
Verifying equivalence properties of security

protocols

Daniel Pasailă
email: daniel.pasaila@gmail.com

Advisors: Stephanie Delaune and Steve Kremer

August 19, 2011

1 Introduction

Security protocols are used nowadays for securing transactions through pub-
lic channels, like the Internet. Typical examples of applications include elec-
tronic commerce, electronic voting or mobile ad hoc networking. In order
to obtain as much confidence as possible, several formal methods have been
proposed for analyzing properties of security protocols. Depending on the
goals which a security protocol has, there are several types of properties that
need to be verified. First, there are reachability or trace-based properties,
which express the fact that a bad state cannot be reached. Two classical
reachability properties are secrecy and authentication. Secrecy expresses
the fact that a secret key or nonce cannot become public and authentica-
tion is used for ensuring an agent of other’s identity. However, there are
some security properties, like privacy, that cannot be formulated in terms
of reachability. These can be modeled using equivalence-based properties,
usually used to express indistinguishably, a security property satisfied when
an observer cannot distinguish between two processes. This is crucial in
proving anonymity properties, where an attacker should not be able to dis-
tinguish a run involving an agent A from a run involving another participant
A′. Anonymity is also used in the context of electronic voting, where two
different runs of the voting protocol should be indistinguishable for the at-
tacker in order to ensure that no information is leaked about the vote of
a participant. Another equivalence-based property is resistance to off line

Due to the fact that the author does not have a proper command of French, this
report is written in English.

1

guessing attacks, which occur when an attacker is able to guess a secret by
just trying every possible value for it.

Several reachability and equivalence-based properties have been success-
fully analyzed using symbolic methods. Used for detecting logical flaws in
protocols, symbolic methods have been introduced by Dolev and Yao in
early 80s [1]. In the symbolic model, messages are represented by an ab-
stract term algebra and nonces by fresh names. Two different nonces are
represented by different names and they are never equal. The attacker has
full control over the network: it can read all the exchanged messages and
can reply by constructing new messages according to his knowledge and a
predefined set of rules. Moreover, the attacker may initiate an unbounded
number of sessions with the honest participants. In other computational
models the attacker is a probabilistic Turing machine, and messages are bit-
strings that do not have any particular structure. Nonces are represented
by random numbers drawn from a specific distribution, thus two nonces can
be equal with small probability.

Among symbolic approaches that have been successfully used is con-
straint solving. Introduced by J.Millen and V.Shmatikov [2], this technique
is suitable for verifying security properties for bounded number of sessions.
A symbolic trace of a protocol is an interleaving of roles of the participants,
and it can be represented using a constraint system. Let us consider the
following Example which uses the Handshake protocol [3, 4]:

A→ B : {N}kAB

B → A : {f(N)}kAB
,

where {x}kAB
denotes the encryption of the message x with the key kAB.

The goal of this protocol is to authenticate B to A, provided that they
share the symmetric encryption key kAB. First, A challenges B by creating
a nonce N and sending it to B, encrypted with the shared key kAB. Then B
receives the message, decrypts it with kAB obtaining N, applies a previously
given function f (for instance f(N) = N + 1) and sends it to A. Finally A
checks the validity of the response by decrypting the received message and
confruting it with f(N). Suppose that we want to prove the authentication
property for two sessions on our example. Consider the following symbolic

2

trace of the protocol, where the intruder I interleaves between A and B :

A
{N}kAB−−−−−→ I

I
x1−→ B

I
{f(sdec(x1,kAB))}kAB←−−−−−−−−−−−−−− B

A
x2←− I

Here, sdec(x, k) denotes the decryption of the message x with the key k.
Notice that since this is a symbolic trace, all the messages that are sent by
the intruder are encoded by variables. Thus, an attack on this symbolic
trace exists iff the intruder intruder can deduce messages x1 and x2 such
that sdec(x2, kAB) = f(N). This can be answered by solving the following
constraint system:

∃x1, x2,


X1[{N}kAB

] =? x1

X2[{N}kAB
, {f(sdec(x1, kAB))}kAB

] =? x2

sdec(x2, kAB) = f(n).

Intuitively, the first line means that x1 must be computable from the message
sent by A to the intruder, which is {N}kAB

. The computation used for
computing x1 is denoted by X1. Then, B receives x1, decrypts it, applies the
function f and sends the result to the intruder, encrypted with kAB. Thus,
the intruder receives the message {f(sdec(x1, kAB))}kAB

from B. Then it
must compute a message x2 that satisfies the test made by A, which is
sdec(x2, kAB) = f(N). It can be seen that by taking x1 = {N}kAB

and
x2 = {f(sdec(x1, kAB))}kAB

= {f(N)}kAB
we obtain a valid attack on this

symbolic trace, thus the protocol is not safe for two sessions. The variables
X1, X2 are called second order variables and they are used for encoding the
computations used for obtaining x1 and x2, which are first order variables.

Two constraint systems are considered to be equivalent if they have
the same second order solutions. In other words, their first order solutions
can be computed by using the same set of computations. Equivalence of
constraint systems is a procedure which is used more and more lately as a
subroutine in algorithms deciding equivalence-based properties. This is the
case for [5], where a method for deciding trace equivalence is proposed. In [6]
the problem of off line guessing attacks is studied. A protocol is said to be
subject to off line guessing attacks iff an attacker is able to guess a secret
by trying every value for it. To decide whether a protocol is subject to off
line guessing attacks, it has been shown in [6] that it suffices to construct
two constraint systems for each symbolic trace and decide whether they are
equivalent.

