petri nets are translated to timed automata enriched with an ad-hoc

44

•p0

a[0,∞)

p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

p3

`0x1 ≤ ∞

`1x1 ≤ 2

∧ Inv(`1, b)

`4

`2x2 ≤ 2

`3Inv(`3, b)

x1 ≥ 0
a

{x1}

x1 ≥ 2

d

{x1}

x1 ≥ 0
b
{x1}

x2 ≥ 1
c

{x2}

x2 ≥ 0
b

{x2}

Inv(`1, b) ≡ ¬`3 ∨ x1 ≤ 0 ∨ x2 ≤ 0
Inv(`3, b) ≡ ¬`1 ∨ x1 ≤ 0 ∨ x2 ≤ 0

Figure 5.1: A TPN (left) and its translation as an NTA (right). The transforma-
tion is based on the decomposition of the TPN into components (as S-subnets)
illustrated in Figure 4.1.

mechanism of deadlines, which hides the communications between components
that would be necessary to implement it.

The Translation Procedure

Our translation is based on the decomposition of the TPNN in S-subnets, which
we view as components. This translation procedure involves the following steps.

1. Each S-subnet is translated into an automaton preserving its structure
(places become locations and transitions become edges). Each edge is
labeled with the name of the corresponding transition.

2. A single clock xi per automaton suffices for the time constraints. This
clock is reset on each edge, so that the value of xi gives the time elapsed
in the current location of the ith automaton.

3. Each transition t of N is represented by an edge on each automaton cor-
responding to a component participating in t (a single one if t is local to
a component, more if t represents a synchronization). On each of these
edges, a guard xi ≥ efd(t) codes the earliest firing delay in the NTA.
The synchronization will be possible only when xi ≥ efd(t) for every com-
ponent participating in t, i.e. mini xi ≥ efd(t) which corresponds to the
semantics of the earliest firing delay in TPNs.

4. It remains to code the latest firing delays. Their role in TPNs is to make
transitions urgent. Therefore they will be coded on the invariants of the

45

automata. More precisely, the invariant attached to the location corre-
sponding to a place p of the TPN will ensure that we cannot overtake the
latest firing delay of the enabled transitions which consume a token in p.

For a transition t of N which is local to one component, it suffices to add
an invariant xi ≤ lfd(t) on the source location of the edge corresponding
to t.

Otherwise, if t represents a synchronization, it has to fire if it is enabled
and its latest firing delay is reached. On the example of Figure 5.1, we can
stay in (`1, `3) as long as min(v(x1), v(x2)) ≤ 0 (because min(v(x1), v(x2))
is the elapsed time since b was enabled and lfd(b) = 0). Thus, we add
Inv(`1, b) ≡ ¬`3 ∨ (x1 ≤ 0∨ x2 ≤ 0) and Inv(`3, b) ≡ ¬`1 ∨ (x1 ≤ 0∨ x2 ≤
0) in the invariants of `1 and `3 (actually only one of them would be
sufficient).

Know thy Neighbor!

Notice that invariants use a non standard syntax: first, they use disjunction,
which is not usual in TA; second, they read the current location of the other
automata (the name of a location ` of automaton Ai in an invariant is interpreted
as “automaton Ai is currently in location `”; this syntax is supported in Uppaal
[94]); third, they read the clocks of the other automata (but do not reset them).

Note however that this extended syntax does not change the expressiveness
of NTA w.r.t. sequential semantics. But we show in [14, 15] that the use of this
extended syntax cannot be avoided in general, i.e. the automata have to read
information about the state of the others. This creates a dependency between
the automata, which is not as strong as in the case of a synchronization on
a common action, since it is asymmetric: only one automaton reads. Yet,
we are interested in identifying the cases where the automata do not need to
read information about the state of their neighbors, which we regard as a good
decompositional property. Conversely, a shared clock that cannot be avoided
can be interpreted as a warning concerning the implementation of the model:
it means that a distributed implementation will need more communications
between components than those explicitly specified in the model. Applying our
translation to a TPN makes this information explicit (via shared clocks), when
it was hidden in the original TPN.

5.2 Avoiding Shared Clocks in Networks of
Timed Automata

Quite often in the literature, the automata of an NTA are allowed to share clocks,
which provides a special way of making the behavior of one automaton depend
on what the others do. Actually shared clocks are relatively well accepted and
can be a convenient feature for modeling systems. Moreover, since NTA are
almost always given a sequential semantics, shared clocks can be handled very

46

A1

x ≤ 2

A2

x ≥ 1, a, {x} x ≤ 2 ∧ y ≤ 3, b

Figure 5.2: A2 could avoid reading clock x which belongs to A1.

easily even by tools: once the NTA is transformed into a single timed automaton
by the classical product construction, the notion of distribution is lost and the
notion of shared clock itself becomes meaningless.

Nevertheless, implementing a model with shared clocks in a distributed ar-
chitecture is not straightforward since reading clocks a priori requires commu-
nications which are not explicitly described in the model.

We are interested in detecting the cases where it is possible to avoid sharing
clocks, so that the model can be implemented using no other synchronization
than those explicitly described by common actions. Or, in terms of NTA, we
identify NTA which syntactically use shared clocks, but whose semantics can be
achieved by another NTA without shared clocks.

We restrict our study to the case of a network of two TA, A1 ‖ A2, such that
A1 does not read the clocks reset by A2, and A2 may read the clocks reset by
A1. We want to know whether A2 really needs to read these clocks, or if another
NTA A′1 ‖ A′2 could achieve the same behavior as A1 ‖ A2 without using shared
clocks.

Before formalizing the problem, we study two examples informally.

A First Example

Consider the example of Figure 5.2, made of two TA, supposed to describe
two separate components. Remark that A2 reads clock x which is reset by A1.
But a simple analysis shows that this reading could be avoided: because of the
condition on its clock y, A2 can only take transition b before time 3; but x
cannot reach value 2 before time 3, since it must be reset between time 1 and
2. Thus, forgetting the condition on x in A2 would not change the behavior of
the system.

Transmitting Information During Synchronizations

Consider now the example of Figure 5.3. Here also A2 reads clock x which
is reset by A1, and here also this reading could be avoided. But here, simply
removing the constraints on x in A2 would change the behavior. We need or a
more sophisticated construction. The idea is that A1 can transmit the value of
x when synchronizing, and afterwards, any reading of x in A2 can be replaced
by the reading of a new clock x′ dedicated to storing the value of x which is
copied on the synchronization. Therefore A2 can be replaced by A′2 pictured in
Figure 5.3. This preserves the behavior of the NTA, including the behavior of
A2 in the context of A1.

