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Abstract— In recent years, classical discrete event fault di-
agnosis techniques have been extended to Petri Net system
models under partial order semantics [8], [9], [13]. In [14],
we showed how to take further advantage of the partial order
representation of concurrent processes, by decomposing the
unfolding into ’facets’, formed by subnets whose events either
all occur eventually, or none of them occurs. A notion of
q(ualitative)-diagnosability was proposed in [14] based on this
decomposition. The present paper corrects the definition of q-
diagnosability and develops its properties. Sufficient and nec-
essary criteria, on the transition labeling, for q-diagnosability
are shown; for their verification, and diagnosis itself, compact
data structures are sufficient.

I. INTRODUCTION

The diagnosis of large distributed systems requires to

make good use of concurrency, rather than falling into its

traps such as state space explosion due to enumeration of

interleaved behaviours. Petri nets (see e.g. [16], [22], [23],

[24], [17], [12], [11]) and their partial order unfoldings [20],

[6], [18] have been increasingly used in recent years for both

fault diagnosis ([8], [9], [13]) and control (see e.g. [15]) of

asynchronous discrete event systems. The advantage of this

semantics lies in the space reduction for representing nonse-

quential processes that have a high degree of parallelism.

In unfoldings, sets of concurrent events are not ordered,

which means they have to be represented only once (by

one partial order) rather than by giving all their interleavings

whose number is exponential in the size of the concurrent

set. The gain in space therefore depends heavily on the

degree of parallelism; the motivation is thus very strong

in highly distributed systems such as telecommunication

networks, see [9] and the discussion in the reference [7],

entirely dedicated to the necessity of true concurrency in

the study of distributed discrete event systems. In [8], [9],

[13], fault diagnosis for a Petri net model N is performed by

unfolding the labelled product of N and an observed alarm

pattern A, also in Petri net form. In [13], we have presented

a characterization of diagnosability adapted to partial order

semantics of 1-safe Petri nets. Subsequently, we studied in

[14] an aspect of the relational structure of occurrence nets

that is relevant for observation and diagnosis. Recall that

occurrence nets carry a relational structure (known as event

structures in the literature, see [21]) that consists of a partial

order < and a conflict relation #; pairs that are neither

ordered, nor in conflict, are collected in the complement

relation co for concurrency. Within this structure, relation

a ⊲ b holds for events iff a logically covers b, or leads to b in

the sense that whenever a occurs, b must eventually occur as

well. Facets are subnets of the unfolding in which any two

events cover one another. As a consequence, if some event in

a facet occurs, eventually all other events of the facet have

to occur in any fair execution (i.e. assuming progress: no

enabled event remains enabled forever without occurring).

In [14], we introduced the concept of q-diagnosability, for

qualitative diagnosability as opposed to quantitative criteria

like those in [13], [25]; it is a property that is specific to

partial order semantics, with no equivalent in the sequential

case. The present paper focuses on q-diagnosability, its

properties and practical verification, as well as its relation

with facets.

Overview: The paper is organized as follows: We start

in Section II by recalling basic definitions concerning the

basic tools and goals. In Section III, we recall the relation ⊲

and the definition and properties of facets from [14]. Section

IV is the heart of the article, studying properties of q-

diagnosability; Section V concludes.

II. PETRI NETS, UNFOLDINGS, AND DIAGNOSIS

Nets and homomorphisms: A net is a triple

N = (P , T , F ), where P and T are disjoint sets of places

and transitions, respectively, and F ⊆ (P × T ) ∪ (T × P)
is the flow relation. In figures, places are represented by

circles, rectangular boxes represent transitions, and arrows

represent F . Note that we consider only ordinary Petri nets

here (compare [23]); that is, the weight of all arcs is equal to

1, and will be omitted. Let < be the transitive closure of F

and 6 the reflexive closure of <. For node x ∈ P ∪ T , call
•x , {x ′ | F (x ′, x )} the preset and x • , {x ′ | F (x , x ′)}
the postset of x ; further, call ⌈x⌉ , {x ′ | x ′ < x} the prime

configuration or cone of x . A net homomorphism from N

to N ′ is a map π : P ∪ T 7−→ P ′ ∪ T ′ such that:

1) π(P) ⊆ P ′, π(T ) ⊆ T ′, and

2) π|•t : •t → •π(t) and π|t• : t• → π(t)
•

induce

bijections, for every t ∈ T .

