
On Selective Unboundedness of VASS1

Stéphane Demri

LSV, ENS Cachan, CNRS, INRIA, France

Abstract

Numerous properties of vector addition systems with statesamount to checking the (un)boun-
dedness of some selective feature (e.g., number of reversals, counter values, run lengths). Some
of these features can be checked in exponential space by using Rackoff’s proof or its variants,
combined with Savitch’s Theorem. However, the question is still open for many others, e.g.,
regularity detection problem and reversal-boundedness detection problem. In the paper, we in-
troduce the class of generalized unboundedness propertiesthat can be verified in exponential
space by extending Rackoff’s technique, sometimes in an unorthodox way. We obtain new opti-
mal upper bounds, for example for place boundedness problem, reversal-boundedness detection
(several variants are present in the paper), strong promptness detection problem and regularity
detection. Our analysis is sufficiently refined so as to obtain a polynomial-space bound whenthe
dimension is fixed.

Keywords: vector addition systems with states, place boundedness problem, regularity
detection problem, exponential space

1. Introduction

Reversal-boundedness.A standard approach to circumvent the undecidability of thereachabil-
ity problem for counter automata [39] consists in designingsubclasses with simpler decision
problems. For instance, the reachability problem is decidable for vector addition systems with
states (VASS) [38, 33, 36], for flat counter automata [11, 9, 15] or for lossy counter automata [1].
Among the other interesting subclasses of counter automata, reversal-bounded counter automata
verify that any counter has a bounded number of reversals, alternations between a nonincreasing
mode and a nondecreasing mode, and vice versa. Reversal-boundedness remains a standard con-
cept that is introduced in [4] for multistack automata. A major property of such operational mod-
els is that reachability sets are effectively definable in Presburger arithmetic [28], which provides
decision procedures for LTL existential model-checking and other related problems, see e.g. [12].
However, the class of reversal-bounded counter automata isnot recursive [28] but a significant
breakthrough is achieved in [20] by designing a procedure todetermine when a VASS is reversal-
bounded (or weakly reversal-bounded as defined later), eventhough the decision procedure can
be nonprimitive recursive in the worst-case. This means that reversal-bounded VASS can bene-
fit from the known techniques for Presburger arithmetic [44]in order to solve their verification
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problems. More precisely, we consider subclasses of counter systems for which the reachability

sets of the form{~x ∈ N
n : (q0, ~x0)

∗
−→ (q, ~x)} are effectively Presburger-definable ((q0, ~x0) andq

are fixed). By decidability of Presburger arithmetic, this allows us to solve problems restricted
to such counter systems such as the reachability problem, the control state reachability problem,
the boundedness problem or the covering problem. Indeed, suppose that given (q0, ~x0) andq,
one can effectively build a Presburger formulaϕ such thatϕ holds true exactly for the values in

{~x ∈ Nn : (q0, ~x0)
∗
−→ (q, ~x)}. One can then classically observe that (q0, ~x0)

∗
−→ (q,~z) iff the formula

below is satisfiable:
ϕ(x1, . . . , xn) ∧ x1 = ~z(1)∧ · · · ∧ xn = ~z(n).

Hence, there is an important gain to have effectively semilinear reachability sets, which can be
witnessed by detecting reversal-boundedness or by detecting regularity (guaranteeing the semi-
linearity by Parikh’s Theorem [40]).

Selective unboundedness.In order to characterize the complexity of detecting reversal-boun-
dedness on VASS (the initial motivation for this work), we make a detour to selective unbound-
edness, as explained below. Numerous properties of vector addition systems with states amounts
to checking the (un)boundedness of some selective feature.Some of these features can be ver-
ified in exponential space by using Rackoff’s proof or its variants [45], whereas the question
is still open for many of them. In the paper, we advocate that many properties can be decided
as soon as we are able to decide selective unboundedness, which is a generalization of place
unboundedness for Petri nets (a model known to be equivalentto VASS but of greater practical
appeal). The boundedness problem was first considered in [31] and shown decidable by simply
inspecting Karp and Miller trees: the presence of the infinity value∞ (also denoted byω) is
equivalent to unboundedness. So, unboundedness is equivalent to the existence of a witness run

of the form (q0, ~x0)
∗
−→ (q, ~x1)

