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Abstract

We propose in this thesis several contributions related to the quantitative verifi-
cation of systems. This discipline aims to evaluate functional and performance
properties of a system. Such a verification requires two ingredients: a formal
model to represent the system and a temporal logic to express the desired prop-
erty. Then the evaluation is done with a statistical or numerical method.

The spatial complexity of numerical methods which is proportional to the
size of the state space of the model makes them impractical when the state
space is very large. The method of stochastic comparison with censored Markov
chains is one of the methods that reduces memory requirements by restricting
the analysis to a subset of the states of the original Markov chain. In this the-
sis we provide new bounds that depend on the available information about the
chain.

We introduce a new quantitative temporal logic named Hybrid Automata
Stochastic Logic (HASL), for the verification of discrete event stochastic pro-
cesses (DESP). HASL employs Linear Hybrid Automata (LHA) to select pre-
fixes of relevant execution paths of a DESP. LHA allows rather elaborate infor-
mation to be collected on-the-fly during path selection, providing the user with a
powerful mean to express sophisticated measures. In essence HASL provides a
unifying verification framework where temporal reasoning is naturally blended
with elaborate reward-based analysis. We have also developed COSMOS, a tool
that implements statistical verification of HASL formulas over stochastic Petri
nets.

Flexible manufacturing systems (FMS) have often been modeled by Petri
nets. However the modeler should have a good knowledge of this formalism. In
order to facilitate such a modeling we propose a methodology of compositional
modeling that is application oriented and does not require any knowledge of
Petri nets by the modeler.
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Résumé

Les systèmes matériels et logiciels sont de plus en plus présents dans la vie quo-
tidienne mais aussi de plus en plus complexes. Le concepteur ou l’utilisateur
d’un système se pose deux questions principales : le système fait-il ce qu’il est
censé faire ? Combien de temps le système prend-il pour exécuter une tâche partic-
ulière ? La première question, consiste à vérifier si le système satisfait une pro-
priété fonctionnelle. Les techniques de vérification formelle [Wan04] apportent
une réponse à cette question. Dans la deuxième question, il s’agit d’évaluer un
paramètre ou un indice de performance du système. La discipline de l’évaluation
des performances [HLR00] permet d’effectuer cette tâche. Pendant longtemps,
les deux disciplines se sont développées indépendamment l’une de l’autre. Mais
quelques difficultés commencent à apparaître dans les deux disciplines. En
effet, de nos jours, l’évaluation des performances a besoin d’exprimer des in-
dices plus élaborés. Les techniques de vérification peuvent exprimer ces indices
rigoureusement et procèdent à leur évaluation automatiquement. D’autre part,
les techniques de vérification doivent être mises à jour pour aborder les sys-
tèmes probabilistes. Clairement, les deux disciplines sont complémentaires et
leur unification engendre ce qui est appelé La vérification quantitative [Kwi07].

Plusieurs approches ont été développées dans le contexte de la vérification
formelle : tests, simulation, preuve de programmes et model checking. Depuis
le travail de Emerson et Clarke [EC80], le model checking a reçu un intérêt par-
ticulier de la part de la communauté scientifique à la fois sur les plans théorique
et pratique. Étant donnés un modèle et une propriété, la technique du model
checking explore la totalité de l’espace d’état du modèle pour vérifier si la pro-
priété est satisfaite par le modèle. Si la propriété n’est pas satisfaite un contre
exemple est généré. L’utilisation du model checking présente deux avantages
principaux par rapport aux autres méthodes de la vérification formelle : (1) la
procédure est complètement automatique, (2) un contre exemple est généré si
jamais le système échoue à satisfaire la propriété en question [BK08].

La première étape pour la vérification d’un système à travers la méthode
du model checking consiste à représenter le système par un modèle formel,
en général, un système de transition qui n’est qu’un graphe orienté où les nœuds
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iv RÉSUMÉ

représentent les états du systèmes et les arcs représentent les changements d’états
du système. D’autres informations peuvent être rajoutées sur les nœuds ou/et
arcs [BK08]. Dans la deuxième étape, la propriété que l’on souhaite vérifier est
exprimée à l’aide d’une logique temporelle adéquate. Finalement, à la troisième,
un algorithme de model checking évalue la propriété sur le modèle. En pra-
tique, cette étape consiste à exécuter un model checker. Ce dernier renvoie : oui
si le modèle satisfait la propriété ou non si la propriété n’est pas satisfaite avec
éventuellement un contre exemple.

L’évaluation des performances a connu un développement rapide avec l’avènement
des ordinateurs et des réseaux de télécommunication. Cette discipline a comme
objectif principal le calcul de certains paramètres de performance du système.
Le temps moyen de réponse d’un réseau de télécommunication est un exem-
ple de paramètres que l’on souhaite souvent évaluer. La méthodologie de la
discipline consiste à calculer la distribution stationnaire ou transitoire du sys-
tème. Ces dernières seront exploitées pour calculer les paramètres désirés. Pour
ce faire, la discipline fait appel aux méthodes analytiques ou à la simulation à
événements discrets. Quant aux modèles formels les plus répandus, on cite : la
théorie des files d’attente [Ste09], les réseaux d’automates stochastiques [Pla85]
et les réseaux de Petri stochastiques [ABC+95].

Vérification Quantitative
Pour appliquer la vérification quantitative sur un système stochastique, il

est indispensable de représenter ce système par un modèle formel. Les chaines
de Markov sont certainement les plus connues parmi les modèles stochastiques
grâce à leur simplicité, leur capacité de modélisation et la richesse de la lit-
térature qui leur a été consacrée par la communauté scientifique. Nous distin-
guons les chaînes de Markov à temps discret (DTMC) et les chaînes de Markov
à temps continu (CTMC). La modélisation d’un système directement par une
chaîne de Markov s’avère quelquefois fastidieuse voire impossible lorsque la
taille de l’espace d’état dépasse quelque dizaines d’états. Il est alors nécessaire
de faire appel aux formalismes haut niveaux tels que : Les réseaux de Petri
stochastiques, les réseaux d’automates stochastiques ou les algèbres de proces-
sus stochastiques [HK01].

La propriété à évaluer doit être exprimée par une logique temporelle prob-
abiliste. Plusieurs logiques ont été proposées dans la littérature. Elles sont
en général une extension de deux logiques principales : la logique temporelle
linéaire (LTL) [Pnu77] et logique temporelle arborescente (CTL) [CE82, QS82].
PLTL [Var85] (resp. PCTL [HJ94, HS86]) est une extension probabiliste de LTL
(resp. CTL) pour les DTMCs. La logique stochastique continue (CSL) [ASVB96,
ASVB00] a été définie comme une extension probabiliste de CTL pour les CTMCs.
CSL (resp. PCTL) a été ensuite étendue à CSRL [BHHK00a] (resp. PRCTL [AHK03])
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pour prendre en compte les récompenses dans les CTMCs (resp. DTMCc).
asCSL [BCH+07] est une autre extension de CSL qui permet de spécifier des
CTMCs avec des actions et des états étiquetés. Dans la logique CSLTA [DHS09]
la formule s’exprime comme un automate temporisé déterministe à horloge
unique. Il a été démontré que CSLTA est strictement plus expressive que CSL
et asCSL. Une autre logique qui utilise les automates pour exprimer la formule
appelée DTA [CHKM09] a été introduite. Dans cette logique l’automate est à
horloges multiples, ce qui fait de DTA plus expressive que CSLTA.

Nous distinguons deux familles de méthodes du modèle checking stochas-
tique. La première regroupe les méthodes dites numériques. Cette famille de
méthode fournit la valeur exacte de la probabilité recherchée ce qui est considéré
comme leur principal atout. Les techniques d’analyse numérique sont utilisées
pour cette catégorie. Néanmoins, plusieurs inconvénients surgissent. Le pre-
mier est dû à l’explosion de l’espace d’état ce qui rend l’analyse des grands
systèmes difficile ou impossible. Le deuxième inconvénient est liée à la nature
du processus stochastique engendré par le modèle. En effet, ces méthodes ne
peuvent pas traiter les processus markoviens ou semi-markoviens.

Les méthodes statistiques est la deuxième famille du modèle checking stochas-
tique. Leur principe consiste à générer un nombre suffisant de trajectoires en-
suite d’estimer la probabilité désirée. On en distingue deux méthodes : (1)
L’estimation, qui renvoie une estimation statistique de probabilité recherchée
tout en construisant un intervalle (appelé intervalle de confiance) contenant la
valeur exacte, pas surement mais avec une certaine probabilité ; (2) Le test
d’hypothèse, dont le but est de comparer la probabilité recherchée, sans la calculer
à un seuil prédéfini.

Les méthodes statistiques utilisent des techniques issues de la statistique
mathématique telles que l’estimation et le test d’hypothèse mais aussi la sim-
ulation à événements discrets. Ces méthodes présentent plusieurs avantages :
elles ne sont pas gourmandes en mémoire, leur complexité spatiale est propor-
tionnelle au nombre de composants et non pas à l’espace d’état, il est même
possible de traiter des systèmes infinis. L’autre avantage est qu’elle ne sont pas
restreintes aux modèles markoviens, il suffit de pouvoir représenter le modèle
par un système stochastique à événements discrets.

Toutefois ces méthodes ne sont pas sans inconvénients. En effet, l’obtention
de résultats avec un niveau de confiance élevé et un intervalle étroit nécessite
un temps de calcul très important. D’autre part, l’évaluation de formules sta-
tionnaires nécessite un traitement spécifique.

Questions Ouvertes
Nous décrivons dans cette section les trois questions ouvertes que nous

avons abordées dans notre travail.
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1. L’explosion de l’espace d’état dans les méthodes numériques. Il y a eu
plusieurs approches qui ont proposées pour apporter solution à ce problème.
Ces approches ne résolvent pas le problème définitivement, mais contribuent de
manière significative à réduire la complexité spatiale. Certaines méthodes inter-
viennent en amont, citons en quelques-unes : les méthodes d’agrégation d’états
dans les chaînes de Markov [BHHK00b, BHHK03b], le produit tensoriel dans les
les réseaux d’automates stochastiques [BKKT02], les formes produits dans les
réseaux de Petri stochastiques [HMSM05] ou l’exploitation de la comparaison
stochastique dans les chaînes de Markov [PY05]. Une autre méthode qui inter-
vient en aval consiste à utiliser les diagrammes de décision binaires [CFM+97].

2. Les limitations dans les logiques existantes. La première limitation est
dûe au manque d’approche unificatrice qui peut à la fois effectuer des tâches de
model checking et d’évaluation des performances dans un même formalisme.
La deuxième limitation est liée à l’expressivité de ces logiques. En effet, ces
logique peuvent effectuer uniquement deux type d’évaluations : (1) Une évalu-
ation booléenne qui dépends de la validité de la formule sur le chemin et (2) une
somme cumulée exprimée sur les récompenses des actions et états. Mais, il n’est
pas possible d’effectuer certaines opérations compliquées mais utiles telles que
le minimum, le maximum, l’intégration ou la valeur moyenne sur un chemin.

3. La difficulté à exploiter des formalismes haut-niveau par le modélisa-
teur. Les formalismes haut niveau sont des modèles formels qui ne corre-
spondent pas à des approches pratiques des problème traités. Le modélisateur
préfère toujours les formalismes qui correspondent à ses cas pratiques. De plus,
un formalisme intuitif contribue à réduire les erreurs au cours de la phase de
modélisation.

Les Contributions
Nous proposons dans le cadre de cette thèse plusieurs contributions
La première contribution rentre dans le cadre de la réduction de l’explosion

de l’espace d’état pour les méthodes numériques. L’objectif est de construire
des bornes stochastiques pour les chaînes de Markov censurées (CMC). Une
CMC n’observe qu’un sous ensemble de l’espace d’état de la chaîne originale.
Les CMCs sont très utiles quand on veux traiter une chaîne de Markov avec un
espace d’état très large ou quand cette chaîne n’est connue que partiellement.
En effet, la construction de bornes sur la chaîne censurée permet de borner
certaines mesures dans la chaîne originale. La technique a été déjà introduite
dans [FPY07a] où un algorithme appelé DPY a été proposé dans le but de con-
struire des bornes pour une CMC. Dans notre travail, nous montrons que DPY
est optimal et nous proposons plusieurs schémas de bornes qui dépendent de
l’information partielle disponible ou que l’on veuille exploiter.

Dans la deuxième contribution nous introduisons une nouvelle logique ap-
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plée "Hybrid Automata Stochastic Logic (HASL)". Cette logique rentre dans le
cadre du model checking statistique. Une formule dans cette logique est alors
exprimée à l’aide de deux composantes : un automate hybride linéaire et une
expression définie sur les variables de l’automate. Avec HASL, on peut vérifier
une large classe de modèles stochastiques appelée Discrete Events Stochastic
Process (DESP). HASL élimine les limitations d’autres logiques. Elle unifie dans
le même formalisme plusieurs disciplines : model checking, sûreté de fonction-
nement, évaluation des performances. D’autre part, HASL étend l’expressivité
des logiques existantes. En effet, il est possible d’effectuer certaines opéra-
tions sur les variables à la volée et pendant la génération d’une trajectoire, typ-
iquement, le minimum, le maximum, l’intégral ou la valeur moyenne. Enfin,
puisque nous utilisons une approche statistique, la propriété sans mémoire n’est
pas requise, donc, on peut (en principe) traiter n’importe quelle distribution de
temps. Nous avons aussi conçu un outil appelé COSMOS qui évalue une formule
HASL sur un réseau de Petri généralisé.

Dans la troisième contribution nous proposons une nouvelle approche com-
positionnelle pour modéliser les ateliers flexibles (FMS) en utilisant les réseaux
de Petri. Notre choix de FMS est dû à leur importance dans l’industrie. Dans
notre approche un FMS est modélisé par composants en spécifiant les classes de
composants à utiliser. Ce qui permet un modélisateur de construire son mod-
èle comme s’il construit un FMS réel à l’usine. Il aura à manipuler des unités de
chargement et de transport ainsi que des machines. Ainsi, la phase de modélisa-
tion consiste sélectionner les composants qui se trouvent dans une boîte à outils
prédéfinie. Ensuite le modélisateur procèdera à l’assemblage des composants
via leurs interfaces.
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Chapter 1

Introduction

Software and hardware systems are increasingly present in every day life but
also increasingly complex. The designer or user of a system asks two main
questions: The system does what it is supposed to do? How long does the system take
to execute a particular task? The first question, consists of verifying if the system
satisfies a functional property. Techniques of formal verification [Wan04] can
respond to such questioning. The second question is to evaluate a parameter
or a performance index of the system. The discipline of performance evalua-
tion [HLR00] is related to this task. For many years the two disciplines have
been developed independently from each other. But some weaknesses start to
appear in both disciplines. Indeed, nowadays the performance evaluation re-
quires more elaborate indices. Verification techniques can express such complex
indices rigorously and evaluate them automatically. On the other hand, verifi-
cation techniques must be updated to tackle with probabilistic systems. So the
two disciplines are complementary, and their unification leads what is called
the quantitative verification [Kwi07].

Many approaches are developed for formal verification such as: test, simu-
lation, program proving and model checking. Since the work of Emerson and
Clarke [EC80], model checking has received particular interest from the scien-
tific community both on the theoretical and practical levels. Given a model
and a property, the model checking technique explores the full state space of
the model to check whether the given property is satisfied by the model. If
the property is not satisfied counter examples will be generated. There are two
main advantages of using model checking compared to other formal verifica-
tion methods: it is fully automatic and it provides a counter example whenever
the system fails to satisfy a given property [BK08].

The first step to check a system by mean of a model checking method con-
sists of representing the system by a formal model, in general, a transition system
(TS). A TS is basically a directed graph where nodes represent states and edges

1
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represent the state changes of the system. Additional information can be added
on the nodes and/or the edges [BK08]. Many types of TS are defined in the
literature. In the second step of a model checking procedure, the property to be
checked is formally expressed using an adequate temporal logic. In the third
step an algorithm of model checking evaluates the property on the model. In
practice, this step consists of running a model checker. The later produces the
following output: yes if the model satisfies the property and no otherwise with
possibly a counter-example.

Performance evaluation has been developed especially with the rise of com-
puter and telecommunications networks. It aims to calculate the so-called per-
formance parameters of a system. An example of a performance parameter is
the average time of response of a telecommunication network. In performance
evaluation the steady-state or transient distribution of the system is computed
and then used to evaluate the desired parameter. Analytic methods and simu-
lation are the two main techniques of performance evaluation. Formal models
such as, queuing networks [Ste09], stochastic automata networks (SAN) [Pla85]
and stochastic Petri nets (SPN) [ABC+95] are among the most widespread for-
malisms.

Quantitative Verification
To apply quantitative verification on a stochastic system, it is necessary to

represent such system by a formal model. Markov chains models are certainly
the most known stochastic models for their simplicity, their modeling power
and the wealth of literature that has been devoted to them by the scientific com-
munity. We distinguish the discrete time Markov chain (DTMC) and continuous
time Markov chains (CTMC). Direct modeling of a system by a Markov chain
can be tedious or even impossible when the state space of this system exceeds a
few dozen states. So one describes such systems by high level formalisms such
as: stochastic Petri nets, stochastic automata networks or stochastic process al-
gebras [HK01].

The property to be evaluated should be expressed by a probabilistic tem-
poral logic. Many stochastic logics were introduced in the literature. In gen-
eral, they are an extension of two main temporal logics: Linear Temporal Logic
(LTL) [Pnu77] and Computational Tree Logic (CTL) [CE82, QS82]. LTL is path-
based while CTL is state-based. PLTL [Var85] (resp. PCTL [HJ94, HS86]) is a
probabilistic extension of LTL (resp. CTL) for DTMCs. The Continuous Stochas-
tic Logic (CSL) [ASVB96, ASVB00] was defined as a probabilistic extension of
CTL for CTMCs. CSL (resp. PCTL) is then extended to CSRL [BHHK00a] (resp.
PRCTL [AHK03]) to take into account rewards for CTMCs (resp. DTMCc). An-
other extension of CSL named asCSL [BCH+07], for specification of CTMCs
with both action-and state-labels. In the logic CSLTA [DHS09], the formula is
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expressed as deterministic timed automaton with a single clock. It is shown
that CSLTA is strictly more expressive than CSL and asCSL. Another logic using
timed automaton called DTA [CHKM09] appears. In DTA the automaton is a
multiple clock one, which makes DTA more expressive than CSLTA.

There are two families of methods for stochastic model checking. The first
includes the so-called numerical methods. It provides the exact value of the
probability we search which is considered as their main advantage. These meth-
ods use numerical analysis techniques. However, they have several drawbacks.
The first one is due to the explosion of the state space which makes the anal-
ysis of large systems difficult or impossible. The second drawback concerns
management of the trace relevant information. In fact, these methods can only
handle with markovian and semi-markovian models.

Statistical methods represent the second family of stochastic model check-
ing methods. Their principle is to generate a sufficient number of trajectories
and estimate the desired probability. There are two families of methods. The
estimation method can estimate the probability and build an interval (called
confidence interval) containing the actual value not surely but with a certain
probability called confidence level. The method of hypothesis testing proceed
to a statistical test that compares the probability that the property is satisfied to
a predefined threshold without computing the considered probability.

These methods make use of mathematical statistical techniques such as esti-
mation and hypothesis testing and also the discrete events simulation. The in-
terest of statistical methods is that they are not greedy in memory, their spatial
complexity is proportional to the number of system components and not to the
state space. One can even handle infinite systems. The other advantage, is that
they are not restricted to markovian models, it is sufficient that the model can be
represented as a stochastic discrete event system. Unfortunately these methods
also have disadvantages. Indeed, obtaining results with high confidence and a
reduced confidence interval requires lengthy computation time. On the other
hand, evaluating steady state formulas requires a specific treatment.

Open Issues
Here we describe three of the main open issues that we have addressed in

our work.
1. State space explosion in numerical methods. There were several ap-

proaches that have been proposed to address that problem. They do not provide
a final solution, but they significantly reduce the space complexity. Some ap-
proaches are applied upstream. Here are some of the numerous proposed meth-
ods: the aggregation of states in Markov chains [BHHK00b, BHHK03b], tensor
product in stochastic automata networks [BKKT02], product form in stochastic
Petri nets [HMSM05], the exploitation of stochastic comparisons [PY05]. An-
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other approach is applied downstream. It consists of using Multi-Binary Deci-
sion Diagrams (MTBDDs) [CFM+97].

2. Limitations of existing logics. the first limitation of existing logics is
the lack of a unifying approach than can do model-checking and performance
evaluation within the same formalism. The second limitation is a problem of
expressiveness. Indeed these logics, for a given path, can only do two kinds
of evaluation: (1) a boolean evaluation that depends on the validity of the for-
mula over the path and (2) an accumulated sum expressed as state or action
rewards. But it not possible to do some complicated but useful operations like
the minimum, the maximum, the integration or the mean value over a path.

3. Difficulty of adoption of high-level formalism by modelers. High-level
formalisms are formal models. They do not correspond to practical approaches
to problems. A modeler always prefers formalisms that ressembles to its own
practice. Furthermore an “intuitive” formalism contributes to reduce errors
during the modeling phase.

Contributions
We present several contributions in this thesis.
The first contribution is within the scope of reducing state space explosion

in numerical methods. The goal is to establish stochastic bounds for censored
Markov chains. Such a chain observes only a subset of states in the original
chain. Censored chains are useful when faced to a very large chain or when
the system is only partially known. Indeed, the construction of bounds for a
censored chain allows to obtain bounds on measures of the original chain. This
technique was already proposed in [FPY07a]. In that work an algorithm was
proposed, called DPY, to build bounds for censored Markov chains. Here we
show first that DPY is optimal and we propose several alternative schemes of
bounds depending on the (partial) information related to the chain.

The second contribution introduces a new logic called Hybrid Automata
Stochastic Logic (HASL). This statistical logic consists of two components: a
linear hybrid automaton and an expression defined on the variables of the au-
tomaton. Such a logic allows to verify a large class of stochastic model called
Discrete Events Stochastic Process. HASL eliminates the limitations of other
logics. It unifies several disciplines: model checking, dependability and per-
formance evaluation in a unique formalism. HASL extends the expressiveness
of existing logics Such as CSL, CSRL asCSL , CSLTA, and DTA. With HASL
it is possible to do some operation on variables on the fly along the genera-
tion of a path, typically the minimum, the maximum, the integration, the mean
value. Finally because we use a statistical approach the markovian property is
not required so (in principle) we can handle any time distribution. We have
developed a tool, named COSMOS, evaluating HASL formulas on Generalized
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Stochastic Petri Nets (GSPN).
The third contribution proposes a new compositional approach to the mod-

eling of Flexible Manufacturing Systems (FMS) using Petri nets. The choice of
FMS is due to their importance in industry. In our approach the FMS is modeled
piece-wise by specifying the classes of components to be used. So the modeler
builds his model as a real FMS in the factory. He deals with loading units,
transporters and machines. The modeling phase consists of selecting each com-
ponent from a predefined toolkit and specifying the parameters of each com-
ponent. The second phase consists of assembling these components via their
interface.

Organization
This thesis is divided into three parts.

• Part I. This part is devoted to the state of the art of stochastic models and
quantitative verification. In chapter 2, we present the standard results
related to the analysis of Markov chains. We also introduce stochastic
Petri nets. Chapter 3 surveys quantitative verification. In particular, we
present the numerical and statistical methods.

• Part II. This part concerns numerical methods. In chapter 4, we design
stochastic bounds for censored Markov chains.

• Part III. This part concerns statistical methods. In chapter 5, we define
and study the logic HASL. In chapter 6, we describe the COSMOS tool.
We give the main interface, algorithms, internal structure and we also do
some numerical experiments. In chapter 7, we detail our approach for
compositional modeling of FMS.

We finally conclude and give some perspectives in chapter 8.
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Chapter 2

Stochastic Petri Nets

2.1 Introduction

One of the main interests of Petri nets is to combine qualitative analysis (i.e.
the property verification) and quantitative one (i.e. performance evaluation)
[FN78, Mol81, RR98a, RR98b]. By comparison, concurrency models like process
algebra [Hil96] have only recently been extended with stochastic features and if
first results are promising, there are still more research about performance eval-
uation of stochastic Petri nets. Similarly, the usual models for performance eval-
uation like queueing networks [Kle75] do not include synchronization mecha-
nisms and adding them by ad hoc constructions do not reach the generality and
the simplicity of concurrency modeling by Petri nets.

Stochastic Petri nets have been introduced in a pragmatic way at the end of
the seventies, in order to take benefit from the evaluation methods of Markov
chains. This approach leads to immediate results but occults the semantical
features underlying the definition of stochastic Petri nets and cannot be easily
generalized to different probability distributions.

Here we present Stochastic Petri nets in a different way. First we introduce a
general definition of discrete-event stochastic process. Then we specialize this
definition and present different families of processes starting from the simplest
one, Discrete-time Markov chain, to a very expressive one, Markov Renewal
Process, where analysis is still possible. For every family we describe how per-
formance evaluation can be done. We omit the programming features related
to numerical computations. Indeed, these features are not specific to stochastic
Petri nets and are covered by excellent books [Ste94, BGdMT98]. Once these
families are introduced, we are in position to cover the different versions of
stochastic Petri nets.

Afterwards we develop the key points of a stochastic semantic for Petri nets.

9
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This includes the specification of a random variable associated with the firing
delay of a transition, the choice criteria between enabled transitions, the han-
dling of the firing degree in the samplings of the random variable associated
with a transition and the memorization of the previous samplings, once the
firing is performed. Then we restrict the type of distributions, which leads
to stochastic processes previously studied. Among the different families of
stochastic nets, Petri nets with exponential and immediate distributions, called
generalized stochastic Petri nets, are considered as the standard model [ABC+95].
We indicate, for this model, how to to compute the stationary distribution based
on the reachability graph (when it is finite).

The basic algorithms have a complexity of the same magnitude order as the
reachability graph size for the simple models and greater for models with more
general distributions. Thus the more elaborated techniques split in two families:
the first one aims at obtaining a complexity smaller than the size of the graph
(e.g. by restricting the class of Petri nets) and the second one aims at obtaining
the same order of complexity than the size of the graph but for extended models.

The last section describes some of these methods in order to emphasize the
diversity of the approaches.We do not detail here simulation since it is one of the
topics of this thesis and will be developed later. Those covered in this chapter
are:

• the research of a product form: a formula that expresses the stationary
probability of a marking including the net parameters and the place mark-
ing as variables of the formula. This method illustrates the extension of a
technique first applied in queueing networks.

• a resolution method for nets with an only one unbounded place. The ap-
plication of this method shows that conditions on the structure of Markov
chains can be naturally translated in terms of Petri nets.

• a method that takes advantage of a net decomposition based on the tenso-
rial product of matrices.

• a method to handle phase-type stochastic Petri nets. Again this method
uses tensorial product illustrating the fact that a generic method can be
applied in very different contexts.

For more readings on stochastic Petri nets, we recommend book [ABC+95]
and book chapters [HM09a, HM09b, HM09c].
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2.2 Stochastic processes

2.2.1 A stochastic model for discrete events systems

We assume that the reader is familiar with the basic probability concepts. For
more details the interested reader may consult [Fel68, Fel71, Tri82].

Notations

• Pr(E) is the probability of event E, while Pr(A |B) is the probability of A
given B.

• The term almost, in an expression like almost everywhere or almost surely,
means with probability 1.

• IR (resp. IR+, IR+∗) denotes the real numbers (resp. non negative and
strictly positive reals). If x is a real, then bxc denotes its integer part.

• If E ⊆ IR then Inf(E) (resp. Sup(E)) denotes the lower (resp. upper)
bound of E.

Given a discrete event dynamic system (DES), its execution is characterized
by a (possibly infinite) sequence of events {e1, e2, . . .} and associated interval of
time between successive events in the sequence. Only the events can change
the state of the system. Formally, the stochastic behaviour of a DES is defined
by two families of random variables:

• S0, . . . , Sn, . . . defined over the (discrete) state space of the system, denoted
as S. S0 is the system initial state and Sn for n > 0 is the state after the nth

event. The occurrence of an event does not necessarily modify the state of
the system, and therefore Sn+1 may be equal to Sn.

• T0, ..., Tn, ... defined over IR+, where T0 is the time interval before the first
event and Tn for n > 0 is the time interval between the nth and the (n +
1)th event. Please note that this interval may be null (e.g. a sequence of
assignment instructions can be modelled as instantaneous with respect
to complex data base transactions involving some input/output activity).
When Tn = 0, one says that Sn is a vanishing state.

If the initial distribution of variable S0 is concentrated on a single state s, we say
that the process starts in s (i.e. Pr(S0 = s) = 1).

A priori there is no restriction whatsoever on the two families of random
variables, but, for the stochastic processes that we shall study in the following,
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we assume that a discrete event system cannot execute an infinite number of
actions in a finite amount of time. that is to say:

∞∑
n=0

Tn =∞ almost surely (2.1)

The above property allows to define the state of the system at a given time
instant. let N(τ) be the random variable defined by:

N(τ) ≡ min({n |
n∑
k=0

Tk > τ})

according to equation (2.1), N(τ) is defined almost everywhere. As exemplified
in figure 2.1, N(τ) can have jumps of size bigger than one. The state X(τ) of
the system at time τ , is then simply SN(τ). Observe that different stochastic
processes can lead to the same family {X(τ)}

τ∈IR+ . This means that w.r.t a state-
based semantics such processes are equivalent.

The diagram of figure 2.1 represents a possible execution of the process and
shows the interpretation of each random variable defined above. In the execu-
tion the process is initially in state s4, where it stays until, at time τ0, it moves to
state s6. At time τ0 + τ1, the system visits, in zero time, the states s3 and s12, end-
ing up in state s7, where it stays for a certain amount of time. The use of X(τ)
in continous time, hides the vanishing states s3 and s12 visited by the process.

The performance evaluation of a discrete event system can be based on two
complementary approaches:

• Analysis under transient behaviour, that is to say, the computation of per-
formance measures which are function of the time passed since the start
of the system. This kind of analysis is well suited for studying the sys-
tem behaviour in the initialization phase, or for studying systems with
final states. Classical applications of transient analysis can be found in
the studies aimed at assessing the dependability and reliability of sys-
tems [Mey80, TMWH92].

• Analysis in steady state, that is to say, the computation of performance
measures which takes only into account the stationary behaviour of the
system, that may be reached after a transient initial phase.

The analysis in steady state makes sense only if such a stationary behaviour
exists; a condition that can be expressed as follows, denoting π(τ) the distribu-
tion of X(τ) :

lim
τ→∞

π(τ) = π (2.2)
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Figure 2.1: an execution of the stochastic process

where π is also a distribution, called the steady-state distribution.
The transient and steady-state distributions are the basis for the computation

of performance indices. Examples of indices are the steady state probability that
a server is up and running, the probability that at time τ a connection has been
established or the mean number of clients waiting for a service. To abstract
from the definition of the single performance index, we introduce the concept
of reward function, a function f defined on the set of states of the discrete event
system and with value onto IR. Given a distribution π, the quantity

∑
s∈s π(s) ·

f(s) represents the measure of the performance index defined by f .
If f takes values over {0, 1}, we can consider f as the definition of an atomic

proposition φ which is satisfied in state s if f(s) = 1 and false otherwise. In the
following we shall indicate withP the set of atomic propositions and with s � φ,
with s a state and φ an atomic proposition, the fact that s verifies (or satisfies)
φ. In this context, if π is a distribution, the quantity

∑
s�φ π(s) represents the

measure of the index defined by φ.

2.2.2 Discrete time Markov chains

Presentation. The analysis of the behaviour of a general DES may be intractable
or even impossible. Thus one needs to study families of simple DES. The sim-
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Figure 2.2: a (finite) DTMC

plest one is the family of Discrete Time Markov Chains (DTMC). A DTMC is a
stochastic process with the following characteristics:

• the time intervals Tn are constant and equal to 1.

• the next state depends only on the current state (what is called Markovian
property), and the transition probability among states remains constant
over time1:

Pr(Sn+1 = sj | S0 = si0 , ..., Sn = si) =

Pr(Sn+1 = sj |Sn = si) = pij ≡ P[i, j]

and we shall freely mix the two notations pij and P[i, j] for the transition prob-
ability.
Thus a DTMC is defined by its initial distribution π0 and matrix P.
Example. Figure 2.2 represents on the right, matrix P of a DTMC with three
states. On the left, a graph whose vertices are states and edges weighted by
the non null transition probabilities between states is depicted. In addition to
the graphical interest of this representation, analysis of this graph will provide
useful information on the DTMC (see later on).
Transient and steady state behaviour of a DTMC. We now recall several classi-
cal results on the analysis of DTMC: the results will be explained in an intuitive
manner, a full mathematical treatment of the topic being out of the scope of this
chapter.

The transient analysis is rather simple: the change of state takes place at
time instants {1, 2, . . .}, and given an initial distribution π0 and the transition
probability matrix P, we have that πn, the distribution of Xn (i.e. the state of the
chain at time n) can be expressed as πn = π0 · Pn, which is computed using a
basic recurrence scheme.

1which justifies that these chains are sometimes called time homogeneous.
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To analyze the asymptotic behaviour of a DTMC we need to investigate a bit
further the DTMC behaviour, in particular we shall classify states as follows:

• A state s is said to be transient if the probability of returning to s after a
visit is strictly less than 1. As a consequence, the probability of Pr(Xn = s)
goes to zero as n tends to infinity. A state is said to be recurrent if it is not
transient.

• A recurrent state s is said to be null recurrent if the mean time between
two successive visits to s is infinite. Intuitively, a null recurrent state will
be visited at intervals whose mean duration goes to infinity and therefore
the probability of visiting s will also tends towards 0.

• A recurrent state s is non null recurrent if the mean time between two suc-
cessive visit to s is finite. If a steady state distribution exists, then it is
concentrated on the set of non null recurrent states.

Let us formalize the concept of the graph associated with a DTMC:

• the set of nodes is the set of states of the chain;

• there is an arc from si to sj if pij > 0.

If the graph is strongly connected, i.e. there is a single strongly connected compo-
nent (SCC), then the chain is said to be irreducible. In an irreducible DTMC, all
states have the same status.
Example. Figure 2.3 represents an infinite irreducible DTMC with probability
p to go “backward” and 1 − p to go “forward”. When p < 0.5 all states are
transient: on the long run the distribution goes “forward”. When p = 0.5 all
states are null recurrent : on the long run the distribution is more and more
equally distributed on the states (except state 0) and then goes to 0 for every
state. When p > 0.5 all states are non null recurrent since it can be proved the
mean time to return to state 0 is finite.
Periodicity. The DTMC of figure 2.3 exhibits a pathologic behaviour. Starting
from state 0, at even (resp. odd) instants the chain is in an even (resp. odd) state.
Thus there is no hope to have a steady-state behaviour. This phenomenon is due
to the periodicity of the graph.

The periodicity of an irreducible chain is the greatest integer k such that
the states can be partitioned into subsets S0, S1, . . . , Sk−1 with the requirement
that from the states in Si the chain moves in one step only to states which are
in S(i+1) mod k. Observe that the periodicity is well defined even in the case of
infinite Markov chains since it cannot be greater than the length of any cycle
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Figure 2.4: Example of the computation of a DTMC periodicity

of the graph (and there is a last one since the chain is irreducible). When the
period is 1, the chain is said to be aperiodic.

The periodicity of a finite chain can be computed by a linear time algo-
rithm w.r.t. the size of the graph. The algorithm builds a directed tree that
covers all nodes of the chain, using any arbitrary strategy (breadth-first, depth-
first, etc) that allows to label every node u with its “heigth” h(u). During the
traversal, one associates with every arc (u, v) of the graph a weight w(u, v) =
h(u) − h(v) + 1: as a result all the arcs that are part of the covering tree have
a null weight. The periodicity of the graph is then the greatest common divi-
sor (gcd) of the arcs of non null weight and can be computed on the fly. The
formal proof of correctness, that we do not develop here is based on the two
following observations. Periodicity is the gcd of the length of the elementary
circuits of the graphs, and this length is equal to the sum of the weight of the
arcs of the circuit. The application of the algorithm to the example is illustrated
in figure 2.4.

The following theorem characterises a situation which ensures the existence
of a steady-state distribution.
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Theorem 2.1. An irreducible, aperiodic chain (also called ergodic) has a steady-state
distribution, and such a distribution is independent from the initial distribution.

Steady-state analysis of finite DTMC. When the DTMC is finite, the analysis
is significantly simplified. First the status of the states only depends on the
structure of the graph and more precisely on the SCCs. States of bottom SCCs (i.e.
without exit arcs, BSCC) are non null recurrent while other states are transient.
Observe that every BSCC constitutes an irreducible subchain.

First assume that the graph is strongly connected. From theorem 2.1, we
know that there is a unique steady-solution. So we take the limit of the equation
πn+1 = πn ·P. as n goes to infinity (which is mathematically sound) and we get
π = π ·P. Thus π is the single distribution which is a solution for:

X = X ·P ∧X · 1 = 1 (2.3)

where 1 denotes the column vector of all 1. Furthermore in equation (2.3), we
can omit an arbitrary column of P since the sum of the equations related to P
(
∑

i(
∑

j pij)Xi =
∑
Xi) is always fulfilled.

Example. The steady-state distribution of the DTMC of figure 2.2 fulfils the
following equations:

π1 = 0.3π1 + 0.2π2 π2 = 0.7π1 + 0.8π3 π3 = π2 π1 + π2 + π3 = 1

with solution (1
8
, 7

16
, 7

16
)

Equation (2.3) can be solved with a direct method like a Gaussian elimina-
tion. However if the size of the system is large, iterative methods are more
effective. The simplest one iterates over X← X ·P [Ste94].

We now consider the almost general case, with the single remaining as-
sumption that the BSCCs (denoted as {C1, . . . , Ck}) are aperiodic with steady-
state distribution {π1, . . . ,πk}. In this case also the chain has a steady-state
distribution (which now depends on the initial distribution), given by π =∑k

i=1 Pr(of reaching Ci) · πi.
To compute the probability of reaching a BSCC we condition on being in a

initial state: Pr(of reaching Ci) =
∑

s∈S π0(s)·π′Ci(s) where π′Ci(s) = Pr(of reaching Ci |
X0 = s). If PT,T is the submatrix of the transition matrix limited to transient
states, and if PT,i is the submatrix from transient states towards the states of Ci,
then:

π′Ci = (
∑
n≥0

(PT,T )n) ·PT,i · 1 = (Id−PT,T )−1 ·PT,i · 1

where Id is the identity matrix.
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Figure 2.5: Matrices involved in the computation of reachability probabilities

The first equality is obtained by conditioning on the length of all possible
paths that leads to Ci, while the second one is an immediate consequence of the
finitess of

∑
n≥0(PT,T )n.

Example. Figure 2.5 exhibits the decomposition of a chain w.r.t. SCC and the
matrices involved in the computation of the reachability probabilities.

In the sequel, in case of a BSCC composed by a single state s (i.e. P[s, s] = 1),
we will say that s is an absorbing state.

2.2.3 Continuous time Markov chain

Presentation. While DTMC is an appropriate model when focusing on the prob-
abilistic behaviour of the system disregarding time, it is necessary to look for a
model also presenting the memoryless property in a continuous time setting. A
Continuous Time Markov Chain (CTMC) has the following characteristics:

• the time interval Tn is a random variable distributed as a negative expo-
nential, whose rate depends only on the state Xn. That is to say:

Pr(Tn ≤ τ |X0 = si0 , ..., Xn = si, T0 ≤ τ0, ..., Tn−1 ≤ τn−1) =

Pr(Tn ≤ τ |Xn = si) = 1− eλi·τ
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• The next state depends only on the current state, and the transition prob-
abilities remain constant2 over time:

Pr(Xn+1 = sj |X0 = si0 , ..., Xn = si, T0 ≤ τ0, ..., Tn−1 ≤ τn−1) =

Pr(Xn+1 = sj |Xn = si) = pij ≡ P[i, j]

The DTMC defined by P is called embedded chain. It observes the change of
state, independently of the time elapsed in the state. A CTMC state is said to be
absorbing if it is absorbing in the embedded DTMC.
Transient and steady-state behaviour of a CTMC. In a continuous time Markov
chain at any time the evolution of a DES is completely determined by its current
state, due to the memoryless property of the exponential distribution.

In particular, the process is fully characterized by the initial distribution
π(0), matrix P and by the rates λi. Let π(τ) be the distribution of Y (τ) and
write πk(τ) = π(τ)(sk). If δ is small enough, the probability of more than one
event occurring in the interval τ and τ + δ is very small and can be neglected,
and the probability of a change from state k to state k′ is approximately equal to
λk · δ · pkk′ (by definition of exponential distribution).

πk(τ + δ) ≈ πk(τ) · (1− λk · δ) +
∑
k′ 6=k

πk′(τ) · λk′ · δ · pk′k

From which we derive:

πk(τ + δ)− πk(τ)

δ
≈ πk(τ) · (−λk) +

∑
k′ 6=k

πk′(τ) · λk′ · pk′k

and finally:
dπk
dτ

= πk(τ) · (−λk) +
∑
k′ 6=k

πk′(τ) · λk′ · pk′k

Let us define matrix Q as: qkk′ = λk · pkk′ for k 6= k′ and qkk = −λk(=
−∑k′ 6=k qkk′). We rewrite the previous equation as:

dπ

dτ
= π ·Q (2.4)

Matrix Q is called infinitesimal generator of the CTMC.
According to equation (2.4) the infinitesimal generator completely specifies

the evolution of the system. Although this equation clearly establishes the

2Also in this case we say that the chain is time homogeneous
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Figure 2.6: Two equivalent CTMCs: a non uniform and a uniform one

memoryless property of the CTMC, it does not give any direct mean of com-
puting the transient behaviour of a CTMC. A possible method, called uniformi-
sation, has been defined in [Jen53], and it is based upon the construction of a
second Markov chain which is equivalent to the first one from a probabilistic
point of view. This chain is built as follows. Let’s choose a value µ ≥ Sup({λi}),
and assume that this is the parameter of the exponential distribution of the time
until the next change of state, whatever the current state is (from which the term
uniform). The change of state is defined by the transition matrix Pµ defined by:
∀i 6= j,Pµ[si, sj] = (µ)−1 · λi · P[si, sj]. The computation of the infinitesimal
generator of such a chain shows immediately that it is equal to the infinitesimal
generator of the first CTMC, which implies that, if we disregard transitions, the
two CTMCs describe the same stochastic process. We illustrate such a transfor-
mation in figure 2.6.