3

Our contribution Algorithms for deciding equivalence of constraint sys-
tems have been proposed in [6] for subterm convergent equational theories.
While this suffices for expressing properties of digital signatures, pairing,
symmetric and asymmetric encryptions, it does not provide enough means
for dealing with arithmetic operations like addition, multiplication or exclu-
sive or. While many formal analysis abstract from this low-level operators,
many attacks and weaknesses rely on these properties. For example, attacks
exploiting the exclusive or properties have been showed in [7], in the con-
text of mobile communications. In this report we propose a procedure for
deciding equivalence of constraint systems when using the Abelian Groups
and Exclusive Or equational theories.

Related Work When the number of sessions is unbounded, many reach-
ability properties have been proved to be undecidable. For example secrecy
has been shown to be undecidable [8, 9] even if the size of the exchanged
messages is bounded [10]. For bounded number of sessions, an algorithm
for trace equivalence is proposed in [5], for theories that contain only signa-
tures, pairing, symmetric and asymmetric encryptions. In [11] it has been
shown that trace equivalence can be reduced to equivalence of finitely many
pairs of constraint systems in the case of determinate processes. In [6] an
algorithm for deciding equivalence of constraint systems is given for subterm
convergent equational theories.

Recently procedures that combine algorithms for disjoint intruder theo-
ries have been studied. In [12] it has been shown that if satisfiability of con-
straint systems is decidable for two disjoint intruder theories, then it is also
decidable for their reunion. Similar combination results have been shown
for deductibility and an indistinguishably property called static equivalence
in [13].

2 Preliminaries

2.1 Signatures, terms and substitutions

A signature Σ is a set of functional symbols F with an associated non-
negative arity function ar defined over F . Having a set of variables X , let
T (F ,X) be the set of terms built over the set of variables X using functional
symbols in F . A term is closed if it has no variables and public if it does not
contain any private functional symbol. Constants are functional symbols of
arity 0. The set F is partitioned into the set of public symbols Fpub and the
set of private symbols Fpriv. We assume the existence of an additional set

4

of constants W = {w1, w2, · · · } called parameters, which are separate from
F . We also assume the existence of an infinite amount of private and public
constants.

We fix an infinite set of variables X , partitioned into the set of first
order variables X 1 = {x, y, · · · } and the set of second order variables X 2 =
{X,Y, · · · }, which are given with nonnegative arities ar(X), ar(Y), · · · . We
distinguish the following sets of terms:

• T (F ,X 1), which are called first order terms and are denoted by t, s, · · · ,

• T (Fpub∪W,X 2), which are called second order terms and are denoted
by M,N, · · · ,

• T (F ∪W,X), which are general terms denoted by T, S, · · · .

Substitutions are defined as sets of pairs written σ = {x1 → T1, · · · , xn →
Tn}, where dom(σ) = {x1, · · · , xn}. We assume that dom(σ) ⊂ X . The sub-
stitution σ is closed iff all terms T1, · · · , Tn are closed. The application of a
substitution σ to a term T is denoted as Tσ. Next, we extend the notion of
arity to general terms. Having a term T , ar(T) denotes the maximum of the
indexes of parameters contained in T and arities of second order variables
contained in T. A substitution σ is well formed iff it assigns first order terms
to first order variables and second order terms to second order variables,
such that for any pair X → M ∈ σ we have that ar(M) ≤ ar(X). Arities
are used to restrict the maximum index of parameters of terms that can
replace a second order variable. Thus, the arity of a term cannot increase
after applying multiple well formed substitutions. For example, the term w5

contains only one parameter, and is of arity 5. By applying only well formed
substitutions, the resulting terms can only contain parameters w1, · · · , w5.

2.2 Equational theories

Definition 2.1 (Equational theory). Having a signature Σ = {F , ar}, an
equational theory over Σ is a set of pairs of terms E = {(T, S) | T, S ∈
T (F ∪ W,X)}. We define the equality modulo E, denoted as =E , as the
smallest equivalence relation such that:

1. (T, S) ∈ E implies that T =E S,

2. =E is closed under substitutions (not necessarily well formed) of vari-
ables with terms

3. =E is closed under application of functional symbols

5

4. =E is closed under bijective renaming of constants that do not appear
in E

Example 2.1. Let Σ+ = {+, 0} be the signature containing a constant
symbol 0 and a binary symbol +. Moreover, let E+ (Exclusive Or) be the
equational theory defined by the following equations:

(x+ y) + z = x+ (y + z) (A) x+ 0 = x (U)
x+ y = y + x (C) x+ x = 0 (N)

If t1, t2 and t3 are terms, we have that t1 + (t2 + t1) =E+ t2 by applying
rules (C), (A), (N) and (U).

Example 2.2. Let ΣAG = {+,−, 0} be the signature containing a constant
symbol 0, a binary symbol + and a unary symbol −. Moreover, let EAG
(Abelian Groups) be the equational theory defined by the following equations:

(x+ y) + z = x+ (y + z) (A) x+ 0 = x (U)
x+ y = y + x (C) x+−(x) = 0 (Inv)

If t1, t2 and t3 are terms, we have that −(t1 + t2) =EAG
−(t1) +−(t2).