Definition 1: Two nodes x , x ′ of a net N are in conflict,

written x#x ′, if there exist transitions t , t ′ ∈ T such that

1) t 6= t ′,

2) •t ∩ •t ′ 6= ∅, and
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Fig. 1. Unfolding procedure in the context of the Petri net example from [8]

3) t 6 x and t ′ 6 x ′.

A node x is said to be in self-conflict iff x#x . An occurrence

net (ON) is a net ON = (B, E , F, c0), with the elements of

B called conditions and those of E events, such that:

1) no self-conflict: ∀x ∈ B ∪ E : ¬[x#x ];
2) 6 is a partial order: ∀x ∈ B ∪ E : ¬[x < x ];
3) ∀x ∈ B ∪ E : |⌈x⌉| <∞;

4) no backward branching: ∀b ∈ B : |•b| ≤ 1.

5) the set c0 , min(ON ) of minimal nodes of ON is

contained in B.

Here, we add w.l.o.g. restriction 5.) for convenience; it is not

required, e.g., in [5]. Nodes x and x ′ are concurrent, written

x co x ′, if neither x 6 x ′, nor x ′ 6 x , nor x#x ′ hold. A co-

set is a set X of pairwise concurrent conditions. A maximal

co-set X w.r.t. set inclusion is called a cut, and generically

denoted by c; in particular, c0 is a cut, called the initial cut

of ON . We note for future reference that occurrence nets

are a special case of event structures [21]:

Definition 2: (E,<,#) is an event structure (ES) iff:

1) (E,<) is a countable, partially ordered set,

2) ⌈e⌉ is finite for all e ∈ E,

3) # ⊆ E×E is symmetric and irreflexive, and such that

∀ x, y, z ∈ E: x#y and y < z together imply x#z.

Petri Nets: Let N = (P , T , F ) be a finite net. A

marking of net N is a multi-set M ∈ M(P). A Petri net

(PN) is a pair N = (N ,M0), with M0 ∈ M(P) an initial

marking. t ∈ T is enabled at M , written M
t

−→, if for all

p ∈ •t , M (p) > 1. If M
t

−→, then t can fire, leading to

M ′ = (M − 1•t) + 1t• ,

where symbol 1 denotes the set indicator function; write in

that case M
t

−→ M ′. The set R(M0) contains the markings

of N reachable through −→. In the figures here, marked

places are highlighted in thick; A Petri net N = (N ,M0)
is k-safe if for all M ∈ R(M0) and places p, M (p) 6 k.

Only safe, i.e. 1-safe nets or 1-PNs are considered here; their

reachable markings are sets M ⊆ P .

Branching Processes and Unfoldings: The branching

process semantics reflects the partial order behavior of Petri

nets in occurrence nets, thus allowing for structural analysis.

Definition 3: A branching process of the safe Petri net

N = (P , T , F,M0) is given by a pair π = (ON , π), where

ON = (B, E ,G, c0), and π is a homomorphism from ON
to N , such that:

• π(c0) = M0;

• for all e, e ′ ∈ E , •e = •e ′ and π(e) = π(e ′) together

imply e = e ′.

Definition 4: Occurrence net ρ = (Bρ, Eρ,Gρ, c0(ρ)) is a

(structural) prefix of ON , written ρ ⊑ ON , iff

1) Bρ ⊆ B, Eρ ⊆ E , and Gρ = G|(Bρ×Eρ)∪(Eρ×Bρ);

2) e ∈ Eρ ⇒ •e ∪ e• ⊆ Bρ

3) c0 = c0(ρ); and

4) ρ is causally closed: if x ′ 6 x and x ∈ ρ, then x ′ ∈ ρ.

A prefix κ of ON is a configuration if κ is conflict-free, i.e.

no two nodes from κ are in conflict. A maximal configuration

(w.r.t. set inclusion) is called a run and generically denoted

ω; denote the set of runs as Ω. For π, π′ two branching

processes, π′ is a prefix of π, written π′ ⊑ π, if there exists

an injective homomorphism ψ from ON ′ into a prefix of

ON , such that ψ induces a bijection between the initial cuts

c0 and c′0, and the composition π ◦ ψ coincides with π′.