We compute the transient distribution π(τ) as follows. We first compute
the probability of being in state s at time τ , knowing that there have been n
changes of state in the interval [0, τ ]. This probability is obtained through the
embedded Markov chain, and precisely as π(0) · (Pµ)n. Afterwards we “condi-
tion” it through the probability of having n changes of state, knowing that the
time between two successive changes follows an exponential distribution. This
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probability is given by e−µ·τ · (µ · τ)n/n!, from which we obtain:

π(τ) = π(0) ·
(
e−µ·τ

∑
n≥0

(µ · τ)n(Pµ)n

n!

)
(2.5)

Although there is an infinite sum, in practice the sum converges rather quickly,
and the sum can be stopped once the precision required is greater than e−µ·τ ·
(µ · τ)n/n!.

We now consider the asymptotic behaviour of a CTMC. Again, the sim-
plest way is to study the embedded chain, which, as observed when explain-
ing uniformization, it is not unique. Let us build a DTMC as follows. Choose
µ > Sup({λi}), since the inequality is strict, it is true that, for each state s,
Pµ[s, s] > 0 and therefore each BSCC of this chain is ergodic. As a consequence,
a single stationary distribution exists, that measures the steady state probability
of the occurrence of a state. Since the uniform chain has the same mean sojourn
time in each state, equal to (1/µ), this also gives the stationary distribution of
the CTMC.

In the particular case (rather frequent) in which the embedded chain is er-
godic, this distribution can be computed through the solution of the equation
X = X · Pµ, and Pµ = I + (1/µ)Q. The distribution is therefore the unique
solution of the equation:

X ·Q = 0 et X · 1T = 1 (2.6)

By analogy, we then say that the CTMC is ergodic. Observe that while in
the infinite case, the uniformisation technique may be not applicable (when
Sup({λi}) = ∞), most of the results for DTMC still hold. In particular, theo-
rem 2.1 is also valid without any requirement about periodicity.

2.2.4 Beyond CTMCs

DTMC and CTMC are characterized by the memoryess properties: in DTMC the
next state depends only on the current state and in CTMC also the sojourn time
enjoys the same type of property: knowing how long the system has been in a
state does not influence how long it will take before a change of state takes place.
In the following we introduce three different ways of removing the memoryless
condition of sojourn times, that lead to stochastic processes whose solution is
more expensive, but still affordable in many practical cases, and that may model
in a more accurate manner the system under study.

The first extension leads to Vanishing CTMC, which allows the sojourn time
of a subset of states to be equal to zero. The second extension leads to Semi-
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Markov Processes, where states may have any distribution, as far as the be-
haviour of the process, as observed upon a change of state, is still a DTMC. The
last extension leads to Markov Renewal Processes, where the requirement is
simply that the behaviour of the system, as observed upon some of the changes
of states, is still a DTMC.

Vanishing CTMCs

Presentation. In this chapter we have stated that a stochastic process is a CTMC
if it has an embedded DTMC that describes the change of state and if sojourn
times are exponentially distributed. Here we extend this concept to Vanishing
CTMC (VCTMC), which are stochastic processes in which the sojourn time is
either exponentially distributed or exactly zero. A sojourn time of zero is typ-
ically used for whose states in which the system takes a logical decision, or
for which the sojourn time is much smaller than the other states, so that it can
be considered negligible (with the additional advantage of avoiding numeri-
cal instability problems). In a VCTMC the states are partitioned into vanishing
states (with sojourn time equal to 0), and tangible states (with exponentially dis-
tributed sojourn time).

Definition 2.1. A CTMC with vanishing states (VCTMC) is a quadruple V =
(D, ST , SV ,Λ) where D = (S,P, INIT,L) defines a labelled DTMC with a finite set
S of states, such that ST ∪ SV = S and SV ∩ ST = ∅, and Λ = {Λs|s ∈ S} is a set of
random variables which describe the sojourn time in states of D, with the constraint that
Λs is deterministically zero if s ∈ SV (vanishing state), and is exponentially distributed
otherwise (tangible state).

If Sn is the random variable that describes the state of D after the n-th state
change and if Tn is the random variable that describes the sojourn time in state
Sn then, given states s, s′ ∈ S and duration δ ∈ R≥0, we can define the following
stochastic behaviour of V:

P{Sn+1 = s′, Tn ≤ δ|Sn = s, Sn−1 = sn−1, Sn−1 ≤ τn−1, · · · , Y1, S0 = s0}

=


P(s, s′) · (1− e−λs·δ) if s ∈ ST
P(s, s′) if s ∈ SV ∧ δ = 0
0 if s ∈ SV ∧ δ > 0

where λs is the rate of the exponential distribution associated with the random
variable Λs of a tangible state s ∈ ST .

For a VCTMC V = (D, ST , SV ,Λ), we consider the probability matrix P of D
partitioned in the following way:

P =

∣∣∣∣ PV V PV T

PTV PTT

∣∣∣∣
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where PV V contains transition probabilities from a vanishing state to a vanish-
ing state, PV T from a vanishing state to a tangible state, etc. Assumption 2.1
implies that

∑
n→∞Pn

V V is finite; that is, the mean number of visits within the
set of vanishing states without ever reaching a tangible state is finite. This con-
dition can be checked on the directed graph of D by (1) merging the tangible
states in a state without outgoing edges and (2) checking that this state is the
only BSCC of the modified graph.

Solution process. Since a VCTMC is a continuous stochastic process both the
transient and steady state probabilities for the vanishing states is equal to zero
(there is a null probability of finding, in the long run or at time t, a system in
a state in which it stays for a zero amount of time). The solution process then
concentrates on how to compute the probabilities of tangible states. This can
be done through the construction and solution of an “equivalent” CTMC built
only on the set of tangible states. Here by equivalent we mean “with the same
transient and steady state solution of tangible states”. There are different ways
of computing the transient and steady-state probabilities of a VCTMC. One of
them will be presented in the section devoted to generalized stochastic Petri
nets.

Semi-Markovian processes

Presentation. Here we describe a restricted notion of semi-Markovian process
since it is enough for our purposes and allows a simplified presentation of the
computation of steady-state distributions. A semi-Markovian process is an ex-
tension of CTMC where sojourn time in states may have any distribution. This
process has the following characteristics:

• The time interval Tn is a random variable that only depends on state Sn.
Otherwise stated:

Pr(Tn ≤ τ |S0 = si0 , ..., Sn = si, T0 ≤ τ0, ..., Tn−1 ≤ τn−1) =

Pr(Tn ≤ τ |Sn = si) = Pr(Di ≤ τ)

where Di is a random variable with a finite mean, denoted di.

• The state following the current state only depends on this state and tran-
sition probabilities are constant over time:

Pr(Sn+1 = sj |S0 = si0 , ..., Sn = si, T0 ≤ τ0, ..., Tn−1 ≤ τn−1) =
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Pr(Sn+1 = sj |Sn = si) ≡ pij = P[i, j]

Observe that here again, the sequence of states (Sn) constitutes a DTMC embed-
ded in the process. So the reachability probabilities, that only depend on this
DTMC, can still be computed.
Steady-state analysis. Here we only state a sufficient condition for the existence
of the stationary distribution which covers the most frequent cases. First we
assume that the embedded chain is irreducible with a distribution solution of
X · P = X and that one of the distribution Di is not arithmetic (i.e. it is not
concentrated on a arithmetic sequence in IR+).

As in CTMC, the entrances in an arbitrary state (say si) can constitute a re-
newal process. Given some state, the fact that it occurs infinitely only depends
on transition probabilities pij and is ensured by our first hypothesis. The mean
return time must be carefully examined. Indeed, every visit in si gives place to
a sojourn with mean time di. Thus although the mean number of visits before a
return is finite, the mean return time could be infinite. Let us call π′ (π′k = π′[sk])
the distribution solution of equation [2.3]. Then the mean number of visits of sk
between two visits of si is π′k

π′i
. Consequently, the mean return time to si is equal

to:

di +
∑
k 6=i

dk · π
′
k

π′i
=

1

π′i
·
∑
k

dk.π
′
k

Otherwise stated, the existence of a stationary distribution is ensured if
∑

k dk.π
′
k

is finite. Since Di is not arithmetic, one easily deduces that the distribution of
return is not arithmetic.

With the same reasoning, one concludes that the ratio πk

πi
corresponds to the

mean sojourn time in sk between two returns in si divided by the mean sojourn
time in si (of course this computation requires to choose a reference state si with
a sojourn time strictly greater than zero.

Observe that the way we have proceeded also allows some distributions Di

to be concentrated in 0.

Markov Regenerative processes

Presentation Markov Regenerative Processes (MRP) are a class of non-Markovian
stochastic processes that is characterized by a sequence of time instants called
regeneration points in which the process loses its memory, i.e. the age of any non-
exponential events is 0. The behavior between these points is then described by
a time-limited stochastic process, while the process, observed at regeneration
points, is still a DTMC.
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The definition of an MRP requires first the identification of a sequence of
states in which the process loses its memory.

Definition 2.2 (Markov renewal sequence). Let S be a finite discrete state space. A
sequence of bivariate random variables {〈Yn, Tn〉 | n ∈ N} is called a Markov renewal
sequence (MRS) with regeneration points Yn ∈ S encountered at renewal times
Tn ∈ R≥0 iff:

• 0 = T0 < T1 < T2 < . . .

• P{Yn+1 = j, Tn+1 − Tn ≤ τ | Yn = i, Tn, . . . , Y0, T0} =

= P{Yn+1 = j, Tn+1 − Tn ≤ τ | Yn = i} = (Markov property for Yn)
= P{Y1 = j, T1 ≤ τ | Y0 = i} (Time homogeneity)

The process Yn is a discrete-time Markov chain, called the embedded Markov
chain (EMC). Conversely, the process Tn is not a Markov renewal sequence, since
the times Tn+1 − Tn are not i.i.d., but depend on Yn.

On the renewal sequence an MRP can then be defined as follows.

Definition 2.3 (Markov regenerative process). A stochastic process {Xτ | τ ≥ 0}
is a Markov regenerative process (MRP) if there exists an MRS {〈Yn, Tn〉 | n ∈ N}
of random variables such that all the conditional finite dimensional distributions of
{X(Tn + τ) | τ ≥ 0} given {Xu | 0 ≤ u ≤ Tn, Yn = i} are the same of {Xτ | τ ≥ 0}
given Y0 = i, so that:

Pr{XTn+τ = j | Xu, 0 ≤ u ≤ Tn, Yn = i} = Pr{Xτ = j | X0 = i}
The process behavior {Xτ | Tn ≤ τ < Tn+1} between two regeneration points

Yn and Yn+1 is described by a continuous time process, called the subordinated
process of Yn. We only consider the class of time-homogeneous MRP where the
subordinated process is a CTMC, called the subordinated Markov chain (SMC) of
state Yn.

Note the difference between Markov Regenerative and semi-Markov pro-
cess: in semi-Markov processes all the states are regeneration points, so the
state spaces of the process and of the embedded DTMC are exactly the same,
while in MRP only a subset of the states are regenerative, and the embedded
DTMC is built on a smaller number of states than the MRP itself.

2.3 Stochastic Petri nets

2.3.1 Petri nets

A Petri net is a formal model of dynamical system where the state of the system
is characterized by the number of tokens in places and where a transition needs
tokens to be consumed in some places and then produces tokens in some places.
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Figure 2.7: a Petri net and its reachability graph

Definition 2.4. A Petri net N = (P, T,Pre,Post,m0) is defined by:

• P , a finite set of places,

• T , a finite set of transitions with P ∩ T = ∅,

• Pre and Post, the pre and post incidence matrices indexed by p × T ranging
over IN,

• m0 ∈ INP , the initial marking.

A net is usually represented by a bipartite graph. The vertices are the places,
drawn as circles, and the transitions, drawn as rectangles. There is an edge
between place p (resp. transition t) and transition t (resp. place p) labelled by
Pre(p, t) (resp. Post(p, t)) if Pre(p, t) > 0 (resp. Post(p, t) > 0). When a label is
equal to 1, it is omitted. The initial marking of a place m0(p) is represented by
m0(p) tokens in p, drawn as filled circles. The left part of Figure 2.7 illustrates
the graphical representation of a net.

A state in a Petri net is a marking, i.e. and item of INP . The incidence matrix
W is defined by W = Post − Pre. The firing rule defined below describes the
semantics of a net.

Definition 2.5. Let N be Petri net, m be a marking and t be a transition. Then:

• t is enabled (or fireable) i m if:
∀p ∈ P m(p) ≥ Pre(p, t)

which is denoted by m[t〉 or m t−→
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• When enabled, the firing of t leads to a marking m′ defined by:
∀p ∈ P m′(p) = m(p) + Post(p, t)−Pre(p, t) + W(p, t)

which is denoted by m[t〉m′ or m t−→ m′

Let m be a marking and σ = t1 . . . tn be a sequence of transitions. Then σ
is fireable from m if there exists markings m1, . . . ,mn = m′ such that for all
1 ≤ i ≤ n, one has mi−1[ti〉mi. One says that σ is a firing sequence from m and
that m′ is reachable from m. One notes m[σ〈m′ or m[

σ−→ m′. The reachability graph
of a net N is defined by:

• The vertices of the graph are the markings reachable from m (this set is
called the reachability set of N ),

• There is an edge between m and m′ labelled by t if and only if m[t〉m′.
The right part of Figure 2.7 is the reachability graph of the net on the left part.

Generally a markingm is represented as bag over the set of places
∑

p|m(p)>0m(p) p

with m(p) omitted when equal to 1 (e.g 2p+ 3q + r).

2.3.2 Stochastic Petri nets with general distributions

In order to enlarge Petri nets in such a way that its formal semantics should be
a stochastic process, we must address the following preliminary question: how
to introduce time in nets? There are at least three ways to do so.
A token-based semantic. First, we can add an age for every token. When time
elapses, the age of every token is incremented by the associated duration. Fur-
themore the input and output arcs of a transition are now labelled by a bag of
intervals specifying the age of the tokens that are allowed to be consumed and
the possible age of tokens that will be produced. The behaviour of such a net is
illustrated below.
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A duration-based semantic. Second, we can specify a duration for every tran-
sition. Once a transition is selected (with no time elapsing), the tokens are con-
sumed and after the duration associated with the transition has elapsed, the
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tokens are produced. Observe that with this semantic, except at selection in-
stants, the marking of the net may not correspond to a reachable marking of the
untimed net. The behaviour of such a net is illustrated below.
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A delay-based semantic. Last, we can specify a delay for every transition. Once
a transition is enabled, the delay must elapse before it can be fired but its tokens
could be consumed by an earlier firing of some other transition. The behaviour
of such a net is illustrated below.
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Usually one chooses the third alternative; so the stochastic feature of Petri
nets is introduced by considering that a transition has a random firing delay
(taking values in IR+). The different families of stochastic Petri nets are defined
by restricting the type of distributions. For the moment, we do not make any
hypothesis on distributions. However the definition of distributions is not suf-
ficient to characterize the stochastic process. We are going to successively study
the problems related to this characterization3.

Choice policy.

Given any marking, we need to determine the next transition to fire among the
fireable ones. There are two possible strategies:

• a probabilistic choice w.r.t. a distribution associated with the subset of
fireable transitions. This is a preselection since the choice takes place before
the sampling of the delay.

3Most of the parameters of the process can depend on the current marking. For sake of
simplicity, we will not mention it in this chapter.
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• an independent sampling for every delay followed by the choice of the
shortest delay. In case of equal delays, one also performs a probabilistic
choice called post-selection.

The second solution is always chosen because on the one hand it corre-
sponds to a more natural modeling and on the other hand since with the help of
immediate transitions, preselection can be simulated by post-selection. Observe
that except if the distributions are continuous (which excludes the case of equal
samplings), one needs to specify the distributions of selections. We illustrate
the two possible choice policies below (Di is the random delay of transition ti
and wi its weight for the probabilistic choice). With preselection policy, the out-
come of the sample is t1 and then the sample of the delay for t1 is 4.2. With the
race policy, after sampling the three delay distributions, two of the outcomes
(D1 and D3) have the minimal value 3.2. Thus with a post-selection policy, one
selects t3.
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Service policy.

If a transition has an enabling degree e > 1 at marking m (i.e. e = max(x ∈ IN |
∀p ∈ P xPre(p, t) ≤ m(p))), one can consider that the marking provides e clients
to the transition viewed like a server. So when sampling the delay, three options
are possible depending on the event modeled by the transition:

• a single sampling is performed, the transition offers only one service at a
time (single-server policy)
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• e samplings are performed, the transition is a “parallel” server (infinite-
server policy)

• Min(e, deg(t)) samplings are performed, the transition can offer at most
deg(t) simultaneous services; this case generalizes the other ones with
deg(t) = 1 or∞ (multiple-server policy). The modeller must specify deg(t)
for every transition.

We illustrate below the effect of these policies on the sampling process.
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Memory policy.

Once transition t is fired, what becomes the sampling that has not be chosen for
another transition t′?

The first possibility consists in forgetting the sampling that has been per-
formed. If transition t′ remains fireable, this leads to a new sampling (resampling
memory). With such a semantic, t could model the failure of a service specified
by t′.

The second possibility consists in memorizing the sampling decremented by
the sampling of t (the remaining time), but only if t′ remains fireable (enabling
memory PRD (Preemptive Repeat Different)). If t′ is disabled, this mechanism mod-
els a time-out t′ disarmed by t.

The third possibility is as the previous one for a transition still fireable but
let the sampling unchanged if t′ is disabled. This sampling will be used again
when t′ will be fireable (mode enabling memory PRI (Preemptive Repeat Identical)).
A disabled transition t′ could model a job aborted by t that should be restarted.

The fourth possibility consists in memorizing the sampling decremented by
the sampling of t. A disabled transition t′ could model a job suspended by t (age
memory also called PRS (Preemptive ReSume)).
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We illustrate some of these policies on the above example.
Resampling Memory. Samplings d2 and d3 are forgotten.
Enabling Memory, PRD. Sampling d3 is kept and decremented (d′3 = d3 − d1).
Sampling d2 is forgotten.
Age Memory. Samplings d2 and d3 are kept and decremented (d′3 = d3−d1 d

′
2 =

d2 − d1). Sampling d′2 is frozen until transition t2 becomes again enabled.
To complete this policy, we must take into account the case of multiple-

server transitions, which requires to choose which samplings should be mem-
orized, decremented or forgotten. The simplest solution is a FIFO policy for
samplings. The last performed sampling is the first forgotten. Other policies
(like suspend or forget the client the least engaged) are not necessarily compat-
ible with some analysis methods.

Once these three policies are defined, the stochastic process is fully deter-
mined. We now focus on the distributions for transition delays.

2.3.3 Stochastic Petri nets with exponential distributions

In the basic model [FN85, Mol81] every transition t has an exponential distribu-
tion with rate µt.

Let us examine the stochastic process generated by a stochastic Petri net with
policy single-server. Let m be some marking, t1, . . . , tk the fireable transitions
from m. Let us note µi for µti . One can check that:

• the sojourn time is an exponential with rate µ1 + · · ·+ µk

• the probability to pick ti as the next firing is equal to µi

µ1+···+µk
and it is

independent from the sojourn time in the marking.

• the distribution of the remaining firing delay of ti if tj is fired is equal to
the initial distribution (memoryless property)
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Otherwise stated, only the new marking determines the future behavior of the
stochastic process. Thus it is a continuous time Markov chain, isomorphic to
the reachability graph of the Petri net, whose all parameters are given by states
(i.e. the markings). This reasoning is also valid for other service policies.

If the graph is finite formula (2.5) gives the transient behavior of the net and
if furthermore it has a single BSCC then the resolution of equation (2.6) provides
the stationary distribution of the net.

Using the stationary distribution, other performance indices can be com-
puted as the mean throughput (number of firings per time units) of transitions
given by:

χk =
∑

m reachable

πm.services(m, tk).µk (2.7)

where services(m, tk) indicates the number of clients in state m served by tran-
sition tk; this number depends on the enabling degree and the service policy of
the transition.

2.3.4 Generalized stochastic Petri nets

Modelling delays with exponential distributions is reasonable when:

• Only mean value information is known about distributions.

• Exponential distributions (or combination of them) are enough to approx-
imate the “real” distributions.

Modelling delays with exponential distributions is not reasonable when:

• The distribution of an event is known and is poorly approximable with
exponential distributions like a time-out of 10 time units.

• The delays of the events have different magnitude orders like executing an
instruction versus performing a database request. In this case, the 0-Dirac
distribution is required.

Let us focus on the latter case. Modeling an algorithm or a protocol requires
to represent choices, loops and other control structures. These actions are logical
operations and have a negligible duration w.r.t. a data transmission for instance.
Modeling them by an exponential distribution with a high rate is unsatisfactory
since, on the one hand the choice of the rate is arbitrary and on the other hand
numerical computations suffer from values with very different magnitude or-
der. To overcome this difficulty, immediate transitions (i.e. with a distribution
concentrated in 0) have been introduced. In this new model [ABC84], called
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GSPN for Generalized Stochastic Petri Net, the markings are partitioned in two
categories: the tangible markings from which no immediate transition is fire-
able and the vanishing markings. Since exponential transitions almost surely
have a non null delay, immediate transitions have (implicit) priority over expo-
nential ones.

Let us observe that:

• Weights are required for immediate transitions since two such transitions
will always have the same null delay.

• Since exponential transitions will never be fired when an immediate tran-
sition is enabled, one obtains a restricted reachability graph corresponding
to the embedded DTMC. This restriction is described in the example be-
low.
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Let us examine the stochastic process generated by a GSPN from a given
marking m. If m is tangible then the process is identical to the one of a Marko-
vian SPN. Let us examine the case of a vanishing marking; there is at least one
fireable immediate transition. Almost surely the sampling of exponential tran-
sitions is greater than 0. Thus the choice of the transition is done by a post-
selection between immediate transitions. Since the delay of immediate transi-
tions is null and the distributions of other transitions are without memory, the
remaining delay are identical to the initial delays and the state of the process
only depends on the new marking.

So this is a semi-Markovian process whose sojourn times in tangible mark-
ings follow an exponential distribution and sojourn times in vanishing mark-
ings are null. The transition probabilities (matrix P) are obtained either from
the rates, or from parameters of post-selection.
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The analysis of semi-Markovian process is applicable here. However, in
this particular case, an improvement is possible since the stochastic process is a
VCTMC. We recall here in the context of nets, the principles of such an analysis.
Observe that in the stationary distribution, the vanishing markings have a null
occurrence probability. Thus one wants to eliminate them before the resolution
of the embedded chain. To this aim, one considers the process as a CTMC whose
states are the tangible markings. We need to compute the transition probabili-
ties between these states. So we decompose matrix P in sub-matrices:

• PV V , transitions between vanishing markings

• PTT , transitions between tangible markings

• PV T , transitions from vanishing markings to tangible markings

• PTV , transitions from tangible markings to vanishing markings

Reasoning on the number of encountered vanishing markings, when going from
a tangible marking to another tangible marking, one checks that the new tran-
sition matrix P′ is given by:

P′ = PTT +
∞∑
n=0

PTV .(PV V )n.PV T = PTT + PTV .(IdV V −PV V )−1.PV T

where IdV V is the identity matrix on vanishing markings.
When IdV V −PV V is not invertible, this means that the process has a patho-

logical behaviour (i.e. a non null probability to infinitely remain in the vanishing
states) which does not fulfill assumption 2.1. Otherwise the two expressions can
be used to compute P′. We illustrate the full computation on the example be-
low. We start with the embedded full discrete-time Markov chain on the left.
Then as a first step we eliminate the vanishing states and compute the transi-
tion probabilities (shown in the next figure). In this particular case, since there
is no loop through vanishing states, the computation is immediate. Then the
steady-state visit distributions are computed (the result is shown on the third
figure). At last we rescale the distribution with the sojourn time in order to get
the steady-state distribution as shown on the last figure.



2.4. ADVANCED ANALYSIS METHODS FOR STOCHASTIC PETRI NETS 35

�

�
�

�
�

�
�

�
�

�
�

�
�

� �
�

�
�

�

� �
�

�
�
��

�
	A�

�
B�

�
CD�

�
��

�
	A�

�
B�

�
C

�
�
�λ

�
	Aλ

�
Bλ

�
CD�

�
�λ

�
	Aλ

�
Bλ

�
C

��
�
�

�

A�
�
C�

� �
�

�
�

�

� �
�

A�
�
C�

�E�
�
�

�
EA�

�
C�

EA�
�
C�

E

E

EAA�
�
C�B��

�
�

�
�

�
C EAA�

�
C�B��

�
�

�
�

�
C

�F�
�
�

�
	Aλ

�
Bλ

�
C

FA�
�
C�	λ

�

F	λ
�

FAA�
�
C�B��

�
�

�
�

�
C	λ

�
FAA�

�
C�B��

�
�

�
�

�
C	λ

�

F	λ
�

FA�
�
C�	λ

�

2.4 Advanced Analysis Methods for Stochastic Petri
Nets

In this section, we present methods different from the resolution of a finite
Markov chain. Such methods are useful when: (1) either the considered sub-
class of nets allows a more efficient computation of the steady state-distribution,
(2) either the chain is infinite, (3) or the stochastic process is not a Markov chain.

2.4.1 Research of a product form

In this section, we search for an explicit expression of the steady-state distribu-
tion which avoids to build the reachability graph. Such an approach has been
first developed in queuing networks. So we will present it while modelling
queuing networks by Petri nets and then move to the corresponding net theory.

A (Markovian) queue is specified by:

• an interarrival time which is an exponential distribution with parameter
λ,

• a service time which is an exponential distribution with parameter µ.

It can be modelled by a SPN presented below with its associated CTMC.
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Let ρ = λ
µ

be the utilization of the queue.

• The steady-state distribution π∞ exists iff ρ < 1.

• The probability of n clients in the queue is π∞(n) = ρn(1−ρ). Observe that
this is an explicit expression of the distribution w.r.t. λ and µ.

We have presented below a Petri net (and its associated CTMC) modelling
two queues in tandem, i.e. the clients are served by the first server and then by
the second one.
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While this is a very simple case of queuing network, the associated Markov
chain is more complex than the one corresponding to two isolated queues. How-
ever assume that ρ1 = λ

µ
< 1 and ρ2 = λ

δ
< 1 (the stability condition). Then:

• The steady-state distribution π∞ exists.

• The probability of n1 clients in the first queue and n2 clients in the second
queue is π∞(n1, n2) = ρn1

1 (1− ρ1)ρn2
2 (1− ρ2).

• It is the product of the steady-state distributions corresponding to two
isolated queues!

Let us now consider the general case of an open queuing network. In such
a network, when a client leaves a queue, it randomly chooses between leaving
the network or entering any queue of the network. The probability distribution
of this choice only depends on the queue that the client leaves. Again this kind
of networks can easily be modelled by SPNs (merging the exit of a queue with
the random choice). We have illustrated it on the example below. When the
client leaves the first queue, it can enter the second queue (with probability p)
or exit the network. Similarly when the client leaves the first queue, it can enter
the first queue (with probability q) or exit the network.
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In order to analyze it, we first study the possible steady-state flow of clients
through the queues.

• Define the (input and output) flow through the first (resp. second) queue
as γ1 (resp. γ2).

• Then (assuming that a steady-state exists) γ1 = λ+ qγ2 and γ2 = pγ1. Thus
γ1 = λ

1−pq and γ2 = pλ
1−pq .

Now assume ρ1 = γ1
µ
< 1 and ρ2 = γ2

δ
< 1 (the stability condition).

• The steady-state distribution π∞ exists.

• The probability of n1 clients in the first queue and n2 clients in the second
queue is π∞(n1, n2) = ρn1

1 (1− ρ1)ρn2
2 (1− ρ2).

• It is still the product of the steady-state distributions corresponding to two
isolated queues!

A closed queuing network can be seen as an open queuing network where a
fixed number of clients are initially present in the system and never leave it. As
illustrated below, there is no additional difficulty to model it.
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In order to analyze it, the key concept is the visit ratio (up to a constant) of
the queues by a client.

• Define the visit ratio flow of queue i as vi.

• Then v1 = v3 + qv2, v2 = pv1 and v3 = (1− p)v1 + (1− q)v2.
Thus v1 = 1, v2 = p and v3 = 1− pq.
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Since the number of clients is constant there is no stability condition. How-
ever the relative load of a file can be obtained as the visit ratio divided by the
service rate of the queue: ρ1 = v1

µ
, ρ2 = v2

δ
and ρ3 = v3

λ
.

• The steady-state probability of ni clients in queue i is:
π∞(n1, n2, n3) = 1

G
ρn1

1 ρ
n2
2 ρ

n3
3 (with n1 + n2 + n3 = n)

• whereG the normalizing constant can be efficiently computed by dynamic
programming.

Let us develop this last point and introduce:

G(m, k) =
∑

Pk
i=1 ni=m

k∏
i=1

ρni
i

for m ≤ n and k ≤ q with q the number of queues.
Observe that we are looking for G(n, q). Decomposing the sum w.r.t. the num-
ber of clients in the kth queue, the equations leading the dynamic programing
algorithm are:

G(0, k) = 1 G(m, 1) = ρm1

G(m, k) = G(m, k − 1) + ρkG(m− 1, k) for m > 0 and k > 1

Summarizing, a (single client class) queuing network can easily be repre-
sented by a Petri net. Such a Petri net is a state machine: every transition has
at most a single input and a single output place. So there is a central question:
can we define a more general subclass of Petri nets with a product form for the
steady-state distribution? The answer is positive and we introduce now this
subclass.

The principles of Product-Form Stochastic Petri Nets (PFSPN) are the following
ones:

• Transitions can be partionned into subsets corresponding to several classes
of clients with their specific activities.

• Places model resources shared between the clients.

• Client states are implicitly represented.

These principles are formalized by two requirements. In order to express the
first one, we introduce the resource graph.

• The vertices are the input and the ouput bags of the transitions, i.e. vectors
Pre(−, t) and Post(−, t) for transition t.
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• Every transition of the net t yields a graph transition •t t−→ t•.

Below we present a Petri net and its resource graph.
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We are now in position to specify the first requirement.
First requirement.
The connected components of the resource graph are strongly connected.

From a modelling point of view, the connected components of the graph
correspond to client classes.

In order to express the second one, we introduce the witnesses of bags. Let b
be a bag.

• Let In(b) (resp. Out(b)) the transitions with input (resp. output) b.

• Let v be a place vector, v is a witness for b if:

– ∀t ∈ In(b) v ·W (t) = −1 (where W (t) is the incidence of t)
– ∀t ∈ Out(b) v ·W (t) = 1

– ∀t /∈ In(b) ∪Out(b) v ·W (t) = 0

In other words, given m the current marking the quantity
∑

p∈P v(p)m(p) is
increased (resp. decreased) when a transition produces (resp. consumes) bag b.
The firing of other transitions let unchanged this quantity. Intuitively speaking,
a witness counts (up to some constant) the number of clients in the implicit state
corresponding to bag b. Below we show a bag with its witness.
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Second requirement. Every bag has a witness.

Given a Petri net, checking whether this net fulfills the two requirements
can be done in polynomial time. For instance, the first requirement could be ob-
tained by construction of the connected components of the unoriented version
of the resource graph and then verifiying that every component in the oriented
version of the resource graph is strongly connected (by Tarjan’s algorithm). The
witnesses of a bag are defined by linear equations and the existence (and com-
putation if there exists one) can be checked by Gauss’s algorithm.

Once a witness has been computed per bag, the expression of the product-
form is obtained as follows.

• Assume the requirements are fulfilled, with w(b) the witness for bag b.

• Compute the ratio visit of bags v(b) on the resource graph.

• The output rate of a bag b is µ(b) =
∑

t|•t=b µ(t) with µ(t) the rate of t.

• Then: π∞(m) = 1
G

∏
b

(
v(b)
µ(b)

)w(b)·m

The normalizing constant can be efficiently computed if the reachability
space is characterized by linear place invariants. as it is the case for our ex-
ample.
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Bibliographic remarks. A first general condition for existence of product form
for SPNs was established in [HPTvD90] as a conjunction of the first requirement
and another requirement involving the rates of the transition. Thus the charac-
terization was not purely structural. Later on the authors of [HMSS01, HMSS05]
establish a (fully structural) necessary and sufficient condition that such a net
admits a product form whatever its stochastic parameters (the one we have pre-
sented here). Recently in [MN10], another equivalent characterization was pro-
posed but where the membership problem can be decided more efficiently. As
observed before, the presence of invariants characterizing the reachability space
greatly simplifies the computation of the normalizing constant using a dynamic
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programming algorithm [SB93]. However until very recently all the product
form Petri nets with such a characterization were in fact product-form queing
networks models. In [HMN11], a large subclass of product form Petri nets is ex-
hibited where the computation of the normalizing constant can be done by dy-
namic programming without requiring a characterization of the state space by linear
invariants. To conclude, methods based on product form have a weak compu-
tational complexity but they are applicable on models whose components have
simple synchronizations.

2.4.2 Unbounded Petri nets

In this section we show that it is still possible to compute the steady-state distri-
bution of a Petri net with a single unbounded place [FN89, Hav95]. Below we
present again the Petri net corresponding to a queue in order to explain how

the steady-state distribution of this net (xi =
(
λ
µ

)i
(1− λ

µ
), with xi be the steady-

state probability of i tokens in the place) is related to the special form of the
infinitesimal generator.
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Observe that the infinitesimal generator is a tridiagonal matrix with repeated
items on the diagonals. Thus the steady-state equations are:

1. x0λ− x1µ = 0

2. ∀i ≥ 1 xi−1λ− xi(λ+ µ) + xi+1µ = 0

3.
∑

i∈IN xi = 1 (the normalizing equation).

We now develop a analysis of these equations which is not the standard one
but has the advantage that it can be generalized. Assume there exists a positive
ρ such that:

• λ− ρ(λ+ µ) + ρ2µ = 0

• y0λ− y1µ = 0 and y0λ− y1(λ + µ− ρµ) = 0 are the steady-state equations
of a two-state Markov chain.
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•
∑

i∈IN ρi is finite.

Then we solve the two-state Markov chain which fixes the value of y0 and
y1. For all i ≥ 1 we define yi+1 ≡ yiρ. It is routine to check that the vector
Y ≡ (yi)i∈IN satisfies all the steady-state equations of the system except the
normalizing one. However due to our third hypothesis, we can normalize Y
and obtains the steady-state distribution. In our case such a ρ exists: ρ = λ/µ.

We now develop the theory illustrating it by the more complex example
given below. Place p1 is the single unbounded place and we enumerate the
states in the infinitesimal generator ordered by their values on p1. We observe
that the generator still presents the same pattern as before but now w.r.t. to
a block decomposition. We say that the matrix is block tridiagonal and we will
exploit it to express the steady-state distribution.
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The results will be presented in a slightly restricted way by stating when
necessary additional assumptions. These assumptions could be omitted at the
price of a more involved theory. Our first assumption is that arcs around the
unbounded place are weighted by 1 (as in this example). Then we decompose
the infinite state space S of the chain as follows. For all i ≥ 0, Si denotes the set
of reachable markings with i tokens in p1. Index i is called the level of a marking
in Si. Furthermore Si can be defined as {i}×U where U is the projection on the
bounded places of the reachable markings. Again for simplicity, we assume that
the set of projections of the reachable markings does not depend on the level.
Moreover we assume that the associated Markov chain is ergodic.

Since there is a finite number of rates, we can apply the uniformization tech-
nique and reason over the embedded discrete time Markov chain of the uniform
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version of the chain which has the same steady-state distribution. We observe
that after uniformization, the tridiagonal feature is preserved. Once the un-
bounded place is marked it does not restrict the behaviour of the net. So the
transition matrix P of the embedded chain can be expressed by five matrices:

• A0 is the transition submatrix from Si to Si+1 (i ≥ 1).

• A1 is the transition submatrix from Si to Si (i ≥ 1).

• A2 is the transition submatrix from Si vers Si−1 (i ≥ 1).

• B0 is the transition submatrix from S0 to S1 (in the example B0 = A0).

• B1 is the transition submatrix from S0 to S0.

Denoting Xi be the steady-state probability vector of markings with i tokens in
p1, the steady-state equations are:

• X0 = X0 ·B1 +X1 ·A2, X1 = X0 ·B0 +X1 ·A1 +X2 ·A2

• ∀i ≥ 2 Xi = Xi−1 ·A0 +Xi ·A1 +Xi+1 ·A2

•
∑

i∈IN ||Xi|| = 1

In order to solve these equations, we introduce some finite stochastic process
that starts in marking (i, u) (i ≥ 1) and performs as the chain until it reaches a
level less or equal than i. For instance, if after the first transition it does not
reach level i + 1, it is immediately stopped. We do not consider the stopping
marking as belonging to this process. We observe that the processes starting in
(i, u) and (i′, u) with i′ > i are the same up to the level translation i′ − i; so we
consider the process starting from marking (1, u).

We now introduce useful quantities. Let i ≥ 1, V (n)
i [u, u′] is the probability

that the process (starting from (1, u)) has reached time n and that its current
marking is (i, u′). Thus matrix V (0)

1 is the identity matrix while matrix V (n)
1 , for

n > 0, is the null matrix. Ni[u, u
′] is the mean number of visits of the process

(starting from (1, u)) to marking (i, u′). Since the process is ergodic, matrix Ni is
well defined.

We already have an immediate matrix equation relating these matrices:

∀i ≥ 1 Ni =
∑
n∈IN

V
(n)
i

In order to deduce another equation, we remark that to visit state (i, u) (i >
2) the process must reach at least time i − 1 and must visit at least once level
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i−1. Considering the last visit to this lower level, we observe that from this last
visit the process behaves at the original one (w.r.t. a translation). Thus:

∀i > 2 V
(n)
i =

n−1∑
m=i−2

V
(m)
i−1 V

(n−m)
2

Now we apply the equation related to the Ni’s to derive a similar equation
for i > 2:

Ni =
∑
n∈IN

n−1∑
m=i−2

V
(m)
i−1 V

(n−m)
2 =

∞∑
m≥i−2

V
(m)
i−1

∑
n>m

V
(n−m)

2

=
∑
m∈IN

V
(m)
i−1

∑
n∈IN

V
(n)

2 = Ni−1N2

Thus Ni = (N2)i−1.
We now relate these visit probabilities to the transition submatrices. Given

a visit at time n > 0 at level 2, we reason about the possible levels 1, 2, 3 at time
n− 1:

V
(n)

2 = V
(n−1)

1 A0 + V
(n−1)

2 A1 + V
(n−1)

3 A2

Now we sum over all the instants n > 0:

N2 = N1A0 +N2A1 +N3A2

Using the fact that N1 ≡ Id is the identity matrix, that N3 = (N2)2 and denot-
ing by R (which is analogous to the ρ of the first example) the matrix N2, one
obtains:

R = A0 +RA1 +R2A2

We have established the first condition we were looking for. Since the Markov
chain is ergodic we know that the auxiliary process (starting from (1, u)) that we
have introduced will stop with probability 1. Decomposing w.r.t. the stopping
instant we obtain:

∑
s∈S0

B0[u, s] +
∑
u′∈U

A1[u, u′] +
∑
u′∈U

∑
u′′∈U

(
(
∑
n≥1

V
(n−1)

2 [u, u′]

)
A2[u′, u′′] = 1

Thus the sum of item of every row of matrix B0 + A1 + RA2 is equal to 1.
Consequently the system of equations below is the one of some Markov chain
and admits a steady-state distribution (Y0, Y1).

Y0 = Y0 ·B1 + Y1 ·A2 and Y1 = Y0 ·B0 + Y1 · (A1 +RA2)
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This is the second condition we were looking for. Now for i ≥ 1, define Yi+1 ≡
YiR, using the previous equations the vector Y fulfills all the equations (except
the normalizing one). We observe that (

∑
i∈INRi)[u, u′] counts the mean number

of visits of states {(i, u′) | i ≥ 1} starting from (1, u) before stopping. Since the
Markov chain is ergodic, this number is finite and so ||Y || is also finite (the third
condition). We can normalize it and obtains the steady-state distribution.

There are different ways to compute matrixR. A first possibility is to observe
that R is the (upper) limit of Rn defined by Rn ≡

∑
k≤n V

(k)
2 which fulfill R0 = 0

and Rn+1 = A0 + RnA1 + (Rn)2A2 (due to the previous equations). This proves
that R is the smallest positive solution of Z = A0 +ZA1 +Z2A2 and leads to an
iterative computation which halts when enough precision has been obtained.

A second possibility is to use the equation R = A0 + RA1 + R2A2. By
ergodicity of the Markov chain, matrix Id − A1 is invertible. Furthermore
(Id − A1)−1 =

∑
n∈IN An

1 is non negative. Let us define R′0 ≡ 0 and for all
n, R′n+1 ≡ (A0 +R′2n · A2)(Id−A1)−1. Then by induction:

• R′n is a increasing sequence of non negative matrices.

• R′n ≤ R

Thus the sequence R′n is bounded and so converges to the smallest positive
solution of Z = A0 + ZA1 + Z2A2 which is exactly R.

This procedure has also been successfully employed to approximate bounded
Petri nets where a place reaches huge values by a Petri net with a single un-
bounded Petri net. If furthermore the system fulfills a set of conditions for
quasi-reversibility [Kel79], this approximation becomes an exact result [Hav93].

2.4.3 Composition of stochastic Petri nets

An usual way to cope with the complexity of systems is to analyze their struc-
ture in order to design more efficient algorithms than the usual ones [Pla85].
In this section, we show that when a SPN is obtained as a composition of two
SPNs, such a method is possible [Don94].