47

x ≤ 3

x ≤ 3

A1

`s

x ≤ 4

A2

x ≥ 1
a

x ≥ 2
s

x = 3
c

x < 1
b
{x}

y ≥ 2
s

x ≥ 1
e

{y}

x′ ≤ 4

y ≥ 2
s

x′ := x

x′ ≥ 1
e

{y}

A′
2

Figure 5.3: A2 reads x which belongs to A1 and A′2 does not.

We claim that we cannot avoid reading x without this copy of clock. Indeed,
after the synchronization, the maximal delay in the current location depends on
the exact value of x, and even if we find a mechanism to allow A′2 to move to
different locations according to the value of x at synchronization time, infinitely
many locations would be required (for example, if s occurs at time 2, x may
have any value in (1, 2]).

Coding Transmission of Information

In order to model the transmission of information during synchronizations, we
allow A′1 and A′2 to use a larger synchronization alphabet than A1 and A2. This
allows A′1 to transmit discrete information like its current location, to A′2. The
correspondence between the new synchronization alphabet and the original one
will be done by a mapping ψ.

But we saw that A′1 also needs to transmit the exact value of its clocks.
For this we allow an automaton to copy its neighbor’s clocks into local clocks
during synchronizations. This is denoted as updates of the form x′ := x in A′2
(see Figure 5.3). This is a special case of updatable timed automata as defined
in [37].

5.2.1 Formalization of the Problem

In order to formalize the problem, we use the behavioral comparisons introduced
in Chapter 4.

Given a NTA A1 ‖ A2 such that A1 does not read the clocks of A2, we say
that A2 does not need to read the clocks of A1 iff there exists an NTA A′1 ‖ A′2
without shared clocks (but with clock copies during synchronizations), such
that:

1. ψ(A′1 ‖ A′2) is distributed timed weakly bisimilar to A1 ‖ A2,

2. ψ(TTSA′2(A′1)) is weakly timed bisimilar to TTSA2
(A1), and

48

3. ψ(TTSA′1(A′2)) is weakly timed bisimilar to TTSA1(A2),

with ψ a mapping that relates the synchronization alphabet of A′1 ‖ A′2 with the
one of A1 ‖ A2 (this is required to code the transmission of information during
synchronizations as we explained earlier).

Then we give a criterion to decide whether shared clocks are necessary.

Theorem 5.1. If there is no restriction in TTSA1
(A2), then A2 does not need

to read the clocks of A1. When A2 is deterministic, this condition becomes
necessary.

This criterion confirms the interest of unrestricted contextual TTS men-
tioned at the end of Chapter 4.

In next subsection, we show how to effectively construct an NTA without
shared clocks when it exists.

5.2.2 Constructing a Network of Timed Automata with-
out Shared Clocks

As announced, our A′1 is obtained from A1 by replacing the label a on every
synchronization edge of A1 by (a, `1), where `1 is the output location of the
edge. This allows A′1 to transmit its location after each synchronization.

Then, the idea is to build A′2 as a product A1,2×A2,mod (× denotes the usual
synchronous product of TA [2]), where A2,mod plays the role of A2 and A1,2 acts
as a local copy of A′1, from which A2,mod reads clocks instead of reading those
of A′1. Then the system behaves as follows.

• Each time A′1 synchronizes with A′2, A′2 updates A1,2 to the actual state
of A′1. These updates are represented by the dashed arcs in Figure 5.4.

• Between two synchronizations, A1,2 evolves, simulating a run of A′1 that
is compatible with what A′2 knows about A′1. Of course the simulated run
may differ from the actual run of A1. Then two situations are possible.

– If the clocks of A1,2 always give the same truth value to the guards
and invariants of A2,mod than the actual value of the clocks of A′1,
then our construction behaves like A1 ‖ A2.

– Otherwise the shared clocks cannot be avoided.

Therefore, we equip A′2 with an error location, /, and edges that lead to
it if there is a contradiction between the values of the clocks of A′1 and
the values of the clocks of A1,2. The guards of these edges are the only
cases where A′2 reads clocks of A′1. Hence, if / is not reachable, they can
be removed so that A′2 does not read the clocks of A′1.

Figure 5.4 shows A1,2 and A2,mod for the example of Figure 5.3.

The first property of this construction is that / is reachable in A′1 ‖ A′2 iff
there is a restriction in TTSA1

(A2).

49

x′ ≤ 3

x′ ≤ 3

A1,2

`s

x′ ≤ 4 /

A2,mod

x′ ≥ 1
ε

x′ = 3
ε

x′ < 1
ε
{x′}

y ≥ 2

(s, `s)

x′ ≥ 1
e

{y}

¬(x ≤ 4)

x′ ≥ 1 ∧ x < 1

x′ < 1 ∧ x ≥ 1
(s, `s)

x′ := x

(s, `s)

x′ := x

(s, `s), x′ := x

Figure 5.4: A1,2 and A2,mod for the example of Figure 5.3. We represent by
dotted arcs the edges leading to the error state, and by dashed arcs those used
during synchronizations to reset A1,2 to the actual state of A1. The transitions
of A1,2 that simulate internal actions of A1 are labeled by ε since, in the final
system, they are internal to the component A′2 = A1,2 × A2,mod and do not
participate in the observable behavior of the system.

In this case, we announced that it is possible to build an NTA without
shared clocks which behaves like A1 ‖ A2. In the “good” cases, the construction
A′1 ‖ A′2, with the unreachable error location / removed, is suitable. “Good”
means that A1 has no urgent synchronization, i.e. for every location, a local
action can always be taken immediately before the invariant expires.

In the other cases, when A1 has urgent synchronizations, our construction
allows one to check the absence of restriction in TTSA1

(A2), but it does not
give directly a suitable A′2.

Dealing with Urgent Synchronizations

The problem if we use our construction when A1 has urgent synchronizations
is the following. Remind that A1,2 simulates a possible run of A′1 while A′1
plays its actual run. There is no reason why the two runs should coincide.
Thus it may happen that the run simulated by A1,2 reaches a state where the
invariant expires and only a synchronization is possible. Then A′2 is expecting a
synchronization with A′1, but it is possible that the actual A′1 has not reached a
state that enables this synchronization. Intuitively, A′2 should then realize that
the simulated run cannot be the actual one and try another run compatible with
the absence of synchronization.

In fact, between two synchronizations, A1,2, the local copy of A1, can be con-
structed to simulate only one fixed run of A1, instead of being able to simulate
all its runs. If this run is well chosen, then the situation described above never
happens, and we can use a construction similar to the one above, on which we
can prove that if / is not reachable, then any run of A1 is compatible with the
fixed run of A1,2, and A2 can avoid reading the clocks of A1.

