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Abstract

From a partial observation of the behaviour of a labeled Discrete Event
System, fault diagnosis strives to determine whether or not a given “invis-
ible” fault event has occurred. The diagnosability problem can be stated
as follows: does the labeling allow for an outside observer to determine
the occurrence of the fault, no later than a bounded number of events
after that unobservable occurrence ? When this problem is investigated
in the context of concurrent systems, partial order semantics adds to the
difficulty of the problem, but also provides a richer and more complex pic-
ture of observation and diagnosis. In particular, it is crucial to clarify the
intuitive notion of “time after fault occurrence”. To this end, we will use a
unifying metric framework for event structures, providing a general topo-
logical description of diagnosability in both sequential and nonsequential
semantics for Petri nets.

Keywords: Discrete event systems, diagnosis, Petri nets, events, observabil-
ity, partial order semantics, Event structures.

1 Introduction

Diagnosis under partial observation is a classical problem in automatic con-
trol in general, and has received considerable attention in discret event system
(DES) theory, among other fields. In the DES setting, the approach that we
will call “classical” here supposes that the observed system is an automaton
with transition set T , (behavioural) language L ⊆ T ∗, and a set of observable
transition labels O. The associated labeling map, let us call it η : T → O in
line with the formalism used below, may not be required injective, and leaves
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some transitions from T unobservable, in particular fault φ. The observations
have the form of words w ∈ O∗ obtained by extending η into a homomorphism
T ∗ → O∗. A classical definition of diagnosability is given in [25]; we follow the
equivalent presentaion of [7]. Write s ∼η s′ iff s, s′ ∈ T ∗ are mapped to the
same observable word in O∗, and call any sequence s such that φ occurs in s a
faulty sequence, and all other sequences healthy. Then :

Definition 1 (Sequential Diagnosability) L is non-diagnosable iff there ex-
ist sequences sN , sY ∈ L such that:

1. sY is faulty, sN is healthy, and sN ∼η sY ;

2. moreover, sY with the above is arbitrarily long after the first fault, i. e. for
every k ∈ N there exists a choice of sN , sY ∈ L with the above properties
and such that the suffix sY/φ of sY after the first occurrence of fault φ in
sY satisfies |sY | ≥ k.

Concurrent systems are difficult to supervise using the classical approach be-
cause of the state explosion problem. Moreover, consider intrinsically asyn-
chronous distributed systems, such as encountered in telecommunications or
more generally in networked systems. Here, the use of models that reflect the
local and distributed nature of the observed system, such as Petri nets or graph
grammars, is helpful not only in terms of computational efficiency, but also con-
ceptually. Putting these ideas together, we were led in [5] to carry over diagnosis
to asynchronous models and their non-interleaved semantics; see also the dis-
cussion of the necessity for using partial order methods in [10]. This generalized
methodology for fault diagnosis is based on the non-sequential executions of
labeled Petri nets, that is, the partial order semantics in occurrence nets and
event structures. The approach was extended to graph transformation systems
for modelling dynamically evolving system topologies in [3]. We have provided
a series of results [17, 14, 15, 16] on partial order diagnosability for Petri nets,
in the spirit of the above definition. While the sequential case is embedded and
generalized in these results, new features emerge in partial ordered runs that
have no counterpart in sequential behaviour; this led to the distinction between
strong and weak observability and diagnosability properties in [17, 16].

Bauer and Pinchinat [4] have given a topological view on diagnosability in
terms of sequential languages. The present work develops a framework that in-
cludes both sequential and partial order semantics, retrieving and generalizing
as a special case the results of [4] and showing connections between weak and
strong properties. The key construction is that of suitable metrics on event
structures. For this, we generalize a standard construction to be found in [6, 20]
and others, in such a way that progress and observation properties can be cap-
tured in the resulting topology. Event structures provide a unifying semantical
model for the sequential and non-sequential viewpoints. That is, both sequen-
tial languages as in [7, 4] and the partial order semantics given in [9, 24] and
used in [11, 16], associate event structures to a system; and the metric topology
given here coincides, on the sequential semantics, with the Cantor topology used
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in [4]. With these tools, the properties of weak and strong diagnosability from
[17, 16] become different instances of a general property, eventual diagnosabil-
ity, for labeled event structures. The difference between the weak and strong
properties lies thus in the choice of semantics that produces the event structure
model of behaviour for the system that is investigated.

Structure of the paper: We begin in Section 2. with the basic definitions for
(labeled) event structures. The following Section 3. investigates partial obser-
vation and diagnosability, and develops the main general results of this paper.
Section 4 specializes to safe Petri nets, and studies properties characterizing
weakly diagnosable nets. We then conclude in Section 5. The present article
relates work first presented in the conference paper [13], along with new re-
sults concerning the diagnosability of 1-safe Petri nets (section 4) and extended
discussions.

2 Event Structures

Let A be a set. A∗ , {a1 . . . an | ai ∈ A} is the set of all finite words over A;
the set of infinite words over A is denoted Aω. Let 1A be the indicator function
of A, i.e. 1A(x) = 1 iff x ∈ A and 1A(x) = 0 for x 6∈ A. Let f : A → B be a
partial function. Write f(a) ↓ if f is defined on a ∈ A, and f(a) ↑ otherwise.
The domain of f is dom(f) , {a ∈ A | f(a) ↓}, and the image of f is

f(A) , {b ∈ B | ∃ a ∈ dom(f) : f(a) = b}.

We shall be using throughout this paper prime event structures (PES) following
Winskel et al [24, 28], with particular attention to labeling. Fix some alphabet
A 6= ∅.