2.3 Intruder Constraint Systems

Definition 2.2. Let E be an equational theory and Y = {X1, · · · , Xm} a
set of m distinct second order variables that satisfy ar(Xi) ≤ ar(Xi+1), 1 ≤
i < m. An intruder constraint system (or constraint system) defined over E
and Y is a system of equations C of the form

∃x1, · · · , xm,



X1[t1, · · · , tar(X1)] =? x1

· · ·
Xm[t1, · · · , tar(Xm)] =? xm

s1 =?
E s′1
· · ·

sn =?
E s′n

such that the following hold:

1. var(s1, s
′
1, · · · , sn, s′n) ⊆ {x1, · · · , xm}, where s1, s

′
1, · · · , sn, s′n are first

order terms,

2. ∀1 ≤ i ≤ m,∀1 ≤ j ≤ ar(Xi), var(tj) ⊆ {x1, · · · , xi−1} (origination),
where each tj is a first order term.

6

A solution to C is a substitution θ that is closed (does not contain any
variables), well formed with dom(θ) = {X1, · · · , Xm} for which there exists
a closed, well formed substitution σ with dom(σ) = {x1, · · · , xm} such that
the following conditions are satisfied:

1. (Xiθ)[t1σ, · · · , tar(Xi)σ] = xiσ, 1 ≤ i ≤ m,

2. siσ = s′iσ, 1 ≤ i ≤ n.

The substitution σ is called the first order extension of θ. Due to the origina-
tion property, the first order extension of a substitution θ is always unique.
We denote by θ |= C the fact that θ is a solution to C.

3 Deciding equivalence of constraint systems for
EAG and E+ equational theories

We say that two constraint systems are equivalent if they have the same set
of second order solutions. In this section we study the problem of equiv-
alence when considering the Abelian Groups equational theory described
in Example 2.2. We must note that this result can be easily adapted for
Exclusive Or equational theory described in Example 2.1.

In the following we focus on Abelian Groups, thus we only consider
the signature ΣAG and the equational theory EAG described in Example
2.2. Moreover, we assume that the signature contains an infinite number of
constants. Having two constraint systems C1 and C2 defined over the same
set of second order variables Y = {X1, · · · , Xm}, we denote by C1 ⊆ C2 the
fact that the set of solutions of C1 is included in the set of solutions of C2.
If C1 ⊆ C2 we will also say that C1 is included in C2. Since for deciding
equivalence between C1 and C2 it suffices to decide whether C1 ⊆ C2, we will
focus on this problem for the rest of the section. We will show how to decide
whether C1 ⊆ C2 in five different steps:

1. we simplify the problem of deciding whether C1 ⊆ C2 to deciding
whether a simple constraint system is included in a general constraint
system, where a simple constraint system is a constraint system for
which the terms t1, · · · , tar(Xm) are closed,

2. we show that for deciding whether C1 ⊆ C2 it suffices to decide whether
the set of solutions of C1 that contain only constants that appear in
C1 are also solutions of C2,

7

3. we show how to encode solutions of a constraint system C that contain
only constants that appear in C in a system of equations,

4. we show that it can be decided whether the solutions of a system of
linear equations are included in the set of solutions of another system
of nonlinear equations,

5. we conclude by showing that it can be decided whether a simple con-
straint system is included in a general constraint system by using the
fact that only systems of linear equations are needed for encoding
simple constraint systems.

3.1 Simplifying the problem of inclusion

Let C be the constraint system defined by

X1[t1, · · · , tar(X1)] =? x1

· · ·
Xm[t1, · · · , tar(Xm)] =? xm

s1 =?
EAG

s′1
· · ·

sn =?
EAG

s′n.

For any terms t1, t2, let t1 − t2 denote t1 + (−t2). Let T = {w1 →
w1 −M1, · · · , war(Xm) → war(Xm) −Mm} be a substitution with dom(T) =
{w1, · · · , war(Xm)}. We say that the substitution T is compatible with C iff
M1, · · · ,Mm are second order terms that do not contain parameters which,
for all 1 ≤ i ≤ m, satisfy var(Mi) ⊆ {X1, · · · , Xpi−1}, where pi = min{j |
ar(Xj) >= i, 1 ≤ j ≤ m}. Next, we define the constraint system CT as

X1[t
′
1, · · · , t′ar(X1)

] =? x1

· · ·
Xm[t′1, · · · , t′ar(Xm)] =? xm

s1 =?
E s′1
· · ·

sn =?
E s′n

where, for all 1 ≤ i ≤ ar(Xm), t′i = ti + Mi[x1/X1, · · · , xar(Xm)/Xar(Xm)].
Notice that, if T is compatible with C, the origination property is satisfied
for CT , thus this is a well defined constraint system. Let θ be a closed, well

8

formed substitution with dom(θ) = {X1, · · · , Xm}. We denote by θT the
substitution (θ ◦ T)m. Next, we give a lemma which will be used later for
symplyfing the inclusion problem.

Lemma 3.1. Let C be a constraint system defined as above and T = {w1 →
w1 −M1, · · · , war(Xm) → war(Xm) −Mm} be a substitution compatible with
C. Let θ = {X1 → N1, · · · , Xm → Nm} be a closed, well formed substitution.
Then, the first order extension of θ for C is equal to the first order extension
of θT for CT .

Proof. Let σ be the first order extension of θ for the constraint system C. We
will prove by induction that, for all 1 ≤ i ≤ m,Xi(θ◦T)i[t′1σ, · · · , t′ar(Xi)

σ] =

Xiθ[t1σ, · · · , tar(Xi)σ], which suffices since Xiθ[t1σ, · · · , tar(Xi)σ] = xiσ. For
the rest of the proof, let M ′i = Mi[x1/X1, · · · , xar(Xm)/Xar(Xm)] for all 1 ≤
i ≤ ar(Xm).