50

Therefore, the idea is to force A1,2 to simulate one of the runs of A1 (from the
state reached after the last synchronization) that has maximal duration before it
synchronizes again with A2,mod (or never synchronizes again if possible). There
may not be any such run if some time constraints are strict inequalities, but the
idea can be adapted even to this case.

5.2.3 Conclusion

We have shown that in a distributed framework, when locality of actions and
synchronizations matter, transforming an NTA with shared clocks into an NTA
without shared clocks is nontrivial an not always possible. The fact that the
transformation is possible can be characterized using the notion of contextual
TTS which represents the knowledge of one automaton about the other. Check-
ing if shared clocks can be avoided is PSPACE-complete.

A first point to notice is that, contrary to what happens when one considers
the sequential semantics, NTA with shared clocks are strictly more expressive
if we take distribution into account. This somehow justifies why shared clocks
were introduced: they are actually more than syntactic sugar.

Another interesting point that I want to recall here, is the use of transmit-
ting information during synchronizations. It is noticeable that infinitely precise
information is required in general. This advocates the interest of updatable
(N)TA [37] used in an appropriate way, and more generally gives a flavor of a
class of NTA closer to implementation.

Concerning transmission of information between components in a real-time
distributed system, a real-time epistemic logics is introduced in [97] to reason
about what a TA knows about the state of the others.

5.3 Perspectives

As I announced, implementability of real-time distributed systems is the main
topic I would like to develop in the coming years. My first two contributions
on the subject, obtained during Sandie Balaguer’s PhD, open several natural
questions.

Interest for Design of Distributed Real-Time Systems

One reason maybe why shared clocks are relatively well accepted in the commu-
nity is that they can be a very convenient feature for modeling systems. Imagine
for instance several agents performing together a distributed task according to
a predefined schedule. In a typical implementation the schedule would be sent
to the agents at the beginning and every agent would store its own copy of the
schedule. But for a (simplified) model of the system, it is much easier to have
one timed automaton modeling a single copy of the schedule and every agent
referring to it via shared clocks.

51

In system design, our technique for dealing with shared clocks could help
a designer to use shared clocks in an abstract specification, and build auto-
matically an implementable distributed model without shared clocks. For the
example of several agents performing together a distributed task according to
a predefined schedule, this would generate the mechanism for creating the local
copies of the schedule.

It would also be worth investigating applications in multi-core programming.

Shared Clocks in General Architectures

Contextual TTS developed for the simple case of networks of two automata with
only one reading the clocks of the other. Now we have the necessary background
to tackle more general architectures.

The first step will be to generalize our result to the symmetrical case where
A1 also reads clocks from A2. Then of course we can tackle general NTA with
more than two automata. But transmission of information in general archi-
tectures is much more complicated than between two automata. It leads to
situations where the components have incomparable knowledge, which is known
as a source of undecidability.

Transmission of Information

Another line of research is to focus on transmission of information. The goal
would be to minimize the information transmitted during synchronizations, and
see for example where the limits of finite information lay.

Also in practice a component cannot even get the infinitely precise time
values to transmit since its clocks have bounded precision. Then the question
is to find the minimum precision, if it exists, that is required to implement a
given distributed specification.

Finally, it is also necessary to deal with the precision of communication
delays.

Measuring Concurrency

When shared clocks cannot be avoided, one can however discuss how to minimize
them, or how to implement the model on a distributed architecture and how to
handle shared clocks with as few communications as possible.

For this, one needs to find the good notions for measuring “how much con-
current” an implementation is, i.e. do components run independently, or on the
contrary, do they often synchronize.

Robustness Issues

Even when infinitely precise information is required to achieve the exact seman-
tics of the NTA, it is worth studying how this semantics can be approximated
using information of bounded precision.

52

This relates to the problem of robustness of models with dense real-time
constraints: their semantics introduce some continuity aspects in finite state
models like automata or bounded Petri nets, which have typically discrete be-
havior otherwise. Therefore one can expect that small changes in the constants
that serve as time bounds, will result in small changes in the behavior. But
many situations occur when even arbitrarily small changes in some constant
induces a qualitative change in the behavior. For instance enlarging the firing
delay of a transition may simply delay it, but may also cause another transition
to fire instead.

This situation requires some care when the model is supposed to be imple-
mented, because it may not be possible to ensure an exact value for a parameter
that represents for example the propagation time of an electrical signal throw
an electronic component.

Also when one has to check a safety property of a model that is supposed
to represent a real system, it may be reasonable to check that the safety result
is robust to small errors in the measures, that is the model is still safe if one
introduces small enough variations in the time constants.

In the context of sequential timed systems, robustness issues were studied
for instance in [39, 40].

Here again my intention is to study robustness issues related to the dis-
tribution of the system. One problem is that clocks from physically different
components cannot be assumed perfectly synchronous and some drifts can be
observed. In [1] the authors consider distributed timed automata with indepen-
dently evolving clocks to study this problem.

Models Adapted to Implementation

Dealing with implementability of models necessarily means wondering which
models or which features in the models are realistic w.r.t. a physical implemen-
tation.

For instance my work on shared clocks advocates the interest of updatable
NTA [37] used in an appropriate way, and more generally gives a flavor of a
class of NTA closer to implementation.

It could be compared for instance with another variant, Timed Cooperating
Automata, proposed in [92], where the edges can be guarded by time constraints
of the form q = τ (location q is enabled for τ time units), q[τ] (location q is
enabled for at least τ time units), q{τ} (location q is disabled for at most τ time
units) or boolean combinations of these terms.

Concerning synchronizations on common actions, it is again a high-level
feature that can be debated from the point of view of implementability. More
realistic paradigms were proposed like input-enabled [99].

Limiting Synchronizations in Networks of (Timed) Automata

The idea here is to consider a high-level model where some communications be-
tween components are explicitly specified as part of the desired behavior, while

53

others are just used in the model to constrain the executions of the automata
but do not need to be actually implemented. Some of them may be redundant,
for instance a synchronization whose purpose is to transfer information from
a component to another is useless if the information was already sent earlier.
Since communications take time and have a cost, it is desirable to avoid those
that are useless.

The question is to find an implementation of the model which satisfies the
specifications and minimizes the synchronizations. The problem of avoiding
shared clocks could be seen as a particular case where the synchronizations to
avoid are the clock readings (which a priori occur at any time, continuously in
the semantics of NTA).