Definition 2 A (labeled) prime event structure (over alphabet A) is a tuple
E = (E ,6,#, λ), where

1. E = supp(E) is the support, or set of events of E,

2. 6⊆ E × E is a partial order satisfying the property of finite causes, i.e.
setting [e] , {e ′ ∈ E | e ′ 6 e}, one has

∀ e ∈ E : |[e]| < ∞, (1)

3. # ⊆ E×E an irreflexive symmetric conflict relation satisfying the property
of conflict heredity, i.e.

∀ e, e ′, e ′′ ∈ E : e # e ′ ∧ e ′ 6 e ′′ ⇒ e # e ′′, (2)

4. λ : E → A is a total mapping called the labelling. Events e, e ′ ∈ E are
concurrent, written e co e ′, iff neither e 6 e ′ nor e ′ < e nor e # e ′ hold.

3



Figure 1: The simple event structure of Example 1. Arrows represent causal
precedence 6, and dashed lines stand for conflict #; only minimal relations are
represented, all others are generated by transitivity and inheritance.

If co = ⊥, i.e. if co is the empty relation, we call E sequential. An A-
labeled event structure is called simple1 iff no label can occur concurrently
on two different events; that is, iff

e co e ′ ⇒ λ(e) 6= λ(e ′). (3)

A simple labeled event structure will be called an SES.

Let E1 = (E1,61,#1, λ1) and E2 = (E2,62,#2, λ2) be two A-labeled event struc-
tures. If (i) E1 ⊆ E2 and (ii) for all e, e ′ ∈ E1,

e #1 e ′ ⇔ e#2e ′ and e 61 e ′ ⇔ e 62 e ′,

then E1 is a sub-event structure of E2.

Example 1. Consider the event structure E = (E ,6,#, λp) from Figure 1,
where E , {ai, bi, ci, di | i ∈ N} and A , {a, a∗, b, b∗, c, c∗, d, d∗}, and let

1one might call it safe or auto-concurrency free
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λp : E → A be defined by setting, for all i ∈ N,

λp(a, 2i) = a ∧ λp(a, 2i+ 1) = a∗

λp(b, 2i) = b ∧ λp(b, 2i+ 1) = b∗

λp(c, 2i) = c ∧ λp(c, 2i+ 1) = c∗

λp(d, 2i) = d ∧ λp(d, 2i+ 1) = d∗.

Define sets A , λ−1
p ({a}), A∗ , λ−1

p ({a∗}), A , A ∪ A∗ and analogously
B,B∗, B, C,C∗, C,D,D∗, D. Let

1. for i < j, ai < aj , bi < bj and di < dj , but ci#cj ,

2. a2i+1#ci, ai#dj and bi#dj for any i, j ∈ N;

an illustration is given by Figure 1. One easily checks that E = (E ,6,#, λ)
thus defined is an SES.

Prefixes and Configurations. The set of causes or prime configuration of
e ∈ E is [e] , {e ′ | e ′ 6 e}, as defined above. A prefix of E is any downward
closed subset D ⊆ E , i.e. such that for every e ∈ D , [e] ⊆ D . Prefixes of
E induce, in the obvious way, sub-event structures of E in the sense of the
above definition. Denote the set of E ’s prefixes as D(E). Prefix c ∈ D(E) is a
configuration if and only if it is conflict-free, i.e. if e ∈ c and e#e ′ imply e ′ 6∈ c.
Denote as C(E) the set of E ’s configurations. Call any ⊆-maximal element of
C(E) a run of E ; denote the set of E ’s runs as Ω(E), or simply Ω if no confusion
can arise.

In the context of Example 1, one checks that, e.g., [ci] ∪ [bj ] and [ai] ∪ [bj ]
are some of the configurations for all i, j ∈ N; the runs are ωAB , A ∪ B,
ωciB , [ci] ∪B for i ∈ N, and ωD , D.

2.1 Labeled event structure morphisms

Capturing partial observability follows the same idea as [7, 25]: a partial map-
ping associates a label to all observable events, and is undefined on the unob-
servable ones. Now, mappings for event structures require some additional con-
ditions; we introduce here a dedicated class of morphisms for labeled event struc-
tures, which specializes Winskel’s morphisms for event structures (see [28, 2]):

Definition 3 Let E1 = (E1,61,#1, λ1) and E2 = (E2,62,#2, λ2) be two prime
event structures. A partial mapping f : E1 → E2 is a morphism iff for all
e1 ∈ dom(f),

1. [f(e1)] ⊆ f([e1]),

2. and for all e′1 ∈ dom(f),

(a) f(e1)#2f(e′1) implies e1#1e
′
1, and
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(b) f(e1) = f(e′1) and e1 6= e′1 together imply that e1#1e
′
1.

A morphism f : E1 → E2 is called an (A−) morphism iff, in addition,

1. dom (λ1) ⊆ dom (f ) and f (E1) ⊆ dom (λ2),

2. ∀ e ∈ E1 : λ1(e) = λ2 (f (e)) .

E1 and E2 are (A-)isomorphic, written E1 ∼A E2, iff there exist morphisms
f : E1 → E2 and f −1 : E2 → E1 such that for all e1 ∈ dom(f ) and all e2 ∈
dom(f −1),

f −1 (f (e1)) = e1 and f
(
f −1 (e2)

)
= e2.

That is, A-morphisms

• may fuse conflicting events, but never any pair e1, e2 such that e1 < e2 or
e1 co e2, and

• have to respect labeling, i.e. two events mapped to the same target must
either bear the same label or both be unobservable.