By theorem 23 of [5], there exists a unique (up to an isomor-

phism) ⊑-maximal branching process, called the unfolding of

N and denoted U(N ); by abuse of notation, we will also use

U(N ) for the occurrence net obtained by the unfolding. The

principle for effectively constructing the unfolding (see [5],

[8], [15]) is as follows: a copy of initial marking M0 yields

the initial conditions; events are appended to concurrent

conditions that enable them, and are followed by the post-

conditions they create. An illustration is given in Figure 1,

taking up the running example from [8], [13]. Petri net N is
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shown on the left, and a branching process π = (ON , π) of

N on the right hand side. Conditions are labeled by places,

events by transitions. A configuration is shown in grey. The

mechanism for constructing the unfolding of N is illustrated

in the middle.

Configurations: Every finite configuration κ terminates

at a cut, denoted cκ, such that κ 7→ cκ is bijective; for

each cut c, the downward closure ↓ (c) , {x | ∃b ∈ c :
x ≤ b} is the unique configuration κ such that c = κc.

Conversely, every finite configuration κ corresponds to a

unique reachable marking M (κ) given by M (κ) , π(cκ).
We call configurations (and their cuts) that lead to the same

marking marking equivalent, and write

κ ∼M κ′ iff M (κ) = M (κ′) (1)

c ∼M c′ iff ↓ (c) ∼M↓ (c′). (2)

The nonsequential executions of safe Petri net N are in one-

to-one correspondence with the configurations of U(N ).

Finite Complete Prefix: If U(N ) is infinite, we are nat-

urally interested in finite prefixes of U(N ) that are complete

in the sense that their analysis allows to derive results for all

of U(N ). The definition and size of such prefixes varies with

the intended purpose; see [18] for a systematic treatment. We

use here the following Definition, similar to that in [15]:

Definition 5: The order 1 unfolding, denoted U1(N ), is

a finite prefix of the unfolding obtained by stopping the

construction of the unfolding when we reach a cut-off event

e, i.e., an event such that:

• EITHER firing of ⌈e⌉ brings back to the initial marking:

M (⌈e⌉) = M0;

• OR there exists another event e ′ with the following

properties:

1) The prime configuration for e ′ is a prefix of that

of e: ⌈e ′⌉ ⊆ ⌈e⌉;

2) the markings reached firing the two congurations

are equivalent: M (⌈e⌉) = M (⌈e ′⌉).
In the following we call e ′ the mirror transition of e in

Ñ1(M0). Once we have constructed U1(N ) , assume we

continue the unfolding until we reach an event e such that

there exist another event e ′ with the following properties:

• either e ′ does not belong to U1(N ) or it is a cut-off

event of U1(N );
• The prime configuration for e ′ is a prefix of that of e:

⌈e ′⌉ ⊆ ⌈e⌉;

• the two configurations are marking-equivalent:

M (⌈e⌉) = M (⌈e ′⌉).

The resulting net, denoted U2(N ), is called order 2 unfold-

ing; recursively, one obtains order n unfoldings Un(N ) for

n ≥ 2 in the same way.

Note that the initial definition from [20] used as cutoff

criterion the cardinality, i.e. |⌈e ′⌉| < |⌈e⌉|, which would lead

to a shorter prefix in general yet not guarantee completeness

w.r.t. computing ⊲.

Diagnosis and Diagnosability: We assume the system

to be diagnosed is modeled as a safe Petri net N = (N ,M0)

with N = (P , T , F ), a set A of alarm labels, and an A-

labeled alarm pattern A in the form of a conflict-free occur-

rence net; that is, the events of A are labeled by the observed

alarms in A, and in the order they were observed. The

conditions in the occurrence net A are dummy conditions

whose only purpose is to exhibit precedence ordering.

When unfolding labeled nets, one obtains a labeled occur-

rence net; we denote with the same symbol λ the mapping

E → A obtained by λ ◦ π, that is, an event e is labeled

by the label λ(t) of the transition t , π(e). Denote as

I ,λ−1({ε}) the set of invisible transitions, where λ : T →
A is the labeling function and ε ∈ A the empty symbol.