π
−→ (q, ~x2) such that~x1 ≺ ~x2, assuming that the initial configuration

is (q0, ~x0) (≺ is the standard strict ordering on tuples of natural numbers). In [45], it is shown
that if there is such a run, there is one of length at most doubly exponential. This leads to the
ExpSpace-completeness of the boundedness problem for VASS using thelower bound from [37]
and Savitch’s Theorem [50]. A variant problem consists in checking whether theith component
is bounded, i.e., is there a boundB such that for every configuration reachable from (q0, ~x0), its
ith component is bounded byB? Again, inspecting Karp and Miller trees reveals the answer:
the presence of the infinity value∞ at theith position of some extended configuration is equiv-
alent toi-unboundedness. Surprisingly, the literature often mentions this alternative problem,
see e.g. [46], but never specifies its complexity: ExpSpace-hardness can be obtained from [37]
but as far as we know, no elementary complexity upper bound has been shown. A natural adap-
tation from boundedness is certainly thati-unboundedness could be witnessed by the existence

of a run of the form (q0, ~x0)
∗
−→ (q, ~x1)

π
−→ (q, ~x2) such that~x1 ≺ ~x2 with ~x1(i) < ~x2(i). By in-

specting the proof in [45], one can show that if there is such arun, then there is one of length
at most doubly exponential. However, although existence ofsuch a run is a sufficient condition
for i-unboundedness (simply iterateπ infinitely), this is not a necessary condition. It might be
explained by the fact that, if a VASS is unbounded, then thereis a witness infinite run with an in-
finite number of distinct configurations. By contrast, it mayhappen that a VASS isi-unbounded
but no infinite run has an infinite amount of distinct values attheith position of the configurations
of the run.
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A generalization.In the paper, we present a generalization of place unboundedness by check-
ing whether a set of components is simultaneously unbounded, possibly with some ordering (see
Section 3.2). This amounts to specifying in the Karp and Miller trees, the ordering with which the
value∞ appears in the different components. Such a generalization is particularly useful since we
show that many problems such as reversal-boundedness [28],strong reversal-boundedness [29],
reversal-boundedness from [20] can be naturally reduced tosimultaneous unboundedness. More-
over, this allows to extend the class of properties for whichExpSpace can be obtained, see e.g.
standard results in [45, 24, 3].

Our contribution. In the paper we show the following results.

1. Detecting whether a VASS is reversal-bounded in the senseof [28] or in the sense of [20]
is ExpSpace-complete by refining the decidability results from [20] (see Theorem 5.2).

2. To do so, we introduce the generalized unboundedness problem in which many problems
can be captured such as the reversal-boundedness detectionproblems, the boundedness
problem, the place boundedness problem, termination, strong promptness detection prob-
lem, regularity detection and many other decision problemson VASS. We show that this
problem can be solved in exponential space by adapting [45] even though it does not fall
into the class ofincreasing path formulaerecently introduced in [3, 2] (see Theorem 4.6).

3. Consequently, we show that regularity and strong promptness detection problems for VASS
are in ExpSpace. The ExpSpace upper bound has been left open in [3]. Even though most of
our results essentially rest on the fact that the place boundedness problem can be solved in
ExpSpace, our generalization is introduced to obtain new complexityupper bound for other
related problems. On our way to this complexity result, we provide a witness run charac-
terization for place unboundedness that can still be expressed in Yen’s path logic [54, 3]
but with a path formula of exponential size in the dimension.

4. As a by-product of our analysis and following a parameterized analysis initiated in [48, 27],
for all the above-mentionned problems, we show that fixing the dimension of the VASS
allows to get a PSpace upper bound.