Note that Abbes [1] defines a different class of morphisms: full mapping f :
E1 → E2 is a morphism iff it is order-preserving between the underlying posets
and if moreover f reflects conflict. This class is less appropriate than the above
for our purposes since it does not allow for fusion of observationally equivalent
conflicting configurations, nor for unobservable events.

For a given configuration c ∈ C(E), we denote the set of configurations in E
that are A-isomorphic images of c as

[[c]] , {c′ ∈ C | c′ ∼A c} ;

whenever the notation [[c]]g is used below, it denotes analogously the isomor-
phism class w.r.t. a labeling g. The [[•]]-quotient of C(E),

CA(E) , {[[c]]|c ∈ C (E)}

consists of all possible observation streams under the observation mask λ. These
quotient structures are central to the characterization of diagnosability given
below.

For two prefixes D1 and D2, write D1 vA D2 iff D1 is A-isomorphic to a
prefix of D2. For configurations c1, c2 ∈ C(E), let

[[c1]]A u [[c2]]A , [[c3]]A,

where c3 is the unique ⊆-maximal prefix of c1 such that c3 vA c2. This sym-
metric operation can be seen as the intersection of two configurations up to
A-isomorphism.
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2.2 Pseudometrics.

We aim at giving the sets C(E) and Ω(E), and their observable images, topological
structures that allow to reason about their properties. Canonical approaches
to do so include Lawson or Scott topologies, pseudometrics; we will follow and
generalize the latter approach, which is described e.g. in [19].

Recall that a topology on a set S is a collection Top ⊆ 2S of subsets of S,
such that Top satisfies

1. ∅ ∈ Top and S ∈ Top,

2. if A1, . . . , An ∈ Top, then
⋃n
i=1Ai ∈ Top, and

3. for arbitrary collections (Ai)i∈I of sets in Top,
⋃
i∈I Ai ∈ Top;

the sets in Top are the open sets of the topological space (S, Top), and B ⊆ S
is closed in (S, Top) iff (S\B) ∈ Top.

An important class of topologies are those induced by pseudometrics: A
mapping d : S × S → R such that for all x, y, z ∈ S,

1. d(x, x) = 0 and

2. d(x, y) 6 d(x, z) + d(z, y) (Triangle inequality),

is called a pseudometric on S. Note that the triangle inequality implies that a
pseudometric d satisfies, for all x, y ∈ S, both d(x, y) > 0 and d(x, y) = d(y, x).
A pseudometric d such that d(x, y) = 0 implies x = y is a metric. From any
pseudometric d on S, the d-induced topology is the smallest topology on S that
contains all δ-balls w.r.t. d, i.e. all the sets

Bd(x, δ) , {y ∈ S|d (x, y) < δ}

for arbitrary x ∈ S and δ ∈ (0,∞).
The particularity of our pseudometrics defined below is that they are based

on a weight function that allows to capture phenomena such as ”invisibility” in
partial observation. Our principal tool are µ-Heights: Let µA : A → R+

0 be
any total mapping, and let µ , µA ◦ λ; we shall refer to µ as a weight function.
As a particular case, consider µ(e) ≡ 1E : we will refer to this as the counting
weight. The following construction yields pseudometrics that are equivalent (in
topological terms) to the prefix metric [20] and the Foata normal form metric
[6], see [19], when the counting weight is chosen; other choices of weights allow
to generalize to observation and fault equivalence.

The µ-induced ∗-height H∗µ(D) of a prefix is defined recursively by setting,
for ∅ representing the empty preset,

H∗µ(∅) , 0 (4)

H∗µ([e]) , H∗µ([e] \ {e}) + µ(e) (5)

H∗µ(D) , sup
e∈D

(H∗µ([e])). (6)
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Now, for τ ∈ [0,∞) let Uµτ be the τ -prefix under µ, i.e.

Uµτ ,
⋃{

D ∈ D(E) | H∗µ(D) 6 τ
}
, (7)

and let Eµτ be the prime event structure that E induces on Uµτ . Then define
Hµ(c) for all c ∈ C(E) as

Hµ(c) , sup{τ | c ∈ Ω(Eµτ )}. (8)

This function gives the lower height of any configuration (w.r.t. µ); we call
H∗µ(c) the upper height of c. In fact, the terminology reflects that for any
configuration c, one has by construction

Hµ(c) 6 H∗µ(c). (9)

In figure 1, one has for the configuration c1 , {a3, a2, a1, b2, b1} that

Hµ(c1) = 2 < H∗µ(c1) = 3,

while for c2 , c1\{a3},

Hµ(c2) = H∗µ(c2) = 2. (10)

We will call any configuration such that (10) holds progressive. In progressive
configurations, all local processes advance at the same pace (unless blocked by
conflicts), whereas general configurations such as c1 allow parts of the system
to move ahead of the rest.

Note thatHµ(•) is invariant under A-isomorphism. Thus, let Ψµ(•) : C(E)→
[0, 1] and the µ-pseudometric dµ(•, •) be given by

Ψµ(c) , 2−Hµ(c) (11)

dµ(c1, c2) , Ψµ(c1 u c2). (12)

Again, consider µ(e) ≡ 1E ; denote as H(•), Ψ(•) and d(•, •) the associated
height, conciseness and pre-distance. In this special case, d(•, •) is a metric; we
further observe:

Lemma 1 For all c ∈ C,

H(c) =∞ ⇒ c ∈ Ω. (13)

Proof: Assume c 6∈ Ω. Let e ∈ E\c such that there is no e ′ ∈ c such that
e ′#e, and set n , H([e]). Then H(c) 6 n <∞ by definition of H(•). 2

As noted above, Hµ(•) - and thus all the above functions derived from it -
are invariant under isomorphisms.
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Topology. The induced topology for the ”counting” pseudometric d1E (•, •)
has a base formed by the sets