Dually, let TA , T \I be the set of visible transitions,

and set EI , π−1(I) and EA , π−1(TA). Let U(N ) =
(B, E ,G, c0) be the unfolding of N with homomorphism π,

and denote as O , π−1(TA) the set of observable events.

Further, let φ ∈ I be a fault to be observed; let Eφ ,
π−1({φ}). For configurations κ, κ′ of N , write κ ∼A κ′ iff

the sets κA, κ
′
A of observable events of κ and κ′, respectively,

are isomorphic partially ordered sets (with the order relation

induced by 6). Let φ ∈ I be a fault1 to be diagnosed.

Configurations κ, κ′ are φ-equivalent iff either both contain

a φ-event, or neither of them does:

κ ∼φ κ
′ iff [κ ∩ Eφ 6= ∅ ⇐⇒ κ′ ∩ Eφ 6= ∅.] (3)

The asynchronous diagnosis of [8], [9], [13] proceeds as

follows: Take the Petri net model N of the system, with

transition labeling λ : T → A taking values in an alphabet A

of alarms, and the Petri net representation A of the observed

alarm pattern. Then form the product net N ×A by fusing

transitions carrying the same label. All executions of N ×A
correspond to executions of N ; the converse is obviously

not true. Moreover, not all executions of N × A cover all

of A; in general, only a proper prefix of the observation

is explained by a given run of N × A. In the unfolding

U(N ×A), take all those branches that fully explain A; the

corresponding executions of N form the diagnosis set of all

possible explanations of A in the model N .

Convergence of the diagnosis procedure involves the com-

putation of the full unfolding U(N ×A). That is, to be

effective, it requires that U(N ×A) be finite; this means

we must require that N contains no invisible cycles. In other

words, sufficiently many transitions of N must carry a non-

empty label and thus be visible, such that the net cannot leave

a marking M and then return to M without having produced

a visible alarm on the record. That is (compare [13]), for any

two configurations κ, κ′ such that κ is a proper prefix of κ′

and κ ∼M κ′, there must be at least one visible event in κ\κ′

for observability of the net. This property will be assumed

throughout. Diagnosability is the capacity of detecting that a

fault φ has occurred, a bounded “time” after its occurrence

(dual properties concern the possibility to determine with

certainty that φ has not occured).

1we only consider single fault types to avoid technicalities w.l.o.g.
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III. COVERING AND FACETS

Covering Relation: We recall here definitions and re-

sults from [14]. For a node x ∈ (B ∪ E), the conflict set of

x is #[x ] , {x ′ | x#x ′}. The root conflict set is given by

#[x ] , {y | x#y ∧ ∀ z : z < y ⇒ ¬ (z#x )} .

As shown in [14], the set #[x ] is generated by #[x ] through

inheritance:

#[x ] =
{

z | ∃ y ∈ #[x ] : y 6 z
}

. (4)

As a consequence, x1 ⊲ x2 iff #[x1] ⊇ #[x2]. Node x leads

Fig. 2. Left: Occurrence net with facets shown as rounded boxes; right:
the occurrence net obtained from the left hand example by facet abstraction

to or covers y , written x ⊲ y , iff #[x ] ⊇ #[y]. Define the

covering range of node x as

⊲[x ] , {y | x ⊲ y};

we have (see [14]) the following properties of relation ⊲:

1) ⊲ is a reflexive and transitive relation.

2) x ⊲ y holds iff for all runs ω,

x ∈ ω ⇒ y ∈ ω; (5)

this motivates the expression ’a leads to b’ for a ⊲ b

3) x < y implies that y ⊲ x .

4) ⊲[x ] is a configuration.

In the occurrence net on the left hand side of Figure III, one

has a ⊲ d ⊲ a, d ⊲ c, e ⊲ f , f 6 ⊲h, etc.