Let us examine the net below. It can been seen as the composition of two
subnets (p1, p2, tp1, tp2, t) and (q1, q2, tq1, tq2, t) synchronized by transition t.
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The infinitesimal generator Q described below presents some regularities
that can be emphasized by an additive decomposition between the behaviours
generated by the local transitions and the one generated by the synchronized
transition.


−(γ + λ) γ λ 0

γ′ −(γ′ + λ) 0 λ
λ′ 0 −(γ + λ′) γ
µ λ′ γ′ −(γ′ + λ′ + µ)



Q =


−λ 0 λ 0
0 −λ 0 λ
λ′ 0 −λ′ 0
0 λ′ 0 −λ′

+


−γ γ 0 0
γ′ −γ′ 0 0
0 0 −γ γ
0 0 γ′ −γ′

+ µ ·


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 −1



In the general case, the infinitesimal generator can be decomposed as the
sum of:

• one matrix per subnet Qi (here two components)

• one matrix per every synchronized transitionBt with coefficients in {−1, 0, 1}
multiplied by the rate of the transition (here a single transition)

In order to exploit the regularity of these matrices, we introduce a key oper-
ation: the tensorial product. Given two matrices,A andB with dimensionm×n
and m′ × n′, the tensorial product A ⊗ B is built as follows. First one builds a
matrix with dimension mm′ × nn′ by duplicating mn times matrix B. Then the
block indexed by (i, j) is multiplied by coefficientA[i, j]. SoA⊗B[(i, i′), (j, j′)] =
A[i, j]B[i′, j′].

Once this operation has been defined, we observe that Q1, the matrix associ-
ated with the first component fulfils: Q1 = Ql1 ⊗ Id where Ql1 is the generator
of the local Markov chain of the first component and Id, the identity matrix,
witnesses the independence from the second component.
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Q2, the matrix associated with the second component fulfils: Q2 = Id ⊗ Ql2
where Ql2 is the generator of the local Markov chain of the second component;
and Id, the identity matrix, witnesses the independence from the first compo-
nent.
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Bt, the matrix associated with the synchronized transition fulfils: Bt = Bt,1⊗
Bt,2 −D(Bt,1 ⊗ Bt,2) where Bt,i is the indicator of local state change due to t in
the ith component and D is the matrix operator summing the items of a line in
the diagonal item.
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Let us recall that the iterative computation of the steady-state distribution
proceeds as follows: (1) select any initial distribution π0, (2) iterate πn+1 =
πn(Id + 1

c
· Q) with c any value greater than maxi(|Q[i, i]|) and (3) stop when

the successive values are enough close.
Observe that the iterative approach is based on the product of a vector by a

matrix. When C = A ⊗ B computing v · C can be done without computing C
thus saving space and more efficiently thus saving time. We do not develop the
algorithm but illustrate below on an example with two matrices A,B with di-
mension 2×2 in such a way that the generalization is straightforward [BCDK00].

(
x11 x12 x21 x22

)
a11b11 a11b12 a12b11 a12b11

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b11

a21b21 a21b22 a22b21 a22b22



=


(x11a11 + x21a21)b11 + (x12a11 + x22a21)b21

(x11a11 + x21a21)b12 + (x12a11 + x22a21)b22

(x11a12 + x21a22)b11 + (x12a12 + x22a22)b21

(x11a12 + x21a22)b12 + (x12a12 + x22a22)b22



=


z11b11 + z12b21

z11b12 + z12b22

z21b11 + z22b21

z21b12 + z22b22

 =


(
z11

z12

)
·B(

z21

z22

)
·B


where

(
z11 z21

)
=
(
x11 x21

) · A and
(
z12 z22

)
=
(
x12 x22

) · A
Thus in this particular case, the algorithm consists of (1) decomposing the

vector x in two subvectors (x11, x21) and (x12, x22), (2) multiply them byA giving
two subvectors (z11, z21) and (z12, z22), (3) switch some components leading to
subvectors (z11, z12) and (z21, z22) and (4) multiply them by B and concatenate
the results leading to x · A⊗B.

2.4.4 Phase-type stochastic Petri nets

A phase-type distribution [Neu81] is defined by a Markov chain with an ab-
sorbing state (i.e. without successor) and an initial distribution. If F denotes
the distribution then F (t) is the probability to be in the absorbing state at time t.
Using our analysis of Markov chains, F is a probability distribution if and only
if the absorbing state is the single BSCC of the graph associated with the chain.
The states of the chain (except the last one) are called stages.
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It has been established that in some sense, every distribution is a limit of
phase-type distributions [Cox55]. For instance, an exponential distribution is
a phase-type distribution with a single stage and an immediate distribution is
a phase-type distribution without stage. A deterministic distribution with du-
ration d is approximated by an Erlang distribution with n consecutive stages
whose rate is n

d
. The mean value of the absorbing time is d and the variance

of the absorbing time is d2

n
; so it goes to 0 when n goes to∞ (the coefficient of

variation is 1√
n

).
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As another example, let d be the mean of some distribution with a great
coefficient of variation. We approximate such a distribution by some hyper-
exponential distribution defined by a probabilistic choice between exponential
distributions with different rates. Thus the mean value of the absorbing time
is the weighted average of mean values of these distributions. The coefficient
of variation is always greater than 1. For instance, such a distribution can be
approximated by a three-state hyperexponential distribution (with two param-
eters p, n).

�

�
���

�����

���������	�

��A�

So the phase-type stochastic Petri nets (PH-SPN) have a great expressive
power [Cum85, CBB89]. However, such a net generates a stochastic process
of the same kind as the one of GSPN. Indeed, the sampling of a phase-type
distribution can be seen as a random sampling of the choice of the first stage, a
sampling of the exponential distribution of the stage, a new random sampling
of the choice of the next stage, etc. until one reaches the absorbing state. So,
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rather than considering transition firings as the events of the SED, one selects
a more elementary step: the stage change of the distributions. This requires to
complete the state of the SED. A state is defined by:

• a marking,

• for every transition, a descriptor which includes a sequence of samplings
not yet used to fire the transition. For every sampling, one memorizes its
current stage. If the transition works with the enabling memory policy, the
number of firings is exactly the number of services offered by the transi-
tion. If it works with the age memory policy, this number can be greater
since one takes into account the suspended services.

Every step that reaches an absorbing state is an external transition since it up-
dates the marking. The new descriptor is computed w.r.t. the different policies
of the net. The internal transitions let the marking unchanged and in the de-
scriptor a single sampling is updated.

One builds the semi-Markovian process as a reachability graph starting from
the initial state and firing the internal and external transitions. More elaborate
constructions are possible by noting that, for instance, some markings lead to
the same set of descriptors.

We illustrate this construction on the net below which has a transition with
an Erlang distribution and a transition with an exponential distribution. Both
transitions follow the single-server policy. So the descriptor associated with the
non exponential transition is nothing more than the current stage of the distri-
bution. On the left part of the figure, the associated Markov chain is presented.
Since the sum of tokens in the net remains constant, The marking is denoted by
the number of tokens in the input place of the Erlang transition. The external
transitions are represented by thick lines.
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However the problem is the number of states of this process which has the
same magnitude order as the product of the size of the reachability space and
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of the number of descriptors. Fortunately, as may be observed on the example,
the Markov chain of the a PH-SPN presents regularities.

In order to exploit these regularities we proceed as follows (for more details
see [HMC97, DHM98]). Markings with same enabled phase-type transitions are
grouped. LetM be such a class of markings with t1, . . . , td, the corresponding
enabled transitions. Then the corresponding states say SM in the Markov chain
are (m, q1, . . . , qd) withm ∈M and qi being a stage of the distribution of ti. Here
for simplicity, we assume enabling memory and single-server policies.

The goal of this decomposition is, given two classes SM and SM′ , to ob-
tain a tensorial expression of the block of the infinitesimal generator Q indexed
by SM × SM′ . Then the vector matrix multiplication involved in the iterative
method for computing steady-state distribution is performed block per block
where inside a block the operation is performed as in the previous section sav-
ing space and time.

The matrices occurring in the tensorial expression depend :

1. either on the change of marking by exponential transitions or phase-type
transitions when reaching absorbing states (external transitions)

2. or on phase-type transitions that do no reach absorbing state (internal tran-
sitions).

We illustrate it on our example. First we observe that there are two classes
depending on the enabling of the Erlang distribution. We focus on the class SM
for which the Erlang transition is enabled and on the block SM × SM which
corresponds to the subgraph depicted below.
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This block can be expressed as:

Q′ = E ⊗ Id+ Id⊗ L+ µ(F ⊗G−D(F ⊗G))
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• where E corresponds to the firing of the exponential transition and Id
represents the fact that this firing let unchanged the stage of the Erlang
distribution;

• where L corresponds to the internal change of the stage and Id represents
the fact that the marking is unchanged;

• and F,G correspond to the firing of the phase-type transition: F changes
the marking and G moves the current stage to the initial stage.

We have detailled the matrices below.

E =


−λ λ 0 0 . . . 0
0 −λ λ 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 0 −λ λ
0 . . . 0 0 0 0

 L =


−µ µ 0 0 . . . 0
0 −µ µ 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 0 −µ µ
0 . . . 0 0 0 0



F =


0 0 0 0 . . . 0
1 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 1 0 0
0 . . . 0 0 1 0

 G =


1 0 0 0 . . . 0
1 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . .
1 . . . 0 0 0 0
1 . . . 0 0 0 0





Chapter 3

Quantitative Verification of
Stochastic Models

3.1 Introduction

Hardware and software systems are more and more pervasive in every day life
and, therefore, there is an obvious demand for these systems to meet the func-
tional and performance requirements that the users expect. Automatic verifica-
tion methods are a possible, and doable, way to increase our level of confidence
in the systems that we design and produce, both in terms of functionality (what
the system does) and performance (how long does it take). In the previous
chapter, we have put the focus on performance evaluation but here we give an
overview of quantitative verification, a topic that unifies performance evalu-
ation and verification, namely verification methods that take into account the
randomness of systems work with a model of the system which is a stochas-
tic process. In order to limit the complexity of the verification process, these
stochastic processes are often either Discrete Time Markov Chains (DTMC) or
Continuous Time Markov Chains (CTMC), usually automatically generated by
some higher level formalism like stochastic Petri nets or stochastic process alge-
bras.

Historically the functional verification and the evaluation of performance of
an application have been considered as two distinct steps of the system devel-
opment and verification process: each steps had its own moddel and associ-
ated verification techniques. In the last fifteen years instead we have seen the
flourishing of a discipline that aims at taking simultaneously into consideration
both aspects and that is often referred to as probabilistic verification or, more
appropriately, of verification of probabilistic systems. The moving force of the
discipline is the need of being able to evaluate the probability of a property ex-
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pressed as a logic formula. To show why this is an important need, we recall a
classical example from system reliability.

Consider a system whose states can be partitioned in three classes: W , the
states in which the system works properly, D, the states in which the system
is still working, although in a degraded mode, and F , the states in which the
system is not working (failure states). The system can evolve from W states to
D or F states, and from D to F states. A classical reliability measure for such
a system is the probability of being in a F state within a given time interval I .
classical performance and reliability methods can be easily applied to compute
such probability.

If instead we ask for a slightly more refined question, as the probability of
failing within I , given that the system has not passed through a degraded mode of
operation, then we need to express and compute the probability of reaching an
F state within I , passing only through W states. A temporal logic (as CSL for
example) has temporal operators that allow a simple, and semantically well-
founded definition for the above property. In this particular case the formula
is: P≤p(W U IF ) where p is the upper limit of the probability of such an event as
fixed by the designer.

This chapter presents the two main themes of probabilistic verification: the
temporal logic to express probabilistic verification properties and the techniques
to verify such properties for Markov chains (and some more general stochastic
models). This chapter is divided in two parts. The first part is devoted to nu-
merical verification, i.e. the probabilities (or other related quantities) to be com-
puted are obtained through a numerical algorithm. In the second part, such
quantities are computed through samplings with the help of simulations, and
this technique is called statistical verification.

3.2 Numerical Verification

3.2.1 Verification of Discrete Time Markov Chain

Temporal logics for Markov chains

We consider a « probabilistic » extension of theCTL∗ logic, that is named PCTL∗.
The syntax of this logic is defined inductively upon state formulas and paths
formulas.

Definition 3.1. Let P be the set of atomic propositions.
A PCTL∗ state formula (relative to P) is defined by:

E1: If φ ∈ P then φ is a PCTL∗ state formula;
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E2: If φ and ψ are PCTL∗ state formulas then ¬φ and φ ∧ ψ are PCTL∗ state
formulas;

E3: If ϕ is a PCTL∗ path formula, a ∈ [0, 1] is a rational number, and ./∈ {=, 6=, <
,≤, >,≥} then P./aϕ is a PCTL∗ state formula.

A path formula of PCTL∗ (relative to P) is defined by:

C1: A PCTL∗ state formula is a PCTL∗ path formula;

C2: if ϕ and θ are PCTL∗ path formulas, then ¬ϕ and ϕ ∧ θ are PCTL∗ path for-
mulas;

C3: If ϕ and θ are PCTL∗ path formulas, then Xϕ and ϕUθ are PCTL∗ path for-
mulas.

Two subsets of the PCTL∗ formulas are of particular interest. The first sub-
set is called PCTL (by analogy with CTL) and it is built using only the rules
E1, E2, E3, C

′
3 where C ′3 is defined as « If φ and ψ are PCTL state formulas, the

Xφ and φUψ are PCTL path formulas ». The second subset is called PLTL (by
analogy with LTL) and it is built only on the rules E1, E3, C

′
1, C2, C3 where C ′1 is

« If ϕ ∈ P then ϕ is a PLTL state formula ».
We now explain how to evaluate the truth value of a PCTL, PLTL, or

PCTL∗ formula.
The semantics of formulas is given in the following. We consider a Markov

chain M whose states are labeled by a subset of atomic propositions. We in-
dicate with s a state of the chain and with σ = s0, s1, . . . an infinite path in the
graph associated to the chain. We denote σi the suffix si, si+1, . . ., andM, s |= φ
the satisfaction of state formula φ by state s and σ |= ϕ the satisfaction of path
formula ϕ by path σ.

Definition 3.2. LetM be a Markov chain, s a state of the chain, and σ a path of the
chain.
The satisfaction of the state formula φ by s is inductively defined by:

• if φ ∈ P thenM, s |= φ iff s is labeled by φ;

• if φ ≡ ¬ψ thenM, s |= φ iffM, s 6|= ψ ;

• φ ≡ ψ1 ∧ ψ2 thenM, s |= φ iffM, s |= ψ1 andM, s |= ψ2 ;

• If φ ≡ P./aϕ thenM, s |= φ iff Pr({σ |= ϕ} | s0 = s) ./ a.

The satisfaction of a path formula ϕ by σ is inductively defined by:
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• If ϕ is a state formula, then σ |= ϕ iffM, s0 |= ϕ ;

• If ϕ ≡ ¬θ then σ |= ϕ iff σ 6|= θ ;

• If ϕ ≡ θ1 ∧ θ2 then σ |= ϕ iff σ |= θ1 and σ |= θ2 ;

• If ϕ ≡ X θ then σ |= ϕ iff σ1 |= θ ;

• If ϕ ≡ θ1Uθ2 then σ |= ϕ iff ∃i σi |= θ2 and ∀j < i σj |= θ1.

This semantic implicitly assumes that the set of paths that verify a formula
is measurable. This hypothesis is justifiable, as can be proved through basic
results of measure theory, but this goes beyond the scope of this chapter.

Verification of PCTL formulas

Given a DTMC and a PCTL formula φ the verification algorithm proceeds by
evaluating bottom up the sub-formulas of the syntactic tree of φ, from the leaves
up to the root. At each step the algorithm evaluates a sub-formula considering
as atomic propositions the operands of the most external operator (of the sub-
formula associated to the tree node considered).

Considering the syntax of PCTL the formulas to be considered are: ¬ψ, ψ ∧
χ, P./aXψ, P./aψUχwhereψ and χ are (formulas transformed into) atomic propo-
sitions. We now provide an informal explanation of the algorithm and its cor-
rectness.
φ = ¬ψ The algorithm labels with φ each state not labeled with ψ.

φ = ψ ∧ χ The algorithm labels with φ each state labeled with ψ and χ.

φ = P./aXψ The algorithm computes the probability ps of reaching in a single
step a state labeled with ψ, with ps ≡

∑
s′|=ψ P[s, s′] where P is the transition

matrix of the DTMC. State s is then labeled with φ iff ps ./ a.
φ = P./aψUχ The algorithm computes the probability of reaching a state la-

beled by χ, passing only through states labeled by ψ. Let ps be such a probabil-
ity. If s |= χ then ps = 1 ; if s 6|= χ and s 6|= ψ then ps = 0. In all other cases, ps
is computed on a transformed DTMC: all the states described above are made
absorbing, and then the probability of reaching χ from s in the new chain. Since
each χ state is a BSCC, such a probability can be computed as explained in the
previous chapter, and illustrated in figure 3.1. State s is then labeled with φ iff
ps ./ a.

Aggregation of Markov chains

In order to establish the correctness of the verification algorithm of PLTL, we
recall the notions of aggregation in Markov chains. The aggregation of finite



3.2. NUMERICAL VERIFICATION 57

� �

�

���
���

�

������

� �

�

���

���

���
���

���	 A
��A

�

�����A

��	

��	

χ

¬χ ∧ ¬ψ

¬χ ∧ ψ

� �

�

�

������

� �

�

���

���

���
���

���	 A�

����

� �

�BBB���B�BBB�
���B�BBB�BBB�
�BBB�BBB�BBB�
�BBB�BBB�BBB�B

���CD�B��CD�B�B�
��CD�B���CD�B�B�
B�BBBBBB�BBBB�B�
B�BBBBBB�BBBB�B�

�
EFE

E���F�FAF��

�����
EFE

���
� �

�

�

������

� �

�

���

���

���
���

���	 A�

����

� �

�

���

D�CD���CD�

Figure 3.1: Computation of P./aψUχ

Markov chains is an efficient method when one is faced to huge chains [KS60].
Its principe is simple: substitute to a chain, an “equivalent” chain where each
state of the lumped chain is a set of states of the initial chain. There are different
versions of aggregation depending on whether the aggregation is sound for
every initial distribution (strong aggregation) or for at least one distribution (weak
aggregation). We simultaneously introduce aggregation for DTMCs and CTMCs.
We note π0 the initial distribution of the chain and Xn (resp. Xτ ) the random
variable describing the state of the DTMC (resp. CTMC) at time n (resp. τ ). P
is the transition matrix of the DTMC and Q is the infinitesimal generator of the
CTMC.

Definition 3.3. LetM be a DTMC (resp. a CTMC) and {Xn}n∈IN (resp. {Xτ}τ∈IR+)
the family of corresponding random variables. Let {Si}i∈I be a partition of the state
space. Define the random variable Yn for n ∈ IN (resp. Yτ for τ ∈ IR+ ) by Yn = i iff
Xn ∈ Si (resp. Yτ = i iff Xτ ∈ Si). Then:

• P (resp. Q) is strongly lumpable w.r.t. {Si}i∈I
iff there exists a transition matrix Plp (resp. an infinitesimal generator Qlp) s.t
∀π0 {Yn}n∈IN (resp. {Yτ}τ∈IR+) is a DTMC (resp. CTMC)
with transition matrix Plp (resp. with infinitesimal generator Qlp).
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• P (resp. Q) is weakly lumpable w.r.t. {Si}i∈I
iff ∃π0 {Yn}n∈IN (resp. {Yτ}τ∈IR+) is a DTMC (resp. CTMC).

While a characterization of the strong aggregation by examination of the
transition matrix or the infinitesimal generator is easy, the search of a weak ag-
gregation is much harder [Led60]. So we introduce exact aggregation, a simple
case of weak aggregation.

Definition 3.4. LetM be a DTMC (resp. a CTMC) and {Xn}n∈IN (resp. {Xτ}τ∈IR+)
the family of corresponding random variables. Let {Si}i∈I be a partition of the state
space. Define the random variable Yn for n ∈ IN (resp. Yτ for τ ∈ IR+ ) by Yn = i iff
Xn ∈ Si (resp. Yτ = i iff Xτ ∈ Si). Then:

• A initial distribution π0 is equiprobable w.r.t. {Si}i∈I
if ∀i ∈ I,∀s, s′ ∈ Si, π0(s) = π0(s′).

• P (resp. Q) is exactly lumpable w.r.t. {Si}i∈I
iff there exists a transition matrix Plp (resp. an infinitesimal generator Qlp) s.t.
∀π0 equiprobable {Yn}n∈IN (resp. {Yτ}τ∈IR+) is a DTMC (resp. CTMC)
with transition matrix Plp (resp. with infinitesimal generator Qlp)
and πn (resp. πτ ) is equiprobable w.r.t. {Si}i∈I .

Exact and strong aggregations have simple characterizations [Sch84] stated
in the next proposition.

Proposition 3.1. LetM be a DTMC (resp. a CTMC) and P (resp. Q) the correspond-
ing transition matrix (resp. the corresponding infinitesimal generator). Then:

• P (resp. Q) is strongly lumpable w.r.t. {Si}i∈I iff
∀i, j ∈ I ∀s, s′ ∈ Si

∑
s′′∈Sj

P[s, s′′] =
∑

s′′∈Sj
P[s′, s′′]

(resp.
∑

s′′∈Sj
Q[s, s′′] =

∑
s′′∈Sj

Q[s′, s′′])

• P (resp. Q) is exactly lumpable w.r.t. {Si}i∈I iff
∀i, j ∈ I ∀s, s′ ∈ Si

∑
s′′∈Sj

P[s′′, s] =
∑

s′′∈Sj
P[s′′, s′]

(resp.
∑

s′′∈Sj
Q[s′′, s] =

∑
s′′∈Sj

Q[s′′, s′])

Proof
We prove the first point and let to the reader the similar proof of the second
point.
Assume that the condition is fulfilled, let πn the distribution of Xn at time n.
Define Plp[i, j] =

∑
s′∈Sj

P[s, s′] for an arbitrary s ∈ Si (well defined using the
condition). Then:∑

s∈Si
πn+1(s) =

∑
s∈Si

∑
j

∑
s′∈Sj

πn(s′)P[s′, s] =
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Figure 3.2: An example of strong aggregation in a DTMC

∑
j

∑
s′∈Sj

πn(s′)
∑

s∈Si
P[s′, s] =

∑
j(
∑

s′∈Sj
πn(s′))Plp[j, i]

This establishes that the condition is sufficient.
Assume now that the condition is not fulfilled,
∃i, j ∈ I ∃s, s′ ∈ Si

∑
s′′∈Sj

P[s, s′′] 6= ∑s′′∈Sj
P[s′, s′′]

Let π0,s and π0,s′ be the initial point distributions for s and s′. These two distri-
butions lead to the same Y0. Then:∑

s′′∈Sj
π1,s(s

′′) =
∑

s′′∈Sj
P[s, s′′] 6= ∑s′′∈Sj

P[s′, s′′] =
∑

s′′∈Sj
π1,s′(s

′)

This proves that matrix Plp cannot exist.

♦♦♦

Figure 3.2 illustrates the concept strong aggregation in case of a DTMC.
When the condition of strong aggregation is fulfilled the transition matrix

(resp. the infinitesimal generator) of the lumped chain can be directly computed
from the transition matrix (resp. from the infinitesimal generator) of the initial
chain as stated by the next proposition (immediate consequence of the proof of
proposition 3.1).

Proposition 3.2. LetM be a DTMC (resp. a CTMC) strongly lumpable w.r.t. {Si}i∈I .
Let Plp (resp. Qlp) be the transition matrix (resp. the infinitesimal generator) associated
with the lumped chain then:
∀i, j ∈ I,∀s ∈ Si,Plp[i, j] =

∑
s′∈Sj

P[s, s′] (resp. Qlp[i, j] =
∑

s′∈Sj
Q[s, s′])

As for strong aggregation, in case of exact aggregation the transition matrix
(resp. the infinitesimal generator) of the lumped chain can be directly com-
puted from the transition matrix (resp. from the infinitesimal generator) of the
initial chain. Observe that starting with an initial distribution equidistributed
over the states of every subset of the partition, at any time the distribution is
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equidistributed. Consequently, if the DTMC (resp. the CTMC) is ergodic, its
stationary distribution is equidistributed over the states of every subset of the
partition. Otherwise stated, knowing the transition matrix (resp. the infinitesi-
mal generator) of the lumped chain, one can compute its stationary distribution,
and deduce (by local equidistribution) the stationary distribution of the initial
chain. This last step is impossible with strong aggregation which does not en-
sure equiprobability of states inside a subset.

Proposition 3.3. LetM be a DTMC (resp. a CTMC) which is exactly lumpable w.r.t.
{Si}i∈I . Let Plp (resp. Qlp) be the transition matrix (resp. the infinitesimal generator)
associated with the lumped chain, then:

• ∀i, j ∈ I,∀s ∈ Sj Plp[i, j] = (
∑

s′∈Si
P[s′, s])× (|Sj|/|Si|)

(resp. Qlp[i, j] = (
∑

s′∈Si
Q[s′, s])× (|Sj|/|Si|))

• If ∀i ∈ I,∀s, s′ ∈ Si, π0(s) = π0(s′) then
∀n ∈ IN (resp. ∀t ∈ IR+), ∀i ∈ I,∀s, s′ ∈ Si, πn(s) = πn(s′) (resp. πτ (s) =
πτ (s

′)),
where πn (resp. πτ ) is the probability distribution at time n (resp. τ )

• If P (resp. Q) is ergodic and π is its stationary distribution then
∀i ∈ I,∀s, s′ ∈ Si, π(s) = π(s′)

Verification of PLTL formulas

Given a DTMCM and a PLTL formula φ, by definition φ is either an atomic
proposition, or P./aϕ where ϕ is a path formula built on the operators X , U and
on atomic propositions. The first case is straightforward, while we describe the
second case in the following.

As in the previous case, the evaluation proceeds by evaluating the subfor-
mulas of ϕ in the order given by a bottom-up visit of the syntactical tree of the
formula. Here after each subformula evaluation transforms both the formula
and the DTMC such that at the end the formula becomes an atomic proposition
whose evaluation is straightforward. The evaluated subformula ϕ′ is substi-
tuted by the atomic proposition [ϕ′] in the formula itself.

The transformation of the DTMC is more complex. We describe it in the
following for the most complex case of a subformula ϕ′ ≡ ψUχ. Every state
s such that 0 < Pr(σ |= ϕ′ | s0 = s) < 1 of the original DTMC is duplicated
into sy, labeled by the propositions labeling s and [ϕ′] and sn labeled by the
propositions labeling s. All other states are labeled according to the value of the
same probability formula, either 0 or 1. The above probabilities are computed
with the same procedure as for PCTL. So will denote the states that are not
duplicated.
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The transition probability matrix of the new DTMC is defined as follows:

• The transition probability between states of S0 is left unchanged as well.

• For all duplicated states, let py(s) = Pr(σ |= ϕ′ | s0 = s) and pn(s) =
1 − py(s). The probability to move from a state s′ of the original chain to
a state sy (resp. sn) is the probability of moving from s′ to s in the original
chain, multiplied by py(s) (resp. pn(s)).

• From states sy (resp. sn) the chain can only move towards duplicated
states s′y (resp. s′n) or towards states s′ of the original chain such that
py(s′) = 1 (resp. pn(s′) = 1). The associated transition probabilities are
defined by P′[sy, s′y] = P[s, s′]py(s′)/py(s) and P′[sy, s′] = P[s, s′]/py(s),
similarly for the states sn.

To complete the definition of the transformed chain we need to define the initial
probability of a state sy (resp. sn) given that the system starts in state s. This
conditional probability is given by py(s) (resp. pn(s)). Consequently, π′0(sy) =
py(s)π0(s) and π′0(sn) = pn(s)π0(s).

Observe that P′ is indeed a transition matrix. We prove it only for a relevant
case.∑

s′∈So
P′[sy, s′] +

∑
s′∈S\So

P′[sy, s′y] =

1
py(s)

(∑
s′∈So,py(s′)=1 P[s, s′] +

∑
s′∈S\So

P[s, s′]py(s′)
)

Examining a step of the chain, one observes that the expression between paren-
theses is the probability py(s).

We show the DTMC transformation caused by subformula ψUχ in figure 3.3.
The correctness of this construction is established using the following lem-

mas.
Notations. Define the abstraction mapping abs from states ofM′ s.t. abs(sy) =
abs(sn) = s and abs(s) = s for every s ∈ So. Define the stochastic processMabs

whose state space is the one of M obtained by the abstraction abs applied on
M′. The following lemma is the key point for the correctness of the algorithm.

Lemma 3.1. The stochastic processMabs is a weak aggregation of the processM′ (w.r.t.
the initial distribution π′0) and it is identical to the Markov chainM.

Proof
Let us note πn (resp. π′n) the distribution ofM (resp. M′) at time n. We prove
by recurrence on n that:
∀s ∈ So πn(s) = π′n(s) and ∀s ∈ S \ So π′n(sy) = πn(s)py(s) ∧ π′n(sn) = πn(s)pn(s)
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Figure 3.3: CTMC transformation for PLTL

For n = 0, this is due to the definition of π′0. Assume that the equations are
fulfilled for n. Let us prove it for n+ 1. We only handle the case of a state sy and
let to the reader the other cases.
π′n+1(sy) =

∑
s′∈So

π′n(s′)P′[s, sy] +
∑

s′y∈So
π′n(s′y)P′[s′y, sy]

=
∑

s′∈So
πn(s′)P[s′, s]py(s) +

∑
s′y |s′∈S\So

πn(s′)py(s′)P′[s′, s] py(s)
py(s′)

= py(s)
(∑

s′∈So
πn(s′)P[s′, s] +

∑
s′∈S\So

πn(s′)P′[s′, s]
)

= py(s)πn+1(s)

The result is then immediate since inMabs, ∀s ∈ S \So πabsn (s) = π′n(sy) +π′n(sn).

♦♦♦

We noteM′ the transformed chain. A path is said normal if it ends in a BSCC
containing a state of So and visits infinitely often all the states of this BSCC.

Lemma 3.2. The set of normal paths has measure 1 inM and inM′.

Proof
Let us recall that a random path has a probability 1 to meet a BSCC and to visit
infinitely often its states. Assume that there exists a BSCC (say C) inM orM′

that does not include a state of So.

• If C belongs toM, this means that all states of C fulfill ¬χ∧ψ. which leads
to pn(s) = 1 for every state s of C. Thus C ⊆ So which is a contradiction.
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• If C belongs to M′, C only includes duplicate states. Let us pick one of
this state duplicated from an original state s.

1. This state is sy. InM, there is a path from s to a state s′ fufilling χ such
that every intermediate state fulfills ¬χ ∧ ψ. This path yields a path
inM′ from sy to s′. Consequently s′ ∈ C, which is a contradiction.

2. This state is sn. In M, there is (1) either a path from s to a state s′

fufilling ¬χ∧¬ψ such that every intermediate state fulfills ¬χ∧ψ, (2)
or a path from s to a state s′ belonging to a BSCC whose every state
of this BSCC fulfills ¬χ ∧ ψ and such that every intermediate state of
the path fulfills ¬χ ∧ ψ. In both cases, this path yields a path inM′

from sn to s′. Consequently s′ ∈ C, which is a contradiction.

♦♦♦

Let ϕ′′ be a subformula of ϕ where ϕ′ occurs. Let us note ϕ′′(ϕ′ ← [ϕ′]), the
formula ϕ′′ in which ϕ′ has been substituted by the atomic proposition [ϕ′].

Lemma 3.3. For every subformula ϕ′′ of ϕ where ϕ′ occurs, and for every normal
path σ of M′, σ |= ϕ′′(ϕ′ ← [ϕ′]) iff σ |= ϕ′′. Consequently for a random path σ,
Pr(σ |= ϕ′′(ϕ′ ← [ϕ′])⇔ ϕ′′) = 1.

Proof
The proof is done by induction on the size of ϕ′′.
The basis case corresponds to ϕ′′ = ϕ′.
Assume that σ |= ϕ′. This means there exists a prefix of σ such that ¬χ ∧ ψ is
fulfilled by the intermediate states and χ is fulfilled by the last state. This path
can be transformed by abstraction into a path ofM. Consequently one observes
that no state s of the original path belongs to So with py(s) = 0. Let us show
that for every state of this prefix (1) either this state belongs to So, say s and
py(s) = 1 (2) or this state is a state of the kind sy. Assume by contradiction
that this claim is false and let us consider the last state of the prefix that does
not fulfill the claim. This state cannot be the last state since such a state fulfills
χ. Due to the previous observation, this state is of the kind sn but (1) either its
successor belongs to So, say s, and py(s) = 1, (2) or its successor is of the kind
sy. In both cases, this contradicts the construction deM′. Thus the first state of
the path fulfills [ϕ′].
Assume that σ |= [ϕ′]. The first state of σ is either a state belonging to So, say
s, and py(s) = 1, or a state of the kind sy. An immediate successor of a state
sy can only be a state belonging to So, say s, and py(s) = 1, or a state of the
kind sy. Since σ is normal, there exists a finite prefix of σ whose intermediate
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states are of the kind sy (and thus fulfill ψ) and the last state belongs to So, say
s and py(s) = 1. If s |= χ then σ |= ϕ′. Otherwise s |= ψ and every successor
s′ of s belongs to So with py(s′) = 1. Iterating this process, either one obtains a
finite prefix of σ that witnesses the satisfaction of ϕ′, or σ reaches a BSCC ofM′

such that every state s (which is infinitely often visited by σ) belongs to So with
py(s) = 1 and s |= ¬χ. Let us pick some state s of this BSCC and inM a finite
path from s whose intermediate states fulfill ψ and whose last state s′ fulfills χ,
one obtains that s′ belongs to this BSCC which is a contradiction.

For the inductive case, one first observes that a suffix of normal path is a normal
path. We only develop the proof for the case ϕ′′ ≡ θ U θ′. Let σ = s0, s1, . . . be a
normal path,

σ |= ϕ′′

iff
there exists i s.t. si, si+1, . . . |= θ′ and for all j < i, sj, sj+1, . . . |= θ

iff due to the inductive hypothesis and the previous observation
there exists i s.t. si, si+1, . . . |= θ′(ϕ′ ← [ϕ′]) and for all j < i,

si, sj+1, . . . |= θ(ϕ′ ← [ϕ′])
iff

σ |= ϕ′′(ϕ′ ← [ϕ′])

♦♦♦

Observe that the previous lemma applies to the case ϕ′′ = ϕ.

We establish now the correctness of the algorithm.

Theorem 3.1. Let σ (resp. σ′) be a random path ofM (resp.M′). Then:

PrM(σ |= ϕ) = PrM′(σ
′ |= ϕ(ϕ′ ← [ϕ′]))

Proof
PrM(σ |= ϕ) = PrMabs(σabs |= ϕ)
(lemma 3.1)
= PrM′(σ

′ |= ϕ)
Indeed the truth value of ϕ for a path σ′ depends only on its abstraction σabs.
= PrM′(σ

′ |= ϕ(ϕ′ ← [ϕ′]))
(lemma 3.3)

♦♦♦
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Verification of PCTL∗

Given a DTMC and a formula φ of PCTL∗, the verification algorithm proceeds
again through a bottom-up visit of the syntactical tree of the formula φ by eval-
uating the subtrees of φ that correspond to PLTL formulas, substituting each
verified subformula with an atomic proposition. In each step of the algorithm
what needs to be evaluated is a formula of PLTL.

3.2.2 Verification of Continuous Time Markov Chain

Performance evaluation of systems is usually defined in a continuous context.
We open this subsection with a discussion on the limits of classical performance
indices, that justify the introduction of a temporal logics for performance eval-
uation.

Limitations of standard performance indices

The classical performance evaluation indices, recalled in the previous chapter,
provide a set of important information to a system designer, but they do not
capture all performance aspects of a system. As an example we consider some
performance indices aimed at assessing the dependability of a system.

• Instantaneous availability is related to transient behavior: it represents the
probability at time τ of service availability.

• Steady-state availability is related to steady-state behavior: it is represents
the probability of service availability in steady-state.

• Interval availability: it represents the probability of having the service al-
ways available between time τ and τ ′.

• Steady-state interval availability: it is the steady-state probability that the
service is continuously available between two instants of time. Because
we are considering the steady-state behavior, such probability does not
depend on the specific points in time, but only on the duration of the in-
terval limited by the two points.

• Steady-state simultaneous availability and reactivity: it is the steady-state prob-
ability that, upon a request, the system is continuously working until the
service is completed and the response time does not exceed a predefined
threshold.
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While the first two properties can be directly and easily computed from the
transient and steady-state probabilities, the computation of the other properties
is more involved. It is feasible to devise, for each property, an ad-hoc computa-
tion for the probability of interest, but it is more convenient to define a general
logics that can express complex performance properties, and for which a gen-
eral algorithm can be designed.

A temporal logics for continuous time Markov chains

The temporal logics CSL (“Continuous Stochastic Logic”) that we are going to
define is an adaptation of the CTL logics (“Computation Tree Logic” [EC80]) to
CTMC. The logics allow to express formulas that are evaluated over states, and
that are built with the following syntax (in the definition we follow the approach
proposed in [BHHK03a]).

Definition 3.5. A CSL formula is inductively defined by:

• If φ ∈ P then φ is a CSL formula;

• If φ et ψ are CSL formula then ¬φ and φ ∧ ψ are CSL formulas;

• If φ is a CSL formula, a ∈ [0, 1] is a real number, ./∈ {<,≤, >,≥} then S./aφ is
a CSL formula ;

• If φ and ψ are CSL formulas, a ∈ [0, 1] is a real number, ./∈ {<,≤, >,≥} and I
is an interval of IR≥0 then P./aX Iφ and P./aφU Iψ are CSL formulas.

The first two definitions are standard CTL formulas, and we do not explain
them here in more details. The formula S./aφ is satisfied by a state s of the
CTMC if, given that the initial state of the chain is s, the cumulative steady-
state probability p of the states that satisfy φ, verifies p ./ a. This evaluation is
well-defined, since, in a finite CTMC, a steady-state distribution always exists.
If the CTMC is ergodic the evaluation of the formula does not depend on the
specific state s.

An execution of a stochastic process satisfies X Iφ if the first change of state
takes place within the interval I and leads to a state that verifies φ. A state s
satisfies P./aX Iφ if the probability p of the executions of the stochastic process
that start in s and satisfy X Iφ verifies p ./ a.

An execution of a stochastic process satisfies φU Iψ if it exists a time instant
τ ∈ I such that ψ is true at τ and for all preceding time instants φ is true. A
state s satisfies P./aφU Iψ if the probability p of the executions that starts in s and
satisfy φU Iψ verifies p ./ a.

Using CSL, the availability and dependability properties informally defined
before can be expressed in more formal terms as:
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• Instantaneous availability guarantee of 99%:

P≥0.99trueU [τ,τ ]disp

where disp is an atomic proposition that indicates that the service is avail-
able.

• Steady-state availability guarantee of 99%:

S≥0.99disp

• Interval availability guarantee of 99%:

P<0.01trueU [τ,τ ′]¬disp

• Steady-state interval availability guarantee of 99%:

S<0.01trueU [τ,τ ′]¬disp

• Steady-state simultaneous availability and reactivity guarantee of 99% with
latency of at most 3 time units:

S≥0.99(req ⇒ P≥0.99(dispU [0,3]ack))

where req is the atomic proposition that indicates that a request has been
received, and ack is an atomic proposition that indicates that the service
has been delivered. Note that the two 99% requirements do not have the
same meaning. The condition on the internal operator is a condition on the
executions that starts in a particular state, while the condition on the outer
operator is a global requirement on all the states of the chain, weighted by
their steady-state probabilities.

Verification algorithm

Given a CTMC and a CSL formula φ, the algorithm evaluates the formula start-
ing from the inner formulas and proceeding from inner to outer formulas, fol-
lowing bottom-up the syntactical tree of the formula φ and labeling each state
with the sub-formulas satisfied in that state. At each step, the algorithm evalu-
ates a formula by considering as atomic propositions the operands of the most
external operator. The algorithm can be therefore explained considering one
operator at a time.
φ = ¬ψ The algorithm labels with φ each state which is not labeled with ψ.
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φ = ψ ∧ χ The algorithm labels with φ every state labeled with both ψ and χ.

φ = S./aψ The algorithm computes the steady state distribution of the CTMC
with initial probability concentrated in s (the stochastic process starts in s) as
explained in the previous chapter). The probability of all states labeled with ψ
are then summed up and the algorithm labels with φ the state s if the sum, let it
be p, verifies p ./ a. Note that for all the states of a BSCC a single computation
is needed: indeed either all states of the BSCC satisfy φ or none of them does.
Similarly, if the CTMC has a single stationary distribution, then the truth value
of the formula does not depend on the state.
φ = P./aX Iψ The occurrence of a transition in a state s in within the inter-

val I and the fact that the state reached upon the transition satisfies ψ are two
independent events, and therefore the probability of the paths that satisfy the
formula can be computed as the product of the probabilities of the two events.
Let I = [τ, τ ′]; we assume a closed interval, without loss of generality (since we
are in a continuous domain the fact of including or not the bounds of the in-
terval in the computation does not influence the result). Let Q the infinitesimal
generator of the CTMC, and P the matrix of the embedded DTMC. The proba-
bility of the first event is eτQ[s,s] − eτ ′Q[s,s], while the probability of the second is∑

s′�ψ P[s, s′].

φ = P./aψU Iχ The evaluation of this formula requires transient analysis of a
CTMC obtained from the original CTMC by some simple transformations. If
X is a CTMC, then we shall indicate with Xφ the chain obtained by making
absorbing all states of X that verify φ. In order to simplify the presentation, we
consider as separate cases the various type of intervals.