Ωc , {ω ∈ Ω | c ⊆} ,

where c is any finite configuration of E , which are easily verified to be open.
The set {ωAB} - with the configuration AB given by A ∪ B - coincides e.g.
with Ωc31 , where c31 , [(a, 3)]∪ [(b, 1)]. One obtains that {ωAB}, {ωD} and all
{ωciB} are open; so are of course their unions and intersections. In particular,
ΩB = {ωAB , ωc1B , ωc2B , . . .} is also an open set. It should be noted that Ωc

is in general not an open set, see below : in Figure 1, A is a configuration
that is infinite (though not maximal), and ΩA does not contain the open ball
Bd(A, 0.1). Taking another example, not for the configuration A2 = A∪{b1, b2},
ΩA2 = {ΩAB} is not an open set, since any open neighbourhood of ωAB must
contain some ωciB ∈ ΩciB .

Further, one checks that configurations [a2]∪[b2] and [c2]∪[b4] are progressive,
but e.g. [a6] ∪ [b4] is not.

3 Observability and Diagnosability

Let E = (E ,6,#, λ) with λ : E → A, and η : A→ O a partial observation map-
ping into an observation alphabet O. For a given labeled prime event structure
, let Eη , {e | η (λ (e)) ↓} be the set of visible events, and Eε , {e | η (λ (e)) ↑}
the set of invisible events. Using the above construction, we obtain the visible
height Hη(•), observable conciseness Ψη(•) and pre-distance dη(•, •), respec-
tively, by setting µ ≡ 1Eη . Write E1 ∼η E2 iff the two structures with λ replaced
by η ◦ λ are O-isomorphic.

Observability. To avoid tedious case distinctions, we assume henceforth that
all runs of E are of infinite height; if necessary, consider any finite-height run
extended by an infinite chain of dummy events.

Definition 4 A labeled ES E is eventually observable w.r.t. η iff

H(c) =∞ ⇒ Hη(c) =∞. (14)

For an illustration, let O = {a} and define - in the context of Example 1 - the
partial mapping η : A→ O such that η maps a to a and is undefined otherwise.
Then E is not eventually observable w.r.t. η since one has, for every i ∈ N,

H(ωciB) =∞ ∧ Hη(ωciB) = i− 1.

The traditional observability requires the existence of k ∈ N such that there
are never more than k unobservable events in a row before the occurrence of
an observable one. For safe Petri nets, this is equivalent to the system allowing
no unobservable cyclic behaviour. Clearly, observable systems correspond to
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eventually observable event structures; the converse is not true : in Figure 1,
assume we have O the identity on A, and λ : E → A given by, for i ∈ N,

λ(bi) = b

λ(ci) = c

λ(di) = d

λ(ai) =
{
a if ∃ j ∈ N : i = j2

↑ otherwise.

The resulting system is eventually observable, but not observable.

Topologies. Clearly, any choice of µ : A → R+
0 and hence of dµ(•, •) defines

a topology Tµ, called the µ-topology, on Ω. Note that for µ ≡ 1E , we obtain
the restriction - to Ω - of the Scott topology on C; call this topology T. Further,
denote as

C/µ(E) , {[[c]]η | c ∈ C(E)}
Ω/µ(E) , {[[c]]η | c ∈ C(E)}

the quotient spaces of configurations and runs, respectively, under µ◦λ-preserving
isomorphism, with associated quotient topology Tµ on Ω/µ = Ω/µ(E). In par-
ticular, set O , Tη.

Defining diagnosability. Let Φ ⊆ E be a set of invisible fault events; in
particular, no event in Φ is observable, i.e. λ(Φ)∪ dom(η) = ∅. A configuration
c ∈ C(E) is called faulty iff c ∩ Φ 6= ∅, and healthy otherwise. Denote as ΩF

(CF ) the set of faulty runs (configurations), and ΩNF the set of healthy runs.
We observe that if c is faulty, so is every extension of c, i.e. every c′ ∈ C(E)
such that c ⊆ c′ is faulty. As a consequence, we have:

Lemma 2 ΩF is open in T.

Note, however, that ΩF is in general neither open nor closed in O.
We can distinguish three diagnosis states, given by sets of runs:

Fault − definite : FD , {ω ∈ Ω | [[ω]]η ⊆ ΩF}
NF − definite : ND , {ω ∈ Ω | [[ω]]η ⊆ ΩNF}

Indefinite : ID , Ω\ (FD ∪ND) .

If the system is in state FD (or ND or ID), this means that its current config-
uration c is such that

Ω c , {ω ∈ Ω | c ⊆ ω} ⊆ FD(ND , ID)

It is of course not feasible to verify directly the infinite runs. In [7], a diagnoser
system is built over diagnoser states that correspond to finite observation se-
quences : a diagnoser state represents the knowledge that can be derived about
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the eventual diagnosis, from a given finite observation. We shall not proceed
here by constructing a diagnoser, since it is not feasible in general event struc-
tures; its state space would be infinite in general2. Rather, we give directly a
definition of eventual diagnosability :

Definition 5 Φ is eventually F-diagnosable for (E , η) iff ΩF is open in O.
Dually, Φ is eventually N-diagnosable for (E , η) iff ΩNF is open in O.

This is a notion that does not at all take the time after fault occurrence
into account, contrary to e.g. [25, 12]. It generalizes the traditional definition
from [7] given in the introduction, and the ones we presented for Petri nets
in [17, 14, 15]. Traditional diagnosability notions such as the one [25, 12],
or k-diagnosability (see e.g. [8] for a detailed discussion) impose a uniform
bound on the logical time between occurrence and detection of a fault. Eventual
diagnosability drops this constraint, thus becoming available in systems whose
subsystems run in parallel with very weak synchronization or no synchronization
at all.