The base case (i = 1) follows from the fact that the terms t1, · · · , tar(X1)

are closed. Moreover, due to the constraints of the substitution T , the terms
t′1, · · · , t′ar(X1)

are also closed. Thus we have the following equalities:

X1θ[t1σ, · · · , tar(X1)σ] =

X1θ[t1, · · · , tar(X1)] =

X1θ[t
′
1 −M ′1, · · · , t′ar(X1)

−M ′ar(x1)] =

X1(θ ◦ T)[t′1, · · · , t′ar(X1)
] =

X1(θ ◦ T)[t′1σ, · · · , t′ar(X1)
σ].

Suppose now that Xj(θ ◦ T)j [t′1σ, · · · , t′ar(Xj)
σ] = Xjθ[t1σ, · · · , tar(Xj)σ]

holds for all 1 ≤ j < i. It remains to prove that the hypothesis also holds
for i. We have the following equalities:

Xiθ[t1σ, · · · , tar(Xi)σ] =

Xiθ[t
′
1σ −M ′1σ, · · · , t′ar(Xi)

σ −M ′ar(Xi)
σ] =

Xiθ[t
′
1σ −M1, · · · , t′ar(Xi)

σ −Mar(Xi)]θ[t1σ, ..., tar(Xi−1)σ] =

Xi(θ ◦ T)[t′1σ, · · · , t′ar(Xi)
σ](θ ◦ T)i−1[t′1σ, · · · , t′ar(Xi−1)

σ] =

Xi(θ ◦ T)i[t′1σ, · · · , t′ar(Xi)
σ].

The third equality follows from the fact that, for all 1 ≤ j ≤ ar(Xi), we
have that M ′jσ = Mjθ[t1σ, · · · , tar(Xi−1)σ]. The forth equality follows from
the induction hypothesis and the definition of T .

Next we give two examples which illustrate Lemma 3.1.

9

Example 3.1. Let C be the constraint system defined by
X1[a, b] =? x1

X2[a, b, c+ 2x1] =? x2

x1 + x2 =?
EAG

c.

Let T = {w1 → w1, w2 → w2, w3 → w3 − (−2X1)} be a substitution
compatible with C′. Then, the constraint system CT is defined by

X1[a, b] =? x1

X2[a, b, c] =? x2

x1 + x2 =?
EAG

c.

Consider the substitution θ = {X1 → w1+w2, X2 → −3w1−3w2+w3}. It
follows that the first order extension of θ for C is the substitution σ = {x1 →
a+ b, x2 → −a− b+ c}. Next, we have that (θ ◦ T) = {X1 → w1 +w2, X2 →
−3w1 − 3w2 + w3 + 2X1}, thus θT = (θ ◦ T)2 = {X1 → w1 + w2, X2 →
−w1 −w2 +w3}. It follows that σ is also the first order extension of θT for
CT . Notice that θ |= C and θT |= CT .

Example 3.2. Let C′ be the constraint system defined by
X1[a, b] =? x1

X2[a, b, c+ x1] =? x2

x2 + 2x1 =?
EAG

c.

Let T = {w1 → w1, w2 → w2, w3 → w3 − (−2X1)} be a substitution
compatible with C, as in Example 3.1. Then, the constraint system C′T is
defined by 

X1[a, b] =? x1

X2[a, b, c− x1] =? x2

x2 + 2x1 =?
EAG

c.

Again, let θ = {X1 → w1 + w2, X2 → −3w1 − 3w2 + w3} be defined as
in Example 3.1. It follows that the first order extension of θ for C′ is the
substitution σ = {x1 → a + b, x2 → −2a − 2b + c}. It can be shown similar
as in Example 3.1 that θ |= C′ and θT |= C′T .

In the the rest of this section we show how to simplify the problem of
deciding whether C1 ⊆ C2 by using the above result.

10

Lemma 3.2. If C1 ⊆ C2 then, for each substitution T = {w1 → w1 −
M1, · · · , war(Xm) → war(Xm) −Mm} which is compatible with C1 (and C2),
we have that C1T ⊆ C2T .

Proof. First, note that since C1 and C2 are defined over the same set of
second order variables Y, every substitution T compatible with C1 is also
compatible with C2.

We start by defining T − = {w1 → w1−(−M1), · · · , war(Xm) → war(Xm)−
(−Mm)}. It directly follows that T − is compatible with C1T and C2T . By
definition we have that C1TT − = C1 and C2TT − = C2.

Suppose by contradiction that C1T 6⊆ C2T . Then, there exists a substitution
θ such that θ |= C1T and θ 6|= C2T . Using Lemma 3.1 it follows that θT − has
the same first order extension for Ci as θ for CiT , i ∈ {1, 2}.This directly
implies that θ |= C1 and θ 6|= C2, which contradicts C1 ⊆ C2.

Next we give a theorem that follows directly from the above lemma.

Theorem 3.1. Let T = {w1 → w1 −M1, · · · , war(Xm) → war(Xm) −Mm}
be a substitution compatible with C1 (and C2). Then C1 ⊆ C2 iff C1T ⊆ C2T .

In the following we define simple constraint systems and, using the above
theorem, we will reduce the problem of inclusion between solutions of general
constraint systems to the problem of inclusion between solutions of a simple
constraint system and a general one.