The complexity of our witness run characterization for selective unboundedness partly explains
why it has been ignored so far. It is clear that whenever the place boundedness problem is de-
cidable, the boundedness problem is decidable too. However, the converse does not always hold
true: for instance the boundedness problem for transfer nets is decidable unlike the place bound-
edness problem [17]. Place boundedness problem can be therefore intrinsically more difficult
than the boundedness problem: there is always a simple way tobe unbounded but if one looks
for i-unboundedness, it might be much more difficult to detect it, if possible at all.
The paper has also original contributions as far as proof techniques are concerned. First, simul-
taneous unboundedness has a simple characterization in terms of Karp and Miller trees, but we
provide in the paper a witness run characterization, which allows us to provide a complexity
analysis along the lines of [45]. We also provide a witness pseudo-run characterization in which
we sometimes admit negative component values. This turns out to be the right approach when
a characterization from coverability graphs [31, 52] already exists. Apart from this unorthodox
adaptation of [45], in the counterpart of Rackoff’s proof about the induction on the dimension,
we provide an induction on the dimension and on the length of the properties to be verified (see
Lemma 4.4). The preliminary work [13] has already been used in [42] to obtain new complexity
results. This is a genuine breakthrough comparable to [45, 48, 24, 3]. We believe this approach is
still subject to extensions. Finally, a recent work [5] has also established similar ExpSpace upper
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bounds for checking properties on VASS by introducing a temporal logic on coverability graphs.

By the way, we pay a special attention to explain most of the technical developements, at the
cost of repeating sometimes standard arguments (see e.g. the nondeterministic procedure in
Section 4.1). We feel that this will considerably help the reader for understanding the chain of
technical results.

Plan of the paper.In Section 2, we present the vector addition systems with states as well
as their decision problems including the simultaneous unboundedness problem and reversal-
boundedness detection problem. Section 3 introduces the class of generalized unboundedness
properties as well as the generalized unboundedness problem. We show how regularity detec-
tion, strong promptness and weak reversal-boundedness detection can be reduced to generalized
unboundedness problem. In Section 4, we prove our main result: the generalized unboundedness
problem for VASS is ExpSpace-complete. In Section 5, as a consequence of the main result,we
show that the regularity detection problem and the strong promptness detection problem are in
ExpSpace. Moreover, (weak) reversal-boundedness detection problem for VASS is also shown
ExpSpace-complete.

2. Preliminaries

In this section, we recall the main definitions for vector addition systems with states (VASS),
without states (VAS) as well as the notions of reversal-boundedness introduced in [28, 20]. We
also present the simultaneous unboundedness problem, which generalizes the place unbounded-
ness problem for Petri nets. First, we writeN [resp. Z] for the set of natural numbers [resp.
integers] and [m,m′] with m,m′ ∈ Z to denote the set{ j ∈ Z : m ≤ j ≤ m′}. Given a dimension
n ≥ 1 anda ∈ Z, we write~a ∈ Zn to denote the vector with all values equal toa. For~x ∈ Zn, we

write ~x(1), . . . ,~x(n) for the entries of~x. For ~x, ~y ∈ Z
n, ~x � ~y

def

⇔ for everyi ∈ [1, n], we have
~x(i) ≤ ~y(i). We also write~x ≺ ~y when~x � ~y and~x , ~y.

2.1. Simultaneous unboundedness problem for VASS

VASS.A vector addition system with states[26] (VASS for short) is a finite-state automaton
with transitions labelled by tuples of integers viewed as update functions. AVASSis a structure
V = (Q, n, δ) such thatQ is a nonempty finite set ofcontrol states, n ≥ 1 is thedimension, andδ
is thetransition relationdefined as a finite set of triples inQ×Zn×Q. Elementst = (q, ~b, q′) ∈ δ

are calledtransitionsand are often represented byq
~b
−→ q′. Moreover, a VASS has no initial

control state and no final control state but in the sequel we introduce such control states on
demand. Figure 1 presents a VASS of dimension 4 with two control states. VASS with a unique
control state are calledvector addition systems(VAS for short) [31]. In the sequel, a VAST is
represented by a finite nonempty subset ofZ

n, encoding naturally the transitions. VASS and VAS
are equivalent to Petri nets, see e.g. [47]. In this paper, the decision problems are defined with the
VASS model and the decision procedures are designed for VAS,assuming that we know how the
problems can be reduced, see e.g. [26]. Indeed, we prefer to define problems with the help of the
VASS model since when infinite-state transition systems arise in the modeling of computational
processes, there is often a natural factoring of each systemstate into a control component and a
memory component, where the set of control states is typically finite. In this paper, we use the
reduction from VASS to VAS defined in [26] that allows to simulate a VASS of dimensionn by
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Figure 1: A simple VASS with two control states

a VAS of dimensionn + 3, independently of its number of control states (formal definition is
recalled in the proof of Lemma 2.5). Even though a simpler reduction exists that increments the
dimension by the cardinal of the set of control states, the reduction from [26] is exactly what we
need, since sometimes, at some intermediate stage, we may increase exponentially the number
of control states.