Facets: A facet of ON is a strongly connected com-

ponent of ⊲, i.e. a maximal set δ ⊆ (E ∪ B) of nodes such

that for any x , y ∈ δ, both x ⊲ y and y ⊲ x hold; we denote

as δ(x ) the unique facet that contains x , compare Figure

III.We have (see [14]) that facets are convex, i.e. x , y ∈ δ and

x < y < z together imply z ∈ δ; moreover, y1#y2 implies

that δ1 6= δ2, i.e. Facets are conflict-free. However, more is

true: the quotient facet structure of ON is an occurrence net

itself. In fact, let xi be a node of ON , δi , δ(xi), and

δ1 ≺∆ δ2 ⇐⇒







δ1 6= δ2
∃ y1 ∈ δ1, y2 ∈ δ2 :

y1 < y2

(6)

δ1#∆δ2 ⇐⇒ [∃ y1 ∈ δ1, y2 ∈ δ2 : y1#y2] (7)

Relation ≺∆ from Definition (6) is a partial order [14]. #∆

is well-defined since y1#y2 implies z1#z2 for all z1 from

δ1 and z2 from δ2. One checks easily that

δ1#δ2 ≺∆ δ3 ⇒ δ1#δ3, (8)

and finds that (∆,≺∆,#∆) is an event structure in the sense

of Definition 2. We denote as ⌈δ⌉ the set of facets

⌈δ⌉ , {δ′ | δ′ ≺∆ δ}.

It can be shown (see [14]) that the set union of all facets in

⌈δ⌉ spans a configuration of ON ; we denote this configura-

tion as

κ(δ). (9)

The Occurrence Net of Facets: Lumping facets into

single events yields a new occurrence net F(ON ) [14]: Let

ON = (B, E ,G, c0) be an occurrence net, and ∆ its set of

facets. Set

F(E) , ∆, F(B) , c0 ∪ {b | b• ∩ δ(b) = ∅}

F(G) , {(b, δ) ∈ F(B) × F(E) | b• ∩ δ(b) 6= ∅}

∪ {(δ, b) ∈ ∆ × F(B) | •b ⊆ δ} ;

then F(ON ) = (F(B),F(E),F(G), c0) is an occurrence net.

Finitude of Facets: Note that in general, facets may be

of infinite size; this motivates the following definition:

Definition 6: N is universally non-deterministic (UND)

iff for any two distinct configurations κ, κ′ of N such that

κ is a prefix of κ′ and κ ∼M κ′, there must exist a

configuration κ′′ such that κ is a prefix of κ′′, and for some

x ′ ∈ κ′ and some x ′′ ∈ κ′′ we have x ′#x ′′.

One checks that U2(N ) is sufficient to verify if N is UND.

The important property of UND is:

Lemma 1: For UND nets, all facets are finite.

Proof: Suppose δ is infinite; then there exists at least

one transition t ∈ T such δ contains an infinite chain

e1 < e2 < . . . with ∀ i : π(ei) = T . Let Mi , M (⌈ei⌉);
since N is finite, it has only a finite number of reachable

markings, hence there exists a reachable marking M and

an infinite collection of indices j1 < j2 < . . . such that

∀ k : Mjk
= M . If N is UND, there must therefore be

a condition b ∈ δ ∩ B and events ea, eb ∈ b• such that

ej1 < b < ea ≤ ej2 , with ea 6= eb; therefore ea 6 ⊲ej1 , and

hence ej2 6 ⊲ej1 , contradicting the assumption that ej2 and

ej1 are in the same facet. 2

We return to the problem of diagnosability above, still

keeping the same setting and notations. Let us define the

pro-cone of a node x ∈ E ∪ B as

⌈⌈x⌉⌉ , κ (δ (x )) ; (10)
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the closure of a configuration κ is then

⌈⌈κ⌉⌉ ,
⋃

x∈κ′

⌈⌈x⌉⌉; (11)

where we use the notation (9) for the configuration ob-

tained from a cone of facets. Configuration κ is closed iff

⌈⌈κ⌉⌉ = κ. Notice that ⌈⌈κ⌉⌉ coincides with the configu-

ration obtained by intersecting all runs that extend κ; this

makes closed configurations key entities for asynchronous

diagnosis.