We say that a constraint system C is simple iff the terms t1, · · · , tar(Xm)

are closed. Moreover, let T Cvar = {w1 → w1 −M1, · · · , war(Xm) → war(Xm) −
Mm}, where for all 1 ≤ i ≤ m, Mi is the inverse of the subterm of ti that
contains all the variables. For example, if we have ti = xi−1 + xi−1 + xi−2 +
a+(−xi−3), we have that Mi = −(Xi−1+Xi−1+Xi−2+(−Xi−3)). It follows
that CT Cvar is the constraint system obtained from C by removing all variables
from t1, · · · , tar(Xm). Notice that CT Cvar is simple. We now give the following
corollary that simplifies the inclusion problem form two constraint systems
to the inclusion problem between a simple constraint system and a general
one.

Corollary 3.1. C1 ⊆ C2 iff C1
T C1var

⊆ C2
T C1var

.

Next we illustrate how the above corollary can be applied.

Example 3.3. Let C and C′ be the constraint systems defined in Example
3.1 and Example 3.2. Next, we have that T Cvar = T , where T is defined in
Example 3.1. Thus, using corollary 3.1, it follows that C ⊆ C′ iff CT ⊆ C′T ,

11

where CT and C′T are defined in Example 3.1 and Example 3.2. Thus, the
problem of equivalence between constraint systems is reduced to the problem
of equivalence between a simple constraint system and a general constraint
system.

Since CT and C′T are equivalent, using corollary 3.1, we have that C and C′
are also equivalent. Intuitively, the fact that CT and C′T are equivalent follows
from the fact that their solutions are substitutions that satisfy X1θ+X2θ =
w3.

3.2 Solutions with names in C1 are sufficient

During this section we show that if all solutions for C1 that contain only
constants that appear in C1 are also solutions of C2 then C1 ⊆ C2. Since
later we will encode only these solutions into systems of equations, this
section proves that this indeed suffices. We start by giving a lemma which
will be used later.

Lemma 3.3. Given a constraint system C and a substitution θ that con-
tains constants c1, · · · , cp that do not appear in C such that θ |= C, then
θ[t1/c1, · · · tp/cp] |= C for any closed, public first order terms t1, · · · , tp.

Proof. Let σ be the first order extension of θ and σ′ be the first order
extension of θ[t1/c1, · · · tp/cp]. Since θ |= C it follows that for any 1 ≤ i ≤ n,
siσ = s′iσ. Since c1, · · · , cp do not appear in si and neither in s′i it follows
that they are reduced in the term (si − s′i)σ. Thus (si − s′i)σ

′ = (si −
s′i)σ[t1/c1, · · · tp/cp] = (si − s′i)σ, which concludes.

We now conclude the section with the final theorem.

Theorem 3.2. Let C1 and C2 be two constraint systems. Then C1 ⊆ C2 iff
all solutions to C1 that do not contain constants that do not appear in C1
are also solutions of C2.

Proof. Since the implication is trivial, we will focus on the converse. Sup-
pose that all solutions to C1 that do not contain constants that do not appear
in C1 are also solutions of C2. Then, we will prove that C1 ⊆ C2. Suppose by
contradiction that there exist a substitution θ which contains p constants
c1, · · · , cp that do not appear in C1 such that θ |= C1 and θ 6|= C2. Wlog,
assume that c1, · · · , cp do not appear in C2 (otherwise take the substitution
θ′ = θ[c′1/c1, · · · , c′p/cp], where c′1, · · · , c′p are fresh constants that do not
appear in C1 and neither in C2; indeed, according to Lemma 3.3, we have
that θ′ |= C1; the fact that θ′ 6|= C2 follows by contradiction using Lemma

12

3.3 and the fact that θ′[c1/c
′
1, · · · , cp/c′p] = θ). By using θ 6|= C2, it follows

that there exists an equation si = s′i ∈ C2, such that (si − s′i)σ 6= 0, where
σ is the first order extension of θ for C2. According to Lemma 3.3 it fol-
lows that θ[0/c1, · · · , 0/cp] |= C1, thus, using the hypothesis, we have that
θ[0/c1, · · · , 0/cp] |= C2. It follows that (si− s′i)σ is a nonzero term that may
contain only c1, · · · , cp. Let t1, · · · , tp be public terms that contain only con-
stants that appear in C1 such that (si− s′i)σ[t1/c1, · · · , tp/cp] 6= 0. Then, by
Lemma 3.3, it follows that θ[t1/c1, · · · , tp/cp] |= C1. Using the hypothesis,
we have that θ[t1/c1, · · · , tp/cp] |= C2. Thus, it follows that (si − s′i)σ′ = 0,
where σ′ is the first order extension of θ[t1/c1, · · · , tp/cp] for C2. However,
this is a contradiction, since (si − s′i)σ′ = (si − s′i)σ[t1/c1, · · · , tp/cp], which
cannot be 0.

3.3 Encoding solutions of constraint systems into systems of
equations

The purpose of this section is to show how to construct systems of equations
that encode solutions of constraint systems that contain only constants that
appear in the constraint system. First, we need to encode second order
variables as sums of terms containing unknown variables over Z. Wlog, we
assume that the set of public constants that appear in C are included in the
set of terms t1, · · · , tar(X1). Thus, for all 1 ≤ i ≤ m, each second order vari-
able Xi can be seen as a sum yi1t1 + · · ·+yiar(Xi)

tar(Xi), where yi1, · · · , yiar(Xi)
are unknowns over Z. Therefore every constraint system C can be brought
in the following form:

y11t1 + · · ·+ y1ar(X1)
tar(X1) = x1

· · ·
ym1 t1 + · · ·+ ymar(Xm)tar(Xm) = xm

s1 = s′1
· · ·

sn = s′n,

where, for all 1 ≤ i ≤ m and 1 ≤ j ≤ ar(Xi), y
i
j are unknowns over Z,

s1, s
′
1, · · · , sn, s′n are first order terms that contain only variables x1, · · · , xm

and t1, · · · , tar(Xm) are first order terms that satisfy the origination prop-
erty. Our next goal is to remove variables x1, · · · , xm from the terms
t1, · · · , tar(Xm). By origination property, this can be done using replace-
ments. For each variable xi, we will construct inductively a closed first
order term E(xi) as follows:

13


E(x1) = y11t1 + · · ·+ y1ar(X1)

tar(X1)

E(xi) = (yi1t1 + · · ·+ yiar(Xi)
tar(Xi))[E(x1)/x1, · · · , E(xp)/xp],

where i > 1 and p = ar(Xi−1).

(1)
By origination it follows that, for all 1 ≤ i ≤ m, E(xi) is a closed term.

Finally, we will show how a system of equations can be obtained. Given
the constraint system C, let Ceq denote the equivalent system of equations
that we construct. We have to note that the variables of Ceq are {yij | 1 ≤
i ≤ m, 1 ≤ j ≤ ar(Xi)}, thus each solution to Ceq encodes a second order
substitution which is a solution of C.

Next, we take each equation si = s′i from C and add a set of equations
into the system Ceq. We assume that the equation si = s′i has the form
a1x1 + · · · + amxm = pi, where ai ∈ Z and pi is a closed first order term.
Notice that any equation can be brought to this form by bringing factors
that contain variables to the left side, and the other factors to the right side.
Next, we remove the variables from the left side by replacing them with the
closed terms E(xi), for all 1 ≤ i ≤ m. Thus, we now have the equation
a1E(x1) + · · ·+amE(xm) = pi. We obtain an equation for each constant, by
taking the corresponding coefficients from the left hand side and equalizing
with the coefficients from the right hand side. Finally, we add this equation
to Ceq. We give an example to illustrate the construction.

Example 3.4. Consider the constraint system C′T defined in Example 3.2
as 

X1[a, b] =? x1

X2[a, b, c− x1] =? x2

x2 + 2x1 =?
EAG

c.

First, we rewrite this constraint system as
y11a+ y12b = x1

y21a+ y22b+ y23(c− x1) = x2

x2 + 2x1 = c.

By definition, we have that
E(x1) = y11a+ y12b

E(x2) = (y21a+ y22b+ y23(c− x1))[E(x1)/x1]

= y21a+ y22b+ y23c− y23y11a− y23y12b.

14

Now, we take the equation x2 + 2x1 =?
EAG

c and, by replacing x2 with E(x2)

and x1 with E(x1), we obtain a(y21−y23y11+2y11)+b(y22−y23y12+2y12)+cy23 = c.
Thus, we obtain the following system of equations C′Teq :

y21 − y23y11 + 2y11 = 0

y22 − y23y12 + 2y12 = 0

y23 = 1.

It can be seen that any integer solution of the system of equations encodes
a solution of the constraint system. For instance, take y11 = 1, y12 = 1, y21 =
−1, y22 = −2, y23 = 1. This encodes the substitution θ = {X1 → w1+w2, X2 →
−w1 − w2 + w3}, which is a solution of C′T .

When the constraint system C is simple, then Ceq becomes a system of
linear equations. This happens because, in Equation 1, substitutions are no
longer needed. Example 3.5 illustrates this fact.

Example 3.5. Consider the constraint system CT is defined in example 3.1
as 

X1[a, b] =? x1

X2[a, b, c] =? x2

x1 + x2 =?
EAG

c.

Then, we bring this constraint system into the following form:
y11a+ y12b = x1

y21a+ y22b+ y23c = x2

x1 + x2 = c.

It follows that {
E(x1) = y11a+ y12b

E(x2) = y21a+ y22b+ y23c.

Thus, taking equation x1 + x2 = c and replacing x1 with E(x1) and x2 with
E(x2) we obtain a(y11 + y21) + b(y12 + y22) + cy23 = c. Therefore the obtained
system of linear equations CTeq is

y11 + y21 = 0

y12 + y22 = 0

y23 = 1.

15

3.4 Deciding inclusion of solutions of a system of linear equa-
tions in solutions of a system of nonlinear equations

Let C1eq be a system of linear equations and C2eq be a system of nonlinear
equations. The first thing to note is that it is sufficient to check whether
C1eq implies each equation of C2eq. Also, each equation in C2eq can be seen as
a polynomial with multiple variables. Thus, we have to decide whether a
system of linear equations implies a polynomial which has the same variables.
We give a theorem which states that this can be decided in polynomial time.
Before giving the main theorem we fix some notations on polynomials.

By P [y1, · · · , ym] we denote a polynomial P with variables y1, · · · , ym. By
P [y1 = s1, · · · , ym = sm], where s1, · · · , sm are terms that contain constants
and variables, we denote the polynomial obtained by replacing yi with si
in P, for all 1 ≤ i ≤ m. Having a substitution θ = {y1 → s1, · · · , ym →
sm}, we denote by P [θ] the polynomial P [y1 = s1, · · · , ym = sm]. A root
of a polynomial P [y1, · · · , ym] is a sequence of terms s1, · · · , sm such that
P [y1 = s1, · · · , ym = sm] = 0. Having a system of linear equations Ceq and
a polynomial P [y1, · · · , ym] with the same variables, we say that Ceq implies
P [y1, · · · , ym], denoted Ceq → P [y1, · · · , ym], iff each solution of Ceq is also a
root of P [y1, · · · , ym].