Implementation of Rendezvous

Here we focus on the problem of implementation on distributed architectures.
Consider for instance the formalism of networks of timed automata: it naturally
extends timed automata to a distributed setting where each automaton models
a sequential component, and the communications are described as synchroniza-
tions on common actions, also called rendezvous. But actually implementing
rendezvous on a distributed architecture is a nontrivial problem even without
real-time constraints, since in general the components that initiate a rendezvous
cannot be sure that the other participants are ready to synchronize. Bagrodia
proposed an algorithm to solve this problem in [10].

Adapting this algorithm to a real-time setting is a real challenge since com-
munications required to establish the rendezvous take some time and could delay
the desired synchronization, which may completely change the behavior of the
system.

In a discrete time setting, the problem of distributed implementation of high-
level component-based models was addressed for instance in [34] and [108]. To
my knowledge the implementation of distributed models with dense time is still
an open problem and I expect that the techniques to deal with dense time will
be very different from those used in discrete time, as it is usually the case with
this kind of formal models.

The challenge here is to design algorithms to implement formal models of
(dense) real-time distributed systems on distributed architectures. By imple-
mentation I do not necessarily mean final implementation to hardware, but
rather transformation to lower-level real-time models that do not use the high-
level rendezvous mechanism.

54

Conclusion

Summary of Contributions

The Contributions Presented in this Thesis

Chapter 3 is based on my contributions [11, 12] and [51] on extensions of the
reveals relation and facets reduction and on my recent contribution [56] about
the time progress assumption in extended free choice time Petri nets.

Chapters 4 and 5 deal with implementability of high-level real-time dis-
tributed models by defining transformations to lower-level models closer to im-
plementation. These transformations, as well as the behavioral comparisons
needed to validate them, are taken from my contributions [14, 15] and [13].

Older Contributions on Unfoldings

My PhD thesis, prepared under supervision of Claude Jard and defended in
Rennes in 2006, deals with unfoldings of high-level Petri nets and their appli-
cations to diagnosis in distributed systems. I also obtained other contributions
on unfoldings after my PhD. Here is an overview.

Symbolic Unfoldings of Safe Time Petri Nets. This is the largest and
most involved contribution of my PhD. The difficulty in unfoldings of real-time
systems is due to the ordering of events induced by time, which breaks the nice
properties of concurrency in asynchronous systems.

I showed that these difficulties come essentially from the combination of the
structural pattern called confusion, which makes choices non local, with strong
time constraints, which introduce urgency in the semantics. Models without
confusion or with weak time constraints can be treated easily.

Then I gave the first definition of symbolic unfoldings of TPNs. My approach
is based on the definition of a concurrent operational semantics, to reduce the
implicit synchronization due to time progress. I showed the existence of finite
complete prefixes for symbolic unfoldings of safe TPNs in [55].

Unfoldings of NTA. We proposed a symbolic unfolding technique for NTA
in [47].

55

Symbolic Unfoldings of Colored Petri Nets. In [52], we define symbolic
unfoldings for colored Petri nets. Symbolic unfoldings allow us to group family
of executions which share the same structure but differ only by the colors of the
tokens. In [59], we propose a category theoretic formalization of these symbolic
unfoldings in order to get factorization properties.

Unfoldings of Dynamic Systems. I dealt also with very expressive exten-
sions of Petri nets, adapted to modeling systems whose structure evolves during
time. In [53], these dynamic aspects are modeled by adding and removing tran-
sitions during the execution. The difficulty when unfolding such model is to
know what transitions are in the net after a given execution. The originality of
our approach is to represent transitions as particular tokens so that they appear
in the marking and can be added and removed dynamically.

In [17, 18], we propose to model dynamic systems as graph grammars, and
give a category theoretic definition of unfoldings for this model.

Application of Unfoldings to Diagnosis in Distributed Systems. Be-
cause of the number of components that take part in complex networks, failures
cannot be avoided and the system has to be designed so that they have as little
impact as possible on the activity of the whole system. For this purpose many
components are now designed so that they emit alarms when some particular
conditions are met.

Nevertheless, inferring the causes of the failures is a challenging problem.
One reason for this is the large number of alarms that are emitted. Consequently
the supervisor has to select the ones that report an actual defect. Moreover some
errors result from complex scenarios that involve several components. Then, the
causes of a failure can only be inferred from a set of alarms, by reconstructing
a part of the history of the system.

In our approach, the explanations are given as processes of a Petri net model
of the supervised system. The interest of using unfoldings for supervision is not
only to avoid the state space explosion problem, but also to highlight the causal
dependencies between the events that are involved in the explanations. An
interesting point is that this original application of unfoldings does not require
the existence of finite complete prefixes, since the size of the explanations is
bounded by the observation. This allows one to use very expressive high-level
extensions of Petri nets: colored Petri nets in [52], time Petri nets in [54],
dynamic nets in [53].

Well-Foundedness of Adequate Orders. Petri net unfolding prefixes are
an important technique for formal verification and synthesis of concurrent sys-
tems. In [57] we show that the requirement that the adequate order used for
truncating a Petri net unfolding must be well-founded is superfluous in many
important cases, i.e. it logically follows from other requirements. This result
concerns the very core of the unfolding theory.

56

Alternating Simulation Between Timed Games

In [58] we focus on property-preserving preorders between timed game automata
and their application to control of partially observable systems. Following the
example of timed simulation between timed automata, we define timed alter-
nating simulation as a preorder between timed game automata, which preserves
controllability. We define a method to reduce the timed alternating simulation
problem to a safety game. We show how timed alternating simulation can be
used to control efficiently a partially observable system.

A second article [43] presents a direct method to solve the problem without
constructing explicitly the timed game to be solved. This method was imple-
mented in the tool Uppaal Tiga.

Time Parameter Synthesis for Design of Distributed Au-
tomation Architectures

We consider the design process of a distributed automation architecture, where
some time constants are not completely fixed and can still be adjusted by the
designer. Therefore the system is modeled as a parametric NTA where some
time constants are replaced by symbolic parameters. We assume that a proper
reference valuation of the parameters is known. In [3, 4], we describe a proce-
dure for deriving constraints on the parametric timings in order to ensure that,
for each value of parameters satisfying these constraints, the behavior of the
instantiated NTA is time-abstract equivalent to its proper behavior with the
reference valuation.