Runs. A configurationof V is defined as a pair (q, ~x) ∈ Q × N
n (for VAS, we simply omit the

control state). Aninitialized VASSis a pair made of a VASS and a configuration. Given two

configurations (q, ~x), (q′, ~x′) and a transitiont = q
~b
−→ q′, we write (q, ~x)

t
−→ (q′, ~x′) whenever

~x′ = ~x + ~b. We also write (q, ~x) −→ (q′, ~x′) when there is no need to specify the transitiont.
The operational semantics of VASS updates configurations; runs of such systems are essentially
sequences of configurations. Every VASS induces a (possiblyinfinite) directed graph of configu-
rations. Indeed, all the interesting problems on VASS can beformulated on itstransition system
(Q × N

n,−→). Given a VASSV = (Q, n, δ), a run ρ is a nonempty (possibly infinite) sequence
ρ = (q0, ~x0), . . . , (qk, ~xk), . . . of configurations such that (qi , ~xi) −→ (qi+1, ~xi+1) for all i. We set
Reach(V, (q0, ~x0))

def
= {(qk, ~xk) : there is a finite run (q0, ~x0), . . . , (qk, ~xk)}. Considering the VASS

in Figure 1, one can show that

{

(
a
b
d

)

∈ N3 : d ≤ a× b} =

{

(
a
b
d

)

∈ N3 : ∃
(

a′

b′

c′

)

∈ N3, (q0,

( a′

b′

c′

d

)

) ∈ Reach(V, (q0,

( a
b
0
0

)

))}

A run can be alternatively represented by an initial configuration and a sequence of transitions,
assuming that no negative component values is obtained by applying the sequence of transitions.
A pathπ is a finite sequence of transitions whose successive controlstates respectδ (actually this
notion is mainly used for VAS without control states). Apseudo-configurationis defined as an
element ofQ × Z

n. Whenπ = t1 · · · tk is a path, thepseudo-runρ = (π, (q, ~x)) is defined as the
sequence of pseudo-configurations (q0, ~x0) · · · (qk, ~xk) such that (q0, ~x0) = (q, ~x), and for every

i ∈ [1, k], there ist = qi

~b
−→ qi+1 such that~xi = ~xi−1 + ~b. So, we deliberately distinguish the notion

of path (sequence of transitions) from the notion of pseudo-run (sequence of elements inQ× Zn

respecting the transition fromV). The pseudo-runρ is inducedby the pathπ and oflength k+1;
the pathπ is of length k. (q0, ~x0) is called theinitial pseudo-configuration and (qk, ~xk) is called

thefinal pseudo-configuration in the pseudo-runρ. We also use the notation (q, ~x)
t
−→ (q′, ~x′) with
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pseudo-configurations. Given a VASSV [resp. a pseudo-configuration (q, ~x), etc.] of dimension
n, we writeV(I ) [resp. (q, ~x)(I ), etc.] to denote the restriction ofV [resp. (q, ~x), etc.] to the
components inI ⊆ [1, n].

Sizes.Let us start by defining the size of some VAST of dimensionn ≥ 1. Given~x ∈ Z
n,

we write maxneg(~x) [resp. max(~x)] to denote the value max({max(0,−~x(i)) : i ∈ [1, n]}). [resp.

max({~x(i) : i ∈ [1, n]})]. By extension, we write maxneg(V) to denote max{maxneg(~b) : q
~b
−→

q′ ∈ δ}. Furthermore, we write scale(V) to denote the value max({|~b(i)| : q
~b
−→ q′ ∈ δ, i ∈ [1, n]}).