• φ = P./aψU [0,∞[χ. In this case the executions of the chain on which we ac-
cumulate the probability should never leave the states that verify ψ, until
a state that verifies χ is reached, without any constraint in time. temps. In
other words, we are interested in the behavior of the chain from its initial
state until it enters a state that satisfies ¬ψ ∨ χ. Let’s consider the chain
X¬ψ∨χ. If a BSCC of this chain contains a state that verifies χ then the
probability that we are interested in is 1 for all states of the BSCC (since all
states of a BSCC are recurrent), if no such a state exists in the BSCC, then
the probability is 0. Let’s call “good” a BSCC associated with a probability
1. This probability only depend on the embedded chain of X¬ψ∨χ and its
computation has already been described in the previous chapter.

• φ = P./aψU [0,τ ]χ. In this case the execution of the process must visit only
states that verify ψ until a state that satisfies χ s reached, and this event
should happen at time τ at the latest. In other words, the probability is
accumulated along the paths until a state that verifies ¬ψ ∨ χ is reached.
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We need therefore to compute the following probability Pr(X¬ψ∨χ(τ) � χ |
X¬ψ∨χ(0) = s).

• φ = P./aψU [τ,τ ]χ. In this case the execution of the process must stay in
within states that verify ψ during the interval [0, τ ] and it must verify χ
at time τ . The case of a change of state at τ is not considered since the
probability of this event is zero. The probability to be computed is equal
to Pr(X¬ψ(τ) � ψ ∧ χ | X¬ψ(0) = s).

• φ = P./aψU [τ,∞[χ. In this case the execution of the process must stay in
within states that verify ψ during the interval [0, τ ] and then starting from
the state s reached at time τ it must verify the formula ψU [0,∞[χ. The prob-
ability to be computed is therefore∑

s′�ψ Pr(X¬ψ(τ) = s′ | X¬ψ(0) = s) · π(s′)
where π(s′) is computed using the procedure for the first case.

• φ = P./aψU [τ,τ ′]χ. A similar reasoning as for the previous case leads to the
following formula:∑

s′�ψ Pr(X¬ψ(τ) = s′ | X¬ψ(0) = s) ·Pr(X¬ψ∨χ(τ ′−τ) � χ | X¬ψ∨χ(0) = s′)

3.2.3 State of the art in the quantitative evaluation of Markov
chains

The field of Markov chain verification has started on the verification of DTMCs.
The first approach for the verification of LTL over DTMCs (proposed in [Var85])
is conceptually very simple: the formula is translated into a Büchi automata, the
non-determinism is then removed and a Rabin automata is produced. The syn-
chronized product of this automata with the DTMC produces another DTMC,
for which, using a variation of the technique explained in the previous chapter,
it is possible to compute the required probability. The complexity of the com-
putation is doubly exponential in the size of the formula. An improvement in
complexity is given by the algorithm in [CY95]: a new DTMC is built iteratively
from the initial DTMC, and the iteration is driven by the operators of the for-
mula. This is the algorithm that we have presented in subsection 3.2.1. The
resulting algorithm is exponential in the size of the formula, and the authors
show that the algorithm has optimal complexity. A third algorithm, proposed
in [CSS03], also translates the formula into a Büchi automata. Due to the par-
ticular construction followed by the algorithm, it is then possible to compute
the probability associated to the formula directly on the synchronized product
of the automata and of the formula. This algorithm has an optimal complexity
as well, and moreover it provides better performance than the previous one in
many practical cases.
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A classical technique for evaluating the performance of a system consists in
associating “rewards” with states and/or transitions of the chain, and in com-
puting the mean reward or the accumulated reward at time t. Rewards are
taken into account by the PRCTL logics, which has been defined in [AHK03],
where an evaluation algorithm is also presented.

The first relevant work on the verification of CTMCs has appeared in [ASVB96,
ASVB00], where it is shown that CSL verification is decidable. The verification
algorithm is extremely complex, since it does not perform the implicit approxi-
mations that we have done in the CSL verification algorithm presented in this
chapter.

We should remark that verification algorithm may become impractical for
large Markov chains. A possible way to solve the problem is to take advan-
tage of a modular specification of the system, substituting a module with a
smaller one, which is nevertheless equivalent with respect to the verification
of the given formula. This approach has been introduced first in [BHHK03a],
and it has been later generalized in [BHKW03], where various definitions of
equivalence are considered.

The CSL logics that was introduced in subsection 3.2.2 has two main limita-
tions. On one side, the path formulas are defined only in terms of atomic propo-
sitions associated to states, and not also in terms of the actions/transitions in the
path. On the other side the temporal constraints on path formulas are bound to
be intervals, which generates a number of limitations to the expressiveness of
the temporal constraints in the formula.

In the logic CSRL introduced by [BHHK00a], CSL is extended to take into
account Markov reward models, i.e. CTMCs with a single reward on states.
The global reward of a path execution is then the integral of the instantaneous
reward over time. In CSRL, the path operators Until and Next include also
an interval specifying the allowed values for accumulated reward. Moreover
new operators related to the expectation of rewards are defined. A numerical
approach is still possible for approximating probability measures but its com-
plexity is significantly increased. This formalism is also extended by rewards
associated with actions [CKKP05]. CSRL is appropriate for standard performa-
bility measures but lacks expressiveness for more complex ones.

In the logic asCSL introduced by [BCH+07], the single interval time con-
strained Until of CSL is replaced by a regular expression with a time interval
constraint. These path formulas can now express elaborated functional require-
ments as in CTL∗ but the timing requirements are still limited to a single interval
globally constraining the path execution.

In the logic CSLTA introduced by [DHS09], the path formulas are defined by
a single-clock deterministic time automaton. This clock can express timing re-
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quirements all along the path. From an expressiveness point of view, it has been
shown that CSLTA is strictly more expressive than CSL and that path formulas of
CSLTA are strictly more expressive than those of asCSL. Finally, the verification
procedure is reduced to a reachability probability in a semi-Markovian process
yielding an efficient numerical procedure.

In [CHKM09], deterministic timed automata with multiple clocks are con-
sidered and the probability for random paths of a CTMC to satisfy a formula
is shown to be the least solution of a system of integral equations. In order to
exploit this theoretical result, a procedure for approximating this probability is
designed based on a system of partial differential equations.

Observe that all of the above mentioned logics have been designed so that
numerical methods can be employed to decide about the probability measure
of a formula. This very constraint is at the basis of their limited expressive
scope which has two aspects: first the targeted stochastic models are necessar-
ily CTMCs; second the expressiveness of formulas is constrained (even with
DTA [CHKM09], the most expressive among the logic for CTMC verification,
properties of a model can be expressed only by means of clocks variables, while
sophisticated measures corresponding to variables with real-valued rates can-
not be considered). Furthermore observe that the evolution of stochastic logics
seems to have followed two directions: one targeting temporal reasoning capa-
bility (evolutionary path: CSL → asCSL → CSLTA→ DTA), the other targeting
performance evaluation capability (evolutionary path: CSRL → CSRL+impulse
rewards). A unifying approach is currently not available, thus, for example,
one can calculate the probability of a CTMC to satisfy a sophisticated tempo-
ral condition expressed with a DTA, but cannot, assess performance evaluation
queries at the same time (i.e. with the same formalism).

3.3 Statistical Verification

The numerical verification approach suffers several drawbacks.

• The usual combinatory explosion has now two potential factors: the qual-
itative and the quantitative behavior of the system.

• The numerous techniques developed to cope with this combinatory ex-
plosion in the qualitative behavior (symmetry, partial order, decision di-
agrams, etc.) are still applicable but are considerably less efficient that in
the discrete-event setting.

• In order to obtain validity and/or efficiency of the methods, a (semi) Marko-
vian hypothesis is assumed that usually approximates the real behavior of
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the system and may lead to large inaccuracies of the result w.r.t. the origi-
nal system.

Thus a different approach [YS06] has been proposed: statistical model check-
ing. The method is based on stochastic simulation and is quite simple: it gener-
ates samples of the behavior, i.e. paths, and simultaneously checks the satisfia-
bility of the formula on the path sampled. Then by a simple count, it estimates
(with some given confidence level) whether the satisfaction probability is be-
low a lower threshold or above an upper threshold. This approach features the
following advantages:

• One does not generate the state graph. Furthermore during generation
of a path, only the current state is maintained. This greatly reduces the
amount of memory required.

• The method is applicable for any stochastic process with a well defined
semantics. In particular, no Markovian hypothesis is required.

• One benefits from result obtained in statistics in order to minimize the
number of samples, depending on some criterion.

3.3.1 Statistical recalls

In order to understand statistical model checking, we present in this section
the basics of statistics used for this method (see [BE91] for more details). As
observed in the semantic of different quantitative logics, the main operation
consists to compare some probability with a given threshold. From a statistical
point of view, there are two ways to perform such an operation. On the one
hand, one can evaluate this probability (up to some confidence interval) and
then we compare it with the threshold. On the other hand without estimat-
ing this value, one simply tests whether this hypothesis is true. In both cases,
the answer is equipped with a confidence level indicating the probability of an
erroneous diagnosis.

Point Estimation

Estimator. We start with a random variable X and we want to evaluate EX .
A simple idea consists to sample n times the variable X and takes the average.
Denoting X1, . . . , Xn the random variables associated with these samples, one
observes that this problem is a particular case of a more general problem.

Let X1, ..., Xn be independent and identically distributed (iid) random vari-
ables with f(x | θ1, ..., θk) their parametrized probability distribution function
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(pdf), where θ1, ..., θk are the parameters of that distribution. The problem of
point estimation is to determine for each parameter θi a statistic θ̂i = gi(X1, ..., Xn)
which can be used to evaluate θi (i.e. assign a numerical value to θi) over a par-
ticular random sample (x1, ..., xn). θ̂i is called: estimator of θi. In the sequel, we
focus a single parameter θ and we note θ̂(n), the estimator for n samples. Several
methods were proposed in the literature to construct estimators, the most used
ones are:

• the method of maximum likelihood. The estimator consists to returm the
value θ that maximizes the density of joint distribution for (X1, . . . , Xn).
More formally:

θ̂(n) = argmax
θ

n∏
i=1

f(Xi | θ)

• the Bayes’method. This method assumes that the parameter θ follows
some distribution giben by a density p(θ) and introduces a positive loss
function L(u, v) which is null if u = v. Let x = x1, . . . , xn be the samples;
one introduces a posterior density:

fθ|x(θ) =

∏
f(xi | θ)p(θ)∫ ∏
f(xi | θ)p(θ)dθ

Then θ̂(n) is a Bayes estimator if it minimizes the average risk:

Eθ(EX|θ(L(θ̂(n)))) also equal to EX(Eθ|X(L(θ̂(n))))

In particular cases, the Bayes estimator can be defined explicitly. For in-
stance if L(u, v) = (u− v)2, the Bayes estimator is:

θ̂(n) =

∫
θdθfθ|X(θ)dθ

• the method of moments. It defines an empirical distribution equidis-
tributed over the samples and when estimating k parameters θ1, ..., θk se-
lects the ones that make equal the k first moments of the theoretical and
the empirical distribution. For instance, in case of a single parameter,
the mean of the distribution, it chooses the average value of the samples
X = 1/n

∑n
i=1Xi.

Since we are interested by the mean value of a (generally) unknown distri-
bution, we choose the latter method. By construction, this estimator is unbiased
meaning that its mean value is equal to the value of the estimated parameter.
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For instance, it is also known that S2 = 1
n−1

∑n
i−1(Xi −X)2 is an unbiased esti-

mator of the variance σ2 (assuming that it exists).
An unbiased estimator gives some confidence in the estimation which is the

main goal of the estimation. However several criteria have been proposed in
order to assess the quality of an estimator. Here we just give two useful criteria:

• Let θ̂(n) and θ̂′(n) be two estimators of a parameter θ. θ̂(n) is relatively more
efficient than θ̂′(n) if V ar(θ̂(n)) > V ar(θ̂′(n)).

• An estimator θ̂(n) is simply consistent if it stochastically converges to its
parameter whatever the value of its parameter. More formally:

∀θ ∀ε lim
n→∞

Pr(|θ̂n − θ| ≤ ε) = 1

Observe that the estimator X is simply consistent as a consequence of the
strong law of large numbers (in fact this law implies more: X converges
almost surely to θ).

Confidence Interval. We now focus on the main information that should be
computed simultaneously with the estimation, a confidence interval including the
estimation. More precisely, given some 0 < α < 1, we look for two estimators
L(n) < U (n) such that:

∀θ Pr(L(n) ≤ θ ≤ U (n)) ≥ 1− α

[L(n), U (n)] is called the confidence interval (CI). 1− α is called the confidence level.
U (n) − L(n) is the width of the CI and the desired goal is that whatever α and a
fixed width, n can be determined to fulfill the above property with a width of
interval not bigger than the required one.

There are three methods to obtain the estimators for the confidence interval
of a parameter of a random variable whose parametrized distribution is known.
Two of them are exact while the third one produces an approximate interval
where the quality of approximation increases with the number of samples.

The general method is based on the following observation. Assume that we
are given two functions h−(θ) and h+(θ) such that:

∀θ Prθ(h
−(θ) ≤ θ̂(n) ≤ h+(θ)) ≥ 1− α

Then θ belongs to the (random) set {ζ | h−(ζ) ≤ θ̂(n) ≤ h+(ζ)}with a probability
greater or equal than 1−α. Let us illustrate this method with a simple case: θ is
the mean value and θ̂, the estimator, consists of a single sampling. Assume that
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the distribution F (x|θ) is decreasing with respect to θ (which often occurs when
θ is the mean of the random variable) and that for every x, limθ→−∞ F (x|θ) = 1
and limθ→∞ F (x|θ) = 0. We also introduce the strict distribution F−(x|θ) =
limy→x|y<x F (x|θ). Then choosing:

L = sup(ζ | F−(θ̂|ζ) ≥ 1− α) and U = inf(ζ | F (θ̂|ζ) ≤ α)

the reader can check that [L,U ] is a confidence interval with level 1 − α (non
empty as soon as α < 1/2).

The drawback of this method is its computational cost since it requires to
“inverse” the distribution function w.r.t. θ. For instance, if this is the distri-
bution of X and the parametrized distribution has no special features, this be-
comes quickly untractable when n the number of samples grows.

The pivotal quantity method is based on the existence of particular random
variables called pivotal quantity. A pivotal quantity Q (w.r.t. a parameter θ) is
a random variable function of X1, . . . , Xn and θ whose distribution is indepen-
dent of all parameters (including θ. Let us first illustrate this notion with the
standard example of a normal distribution N(µ, σ2) where µ is the mean and σ2

is the variance. We use the estimators X and S2 defined above. Then:

X − µ
S/
√
n

and
(n− 1)S2

σ2

are pivotal quantities related to µ and σ2 whose distributions are respectively
the Student distribution with n− 1 degrees of freedom and the Chi-square dis-
tribution with n− 1 degrees of freedom.

More generally, let a parametrized density function f(x|θ1, θ2) defined by
f(x|θ1, θ2) = (1/θ2)f((x − θ1)/θ2). θ1 is called the location parameter and θ2 is
called the scale parameter. Then the following variables a re pivotal quantities
related to θ1 and θ2:

θ̂1 − θ1

θ̂2

and
θ̂2

θ2

when θ̂1 and θ̂2 are estimators obtained by the maximum likelihood method.
Once a pivotal quantity has been identified, it is routine to obtain the confi-

dence interval when the distribution is a standard one by using some table of
quantiles. Let us illustrate this point with the pivotal quantity related to the
mean of a normal distribution. Observe that the Student distribution (say F ) is
symmetrical and let us denote t = F−1(1− α/2). Then:

1− α = Pr(−t ≤ X − µ
S/
√
n
≤ t) = Pr(X − tS/√n ≤ µ ≤ X + tS/

√
n)
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Observe that all this probabilities are equal whatever µ and σ thus providing
the required confidence interval.

The approximate method is based on the idea that for large number of samples
given a distribution with µ its (parametrized) mean and σ2 its (known) vari-
ance, there is an asympotical pivotal quantity for the estimatorX , More precisely,√
n
σ

(X − µ) stochastically converges to the standard normal distribution N(0, 1)
and thus using the previous method will provide an approximate confidence
interval.

Observe that we have considered that σ is known. We now develop the case
of an unknown variance for the Bernoulli distribution BIN(1, p) with the esti-
mator X . This case is very important since it is the one that is used by most
of the statistical model checkers for evaluating a unknown probability p. Here
the variance p(1− p) is unknown but depends on p. Furthermore by the law of
large numbers X stochastically converges to p. Combining this with the central
limit theorem we obtain that:

√
n

X(1−X)
(X−p) stochastically converges to the stan-

dard normal distributionN(0, 1) leading to an approximate confidence interval.
However the quality of this approximation is strongly related to n ·min(p, 1−p).
Thus in case of rare event p � 1, one must be careful and chooses a huge n
which may prohibit the use of statistical estimation.

Hypothesis Testing

Hypothesis testing consists to decide whether some hypothesis H0 should be
accepted or rejected in favour of an alternative hypothesis H1. This problem
is generally presented in an asymmetrical way. H0 is the hypothesis that is
currently adopted and without strong evidence, one does not want to reject it.
So in the specification of the problem a (small) probability p is also introduced
and one looks for a test that:

• has a probability α to reject H0 when H0 is true less or equal than p, called
a type I error;

• minimizes the probability β to accept H0 when H1 is true, called a type II
error; the pair (α, β) is called the strength of the test.

Hypotheses are often related to the value of some parameter, say µ, of a
parametrized distribution. An hypothesis is said to be simple if it fixes the value
of the parameter like µ = µ0 where µ0 is some constant or composite when it
restricts the value of the parameter like µ > µ0 or µ 6= µ0. Observe that the error
probabilities need a formal definition when they are conditioned by a composite
hypothesis.
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In the context of model checking in order to statistically “decide” whether
some probability p is greater than some value v, one usually tests the (compos-
ite) hypothesis p ≤ v− ε against the (composite) hypothesis p ≥ v+ ε where the
interval ]p− ε, p− ε[ represents an indifference region.

There are two ways to design such tests given some predefined strength:
either one fixes a priori the number n of samplings that are required or after
every sampling one decides to accept one of the hypotheses or to continue with
a new sampling. We now develop these two techniques.

Fixed-Size Samples Test. Let us start with two simple hypotheses H0 : θ = θ0

and H1 : θ = θ1 with θ the parameter of a (known) distribution. Furthermore
we assume that the distribution is given by a density function f(x|θ). Given a
set of n samplings, we introduce the auxiliary function:

λ(x1, . . . , xn) =

∏
1≤i≤n f(xi|θ0)∏
1≤i≤n f(xi|θ1)

The Neyman-Pearson test consists to accept hypothesis H0 if λ(X1, . . . , Xn) > k
where k is chosen in such a way that Pr(λ(X1, . . . , Xn) ≤ k|θ0) = α. This test
is optimal in the following sense: any test that is based on n samples and such
that the probability of a type I error is equal to α has a probability of a type
II error greater or equal than the one of the Neyman-Pearson test. Thus the
Neyman-Pearson test seems to be the most appropriate one w.r.t. the problem
stated before.

Sequential Test. However the Neyman-Pearson test is only optimal among
the tests with a fixed number of samples. The sequential test introduced by
Wald [Wal45] consists to iterate a decision procedure after every step. More
precisely at step n:

• If λ(x1, . . . , xn) ≥ A then accept hypothesis H0.

• If λ(x1, . . . , xn) ≤ B then accept hypothesis H1.

• Otherwise go the next iteration.

With A > 1 and B < 1, then whatever the hypothesis is true, this process termi-
nates almost surely. Choosing A = 1−β

α
and B = β

1−α , it can be shown that α′ the
probability of a type I error fulfills α′ ≤ α

1−β and that β′ the probability of a type
II error fulfills β′ ≤ α

1−β . Furthermore the inequality α′ + β′ ≤ α + β holds.
The comparison between the sequential test and the fixed sample test de-

pends on the parametrized distribution. In [Wal45], the author establishes that,
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in case of a normal distribution the expected number of samples is about half
the fixed number of samples required for the same strength.

The case of discrete random variables is similarly handled by substituting
to the density function the probabilities of the discrete distribution (for both the
fixed sample test and the sequential test). At last, the composite test θ ≤ θ0

against θ ≥ θ1 can be managed by transforming these hypotheses by θ = θ0

against θ = θ1 if weak (and natural) conditions are satisfied by the parametrized
distribution. This last point is particularly interesting for the statistical model
checking.

3.3.2 Principles of Statistical Model Checking

In this standard version, statistical model-checking applies on a logic like PCTL
or CSL and a Markov chain, discrete or continuous. Since one wants to solve de-
cision problem with a statistical method, the specification of the problem must
be carefully defined. Here we follow the approach of H. Younes [YS06].

First, one introduces a function δ which associates with every probability p, a
precision δ(p). Then, rather than defining a single satisfaction relation (for state
and path formulas), one defines two relations “strong satisfaction” and “strong
falsification”. These relations are defined inductively. We just give illustrating
cases of these inductive definitions:

• Let φ ≡ φ1 ∧ φ2 be a state formula. Then a state s strongly satisfies φ iff
s strongly satisfies φ1 and φ2. Similarly s strongly falsifies φ iff s strongly
falsifies φ1 or φ2. This case corresponds to a standard induction.

• Let φ ≡ ¬φ1 be a state formula. Then a state s strongly satisfies φ iff s
strongly falsifies φ1. Similarly s strongly falsifies φ iff s strongly satisfies
φ1. This is the only case which requires simultaneous induction.

• Let φ ≡ Pr≤vϕ be a state formula. Then a state s strongly satisfies φ iff
the probability p that a random path σ starting from s strongly satisfies ϕ
fulfills p < v− δ(v). The state s strongly falsifies ϕ iff the probability p that
a random path σ starting from s strongly falsifies ϕ fulfills p > 1−v+δ(v).
In this case, the function δ occurs.

• Let ϕ ≡ φ1U Iφ2 be a path formula. Then a path σ strongly satisfies ϕ
iff there is a prefix (s0, τ0), . . . , (sk, τk) of σ such that τk ∈ I , sk strongly
satisfies φ2 and for all i < k, si strongly satisfies φ1. Similarly, a path
σ = (s0, τ0), . . . , (sk, τk), . . . strongly falsifies ϕ iff for all τi ∈ I , either si
strongly falsifies φ2 or there exists j < i such that sj strongly falsifies φ1.
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It is routine to check strong satisfaction and strong falsification are mutually
exclusive. However, there may exist a state s and a state formula φ such that
neither s strongly satisfies φ nor s strongly falsifies φ. Such a situation can be
interpreted as a situation indifferent to the modeler or as a “don’t know” value.

We are looking for a model checking algorithm that takes as input a Markov
chainMwith a distinguished state s, a state formula φ, two confidence levels α
and β and returns a boolean answer say res such that:

• The probability that res = false knowing that s strongly satisfies φ is less
or equal than α.

• The probability that res = true knowing that s strongly falsifies φ is less
or equal than β.

The algorithm proposed in [YS06] is based on hypothesis testing and only
works for the bounded until meaning that the interval I occurring in the operator
U I is finite. We present it for a formula without nested operators and then we
explain how to handle the case of nested operators.

Let φ ≡ Pr≥vp1U Ip2 and p the probability that a random path starting from s
satisfies φ. Given α and β, the algorithm determines the thresholds A(α, β) and
B(α, β) used in the sequential hypothesis test for the hypothesis p = v + δ(v)
against the hypothesis p = v − δ(v). Then it generates a random path up to a
time equal to the upper bound of I . Almost surely, this trajectory has a finite
number of events. Based on this finite prefix, the algorithm decides whether the
path satisfies or falsifies φ (here it is true satisfaction or falsification). Then it
applies the sequential testing and either decides or generates a new sampling.

When nested operators occur, for instance in φ ≡ Pr≥vφ1U Iφ2, the previous
procedure must be adapted as follows.

• One fixes α′ a bound on the accumulated probability that the procedure
performs a type I error on the strong satisfaction of the subformulas of the
formula and β′ a bound on the accumulated probability that the procedure
performs a type II error.

• Then one modifies the hypotheses related to the main formula substitut-
ing v+ δ(v) by (v+ δ(v))(1−α′) and v− δ(v) by 1− (1− (v− δ(v)))(1−β′).
Observe that α′ and β′ must be chosen sufficiently small in order that:
(v + δ(v))(1− α′) > 1− (1− (v − δ(v)))(1− β′).

• Once a finite prefix has been generated, the parameters of statistical eval-
uation of the subformulas for the states occurring on the prefix depend
on the instant of their occurrence. For instance assume that the formula is
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φ ≡ Pr≥vφ1U Iφ2 and the prefix is (s0, τ0), . . . , (sk, τk) with τk /∈ I (meaning
that τk+1 > max(I)). Thus to be satisfied for all i < k, si must satisfy φ1 and
sk must satisfy φ2. By a probabilistic reasoning, the statistical satisfaction
of the subformulas must be done with parameters (α

′

n
, β′).

3.3.3 State of the Art in Statistical Model Checking

Statistical model checking presents several advantages. No Markovian prop-
erty of the system is required. Furthermore the model may have an infinite
state space. Design of the algorithms are relatively simple since they are based
on discrete-event simulation. In principle, the logics associated with statistical
model-checking could be more expressive than the ones associated with nu-
merical model-checking even if the current tools do not include such powerful
logic. At last, the algorithms are easily parallelizable.

We now list some limits of the statistical model checking and current ap-
proaches to overcome these limits.

The statistical approach only works for purely probabilistic systems, i.e.,
those that do not have any non determinism. For instance, to the best of our
knowledge, no statistical model checking has been proposed for Markovian de-
cision processes.

As mentioned before, the until requires a finite interval in order to ensure
that almost surely the generation of random path will terminate. The case of
the unbounded until, i.e. Pr./vφ1Uφ2, has been tackled by different researchers.
In [SVA05a], the authors introduce a random coin with small probability of suc-
cess and before each step of the simulation the coin is flipped and the simula-
tion stopped on success. This decreases the probability of satisfaction and must
be taken into account in the confidence interval. Furthermore, this algorithm
requires a specialized procedure to check Pr=0φ1Uφ2 for every state that is en-
countered during the simulation. Unfortunately, the procedure proposed for
this special case requires the knowledge of a bound of the number of states and
in general leads to generate paths with expected length of the same order as
the size of the state space. Summarizing this method seems to be untractable
on real case studies. A similar method is proposed in [HJB+10] whose improve-
ment w.r.t. the former one, is based on the observation that the satisfaction of the
formula Pr=0φ1Uφ2 is independent of the exact values of the non null transition
probabilities. Thus the authors propose to substitute to the chain, a modified
chain with equal probabilities of transitions.

The logic CSL contains the steady-state operator which reasons about the
steady-state probabilities. It is well-known that Monte-Carlo simulations only
provide an approximate sampling of the steady-state distribution (by sampling
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a transient distribution at some large instant). However perfect simulations
based on the Propp-Wilson algorithm [PW96] provide an exact sampling of the
steady-state distribution. In [EP09], the authors apply this technique to steady-
state operator. Furthermore, they provide an alternative algorithm for the un-
bounded until that stops when “reaching the steady-state” (see the Propp-Wilson
algorithm for the meaning of this expression) but they did not exhibit the confi-
dence level of this new algorithm.

There have been several application fields of statistical model checking. This
technique has been applied to verify properties of mixed-signal circuits includ-
ing for instance statements about the Fourier transform of the signal which
seems impossible with numerical model checking [CDL10]. Biological appli-
cations have been also intensively studied with the help of statistical model
checking (see [BFMP09] for instance). This is mainly due to the fact that bi-
ological systems are often non Markovian and that the relevant properties are
related to properties of the random path that cannot expressed with logics corre-
sponding to numerical model checking. In [BBB+10], statistical model checking
techniques are applied to the verification of heterogeneous applications com-
municating over a shared network.

3.4 Conclusion

In this chapter, we have introduced quantitative verification of stochastic mod-
els. The methods are partitioned into two families: numerical and statistical
ones.

The first family evaluates the desired probability with a high precision. They
are efficient for both transient and steady-state properties. But they are limited
to Markovian or semi-Markovian models and they cannot deal with huge or
infinite state space. The techniques associated with numerical verification are
closely related to standard numerical analysis of Markov chains.

The second family provides an interval containing the correct answer with
a high probability. Such methods can analyze any model with an operational
stochastic semantic except for nested formulas which can only be checked on
Markov chains. They use statistical techniques: discrete-event simulation, sta-
tistical estimation and/or statistical hypothesis test. They are well adapted to
transient properties. But their application in two important settings needs some
additional analysis which depends on the model: steady state properties and
properties with very weak probability (i.e. rare event).
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Chapter 4

Stochastic Bounds for Censored
Markov Chains

This chapter is related to the publication [BDF10].

4.1 Introduction

Since Plateau’s seminal work on composition and compact tensor representa-
tion of Markov chains using Stochastic Automata Networks (SAN), we know
how to model Markov systems with interacting components and large state
space [Pla85, FP88, PF91]. The main idea of the SAN approach is to decompose
the system of interest into its components and to model each component sep-
arately. Once this is done, interactions and dependencies among components
can be added to complete the model and obtain the transition probability (in dis-
crete time) or transition rate matrix (in continuous time). The basic operations
needed to build these matrices are Kronecker sum and product (sometimes de-
noted as tensor) and they are applied on local descriptions of the components
and the actions. The benefit of the tensor approach is twofold. First, each com-
ponent can be modeled much easier compared to the global system. Second, the
space required to store the description of components is in general much smaller
than the explicit list of transitions, even in a sparse representation. However, us-
ing this representation instead of the usual sparse matrix form increases slightly
the time required for numerical analysis of the chain [FPS98, UD98, SAP95]. The
decomposition and tensor representation has been generalized to other model-
ing formalisms as well: Stochastic Petri nets [Don93], Stochastic Process Alge-
bra [HK01]. So we now have several well-founded methods to model complex
systems using Markov chains with huge state space. However, the chains are so
big that it is sometimes impossible to store in memory a probability vector in-

85



86 CHAPTER 4. STOCHASTIC BOUNDS FOR CMC

dexed by the state space. Consider for instance the model of the highly available
multicomponent systems studied by Muntz [MdSeSG89]. A typical system con-
sists of several disks, CPUs and controllers with different types of failures. The
system is operational if there are enough CPU, disks and controllers available.
As the number of states grows exponentially with the number of different com-
ponents, the state space is huge and the up states are relatively rare. A typical
system has more than 9× 1010 states and 1012 transitions. It is even not possible
to store a probability vector of the size of the whole state space. Thus we have to
truncate the state space to analyze a smaller chain (see for instance [dSeSO92]).
Few results have been published on this topic despite its considerable practi-
cal importance. A notable exception are the results obtained by Seneta [Sen06,
chapter 7] on the approximation of an infinite Markov chain by a sequence of
finite truncations. Here we investigate how one can study the truncation of a
finite chain using the theory of Censored Markov Chains (CMC).

In section 4.2 we give some preliminaries about the censored Markov chains.
In Section 4.3 we introduce an alternative decomposition of stochastic comple-
ment SA that turns out to be natural for deriving stochastic bounds. Section
4.4 contains some definitions and basic results on stochastic orders that will be
used later in the chapter. We also give an overview of existing results for cen-
sored Markov chains and we describe algorithm DPY. In Section 4.5 we prove
optimality of DPY using our new decomposition from Section 4.3. Then in Sec-
tion 4.6 we discuss how to use additional information on non-observed states
to improve DPY bounds. Section 4.7 contains conclusions and final remarks.

4.2 Censored Markov Chains and State Space Trun-
cation

Let {Xt}t≥0 be a Discrete Time Markov Chain (DTMC) with a state space X . Let
E ⊂ X be the set of observed states, X = E ∪ Ec, E ∩ Ec = ∅ . For simplicity
of presentation, we assume here that the state space is finite and denote by
n = |E| and m = |Ec|. Assume that successive visits of {Xt}t≥0 to E take place
at time epochs 0 ≤ t0 < t1 < ... Then the chain

{
XE
}
k≥0

= {Xtk}k≥0 is called
the censored chain with censoring set E [ZL96]. Let P denote the transition
probability matrix of chain {Xt}t≥0 . Consider the partition of the state space to
obtain a block description of P :

P =

[
A B
C D

]
(4.1)
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Blocks A, B, C and D contain respectively transitions from E to E , from E to Ec,
from Ec to E and from Ec to Ec. The censored chain only observes the states in
E . It is out of the scope of this work to study how one can find a good set E to
get the most accurate censoring process. In some special cases this can be done
by analyzing the drift of a well chosen Lyapunov function (see [MT93], [Mey08,
Chapter 8] for Lyapunov functions and stochastic stability, and [DHSW10] for
an application to Markov population models). We study here how we can find
bounds of the chain once set E is found.

The tensor representation of the chain can be used to generate the blocks or
some elements of these blocks. Indeed, one can derive easily the set of succes-
sors or predecessors for a node taking into account the tensor representation.
Such a property is the key idea for algorithm SAN2LIMSUB [FPSS06] which is
based on the generation of a column of the stochastic matrix (i.e. the predeces-
sor function) based on the tensor representation and allows the computation of
a lumpable stochastic bound. Software tools dealing with Markov chains also
support in general a successor function, provided by the user, which is used to
build a row of the stochastic matrix. In some cases, a predecessor function is
also supported by the tool.

We assume that E does not contain any reducible classes (so that the matrix
Id−D is regular). Then the transition probability matrix of the censored chain,
often also called the stochastic complement of matrix A , is equal to [ZL96]:

SA = A+B (Id−D)−1C = A+B

(
∞∑
i=0

Di

)
C (4.2)

The second term of the right-hand side represents the probabilities of paths that
return to set E through states in Ec .

In many problems, the size of the initial probability matrix P makes build-
ing of the four blocks extremely time and space consuming, or even impossible.
In some cases, we are able to obtain block D but it is too difficult to compute
(Id−D)−1 to finally get SA. Deriving bounds for SA from block A of matrix
P and from some information on the other blocks is thus an interesting alter-
native approach and several algorithms have been proposed in the literature.
Truffet [Tru97] considered the case when only block A is known. In that case,
the stochastic bound is obtained by assuming that all the unknown returning
transitions go to the last state of E (i.e. state n)

Dayar et al. [DPY06] proposed an algorithm, called DPY, for the case when
blocks A and C are known. We prove here that their algorithm is optimal when
we do not have any information on blocksB (transitions between observed and
non-observed states) and D (transitions between the non-observed states). We
consider further how to improve bounds when some additional information is



88 CHAPTER 4. STOCHASTIC BOUNDS FOR CMC

known on blocks B or D . We deal here with upper bounds but lower bounds
may be computed as well. Once an upper bounding matrix is found, bounds on
rewards, on steady-state and transient distributions, and on time to first visits
may be derived as well (see [BF08] for some examples).

4.3 Decomposition of Stochastic Complement

Let us first fix the notation used throughout this chapter. For any x ∈ R, [x]+ =
max {x, 0}. The row (resp. column) vectors are denoted by small latin (resp.
greek) letters and 0 (resp. 1) denotes the vector with all components equal to
0 (resp. 1). For a vector v, vt, denotes the transposed vector, and diag(v) is the
matrix whose diagonal elements are given by vector, v i.e.

diag(v)[i, j] =

{
v[i], i = j

0, i 6= j

Furthermore, ≤ denotes the elementwise comparison of two vectors (or ma-
trices), and M [i, .] is row i of matrix M . We use the term positive vector (matrix)
for a vector (matrix) whose all elements are non-negative. For any positive vec-
tor v we will denote by v∗ the vector obtained from v by replacing all the zero
elements by 1:

v∗[i] =

{
v[i], v[i] > 0

1, v[i] = 0

For any positive matrix M , matrix diag(M1t) is a diagonal matrix whose diag-
onal elements are equal to the sum of rows of matrix M . If matrix M does not
contain any zero row, matrix diag(M1t) is regular and (diag (M1t))

−1
M is the

renormalized matrix of M (i.e. a matrix such that
∑

jM [i, j] = 1 for all i). If
matrix M contains a zero row, then diag (M(1)t) is singular so we use instead
a modified matrix diag

(
(M1t)

∗)−1
M that is always regular. For any positive

matrix M , we denote by n(M) the matrix:

n(M) = diag
((
M1t

)∗)−1
M

Clearly, for any positive matrix M , matrix n(M) is a positive matrix whose all
rows are either stochastic or zero rows. We will use the following technical
observation in our decomposition of stochastic complement:

Lemma 4.1. For any positive matrix M :(
diag

((
M1t

)∗)− diag (M1t
))
n (M) = 0
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Proof. Denote by Z = diag
(
(M1t)

∗)−diag (M1t). Matrix Z is a diagonal matrix
with:

Z[i, i] =

{
1, M [i, .] = 0

0, otherwise

The rows of matrix Z and the columns of M are orthogonal by the definition of
matrix Z, so we have ZM = 0. This remains true for the renormalized matrix,
thus Zn (M) = 0

Let us now consider the block decomposition of matrix P given by 4.1. De-
note by W = diag (C1t). Then clearly, for all 1 ≤ i ≤ m:

W [i, i] =
n∑
j=1

C [i, j] = 1−
m∑
k=1

D [i, k]

If there is a state i ∈ Ec without any outgoing transition to set E , then row i of
W is equal to 0 and matrix W is singular. Finally, denote by W ∗ = diag

(
(C1t)

∗)
The following proposition gives an alternative decomposition of stochastic

complement. To the best of our knowledge such a representation was not pre-
viously stated even if it appears quite simple. Using this new representation we
can derive new arguments to prove stochastic bounds based on comparison of
stochastic vectors. Such an approach was harder with the usual representation
in 4.2 as (Id−D)−1 is a matrix of expectations.

Proposition 4.1 (Decomposition of stochastic complement).

1. Matrix (W ∗)−1C has rows that are either stochastic or equal to 0

2. Matrix (Id−D)−1W is stochastic.

3. Matrix SA can be decomposed as:

SA = A+B (Id−D)−1W (W ∗)−1C (4.3)

Proof. Matrix W is always regular, so (W ∗)−1 is well defined.

1. We have (W ∗)−1C = n (C) so the first statement is obvious.
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2. We know that row of matrix (Id−D)−1C is equal to the conditional prob-
ability vector of entering the set E , knowing that we initially start in i ∈ Ec.
Let G = (Id−D)−1. Therefore, for all i,

∑
k (GC) [i, k] = 1 and:∑

j

(GW ) [i, j] =
∑
j

G [i, j]
∑
k

C [j, k] =
∑
k

∑
j

G [i, j]C [j, k]

=
∑
k

(GC) [i, k] = 1

Thus matrix (Id−D)−1W is stochastic.

3. Matrix SA can be decomposed as:

SA = A+B (Id−D)−1W ∗ (W ∗)−1C (4.4)

We have:

W = diag
(
C1t

)
, W ∗ = diag

((
C1t

)∗)
, (W ∗)−1C = n (C)

Thus by Lemma 4.1:

W ∗ (W ∗)−1C = W (W ∗)−1C (4.5)

Relations 4.5 and 4.4 imply 4.3.

Example 1 Consider the following block decomposition of matrix P into four
blocks A, B, C and D given by:

A =


0.4 0.1 0.2 0.0
0.2 0.1 0.3 0.1
0.2 0.1 0.0 0.3
0.0 0.0 0.4 0.1

 , B =


0.1 0.2 0.0 0.0
0.3 0.0 0.0 0.0
0.0 0.4 0.0 0.0
0.3 0.2 0.0 0.0



C =


0.2 0.1 0.1 0.0
0.1 0.3 0.0 0.0
0.4 0.1 0.2 0.1
0.0 0.1 0.0 0.0

 , D =


0.1 0.2 0.1 0.2
0.3 0.0 0.3 0.0
0.1 0.0 0.0 0.1
0.3 0.3 0.3 0.0


We have:

(Id−D)−1 =


1.374 0.368 0.340 0.309
0.472 1.136 0.429 0.137
0.198 0.084 1.090 0.149
0614 0.476 0.558 1.179
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The usual description of the censored chain gives:

SA = A+B ×


1.374 0.368 0.340 0.309
0.472 1.136 0.429 0.137
0.198 0.084 1.090 0.149
0614 0.476 0.558 1.179

×


0.2 0.1 0.1 0.0
0.1 0.3 0.0 0.0
0.4 0.1 0.2 0.1
0.0 0.1 0.0 0.0



while its new representation proved by Proposition 4.1 is:

SA = A+B ×


0.550 0.147 0.272 0.031
0.189 0.454 0.343 0.014
0.079 0.034 0.872 0.015
0.245 0.191 0.446 0.118

×


0.500 0.250 0.250 0.000
0.250 0.750 0.000 0.000
0.500 0.125 0.250 0.125
0.000 1.000 0.000 0.000


Clearly the last two matrices are stochastic. As we now deal with stochastic

matrices, we are able in the following to compute their stochastic bounds. It
is possible that this new representation of censored Markov chains may have
other applications as well. However they are out of the scope of this work.

4.4 Stochastic Bounds for Censored Markov Chains

We recall first the definition of strong stochastic ordering of random variables
on a finite state space {1, ..., n} (see [MS02] for more details on stochastic orders).

4.4.1 Some Fundamental Results on Stochastic Bounds

We will define operators r and v as in [DFPV06] and s for any positive m × n
matrix M :

∀i, j, r (M) [i, j] =
n∑
k=j

M [i, k] (4.6)

∀i, j, v (M) [i, j] = max
k≤i
{r (M) [k, j]} (4.7)

∀j, s (M) [j] = max
i
{r (M) [i, j]} (4.8)

Let X and Y be two random variables with probability vectors p and q (p [k] =
P (X = k), q [k] = P (Y = k) for all k).
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Definition 4.1. X 4st Y if ∀j, ∑n
k=j p [k] ≤∑n

k=j q [k] (i.e. r (p) ≤ r (q))

Example 2 Let p = (0.1, 0.2, 0.5, 0.2) and q = (0, 0.3, 0.4, 0.3), we have X 4st Y as

0.2 ≤ 0.3
0.5 + 0.2 ≤ 0.4 + 0.3

0.2 + 0.5 + 0.2 ≤ 0.3 + 0.4 + 0.3
0.1 + 0.2 + 0.5 + 0.2 ≤ 0.0 + 0.3 + 0.4 + 0.3

Let {Xt}t≥0 and {Yt}t≥0 be two DTMC with transition probability matrices P and Q.
We say that {Xt}t≥0 4st {Yt}t≥0 if Xt 4st Yt for all t ≥ 0.