Synthesis of Distributed Asynchronous Systems

We study the synthesis problem in an asynchronous distributed setting: a finite
set of processes interact locally with an uncontrollable environment and com-
municate with each other by sending signals, i.e. actions that are immediately
received by the target process. The synthesis problem is to come up with a local
strategy for each process such that the resulting behaviors of the system meet
a given specification. In [60], we consider external specifications over partial
orders. External means that specifications only relate input and output actions
from and to the environment and not signals exchanged by processes. We also
require some closure properties of the specification, which we regard as natural
and reasonable. We present this new setting for studying the distributed syn-
thesis problem, and give decidability results for the subclass of networks where
the communication architecture is a strongly connected graph.

57

Summary of Perspectives

Implementability of Real-Time Distributed Systems

This is my main perspective for the coming years. I presented it in detail at the
end of Chapter 5.

Papers [14, 15] and [13], described in Chapters 4 and 5 are my first con-
tributions on this subject, and they open a large spectrum of new questions.
Beyond the natural questions about generalization of our techniques to more
general models, the perspectives involve problems related to transmission of in-
formation, approximation of models and robustness issues, always keeping in
mind that distribution of actions must be preserved and that communications
between components must be limited.

For many aspects, it is still a fresh research topic with very little literature
available.

Applications of the Reveals Relation and of the Net Contraction Tech-
niques

I presented in Section 3.6.1 several applications of the reveals relation and of the
net contraction techniques. They range from synthesis of nets to verification,
diagnosis, prediction and estimation of energy consumption in asynchronous
circuits.

Games and Controller Synthesis for Real-Time Distributed Systems

This is, I think, a very challenging topic which I mention as perspective for
the long term. It combines the difficulties of distributed concurrent systems
with partial observation, incomplete knowledge, real-time constraints, games
and strategies, collaborative or not. . .

Many situations where multiple agents interact together, can be modeled
elegantly using the metaphor of a game. For example, interactions between an
open system and its environment are often represented as a two players game.
Game theory allows one to solve problems coming from various domains such as
modeling, simulation, controller synthesis, verification, testing. . . Representing
the problem as a game helps in understanding its algorithmic nature and in
expressing its solutions under the form of strategies.

But the notion of game must be adapted when one deals with real-time sys-
tems [100, 5, 88]. Some algorithms were already proposed [48] and implemented
in the tool Uppaal Tiga [20].

On the other hand, synthesis of distributed controllers is also a problem that
has been studied only recently [83, 104, 60] and where the interest of partial
order semantics appeared clearly. A conclusion of our contribution [60] is that
the use of realistic and natural models and specifications is crucial there. This
relates it to the problems of implementability that I addressed earlier.

58

Finally, a very sensitive aspect in synthesis of distributed controllers is the
role of fairness conditions. Indeed, in an asynchronous distributed setting, two
agents may want to play at the same time. And it is meaningless to try to
synthesize a controller if its environment is always going to prevent it from
playing. The aim of fairness conditions is to ensure that the actions of each
player are taken into account sufficiently often.

Several classical definitions exist for fairness constraints and their differences
are so subtle that it is difficult to know which one is adapted in a given context.
Instead, in a real-time context, the comparison of the execution speed of the
different agents can be quantified and this gives very natural notions of fairness
constraints.

59

Bibliography

[1] S. Akshay, B. Bollig, P. Gastin, M. Mukund, and K. Narayan Kumar.
Distributed timed automata with independently evolving clocks. In CON-
CUR’08, volume 5201 of LNCS, pages 82–97, Toronto, Canada, 2008.
Springer.

[2] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[3] É. André, Th. Chatain, E. Encrenaz, and L. Fribourg. An inverse method
for parametric timed automata. In Proceedings of the 2nd Workshop on
Reachability Problems in Computational Models (RP’08), volume 223 of
Electronic Notes in Theoretical Computer Science, pages 29–46. Elsevier
Science Publishers, 2008.

[4] É. André, Th. Chatain, E. Encrenaz, and L. Fribourg. An inverse method
for parametric timed automata. International Journal of Foundations of
Computer Science, 20(5):819–836, Oct. 2009.

[5] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for
timed automata. In IFAC Symp. on System Structure & Control, pages
469–474. Elsevier Science, 1998.

[6] T. Aura and J. Lilius. Time processes for time Petri nets. In ICATPN, vol-
ume 1248 of Lecture Notes in Computer Science, pages 136–155. Springer,
1997.

[7] T. Aura and J. Lilius. A causal semantics for time Petri nets. Theoretical
Computer Science, 243(1-2):409–447, 2000.

[8] E. Badouel, B. Caillaud, and P. Darondeau. Distributing finite automata
through Petri net synthesis. Journal on Formal Aspects of Computing,
13:447–470, 2002.

[9] E. Badouel and P. Darondeau. Theory of regions. In Lectures on Petri
Nets I: Basic Models, volume 1491 of LNCS, pages 529–586. Springer
Berlin / Heidelberg, 1998.

60

[10] R. Bagrodia. A distributed algorithm to implement n-party rendevouz.
In FSTTCS, volume 287 of Lecture Notes in Computer Science, pages
138–152. Springer, 1987.

[11] S. Balaguer, T. Chatain, and S. Haar. Building tight occurrence nets from
reveals relations. In B. Caillaud and J. Carmona, editors, Proceedings
of the 11th International Conference on Application of Concurrency to
System Design (ACSD’11), pages 44–53, Newcastle upon Tyne, UK, June
2011. IEEE Computer Society Press.

[12] S. Balaguer, T. Chatain, and S. Haar. Building occurrence nets from
reveals relations. Fundamenta Informaticae, 123(3):245–272, 2013.

[13] S. Balaguer and Th. Chatain. Avoiding shared clocks in networks of timed
automata. In M. Koutny and I. Ulidowski, editors, Proceedings of the 23rd
International Conference on Concurrency Theory (CONCUR’12), volume
7454 of Lecture Notes in Computer Science, pages 100–114, Newcastle,
UK, Sept. 2012. Springer.

[14] S. Balaguer, Th. Chatain, and S. Haar. A concurrency-preserving transla-
tion from time Petri nets to networks of timed automata. In Proceedings of
the 17th International Symposium on Temporal Representation and Rea-
soning (TIME’10), pages 77–84, Paris, France, 2010. IEEE Computer
Society Press.

[15] S. Balaguer, Th. Chatain, and S. Haar. A concurrency-preserving transla-
tion from time Petri nets to networks of timed automata. Formal Methods
in System Design, 40(3):330–355, 2012.

[16] P. Baldan, A. Bruni, A. Corradini, B. König, C. Rodŕıguez, and
S. Schwoon. Efficient unfolding of contextual Petri nets. Theor. Com-
put. Sci., 449:2–22, 2012.