For instance, maxneg((−2, 3))= 2 and scale({(−2, 3)}) = 3. The size ofT , written |T |, is defined
by the value below:n× card(T ) × (1+ ⌈log2(1+ scale(T ))⌉). Given a finite subsetX of Zn, we
also write|X| to denoten× card(X) × (1+ ⌈log2(1+ scale(X))⌉). We write |~x| to denote the size
of ~x ∈ Zn defined as the size of the singleton set{~x}. Given a VASSV = (Q, n, δ), we write |V|
to denote its size defined by

card(Q) + n× card(δ) × (2× card(Q) + (1+ ⌈log2(1+ scale(V))⌉))

Observe that 1+ ⌈log2(1+ a)⌉ is a sufficient number of bits to encode integers in [−a, a] for
a > 0. Moreover scale(V) ≥ maxneg(V), scale(V) ≤ 2|V| and |V| ≥ 2. In a few words, we
adopt reasonably succint encodings for all the objects involved in decision problems, in particular
the integers are encoded with a binary representation.

Standard problems.The reachability problem for VASS is decidable [38, 33, 47, 34, 36]. Nev-
ertheless, the exact complexity of the reachability problem is open: we know it is ExpSpace-
hard [37, 10, 18] and no primitive recursive upper bound exists. By contrast, the covering prob-
lem and boundedness problems seem easier since they are ExpSpace-complete [37, 45]. Decid-
ability is established in [31] but with a worst-case nonprimitive recursive bound. The ExpSpace
lower bound is due to Lipton and the upper bound to Rackoff. In order to be complete, one
should make precise how vectors inZn are encoded. The upper bound holds true with a bi-
nary representation of integers whereas the lower bound holds true already with the values -1,
0 and 1. Consequently, the problem is ExpSpace-hard even with an unary encoding. The proof
technique in [45] has been also used to establish that LTL model-checking problem for VASS
is ExpSpace-complete [24]. By adding the possibility to reset countersin the system (providing
the class ofreset VASS), the boundedness and the reachability problems becomes undecidable,
see e.g. [16]. By contrast, the covering problem for VASS with resets is decidable by using the
theory of well-structured transition systems, see e.g. [22].

Simultaneous unboundedness problem.Let (V, (q0, ~x0)) be an initialized VASS of dimensionn
andX ⊆ [1, n]. We say that (V, (q0, ~x0)) is simultaneously X-unboundedif for any B ≥ 0, there
is a run from (q0, ~x0) to some (q, ~y) such that for everyi ∈ X, we have~y(i) ≥ B. WhenX = { j},
we say that (V, (q0, ~x0)) is j-unbounded. It is clear that (V, (q0, ~x0)) is bounded (i.e., the set
Reach(V, (q0, ~x0)) is finite) iff for all j ∈ [1, n], (V, (q0, ~x0)) is not j-unbounded. So, here is the
simultaneous unboundedness problem.

Simultaneous unboundedness problem:

Input: Initialized VASS (V, (q0, ~x0)) of dimensionn andX ⊆ [1, n].
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Question: is (V, (q0, ~x0)) simultaneouslyX-unbounded?

Theorem 2.1. [31] Simultaneous unboundedness problem is decidable.

This follows from [31, 52]: (V, (q0, ~x0)) is simultaneouslyX-unbounded iff the coverability
graphCG(V, (q0, ~x0)) (see e.g., [31, 52]) contains an extended configuration (q, ~y) such that
~y(X) = ~∞ (for α ∈ Z∪{∞}, we write~α to denote any vector of dimensionn ≥ 1 whose component
values areα). More properties about coverability graphs are recalled below but just note that in
the sequel, we show that the simultaneous unboundedness problem is ExpSpace-complete too.

Before going any further, let us recall some properties about coverability graphs [31, 52], see
complete definitions in [47]. Not only this will be useful to prove Lemma 3.1 but we will refer
to it quite often.

A coverability graph approximates the set of reachable configurations from a given config-
uration and it is a finite structure that can be effectively computed. Let us start by preliminary
definitions. Let us consider the structure (N ∪ {∞},≤) such that for allk, k′ ∈ N ∪ {∞}, k ≤ k′

def

⇔ eitherk, k′ ∈ N andk ≤ k′ or k′ = ∞. We writek < k′ wheneverk ≤ k′ andk , k′. The
ordering≤ can be naturally extended to tuples in (N ∪ {∞})n by defining it component-wise: for