Definition 4.2. For two probability matrices P and Q, P 4st Q if r (P ) ≤ r (Q)

Definition 4.3. A probability matrix P is 4st-monotone if for any two probability
vectors p and q:

p 4st q ⇒ pP 4st qP

We will use the following characterization of monotonicity (see [MS02] for
the proof):

Proposition 4.2. A probability matrix P is 4st-monotone iff:

∀i > 1, P [i− 1, .] 4st P [i, .] (4.9)

i.e. iff v (P ) = r(P )

Sufficient conditions for comparison of two DTMC based on stochastic com-
parison and monotonicity can be found in [MS02]. These conditions can be
easily checked algorithmically and it is also possible to construct a monotone
upper bound for an arbitrary stochastic matrix P (see [DFPV06] for more de-
tails and proofs):

Proposition 4.3 (Vincent’s algorithm [DFPV06]). Let P be any stochastic matrix.
Then the Vincent’s bound is given by Q = r−1v (P ) , where r−1 denotes the inverse of
r. Then Q is4st -monotone and P 4st Q, therefore Q is a transition probability matrix
of an upper bounding DTMC.
Furthermore, if P1 4st P2 , then r−1v (P1) 4st r−1v (P2)

Corollary 4.1 (Optimality [DFPV06]). Let P be any stochastic matrix and Q =
r−1v (P ). Then Q is the smallest 4st-monotone upper bound for P , i.e. if R is any
stochastic matrix such that R is 4st-monotone and P 4st R, then Q 4st R.
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Example 3 Consider matrix:

G =


0.500 0.250 0.250 0.000
0.250 0.750 0.000 0.000
0.500 0.125 0.250 0.125
0.000 1.000 0.000 0.000


Vincent’s algorithm applied on matrixG provides a monotone upper bound-

ing matrix of G equal to:

r−1v (G) =


0.500 0.250 0.250 0.000
0.250 0.500 0.250 0.000
0.250 0.375 0.250 0.125
0.000 0.625 0.250 0.125



4.4.2 Comparison of Positive Matrices

We can extend Definition 4.2 to positive (not necessarily square) matrices:

Definition 4.4. Let M1 and M2 be any two positive matrices of the same size. We will
say that M1 4st M2 if r (M1) 4st r (M2)

We now state two simple properties that will be very useful later in Section
4.6.

Lemma 4.2. Let M1 and M2 be two positive matrices such that M1 4st M2 and Z any
positive matrix. Then,

ZM1 4st ZM2

Proof. We have

r (ZM1) = Zr (M1) ≤ Zr (M2) = r (ZM2)

Thus r (M1) ≤ r (M2) and the fact thatZ is a positive matrix imply that r (ZM1) ≤
r (ZM2), i.e. ZM1 4st ZM2.

Lemma 4.3. Let Z be any positive matrix and M a positive matrix whose rows are
either stochastic or equal to 0. Then:

ZM 4st αr
−1 (s (M))

where α = ZM1t .
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Proof. By definition of operators r and s, for any positive matrix M we have:

M [i, .] 4st r
−1 (s (M))∀i

Thus, M 4st 1tr−1 (s (M)). However, this can be improved by taking into ac-
count the zero rows of matrix M . Note that:

(
M1t

)
[i] =

{
0, M [i, .] = 0

1, M [i, .] 6= 0

Thus, we have:

M 4st M1tr−1 (s (M))

Now by Lemma 4.2 it follows that

ZM 4st ZM1tr−1 (s (M)) = αr−1 (s (M))

4.4.3 Stochastic Bounds for CMC

Now we can formally state the problems we consider:

1. Given only block A, compute a matrix Q such that SA 4st Q. Is there an
optimal bound (in the sense of Definition 4.5), knowing only block A ?

2. Given blocks A and C, compute a matrix Q such that SA 4st Q . Is this
bound better than the one obtained knowing only block A? Is there an
optimal bound knowing only blocks A and C?

3. Can some additional information on blocks B and D improve stochastic
bounds for CMC?

The first question was already answered by Truffet [Tru97]. Denote by β =
1t−A1t the column vector of probability slack for matrix A. Then the bound in
Truffet [Tru97] is given by:

T (A) = A+ β (0, ..., 0, 1) (4.10)

It is straightforward to see that SA 4st T (A). Furthermore, this is the best
bound one can obtain knowing only block A. More formally:
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Definition 4.5. Let M be a family of stochastic matrices. A stochastic matrix Q is an
4st-upper bound for family M if:

∀P ∈M, P 4st Q

An 4st-upper bound Q of M is optimal if:

Q 4st R, for any 4st-upper bound R of M

Let R be the set of all stochastic matrices such that Ec does not contain any
reducible class (so that for any matrix Z ∈ R, the stochastic complement SZ
is well defined by 4.2). Then the Truffet’s bound T (A) in 4.10 is the optimal
4st-upper bound for family:

M (A) = {SZ : Z ∈ R, ZE,E = A}
The proof is straightforward.

The second question was partially answered by Dayar et al. [DPY06]: they
derived an algorithm DPY that computes a stochastic bound for SA when blocks
A and C are known. In Algorithm 4.1 we give the algorithm DPY in its original
form in [DPY06]. We show in Section 4.5 that DPY bound is optimal, which
then fully answers the second question. The third question will be discussed in
Section 4.6.

Algorithm 4.1: DPY (A,C) [DPY06]
Data: Blocks A and C
Result: Matrix Q such that SA 4st Q
begin

β = 1t − A1t

for j = n downto 1 do
H [j] = maxk∈Ec

(Pn
l=j C[k,l]Pn
l=1 C[k,l]

)
for i = 1 to n do

F [i, j] =
(
β [i]H [j]−∑n

l=j+1 F [i, l]
)+

Q = A+ F
return Q

Using operators r and s as defined in relations 4.6 and 4.8, DPY can be
rewritten as:

1. H = s (n (C))
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2. F = βr−1 (H)

3. Q = A+ F

Thus:
DPY (A,C) = A+ βr−1 (s (n (C))) (4.11)

From the above equation it obviously follows that DPY (A,C) 4st T (A).
The following example shows that DPY can improve the Truffet’s bounds.

Example 4 Let

A =


0.2 0.1 0.3 0.0
0.1 0.0 0.3 0.0
0.0 0.5 0.0 0.2
0.1 0.0 0.3 0.2

 , B =


0.1 0.1 0.2 0.0 0.0 0.0
0.2 0.2 0.2 0.0 0.0 0.0
0.1 0.2 0.0 0.0 0.0 0.0
0.0 0.0 0.4 0.0 0.0 0.0



C =


0.2 0.1 0.0 0.0
0.0 0.0 0.0 0.0
0.1 0.1 0.1 0.1
0.1 0.2 0.2 0.0
0.2 0.2 0.1 0.0
0.2 0.1 0.0 0.0

 , D =


0.5 0.2 0.0 0.0 0.0 0.0
0.2 0.6 0.2 0.0 0.0 0.0
0.0 0.0 0.2 0.4 0.0 0.0
0.0 0.0 0.3 0.0 0.2 0.0
0.0 0.0 0.1 0.0 0.0 0.4
0.1 0.0 0.5 0.0 0.0 0.1


Then the stochastic complement of A is equal to:

SA =


0.3475 0.2257 0.3827 0.0440
0.3446 0.1900 0.4079 0.0573
0.1378 0.5960 0.0431 0.2229
0.2009 0.1227 0.4151 0.2612


The Truffet’s bound T (A) and the DPY bound DPY (A,C) are respectively:

T (A) =


0.2 0.1 0.3 0.4
0.1 0.0 0.3 0.6
0.0 0.5 0.0 0.5
0.1 0.0 0.3 0.6

 , DPY (A,C) =


0.28 0.22 0.4 0.1
0.22 0.18 0.45 0.15
0.06 0.59 0.075 0.275
0.18 0.12 0.4 0.3


Computing blocks A and C is based on the application of the predecessor

function ( i.e. the computation of a column of the stochastic matrix) for all the
states in E . Note that block D and B in Example 4 have typical properties of
blocks generated by breadth first search visit algorithm based on the successor
functions. Indeed, block D is block upper Hessenberg and the rightmost entries
of B are 0.

Let us turn back to the algorithm, its theoretical properties and some nu-
merical results. First, DPY Algorithm is even exact in some cases which have
proved by Dayar and his co- authors in [DPY06].



4.5. OPTIMALITY OF DPY 97

Proposition 4.4. If block C has rank 1, then the bound provided by DPY is the true
solution for the stochastic complement (see [DPY06] for a proof).

Numerical experiments of bounds computation with DPY and the algorithm
proposed in [BF08] (designed for the case when block C is not completely known)
when blocksA andC are known have shown that DPY always provide the most
accurate bounds. Numerical evidence suggests that DPY is optimal in that case
and we prove this property in the next section.

4.5 Optimality of DPY

The Markov chain we consider may be ergodic or not. Indeed, we are interested
in computing transient and steady-state results but also absorption probabilities
and bounds on the first passage times. Therefore we must consider the cases
where the chains are irreducible or not. Proving optimality of DPY must take
into account the set of matrices involved and we derive two main results which
differs on the ergodicity of the matrices.

We will first show here the optimality of DPY for family

M (A,C) = {SZ : Z ∈ R, ZE,E = A, ZEc,E = C}
of all transition probability matrices inR with given blocksA and C. The chains
may be not ergodic.

Theorem 4.1 (Optimality of DPY). Matrix DPY (A,C) is the optimal 4st-upper
bound for familyM (A,C) .

Proof. The proof that DPY (A,C) is an 4st-upper bound for family M (A,C)
was already given in [DPY06]. We prove here that DPY (A,C) is the optimal
bound forM (A,C). Consider any non-zero row j of matrix C ( i.e. such that
sj < 1) and denote by Bj the matrix such that:

Bj [i, k] =

{
0, if k 6= j

β [i] if k = j

Let Dj be a matrix such that:

Dj [i, k] =

{
0, if k 6= j

1−∑n
l=1C[i, l] if k = j

Let Zj be the matrix composed of blocks A, Bj , C and Dj . Then clearly Zj ∈
M (A,C). For Zj all the returning paths from Ec to E go by state j ∈ Ec. Denote
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C̃ = n (C) to ease the notation. Any 4st-upper bound R for family M (A,C)
satisfies in particular:

SZj
= A+ βC̃ [j, .] 4st R

i.e. r
(
A+ βC̃ [j, .]

)
≤ r (R). This is valid for all j such that C̃[j, .] 6= 0. Thus:

max
j
r
(
A+ βC̃ [j, .]

)
= max

j:C̃[j,.]6=0
r
(
A+ βC̃ [j, .]

)
≤ r (R)

And
maxj r

(
A+ βC̃ [j, .]

)
= r (A) + βs

(
C̃
)

= r (A) + βH = r (A+ F )

so DPY (A,C) = A+ F 4st R

Similarly, letMe (A,C) be the family of all ergodic matrices inM (A,C).

Theorem 4.2 (Optimality of DPY for the ergodic matrices). Matrix DPY (A,C)
is the optimal 4st-upper bound for familyMe (A,C).

Proof. The main step of the proof is to show that family Me (A,C) is dense
within M (A,C), i.e. that for any U ∈ M (A,C) and for any ε > 0 there ex-
ists V ∈Me (A,C) such that ‖U − V ‖1 ≤ ε.

In order to obtain an upper bound for the chain
{
XEk
}
k≥0

, we can now apply
Proposition 4.3 and Corollary 4.1:

Corollary 4.2. The smallest 4st-monotone upper bound for
{
XEk
}
k≥0

is given by the
transition probability matrix:

r−1 (v (DPY (A,C)))

Remark 4.1 (Lower bounds). Similar algorithm to compute lower bounds can be
obtained using the symmetry of 4st order. The details are omitted for the sake of con-
ciseness.

We proved the optimality of DPY for the case when only blocks A and C
are known. In the following section we consider the case when we have some
additional information about blocks B and D and how we can improve the
bounds taking into account this new information.



4.6. USING ADDITIONAL INFORMATION 99

4.6 Using Additional Information

We consider in this section different assumptions on the (partial) knowledge of
blocks of matrix P and we show how this can be used to improve bounds for
the stochastic complement. In general, computing the bounds consists in two
parts:

1. Find a deterministic part that we can obtain from A, C, and all the addi-
tional information on the model.

2. Then apply DPY to the unknown part. Thus the optimality of DPY is not
sufficient in general to imply the optimality of these bounds.

4.6.1 Known Blocks A, B and C

Let us first assume that we also know block B. Computing blocks A, B and C
requires that we know both the predecessor function and the successor function.
Using predecessor function we get the column of the stochastic matrix for all the
states in E ( i.e. blocks A and C ) while the successor function gives rows of the
states in E ( i.e. blocks A and B ).

Proposition 4.5. Assume that A, B and C are known. Then:

SA 4st DPY (A+BC,C)

Proof. The proof is based on two steps. First we build a new expression for the
stochastic complement associated with a new matrix. Then we prove that the
matrix we have built is stochastic and we use DPY to obtain a bound of the
stochastic complement of that matrix. Let us recall relation 4.3 and recall that as
D does not contain any recurrent class we have:

(Id−D)−1 =
∞∑
i=0

Di = Id+D (Id−D)−1

After substitution we get:

SA = A+B
(
Id+D (IdD)−1)W (W ∗)−1C

After simplification we obtain:

SA = A+BC +BD (Id−D)−1W (W ∗)−1C (4.12)

Therefore we obtain SA as the complement of matrix(
A+BC BD

C D

)
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Simple algebraic manipulations allow to prove that this matrix is stochastic.
Thus SA is upper bounded by DPY (A+BC,C).

Example 5 Using as example the same blocks A, B and C already defined, we
obtained a new upper bound of the stochastic complement SA denoted as H0.
Clearly the bound is better than the one obtained with DPY using only A and
C:

H0 =


0.2980 0.2170 0.3925 0.0925
0.2520 0.1780 0.4350 0.1350
0.0740 0.5910 0.0675 0.2675
0.1880 0.1120 0.4000 0.3000



4.6.2 All Blocks are known, but (Id−D)−1 is Difficult to Com-
pute

Now assume that we also knowD, but we cannot compute (Id−D)−1 because of
the computational complexity. This assumption is similar to the one developed
in [FPY07b] where graph theoretical arguments were used to obtain bounds.

Proposition 4.6. For any K ≥ 0, SA 4st DPY
(
A+B

∑K
i=0 D

iC,C
)

The proof relies on the same technique as Proposition 4.5 and is omitted.

Example 6 Let us turn back now to the example for the same blocks and for
K = 1 (bound H1) and K = 2 (bound H2).

H1 =


0.309000 0.220500 0.393250 0.077250
0.273200 0.181800 0.430500 0.114500
0.087400 0.591100 0.060750 0.260750
0.189600 0.118400 0.412000 0.280000



H2 =


0.318780 0.221970 0.390825 0.068425
0.290520 0.183780 0.424850 0.100850
0.098340 0.591910 0.056475 0.253275
0.194080 0.120320 0.413600 0.272000


For the same blocks and for K = 1 we have also computed the bound ob-

tained with an algorithm [FPY07b], based on breadth first search visit of the suc-
cessors of the nodes in E . The results are clearly less accurate than the bounds
we obtain with Proposition 4.6:

FPY 1 =


0.256000 0.139000 0.322000 0.283000
0.192000 0.058000 0.324000 0.426000
0.042000 0.523000 0.004000 0.431000
0.140000 0.040000 0.340000 0.480000
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4.6.3 Componentwise Bounds on (Id−D)−1

Here we assume that we know the blocks A, B and C. Additionally, we know
componentwise lower bounds for matrix (Id−D)−1:

F ≤ (Id−D)−1

The block D is either not completely known or (Id−D)−1 is difficult to inverse
as in the cases 4.6.1 and 4.6.2. Recall that (Id−D)−1 =

∑∞
i=0D

i, so Proposition
4.6 can be seen as a special case for F =

∑K
i=0D

i.
We introduce first a new decomposition of stochastic complement (Propo-

sition 4.7) that we need to prove bounds in Proposition 4.9. Matrix SA can be
decomposed as:

SA = A+BFC +B
(
(Id−D)−1 − F)W (W ∗)−1C

Let G =
(
(Id−D)−1 − F)W , V = diag (G1t) and V ∗ = diag

(
(G1t)

∗). Then we
have an additional decomposition of stochastic complement:

Proposition 4.7. Matrix SA can be decomposed as:

SA = A+BFC +BV (V ∗)−1 ((Id−D)−1 − F)W (W ∗)−1C (4.13)

Matrices (W ∗)−1C = n (C) and (V ∗)−1 ((Id−D)−1 − F)W = n (G) have rows
that are either stochastic or equal to 0.

Proof. Matrix SA can be written as:

SA = A+BFC +BV ∗ (V ∗)−1 ((Id−D)−1 − F)W (W ∗)−1C (4.14)

Recall that (V ∗)−1 ((Id−D)−1 − F)W = n (G), V = diag (G1t)
and V ∗ = diag

(
(G1t)

∗). Thus, Lemma 4.1 implies that:

V ∗ (V ∗)−1 ((Id−D)−1 − F)W = V (V ∗)−1 ((Id−D)−1 − F)W (4.15)

Relation 4.13 now follows from 4.14 and 4.15

One possible way to obtain such a matrix F is to obtain first E, a lower
bound of D, and then compute or approximate (Id− E)−1 such as mentioned
in the next proposition.
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Proposition 4.8. As matrix D is non negative and such that (Id−D) is not singular,
then for all non negative matrix E ≤ D, we have (Id− E)−1 ≤ (Id−D)−1.

The straightforward proof is omitted.

Proposition 4.9. Assume that we know the blocksA,B, C and the matrix F such that:

F ≤ (Id−D)−1

Then:
SA 4st A+BFC + γr−1 (s (n (C)))

where γ = 1t − (A+BFC) 1t

Proof. By Proposition 4.7, we have SA = A + BFC + BV n (G)n (C), with G =(
(Id−D)−1 − F)W . Lemma 4.3 for Z = BV n (G) and M = n (C) implies:

BV n (G)n (C) 4st αr
−1 (s (n (C)))

for α = ZM1t = BV n (G)n (C) 1t. Therefore:

SA 4st A+BFC + αr−1 (s (n (C))) (4.16)

After multiplying 4.13 by 1t, we get: 1t = (A+BFC) 1t +BV n (G)n (C), so:

α = BV n (G)n (C) 1t = 1t − (A+BFC) 1t = γ

Example 7 Consider the same block decomposition as in Example 4. Assume
that we know an element-wise lower bound of D denoted as D1 and which is
equal to: 

0.500 0.200 0.000 0.000 0.000 0.000
0.200 0.600 0.200 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000


Note that D1 is obtained by a breadth first search visit of the nodes in Ec started
with nodes of E and limited by a depth of two nodes. We easily compute
(Id−D1)−1: 

2.500 1.250 0.250 0.000 0.000 0.000
1.250 3.125 0.625 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
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Finally the bounds of SA are:
0.3382 0.2180 0.3718 00718
0.3325 0.1800 0.3937 0.0937
0.1330 0.5920 0.0375 0.2375
0.1880 0.1120 0.4000 0.3000



4.6.4 Componentwise bounds on (Id−D)−1 and C

Here we assume that we do not know the block C, but only its elementwise
lower bounds. Then we can extract the known part and apply the Truffet’s
algorithm to the remaining part:

Proposition 4.10. Assume we know the blocks A and B and the componentwise lower
bounds of block C and matrix (Id−D)−1:

F ≤ (Id−D)−1 and H ≤ C

Then:
SA 4st T (A+BFH) = A+BFH + δ (0, ..., 0, 1)

where δ = 1t − (A+BFH) 1t

Observe that the product δ (0, ..., 0, 1) is a matrix with appropriate dimen-
sions.

Proof. We have:

SA = A+BFH +B
(
F (C −H) +

(
(Id−D)−1 − F)C)

Denote by U = F (C −H) +
(
(Id−D)−1 − F)C. After multiplying by 1t, we

get:
1t = (A+BFH)1t +BU1t

We have δ = 1t − (A+BFH)1t = BU1t. Now from

SA = A+BFH +Bdiag
(
U1t

)
n (U) (4.17)

and Lemma 4.3 for Z = Bdiag (U1t) and M = n (U) implies:

Bdiag
(
U1t

)
n (U) 4st αr

−1 (s (n (U))) (4.18)

for α = ZM1t = Bdiag (U1t)n (U) 1t = BU1t = δ. Now from 4.17 and 4.18 we
obtain:

SA 4st A+BFH + δr−1 (s (n (U))) 4st A+BFH + δ (0, ..., 0, 1)

where δ = 1t − (A+BFH)1t
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Example 8 We consider again Example 4. We assume that we have been able
to obtain C1 an element-wise lower bound of C and D1 an element wise lower
bound of D. For the sake of simplicity we assume that D1 is already defined in
Example 7. Assume that C1 is equal to:

C1 =


0.2 0.1 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0


Note that this information on C1 and D1 may be obtained from a breadth first
search visit out of states in E but limited to two nodes ( i.e. the first two nodes
of Ec visited from E). Finally the bounding matrix of SA is:

0.234 0.117 0.300 0.349
0.168 0.034 0.300 0.498
0.038 0.519 0.000 0.443
0.100 0.000 0.300 0.600



4.6.5 Decomposition

We assume now that the complement can be divided into two or more non-
communicating subsets. Such an information may be provided by the tensor
based representation of the DTMC (for some relations between tensor represen-
tation of the chain and its graph properties, see [FQ95]). We assume that block
D has the diagonal block form:

D = diag (D1,1, D2,2, ..., DK,K) =


D1,1 0 0 · · · 0
0 D2,2 0 · · · 0
... . . . ...
0 · · · 0 DK−1,K−1 0
0 · · · 0 0 DK,K


where 0 stands here for a matrix of appropriate size whose all elements are
equal to 0. Let mk be the size of block 1 ≤ k ≤ K. Blocks B and C can also be
decomposed as:

B =
[
B1 B2 · · · BK

]
, C =


C1

C2
...
CK
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where Bk is an n×mk matrix and Ck an mk × n matrix, for 1 ≤ k ≤ K

Proposition 4.11. Let βk = Bk1
t, for all 1 ≤ k ≤ K. We assume that blocks A and C

are known and that we also know all βk. Then:

SA 4st A+
K∑
k=1

βksk

where sk = r−1 (s (n (Ck))) , 1 ≤ k ≤ K.

Proof. We have:

SA = A+
K∑
k=1

Bk (Id−Dk,k)
−1Wkn (Ck)

where Wk = diag (Ck1
t) and n (Ck) = (W ∗

k )−1Ck, W ∗
k = diag

(
(Ck1

t)
∗), for all

1 ≤ k ≤ K . Thus by Lemma 4.3,

Bk (Id−Dk,k)
−1Wkn (Ck) 4st Bk (Id−Dk,k)

−1Wk1
tsk

where sk = r−1 (s (n (Ck))). Similarly as in the proof of Proposition 4.1, it can
be shown that (Id−Dk,k)

−1Wk is a stochastic matrix. We obtain,Bk (Id−Dk,k)Wk1
t =

Bk1
t = βk and

Bk (Id−Dk,k)
−1Wkn (Ck) 4st βksk, for all 1 ≤ k ≤ K

Thus,

SA 4st A+
K∑
k=1

βksk

Example 9 We now slightly modify Example 4. We consider the same state
space and the same block decomposition except block D which is modified as
follows:

D2 =


0.5 0.2 0.0 0.0 0.0 0.0
0.4 0.6 0.0 0.0 0.0 0.0
0.0 0.0 0.2 0.4 0.0 0.0
0.0 0.0 0.3 0.0 0.2 0.0
0.0 0.0 0.1 0.0 0.0 0.4
0.0 0.0 0.5 0.0 0.1 0.1
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The exact solution for the stochastic complement and the bound BC2 based on
Proposition 4.11 are respectively:

SA =


0.384 0.228 0.358 0.030
0.417 0.195 0.358 0.030
0.200 0.600 0.000 0.200
0.201 0.123 0.415 0.261

 , B2C =


0.373 0.227 0.350 0.050
0.407 0.193 0.350 0.050
0.200 0.600 0.000 0.200
0.180 0.120 0.400 0.300


The bound in Proposition 4.11 can be seen as a refinement of DPY bound

(see Section 4.4, equation 4.11), using the decomposition of matrix D. Thus,
as for DPY, we can similarly use additional knowledge on blocks B, C and D
to improve the bounds in Proposition 4.11. For example, if we know blocks
B1, · · · , BK , then by combining the results of Subsection 4.6.1 with Proposition
4.11 we get:

SA 4st A+
K∑
k=1

(BkCk + γksk)

where sk = r−1 (s (n (Ck))) and γk = βk − BkCk1
t, 1 ≤ k ≤ K. The proof uses

similar arguments as the proofs of Proposition 4.5 and 4.11. We leave to the
reader the details of the proof, as well as similar generalizations obtained by
combining Proposition 4.11 with results in Subsections 4.6.2 and 4.6.4.

4.7 Conclusion

Our approach gives a theoretical framework for the partial generation of the
state-space and the transition matrix of a really large Markov chain. Partial
generation is often performed heuristically by software tools without any con-
trol on the accuracy of the results. If the chain is designed using an initial state
and the successor function, when we stop the generation, we obtain blocks A
and B. Similarly, using an initial state and the predecessor function we get
blocks A and C when the partial generation is achieved. Tensor based represen-
tation [FPS98] allows to build all blocks, but it is also possible to take advan-
tage of a partial representation to reduce the complexity of the computational
algorithms. Clearly, the more information ( i.e. blocks) we put in the model,
the more accurate are the bounds. Similarly, when we increase the number of
steps to obtain a more accurate version of the blocks (i.e. parameter K in the
visit-based algorithms in Subsection 4.6.2), we also increase the tightness of the
bounds. We also want to emphasize the importance of DPY algorithm, which
is optimal when only A and C are known and which allows to derive better
bounds when we add further useful information.
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Chapter 5

Hybrid Automata Stochastic Logic

This chapter is related to the publication [BDD+11b].

5.1 Introduction

From model checking to quantitative model checking. Since its introduc-
tion [EC80], model checking has quickly become a prominent technique for
verification of discrete-event systems. Its success is mainly due to three fac-
tors: (1) the ability to express specific properties by formulas of an appropriate
logic, (2) the firm mathematical foundations based on automata theory and (3)
the simplicity of the verification algorithms which has led to the development
of numerous tools. While the study of systems requires both functional, per-
formance and dependability analysis, originally the techniques associated with
these kinds of analysis were different. However, in the mid nineties, classi-
cal temporal logics were adapted to express properties of Markov chains and
a decision procedure has been designed based on transient analysis of Markov
chains [BHHK03a].

From numerical model checking to statistical model checking. The nu-
merical techniques for quantitative model checking are rather efficient when a
memorylessness property can be exhibited (or recovered by a finite-state mem-
ory), limiting the combinatory explosion due to the necessity to keep track of
the sampling of distributions. Unfortunately both the formula associated with
an elaborated property and the stochastic process associated with a real appli-
cation make rare the possibility of such pattern. In these cases, statistical model
checking [YS06] is thus an alternative to numerical techniques. Roughly speak-
ing, statistical model checking consists in sampling executions of the system
(possibly synchronized with some automaton corresponding to the formula to
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be checked) and comparing the ratio of successful executions with a threshold
specified by the formula. The advantage of the statistical model checking is
the small memory requirement while its drawback is its inability to generate
samples for execution paths of potentially unbounded length.

Limitations of existing logics. However, a topic that has not been investi-
gated is the suitability of the temporal logic to express (non necessarily boolean)
quantities defined by path operators (minimum, integration, etc.) applied on
instantaneous indicators. Such quantities naturally occur in standard perfor-
mance evaluation. For instance, the average length of a waiting queue during a
busy period or the mean waiting time of a client are typical measures that can-
not be expressed by the quantitative logics based on the concept of successful
execution probability like CSL [ASVB00].

Our contribution. We introduce a new formalism called Hybrid Automaton
Stochastic Logic (HASL) which provides a unified framework both for model
checking and for performance and dependability evaluation. A HASL formula
evaluates to a real number which is defined by the expectation of a path random
variable conditioned by the success of the path. The concept of conditional ex-
pectation significantly enlarges the expressive power of the logic. The proposed
temporal logic is indeed a quantitative logic permitting both to check if proba-
bility thresholds are met and to evaluate complex performability measures. A
formula of HASL consists of an automaton and an expression. The automaton
is a Linear Hybrid Automaton (LHA), i.e. an automaton with clocks, called
in this context data variables, where the dynamic of each variable (i.e. the vari-
able’s evolution) depends on the model states. This automaton will synchronize
with the DESP, precisely selecting accepting paths while maintaining detailed
information on the path through data variables. The expression is based on mo-
ments of path random variables associated to path executions. These variables
are obtained by operators like time integration on data variables. HASL extends
the expressiveness of automaton-based CSL like formalisms as CSLTA [DHS09]
and its extension to multi-clocks [CHKM09] with state and action rewards and
sophisticated update functions especially useful for performance and depend-
ability evaluation. On the other hand it extends reward enriched versions of
CSL, (CSRL [BHHK00a]) with a more precise selection of path executions, and
the possibility to consider multiple rewards. Therefore HASL makes it possible
to consider not only standard performability measures but also complex ones
in a generic manner.

A statistical verification tool (i.e. a discrete event simulator) COSMOS has
been developed for this logic. We have chosen generalized stochastic Petri nets
(GSPN) as high level formalism for the description of the discrete event stochas-
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tic process since (1) it allows a flexible modeling w.r.t. the policies defining the
process (choice, service and memory) and (2) due to the locality of net transi-
tions and the simplicity of the firing rule it leads to efficient path generation.

Organization. In section 5.2 we describe the class of stochastic models we
refer to (i.e. DESP). In section 5.3 we formally introduce the HASL logic and we
provide an overview of the related work, where the expressiveness of HASL is
compared with that of existing logics. Finally, in section 5.4, we conclude and
give some perspectives.

5.2 DESP

We describe the class of stochastic models that are suitable for HASL verifica-
tion, namely Discrete Event Stochastic Processes (DESP). Such class includes
Markov chain models, the main type of stochastic models targeted by existing
stochastic logics. The definition of DESP we introduce resembles that of gener-
alized semi-Markov processes [Gly83] as well as that given in [ACD91].

Syntax. DESPs are stochastic processes consisting of a (possibly infinite) set
of states and whose dynamic is triggered by a set of discrete events. We do not
consider any restriction on the nature of the distribution associated with events.
In the sequel dist(A) denotes the set of distributions whose support is A.

Definition 5.1. A DESP is a tuple

D = 〈S, π0, E, Ind, enabled, delay, choice, target〉 where:

• S is a (possibly infinite) set of discrete states,

• π0 ∈ dist(S) is the initial distribution on states,

• E is a set of events,

• Ind is a set of functions from S toR called state indicators (including the constant
functions),

• enabled : S → 2E are the enabled events in each state with for all s ∈ S,
enabled(s) 6= ∅.

• delay : S × E → dist(R+) is a partial function defined for pairs (s, e) such that
s ∈ S and e ∈ enabled(s).

• choice : S×2E×R+ → dist(E) is a partial function defined for tuples (s, E ′, d)
such that E ′ ⊆ enabled(s) and such that the possible outcomes of the correspond-
ing distribution are restricted to e ∈ E ′.
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• target :S×E × R+ → S is a partial function describing state changes through
events, defined for tuples (s, e, d) such that e ∈ enabled(s).

Before giving the operational semantics of a DESP, we informally describe
its items. Given a state s, enabled(s) is the set of events enabled in s. For an
event e ∈ enabled(s), delay(s, e) is the distribution of the delay between the en-
abling of e and its possible occurrence. Furthermore, if we denote d the earliest
delay in some configuration of the process with state s, and E ′⊆ enabled(s) the
set of events with earliest delay, choice(s, E ′, d) describes how the conflict is ran-
domly resolved: for all e′ ∈ E ′, choice(s, E ′, d)(e′) is the probability that e′ will
be selected among E ′ after waiting for the delay d. The function target(s, e, d)
denotes the target state reached from s on occurrence of e after waiting for d
time units.

We define the subset Prop ⊆ Ind of state propositions taking values in {0, 1}.
The sets Ind and Prop will be used in the sequel to characterize the information
on the DESP known by the automaton (LHA) corresponding to a formula. In
fact the LHA does not have direct access to the current state of the DESP but
only through the values of the state indicators and state propositions.

Semantics. In order to define the semantics of this class of DESPs, we con-
sider the following policies: choice is driven by the race policy (i.e. the event
with the shortest delay occurs first), the service policy is single server (at most
one instance per event may be scheduled) and the memory policy is the en-
abling memory one (i.e. a scheduled event remains so until executed or until it
becomes disabled). Other policies could have been selected (resampling mem-
ory, age memory, etc.). We have stuck to the most usual policies for the sake of
simplicity.

Given a discrete event system, its execution is characterized by a (possi-
bly infinite) sequence of events {e1, e2, . . .} and occurrence time of these events.
Only the events can change the state of the system.

In the stochastic framework, the behaviour of a DESP is defined by three
families of random variables:

• e1, . . . , en, . . . defined over the set of events E denoting the sequence of
events occuring in the system

• s0, . . . , sn, . . . defined over the (discrete) state space of the system, denoted
as S. s0 is the system initial state and sn for n > 0 is the state after the nth



5.2. DESP 113

event. The occurrence of an event does not necessarily modify the state of
the system, and therefore sn+1 may be equal to sn.

• τ0 ≤ τ1 ≤ · · · ≤ τn ≤ · · · defined over R+, where τ0 is the initial instant
and τn for n > 0 is the instant of the occurrence of the nth event.

We start from the syntactical definition of a DESP and show how we ob-
tain the three families of random variables {sn}n∈N, {en}n∈N∗ and {τn}n∈N. This
definition is inductive w.r.t. n and includes some auxiliary families.

Notation. In the whole section, when we write an expression like Pr(en+1 = e |
e ∈ E ′n), we also mean that this conditional probability is independent from any
event Ev that could be defined using the previously defined random variables:

Pr(en+1 = e | e ∈ E ′n) = Pr(en+1 = e | e ∈ E ′n ∧ Ev)

The family {sched(e)n}n∈N whose range is R+ ∪ {+∞} denotes whether the
event e is scheduled at the nth state and what is the current schedule. Now τn+1

is defined by τn+1 = min(sched(e)n | e ∈ E) and the family {E ′n}n∈N denotes
the set of events with minimal schedule: E ′n = {e ∈ E | ∀e′ ∈ E, sched(e)n ≤
sched(e′)n}. From this family we obtain the conditional distribution of en+1:
Pr(en+1 = e | e ∈ E ′n ∧ τn+1 − τn = d) = choice(sn, E

′
n, d)(e)

Now sn+1 = target(sn, en, τn+1 − τn) and:

• For every e ∈ E,
Pr(sched(e)n+1 =∞ | e /∈ enabled(sn+1)) = 1

• For every e ∈ E,
Pr(sched(e)n+1 = sched(e)n |
e ∈ enabled(sn+1) ∩ enabled(sn) ∧ e 6= en) = 1

• For every e ∈ E and d ∈ R+,
Pr(τn ≤ sched(e)n+1 ≤ τn + d |
e ∈ enabled(sn+1) ∧ (e /∈ enabled(sn) ∨ e = en))
= delay(sn+1, e)(d)

We start the induction by:

• Pr(τ0 = 0) = 1, Pr(s0 = s) = π0(s)

• For every e ∈ E,
Pr(sched(e)0 =∞ | e /∈ enabled(s0)) = 1
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• For every e ∈ E and d ∈ R+,
Pr(sched(e)0 ≤ d | e ∈ enabled(s0))
= delay(s0, e)(d)

A configuration of a DESP is described as a triple (s , τ , sched) with s being
the current state, τ ∈R+ the current time and sched : E → R+ ∪{+∞} being the
function that describes the occurrence time of each scheduled event (+∞ if the
event is not yet scheduled). Note that, because of its definition, the evolution
of a DESP is naturally suitable for discrete event simulation. However, while it
can model almost all interesting stochastic processes, it is a low level represen-
tation since the set of states is explicitely described. A solution for a higher level
modelling is to choose one of the formalisms commonly used for representing
Markov chain models (e.g. Stochastic Petri Nets [ABC+95] or Stochastic Process
Algebras [GHH02]), that can straightforwardly be adapted for representation
of a large class of DESPs. It suffices that the original formalisms are provided
with formal means to represent the type of delay distribution of each transi-
tion/action (function delay of Definition 5.1) as well as means to encode the
probabilistic choice between concurrent events (i.e. function choice of Defini-
tion 5.1). However, due to syntactic restrictions, Stochastic Petri Nets and other
formalisms cannot (in their original definition) capture all the functionalities of
DESPs.

In the following we describe an example of DESP expressed in terms of a
Generalized Stochastic Petri Net (GSPN). This model will be used in Section 5.3
for describing, through a couple of LHA examples, the intuition behind Hybrid
Automata based verification. Before describing the running example, we in-
formally outline the basis of GSPN specification (for a formal account we refer
the reader to [ABC+95]), pointing out the differences between “original" GSPNs
and GSPNs for representing DESPs (which we refer to as GSPN-DESP).

GSPN models. A GSPN model is a bi-partite graph consisting of two classes
of nodes, places and transitions. Places may contain tokens (representing the state
of the modeled system) while transitions indicate how tokens “flow” within the
net (encoding the model dynamics). The state of a GSPN consists of a mark-
ing indicating the distribution of tokens throughout the places (i.e. how many
tokens each place contains). Roughly speaking a transition t is enabled when-
ever every input place of t contains a number of tokens greater than or equal to
the multiplicity of the corresponding (input) arc. An enabled transition may fire,
consuming tokens (in a number indicated by the multiplicity of the correspond-
ing input arcs) from its input places, and producing tokens (in a number indi-
cated by the multiplicity of the corresponding output arcs) in its output places.
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Transitions can be either timed (denoted by empty bars) or immediate (denoted
by filled-in bars, see Figure 5.1). Transitions are characterized by: (1) a distribu-
tion which randomly determines the delay before firing it; (2) a priority which
deterministically selects among the transitions with earliest scheduling time,
the one to be fired; (3) a weight, that is used in the random choice between tran-
sitions scheduled the soonest with the same highest priority. With the GSPN
formalism [ABC+95] the delay of timed transitions is assumed exponentially dis-
tributed, whereas with GSPN-DESP it can be given by any distribution. Thus a
GSPN-DESP timed-transition is characterized by a tuple: t≡ (type, par, pri, w),
where type indicates the type of distribution (e.g. uniform), par indicates the
parameters of the distribution (e.g [α, β]), pri ∈ R+ is a priority assigned to the
transition and w ∈ R+ is used to probabilistically choose between transitions
occurring with equal delay and equal priority. Observe that the information
associated to a transition (i.e. type, par, pri, w) is exploited in different manners
depending on the type of transition. For example for a transition with a con-
tinuous distribution the priority (pri) and weight (w) records are superfluous
(hence ignored) since the probability that the schedule of the corresponding
event is equal to the schedule of (the event corresponding to) another transition
is null. Similarly, for an immediate transition (denoted by a filled-in bar) the
specification of the distribution type (i.e. type) and associated parameters (par)
is not needed (hence also ignored). Therefore these unnecessary information
are omitted in Figure 5.1)

Arrive1 (Exp,λ1)

Request1

(pri1, w1)Start1

Access1

End1

Free

Request2

Arrive2(Exp,λ2)

(pri2, w2) Start2

Access2

End2

(Unif,[α2, β2])(Unif,[α1, β1])

Figure 5.1: The GSPN description of a shared memory system.

Running example. We consider the GSPN model (inspired by [ABC+95]) of
Figure 5.1. It describes the behavior of an open system where two classes of
clients (namely 1 and 2) compete to access a shared memory (resource). Class
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i-clients (i∈{1, 2}) enter the system according to a Poisson process with param-
eter λi (corresponding to the exponentially distributed timed transition Arrivei
with rate λi). On arrival, clients cumulate in places Requesti where they wait
for the memory to be free (a token in place Free witnessing that the memory is
available). The exclusive access to the shared memory is regulated either deter-
ministically or probabilistically by the priority (prii) and the weight (wi) of imme-
diate transitions Start1 and Start2. Thus in presence of a competition (i.e. one
or more tokens in both Request1 and Request2) a class i process wins the com-
petition with a class j = (i mod 2)+1 process with probability 1 if prii > prij ,
and with probability wi/(wi+wj) if prii=prij . The occupation time of the mem-
ory by a class i client is assumed to be uniformly distributed within the interval
[αi, βi] (corresponding to transitions Endi). Thus on firing of transition Endi the
memory is released and a class i client leaves the system.

5.3 HASL

We intuitively describe the syntax and semantics of HASL before formally defin-
ing them in the next subsections. A formula of HASL consists of two parts:

• The first component of a formula is a hybrid automaton that synchronizes
with an infinite timed execution of the considered DESP until some final
state of the automaton is reached or the synchronization fails. During
this synchronization, some data variables evolve and also condition the
evolution of this synchronization.

• The second component of a formula is an expression whose operands are
mainly data variables and whose operators will be described formally
later in this section. In order to express path indices, they include path
operators such as min and max value along an execution, value at the end
of a path, integral over time and the average value operator. Conditional
expectations are applied to these indices in order to obtain the value of the
formula.

5.3.1 Synchronized Linear Hybrid Automata

Syntax. The first component of a HASL formula is a restriction of hybrid
automata [ACHH92], namely synchronized Linear Hybrid Automata (LHA).
LHA extend the Deterministic Timed Automata (DTA) used to describe prop-
erties of Markov chain models [DHS09, CHKM09]. Simply speaking, LHA are
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automata whose set of locations is associated with a n-tuple X of real-valued
variables (called data variables) and whose rate can vary.