[17] P. Baldan, Th. Chatain, S. Haar, and B. König. Unfolding-based diagnosis
of systems with an evolving topology. In CONCUR’2008, volume 5201 of
Lecture Notes in Computer Science, pages 203–217. Springer, 2008.

[18] P. Baldan, Th. Chatain, S. Haar, and B. König. Unfolding-based diagnosis
of systems with an evolving topology. Information and Computation,
208(10):1169–1192, Oct. 2010.

[19] P. Baldan, A. Corradini, and U. Montanari. Contextual Petri nets, asym-
metric event structures, and processes. Information and Computation,
171(1):1–49, 2001.

[20] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and
D. Lime. Uppaal-tiga: Time for playing games! In CAV, volume 4590 of
Lecture Notes in Computer Science, pages 121–125. Springer, 2007.

61

[21] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial order reductions for
timed systems. In CONCUR, volume 1466 of Lecture Notes in Computer
Science, pages 485–500. Springer, 1998.

[22] B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux. When are
timed automata weakly timed bisimilar to time Petri nets? Theoretical
Computer Science, 403(2-3):202–220, 2008.

[23] B. Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux. The expressive
power of time Petri nets. Theor. Comput. Sci., 474:1–20, 2013.

[24] B. Bérard, F. Cassez, S. Haddad, O. Roux, and D. Lime. Comparison
of the expressiveness of timed automata and time Petri nets. In FOR-
MATS’05, volume 3829 of Lecture Notes in Computer Science, pages 211–
225. Springer, 2005.

[25] R. Bergenthum. Faster verification of partially ordered runs in Petri nets
using compact tokenflows. In Petri Nets, volume 7927 of Lecture Notes in
Computer Science, pages 330–348. Springer, 2013.

[26] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Synthesis of Petri
nets from finite partial languages. Fundam. Inform., 88(4):437–468, 2008.

[27] L. Bernardinello. Synthesis of net systems. In ICATPN, volume 691 of
LNCS, pages 89–105. Springer, 1993.

[28] G. Berthelot. Checking properties of nets using transformation. In Ap-
plications and Theory in Petri Nets, volume 222 of LNCS, pages 19–40.
Springer, 1985.

[29] B. Berthomieu, F. Peres, and F. Vernadat. Bridging the gap between
timed automata and bounded time Petri nets. In FORMATS, volume
4202 of Lecture Notes in Computer Science, pages 82–97. Springer, 2006.

[30] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool TINA – construc-
tion of abstract state spaces for Petri nets and time Petri nets. Interna-
tional Journal of Production Research, 42(14):2741–2756, 2004.

[31] E. Best. Structure theory of Petri nets: the free choice hiatus. In Pro-
ceedings of an Advanced Course on Petri Nets: Central Models and Their
Properties, Advances in Petri Nets 1986-Part I, pages 168–205, London,
UK, 1987. Springer-Verlag.

[32] E. Best, R. R. Devillers, A. Kiehn, and L. Pomello. Concurrent bisimula-
tions in Petri nets. Acta Inf., 28(3):231–264, 1991.

[33] E. Best and B. Randell. A formal model of atomicity in asynchronous
systems. Acta Informatica, 16(1):93–124, 1981.

62

[34] B. Bonakdarpour, M. Bozga, and J. Quilbeuf. Automated distributed
implementation of component-based models with priorities. In EMSOFT,
pages 59–68. ACM, 2011.

[35] H. Boucheneb, D. Lime, and O. H. Roux. On multi-enabledness in time
Petri nets. In ICATPN, volume 7927 of Lecture Notes in Computer Sci-
ence. Springer, 2013.

[36] P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timed control with
partial observability. In W. A. Hunt, Jr and F. Somenzi, editors, CAV
2003, volume 2725 of LNCS, pages 180–192. Springer, Heidelberg, 2003.

[37] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Updatable timed au-
tomata. Theoretical Computer Science, 321(2-3):291–345, 2004.

[38] P. Bouyer, S. Haddad, and P.-A. Reynier. Timed unfoldings for networks
of timed automata. In Proceedings of the 4th International Symposium on
Automated Technology for Verification and Analysis (ATVA’06), volume
4218 of Lecture Notes in Computer Science, pages 292–306, Beijing, ROC,
2006. Springer.

[39] P. Bouyer, K. G. Larsen, N. Markey, O. Sankur, and C. Thrane. Timed
automata can always be made implementable. In Proceedings of the 22nd
International Conference on Concurrency Theory (CONCUR’11), volume
6901 of Lecture Notes in Computer Science, pages 76–91. Springer, 2011.

[40] P. Bouyer, N. Markey, and P.-A. Reynier. Robust model-checking of
linear-time properties in timed automata. In Proceedings of the 7th Latin
American Symposium on Theoretical Informatics (LATIN’06), volume
3887 of Lecture Notes in Computer Science, pages 238–249. Springer, 2006.

[41] M. Boyer and O. H. Roux. On the compared expressiveness of arc, place
and transition time Petri nets. Fundamenta Informaticae, 88(3):225–249,
2008.

[42] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine.
Kronos: a model-checking tool for real-time systems. In International
Conference on Computer Aided Verification (CAV), volume 1427 of LNCS,
pages 546–550, 1998.

[43] P. Bulychev, Th. Chatain, A. David, and K. G. Larsen. Checking simu-
lation relation between timed game automata. In Proceedings of the 7th
International Conference on Formal Modelling and Analysis of Timed Sys-
tems (FORMATS’09), volume 5813 of Lecture Notes in Computer Science,
pages 73–87. Springer, 2009.

[44] N. Busi and G. M. Pinna. Non sequential semantics for contextual P/T
nets. In Application and Theory of Petri Nets, volume 1091 of Lecture
Notes in Computer Science, pages 113–132. Springer, 1996.

63

[45] J. Byg, K. Joergensen, and J. Srba. An efficient translation of timed-arc
Petri nets to networks of timed automata. In International Conference
on Formal Engineering Methods, volume 5885 of LNCS, pages 698–716.
Springer-Verlag, 2009.

[46] J. Carmona, J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. A symbolic algorithm for the synthesis of bounded Petri
nets. In ICATPN, volume 5062 of LNCS, pages 92–111. Springer-Verlag,
2008.

[47] F. Cassez, T. Chatain, and C. Jard. Symbolic unfoldings for networks of
timed automata. In ATVA, volume 4218 of Lecture Notes in Computer
Science, pages 307–321, Beijing, ROC, 2006. Springer.

[48] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-
the-fly algorithms for the analysis of timed games. In CONCUR, volume
3653 of Lecture Notes in Computer Science, pages 66–80. Springer, 2005.