all ~x, ~x′ ∈ (N ∪ {∞})n, ~x � ~x′
def

⇔ for i ∈ [1, n], either~x(i), ~x′(i) ∈ N and~x(i) ≤ ~x′(i) or ~x′(i) = ∞.
We also write~x ≺ ~x′ when~x � ~x′ and~x , ~x′. Given ~x, ~x′ ∈ (N ∪ {∞})n such that~x < ~x′,
we write acc(~x, ~x′) to denote the element of (N ∪ {∞})n such that fori ∈ [1, n], if ~x(i) = ~x′(i)
thenacc(~x, ~x′)(i)

def
= ~x′(i), otherwiseacc(~x, ~x′)(i)

def
= ∞. Let us conclude this paragraph by a last

definition. For all~x ∈ (N∪{∞})n and for everyt ∈ Zn, ~x+ t is defined as an element of (Z∪{∞})n

such that for everyi ∈ [1, n], if ~x(i) ∈ N then (~x + t)(i)
def
= ~x(i) + t(i), otherwise (~x + t)(i)

def
= ∞.

Given a VASSV = (Q, n, δ) and a configuration (q0, ~x0), we recall that the coverability graph
CG(V, (q0, ~x0)) is a structure (V,E) such thatV ⊆ Q× (N∪{∞})n andE ⊆ V×δ×V, see e.g. [31]
or in [19] a generalization to well-structured transition systems. Here are essential properties of
CG(V, (q0, ~x0)):

(CG1) CG(V, (q0, ~x0)) is a finite structure (consequence of König’s Lemma and Dickson’s
Lemma).

(CG2) For any configuration (q, ~y) reachable from (q0, ~x0) inV, there is (q, ~y′) in CG(V, (q0, ~x0))
such that~y � ~y′. Otherwise said, any reachable configuration can be coveredby an element

of CG(V, (q0, ~x0)). Moreover, if (q0, ~x0)
π
−→ (q, ~y) is a run ofV, then (q0, ~x0)

π
−→ (q, ~y′) in

CG(V, (q0, ~x0)).

(CG3) For every extended configuration (q, ~y′) in CG(V, (q0, ~x0)) and for every boundB ∈ N,

there is a run (q0, ~x0)
∗
−→ (q, ~y) in V such that fori ∈ [1, n], if ~y′(i) = ∞ then~y(i) ≥ B

otherwise~y(i) = ~y′(i).

Unfortunately, even thoughCG(T , ~x0) is finite, in the worst-case its number of nodes can be
nonprimitive recursive [52, 30]. Figure 2 presents a VASS ofdimension 1 (on the left) and the
corresponding coverability graph for the initial configuration (q0, 0).

2.2. Standard reversal-boundedness and its variant
A reversal for a counter occurs in a run when there is an alternation fromnonincreasing

mode to nondecreasing mode and vice-versa. For instance, inthe sequence below, there are three
reversals identified by an upper line:

00112233344443332223334444555554
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q0

q1

q2

(t1) +1 0 (t2)

(t3) −1 0 (t4)

q0, 0

q1, 1

q2, 0 q0,∞

q1, 0 q1,∞

q2,∞

t1

t3 t2

t4 t1

t2

t2

t3 t4

Figure 2: A VASS and its coverability graph from the initial configuration (q0, 0)

Figure 3: 5 reversals in a row

Similarly, the sequence 00111222223333334444 has no reversal. Figure 3 presents schemati-
cally the behavior of a counter with 5 reversals. A VASS isreversal-boundedwhenever there is
r ≥ 0 such that for any run, every counter makes no more thanr reversals. This class of VASS
has been introduced and studied in [28], partly inspired by similar restrictions on multistack au-
tomata [4]. A formal definition will follow, but before goingany further, it is worth pointing out a
few peculiarities of this subclass. Indeed, reversal-bounded VASS are augmented with an initial
configuration so that existence of the boundr is relative to the initial configuration. Secondly,
this class is not defined from the class of VASS by imposing syntactic restrictions but rather
semantical ones. In spite of the fact that the problem of deciding whether a counter automaton
(VASS with zero-tests) is reversal-bounded is undecidable[28], we explain later why reversal-
bounded counter automata have numerous fundamental properties. Moreover, a breakthrough
has been achieved in [20] by establishing that checking whether a VASS is reversal-bounded is
decidable. The decidability proof in [20] provides a decision procedure that requires nonprimi-
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tive recursive time in the worst case since Karp and Miller trees need to be built [31, 52]. In the
sequel, we show that this can be checked with exponential space only, and this is optimal as far
as worst-case complexity is concerned.