IV. q-DIAGNOSABILITY

We are now ready for analyzing q−diagnosability, re-

stricted, for simplicity of presentation, to the case of one

fault transition φ. First, let us correct the Definition from

[14]:

Definition 7: In N , a fault ξ is q-diagnosable iff for any

two configurations κ, κ′ such that κ ∼M κ′,

⌈⌈κ⌉⌉ ∼A ⌈⌈κ′⌉⌉ ⇒ ⌈⌈κ⌉⌉ ∼ξ ⌈⌈κ′⌉⌉. (12)

In words, ξ is q-diagnosable iff for any two configurations

κ, κ′ the following holds: if the inevitable common parts,

as formalized by ⌈⌈•⌉⌉, of all runs extending κ and κ′,

respectively, are observationally equivalent, these closures

have to be fault equivalent. Note that the above definition

modifies the one given in [14], where the role of ⌈⌈κ′⌉⌉
in formula (12) was played by κ′ itself. That definition -

while giving a notion that is interesting in its own right

- is asymmetrical in the roles of κ and κ′ and assumes a

higher degree of observability than can be expected in a

distributed system; we therefore recommend, and focus on,

the above notion of q-diagnosability. It is in fact well adapted

to asynchronous systems: the precise interleaving of events

is not available; the order of occurrence of concurrent events

can not be observed, concurrent events will occur and go

unnoticed unless they change future branchings. Therefore,

the entity to inspect for alarms and faults are the closed

configurations.

Consider the occurrence net of facets, FN , F(ON ),
where ON will be instantiated by the unfolding U(N ) of

the net N to be diagnosed. For a facet δ, let

⌈δ⌉ ∈ Con , Con(FN )

be the prime configuration of δ. Define the immediate facet

conflict relation #∆
µ by:

δ1#
∆
µ δ2 :⇐⇒

∃ κ = κ(δ1, δ2) ∈ Con :
⌈⌈δ1⌉⌉\κ = δ1 ∪ δ1

•

∧ ⌈⌈δ2⌉⌉\κ = δ2 ∪ δ2
•

∧ κ1 , ⌈⌈κ ∪ δ1⌉⌉ ∈ Con

∧ κ2 , ⌈⌈κ ∪ δ2⌉⌉ ∈ Con

∧ ⌈⌈κ ∪ {δ1, δ}⌉⌉ 6∈ Con

Finally, call a facet δ φ-negative if δ contains no φ-event,

and φ-positive otherwise.

With these preparations, we are now ready to define the

properties that will characterize q-Diagnosability. Let δA the

partial order that facet δ induces on the set of its labeled

events. N is witnessful iff every φ-positive facet δ contains

a visible event e ∈ EA. We call N φ-faithful iff δ ∼A δ′

implies that δ is φ-positive iff δ′ is. N is weakly If δ is

φ-positive, then for any facet δ′ such that δ#∆
µ δ

′ and δA is

isomorphic to δ′A, then δ′ is also φ-positive.

To state our main result, we say that the labeling λ of N
is ∆−simple iff every facet contains at most one observable

event, i.e. from EA.

Theorem 4.1: If N is q-diagnosable, then it is witnessful

and weakly φ-faithful. Conversely, if λ is ∆-simple, witness-

ful and φ-faithful, then it is q-diagnosable.

Proof: Suppose that N is q− diagnosable and has two

facets δ, δ′ with (i) δA and δ′A isomorphic, and (ii) δ faulty;

choose δ such that its past does not contain any copy of

δ. As a consequence, δ also contains a first occurrence of

φ. Let κ(δ, δ′) be a configuration as in the definition of

#∆
µ ; then

κ , ⌈⌈κ(δ, δ′) ∪ δ⌉⌉

κ′ , ⌈⌈κ(δ, δ′) ∪ δ′⌉⌉

satisfy ⌈⌈κ⌉⌉ ∼A ⌈⌈κ′⌉⌉ by construction. Hence, by

q−diagnosability, we must have ⌈⌈κ⌉⌉ ∼φ ⌈⌈κ′⌉⌉, which

implies, given our assumptions, that δ′ must be faulty.

Now assume N is ∆-simple, witnessful and φ-faithful,

and let κ be a faulty configuration, κ′ a fault-free one, and

⌈⌈κ⌉⌉ ∼A ⌈⌈κ′⌉⌉. We assume w.l.o.g. that κ and κ′ are

both closed, and chosen minimal with these properties, i.e.

that there is no closed configuration strictly smaller than

κ for which the above holds for any choice of κ′, and κ′

is minimal for κ. This implies that there is a unique faulty

facet δ such that κ = ⌈⌈δ⌉⌉. Since λ is simple, the first

part of D yields that δ contributes exactly one letter to κA;

call this letter aδ. Let δ1, . . . , δn be the maximal facets of

κ′. Then, by minimality of κ′, there is one index i such

that δi
A is aδ; thus the second part of D implies that δi

is faulty, contradicting the assumption that κ′ is fault-free.