[49] F. Cassez and O. Roux. Structural translation from time Petri nets to
timed automata. Journal of Systems and Software, 2006.

[50] K. Cerans, J. C. Godskesen, and K. G. Larsen. Timed modal specification
- theory and tools. In CAV, volume 697 of LNCS, pages 253–267. Springer,
1993.

[51] T. Chatain and S. Haar. A canonical contraction for safe Petri nets. In
Proceedings of the International Workshop on Petri Nets and Software
Engineering, volume 989, pages 19–33. CEUR-WS, 2013.

[52] T. Chatain and C. Jard. Symbolic diagnosis of partially observable con-
current systems. In FORTE, volume 3235 of LNCS, pages 326–342, 2004.

[53] T. Chatain and C. Jard. Models for the supervision of web services or-
chestration with dynamic changes. In Advanced Industrial Conference
on Telecommunication / Service Assurance with Partial and Intermittent
Resources (AICT/SAPIR 2005), 2005.

[54] T. Chatain and C. Jard. Time supervision of concurrent systems using
symbolic unfoldings of time Petri nets. In FORMATS, volume 3829 of
LNCS, pages 196–210, 2005.

[55] T. Chatain and C. Jard. Complete finite prefixes of symbolic unfoldings of
safe time Petri nets. In ICATPN, volume 4024 of LNCS, pages 125–145,
june 2006.

[56] T. Chatain and C. Jard. Back in time Petri nets. In V. Braberman and
L. Fribourg, editors, Proceedings of the 11th International Conference on
Formal Modelling and Analysis of Timed Systems (FORMATS’13), vol-
ume 8053 of Lecture Notes in Computer Science, pages 91–105. Springer,
2013.

64

[57] T. Chatain and V. Khomenko. On the well-foundedness of adequate or-
ders used for construction of complete unfolding prefixes. Information
Processing Letters, 104(4):129–136, 2007.

[58] Th. Chatain, A. David, and K. G. Larsen. Playing games with timed
games. In Proceedings of the 3rd IFAC Conference on Analysis and Design
of Hybrid Systems (ADHS’09), 2009.

[59] Th. Chatain and É. Fabre. Factorization properties of symbolic unfoldings
of colored Petri nets. In Proceedings of the 31st International Conference
on Applications and Theory of Petri Nets (ICATPN’10), volume 6128
of Lecture Notes in Computer Science, pages 165–184, Braga, Portugal,
2010. Springer.

[60] Th. Chatain, P. Gastin, and N. Sznajder. Natural specifications yield de-
cidability for distributed synthesis of asynchronous systems. In Proceed-
ings of the 35th International Conference on Current Trends in Theory
and Practice of Computer Science (SOFSEM’09), volume 5404 of Lecture
Notes in Computer Science, pages 141–152. Springer, 2009.

[61] J. M. Colom and M. Silva. Convex geometry and semiflows in P/T nets. A
comparative study of algorithms for computation of minimal p-semiflows.
In Proceedings of the 10th International Conference on Applications and
Theory of Petri Nets, pages 79–112, London, UK, 1991. Springer-Verlag.

[62] P. Darondeau. Deriving unbounded Petri nets from formal languages. In
CONCUR, volume 1466 of LNCS, pages 533–548. Springer, 1998.

[63] A. David, L. Jacobsen, M. Jacobsen, K. Y. Jørgensen, M. H. Møller, and
J. Srba. Tapaal 2.0: Integrated development environment for timed-arc
Petri nets. In TACAS, volume 7214 of Lecture Notes in Computer Science,
pages 492–497. Springer, 2012.

[64] A. David, K. G. Larsen, S. Li, and B. Nielsen. Timed testing under partial
observability. In ICST, pages 61–70. IEEE Computer Society, 2009.

[65] J. Desel and J. Esparza. Free Choice Petri nets. Cambridge University
Press, 1995.

[66] J. Desel and A. Merceron. Vicinity respecting homomorphisms for ab-
stracting system requirements. In Proc. Int. Workshop on Abstractions
for Petri Nets and Other Models of Concurrency (APNOC), 2009.

[67] J. Desel and W. Reisig. The synthesis problem of Petri nets. Acta Inf.,
33:297–315, 1996.

[68] V. Diekert. The Book of Traces. World Scientific Publishing Co., Inc.,
River Edge, NJ, USA, 1995.

65

[69] D. L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In Automatic Verification Methods for Finite State Systems, vol-
ume 407 of Lecture Notes in Computer Science, pages 197–212. Springer,
1989.

[70] C. Dima. Positive and negative results on the decidability of the model-
checking problem for an epistemic extension of timed ctl. In TIME, pages
29–36. IEEE Computer Society, 2009.

[71] C. Dima and R. Lanotte. Distributed time-asynchronous automata. In
ICTAC, pages 185–200. Springer-Verlag, 2007.

[72] A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures. parts I and
II. Acta Inf., 27(4):315–368, 1989.

[73] H. Ehrig, K. Hoffmann, J. Padberg, P. Baldan, and R. Heckel. High-level
net processes. In Formal and Natural Computing, volume 2300 of Lecture
Notes in Computer Science, pages 191–219. Springer, 2002.

[74] J. Engelfriet. Branching processes of Petri nets. Acta Informatica,
28(6):575–591, 1991.

[75] J. Esparza and K. Heljanko. A new unfolding approach to LTL model
checking. In ICALP, volume 1853 of Lecture Notes in Computer Science,
pages 475–486. Springer, 2000.

[76] J. Esparza and K. Heljanko. Implementing LTL model checking with net
unfoldings. In SPIN, volume 2057 of Lecture Notes in Computer Science,
pages 37–56. Springer, 2001.

[77] J. Esparza and K. Heljanko. Unfoldings – A Partial-Order Approach to
Model Checking. EATCS Monographs in Theoretical Computer Science.
2008.

[78] J. Esparza and S. Römer. An unfolding algorithm for synchronous prod-
ucts of transition systems. In CONCUR, volume 1664 of Lecture Notes in
Computer Science, pages 2–20. Springer, 1999.

[79] J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s
unfolding algorithm. Formal Methods in System Design, 20(3):285–310,
2002.

[80] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About
Knowledge. MIT Press, 1995.

[81] G. Gardey, D. Lime, M. Magnin, and O. H. Roux. Romeo: A tool for
analyzing time Petri nets. In International Conference on Computer Aided
Verification (CAV), volume 3576 of LNCS, pages 418–423. Springer, 2005.

66

[82] G. Gardey, O. H. Roux, and O. F. Roux. State space computation and
analysis of time Petri nets. Theory and Practice of Logic Programming,
6(3):301–320, 2006.