An obvious objection to studying eventual diagnosability would be that any
effective positive diagnosis of fault occurrence needs to know how long to wait
for possible evidence. However, this real-time constraint is not coupled with
the logical time constraints of Definition 1 or [8] in general. In fact, eventual
diagnosability is effective diagnosability in systems where speedy progress is
guaranteed, such that the effective latency until detection is uniformly bounded.

Metric characterization. Exploring the topology O to characterize F-and
NF-diagnosability shows us that both are equivalent, confirming corresponding
results (see [27]) in the sequential case:

Theorem 1 If (E , η) is eventually observable, then Φ is eventually F-diagnosable
for (E , η) iff for every faulty ωΦ ∈ ΩF , there exists a finite-height prefix cΦ of
ωΦ such that ΩcΦ ⊆ ΩF . Dually, if (E , η) is eventually observable, then Φ is
eventually NF-diagnosable for (E , η) iff for every healthy ω0 ∈ ΩNF , there exists
a finite prefix c0 of ω0 such that Ωc0 ⊆ ΩNF .

Proof: Fix ωΦ and assume Φ is eventually F-diagnosable; then there exists
δ = δ(ωΦ) such that

∀ω ∈ ΩNF : dη(ωΦ, ω) > δ. (15)

Let k be any integer such that k > log2(δ); then let cφ be the smallest prefix
of ωΦ such that Hη(cΦ) = k. By observability, H(c) < +∞, and (15) implies
that ΩcΦ ⊆ ΩF . The reverse implication is obvious. Finally, the proof for the
characterization of NF-diagnosability is exactly analogous. 2

We obtain the following additional result:
2Note that, for the case of Petri nets with sequential semantics (see below), the diagnoser

construction is carried out in [21]
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Theorem 2 If (E , η) is eventually observable, then: Φ is eventually NF-diagnosable
for (E , η) iff it is eventually F-diagnosable for (E , η).

Proof: Follows from the symmetry of dη(•, •) in the proof of Theorem 1. 2

The astute reader will notice that a system may be eventually diagnosable
even without being eventually observable as defined in Def. 4. In the case of
non-observability, all runs ω, ω′ for which Hλ(c) is finite, satisfy dη(ω, ω′) =
0. For Φ to be eventually F- or NF-diagnosable in (E , η), the runs of finite
observable height must either all be faulty or all be healthy. In our view, this fact
illustrates that all interesting diagnosis problems concern observable systems -
in the appropriate sense.

Note that equivalence of F-diagnosability and NF-diagnosability had been
shown in [27] for the classical approach, using an enumeration argument that
requires sequential semantics; the above generalization shows that it is an in-
trinsic, semantics-independent feature of diagnosis.

In the light of Theorem 2, we will henceforth drop the reference to F and
NF and speak simply of eventually diagnosable labeled event structures.

Example. In the context of the event structure in Example 1, let us now
choose O = {b, d} with dom(η) = {b, b∗, d, d∗}, where η(b) = η(b∗) = b and
η(d) = η(d∗) = d. If Φ ⊆ {c2, c3, c4, . . .}, then the net is not diagnosable since
ΩF =

⋃
i∈N{ωciB , ωciD} is not an open set in O; any neighborhood of ΩF in O

contains ωAB ∈ ΩNF .
If one has, on the other hand, Φ ⊆ B,O = {a, d} and dom(η) = {a, a∗, d, d∗},

where η(a) = η(a∗) = a and η(d) = η(d∗) = d, then E is diagnosable with respect
to η and Φ, since ΩF = {ωciB | i ∈ N} ∪ {ωAB} is open in O.

Suffixes. Note that all prefixes of E , and in particular all its configurations,
constitute sub-event-structures of E ; we will denote these structures with the
same symbols as the corresponding sets. We have the following suffix objects :
For c ∈ C and S ⊆ C, let

Cc , {c̃ ∈ C | c ⊆ c̃} , Ω c , {ω ∈ Ω | c ⊆ ω}
and ΩS ,

⋃
c∈S

Ωc.

Further, for any c ∈ C(E), denote as

Ec = (Ec,6|Ec
,#|Ec

, λ|Ec
),

where Ec , {e ∈ E\c | ∀ e ′ ∈ c : ¬ (e # e ′)} ,

the shift of E by c. If c′ ∈ C(Ec), then c ◦ c′ is the unique configuration of E
such that (i) c is a prefix of c◦c′, and (ii) c◦c′∩Ec = c′. For every c′ ∈ C(Ec),
we observe that c′′ , c ∪ c′ ∈ c(E); write in this case c′′ = c ◦ c′, and say that
c′′ is obtained by appending c′ to c.
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Structural Characterization. The characterization below result lifts the
anologous one unfoldings of safe Petri nets presented in [17, 16] to regular event
structures defined as follows: For any two finite configurations c1, c2 ∈ C(E),
say that c2 corresponds to c1, written c1 ∼E c2, iff Ec1 ∼A Ec2 . Clearly, ∼E is
an eqivalence; event structure E is regular iff it has a finite number of distinct
∼E -classes. In particular, all unfoldings of 1-safe Petri nets are regular. In fact,
all infinite runs of these unfoldings must pass through an infinite number of
finite configurations corresponding to the behaviour after the same net marking,
since the number of reachable markings is finite. Any pair (c1, c2) of such
configurations with c1 ⊆ c2 satisfies c1 ∼E c2 by construction of the unfolding.
The converse - can all regular event structures be constructed as unfoldings of
1-safe nets ? - is known as Thiagarajan’s conjecture [26].