2

Theorem 4.1 allows to detect a vast class of diagnosability

problems, and to ensure q-diagnosability with fairly low ef-

fort on observability of events. Having one observable event

in every faulty facet appears as both a natural and reasonable

assumption for most application contexts such as physical

plants: occurrence of a fault φ should be accompanied by

an observable alarm, which may be emitted an unspecified

time later than φ, but independent from any subsequent

nondeterministic choice in the system.

Note that property UND is important to ensure identifica-

tion of facets: thanks to Lemma 1, UND-nets have all facets

finite, a property that is not satisfied in general.

The facet-wise diagnosis implied by the above results

blends the traditionnaly disjoint tasks of diagnosis and prog-

nosis in the sense that a φ-event may occur late in some facet

δ, while the observable events allowing to recognize that δ

is φ-positive may have occured long before.

In cases where the assumptions of Theorem 4.1 are ’over-

satisfied’ in the sense that more than one observation per
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facet is available, it is often possible to deliberately ’forget’

the excess information and reduce the problem to a ∆-simple

case. Exploring this reduction is a topic of future work.

1) Performing q-Diagnosis: Qualitative Diagnosis can

be performed for general UND-nets using diagnosers con-

structed from a suitable prefix of F(UN ), cut off and looped

after repetition of markings. Consider the following equiva-

lence relation on ∆: δ1 ∼∆ δ2 iff

1) δ1 and δ2 are isomorphic as π-labeled occurrence nets,

2) ⌈δ1⌉ ∼M ⌈δ2⌉, and

3) δ1 ∼A δ2.

Denote the ∼∆-equivalence class of δ ∈ ∆ as δ.

Setting, for b1, b2 ∈ F(B), b1 ∼∆ b2 iff δ1 ∼∆ for all

facets δ1, δ2 such that bi ∈ •δi, i ∈ {1, 2}; set T/∆
, ∆/∼∆

and P/∆
, F(B)/∼∆

, and F/∆
, (F()G)∼∆

. From the

construction of the unfolding UN , we obtain that

1) ON /∆
, (B/∆

, E/∆
, F/∆

,M0/∆
) is a safe Petri net,

2) the unfolding of ON /∆
is isomorphic (as a labelled

occurrence net) to ON .

The looped net thus obtained can be seen as a finite, facet-

contracted version of N . It allows to carry out diagnosability

analysis, and diagnosis in the cases covered by Theorem 4.1,

where the diagnosis procedure to recognition of local alarm

patterns; we omit the formal diagnoser construction for lack

of space here.

It is natural to ask whether, and how, diagnosis can be

performed in cases where φ-positive facets can be silent

(i.e. δA is empty). Theorem 4.1 gives a clear and negative

answer to this: invisible facets destroy q-diagnosability.

However, the above quotient construction allows to detect

faulty invisible facets by diagnosis on the Petri net ON /∆
.

In fact, the facets of ON becoming simple transitions of

ON /∆
, one obtains a new Petri net diagnosis problem with

a labelling λ : ∆ → A, where A is the alphabet formed by the

partially orderd shapes δA obtained under λ. In this quotient

problem, it may be adequate to check q-diagnosability again,

or e.g. weak diagnosability in the sense of [13]; this is a

potential topic of interest in future work.

V. CONCLUSION AND OUTLOOK

q-diagnosability is an adequate property to require of

asynchrounous systems in which state and time are dis-

tributed, and ordering of concurrent events is neither con-

trollable nor observable. Facets formalize the fact that oc-

currence of some events reveals the inevitable occurrence

of other events; the facet of an observable event e gives all

the behaviours that will inevitably occur, sooner or later, if e

does. One can effectively compute the basic relation ⊲ verify

q−diagnosability using a finite unfolding prefix of bounded

size, as our results here and in [14] show.
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