In our context, LHA are used to synchronize with DESP paths. However
they can evolve in an autonomous way: thus the symbol ] denotes a pseudo-
event that is not included in the event set E of the DESP associated with these
autonomous changes. The values of the data variables x1, . . . , xn evolve with
a linear rate depending on the location of the automaton and on the current
state of the DESP. More precisely the function flow associates with each location
a n-tuple of indicators (one for each variable), and given a state s of a DESP
and a location l the flow of variable xi in (s, l) is flowi(l)(s) (where flowi(l) is the
ith component of flow(l)). Our model also uses constraints, which describe the
conditions for an edge to be traversed, and updates, which describe the actions
taken on the data variables on traversing an edge. A constraint of an LHA edge
is a boolean combination of inequalities of the form

∑
1≤i≤n αixi + c ≺ 0 where

αi and c are indicators (i.e. in Ind), ≺ stands for either =, <, >, ≤ or ≥. The set
of constraints is denoted by Const. Given a location and a state, an expression of
the form

∑
1≤i≤n αixi+ c evolves linearly with time. An inequality thus gives an

interval of time during which the constraint is satisfied. We say that a constraint
is left closed if, whatever the current state s of the DESP (defining the values of
indicators), the time at which the constraint is satisfied is a union of left closed
intervals. We denote by lConst the set of left closed constraints that are used for
the “autonomous” edges (i.e. those labelled by ]). An update is more general
than the reset of timed automata. Here each data variable can be set to a linear
function of the variables’ values. An update U is then a n-tuple of functions
u1, ..., un where each uk is of the form xk =

∑
1≤i≤n αixi + c where αi ∈ Ind and

c are indicators. The set of updates is denoted by Up.

Definition 5.2. A synchronized linear hybrid automaton (LHA)
A = 〈E,L,Λ, Init ,Final , X, flow,→〉 comprises:

• E, a finite alphabet of events;

• L, a finite set of locations;

• Λ : L→ Prop, a location labelling function;

• Init , a subset of L called the initial locations;

• Final , a subset of L called the final locations;

• X = (x1, ...xn) a n-tuple of data variables;

• a function flow : L 7→ Indn which associates to each location one indicator for
each data variable representing the evolution rate of the variable in this location.
flowi denotes the projection of flow on its ith component.
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• →⊆ L × ((Const× 2E) ] (lConst× {]})) × Up × L, a set of edges, where the

notation l γ,E′,U−−−−→ l′ means that (l, γ, E ′, U, l′) ∈→.

The edges labelled with a set of events in 2E are called synchronized whereas those
labelled with ] are called autonomous. FurthermoreA fulfills the following conditions.

• Initial determinism: ∀l 6= l′ ∈ Init ,
Λ(l) ∧ Λ(l′)⇔ false 1.

• Determinism on events: ∀E1, E2 ⊆ E s .t . E1 ∩ E2 6= ∅,
∀l, l′, l′′ ∈ L, if l′′ γ,E1,U−−−−→ l and l′′ γ′,E2,U ′−−−−→ l′ are two distinct transitions, then
either Λ(l) ∧ Λ(l′)⇔ false or γ ∧ γ′ ⇔ false1.

• Determinism on ]:2 ∀l, l′, l′′ ∈ L, if l′′ γ,],U−−−→ l and

l′′
γ′,],U ′−−−→ l′ are two distinct transitions, then either Λ(l) ∧ Λ(l′) ⇔ false or

γ ∧ γ′ ⇔ false1.

• No ]-labelled loops: For all sequences

l0
γ0,E0,U0−−−−−→ l1

γ1,E1,U1−−−−−→ · · · γn−1,En−1,Un−1−−−−−−−−−→ ln such that l0 = ln, there exists i ≤ n
such that Ei 6= ] 3.

Discussion. The motivation for the distinction between two types of edges in
the LHA is that the transitions in the synchronized system (DESP + LHA) will
be either autonomous, i.e. time-triggered (or rather variable-triggered) and take
place as soon as a constraint is satisfied, or synchronized i.e. triggered by the
DESP and take place when an event occurs in the DESP. The LHA will thus take
into account the system behavior through synchronized transitions, but also
take its own autonomous transitions in order to evaluate the desired property.
In order to ensure that the first time instant at which a constraint is satisfied
exists, we require for the constraints on autonomous transitions to be left closed.
It should also be said that the restriction to linear equations in the constraints
and to a linear evolution of data variables can be relaxed, as long as they are
not involved in autonomous transitions. Polynomial evolution or constraints
could easily be allowed for synchronised edges for which we would just need
to evaluate the expression at a given time instant. Since the best algorithms
solving polynomial equations operate in PSPACE [Can88], such an extension
for autonomous transitions cannot be considered for obvious efficiency reasons.

1These equivalences must hold whatever the interpretation of the indicators occurring in
Λ(l), Λ(l′), γ and γ′.

2Note that our two notions of determinism allow an autonomous and a synchronised edges
to be simultaneously fireable

3This condition is sufficient to avoid an infinite behavior of Awithout synchronization.
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The automata we consider are deterministic in the following sense: given a
path σ of a DESP, there is at most one synchronization with the linear hybrid
automaton. This constraint ensures the synchronized system is still a stochastic
process. In the above definition, the first three conditions ensure the unique-
ness of the synchronization. First there is at most an initial location that can
match with the initial state of the DESP. Then when two synchronized edges
start from the same (current) location, (1) either their associated sets of events
are disjoint, (2) either their guards are mutually exclusive (3) or their destination
locations satisfy incompatible propositions. As there must be a matching with a
state in the DESP this excludes non determinism. The third condition is similar
for autonomous transitions. Since our semantic gives priority of autonomous
transitions over synchronized ones, there is no need to introduce additional
constraints.

At last, the fourth disables “divergence” of the synchronization, i.e. the pos-
sibility of an infinity of consecutive autonomous events without synchroniza-
tion.

Notations. A valuation ν maps every data variable to a real value. The value
of data variable xi in ν is denoted ν(xi). Let us fix a valuation ν and a state s.
Given an expression exp =

∑
1≤i≤n αixi + c related to variables and indicators,

its interpretation w.r.t. ν and s is defined by exp(s, ν) =
∑

1≤i≤n αi(s)ν(xi)+c(s).
Given an update U = (u1, . . . , un), we denote by U(s, ν) the valuation defined
by U(s, ν)(xk) = uk(s, ν) for 1 ≤ k ≤ n. Let γ ≡ exp ≺ 0 be a constraint, we
write (s, ν) |= γ if exp(s, ν) ≺ 0. Let ϕ be a state proposition we write s |= ϕ if
ϕ(s) = true.

Semantics.

The role of a synchronized LHA is, given an execution of a corresponding
DESP, to first decide whether the execution is to be accepted or not, and also to
maintain data values along the execution.

Before defining the model associated with the synchronization of a DESP
D and an LHA A, we need to introduce a few notations to characterize the
evolution of a synchronized LHA.

Given a state s of the DESP, a non final location l and a valuation ν of A, we
define the effect of time elapsing by:
Elapse(s, l, ν, δ) = ν ′ where, for every variable xk, ν ′(xk) = ν(xk)+flowk(l)(s)×δ.

We also introduce the autonomous delay Autdel(s, l, ν) by:

Autdel(s, l, ν) = min(δ | ∃l γ,],U−−−→ l′ ∧ s |= Λ(l′) ∧ (s, Elapse(s, l, ν, δ)) |= γ)

Whenever Autdel(s, l, ν) is finite, we know that there is at least one exe-
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cutable transition with minimal delay and, thanks to the “determinism on ]” of
definition 5.2, we know that this transition is unique. In the following we will
denoteNext(s, l, ν) the target location of this first transition and Umin(s, l, ν) its
update.

We now proceed to the formal definition of the DESP D′ associated with the
synchronization of a DESP D = 〈S, π0, E, Ind, enabled, target, delay, choice〉 and
an LHA A = 〈E,L,Λ, Init ,Final , X, flow,→〉.

• S ′ = (S × L× V al) ] {⊥}

• π′0(s, l, ν) =

{
π0(s) if (l ∈ Init ∧ s |= Λ(l) ∧ ν = 0)
0 otherwise

and π′0(⊥) = 1− Σs∈S,l∈L,ν∈V alπ
′
0(s, l, ν).

Note that this definition gives a distribution since, due to “initial deter-
minism” of definition 5.2, for every s ∈ S, there is at most one l ∈ Init
such that s |= Λ(l).

• E ′ = E ] {]}
• Ind′ = ∅. In fact Ind′ is useless since there is no more synchronization to

make.

• enabled′(s, l, ν) = {e ∈ enabled(s)} ∪ {]} if Autdel(s, l, ν, ) 6=∞,
and enabled′(s, l, ν) = {e ∈ enabled(s)} otherwise.

• delay′((s, l, ν), e) = delay(s, e) for every e ∈ enabled(s) and, whenever ] ∈
enabled′(s, l, ν), delay′((s, l, ν), ]) is a dirac function with a spike for the
value Autdel(s, l, ν).

• choice′((s, l, ν), E ′, d)(e) =


1 if (] ∈ E ′ ∧ e = ])
0 if (] ∈ E ′ ∧ e 6= ])
0 if e /∈ E ′
choice(s, E ′, d)(e) otherwise

Again this is coherent since, as soon as ] /∈ E ′, then E ′ is a subset of
enabled(s) on which choice is thus defined.

• For a synchronized event,

target′((s, l, ν), e, d) = (target(s, e, d), l′, ν ′) if e ∈ enabled(s), ∃l γ,E′,U−−−−→ l′,
target(s, e, d) |= Λ(l′),
Elapse(s, l, ν, d) |= γ, e ∈ E ′ and ν ′ = U(Elapse(s, l, ν, d)).

For an autonomous event, target′((s, l, ν), ]) = (s, l′, ν ′) if ] ∈ enabled′(s, l, ν)
with l′ = Next(s, l, ν) and ν ′ = Umin(s, l, ν)(Elapse(s, l, ν, Autdel(s, l, ν))).
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Note that, by initial determinism, for every s ∈ S there is at most one l ∈ Init
such that s satisfies Λ(l). Otherwise the synchronization starts and immediately
ends up in state ⊥. Observe that there are two possible behaviors for the syn-
chronization. Either it ends up in some final state leading to a finite synchro-
nizing path or the synchronization goes over all states of the path without ever
reaching a final configuration. We discuss this point in the next subsection.

Example. The two LHA of figure 5.2 and 5.3 intend to illustrate the ex-
pressiveness of HASL’s LHAs. They are meant to synchronize with the shared
memory system of figure 5.1. The one in figure 5.2 uses two variables. x0 has
a null flow in every location and is used to count the number of memory ac-
cesses granted. x1 expresses the difference of memory usage between processes
of class 1 and 2. It has thus flow 1 (resp. -1) when the memory is used by class 1
(resp. 2) processes, and 0 when the memory is not used. As soon as k processes
have been given a memory access, the system terminates in state l3 or l4 de-
pending on which process type has used the memory for the longest cumulated
period. In the figure, ] labels for autonomous transitions are omitted and label
E denotes synchronization with any event.
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Figure 5.2: An LHA to compute the difference of memory usage

The example of figure 5.3 uses indicator dependent flows. x1 counts the cu-
mulated waiting time of processes of class 1 before k of them have been served.
The flow nbreq1 corresponds to the number of tokens in place Request1 in the
current marking whereas event Serv1 corresponds to the firing of the bottom
left transition of the SPN of figure 5.1. x2 is the number of served processes of
class 1 which is updated due to event Serv1.
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l0
ẋ1:nbreq1
ẋ2:0

l1

Serv1,x2:=x2+1

E\{Serv1}

x2≥k,]

Figure 5.3: An LHA to compute the average waiting time

5.3.2 HASL expressions

The second component of a HASL formula is an expression related to the au-
tomaton. Such an expression, denotedZ, is based on moments of a path random
variable Y and defined by the grammar:

Z ::= E(Y ) | Z + Z | Z × Z
Y ::= c | Y + Y | Y × Y | Y/Y | last(y) |min(y)

|max(y) | int(y) | avg(y)

y ::= c | x | y + y | y × y | y/y

(5.1)

y is an arithmetic expression built on top of LHA data variables (x) and con-
stants (c). Y is a path dependent expression built on top of basic path random
variables such as last(y) (i.e. the last value of y along a synchronizing path),
min(y)/max(y) (the minimum, resp. maximum, value of y along a synchro-
nizing path), int(y) (i.e. the integral over time along a path) and avg(y) (the
average value of y along a path). Finally Z, the actual target of HASL verifica-
tion, is an arithmetic expression built on top of the first moment of Y (E[Y ]),
and thus allowing for the consideration of diverse significant characteristics of
Y (apart from its expectation) as the quantity to be estimated, including, for ex-
ample, V ar(Y )≡E[Y 2] − E[Y ]2, Covar(Y1, Y2)≡E[Y1 ·Y2] − E[Y1] · E[Y2]. Note
that for efficiency reasons, in the implementation of the software tool, we have
considered a restricted version of grammar (5.1), where products and quotients
of data variables (e.g. x1 ·x2 and x1/x2) are allowed only within the scope of
the last operator (i.e. not with min, max, int or avg). This is because allowing
products and quotients as arguments of path operators such as max, min re-
quires the solution of a linear programming problem during the generation of
a synchronized D×A path which, although feasible, would considerably affect
the computation time.

Semantics. Given D a DESP and (A, Z) a HASL formula, we assume that
with probability 1, the synchronizing path generated by a random execution
path of D reaches a final state. This semantical assumption can be ensured by
structural properties of A and/or D. For instance the time bounded Until
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of CSL guarantees this property. As a second example, the time unbounded
Until of CSL also guarantees this property when applied on finite CTMCs
where all terminal strongly connected components of the chain include a state
that fulfills the target subformula of the Until operator. This (still open) issue is
also addressed in [SVA05b, HJB+10]. Due to this assumption, the random path
variables are well defined and the expression Z associated with the formula
may be evaluated with expectations defined w.r.t. the distribution of a random
path conditioned by acceptance of the path. In other words, the LHA both calculates
the relevant measures during the execution and selects the relevant executions
for computing the expectations. This evaluation gives the result of the formula
(A, Z) for D.

Example. Referring to the LHA of figure 5.2, we can consider path random
variables such as Y = last(x1) (the final difference of memory usage), or Y =
avg(x1) (the average along paths of such a difference). Furthermore, with a
slight change of the automaton (setting x0 to 0 (resp. 1) when reaching l4 (resp.
l3)), E(last(x0)) will give the probability to reach l3. With the LHA of figure 5.3,
we can express (an overestimation of) the average waiting time by means of
Y = last(x1/x2). An underestimation can also be computed counting the overall
number of requesting processes instead of the number of served processes.

5.3.3 Expressiveness of HASL

In this subsection we first give an overview of related logics. Then we discuss
the expressiveness of HASL and show how it improves the existing offer to
capture more complex examples and properties, and facilitates the expression
and the computation of costs and rewards.

CSL. In [ASVB00] the logic Continuous Stochastic Logic (CSL) has been in-
troduced and the decidability of the verification problem over a finite continuous-
time Markov chain (CTMC) has been established. CSL extends the branching
time reasoning of CTL to CTMC models by replacing the discrete CTL path-
quantifiers All and Exists with a continuous path-quantifier P≺r (≺∈ {<,≤
,≥, >}, r ∈ [0, 1]). Thus a CSL formula P≺rϕ expresses that the probability of
CTMC paths satisfying condition ϕ fulfills the bound ≺ r, where ϕ is, typically,
a time-bounded Until formula. In [BHHK03a] it has been demonstrated that
the evaluation of the probability measure of a (time-bounded) CSL specification
corresponds to the transient analysis of a (modified) CTMC, for which efficient
approximate numerical procedures exist.
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CSRL. In the logic CSRL introduced by [BHHK00a], CSL is extended to take
into account Markov reward models, i.e. CTMCs with a single reward on states.
The global reward of a path execution is then the integral of the instantaneous
reward over time. In CSRL, the path operators Until and Next include also
an interval specifying the allowed values for accumulated reward. Moreover
new operators related to the expectation of rewards are defined. A numerical
approach is still possible for approximating probability measures but its com-
plexity is significantly increased. This formalism is also extended by rewards
associated with actions [CKKP05]. CSRL is appropriate for standard performa-
bility measures but lacks expressiveness for more complex ones.

asCSL. In the logic asCSL introduced by [BCH+07], the single interval time
constrained Until of CSL is replaced by a regular expression with a time in-
terval constraint. These path formulas can now express elaborated functional
requirements as in CTL∗ but the timing requirements are still limited to a single
interval globally constraining the path execution.

CSLTA. In the logic CSLTA introduced by [DHS09], the path formulas are de-
fined by a single-clock deterministic time automaton. This clock can express
timing requirements all along the path. From an expressiveness point of view,
it has been shown that CSLTA is strictly more expressive than CSL and that
path formulas of CSLTA are strictly more expressive than those of asCSL. Fi-
nally, the verification procedure is reduced to a reachability probability in a
semi-Markovian process yielding an efficient numerical procedure.

DTA. In [CHKM09], deterministic timed automata with multiple clocks are
considered and the probability for random paths of a CTMC to satisfy a formula
is shown to be the least solution of a system of integral equations. In order to
exploit this theoretical result, a procedure for approximating this probability is
designed based on a system of partial differential equations.

Observe that all of the above mentioned logics have been designed so that
numerical methods can be employed to decide about the probability measure
of a formula. This very constraint is at the basis of their limited expressive
scope which has two aspects: first the targeted stochastic models are necessar-
ily CTMCs; second the expressiveness of formulas is constrained (even with
DTA [CHKM09], the most expressive among the logic for CTMC verification,
properties of a model can be expressed only by means of clocks variables, while
sophisticated measures corresponding to variables with real-valued rates can-
not be considered). Furthermore observe that the evolution of stochastic logics
seems to have followed two directions: one targeting temporal reasoning capa-
bility (evolutionary path: CSL → asCSL → CSLTA→ DTA), the other targeting
performance evaluation capability (evolutionary path: CSRL → CSRL+impulse
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rewards). A unifying approach is currently not available, thus, for example,
one can calculate the probability of a CTMC to satisfy a sophisticated tempo-
ral condition expressed with a DTA, but cannot, assess performance evaluation
queries at the same time (i.e. with the same formalism).

HASL: a unifying approach. As HASL is inherently based on simulation for
assessing measures of a model, it naturally allows for releasing the constraints
imposed by logics that rely on numerical solution of stochastic models. From a
modeling point of view HASL allows for targeting of a broad class of stochas-
tic models (i.e. DESP), which includes, but is not limited to, CTMCs. From
an expressiveness point of view the use of LHA allows for generic variables,
which include, but are not limited to, clock variables (as per DTA). This means
that sophisticated temporal conditions as well as elaborate performance mea-
sures of a model can be accounted for in a single HASL formula, rendering
HASL a unified framework both for model-checking and for performance and
dependability studies. Note that the nature of the (real-valued) expression Z
(5.1) (characterizing the outcome of a HASL formula) generalizes the common
approach of stochastic model checking where the outcome of verification is (an
approximation of) the mean value of a certain measure (with CSL, asCSL, CSLTA

and DTA a measure of probability). Cost functions. It is also worth noting that
the use of data variables and extended updates in the LHA enables to compute
costs/rewards naturally. The rewards can be both on locations and on actions.
First using an appropriate flow in each location of the LHA, possibly depending
on the current state of the DESP we get “state rewards”. Then by considering
the update expressions on the edges of the LHA we can model sophisticated “ac-
tion rewards” that can either be a constant, depend on the state of the DESP
and/or depend on the values of the variables. It thus extends the possibilities
of CSRL and its extensions [CKKP05] where only one reward function (on states
and actions) is considered.

Finally we briefly discuss on the issue of nesting of probabilistic operators.
Nesting of probabilistic operators, which is present in all stochastic logics dis-
cussed above, is meaningful only when an identification can be made between
a state of the probabilistic system and a configuration (comprising the current
time and the next scheduled events). Whereas this identification was natural
for Markov chains, it is not possible with DESP and general distributions, and
therefore this operation has not been considered in HASL. A similar problem
arises for the steady state operator. The existence of a steady state distribution
raises theoretical problems, except for finite Markov chains, but with HASL
we allow for not only infinite state systems but also non Markovian behaviors.
However, when the DESP has a regeneration point, various steady state proper-
ties can be computed by defining the regeneration point as a final state. For the
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expressiveness of HASL, we can state that when we omit nesting and steady
state properties, HASL is at least as expressive as CSRL and DTA : Every non
nested transient CSRL or DTA formula can be expressed with HASL.

5.4 Conclusion

We have presented a new logic for expressing elaborated properties related to
stochastic processes. Contrary to previous approaches, a formula of HASL re-
turns a conditional expectation whose condition is based on acceptance by a
linear hybrid automaton. Such a logic can be employed both for probabilistic
validation of functional properties or for elaborated performance analysis as we
have illustrated with examples. In the next chapter, we present the tool that we
have developed for evaluation of HASL formulas over stochastic Petri nets.



Chapter 6

Cosmos

This chapter is related to the publication [BDD+11a].

6.1 Introduction

In order to implement a statistical model checker, different components must
be developed.

• The first one is a simulator. The design of such a tool raises two different
issues. There are two ways to simulate a trajectory of a formal model. On
the one hand, one may design an interpretive program that takes as input
the model and applies the semantic rules in order to generate the trajec-
tories. On the other hand, one may generate an execution code that corre-
sponds to the dynamic of the model. While the former choice is relatively
easy to develop, the latter provides significantly better time performance.
The second issue is related to the satisfaction of the formula by the trajec-
tory. It can be done offline once the trajectory has been generated but even
with efficient algorithms this increases significantly the time complexity.
However performing it online requires (as proposed in the previous chap-
ter) to consider that the system to be simulated is a synchronized product
of the system and an automaton corresponding to the formula.

• The second component monitors the generation of the paths by stopping
it when some criteria have been fulfilled. It can be: a maximal number
of paths, the reaching of the confidence level associated with an interval
width, etc. Generally the simplest way to monitor the simulation consists
to launch some usual statistical tool.

127
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• The third component is the parser associated with the textual description
of the formal model and the formula. It is rather standard and several
tools support the quick development of a parser.

The first tools that have been developed are are Ymer [You05] and Vesta [SVA05b].
They mainly differ by the way they monitor the number of paths to be gener-
ated. A detailed comparison between these tools can be found in [JKO+07].
Then classical tools have been enlarged with statistical model-checking features
like PRISM [KNP11] and UPPAAL [DLL+11].

In this chapter we present COSMOS, the tool that we have developed to
implement the statistical model checking of HASL formulas for models spec-
ified with Petri nets. In french, COSMOS is the acronym of: “Concepts et Outils
Statistiques pour les Modèles Stochastiques ” which means statistical concepts and
tools for stochastic models. We start by presenting the development environ-
ment and the main interface. Then, we present the structure and the main al-
gorithms used in the implementation. After that, the syntax of the input files
(Petri net and HASL files) is described. We also illustrate the application of
COSMOS with some case studies showing the efficiency of COSMOS in terms
of performance (time and memory) and the expressiveness and adequacy of
HASL.

6.2 Interface and Syntax

6.2.1 Interface

The source code of COSMOS can be partitioned into three parts:

• The parsing part which consists of parser generators written in Bison and
lexical analyzers written in Flex. It is about 2300 lines. The files generated
by bison and flex are about 15500 lines.

• The code generation part. It is about 2700 lines. This part generates a C++
code for the input files (HASL and Petri net classes).

• The simulator part. It consists of fixed files (about 2400 lines) and variables
files (HASL and Petri net classes, their sizes depend on the input files).
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Installation The source code of COSMOS is completely written in the C++ pro-
gramming language. Its compilation requires:

• The GNU Compiler Collection (GCC) [GCC], more precisely, the C++
GNU compiler.

• The GNU make utility [GNU].

• The Boost C++ libraries [BOO], which are used to manage the random
number generation.

The current version of COSMOS runs under Linux and MAC-OS operating
systems.

Execution. The execution of COSMOS requires two files as inputs: filename.gspn
which describes the generalized stochastic Petri net and filename.lha which de-
scribes the HASL formula (an automaton and a set of expressions). The gram-
mars are given in the next subsection. The generator of COSMOS parses the in-
puts and produces a C++ code of two classes: the Petri net class and the HASL
class. The C++ compiler compiles these files and links them with other objects
files (which were generated during the installation) to produce the executable
file of COSMOS.

Figure 6.1 summarizes the execution of COSMOS.

Since it is easier to define the input Petri net by a graphical interface, as
does GreatSPN [CFGR95, Gre], we added an option to DSPN [AD10, DSP] that
allows to export nets which were drawn in GreatSPN to the input format of
COSMOS.

We plan to specify our nets and automata in Coloane [COL], a generic graph
editor.

Let us list the main commands of COSMOS.

• sim: This is the main command. It launches the simulation.

• width: It specifies the confidence interval width.

• level: It specifies the confidence level.

• batch: It specifies the batch size.

• maxpaths: It specifies the maximum number of paths to generate.
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Figure 6.1: From input files to simulation.

• params: It displays the current value of parameters.

• help: It displays the commands.

• stop: It exits COSMOS.

The results of a COSMOS execution are summarized in an output file named
filename.res. It contains the following informations.

• a point estimation of each expression;

• the sample standard deviation;

• the number of generated trajectories and the number of successful trajec-
tories;

• a confidence interval for each expression;

• the execution time.



6.2. INTERFACE AND SYNTAX 131

6.2.2 Syntax

We first describe the syntax of some common symbols before giving the syntax
of each input file.

A natural number <Integer>, a real number <Real> or string type <Str> are
defined like this:

〈Integer〉 ::= [0-9]+| [0-9]*
〈Real〉 ::= ([0-9]+| [0-9]*[̇0-9]+)([eE][-+]?[0-9]+)?
〈Str〉 ::= [a-zA-Z][a-zA-Z_0-9]*

All the symbols finishing by "Tag" refer to a tag of an object. These symbols
are string type:

• <IConstTag>: A tag of a natural number constant.

• <RConstTag>: A tag of a real constant.

• <PTag>: A tag of a Petri net place.

• <TTag>: A tag of a Petri net transition.

• <LTag>: A tag of an automaton location.

• <VTag>: A tag of an automaton variable.

It is useful to define some integer constants <IConstant> or real constants
<RConstant> which can be used by other definitions:

〈IConstant〉 ::= "const" "int" 〈IConstTag〉 "=" 〈Integer〉 ";"
〈RConstant〉 ::= "const" "double" 〈RConstTag〉 "=" 〈Real〉 ";"

Some numerical attributes (marking values, transitions parameters, arcs mul-
tiplicity, variables rate, etc.) may be introduced as a function of numerical val-
ues (real and/or integer), constants and/or Petri net places. Let us give the
grammar of such functions.

The first kind of functions is <RFormula> for real formula. It includes nu-
merical values (integer or real) and constants (integer or/and real).
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〈RFormula〉 ::= 〈Real〉 | 〈RConstTag〉 | 〈IFormula〉 | 〈RFormula〉
〈ArOP〉 〈RFormula〉 | "(" 〈RFormula〉 ")"

The second kind is <IFormula> for integer formula. It includes numerical
values (integer or real) and constants (integer or/and real) but its value should
always be a natural number.

〈IFormula〉 ::= 〈Integer〉 | 〈IConstTag〉 | 〈IFormula〉 〈ArOpRes〉
〈IFormula〉 | "(" 〈IFormula〉 ")" | "floor" "(" 〈RFormula〉 ")"

The third kind of functions is <MRFormula> for marking real formula. It
includes numerical values (integer or real), constants (integer or/and real) and
Petri places.

〈MRFormula〉 ::= 〈PTag〉 | 〈RFormula〉 | 〈MRFormula〉 〈ArOp〉
〈MRFormula〉 | "(" 〈MRFormula〉 ")"

The last type of functions is <MIFormula> for marking integer formula. It
includes numerical values (integer or real), constants (integer or/and real) and
Petri places but its value should be always a natural number.

〈MIFormula〉 ::= 〈PTag〉 | 〈IFormula〉 | 〈MIFormula〉 〈ArOpRes〉
〈MIFormula〉 | "(" 〈MIFormula〉 ")" | "floor" "(" 〈RFormula〉 ")"

These functions are defined with the following set of arithmetic operators
called <ArOp> or its restricted version <ArOpRes>:

〈ArOp〉 ::= "+" | "-" | "*" | "/" | "̂ "
〈ArOpRes〉 ::= "+" | "-" | "*" | "̂ "

GSPN Syntax. The definition of the Petri net consists of:

〈GSPN〉 ::= {〈IConstant〉 } {〈RConstant〉 } 〈NT〉 〈NP〉 〈PList〉 〈TList〉
〈InitMarking〉 〈TransitionsDef〉 [〈InArcs〉 ] [〈OutArcs〉 ] [〈InhibArcs〉
]
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In the first part, some integer and/or real constants can be declared. The
size of the Petri net (number of transitions and places) are declared.

〈IConstant〉 ::= "const" "int" 〈IConstTag〉 "=" 〈Integer〉 ";"
〈RConstant〉 ::= "const" "double" 〈RConstTag〉 "=" 〈Real〉 ";"
〈NT〉 ::= "NbTransitions" "=" 〈Integer〉 ";" | "NbTransitions" "="
〈IFormula〉 ";"
〈NP〉 ::= "NbPlaces" "=" 〈Integer〉 ";" | "NbPlaces" "=" 〈IFormula〉
";"

Then, the set of transitions and places are defined.

〈PList〉 ::= "PlacesList" "=" "{" 〈PTags〉 "}" ";"
〈PTags〉 ::= 〈PTag〉 | 〈PTags〉 "," 〈PTag〉
〈TList〉 ::= "TransitionsList" "=" "{" 〈TTags〉 "}" ";"
〈TTags〉 ::= 〈TTag〉 | 〈TTags〉 "," 〈TTag〉

After that, the initial marking is given. By default, all places contain zero
token.

〈InitMarking〉 ::= "Marking" "=" "{" 〈Inits〉 "}"
〈Inits〉 ::= 〈Init〉 | 〈Init〉 "," 〈Inits〉
〈Init〉 ::= "(" 〈PTag〉 "," IFormula ")"

The next step consists of a full description of the transitions. Observe that
transitions which are exponentially distributed, are defined differently from
those with other distributions.

〈TransitionsDef〉 ::= "Transitions" "=" "{" 〈Transitions〉 "}" ";"
〈Transitions〉 ::= 〈Transition 〉 | 〈Transitions〉 "," 〈Transition〉
〈Transition〉 ::= 〈Exp〉 | 〈NonExp〉

The memory and server policies have the following syntax.

<Service> :
“SINGLE” ;
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“INFINITE” ;
“MULTIPLE” “(”<integer>“)”.
<Memory> :
“ENABLEDMEMORY” ;
“AGEMEMORY”.

A transition with an exponential distribution can have a marking dependent
parameter. A priority and a weight are also given. Then a memory policy and
a service are chosen:

〈Exp〉 ::= "(" 〈TTag〉 "," "EXPONENTIAL" "(" 〈MRFormula〉 ")"
"," 〈Priority〉 "," 〈Weight〉 "," 〈Memory〉 "," 〈Service〉 ")"

In COSMOS, a transition with non exponential distribution cannot have mark-
ing dependent parameters. A priority and weight are also given. Then a mem-
ory policy is chosen The service policy is forced: it is single server.

〈NonExp〉 ::= "(" 〈TTag〉 "," 〈Dist〉 "," 〈Priority〉 "," 〈Weight〉 ","
〈Memory〉 ")"
〈Dist〉 ::= "IMMEDIATE" | "DETERMINISTIC" "(" 〈Real〉 ")" |
"UNIFORM" "(" 〈Real〉 "," 〈Real〉 ")" "ERLANG" "(" 〈Integer〉 ","
〈Real〉 ")" | "GAMMA" "(" 〈Real〉 "," 〈Real〉 ")" | "TRIANGLE"
"(" 〈Real〉 "," 〈Real〉 "," 〈Real〉 ")" | "GEOMETRIC" "(" 〈Real〉 ","
〈Real〉 ")" | "LOGNORMAL" "(" 〈Real〉 "," 〈Real〉 ")"

The final part consists of introducing the different matrices of the net. Ob-
serve that the arc multiplicities can be marking dependent.

〈In〉 ::= "InArcs" "=" "{" 〈InArcs〉 "}" ";"
〈InArcs〉 ::= 〈InArc〉 | 〈InArcs〉 "," 〈InArcs〉
〈InArc〉 ::= "(" 〈PTag〉 "," 〈TTag〉 ")" | "(" 〈PTag〉 "," 〈TTag〉 ","
〈MIFormula〉 ")"
〈Out〉 ::= "OutArcs" "=" "{" 〈OutArcs〉 "}" ";"
〈OutArcs〉 ::= 〈OutArc〉 | 〈OutArcs〉 "," 〈OutArcs〉
〈OutArc〉 ::= "(" 〈TTag〉 "," 〈PTag〉 ")" | "(" 〈TTag〉 "," 〈PTag〉 ","
〈MIFormula〉 ")"
〈Inhib〉 ::= "InhibArcs" "=" "{" 〈InhibArcs〉 "}" ";"
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〈InhibArcs〉 ::= 〈InhibArc〉 | 〈InhibArcs〉 "," 〈InhibArcs〉
〈InhibArc〉 ::= "(" 〈PTag〉 "," 〈TTag〉 ")" | "(" 〈PTag〉 "," 〈TTag〉
"," 〈MIFormula〉 ")"

HASL Syntax. The definition of the HASL formula consists of:

〈HASL〉 ::= {〈IConstant〉 } {〈RConstant〉 } 〈NL〉 〈NV〉 〈LList〉
〈VList〉 〈Expression〉 〈InitLoc〉 〈FinalLoc〉 〈LocDef〉 [〈Edges〉 ]

In the first part some constants can be declared. Then the number of loca-
tions and variables are defined.

〈IConstant〉 ::= "const" "int" 〈IConstTag〉 "=" 〈Integer〉 ";"
〈RConstant〉 ::= "const" "double" 〈RConstTag〉 "=" 〈Real〉 ";"
〈NL〉 ::= "NbLocations" "=" 〈Integer〉 ";" | "NbLocations" "="
〈IFormula〉 ";"
〈NV〉 ::= "NbVariables" "=" 〈Integer〉 ";" | "NbVariables" "="
〈IFormula〉 ";"

Afterward, locations and variables are declared:

〈LList〉 ::= "LocationsList" "=" "{" 〈LTags〉 "}" ";"
〈LTags〉 ::= 〈LTag〉 | 〈LTags〉 "," 〈LTag〉
〈VList〉 ::= "VariablesList" "=" "{" 〈VTags〉 "}" ";"
〈VTags〉 ::= 〈VTag〉 | 〈VTags〉 "," 〈VTag〉

Then the HASL expression is introduced:

〈HAslExp〉 ::= {〈ExpectExp〉 ";" }
〈ExpectExp〉 ::= "AVG" "(" 〈F〉 ")" | 〈ExpectExp〉 〈ArOp〉 〈ExpectExp〉
〈F〉 ::= 〈H〉 | 〈F〉 "/" 〈RFormula〉 | 〈F〉 "*" 〈RFormula〉 | 〈F〉
〈ArOp〉 〈F〉 | "min" "(" 〈F〉 "," 〈F〉 ")" | "max" "(" 〈F〉 "," 〈F〉 ")"
〈H〉 ::= "Last" "(" 〈LX〉 ")" | "Min" "(" 〈LX〉 ")" | "Max" "(" 〈LX〉
")" | "Integral" "(" 〈LX〉 ")" | "Mean" "(" 〈LX〉 ")" | "Var" "(" 〈LX〉
")"
〈LX〉 ::= 〈term〉 | 〈term〉 "+" 〈term〉 | 〈term〉 "-" 〈term〉
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〈term〉 ::= 〈VTag〉 | 〈Real〉 "*" 〈VTag〉 | "(" 〈MRFormula〉 ")" "*"
〈VTag〉

Initial and final locations are declared:

〈InitLoc〉 ::= "InitialLocations" "=" "{" 〈LTags〉 "}" ";"
〈FinalLoc〉 ::= "FinalLocations" "=" "{" 〈LTags〉 "}" ";"

The locations are fully described. Each location is tagged with <LTag> and
satisfies a property on the marking of the Petri net. At each location, the rates
of the variables are given. By default, rates are set to zero.

〈LocDef〉 ::= "Locations" "=" "{" 〈Ldefs〉 "}" ";"
〈Ldefs〉 ::= 〈Ldef〉 | 〈Ldefs〉 "," 〈Ldef〉
〈Ldef〉 ::= "(" 〈LTag〉 "," 〈MLFormula〉 "," "(" 〈Vrates〉 ")" ")"

〈MLFormula〉 ::= "TRUE" | 〈MRFormula〉 〈CompOp〉 〈MRFormula〉
| 〈MLFormula〉 〈LogOp〉 〈MLFormula〉 | "!" "(" 〈MLFormula〉 ")"
〈CompOp〉 ::= "=" | ">" | "<" | ">=" | "<="
〈LogOp〉 ::= "&" | "|"

〈Vrates〉 ::= 〈Vrate〉 | 〈Vrates〉 "," 〈Vrate〉
〈Vrate〉 ::= 〈VTag〉 ":" MRFormula

Finally, the edges are defined. An edge connects a location source to a loca-
tion target ( <LTag> , <LTag> ). Each edge is associated with a set of Petri net
transitions <Actions>. If the edge is synchronized with all Petri transitions then
<Actions> takes value "ALL". If the edge is not synchronized with the Petri net
(i.e an autonomous edge) then <Actions> takes value "#". Each edge is associ-
ated with a set of linear constraints on automaton variable <Constraints>. If the
edge is not subject to any constraint then <Constraints> takes value "#". Each
edge is also associated with a set of variable updates <Ups>. If no update is
required then <Ups> takes value "#".

〈Edges〉 ::= "Edges" "=" "{" 〈Edefs〉 "}" ";"
〈Edefs〉 ::= 〈Edef〉 | 〈Edefs〉 "," 〈Edef〉
〈Edef〉 ::= "(" "(" 〈LTag〉 "," 〈LTag〉 ")" "," 〈Actions〉 "," 〈Constraints〉
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"," 〈Updates〉 ")"
〈Actions〉 ::= "#" | "{" 〈PTags〉 "}" | "ALL" "
" "{" 〈PTags〉 "}"
〈Constraints〉 ::= "#" | Constraint | Constraint "&" Constraints
〈Constraint〉 ::= 〈LX〉 "=" 〈MRFormula〉 | 〈LX〉 ">=" 〈MRFormula〉
| 〈LX〉 "<=" 〈MRFormula〉
〈Updates〉 ::= "{" 〈Ups〉 "}" ";"
〈Ups〉 ::= 〈Up〉 "," 〈Ups〉
〈Up〉 ::= 〈VTag〉 "=" 〈VMRFormula〉 | 〈VMRFormula〉 ::= 〈VTag〉
| 〈MRFormula〉 | 〈VMRFormula〉 〈ArOp〉 〈VMRFormula〉

6.3 Algorithms

In this section we describe the most important algorithms used by COSMOS. We
start by the main algorithm in subsection 6.3.1. Then we describe how a single
trajectory of the synchronized productN×A is generated in subsection 6.3.2. In
subsection 6.3.3 we show how the event queue is managed. In subsection 6.3.4
we describe the Petri net class. In subsection 6.3.5 the automaton class is de-
scribed and finally in subsection 6.3.6 we show how the HASL expression is
updated.

6.3.1 Main Algorithm

Assume that we want to estimate a HASL formula:

(A, H = AV G (F (f1 (L1 (X)) , ..., fn (Ln (X)))))

on a Generalized Stochastic Petri Net N with respect to the statistical parame-
ters SP = (width, 1− α, batch,maxpaths).

The main algorithm of COSMOS is described by algorithm 6.1. It consists of
two nested while loops.

The first loop (line 3) launches the second loop and updates the current con-
fidence interval width (w) (line 9) by using the the current variance (V ar), the
number of successful trajectories (Ksucc) and the normal percentile Z. The loop
stops if the current width becomes less than the desired width or if the total
number of generated trajectories (K) is greater than the allowed number.
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The second loop (line 5) generates a successful batch of trajectories. At each
iteration, it launches the procedure SimulateSinglePath() (see algorithm 6.2)
which generates a trajectory. If the generated trajectory is not a successful one,
it is omitted otherwise its value (val) is used in procedure UpdateStatistics to
update the expectation and the variance of H . The loop stops when it generates
a batch of successful trajectories or when the total number of allowed trajecto-
ries is exceeded.

Observe that procedure NormalPercentile(1− α/2) computes the normal
percentile with a given threshold α.

Algorithm 6.1: RunSimulation()
Data: N ; A; H and SP

Result: Ĥ and CI
(
Ĥ
)

1 begin
2 Ĥ = 0; K = 0; Ksucc = 0; w =∞; Z =

NormalPercentile(1− α/2)
3 while (w > width and K < maxpaths) do
4 i = 0
5 while (i < batch and K < maxpaths) do
6 (success, val) = SimulateSinglePath(); K = K + 1
7 if (success) then
8 Ksucc = Ksucc+ 1; i = i+ 1;

UpdateStatistics(Ĥ, val,Ksucc)

9 UpdateWidth(V ar,Ksucc, Z)

10 return Ĥ and CI
(
Ĥ
)

6.3.2 Single Path Generation

Now we describe how a trajectory of the synchronized product N × A is gen-
erated. This is done by algorithm 6.2. During its execution the algorithm es-
sentially maintains in the memory the simulation time (SimTime), the Petri net
marking (Mark), the queue of scheduled events (Queue), the automaton loca-
tion (loc), the values of the automaton variables and the values of the functions
occurring in the HASL formula.