[83] P. Gastin, B. Lerman, and M. Zeitoun. Distributed games and distributed
control for asynchronous systems. In LATIN, volume 2976 of Lecture Notes
in Computer Science, pages 455–465. Springer, 2004.

[84] S. Haar. Types of asynchronous diagnosability and the reveals-relation in
occurrence nets. IEEE Transactions on Automatic Control, 55(10):2310–
2320, 2010.

[85] S. Haar, C. Kern, and S. Schwoon. Computing the reveals relation in
occurrence nets. In Proceedings of GandALF’11, volume 54 of Electronic
Proceedings in Theoretical Computer Science, pages 31–44, 2011.

[86] S. Haar, C. Rodŕıguez, and S. Schwoon. Reveal your faults: It’s only
fair! In Proceedings of the 13th International Conference on Applica-
tion of Concurrency to System Design (ACSD’13), pages 127–136. IEEE
Computer Society Press, 2013.

[87] M. Hack. Analysis of production schemata by Petri nets. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, USA, 1972.

[88] T. A. Henzinger and P. W. Kopke. Discrete-time control for rectangular
hybrid automata. Theor. Comput. Sci., 221(1-2):369–392, 1999.

[89] V. Khomenko. Model Checking Based on Prefixes of Petri Net Unfoldings.
PhD thesis, School of Computing Science, University of Newcastle upon
Tyne, 2003.

[90] V. Khomenko, M. Koutny, and A. Yakovlev. Detecting state encoding
conflicts in STG unfoldings using SAT. Fundam. Inf., 62(2):221–241, 2004.

[91] R. Kumar and S. Takai. Decentralized prognosis of failures in discrete
event systems. IEEE Transactions on Automatic Control, 55(1):48–59,
2010.

[92] R. Lanotte, A. Maggiolo-Schettini, and A. Peron. Timed cooperating
automata. Fundamenta Informaticae, 43:153–173, August 2000.

[93] K. G. Larsen, P. Pettersson, and W. Yi. Model-checking for real-time
systems. In FCT, volume 965 of Lecture Notes in Computer Science,
pages 62–88. Springer, 1995.

[94] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International
Journal on Software Tools for Technology Transfer (STTT), 1(1-2):134–
152, 1997.

[95] K. Lautenbach. Liveness in Petri nets. Technical report, Gesellschaft fÃ 1
4 r

Mathematik und Datenverarbeitung, Bonn, Germany, July 1975.

67

[96] L. Lloyd, A. V. Yakovlev, E. Pastor, and A. Koelmans. Estimations of
power consumption in asynchronous logic as derived from graph based
circuit representations. In International Workshop on Power and Timing
Modeling, Optimization and Simulation (PATMOS’98), pages 367–376.
Dept. of Information Technology, Technical University of Denmark, 1998.

[97] A. Lomuscio, W. Penczek, and B. Wozna. Bounded model checking for
knowledge and real time. Artif. Intell., 171(16-17):1011–1038, 2007.

[98] D. Lugiez, P. Niebert, and S. Zennou. A partial order semantics approach
to the clock explosion problem of timed automata. Theor. Comput. Sci.,
345(1):27–59, 2005.

[99] N. Lynch and M. R. Tuttle. An introduction to input/output automata.
CWI-Quarterly, 2(3):219–246, 1989.

[100] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers
for timed systems (an extended abstract). In STACS, pages 229–242, 1995.

[101] K. L. McMillan. A technique of state space search based on unfolding.
Formal Methods in System Design, 6(1):45–65, 1995.

[102] P. M. Merlin and D. J. Farber. Recoverability of communication protocols
– implications of a theorical study. IEEE Transactions on Communica-
tions, 24, 1976.

[103] M. Minea. Partial order reduction for model checking of timed automata.
In CONCUR, volume 1664 of Lecture Notes in Computer Science, pages
431–446. Springer, 1999.

[104] S. Mohalik and I. Walukiewicz. Distributed games. In FSTTCS, volume
2914 of Lecture Notes in Computer Science, pages 338–351. Springer, 2003.

[105] P. Niebert and H. Qu. Adding invariants to event zone automata. In
FORMATS, volume 4202 of Lecture Notes in Computer Science, pages
290–305. Springer, 2006.

[106] M. Nielsen, G. D. Plotkin, and G. Winskel. Petri nets, event structures
and domains, part I. Theoretical Computer Science, 13:85–108, 1981.

[107] W. Penczek and A. Pólrola. Abstractions and partial order reductions
for checking branching properties of time Petri nets. In ICATPN, volume
2075 of LNCS, pages 323–342, 2001.

[108] D. Potop-Butucaru, R. de Simone, Y. Sorel, and J.-P. Talpin. Clock-
driven distributed real-time implementation of endochronous synchronous
programs. In EMSOFT, pages 147–156. ACM, 2009.

[109] J. Reif. The complexity of two-player games of incomplete information.
Jour. Computer and Systems Sciences, 29:274–301, 1984.

68

[110] T. G. Rokicki. Representing and Modeling Digital Circuits. PhD thesis,
Standford University, 1993.

[111] J. Sifakis and S. Yovine. Compositional specification of timed systems
(extended abstract). In Symposium on Theoretical Aspects of Computer
Science (STACS), pages 347–359, London, UK, 1996. Springer-Verlag.

[112] J. Srba. Comparing the expressiveness of timed automata and timed
extensions of Petri nets. In FORMATS, volume 5215 of LNCS, pages
15–32. Springer, 2008.

[113] L.-M. Traonouez, B. Grabiec, C. Jard, D. Lime, and O. H. Roux. Symbolic
unfolding of parametric stopwatch Petri nets. In ATVA, volume 6252 of
Lecture Notes in Computer Science, pages 291–305. Springer, 2010.

[114] R. J. van Glabbeek and U. Goltz. Refinement of actions and equivalence
notions for concurrent systems. Acta Inf., 37(4/5):229–327, 2001.

[115] I. Virbitskaite and E. Pokozy. A partial order method for the verification
of time Petri nets. In FCT, volume 1684 of Lecture Notes in Computer
Science, pages 547–558. Springer, 1999.

[116] W. Vogler. Partial order semantics and read arcs. Theoretical Computer
Science, 286(1):33–63, 2002.

[117] J. Winkowski. Processes of contextual nets and their characteristics. Fun-
damenta Informaticae, 36(1), 1998.

[118] B. Wozna and A. Lomuscio. A logic for knowledge, correctness, and real
time. In CLIMA, volume 3487 of LNCS, pages 1–15. Springer, 2004.

69