To complete our preparations for Theorem 3, let c ∼η c′ iff there is an η-
isomorphism between c and c′, and c ∼Φ c′ iff c and c′ are either both healthy
or both faulty.

Theorem 3 If (E , η) is eventually observable and regular, Φ is eventually F-
diagnosable for (E , η) iff for all configurations c1, c2, c′1, c

′
2 ∈ C(E) of finite height

such that

c1 ⊆ c′1 ∧ c1 ∼E c′1
c2 ⊆ c′2 ∧ c2 ∼E c′2,

the following holds:

c1 ∼η c2

∧ c′1 ∼η c′2
∧ H(c1) < H(c′1)

 ⇒ c′1 ∼Φ c′2. (16)

Proof: To show the “only if” part, assume c1, c2, c′1, c
′
2 violate (16), i.e. with-

out loss of generality

1. c′2 is faulty, but neither c′1 nor c1 are,

2. for i ∈ {1, 2}, c′i = ci ◦ di, where di ∈ C(Eci) and d1
1 6= ∅ (d2 may be

empty) , and

3. for i ∈ {1, 2}, c′i ∼η ci and c′i ∼E ci.

It follows that there is a configuration d2
i ∈ C(Ec′

i
) that is an isomorphic copy

of di. Iterating this argument, let c1
i , c′i = c1 ◦ d1

i and cn+1
i , cni ◦ dn+1

i for
n ∈ N. Then by assumption, H(cn1 ) →n→∞ ∞ (the same need not be true for
the sequence of cn2 ). We have cni ∼η ci for all n; by construction, all cn2 are
healthy, so Φ can not be F-diagnosable for (E , η) .

For “if”, suppose Φ is not F-diagnosable for (E , η). Then there exists ω ∈ ΩF

such that for any finite-height prefix c of ω, there is c′ ∈ C(E) that satisfies
c′ ∼η c and Ωc′ ∩ ΩNF 6= ∅. But then one obtains a violation of (16) from the
assumption that E is regular. 2
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4 Application to Petri Nets

Petri Nets. We will turn now to an important instance of event structures,
those linked to Petri net models.

Definition 6 A net is a tuple N = (P ,T ,F ) where

• P 6= ∅ is a set of places,

• T 6= ∅ is a set of transitions such that P ∩ T = ∅,

• F ⊆ (P × T ) ∪ (T × P) is a set of flow arcs.

A marking is a multiset m of places, i.e. a map from P to N . A Petri net
is a tuple N = (P ,T ,F ,m), where

• (P ,T ,F ) is a finite net, and

• m : P → N is an initial marking.

Elements of P ∪ T are called the nodes of N . For a transition t ∈ T , we call
•t = {p | (p, t) ∈ F} the preset of t, t• = {p | (t, p) ∈ F} the postset of t . In
Figure 2, we represent as usual places by empty circles, transitions by squares, F
by arrows, and the marking of a place p by putting the corresponding number of
black tokens into p. A transition t is enabled in marking m if ∀p ∈ •t , m(p) > 0.
This enabled transition can fire, resulting in a new marking m′ = m−•t+t•; this
firing relation is denoted by m[t〉m′. A marking m is reachable if there exists a
firing sequence, i.e. transitions t0 . . . tn such that m0[t0〉m1[t1〉 . . . [tn〉m. A net
is safe if for all reachable markings m, m(p) ⊆ {0, 1} for all p ∈ P .

Sequential semantics. The language L of N is the set of words e0 . . . en over
a set E with a mapping λ : E → T such that λ(e0) . . . λ(en) is a firing sequence.
Assume now that L is trim: any two words w,w′ in L share their common
prefix, i.e. if there are u ∈ E∗, x, x′ ∈ E∞ and e, e ′ ∈ E such that w = uex and
w′ = ue ′x′, then λ(e) = λ(e ′) implies e = e ′. The sequential semantics of N is
given by event structure Eseq = (E ,6seq,#seq, λ), obtained from L by setting

1. e 6seq e ′ iff there exist u, v ∈ E∗ and w ∈ E∞ such that ueve ′w ∈ L, and

2. e#seqe ′ iff there exist ē, ē ′ ∈ E and u, v ∈ E∗ such that uē, uē ′ ∈ L with
λ(ē) 6= λ(ē ′).

Partial order unfolding semantics. In a net N = (P ,T ,F ), let <N the
transitive closure of F , and 6N the reflexive closure of <N . Further, set t1#imt2
for transitions t1 and t2 if and only if t1 6= t2 and •t1 ∩ •t2 6= ∅, and define
# = #N by

a # b ⇔ ∃ta, tb ∈ T :

 ta #im tb
∧ ta 6N a
∧ tb 6N b.
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Finally, define co = co N by setting, for any nodes a, b ∈ P ∪ T ,

a co b ⇐⇒ ¬ (a 6 b) ∧ ¬ (a # b) ∧ ¬ (b < a) .

Definition 7 A net ON = (B ,E ,G) is an occurrence net if and only if it
satisfies

1. 6ON is a partial order;

2. for all b ∈ B, |•b| ∈ {0, 1};

3. for all x ∈ B ∪ E, the set [x] = {y ∈ B ∪ E | y 6ON x} is finite;

4. no self-conflict, i.e. there is no x ∈ B ∪ E such that x#ONx;

5. the set cut0 of 6ON -minimal nodes is contained in B and finite.