Next, we give a lemma which will be used later in the proof of the main
theorem.

Lemma 3.4. Having a nonzero polynomial P [y1, · · · , ym] where the degree
of yi is g and a set of values S such that |S| > g, there exists a value k ∈ S
such that the polynomial P [y1, · · · , yi = k, · · · , ym] 6= 0.

Proof. Let s1, · · · , sm ∈ Z be values that satisfy P [y1 = s1, · · · , ym =
sm] 6= 0. It follows that P [y1 = s1, · · · , yi, yi+1 = si+1, · · · , ym = sm] 6= 0.
Suppose by contradiction that for all k ∈ S we have that P [y1, · · · , yi =
k, · · · , ym] = 0. This directly implies that for all k ∈ S, P [y1 = s1, · · · , yi =
k, yi+1 = si+1, · · · , ym = sm] = 0, which is a contradiction since P [y1 =
s1, · · · , yi, yi+1 = si+1, · · · , ym = sm] is a polynomial in yi that can have at
most g roots.

Finally we give the main theorem.

Theorem 3.3. Having a system of linear equations over Z Ceq with vari-
ables x1, · · · , xn, y1, · · · , ym and a polynomial E[x1, · · · , xn, y1, · · · , ym] it is
decidable to say whether Ceq → E[x1, · · · , xn, y1, · · · , ym] in polynomial time.
Moreover, if a solution to Ceq that is not a root of E exists, it can be found
in polynomial time.

16

Proof. We assume that Ceq is given in the solved form, i.e as a list of n
equations of the type xi = ti

di
, where di is from Z and, for all 1 ≤ i ≤ n, the

term ti is of the form ai1y1+· · ·+aimym+ci, with aij , ci ∈ Z, 1 ≤ j ≤ m. Thus,
an integer solution for Ceq is given by a set of integer values for y1, · · · , ym
such that x1, · · · , xn are also integers. We consider that solutions to Ceq
are substitutions θ = {y1 → s1, · · · , ym → sm} such that s1, · · · , sm are
integers and t1θ

d1
, · · · , tnθdn are also integers. For the rest of the proof, let

g = lcm(d1, · · · , dn). Since, for all 1 ≤ i ≤ n, xi depends only on y1, · · · , ym,
it suffices to decide whether each solution of Ceq implies the polynomial
P [y1, · · · , ym] = g · E[x1 = ti/di, · · · , xn = tn/dn, y1, · · · , ym].

Next, we prove that Ceq → P [y1, · · · , ym] iff P [y1, · · · , ym] is the 0 poly-
nomial or if Ceq does not admit any integer solution. This suffices, since, as
shown in [14], finding an integer solution to Ceq can be done in polynomial
time. Since the converse is trivial, we will only focus on the implication.

Suppose that Ceq → P [y1, · · · , ym]. Then, we must prove that either
P [y1, · · · , ym] is the constant polynomial 0 or Ceq does not admit any integer
solution. It suffices to prove the contrapositive: assuming that P [y1, · · · , ym]
is not the constant polynomial 0 and Ceq admits an integer solution, we will
prove that Ceq does not imply P [y1, · · · , ym] by showing that there exists a
solution for Ceq that is not a root of P [y1, · · · , ym]. For each 1 ≤ i ≤ n, we
have that xi = ti

di
, where ti = ai1y1 + · · ·+ aimym + ci. Let 0 ≤ k1, · · · , km be

integers. Let t′i = ai1(y1 + gk1) + · · ·+ aim(ym + gkm) + ci. Since g is divided
by di, it follows that for any integer values for y1, · · · , ym, we have that
ti ≡di t′i. Using the hypothesis, it follows that there exists a substitution
θ = {y1 → s1, · · · , ym → sm} which is an integer solution to Ceq. From
the above observation, it follows that the substitution θk1,··· ,km = {y1 →
s1 + gk1, · · · , ym → sm + gkm} is also an integer solution to Ceq, for any
integers k1, · · · , km. Thus, it suffices to show that there exist k1, · · · , km
such that P [θk1,··· ,km] 6= 0. For the rest of the proof let θk1,··· ,kt = {y1 →
s1 + gk1, · · · , yt → st + gkt, yt+1 → st+1, · · · , ym → sm}, for any integers
k1, · · · , kt with t ≤ m.

We conclude by proving the following statement by induction on m:
given a non zero polynomial P [y1, · · · , ym], there exist k1, · · · , km such that
P [θk1,··· ,km] 6= 0. The base case is trivial: for m = 1, we have that our
polynomial has only one variable which is y1. Let p be the degree of the
polynomial. It follows that P may have at most p roots, thus at least one
value from the set {s1 + 0 · g, s1 + 1 · g, · · · , s1 + p · g} will not be a root
of the polynomial. Thus there exist a k1 from the set {0, 1, · · · , p} such
that P [θk1] 6= 0. Suppose now that for all i < t, there exist k1, · · · , ki such

17

that P [θk1,··· ,ki] 6= 0, for any polynomial P [y1, · · · , yi]. We will prove that
the statement is also true for t. Let p be the degree of yt. Using Lemma
3.4, it follows that there exists kt ∈ {0, 1, · · · , p} such that the polynomial
P [y1, · · · , yt−1, yt = st + ktg] is not the null polynomial. By applying the
induction hypothesis on P [y1, · · · , yt−1, yt = st + ktg], it follows that there
exists k1, · · · , kt−1 such that P [θk1,··· ,kt−1,kt] 6= 0, which concludes. The
polynomial algorithm that finds k1, · · · , km follows directly from this proof.