It consists of an initialization phase (from line 2 to line 4 ) and a while loop
(line 5) In the initialization phase, SimeT ime is set to zero, Mark is initialized
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to the initial marking of the Petri net, function A.EnabledInitLocation(Mark)
selects the current location among the initial locations of the automaton accord-
ing to the current marking of the Petri net. Procedure GenerateInitialQueue()
builds the initial queue. Function A.GetEnabled_A_Edge determines the en-
abled autonomous edge AE.

Algorithm 6.2: SimulateSinglePath()
Data: N ; A; F (f1 (L1 (X)) , ..., fn (Ln (X)))
Result: success and val

1 begin
2 SimTime = 0; Mark = N .InitMarking; Loc =

A.EnabledInitLocation(Mark)
3 GenerateInitialQueue()
4 AE = A.GetEnabled_A_Edge(SimTime, Loc,Mark)
5 while (¬(Queue.IsEmpty()) or AE.index > −1) do
6 Event = Queue.top()
7 while (Event.time ≥ AE.F iringT ime and AE.index > −1) do
8 A_Exp.Update(AE)
9 AE = A.GetEnabled_A_Edge(SimTime, Loc,Mark)

10 if (Event == NullEvent) then
11 SE.index = −1

12 else
13 OldMark = Mark; N .F ire(Event.index)
14 ∆t = Event.time− SimTime
15 SE =

A.GetEnabled_S_Edge(SimTime,Event, Loc, OldMark,Mark)

16 if (SE.index < 0) then
17 return (false, val)

18 else
19 A_Exp.Update(SE)
20 Queue.Update(Event.index)

21 AE = A.GetEnabled_A_Edge(SimTime, Loc,Mark)

22 return (false, val)

The while loop (line 5) run if at least one the following conditions holds:

• The queue is not empty.
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• There exists an enabled autonomous edge (AE.index > −1).

At line 6, the first event of the queue is selected.

The while (line 7) represents the situation where the enabled autonomous
edge is scheduled before the selected event or the situation where an enabled
autonomous edge exists but the queue is empty. At each iteration of the loop,
the functionA_Exp.Update(AE) is called (see algorithm 6.3) and a new enabled
autonomous edge is determined. The loop continues running until the new
autonomous edge is scheduled after the selected event or there is no enabled
autonomous edge.

If the queue is empty we conclude that there is no enabled synchronized
edge (line 10). Otherwise, the Petri net transition corresponding to the event is
fired (line 13) and function A.GetEnabled_S_Edge(...) (line 14) determines the
enabled synchronized edge SE. If there is no enabled synchronized edge (line
16) then the algorithm terminates and the trajectory is unsuccessful (line 17).
Otherwise function A_Exp.Update(SE) is called again (line 19) and the event
queue is updated according to the fired transition and the resulting marking
(line 20, see algorithm 6.4).

At line 21, a new autonomous edge is determined.

If initially, the queue is empty and there is no enabled autonomous edge the
algorithm does not enter the first while loop and terminates from line 21 with an
unsuccessful trajectory.

The next algorithm updates the configuration of the automaton and the ex-
pression to evaluate. It is called by algorithm 6.2 when an autonomous or a
synchronized edge ED is fired.

At line 3, the values of the variables are updated. Then the values of the
HASL function are updated (line 4). After that, the simulation time is updated
(line 5). The values of the variables may be updated again if there is some
update function associated with the fired edge (line 6). At line 7, the current
location of the automaton is updated, its new value is simply the target of the
fired edge. Finally, if the new location is final (line 8), then a final update of
the HASL functions is processed (line 9), the value of F () is computed and the
algorithm terminates with a successful trajectory.

Table 6.1 summarizes the meaning of variables and procedures used in al-
gorithms 6.2 and 6.3
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Algorithm 6.3: A_Exp.Update()
Data: an edge ED
Result: Update automaton and expressions values

1 begin
2 ∆t = ED.FiringT ime− SimTime
3 V arUpdates(SimTime,∆t, Loc,Mark)
4 FuncUpdates(SimTime,∆t,Mark)
5 SimTime = ED.FiringT ime
6 EdgeUpdates(ED.index)
7 Loc = Edge[ED.index].target
8 if (A.IsF inal(Loc)) then
9 FuncUpdates(SimTime, 0,Mark)

10 val = F ()
11 return (true, val)

6.3.3 Events Queue Management

The events queue is encoded as a binary min-heap structure. An event e in the
heap is a tuple: (index, time, priority, w) where:

• index ∈ N is the index of the associated Petri net transition.

• time ∈ R+ is the scheduled date of the transition firing. It is generated
according to the delay distribution of the transition.

• priority ∈ N is the priority of the associated transition.

• w ∈ R+ is generated according to an exponential distribution with λ =
weight, where, weight is the weight of the associated transition. We justify
later this choice.

So here the event located at the top will be the first to occur. The comparison
rule between events is:

(i1, t1, pr1, w1) < (i2, t2, pr2, w2) iff



t1 < t2

or

t1 = t2 and pr1 > pr2

or

t1 = t2 and pr1 = pr2 and w1 < w2



142 CHAPTER 6. COSMOS

Variables or procedures Meaning
SimTime The current simulation time
Mark The current marking inN
OldMark The previous marking inN
Loc The current location inA
Event An instance of a Petri net transition t generated according

to the definition of t (see 6.3.3)
NullEvent Indicates that the queue is empty.

(NullEvent.index = −1, NullEvent.time =∞)
AE An autonomous edge ofA. SE.index = −1 means

that no autonomous edge is enabled
SE A synchronized edge ofA. AE.index = −1 means

that no synchronized edge is enabled
∆t The time from now (SimTime) until the next edge firing inA
A.EnabledInitLocation() Selects the enabled initial location ofA from the set of initial

locations according to the initial Petri net marking
A.GetEnabled_A_Edge() Selects the enabled autonomous edge.
A.GetEnabled_S_Edge() Selects the enabled synchronized edge.
V arUpdates() Updates the values of the variables (due to time elapse of ∆t).
EdgeUpdates() Updates the values of the variables (updates set on the edges).
FuncUpdates() Updates the values of L1(X), ..., Ln(X) and f1(L1(X)), ..., fn(Ln(X))
F () Computes the value of F (f1(L1(X)), ..., fn(Ln(X)))
A.IsF inal() Checks if the current location is final
GenerateInitialQueue() Initializes the queue of events
Queue.top() Returns the first event in the queue
Queue.IsEmpty() Checks if the queue is empty
Queue.Update() Updates the events queue
N .F ire() Fires a Petri net transition

Table 6.1: Main variables and procedures

Let us justify the use of the exponential distribution to randomly select an
event among those scheduled at the same time and with same priority. Let
consider the following set of events:

{e1(i1, t, pr, weight1), e2(i2, t, pr, weight2), ..., ek(ik, t, pr, weightk)}

The classical method to randomly select an event in this case consists to de-
fine a discrete random variable X on the space Ω{i1, ..., ik} with distribution:
Prob (X = ij) =

weightjP
l∈{1,...,k} weightl

and generate a random number according to
this distribution. The main difficulty here is to find all the nodes in the heap
having the same minimal delay and the same maximal priority. Instead we
make a random sample per node such that whatever the set of nodes that can
be selected the individual samples provide the selected node. Let us associate
with the considered set of events a set of random variables X1, ..., Xk expo-
nentially distributed with rate λk = weightk. Let us consider a random sam-
ple w1, ..., wk where each wj is an observation of Xj . The rule selects ej such
that wj = min{w1, ..., wk}. The rule is sound since Prob(Xj ≤ minl 6=j{Xl}) =

λjP
l∈{1,...,k} λl

.
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The traditional algorithms for adding or removing an event from the heap
are implemented as they are known in the literature. Another table PosInHeap
is added with a fixed size equal to the number of Petri net transitions, Where
PosInHeap[t] is equal to the position of t in the heap or (−1) if t is not in the
heap.

Algorithm 6.4 shows how the queue is updated after firing a transition t.

When the transition t is fired, the net will be in a new marking, so some
transitions will be enabled, some others will be disabled and others need to be
re-sampled (Marking dependent transitions). The natural way to do that is to
check all the net transitions. But this is a waste of time. We will do that by
building for each transition t the following sets:

• PossiblyEnabled[t], the set of transitions that may be enabled after firing t;

• PossiblyDisabled[t], the set of transitions that may be disabled after firing
t;

• FreeMarkDep[t], the set of marking dependent transitions which are not
in PossiblyEnabled[t] or in PossiblyDisabled[t].

These sets belong to the Petri net class. Algorithm 6.7, in the next subsec-
tion, constructs these sets. This algorithm is executed once, before starting the
simulation. It accelerates the update of the events queue after an event queue.

Since we also manage the age memory policy, some tables are needed:

• ActDate indexed by the transitions. ActDate[t] is equal to last date of acti-
vation. The value of ActDate[t] is updated at the beginning of an enabling
period and it is set to (−1) after t has been fired.

• ResidualT ime indexed by the transitions. ResidualT ime[t] is equal to the
residual time before firing t. The value is updated at the end of an enabling
period.

Age memory policy is incompatible with the marking dependent rate.

Let us describe algorithm 6.4. Assume that t is the transition which was
fired. In the first part (from line 2 to line 19), the algorithm examines transitions
t′ that may be enabled (line 2). If t′ is not enabled there is nothing to do other-
wise (line 3) additional tests will be done. If t′ is already in the queue (line 16)
it will be re-sampled only if it is marking dependent. If t′ is not in the queue,



144 CHAPTER 6. COSMOS

it will be inserted as a new event. The event to insert is generated, taking in
account the memory policy of the transition (from line 5 to line 15).

In the second part (from line 20 to line 29), the algorithm examines transi-
tions t′ that may be disabled (line 20). If t′ is not in the queue there is nothing to
do otherwise (line 21) additional tests will be done. If t′ is disabled (line 22) then
the associated event is deleted from the queue (line 23). If t′ is enabled then it
will be re-sampled only if it is marking dependent (line 27).

In the last part (from line 30 to line 36), the algorithm re-samples marking de-
pendent transitions which are not in PossiblyEnabled[t] or in PossiblyDisabled[t].

6.3.4 Petri Net Algorithms

Algorithm 6.5 checks if a given transition t is enabled. Let us recall that Petri net
arcs as they are considered here are marking dependent, which requires tests at
lines 3 and 6 to avoid arcs valuated by 0.

Algorithm 6.6 fires a Petri net transition.

Algorithm 6.7 constructs the sets: PossiblyEnabled, PossiblyDisabled and
FreeMarkDep.

6.3.5 Automaton Algorithms

The most important algorithms in the automaton class are: GetEnabled_S_Edge
and GetEnabled_A_Edge which respectively return the enabled synchronized
edge and the enabled autonomous edge and when they should be traversed.

Assume that e is the first scheduled event and the automaton is in a location
loc. GetEnabled_S_Edge examines the set of synchronized edges which start
from loc and contain transition t associated with e. This set is given by the
data structure TransitionLocation[loc, t] = {s_edgei1, s_edgei2, ...}, built before
launching the simulation. Then, an edge from this set is enabled if its constraints
are satisfied by the variables at time e.time and the target location is satisfied by
the new marking. By determinism, at most one synchronized edge is enabled.
GetEnabled_S_Edge returns a pair (edge_index, e.time). The traversing time of
the selected edge is the occurring time of the event. If no edge is enabled the
pair (−1,∞) is returned.
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Algorithm 6.4: Queue.Update()
Data: The fired transition t
Result: An updated heap

1 begin
2 for (t′ ∈ PossiblyEnabled[t]) do
3 if (N .IsEnabled(t′)) then
4 if (PosInHeap[t′] < 0) then
5 if (t′.IsAgeMemory) then
6 if (ActDate[t′] < 0) then
7 Event = GenerateEvent(t′, SimTime)
8 Queue.insert(Event)
9 ResidualT ime[t′] = Event.time− SimeT ime

10 else
11 Event = GenerateEvent(t′, SimTime)
12 Event.time = SimTime+ResidualT ime[t′], Queue.insert(Event)

13 ActDate[t′] = SimTime

14 else
15 Event = GenerateEvent(t′, SimTime), Queue.insert(Event)

16 else
17 if (t′.IsMarkingDependent) then
18 Event = GenerateEvent(t′, SimTime)
19 Queue.replace(Event, PosInHeap[t′])

20 for (t′ ∈ PossiblyDisabled[t]) do
21 if (PosInHeap[t′] > −1) then
22 if (¬N .IsEnabled(t′)) then
23 Queue.remove(PosInHeap[t′])
24 if (t′.IsAgeMemory) then
25 ResidualT ime[t′] = SimTime−ActDate[t′]

26 else
27 if (t′.IsMarkingDependent) then
28 Event = GenerateEvent(t′, SimTime)
29 Queue.replace(Event, PosInHeap[t′])

30 for (t′ ∈ FreeMarkDep[t]) do
31 if (N .IsEnabled(t′)) then
32 if (PosInHeap[t′] < 0) then
33 Event = GenerateEvent(t′, SimTime), Queue.insert(Event)

34 else
35 Event = GenerateEvent(t′, SimTime)
36 Queue.replace(Event, PosInHeap[t′])

Assume that the automaton is in a location loc at time SimTime. Then pro-
cedure GetEnabled_A_Edge examines the autonomous edges starting from loc.
The first step consists in building the set of autonomous edges starting from
loc such that their target location satisfies the current marking. The second
step consists in computing, for the selected edges, time intervals [lowi, upi] in
which each edge can be traversed. The third step consists in eliminating edges
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Algorithm 6.5: IsEnabled(t)
Data: A Petri net transition t
Result: true if t is enabled

1 begin
2 for (p ∈ Γ−(t)) do
3 if (In[t, p] > 0) then
4 if In[t, p] < Marking[p] then
5 return false

6 for (p ∈ Γo(t)) do
7 if (Inhib[t, p] > 0) then
8 if Inhib[t, p] ≥Marking[p] then
9 return false

10 return true

Algorithm 6.6: Fire(t)
Data: A Petri net transition t
Result: Marking update

1 begin
2 for (p ∈ Γ−(t)) do
3 Marking[p] = Marking[p]− In[t, p]

4 for (p ∈ Γ+(t)) do
5 Marking[p] = Marking[p] +Out[t, p]

Algorithm 6.7: PostFiring()
Data: A Petri netN
Result: PossiblyEnabled, PossiblyDisabled, FreeMarkDep

1 begin
2 for (t ∈ N .T ransitions) do
3 for (p ∈ Γ−(t)) do
4 for (t′ ∈ Γ+(p)) do
5 PossiblyDisabled[t] = PossiblyDisabled[t] ∪ {t′}

6 for (t′ ∈ Γo(p)) do
7 PossiblyEnabled[t] = PossiblyEnabled[t] ∪ {t′}

8 for (p ∈ Γ+(t)) do
9 for (t′ ∈ Γ+(p)) do

10 PossiblyEnabled[t] = PossiblyEnabled[t] ∪ {t′}

11 for (t′ ∈ Γo(p)) do
12 PossiblyDisabled[t] = PossiblyDisabled[t] ∪ {t′}

13 for (t′ ∈ N .T ransitions) do
14 if (t′.MarkingDependent) then
15 if (t′ /∈ PossiblyEnabled[t] and t′ /∈ PossiblyDisabled[t]) then
16 FreeMarkDep[t] = FreeMarkDep[t] ∪ {t′}
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having upi < SimTime. In the forth step, the traversing time is computed for
the remaining edges TraversingT ime = max{lowi, SimTime}. Finally, the au-
tonomous edge with the minimal TraversingT ime is selected as the enabled
autonomous edge and a pair (edge_index, TraversingT ime), is returned. Like
synchronized edges and by determinism at most one autonomous edge is en-
abled. These steps are done edge per edge.

Let us illustrate how the time interval [lowi, upi] is computed for an au-
tonomous edge with constraints:∑

j

a
(1)
j xj ./ b1 (6.1)

∑
j

a
(2)
j xj ./ b2 (6.2)

where ./ ∈ {=,≤,≥}. First, [lowi, upi] is initialized with [SimTime,∞]. Then a
time interval [low1

i , up
(1)
j ] is computed for the first equation.

Equation 6.1 can be rewritten as:

∀t ≥ t0,
∑
j

(
a

(1)
j (t− t0) rj + xj (t0)

)
./ b1 (6.3)

where, t0 = SimTime, rj is the rate of the variable xj in the current location and
xj (t0) is the value of xj at time t0.

(6.3)⇒ t
∑
j

(
a

(1)
j rj

)
− t0

∑
j

(
a

(1)
j rj

)
+
∑
j

(
a

(1)
j xj(t0)

)
./ b1 (6.4)

If
∑

j

(
a

(1)
j rj

)
= 0, then:

[low1
i , up

(1)
j ] =

{
]−∞,+∞[ If − t0

∑
j

(
a

(1)
j rj

)
+
∑

j

(
a

(1)
j xj(t0)

)
./ b1

∅ otherwise
(6.5)

If
∑

j

(
a

(1)
j rj

)
6= 0 let z =

b1+t0
P

j

“
a
(1)
j rj

”
−
P

j

“
a
(1)
j xj(t0)

”
P

j

“
a
(1)
j rj

” and we will distinguish

two cases according to the sign of
∑

j

(
a

(1)
j rj

)
.

(1) If
∑

j

(
a

(1)
j rj

)
> 0 then:

[low1
i , up

(1)
j ] =


]−∞, z] if ./ is ≤
[z,+∞[ if ./ is ≥
[z, z] if ./ is =

(6.6)
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(2) If
∑

j

(
a

(1)
j rj

)
< 0 then:

[low1
i , up

(1)
j ] =


]−∞, z] if ./ is ≥
[z,+∞[ if ./ is ≤
[z, z] if ./ is =

(6.7)

The new time interval for the edge is now [lowi, upi] = [lowi, upi]∩[low1
i , up

(1)
j ].

If at this stage [lowi, upi] = ∅ the edge is not enabled and the other constraints
are not examined.

6.3.6 HASL Expression Update

A HASL expression can be written as: H = AV G (F (f1 (L1 (X)) , ..., fn (Ln (X))))

Where, Li(X) is a linear expression on X , thus, Li(X) =
∑

j a
(i)
j xj . Li(X) can

also be viewed as a linear variable on time t, Li(X) = ai × t+ bi.

fi ∈ {Last,Min,Max, Integral,Mean, V ar} is a HASL function.

• Last(Li(X)): computes the last value of Li(X) over a trajectory.

• Min(Li(X)): computes the minimum value of Li(X) over a trajectory.

• Max(Li(X)): computes the maximum value of Li(X) over a trajectory.

• Integral(Li(X)): computes the integral I =
∫ T

0
Li(X)dt.

• Mean(Li(X)): computes the mean value of Li(X) over a trajectory. In
other words M = 1

T

∫ T
0
Li(X)dt = I

T
.

• V ar(Li(X)): computes the variability of Li(X) over a trajectory, defined
by V = 1

T

∫ T
0

(Li(X)−M)2 dt or equivalently V = 1
T

∫ T
0

(Li(X))2 dt−M2.

F : is an arbitrary function.

The values of Li(X) are updated on the fly during the generation of a trajec-
tory. The value of F is computed when the trajectory is achieved. In terms of
probability, X(t) and Li(X(t)) are stochastic processes, fi(Li(X)) and F (.) are
random variables, and AV G(F ()) is the expectation of F (.).

The value of Last(Li(X)) is the last value of Li(X). For the other functions,
let us consider a trajectory generated in [0, T ] and denote:
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• k, the kth jump of the automaton (i.e an edge is traversed).

• tk, the date of the kth.

• Let us also consider kth period of time [tk, tk+1[ where the automaton is
in the same location and OldLXk

i (and LXk
i ) the value of Li(X) at the

beginning (resp. at the end) of the kth period. Note that the values of LXk
i

OldLXk+1
i are not necessary equal because of point update specified on

the automaton edges.

Now let fki be the value of fi(Li(X)) at the end of the kth period. We recur-
sively the value of fi(Li(X)):

Lastki = LXk
i (6.8)

Minki =

{
min{OldLXk

i , LX
k
i } if k = 0

min{Mink−1
i , OldLXk

i , LX
k
i } if k > 0

(6.9)

Maxki =

{
max{OldLXk

i , LX
k
i } if k = 0

max{Maxk−1
i , OldLXk

i , LX
k
i } if k > 0

(6.10)

Integralki =

{∫ tk+1

tk
LiX(t)dt if k = 0

Integralk−1
i +

∫ tk+1

tk
LiX(t)dt if k > 0

(6.11)

Meanki =


1

tk+1−tk

∫ tk+1

tk
LiX(t)dt if k = 0(

tk ×Meank−1
i +

∫ tk+1

tk
LiX(t)dt

)
/tk+1 if k > 0

(6.12)

V arki = M2ki − (Meanki )
2 (6.13)

where,

M2ki =


1

tk+1−tk

∫ tk+1

tk
(LiX(t))2 dt if k = 0(

tk ×M2k−1
i +

∫ tk+1

tk
(LiX(t))2 dt

)
/tk+1 if k > 0

(6.14)

Finally let us show how the integrals Ik =
∫ tk+1

tk
LX(t)dt and I2k =

∫ tk+1

tk
(LX(t))2dt

are efficiently computed.
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∀tk ≤ t ≤ tk+1, LX(t) =
∑

j aj(t−tk)rkj +LX(tk) = t
∑

j ajr
k
j−tk

∑
j ajr

k
j +LX(tk)

Let be ak =
∑

j aj(t − tk)rkj and bk = −tk
∑

j ajr
k
j + LX(tk). Observe that ak is

also equal to LX(tk+1)−LX(tk)

tk+1−tk
.

Computing Ik

(1) If ak 6= 0 then Ik =
∫ tk+1

tk
(akt+ bk) dt = 1

a

∫ aktk+1+bk
aktk+bk

ydy = 1
a

∫ LX(tk+1)

LX(tk)
ydy =

1
2a

(LX(tk+1)2 − LX(tk)
2). Then, Ik = (tk+1−tk)(LX(tk+1)+LX(tk))

2
.

(2) If ak = 0 then Ik = (tk+1 − tk)LX(tk).

Computing I2k

(1) If ak 6= 0 then I2k =
∫ tk+1

tk
(akt+ bk)

2 dt = 1
a

∫ aktk+1+bk
aktk+bk

y2dy = 1
a

∫ LX(tk+1)

LX(tk)
y2dy =

1
3a

(LX(tk+1)3 − LX(tk)
3). Then, I2k =

(tk+1−tk)(LX(tk+1)2+LX(tk+1)LX(tk)+LX(tk)2)
3

.

(2) If ak = 0 then I2k = (tk+1 − tk)LX(tk)
2.

6.4 Case Studies

In this section, we perform some experiments on different models and different
types of measure. Le us precise that all the experiments are done under these
conditions.

• COSMOS 1.0

• PRISM 4.0

• CPU: Intel(R) Core(TM)2 Duo CPU T9400 @ 2.53GHz

• Memory: 4 G.O

• Operating system: Fedora release 15.

We add that the execution time is expressed in seconds.
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6.4.1 Kanban System

The first example is a Kanban system. Kanban systems are a special kind of
production systems designed to minimize the size as well as the fluctuation
of in-process inventory [ABC+95]. They have been initially introduced in the
Japanese industry. Let us consider the model presented in figure 6.4.1 intro-
duced in [CT96]. It consists of 4 cells limited in size to N . In each cell i, incom-
ing pallets are put in place Pmi waiting for service. After service (transition
Tmi) a pallet moves to place Pouti by means of the immediate transition Toki
and waits for outgoing or to place Pbacki by means of the immediate transi-
tion Tredoi and waits to be moved to the place Pmi. Pallets enter the system
from the cell 1 (transition Tin1) and leave it from cell 4 (transition Tout4). Tran-
sition Tsynch123 synchronizes moves between cells 1, 2 and 3 while transition
Tsynch234 synchronizes moves between cells 2, 3 and 4.

Transient measurement of the throughput. Let us compute the throughput
of the transition Tin1 during the time interval [0, T ]. The first goal of these
experiments is to compare COSMOS to the numerical version of PRISM in term
of quality of results. The second goal is to compare COSMOS with the statistical
version of PRISM in term of execution time. In these experiments N = 4, the
confidence interval level 1−α = 0.99 and the absolute confidence interval width
w = 10−3. The results of the experiments are presented in the table 6.2.

T Throughput Generated paths exec-time Ratio Prism/Cosmos
PRISM num PRISM stat COSMOS PRISM COSMOS PRISM COSMOS total time single path

10 0.5960 0.5960 0.5961 449273 449370 61.2 26 2.35 2.36
50 0.3511 0.3512 0.3509 69458 68510 60.2 22 2.74 2.70

100 0.3136 0.3133 0.3136 34360 34420 60.9 22 2.77 2.77
500 0.2834 0.2832 0.2834 6774 7040 60.5 22 2.75 2.86

1000 0.2796 0.2797 0.2798 3385 3410 61.5 22 2.80 2.82
5000 0.2766 0.2766 0.2769 739 720 66.3 23 2.88 2.81

10000 0.2762 0.2763 0.2760 344 370 62.1 26 2.39 2.57

Table 6.2: Throughput in a Kanban system

The results show that the numerical evaluations of PRISM are contained in
the confidence intervals given by COSMOS . The results show also that COSMOS is
at least 2.35 faster than the statistical version of PRISM when comparing the to-
tal time to do an experiment and when comparing the average time to generate
a trajectory.

Transient analysis of a probabilistic measure. Let us compute the probabil-
ity p = Prob(

(
(Pm2 + Pm3 = 0)U [0,T ](Pm1 = N)

)
). This is a bounded until for-
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Figure 6.2: A Kanban System

mula. The goals and the parameter of these experiments are the same as the
ones of the last paragraph. The results are presented in the table 6.3.

As before, the numerical evaluations of PRISM are contained in the confi-
dence intervals given by COSMOS . COSMOS is at least 1.64 faster than the statis-
tical version of PRISM when comparing the total time to do an experiment and
when comparing the average time to generate a trajectory.

6.4.2 Fault-tolerant Cluster of Workstations

The second example is a fault-tolerant cluster of workstations. The model in
figure 6.4.2 introduced in [BCH+10] represents the system by a stochastic Petri
net. The system consists of two sub-clusters (left and right) connected via a
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T p Generated paths exec-time Ratio Prism/Cosmos
PRISM num PRISM stat COSMOS PRISM COSMOS PRISM COSMOS total time single path

1 0.0100 0.0102 0.0101 266867 270000 4.0 2 2.02 2.04
2 0.0467 0.0469 0.0468 1185604 1183900 23.0 14 1.64 1.64
3 0.0812 0.0815 0.0814 1986205 1983600 48.6 27 1.80 1.80
4 0.1024 0.1018 0.1024 2427320 2439700 69.1 37 1.87 1.88
5 0.1132 0.1132 0.1129 2665328 2658000 80.5 42 1.92 1.91
6 0.1183 0.1180 0.1187 2762627 2777000 87.5 47 1.86 1.87
7 0.1206 0.1207 0.1206 2817136 2814100 93.3 47 1.99 1.98
8 0.1216 0.1217 0.1216 2835033 2834100 97.1 49 1.98 1.98
9 0.1221 0.1217 0.1218 2837471 2839500 94.2 49 1.92 1.92

10 0.1222 0.1222 0.1222 2846391 2846300 97.2 49 1.98 1.98

Table 6.3: Bounded until in a Kanban system

backbone. In each sub-cluster, a set of workstations (N1 left, N2 right) are con-
nected in a star topology to a central switch. Each component (workstation,
switch, backbone) can break down. A single repair unit will then repair the
failed components.

Let us precise that transitions of type Inspect were originally immediate.
They are here considered as exponentially distributed to have an equivalent
Petri net to the PRISM model proposed in [PNK].

The first goal of these experiments is to introduce the regeneration point
method to estimate a steady state measure. The second goal is to show the
main drawback of the numerical methods which is the memory consuming.

The regenerative method. A regeneration point for a stochastic process is an
instant in time at which the future behavior of the process depends only on its
state at that instant, it is independent of the evolutionary path that led to its cur-
rent state [Ste09]. The idea of the regenerative method is to divide the trajectory
of the system into a series of cycles according to a regeneration point. Thus the
evolution of the system in a cycle is a probabilistic replica of the evolution in
any other cycle [HL10]. If we associate some statistics of interest to these cycles,
these statistics for the respective cycles constitute a series of independent and
identically distributed observations that can be analyzed by standard statistical
procedures.

The theoretical requirements for the method are that the probability of re-
turning to the regenerative point is equal to one and the expected cycle length
be finite.

The problem of the regenerative method is to find an estimate of the expec-
tation of a random variable X of interest by using the observations of a random
variable Y collected during each cycle and the random variable D representing
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the size of the cycles. More precisely:

E[X] =
E[Y ]

E[D]
(6.15)

Let us consider n cycles, the data gathered are y1, y2, ..., yn and d1, d2, ..., dn for
the respective cycles. Let us denote Y and D, respectively, denote the sample
averages for these two sets of data, the corresponding point estimate of E[X] is:

ˆE[X] =
Y

D
(6.16)

The empirical confidence interval of E[X] is given by:[
Y

D
− Zα/2 × s
D ×√n ,

Y

D
+
Zα/2 × s
D ×√n

]
(6.17)

where:

• s2 = s2
11 − 2Y

D
s2

12 +
(
Y
D

)2

s2
22

• s2
11 = 1

n−1

∑n
i=1

(
yi − Y

)2

• s2
22 = 1

n−1

∑n
i=1

(
di −D

)2

• s2
12 = 1

n−1

∑n
i=1

(
yi − Y

) (
di −D

)
In this example, we compute the probability that the repair unit is avail-

able. We consider the symmetric case N1 = N2 = N , the confidence interval
level is set to 0.99, the relative confidence interval width is set to 10−2 and the
PRISM resolution method is the Gauss-Seidel one. The results are presented in
table 6.4.

N Sizes Availability Iterations Generated paths Memory Exec-time
|States| |Transitions| PRISM COSMOS PRISM COSMOS PRISM COSMOS PRISM COSMOS

100 365620 1779232 0.79671 0.79585 267 31200 4.6 MB 3.7 MB 9.6 1.0
200 1451220 7078432 0.59725 0.59856 653 134800 15.7 MB 3.7 MB 87.5 6.0
300 3256820 15897632 0.39846 0.39785 1381 376700 33.3 MB 3.7 MB 388.1 24.0
400 5782420 28236832 0.20338 0.20361 3388 733500 57.8 MB 3.7 MB 1990.7 137.0
500 9028020 44096032 0.09089 0.09086 10180 1000 89.2 MB 3.7 MB 7041.0 369.0

Table 6.4: COSMOS vs Numerical Prism wrt cluster of workstations
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Figure 6.3: Stochastic Petri of a fault-tolerant cluster of workstations

6.4.3 M/G/1/∞/∞ Queue

In this example, we consider a queue M/G/1/∞/∞ which consists of a queue
with an infinite capacity. The population of the clients is infinite and arrive ac-
cording to a Poisson process. The service duration is generally distributed. The
goal of theses experiments is to analyze a system with an infinite state space.

Here we compute the expected number of clients in the system. This quan-
tity is given by the Pollaczek–Khinchine formula :

L = ρ+
ρ2 + λ2 ∗ V ar(S)

2(1− ρ)
(6.18)

The confidence interval level is set to 0.99, the relative confidence interval
width is set to 10−2.

We have done the experiments with two different service distribution but
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parameters are chosen such as the expectation and the variance of the service
distributions are the same. In table 6.5, the service is distributed with a uniform
distribution U [0.2, 0.7]. In table 6.6, the service is distributed with a gamma
distribution Γ(k = 9.72, θ = 0.0462962963).

λ ρ
L Generated paths Exec-timeTheoretical COSMOS

0.8 0.36 0.4717 0.4726 439100 4
1.0 0.45 0.6530 0.6526 534600 5
1.2 0.54 0.8895 0.8894 657100 7
1.4 0.63 1.2214 1.2247 895500 10
1.6 0.72 1.7408 1.7440 1318700 17
1.8 0.81 2.7139 2.7110 2175100 35
2.0 0.90 5.3660 5.3730 4765100 122
2.2 0.99 55.0286 55.0856 58552700 15689

Table 6.5: M/Unif/1/∞/∞ Queue

λ ρ
L Generated paths Exec-timeTheoretical COSMOS

0.8 0.36 0.4717 0.4726 441700 4
1.0 0.45 0.6530 0.6541 528600 5
1.2 0.54 0.8895 0.8906 675400 8
1.4 0.63 1.2214 1.2228 913700 12
1.6 0.72 1.7408 1.7430 1301900 19
1.8 0.81 2.7139 2.7199 2245700 42
2.0 0.90 5.3660 5.3524 4847000 145
2.2 0.99 55.0286 54.7729 56394300 17291

Table 6.6: M/Gamma/1/∞/∞ Queue

We note that the simulation results are very close to those obtained by the
theoretical formula. We also note that the average time to generate a trajectory
with a gamma distribution is larger than that with a uniform distribution.

6.5 Conclusion

We have presented in this chapter the main features of COSMOS. We also per-
formed some numerical experiments on various models to check different prop-
erties. COSMOS can deal with finite and infinite state space models. We have
checked some transient properties and shown how to adapt the method of re-
generation point to evaluate steady state properties. The comparison with the
statistical version of PRISM shows that COSMOS is faster while handling more
general properties. In the future, we plan to automatize the method of regener-
ation point. We also want to parallelize our tool.



Chapter 7

Compositional Modeling of Flexible
Manufacturing Systems Using Petri
Nets.

This chapter is related to the publication [BDD+11c].

7.1 Introduction

Analysis of Flexible Manufacturing Systems (FMS). FMS have been intro-
duced in order to optimize different criteria of manufacturing systems. For in-
stance, one wants to efficiently manage crashes, increase the productivity and
the flexibility, etc. In such a context, a critical issue consists in evaluating these
criteria and comparing different architectures before selecting the appropriate
one. This implies to resort to formal models and evaluation methods.

Modeling FMS with Petri Nets. The Petri net formalism is applied in numer-
ous application areas. Compared to other formalisms, Petri nets are appropri-
ate to model concurrent activities (each one described by a finite automaton)
sharing resources (described by additional places) and communicating via syn-
chronization (described by transitions). Since FMS present such characteristics,
they are a good candidate to be modeled and analyzed with the help of Petri
nets [WD98].

Indeed several approaches have been undertaken differing w.r.t. their goals
and the kind of nets used for modeling. When one is interested in qualitative
properties of FMS like deadlock prevention, modeling is based on structural

157
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subclasses of Petri nets allowing to design efficient algorithms [ECM95]. When
one is interested in performance of FMS, there are (at least) two possible mod-
eling approaches: either to substitute discrete quantities by continuous ones
leading to an hybrid Petri net [BGS01] or to represent the uncertainties related
to the FMS behavior by distribution probabilities leading to a stochastic Petri
net [ABC+95, LCGH93]. Here we follow the latter approach.

Limitations of Petri net modeling of FMS. There are two drawbacks of Petri
nets w.r.t. the modeling. First there are no net operators that would lead to a
compositional modeling. In [BDK01], Petri nets have been extended with oper-
ators. This is an interesting theoretical approach but the subnets are not viewed
as components. For instance, they do not own an interface and an internal part.
Second, the syntax and semantics of nets may prevent modelers used to their
dedicated formalism to switch to Petri nets.

Steady-state and transient-analysis of FMS. Although the vast majority of FMS
stochastic modeling studies have been focused on the analysis of steady-state-
based measures (such as, for example, throughput, productivity, makespan) the
relevance of transient-analysis of FMS models has been demonstrated [NV94].
For instance, as soon as faults are modeled, transient measures like the time un-
til FMS stopping are interesting. Furthermore it is well known that for systems
presenting regenerative points (like idle states), every steady-state measure may
be obtained by averaging the corresponding transient measure between two oc-
currences of a regenerative point.

In chapters 5 and 6, we have presented a framework with a dedicated proto-
type tool COSMOS for analyzing complex systems modeled by stochastic Petri
nets via quantitative model-checking of formulas specified in an expressive lan-
guage HASL. In this chapter, we show an high-level modeling approach for
FMS developed over this framework presenting the following features.

• A compositional framework targeted to FMS modeling. Our framework
allows to build arbitrarily large/complex models of FMS by composition
of basic elements representing the elementary parts of a FMS. Following
an object-oriented approach, we start with three generic classes: the load
unit class, the machine class and the transportation class. Then the mod-
eler specializes these classes in order to express the characteristics of his
specific architecture. This specialization concerns both the qualitative fea-
tures like the routing policy of a transporter and the quantitative features
like the loading time of a unit. By instantiating such classes into com-
ponents and gluing them through their interface, he finally produces the
FMS architecture. During the modeling stage, Petri net patterns associated
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with specialized classes are automatically generated. Then these patterns
are duplicated to reflect the components corresponding to the classes and
linked via place merging to obtain the final stochastic Petri net. Observe
that the net is managed internally so that one does not require any Petri
net knowledge from the user.

• A set of formal properties customized for analysis of FMS. As discussed
before, several specific qualitative and quantitative properties of FMS are
relevant. Our framework includes a set of FMS-oriented properties de-
scribed in natural language including the appropriate parameters w.r.t.
the property. Once the user fixes the parameters, an HASL formula is
automatically generated and later evaluated over the SPN corresponding
to the FMS. Since HASL is very expressive the specification of almost all
relevant properties for FMS does not present any difficulty.

• A case study of an FMS. We provide an FMS model, we give the cor-
responding compositional scheme. Then we will evaluate some HASL
formulae using COSMOS.

In section 7.2 we present our modeling approach. We illustrate the approach on
a toy example in section 7.3 and the adequacy of HASL formulae for analysis of
FMS in section 7.4. In section 7.5, we describe the analysis of a significant case
study. Finally we conclude and give perspectives to this work in section 7.6.

7.2 Compositional FMS modeling using Petri Nets

We introduce a stochastic Petri net (SPN) based modeling framework for FMS,
by means of which a model of an FMS can be obtained through assembling of
the desired combination of basic components. FMS are, by nature, heterogeneous
systems which may differ from one another both in the functionality of compo-
nents as well as on the workflow of the production process. The compositional
framework we introduce is designed to cope with the heterogeneity of FMS. For
example, components for modeling of a simple linear FMS (whose workflow
is drafted in Figure 7.1(a)), whereby the end product is obtained by process-
ing of a single type of raw material through a line of machines connected by a
conveyor belt, will be (internally) different from components for modeling of a
more complex FMS (e.g. workflow drafted in Figure 7.1(b)), involving multiple
types of material (ma and mb), machine selection (e.g. workpiece w′1 outputted
by machine M1 is delivered to either M3 or M5) and workpieces combination
(e.g. workpieces w′′1 and w′′2 are combined by machine M6).
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(b) An FMS with 2 types of raw ma-
terials, machine-selection and workpiece-
combination

Figure 7.1: Different types of workflow for FMSs

7.2.1 Principles of the proposed approach

Goal. A framework for modeling and analysis of complex systems is well suited
to the user when this framework allows the user to model his system as he has
designed it and to analyze it with logic formulas and/or performance indices
which are directly meaningful to him. This has led us to the following choices in
the context of FMSs. First the modeling we propose is component-based as FMS
are explicitly obtained by assembling different functional parts. In addition, the
granularity of the components correspond to the architectural decomposition of
the FMS meaning that there is a one to one mapping between the model com-
ponents and the business components. Although our internal formalism is an
SPN, the user can fully model his FMS without specifying any Petri net. Simi-
larly, while the formula language supported by the framework is very expres-
sive, a set of specific formula patterns corresponding to usual FMS analyses is
proposed to the user. Since these patterns can be instantiated by fixing different
parameters, this yields a simple and flexible way to check the model.

An overall view. The FMS modeling framework is based on the following prin-
ciples:

1. It lies on the following basic component classes: Load Unit (representing
the loading of raw materials into the system), Machine (representing the
various phases of the actual manufacturing of workpieces) and Transporta-
tion (representing the movement of materials/workpieces). These compo-
nent classes have different attributes reflecting their functional properties,
that may be quite complex. For instance routing policy may be fixed or
state-dependent and in the latter case may depend on the occupation of
buffers or occurrences of failures.
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2. First the modeler specializes the basic classes by fixing the values of their
attributes. As in object-oriented approaches, it allows to reuse the spe-
cialized classes for different architectures of FMS sharing some identical
component types.

3. Then the modeler instantiates these specialized classes in (named) com-
ponents.

4. At last these components are combined using the names to bind variables
occurring in the interface of the class. For instance, assume that the defi-
nition of a transporter class involves some machine variable, say X , pro-
ducing the inputs of the transporter. Then, when the transporter is instan-
tiated as a component, variable X is substituted by a machine name.

An internal view. When the set of specialized classes are specified through a
(natural-language-like) syntax, the corresponding SPN subnets are automati-
cally generated from such specifications. The SPN subnets can be seen as boxes
partitioned in an interface and an internal structure. SPN components interface
consists of local and imported places arranged on the edge of a box. Local places
(denoted as non-filled-in circles) represent relevant aspects of a component’s
state (that may be imported by other components). Imported places (denoted
as filled-in circles) represent relevant aspects of external components that influ-
ence the importing component behavior.

Naming of places and transitions is essential for the assembling of FMS. The
name of local places can be viewed as local identifiers. Depending on their role
in the component, the name can be predefined, as idle in Figure 7.3, or com-
posed by a predefined word followed by an identifier provided by the user,
like in_a1 in the same figure. Here a1 corresponds to the name of a product
and in means that this product is an input of the machine. Names of imported
places are built by prefixing a local name by a variable like X3.in_a1 in Fig-
ure 7.4. Observe that the set of variables occurring in a subnet corresponds to
the components that will communicate with a component of this class. Since the
variable are typed by their class, the compilation stage checks that the interfaces
intended to be linked are compatible. Transition names are handled like local
place names.

When the modeler instantiates a class into one or several (named) compo-
nents, he must provide a component name per variable occurring in this class.
At the net level, we need one class subnet copy per component of this class. The
names of local places and transitions are prefixed by the name of the component
while the name of imported places is obtained by substituting the component
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names to the variables. Now the assembling of the whole net is straightforward:
it consists in merging places with identical names.