In occurrence nets, the nodes of E are called events, and the elements of B are
denoted conditions. One notices quickly that complete occurrence nets form par-
ticular cases of event structures. The canonical association of an event structure
to an occurrence net ON is by restricting 6 and # to the event set E , ”for-
getting” conditions. In particular, configurations of occurrence nets are defined
as sets of events, i.e. configurations defined as above for the ”stripped” event
structure.

Occurrence nets are the mathematical form of the partial order unfolding
semantics for Petri nets [18]; although more general applications are possible,
we will focus here on unfoldings of safe Petri nets only.

If N1 = (P1,T1,F1) and N2 = (P2,T2,F2) are nets, a homomorphism is a
mapping h : P1 ∪ T1 → P2 ∪ T2 such that

• h(P1) ⊆ P2 and

• for every t1 ∈ T1, the restriction to •t1 is a bijection between the set •t1
in N1 and the •h(t1) in N2, and similarly for t1• and (h(t1))•.

A branching process of safe Petri net N = (N ,m0) is a pair β = (ON , π), where
ON = (B ,E ,G) is an occurrence net, and π is a homomorphism from ON to
N such that:

1. The restriction of π to cut0 is a bijection from cut0 to m0, and

2. for every e1, e2 ∈ E , if •e1 = •e2 and h(e1) = h(e2) then e1 = e2.

Branching processes β1 = (ON 1, π1) and β2 = (ON 2, π2) for N are isomorphic
iff there exists a bijective homomorphism h : ON 1 → ON 2 such that π1 = π2◦h.
The unique (up to isomorphism) maximal branching process βU = (ON U , πU )
of N is called the unfolding of N ; see [18] for a canonical algorithm to compute
the unfolding of N . We will assume that all transitions t ∈ T have at least one
output place, i.e. t• is not empty. In this case, every finite configuration c of
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ON U spans a conflict free subnet cU = (Ec,Bc,G|(Ec×Bc)∪(Bc×Ec)) of ON U by
setting

Bc ,
⋃
e∈E

(•t ∪ t•) .

The following results (see e.g. [18]) justify the use of unfoldings: The set cut(c)
of 6-maximal nodes of cU is contained in Bc. Moreover, cut(c) is a co-set,
that is, for all distinct conditions b, b′ ∈ cut(c), b co b′ holds; and cut(c) is
⊆ −maximal with this property, and such sets in occurrence nets are called
cuts. By setting, for any cut s,

m(s) , π (s) ,

we obtain a marking of N . Now, for cut(c) as above, m(c) , m(cut(c)) is a
reachable marking of N , more precisely the marking that N is in after executing
firable transitions in a sequence compatible with c. Conversely, every reachable
marking m of N is reflected in this way by at least one configuration c in ON U
such that m(c) = m.

Figure 2: Left: a Petri Net ; right: a prefix of its unfolding, with events bearing
the name of their π-image

The partial order semantics for N is given by the event structure

EU = (EU ,6U ,#U , πE
U )
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where EU is the set of events in N ’s unfolding βU , and 6U , #U , and πE
U are the

restrictions to EU of the corresponding elements of βU . By construction, the
labeling πE

U for EU is simple in the above sense: this property simply reflects
the fact that no transition can have more than one concurrent occurrence if the
net is safe.

Connecting the diagnosability notions. The notion of F-diagnosability
given in Sampath, Lafortune et al [25] involves existence of a uniform bound
on the “time” after occurrence of the fault before diagnosis. It can be adapted
to our framework - using a sequential event structure E obtained from a finite
automaton - as follows: let

C∗φ , {c ∈ CF | ∀c. ∈ C : c′ ⊆ c⇒ c′ 6∈ CF}

be the set of minimal faulty configurations. Φ is F-diagnosable for (E , η) iff for
every cΦ ∈ C∗Φ, there exists K = K (c) > 0 such that the following holds: If
c ∈ C(E) is such that cΦ is η-isomorphic to a prefix of c, and the 1-height of c
is bounded by K plus the 1-height of cΦ, then c is also faulty:

H1(cΦ) + K 6 H1(c) ⇒ c ∈ CF . (17)

then c is also faulty. Note that this definition uses the 1-height, not observable
height; we will see below that, under observability, both are equivalent.

Characterizing diagnosable Petri nets. This definition had inspired the
analogous one we have given in [17, 16] for safe Petri nets.

Definition 8 Let N = (P ,T ,F ,m0) a safe Petri net, η : T → O a partial map-
ping, UN = (B ,E ,G , cut0) its unfolding net, with labeling morphism λ : E → T
given by the unfolding morphism. Let φ ∈ T\dom(η) be a fault transition, and
let Eφ , λ−1(φ). Denote by Cprog(N ) the set of N ’s progressive configurations
(compare (10)):

Cprog (N ) ,
{
c ∈ C (N ) | H(c) 6 H∗µ(D)

}
We say that N is weakly observable w.r.t. η iff its unfolding event structure
EU is eventually observable w.r.t. η. A weakly observable (w.r.t. η) N is weakly
diagnosable w.r.t. η and φ iff there exists n = nN ∈ N such that for all
configurations cφ , [eφ] with eφ ∈ Eφ, every c ∈ Cprog(N ) such that

(a) cφ v c,

(b) c is not dead, and

(c) H1(c) > H1(cφ) + n,

satisfies:

∀c′ ∈ L : c vO c′ ⇒ Eφ ∩ c′ 6= ∅. (18)
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Notice that the role of the set Φ ⊆ E , which was arbitrary in the above study
of diagnosability in event structures, is played here by the set Eφ of occurrences
of the same transition φ. The definition implies that N is weakly diagnosable
w.r.t. φ and η iff EU (N ) is diagnosable w.r.t. Eφ and η.