Example 3.6. Consider the system of linear equations CTeq defined in Ex-
ample 3.5 as 

y11 + y21 = 0

y12 + y22 = 0

y23 = 1.

which can be rewritten into solved form as
y11 = −y21
y12 = −y22
y23 = 1.

Consider also the system of equations C′Teq defined in Example 3.4 as
y21 − y23y11 + 2y11 = 0

y22 − y23y12 + 2y12 = 0

y23 = 1.

It can be seen that CTeq implies the first two equation of C′Teq because all

the terms reduce when replacing y11 with −y21, y12 with −y22 and y23 with 1,
as indicated in the solved form of CTeq . Thus, we can finally conclude that
C ⊆ C′, where C and C′ are defined in Examples 3.1 and 3.2.

3.5 Deciding C1 ⊆ C2 : putting the pieces together

Given two constraint systems C1 and C2, we use the constructions described
earlier for deciding whether C1 ⊆ C2. As shown in Section 3.1, we can as-
sume that C1 is simple. Wlog, we assume that all public constants that
appear in both C1, C2 are included in the set of terms t1, · · · , tar(X1) and
t′1, · · · , t′ar(X1)

. Since C1 is simple, by Theorem 3.2 from Section 3.2 and the

18

encoding presented in Section 3.3 it suffices to check whether the set of solu-
tions of the system of linear equations C1eq is included in the set of solutions
of the system of nonlinear equations C2eq, which is solved in Section 3.4.

4 Conclusion

We have showed how to decide whether two constraint systems are equiv-
alent when using the Abelian Groups equational theory by presenting a
procedure that can be easily adapted for Exclusive Or equational theory
as well. Since combination algorithms for disjoint equational theories have
been already developed for satisfiability of constraint systems [12] and static
equivalence [13], we are confident in the possibility of developing a combi-
nation procedure for equivalence of constraint systems as well. In the event
of such a result, our procedure could be combined with other existing pro-
cedures resulting in new algorithms for deciding equivalence of constraint
systems in the presence of theories that contain signatures, pairing, sym-
metric and asymmetric encryptions, abelian groups and exclusive or, which
would enable analysis of equivalence based properties in more detail and of
even more real world protocols.

References

[1] D. Dolev and A. C.-C. Yao, “On the security of public key protocols
(extended abstract),” in FOCS, pp. 350–357, 1981.

[2] J. K. Millen and V. Shmatikov, “Constraint solving for bounded-process
cryptographic protocol analysis,” in ACM Conference on Computer and
Communications Security, pp. 166–175, 2001.

[3] S. Delaune and F. Jacquemard, “A theory of dictionary attacks and its
complexity,” in CSFW, pp. 2–15, 2004.

[4] L. Gong, T. M. A. Lomas, R. M. Needham, and J. H. Saltzer, “Pro-
tecting poorly chosen secrets from guessing attacks,” IEEE Journal on
Selected Areas in Communications, vol. 11, no. 5, pp. 648–656, 1993.

[5] V. Cheval, H. Comon-Lundh, and S. Delaune, “Automating secu-
rity analysis: Symbolic equivalence of constraint systems,” in IJCAR,
pp. 412–426, 2010.

19

[6] M. Baudet, “Deciding security of protocols against off-line guessing
attacks,” in ACM Conference on Computer and Communications Se-
curity, pp. 16–25, 2005.

[7] N. Borisov, I. Goldberg, and D. Wagner, “Intercepting mobile commu-
nications: the insecurity of 802.11,” in MOBICOM, pp. 180–189, 2001.

[8] S. Even and O. Goldreich, “On the security of multi-party ping-pong
protocols,” in FOCS, pp. 34–39, 1983.

[9] H. Comon and V. Cortier, “Tree automata with one memory set con-
straints and cryptographic protocols,” Theor. Comput. Sci., vol. 331,
no. 1, pp. 143–214, 2005.

[10] N. A. Durgin, P. Lincoln, and J. C. Mitchell, “Multiset rewriting and
the complexity of bounded security protocols,” Journal of Computer
Security, vol. 12, no. 2, pp. 247–311, 2004.

[11] V. Cortier and S. Delaune, “A method for proving observational equiv-
alence,” in Proceedings of the 22nd IEEE Computer Security Founda-
tions Symposium (CSF’09), (Port Jefferson, NY, USA), pp. 266–276,
IEEE Computer Society Press, July 2009.

[12] Y. Chevalier and M. Rusinowitch, “Symbolic protocol analysis in the
union of disjoint intruder theories: Combining decision procedures,”
Theor. Comput. Sci., vol. 411, no. 10, pp. 1261–1282, 2010.

[13] V. Cortier and S. Delaune, “Decidability and combination results for
two notions of knowledge in security protocols,” Journal of Automated
Reasoning, 2011. To appear.

[14] M. Goldmann and A. Russell, “The complexity of solving equations
over finite groups,” Inf. Comput., vol. 178, no. 1, pp. 253–262, 2002.

[15] R. M. Needham and M. D. Schroeder, “Using encryption for authenti-
cation in large networks of computers,” Commun. ACM, vol. 21, no. 12,
pp. 993–999, 1978.

[16] M. Rusinowitch and M. Turuani, “Protocol insecurity with finite num-
ber of sessions is np-complete,” in CSFW, pp. 174–, 2001.

20