In the following subsections, we illustrate the specialization of the three ba-
sic classes and the associated subnets.

7.2.2 Modeling the load unit

The Load Unit (LU) class represents the process through which raw materials
are loaded (from the “external world") into an FMS. LU’s parameters are: i) set of
loaded materials: the type of raw-materials the whole production system depends
upon; in the case of a closed-system, the number of items for each material type
ii) size of buffers: the size of the output buffers of the LU component; iii) loading
times: the distribution of the loading time for each type of material.

3 types of material (a1, a2, a3) are loaded in the FMS. Items of type ai
(1≤ i≤3) are loaded according to (delay) distribution ld_ai. An SLU1 class
has a finite buffer of size s. When s items are present in the buffer
loading is interrupted, and it is automatically restarted as soon as one item is
withdrawn from the output buffer of SLU1.

Table 7.1: Example of (informal) specialization of the load unit class

ld a1

ld a2

ld a3

out

out a1

out a2

out a3

S

S
S

SLU1

Nin

N1in a1

N2in a2

N3in a3

ld a1

ld a2

ld a3

out

out a1

out a2

out a3

S

S
S

SLU2

Figure 7.2: Internal structure of multi-material, buffered specialized Load Unit
class for open system (left) and closed system (right)

An example of LU specialization (for an open system) for a FMS part named
SLU1 is given in Table 7.1. The corresponding SPN component is depicted in
Figure 7.2 (left), (Figure 7.2 (right) instead corresponds to a closed system). The
interface of the (open system) SLU1 class consists of 4 (output) places corre-
sponding to the items loaded into the FMS: place out containing the total of
loaded items, place out_ai containing type ai loaded items. The interface of the
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SLU1 class consists of 3 timed-transitions load_ai (1≤ i≤3), representing load-
ing of each type of piece. Note that since transitions ld_ai have no input places
the underlying model is inherently infinite-state if we allow s =∞. In case of a
closed system (Figure 7.2 right) the interface contains 4 additional (input) places.
They represent the initial amount of material: total amount (place in) and type
ai amount (place in_ai) 1. The control on the fullness of the s≥ 1 sized buffer
is achieved through the inhibitor arcs connecting each “loading" transition with
the (output) place out. An SLU1 class with infinite buffer capacity is obtained
by removing inhibitor arcs from the components in Figure 7.2.

SM1

full

in

in a1

in a2

in a3

idle down

out

out b1

out b2

go1

go2

fail1

repair
fail3fail2

pra1

pr a2a3

Si

Si

2

SO

SO

Figure 7.3: A specialized class of machine

7.2.3 Modeling the machine

The machine class (M) describes the behavior of machines processing materials
and workpieces. M’s parameters are: i) set of input materials: the type of mate-
rials/workpieces processed by the machine; ii) buffers dimension: the dimension
(∈N∪{∞}) of the input and output buffers of M; iii) processing times: the distri-
bution of the processing time for each type of material/workpiece processed by
M. This is given by a 3-tuple: first parameter is the set of input materials, the
second is the set of produced workpieces, the third one is the distribution for
this production. iv) failure/repair times: the distribution of failure and repairing
times.

We now illustrate a possible specialization SM1 (described in table 7.2) of
the machine class. The corresponding SPN component is depicted in Figure 7.3.

The interface of the SM1 class consists of 10 places (Figure 7.3): a 1-safe
place idle indicating the idle state of SM1 ; a 1-safe place down indicating whether

1 Note that in a closed system the input places of the LU component will be “connected" with
the output places of the machine(s) which delivers the end product of the FMS.
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Machine class SM1 processes 3 types of pieces: a1, a2, a3. It can process a a1
piece resulting in a type b1 piece. Another process consists in combining a2 and
a3 resulting in b2. SM1 class is prone to failure and repairing. After a repairing,
the unfinished workpieces are lost.

The input (resp. output) buffer sizes are denoted si and so

Table 7.2: Example of (informal) specialization of the machine class
SM1 is down; a 1-safe place full indicating that the input buffer of the machine
is full; place in (out) representing the total number of items in the input (output)
buffer of SM1 and places in_ai, 1≤ i≤ 3 (out_bj, 1≤j≤ 2) indicating the number
of items of type ai (bj) material (workpiece) in the input (output) buffer of SM1.
In case of a machine producing a single type of workpiece from a single type
of material, the interface of the corresponding subclass would simply consist of
places idle, full, down, in and out.

Let us describe internal structure of SM1. Transition pra1 and pra2a3 re-
spectively represent processing of output pieces b1 and b2. Their associated
distributions are obtained following the user specification. The control on the
so≥1 sized output buffer is achieved through the inhibitor arcs connecting each
“processing" transition with the (output) place out. Failures are modeled by
three transitions: fail1, fail2 and fail3 corresponding to a failure occuring re-
spectively when the machine is idle, processing piece b1 or b2. Transition repair
models the repairing process.

Many other specializations of the machine class can be considered, for in-
stance a machine could simultaneously process multiple inputs and outputs, or
different materials could have different separate buffers.

7.2.4 Modeling the transportation unit

The transporter class (T) describes a transportation unit moving materials and
workpieces from (a set of) source nodes to (a set of) target nodes of an FMS.
Source and target nodes of a T component can be either machines or other trans-
porters2.

At the level of generic class T, the parameters are untyped. The types will
be defined during the specialization. We now describe them informally. T’s
parameters are: i) level of freedom of the unit, specifying whether the trajectory
is fixed or subject to change depending on the needs. ii) transportation policy
expressing when the transporter decides to move and where. iii) delivery time

2machine-to-transporter movements are useful when modeling continuous transportation
system such as, for example, conveyor belts transportation or rail-guided AGVs.
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depending on the materials to be delivered and the location (initial or destina-
tion). Depending on the nature of the transportation unit, new parameters will
appear in the specialized class. We now illustrate a possible specialization ST1
(described in table 7.3) of the transporter class. The corresponding SPN com-
ponent is depicted in Figure 7.4. Note that almost all places in the interface are
represented in grey as they are imported from other SPNs.

The interface of the ST1 class is composed of: i) 3 input places from machine
X1, one for the total number of pieces and one for each type (a1 and a2). ii) five
output places representing the input buffers of the destination machines, and
the number of pieces of each type in each machine iii) six controlling places
stating whether the destination machines are full, idle and down. iv) Finally
place idle indicates whether the transporter is free.

ST1

X1.out a1

X1.out

X1.out a2

X2.idle

idle

X2.down X3.idle X3.down

X2.full

X2.in

X2.in a1

X3.full

X3.in

X3.in a1

X3.in a2

snd1

snd2

snd3

snd4

snd5

D1

D2

D3

Figure 7.4: An example of transporter class employing selective policies for mov-
ing of pieces from multi-typed machine X1 to limited-size buffered target ma-
chines X2, X3

The internal structure of ST1 describes the delivery policy. The three internal
places correspond to (from top to bottom) the a1 pieces to be delivered to X2,
the a1 pieces to be delivered to X3 and the a2 pieces to be delivered to X3. The
black transitions named snd1 to snd4 correspond to the delivering possibilities
for a1 pieces. They are controlled by controlling places through inhibitor or
regular arcs. Note that, in order to simplify the figure, the return time of the
transporter is abstracted away.

7.3 A Small Example

To demonstrate the application of the compositional SPN framework we con-
sider an example of FMS (push production) system taken from [ABC+95] (chap-
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Transporter class ST1 moves workpieces a1 and a2 from machine X1 to
machines X2 and X3 (to be instanciated during the linking phase).
a1 pieces can reach either X2 or X3; a2 pieces must reach X3.
delivery time from X1 to X2 for a1 follows distribution D1
delivery time from X1 to X3 for a1 follows distribution D2
delivery time from X1 to X3 for a2 follows distribution D3
if X3 is idle and not full then deliver a1 to X3,
else if X2 is idle and not full, then deliver a1 to X2,
else if X3 is up and not full, then deliver a1 to X3,
else if X2 is up and not full then deliver a1 to X2.

Table 7.3: Example of (informal) specialization of the transporter class

LU1

M1

M2

M3

a
b

a

a
bb

a,b

a,b
a,b

Tr1 Tr2

Tr3Tr4

a,b

Figure 7.5: Workflow of the modeled conveyor-belt FMS with 3 machines and 2
raw-materials

ter 8). Such FMS consists of: a loading unit LU1 and three machines M1,M2
and M3 arranged in a linear fashion according to the workflow depicted in
Figure 7.5. The FMS treats two types of material, namely a and b, which are
progressively transformed into workpieces and eventually in the final products
(i.e. the output of M3). The transportation medium is a conveyor belt, which
we assume to consist of 4 adjacent belt segments (segment LU1-M1, segment
M1-M2, segment M2-M3 and segment M3-LU1, each one commanded by a
separate engine) The first machine in the line, i.e. M1, processes only material
of type a (thus type b items arriving at M1 are bypassed to M2); machine M2
processes both type b raw material and pieces a′ outputted by M1; finally M3
processes only pieces b′ outputted by M2. The SPN components correspond-
ing to such FMS are depicted in Figure 7.6. They consist of an LU-component
(i.e. LU1), three M-component (i.e. M1,M2,M3) and four T-components (i.e.
T1, T2, T3, T4).

In this example we assume the 4 segments of the conveyor belt to behave in
a blocking fashion: if on reaching of a certain position an item cannot be unloaded
(because the destination machine’s buffer is full or because the next segment is
not empty) then the belt (segment) blocks. Note that from a behavioral point
of view the conveyor’s segments can be distinguished into: those performing
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Figure 7.6: SPN components for the conveyor-belt FMS of Figure 7.5

delivering of an item (to a machine) and bypassing (to the next segment) i.e.
component T1 and T3, and those performing delivering without bypassing, i.e.
component T2 and T4. To better understand such a difference let’s consider,
for example, the (SPN) component T1 of Figure 7.6. If T1 is carrying a type
a item (i.e. a token is in place T1.mv_a) then it will return idle as soon as it
drops it in the input buffer of M1 and this happens only if M1 buffer is not full
(firing of transition T1.Da

LU−M1). If T1 is carrying a type b item (i.e. a token
is in place T1.mv_b) then T1 will return idle only when T2 takes on the item b
from T1, but this can happen only if T2 is idle: if it is carrying an item to M3
(i.e. a token is either in T2.mv_a or in T2.mv_b) then it will be able to take on
the item from T1 only when it has delivered the one it is carrying (i.e. firing
of transition T2.Da

M1−M2 or T2.Da
T1−M2). In practice the dependency between a

by-passing transporter (i.e. T1 or T3) with its successor (i.e. T2, respectively
T4) is achieved by importing of a place (i.e. place idle) from the interface of
the controlled node to the interface of the controlling one (i.e. place T1.idle
imported by component T2, and place T3.idle imported by component T4). We
consider that the unloading time of the finished workpieces in LU1 component
is negligible. Thus when workpieces are returned to LU1, new raw materials
are charged and new productions begin.
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7.4 Fine-grained transient-analysis of FMS

7.4.1 Expressing qualitative and quantitative properties of FMS

The steady-state analysis has been the focus of many performance studies for
manufacturing systems. Traditionally we are interested in customer average
measures like mean fabrication time for a kind of product, time average mea-
sures like mean number of raw materials in a buffer. The relevance of tran-
sient measures for manufacturing systems has been emphasized in [NV94]. In
FMSs the arrivals of raw materials to feed the input buffers, and the extrac-
tion of finished products from output buffers may be bursty. This means there
may be high-activity and low-activity periods due to some external reasons like
logistic problems. For such cases it is really important to observe transient be-
haviors which may be radically different from equilibrium (steady-state) behav-
iors. For instance, the buffers must be dimensioned by considering high-activity
periods, and the throughput (mean number of finished products) during low-
activity may be important. We can state here the case when the setting of FMS is
changed, the time until the system reaches a stationary regime may be long and
it may be important to observe this transient period. In FMS, the components
are prone to failures or human interventions that may provoke the unavailabil-
ity of some parts of the system. Such phenomena may lead to a deadlock situa-
tion or to a complete unavailability of the system. For such cases only transient
measures provide some lights on FMS properties.

Using the HASL formalism, we can express interesting quantitative mea-
sures on FMS. We give here several examples. First we can characterize (and
evaluate) properties related to the occupation of finite-capacity buffers, like the
blocking probability for a machine, the mean time to fill x% of buffers, the mean
number of pieces in buffers during a given time interval. These measures are
important for an appropriate dimensioning of buffers. In order to evaluate the
efficiency of the underlying FMS we are also interested in the measures related
to throughput (mean number of produced workpieces per time unit), and make-
span (average production time for a given production workflow). We can state
for instance the probability that a certain number of workpieces are produced
during a given time interval, the average time to produce a given number of
workpieces. The reliability measures when some components are prone to fail-
ures can be also considered like the Mean Time To Failure (MTTF) of a compo-
nent or whole system, throughput of a given production workflow between the
first and the second failure.

In addition, steady state measures can also be obtained by transient analysis
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when the system admits regeneration points. Indeed, the steady state measure
is then the average measure between two regeneration points.

The automata of figure 7.7 illustrate some of the possibilities of HASL. The
first one has two variables: x1 is in fact a clock, reset at the occurrence of the
first failure (in figure 7.3, fail should label all three transitions whose name is
prefixed by fail), and x2 is a counter (rate 0) that counts the number of ob-
jects processed (transition labelled out) between the two first failures. The sec-
ond automaton has two variables counting the global time (x1) and the time in
state Mthre (x2). The automaton changes state from Init to Mthre depending on
whether the number of tokens in a specified buffer reaches a threshold or not.
Here on the example of figure 7.6, the condition m(M2.in) > s with s equal to a
chosen threshold is a good candidate for indicator thre. After k time units, the
execution reaches state End and terminates. In the third automaton, x2 counts
the number of pieces arrived so far, and x1 the number of pieces, arrived among
the k first ones, that are still waiting. The execution terminates when all of the
k first pieces are being/have been served (x1=0). Since both variables have rate
0 in each state, the rates are omitted in the figure.

One
ẋ1:1

ẋ2:0

Init
ẋ1:1

ẋ2:0

Two

E/fail out,x2++

E/{fail∪out}

failfail,x1:=0

Init
ẋ1:1

ẋ2:0

¬thre Mthre
ẋ1:1

ẋ2:1

thre

End

E

E

x1=k,]

x1=k,]

E

E

Init kIn End
],x2=k

{start_a},x1++;x2++

{proc_a},x1−− E\{proc_a,start_a}

E\{proc_a}

{proc_a},x1−−

x1=0,]

Figure 7.7: Three LHAs to compute interesting measures on FMS
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The second component of a HASL formula is an expression related to the
automaton. Such an expression, denoted Z, is based on moments of a path ran-
dom variable Y and is defined as follows. First y is an arithmetic expression
built on top of LHA data variables and constants. Then Y is a path dependent
expression built on top of basic path random variables such as last(y) (resp.
min(y), max(y))i.e. the last (resp. minimum, maximum) value of y along a syn-
chronizing path, int(y) (i.e. the integral over time along a path) and avg(y) (the
average value of y along a path). Finally Z, the actual target of HASL verifica-
tion, is an arithmetic expression built on top of the first moment of Y (E[Y ]),
and thus allowing for the consideration of diverse significant characteristics of
Y including, for example, expectation, variance and covariance. Ensuring that,
with probability 1, the system (SPN + LHA) will reach a final state, the expres-
sion Z associated with the formula may be evaluated with expectations defined
w.r.t. the distribution of a random path conditioned by acceptance of the path. In
other words, the LHA A both calculates the relevant measures during the exe-
cution and selects the relevant executions for computing the expectations. This
evaluation gives the result of the formula (A, Z) for an SPN S.

Given the first LHA of figure 7.7, the expected throughput between the two
first failures corresponds to expression E(last(x2)/last(x1)). If we slightly mod-
ify it by considering state One as a final state, we can compute the mean time to
first failure by E(last(x1)) and its variance (which is often a critical parameter)
by E(last(x1)2) − E(last(x1))2. If we consider the second LHA, the expected
value of the average time (within k time units) that the input buffer of machine
M is full can be computed using E(last(x2)) and the ratio of the time it is full is
E(last(x2)/last(x1)). For automaton 3 we can express the expected value of the
mean waiting time for k products using expression E(int(x1)/k).

This logic extends the transient properties that can be expressed and verified
using other stochastic logics (such as CSL, CSRL, asCSL, CSLTA,...) both captur-
ing probabilistic properties of standard probabilistic model checking and also
enabling to express more complex performance evaluation measures, coupled
with a more precise selection of paths.

7.4.2 Automatic Generation of properties for FMS

Just as we did not want to assume that a modeller knows the Petri net for-
malism, this modeller should be able to verify different properties without any
knowledge about hybrid automata. The goal of the automatic generation of
properties for FMS is to hide this formalism and to let the user choose a property
to verify in an intuitive way. The user selects a property pattern in a predefined
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list (for example the mean time to fill x% of a buffer), selects the appropriate
parameters (the desired buffer and the percentage) and the HASL formula (au-
tomaton + expression) is generated automatically. This generation is possible
and efficient since, as we consider a predefined list of relevant properties, there
is no combinatory explosion and the translation is relatively simple.

An important point to mention is that the generation of SPNs for the FMS
model and of the automaton for the HASL formula are linked, since the SPN
needs to be coherent in terms of labels on events and indicators.

7.5 A Complete Case Study

We give in this section a full description of the FMS case-study that we have con-
sidered. We start by giving the architecture of the system (overall view), then,
we detail the description of each component (internal view). We will consider
some interesting properties to evaluate followed by their numerical results and
interpretations.

7.5.1 FMS Model

The system consists of a load unit, two conveyor belts and two machines. The
load unit receives a unique type of materials from outside. The raw materials
are oriented to two conveyor belts TU (figure 7.11). We consider here two rout-
ing policies (strategies) S1 and S2. Load unit LUS1 (figure 7.9) is associated
with strategy S1, while, LUS2 (figure 7.10) is associated with S2. Each conveyor
belt leads the raw materials to the machine located on it downstream. We con-
sider two types of behavior for the machines: in M_U (figure 7.12) the machine
is supposed permanently working (never fails), in M_UD (figure 7.13) the ma-
chine may fail and could be repaired.

The architecture of the system is given in figure 7.8. The load unit is related
to the two conveyor belts and each conveyor belt is related to a machine.

There is a small difference between the two strategies with respect to compo-
nents linkage. In case of strategy S2 the load unit is not linked to the machines.
So arcs from the machines to load unit do not exist.
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Figure 7.8: Architecture of the system

Internal Structure of the Load Units

The raw material arrive to an unbounded buffer which is represented by place
Products. The inter-arrival times are distributed according to a uniform distri-
bution within interval [a1, a2]. A uniform distribution is chosen, rather than a
deterministic one, in order to represent small variabilities due to logistic prob-
lems.

When a new material arrives to place Products, it is immediately oriented to
the buffer of one of the two conveyor belts, represented by the imported places
X1.Buffer and X2.Buffer.

The imported places X1.Buffer and X2.Buffer give us the information of the
quantities of materials in each conveyor belt.

The imported places X3.Queue and X4.Queue give us the information of the
quantities of materials in each machine.

Let us now describe the routing policies.

Routing policies
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Policy S1.

• if one of the conveyor belts is blocked and the other is available, then put
the material to the available one,

• if both conveyor belts are available and if the number of material in con-
veyor i is greater than a given threshold li while for the other conveyor is
less than its own threshold lj , put the material in the conveyor which does
not exceed its threshold,

• otherwise one of the conveyor is randomly chosen with probability 0.5.

Policy S2.

• choose the conveyor belt with the smallest number of occupied positions.

• in the case of equal number of materials in conveyors, choose randomly a
conveyor with probability 0.5.

LUS1 Arrive π1

Products
X1.InConv X2.InConv

In1
1

π10

In3
1

π8In2
1

π9 In2
2
π9
In3

2

π8

In1
2

π10

X1.Buffer X3.Queue X2.BufferX4.Queue

l1
l2

cp
1

cp2

cp1

cp
2

Figure 7.9: The load unit with strategy S1

Internal Structure of the Transportation Unit

The conveyor belt (component TU) consists of

• an unbounded input buffer, represented by places Buffer;
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LUS2 Arrive π1
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X1.InConv X2.InConv

In1 In2
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X1.InC
onv + 1X2.InConv + 1

Figure 7.10: The load unit with strategy S2

• a set of equally distanced positions, represented by places Posj . We con-
sider 4 positions, j ∈ {1, ..., 4}. Transitions Mvj denote the movements
on the conveyor. Mv1 denotes the movement from Buffer to the first po-
sition of the conveyor; Mv2 denotes the movement from the first to the
second position of conveyor, and Mv5 denotes the movement from the
fourth position to the input buffer of machine located at downstream of
the conveyor (represented by the imported place X.Queue). Transitions
Mvj, j ∈ {2 · · · 5} are deterministic with parameter Tunit which represents
transport time of one pallet between two successive positions. Transition
Mv1 is immediate.

Conveyor belt drives materials to the bounded imported place X.Queue.
When X.Queue reaches it capacity (cp) (marking (X.Queue) = cp), the conveyor
belt is blocked (as ensured by inhibitor arcs of weight cp).

Internal Structure of the Machine

The service in the machine is represented by transition Serve. The service du-
ration follows a log-normal distribution except in experiments reported in ta-
bles 7.7 and 7.8, where it is geometrically distributed with parameter p and step
length ∆. A geometric service means that first the machine processes the prod-
uct during a service period ∆ and then, with probability p, the product leaves
the machine successfully or, with probability 1−p, it requests for another service
period.

We consider two models. In the first one we suppose that there is no ma-
chine failure so the service is always available, we refer to this model by M1

(component M_U). In the second one that we refer as M2 (component M_UD),
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Figure 7.11: The transportation unit (conveyor belt)

we suppose a failure/repair model for each machine. The time to failures is
distributed according to an Erlang distribution.

We assume that the failure probability increases with machine utilization
and an inactive machine cannot fail. Thus we have chosen the age-memory as
memory policy for transition Fail. The reparation time is uniformly distributed
in the interval [r1, r2] (transition Repair).

The Petri net given in figure 7.14 (resp. figure 7.16) represents a FMS with
policy S1 (resp. policy S2) and non-failing machines (model M1) while PN in
figure 7.15 represents a FMS with policy S1 and failing/repair machines (model
M2). The PN for policy S2 and model M2 is omitted here since it can be easily
designed from figure 7.16 by including Fail and Repair transitions as in figure
7.15.
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7.5.2 Specification of Properties

We have chosen several meaningful properties in order to assess the quality of
the FMS design w.r.t. different model assumptions: routing policies, service
distributions and presence of failures. We also study the behavior of COSMOS
and in particular its performances and the accuracy of its results (witnessed by
the width of the confidence intervals).

First we want to characterize the bottlenecks of the architecture. More pre-
cisely, a large ratio of blocking time for the conveyor may indicate that the buffer
of the server should be enlarged. Furthermore if some cost is associated with the
re-starting of the conveyors, decreasing this ratio can induce significant savings.
So φ1 (see figure 7.18) denotes the ratio of blocking time for conveyor 1. Since
we study this formula in a symmetric framework the choice of the conveyor is
irrelevant.

In order to support additional load due to client requests, it is important to
estimate the average completion time for a product. Using Little formula (on
the long run), it is equivalent to compute the expected number of products in
the system which is denoted by φ2 (see figure 7.19). We estimate this value
depending on (1) the kind of the service distribution letting the expectation and
the variance fixed and (2) the relative rate of the two machines.

The context of production of FMS implies that time is divided in periodic in-
tervals both for logistic issues and for following the cycle of demands. This can
be characterized by some threshold relative to the number of products inside
an interval. Failing to meet this threshold may have dramatic consequences for
the company. So φ3 is the probability to produce at leastK products (the thresh-
old) in a time interval of the form [iD, (i + 1)D[ for 0 ≤ i < m during horizon
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Figure 7.14: PN for policy S1 and
model M1.
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Figure 7.15: PN for policy S1 and
model M2.

T = mD (see figure 7.20).

7.5.3 Numerical Results

Unless specified otherwise, all numerical results have been obtained with a con-
fidence interval level 0.99 and with a relative confidence interval width 10−3.
The transport time of pallets between two successive positions is Tunit = 0.5
time unit. In the following tables, T denotes the simulation horizon, S.T. de-
notes the simulation time in seconds, N.P. denotes the number of paths for the
required accuracy of the estimation, and C.I. denotes the relative confidence
interval width.

In the following experiences, the inter-arrival distribution of raw material
is Unif[0.45, 0.55]. We consider two kinds of distributions for service times in
machines:

• Lognormal distribution LnN (µ, σ2) with scale parameter µ and shape pa-
rameter σ2. The expectation is given by eµ+σ2/2 and the variance by (eσ

2 −
1)e2µ+σ2 .
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Figure 7.16: PN for policy S2 and
model M1.
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Figure 7.17: PN for policy S2 and
model M2.
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Figure 7.18: HASL formula of φ1

• Geometric distribution Geo(p,∆) with success parameter p, and service
period ∆. The expectation is given by ∆/p and the variance by ∆2 1−p

p2
.

We first study model M1 without machine failures.

In table 7.4, we consider property φ1 with respect to horizon T under policy
S1 with thresholds l1 = 3, l2 = 3 and under policy S2. The service rates in ma-
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ẋ2:Products+InConv1+

InConv2+Queue1+Queue2

l1

E; x1≤T

]; x1=T ; x2:=
x2
x1

AV G(Last(x2))
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Figure 7.20: HASL formula of φ3

T S1 S2
φ1 S.T. N.P. φ1 S.T. N.P.

20 0.1737 3041 7.9221e+06 0.1631 2823 8.812e+06
50 0.2185 3142 3.2186e+06 0.2125 2890 3.4693e+06

100 0.2349 3266 1.6603e+06 0.2307 2976 1.7748e+06
400 0.2475 3370 423500 0.2445 3053 448300

6400 0.2514 3406 26800 0.2488 3092 27900
25600 0.2516 3451 6800 0.2489 3059 7000

102400 0.2517 3685 1800 0.2489 3290 1900

Table 7.4: the ratio of blocking time of conveyor 1 under both policies for model
M1.

chines are symmetric and the service time distribution isLnN (−0.683046, 0.693147)
with expectation 1/1.4, variance 1/1.42.

We can see that, for short horizons, the sample variance is high, necessitating
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a large number of generated paths. The sample variance then decreases when
the simulation horizon increases, and thus the total simulation time does not
increase significantly with the increase of the horizon. The relative confidence
interval width is 0.0002 for all experiences in this table. We observe that the
steady-state seems to be reached at T = 6400, and the blocking probability for
conveyor 1 is slightly smaller under policy S2 than the blocking probability
under policy S1.

In table 7.5 (resp. table 7.6), we present the expected number of products in
the system under policy S1 with the thresholds l1 = 3, l2 = 3 (resp. policy S2).
The service time distribution is lognormal with the same parameters as in the
previous experience. We observe that the expected number of products in the
system is greater under policy S2.

T φ2(log) S.T. N.P. C.I.
10 5.1769 6 31900 0.0052
30 6.0261 7 11900 0.0060
50 6.1952 7 7600 0.0062
70 6.2670 7 5300 0.0062

100 6.3228 7 3600 0.0063
400 6.4200 8 900 0.0064

1600 6.4428 10 300 0.0056
6400 6.4473 13 100 0.0045

25600 6.4479 51 100 0.0025
102400 6.4494 203 100 0.0012

Table 7.5: the expected number of products in the system with symmetric, log-
normal service distribution under policy S1, for model M1.

T φ2(log) S.T. N.P. C.I.
10 5.1437 5 34200 0.0051
30 6.2171 12 24200 0.0062
50 6.4420 13 15300 0.0064
70 6.5391 14 11100 0.0065

100 6.6136 15 8000 0.0066
400 6.7405 16 2100 0.0066

1600 6.7732 18 600 0.0063
6400 6.7803 24 200 0.0051

25600 6.7812 48 100 0.0042
102400 6.7830 181 100 0.0017

Table 7.6: the expected number of products in the system with symmetric, log-
normal service distribution under policy S2, for model M1.

In table 7.7 (resp. 7.8), we consider geometric service distribution with the
same mean value and the variance as in tables 7.5 and 7.6 but with distribution
Geo(0.98, 0.7). The mean number of products in the system is slightly larger with
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geometric distribution under both policies. This is due to the discrete nature of
the geometric distribution.

T φ2(geo) S.T. N.P. C.I.
10 5.1843 6 32200 0.0052
30 6.0491 8 14000 0.0060
50 6.2190 8 8600 0.0062
70 6.2942 8 6300 0.0062

100 6.3484 8 4300 0.0063
400 6.4435 9 1100 0.0062

1600 6.4670 10 300 0.0063
6400 6.4718 12 100 0.0055

25600 6.4745 50 100 0.0026
102400 6.4749 204 100 0.0013

Table 7.7: the expected number of products in the system with symmetric, geo-
metric service distribution under policy S1, for model M1.

T φ2(geo) S.T. N.P. C.I.
10 5.1507 6 35100 0.0051
30 6.2313 11 23200 0.0062
50 6.4590 13 14900 0.0065
70 6.5596 13 10900 0.0065

100 6.6323 13 7700 0.0066
400 6.7629 14 2100 0.0067

1600 6.7935 17 600 0.0063
6400 6.7999 22 200 0.0057

25600 6.8023 43 100 0.0042
102400 6.8035 177 100 0.0020

Table 7.8: the expected number of products in the system with symmetric, geo-
metric service distribution under policy S2, for model M1.

In the following experiences, we consider lognormal service distribution
and we study the impact of increasing the machines service rate. Indeed, when
the response time constraints are not met for a given FMS architecture, one so-
lution may be the replacement of one or both machines with more efficient ones.
For this purpose, we evaluate different configurations in order to determine the
most suitable one. In particular, we consider configurations with a fixed total
service rate which is 1.5 times the original total service rate. In the asymmetric
case, i.e. φ2(asy), the service rate of the second machine is set to twice the rate
of the first machine. In the symmetric case, i.e. φ2(sym), service rates of both
machines are the same and they are increased by 1.5 times the original value.

In table 7.9 we give results for φ2(asy) under policy S2 and under policy S1
with different threshold values (l1, l2). In table 7.10 we give results for φ2(sym)
under policy S1 with l1 = l2 = 3 and under policy S2.
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T S2 S1
- - (3,3) (2,3) (1,3) (1,4)

10 4.9257 4.9090 4.8193 4.7790 4.7537
30 6.0416 5.8290 5.6631 5.6259 5.5548
50 6.2745 6.0173 5.8374 5.7993 5.7195
70 6.3787 6.1009 5.9133 5.8742 5.7901

100 6.4525 6.1609 5.9685 5.9299 5.8423
400 6.5865 6.2671 6.0622 6.0283 5.9355

1600 6.6193 6.2975 6.0897 6.0516 5.9581
6400 6.6271 6.3036 6.0966 6.0601 5.9625

25600 6.6298 6.3036 6.0963 6.0606 5.9651
102400 6.6281 6.3039 6.0964 6.0614 5.9645

Table 7.9: φ2(asy): the expected number of products in the system with lognor-
mal service distribution, asymmetric service rates (µ1 = 1.4, µ2 = 1.4) under
policy S2 and under policy S1 with different thresholds for model M1.

T S2 S1
10 4.7897 4.7889
30 5.7242 5.5996
50 5.9193 5.7655
70 6.0019 5.8377

100 6.0662 5.8911
400 6.1716 5.9837

1600 6.1991 6.0071
6400 6.2094 6.0122

25600 6.2052 6.0126
102400 6.2063 6.0133

Table 7.10: φ2(sym): the expected number of products in the system with log-
normal service distribution, symmetric service rates (µ1 = 2.1, µ2 = 2.1) under
policy S2 and under policy S1 with thresholds l1 = 3, l2 = 3 for model M1.

By comparing results in Tables 7.5, 7.6, 7.9 and 7.10, we observe that ob-
viously increasing the service rate reduces the mean number of products in
the system. However, the improvement is not significant for policy S1 if the
thresholds are not chosen so to compensate the effect of asymmetric service
time (comparison of Tables 7.5, 7.9 (column (3,3)). On the other hand asymmet-
ric thresholds (l1, l2) = (2, 3), (l1, l2) = (1, 3), (l1, l2) = (1, 4) (last three columns
in Table 7.9) provide better results. Similarly for policy S2, the improvement is
not significant for the asymmetric service rate increase φ3(asym) (comparison
of Tables 7.6, 7.9 (column S2)).

Finally, we compare asymmetric configuration of the S1 policy with asym-
metric thresholds (l1, l2) = (1, 4) (Table 7.9) against the symmetric configura-
tion with symmetric thresholds (l1, l2) = (3, 3) (Table 7.10). We observe that
there’s no significant difference (in terms of expected number of products) be-
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tween these two configurations. Such results may be useful during the cost-
contribution analysis of FMS designing. In the case we consider here, for ex-
ample, the designer knows that investing on a single twice-faster machine (i.e.
asymmetric configuration) is, performance-wise, as convenient as investing on
a pair of 50% faster machines (i.e. symmetric configuration). Thus he/she can
opt for either possibility based on machine costs only.

We observe that symmetric increase gives better results than the asymmetric
increase for policy S2. Furthermore policy S1 is better than policy S2 for all
experiences w.r.t. the expected number of products in the system. However the
blocking probability is higher under policy S1. Thus we can conclude that the
blocking is not a problem as long as it does not induce an extra cost.

In remaining tables, we compare models M1 and M2. Failures occur ac-
cording to an Erlang distribution of 4 stages of exponential distribution with
mean value 250, Erlang(4, 250), while repair time follows a uniform distribution
Unif(30, 50). Thus the mean time to failure is 1000 while mean repair time is 40
time units. First we repeat in tables 7.11 and 7.12 the experiences of tables 7.5
and 7.6 for model M2.

T φ2(log) S.T. N.P. C.I.
10 5.1750 7 31500 0.0051
30 6.0260 7 12200 0.0060
50 6.1957 8 7300 0.0061
70 6.2690 8 5300 0.0062

100 6.3220 8 3700 0.0062
400 6.5242 1545 177900 0.0065

1600 7.5133 16710 318000 0.0075
6400 7.9791 10289 78100 0.0080

25600 8.0947 10592 19900 0.0081
102400 8.1223 10512 5000 0.0081

Table 7.11: the expected number of products in the system with symmet-
ric, lognormal service distribution under policy S1, for model M2 with fail-
ures/repairs.

In short horizons, models M1 and M2 have similar behaviors. For horizons
400 − 1600, when failures begin to occur, the number of paths increases signifi-
cantly and then it decreases for larger horizons. As expected, in large horizons,
there are more products in the system in model M2 with failures but, contrarily
to M1 model, it seems that policy S2 is better than policy S1 for model M2.

In tables 7.13 and 7.14 we consider lognormal service distribution with sym-
metric service rates in each machine (µ1 = µ2 = 1.4). In table 7.13 (resp. table
7.14) we present results for property φ3 with the required number of produc-
tions K = 95 during each time interval D = 50, for model M1 (resp. for model
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T φ2(log) S.T. N.P. C.I.
10 5.1432 5 34300 0.0051
30 6.2164 13 24100 0.0062
50 6.4431 14 15500 0.0064
70 6.5395 15 11300 0.0065

100 6.6140 15 8200 0.0066
400 6.7935 577 79100 0.0068

1600 7.2612 2708 92300 0.0073
6400 7.4717 2344 19400 0.0075

25600 7.5202 2254 4800 0.0075
102400 7.5343 2253 1200 0.0073

Table 7.12: the expected number of products in the system with logNor-
mal, symmetric service distribution under policy S2, for model M2 with fail-
ures/repairs.

M2 with failures). Policy S1 is better than policy S2 for model M1 while S2
is better for model M2. Thus policy S2 is more robust when FMS is subject to
failures.

T S1 S2
φ3 S.T. C.I. φ3 S.T. C.I.

100 0.4880 4690 0.0005 0.4815 3886 0.0005
200 0.7157 2395 0.0007 0.7111 2106 0.0007
400 0.8296 1858 0.0008 0.8254 1693 0.0008
800 0.8867 1651 0.0009 0.8831 1616 0.0008

1600 0.9145 1604 0.0009 0.9117 1458 0.0009
3200 0.9289 1523 0.0009 0.9259 1520 0.0009
6400 0.9364 1543 0.0009 0.9326 1415 0.0009

12800 0.9397 1510 0.0009 0.9364 1606 0.0009
25600 0.9415 1535 0.0009 0.9383 1406 0.0009
51200 0.9422 1515 0.0009 0.9394 1466 0.0009

102400 0.9428 1516 0.0009 0.9397 1374 0.0009

Table 7.13: the probability to complete at least K = 95 productions during a
time interval D = 50 with symmetric, lognormal service distribution under
both policies, for model M1.



7.6. CONCLUSION 185

T S1 S2
φ3 S.T. C.I . φ3 S.T. C.I.

100 0.4881 5082 0.0005 0.4816 4646 0.0005
200 0.7146 2707 0.0007 0.7103 2394 0.0007
400 0.8224 2389 0.0008 0.8220 1966 0.0008
800 0.8615 2833 0.0008 0.8703 2091 0.0009

1600 0.8662 2979 0.0009 0.8868 2072 0.0009
3200 0.8686 2799 0.0008 0.8950 2062 0.0009
6400 0.8700 2760 0.0009 0.8992 2005 0.0009

12800 0.8704 2741 0.0009 0.9014 2105 0.0009
25600 0.8707 2882 0.0009 0.9023 1982 0.0009
51200 0.8710 2797 0.0009 0.9026 2149 0.0009

102400 0.8711 2739 0.0009 0.9030 2261 0.0009

Table 7.14: the probability to complete at least K = 95 productions during a
time interval D = 50 with symmetric, lognormal service distribution under
both policies, for model M2.

7.6 Conclusion

We have presented here a compositional modeling framework for flexible man-
ufacturing systems using stochastic Petri nets. The FMS is modeled piece-wise
by specifying the classes of components to be used (loading unit, transporters,
machines), specifying their parameters (type of raw material needed/produced,
size of input/output buffers, transporting policy, ...) and then combining all
these components via their interface.

In order to evaluate these FMS, we then use HASL the stochastic language
that we have presented in chapter 5. This language enables a precise selection
of successful path by synchronizing the SPN with an hybrid automaton, and
then a quantitative evaluation using an expression that can express both model
checking (the probability of the set of winning paths, ...) and performance eval-
uation (mean waiting time, ...) measures.

These two steps are meant to be facilitated for the modeler. The goal is to
generate both the SPN for the FMS and the automaton + expression for the
formula in an automated way, not requiring the modeler to be familiar to either
type of models. We aim at an analysis that is both formal, using the COSMOS
tool for evaluating HASL formulas on FMS, and user oriented, providing the
user with an easy way to describe his model and specify the useful formulas.

We also applied our approach on an FMS model with several interesting
features.
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Chapter 8

Conclusion and Perspectives

We proposed in this thesis several contributions devoted to probabilistic veri-
fication. These contributions aim at: (1) designing efficient verification proce-
dures, (2) obtaining a more expressive logic for expressing properties, (3) con-
sidering general stochastic processes, and (4) providing toolkits for modelers
for specification and analysis.

In chapter 4, our work focused on obtaining stochastic bounds for censored
Markov chains. The framework of censored Markov chains is useful in two
cases: (1) when the original chain is very large and we would like to truncate
it, and (2) when the original chain is only partially known. Our contribution fo-
cused on the establishment of several schemes of bounds adapted to the amount
of information available on the chain. We also proved the optimality of the first
proposed algorithm (DPY).

In chapter 5, we extend the scope of statistical verification. More precisely,
we developed a logic, called HASL, that is, to our knowledge, the most expres-
sive of existing logics. A formula in HASL is expressed using a linear hybrid
automaton and an expression defined on the variables of the automata. Us-
ing HASL one can express path expressions thanks to appropriate operators.
Moreover HASL allows a unified specification of functional and performance
properties. Our verification method applies on a large class of stochastic pro-
cesses called discrete events stochastic processes (DESP).

In chapter 6, we presented COSMOS, the tool that we developed to imple-
ment the statistical verification of HASL formulas over DESP. In particular, we
designed several optimizations in order to decrease its execution time. We also
tested it on several models and formulas.

In chapter 7, we presented a method of compositional modeling for flexi-

187
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ble manufacturing systems (FMS) based on a toolbox of components (load unit,
transporter, machine). The modeler that designs a FMS, starts by selecting the
components that he needs, then he determines the parameters of each compo-
nent and finally he assembles the different components via their interface to
obtain his model. This approach does not require any knowledge of Petri nets
by the modeler. So it facilitates the modeling task and saves time related to the
lifecycle of the design process.

Perspectives
Markov decision processes (MDP) are an extension of Markov chains that

also include non deterministic features represented by actions whose effect is
probabilistic. Eliminating the non determinism by the choice of a strategy yields
a stochastic process. So problems associated with MDP consist to find optimal
strategies related to the probability of some event. MDP techniques are gen-
erally highly time and space consuming. So we plan to design approximate
iterative analysis based on statistical verification.

The input formalism of COSMOS is a GSPN. This formalism is an intermedi-
ate formalism more compact than Markov chain but still lacking some mech-
anisms to concisely express complex systems. High-level Petri nets have been
introduced to address this problem. In particular stochastic well-formed nets
(SWN) allow to represent complex information on the net while exploiting the
symmetries to obtain efficient performance evaluation. Our second goal is to
integrate SWN in our tool COSMOS.

Faced to the computation of the probability of a rare event, statistical verifi-
cation requires to generate a huge number of paths to get a satisfactory estima-
tion. Generally this number is so large that the estimated execution time forbids
its use. Several methods were proposed to address the problem, among them
splitting and importance sampling methods. We plan to adapt some rare event
methods for HASL and to integrate them in COSMOS.
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