Let us first show the following auxiliary result:

Lemma 3 If N is observable, then there exists nO ∈ N such that for any two
configurations c1, c2 ∈ C(N ) such that c1 v c2 and c1 ∼O c2, H(c2) 6 H(c1).

Proof: Suppose for every n ∈ N there exist c1, c2 such that H(c2) > H(c1)
while c1 v c2 and c1 ∼O c2. Then the pigeonhole principle implies, since the
number of reachable markings of N is bounded above by 2|P|, that for any
n > 2|P|, there exist c, c′ ∈ C(N ) such that

1. m(c) = m(c′)

2. c1 v c v c′ v c2,

3. H(c′) > H(c) + 1.

It follows that c ∼O c′. Moreover, since m(c) = m(c′), any firing sequence
leading from c to c′ is again enabled in m(c′), hence N allows configurations
c(n), n ∈ N, such that c v c(1) v c(2) v . . . and H(c(n)) > H(c) + n. This
leads to a contradiction with weak observability as n→∞. 2

We then have:

Theorem 4 Use the notations of Definition 8 and assume N is weakly ob-
servable. Then N is weakly diagnosable iff there exists n ∈ N such that forall
cφ ∈ CΦ(N ) and c ∈ C(N ),

cφ v c
c not dead
HO(c) > HO(cφ) + n

 ⇒
{
∀ω ∈ Ω(N ) :
(c vO ω)⇒ ω ∈ ΩF

(19)

Proof: Suppose first thatN is weakly diagnosable, i.e. nN as in Definition 8
exists; then n , max(nN , nO) with nO from Lemma 3 has the above properties.
Similarly, the existence of n as in the statement of the theorem implies that
nN , max(n, nO) satisfies the properties required in (19). 2

Example 2: What Interleavings do and don’t see. Figure 2 illustrates
that choosing a partial order vs an interleaving semantics has important con-
sequences. To see this, note that if the net behaviour is recorded in sequential
form, we still have an event structure semantics; yet the resulting event struc-
ture is degenerate in the sense that co is empty. Using the same definitions
as above, let Φ = π−1({v}), and assume the observation labellings for Eseq and
EU both satisfy dom(η) = π−1({a}). Then:

a) In sequential semantics, the net is not eventually observable: the run ωs ∈
Ω(Eseq) which consists only of occurrences of u and v satisfies Hη(ωs) = 0 and
Hλ(ωs) = ∞. Further, (Eseq, η) is neither F-diagnosable nor NF-diagnosable,
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since all runs without an occurrence y are observationally indiscernable from the
run ω′ formed only by occurrences of a and b; this ∼η class therefore contains
both faulty and healthy runs.

b) However, with the same assumptions, (EU , η) is both observable and di-
agnosable; in fact, all runs ω ∈ Ω(EU ) are F-definite.

The example allows to observe several important phenomena. In fact, it
illustrates that decentralized systems with weak synchronization between sub-
systems may elude diagnosis under the interleaved viewpoint, while being well
captured under partial order semantics. In the example, consider now b the
fault event, instead of v, and a observable. Then, the new system is neither
classically observable nor classically diagnosable. However, removing the loop
u−v from the system leaves a classically diagnosable system. In other words, it
is the presence of the second loop, running in parallel and without influence on
the fault occurrence, that blocks diagnosis of the fault.3 Thus, the partial order
approach actually increases precision for partial observation of highly concurrent
systems.

Another important observation here is that, as announced in the introduc-
tion, eventual diagnosability emerges as a fundamental property, for which weak
and strong diagnosability are the concrete instances once the semantics has been
chosen. In fact, it is often the choice of the semantics, i.e. of the mode of oper-
ation and observation for the system, that decides whether or not a given Petri
net is eventually diagnosable.

5 Conclusion

We have cast the dynamics of discrete event systems in a general framework
that allows to compare properties of the non-sequential and the sequential be-
haviour. On the level of abstraction granted by event structures, observability
and diagnosability become general topological properties that specialize to ex-
isting concrete notions once the semantics (sequential or non-sequential) has
been chosen. The verification of diagnosability has been shown to PSPACE-
complete for the sequential case in [4]. This theoretical bound is a fortiori true
for the non-sequential case. It is important now to develop efficient algorithms
for verification of weak diagnosability; strong diagnosability has received treated
in the existing literature, see e.g. [23, 22]). Current work is addressing these
issues, based in particular on the result above (section 4) and an investigation
of cutoff criteria for constructing suitable finite prefixes of unfoldings.

The topological framework presented here has the advantage of allowing for
unified proofs, based on the properties of event structures regardless of the se-
mantics that generates them. It is applicable to any kind of system model that
has an event structure semantics, and potentially useful for capturing exten-
sions such as incomplete models, or loss of alarm; such extensions remain to be
exploited.

3Thanks to A. Guia who made me discover this aspects by a remark in a workshop discus-
sion
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Future work will encompass stochastic models to make quantifyable predic-
tions for weakly diagnosable systems.

Another approach to partial observation in concurrent systems, which has
been introduced ed by the author in [14, 15, 16], consists in looking for inevitable
occurrences that are revealed by observation, regardless of the possible time for
occurrence (which may be concurrent with the observation, with no synchro-
nization). Knowledge of such relations in the system allows to raise alarms and
start countermeasures as soon as the threat becomes apparent, without waiting
for evidence of its actual occurrence.

An interesting extension of the work here consists in addressing infinite state
systems with partial order methods as those presented here (as opposed to
covering graphs as in [23]). More generally, developping methods for diagnosing
event structures that are not regular is an interesting (and difficult) task.
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