LetV = (Q, n, δ) be a VASS. Let us define the auxiliary VASSVrb = (Q′, 2n, δ′) such that
essentially, then new components inVrb count the number of reversals for each component
fromV. We setQ′ = Q × {DEC, INC}n and, for every~v ∈ {DEC, INC}n and everyi ∈ [1, n],
~v(i) encodes whether componenti is in a decreasing mode or in an increasing mode. Moreover,

(q, ~mode)
~b′
−→ (q′, ~mode

′
) ∈ δ′ (with ~b′ ∈ Z2n)

def

⇔ there isq
~b
−→ q′ ∈ δ such that~b′([1, n]) = ~b and

for everyi ∈ [1, n], one of the conditions below is satisfied:

• ~b(i) < 0, ~mode(i) = ~mode
′
(i) = DEC and~b′(n+ i) = 0,

• ~b(i) < 0, ~mode(i) = INC, ~mode
′
(i) = DEC and~b′(n+ i) = 1,

• ~b(i) > 0, ~mode(i) = ~mode
′
(i) = INC and~b′(n+ i) = 0,

• ~b(i) > 0, ~mode(i) = DEC, ~mode
′
(i) = INC and~b′(n+ i) = 1,

• ~b(i) = 0, ~mode(i) = ~mode
′
(i) and~b′(n+ i) = 0.

Initialized VASS (V, (q, ~x)) is reversal-bounded[28]
def

⇔ for every i ∈ [n + 1, 2n], {~y(i) :

∃ run (qrb, ~xrb)
∗
−→ (q′, ~y) inVrb} is finite with qrb = (q, ~INC), ~xrb restricted to then first compo-

nents is~x and~xrb restricted to then last components is~0. Whenr ≥ max({~y(i) : ∃ run (qrb, ~xrb)
∗
−→

(q′, ~y) inVrb} : i ∈ [n+ 1, 2n]), (V, (q, ~x)) is said to ber-reversal-bounded. For a fixedi ∈ [1, n],

when{~y(n + i) : ∃ run (qrb, ~xrb)
∗
−→ (q′, ~y) in Vrb} is finite, we say that (V, (q, ~x)) is reversal-

bounded with respect to i. Reversal-boundedness for counter automata, anda fortiori for VASS,
is very appealing because reachability sets are semilinearas recalled below.

Theorem 2.2. [28] Let (V, (q, ~x)) be anr-reversal-bounded VASS. For each control stateq′, the

set{~y ∈ Nn : ∃ run (q, ~x)
∗
−→ (q′, ~y)} is effectively semilinear.

This means that one can compute effectively a Presburger formula that characterizes pre-
cisely the reachable configurations whose control state isq′. So, detecting reversal-boundedness
for VASS, which can be easily reformulated as an unboundedness problem with the above reduc-
tion, is worth the effort since semilinearity follows and then decision procedures for Presburger
arithmetic can be used. By a simple observation, boundedness and reversal-boundedness are
related as follows.

Lemma 2.3. (V, (q, ~x)) is reversal-bounded with respect toi iff (Vrb, (qrb, ~xrb)) is not (n + i)-
unbounded.

An interesting extension of reversal-boundedness is introduced in [20, 49] for which we only
count the number of reversals when their values occur for a counter value above a given bound
B. For instance, finiteness of the reachability set implies reversal-boundedness in the sense of [20,
49], which we callweak reversal-boundedness.

Let V = (Q, n, δ) be a VASS and a boundB ∈ N. Instead of defining a counter automa-
tonVrb as done to characterize (standard) reversal-boundedness,we define directly an infinite
directed graph that corresponds to a variant of the transition system ofVrb: still, there aren
new counters that record the number of reversals but only if their values occur above a bound
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B. That is why, the infinite directed graphTSB = (Q × {DEC, INC}n × N
2n,−→B) is defined

as follows: (q, ~mode, ~x) −→B (q′, ~mode
′
, ~x′)

def

⇔ there is a transitionq
~b
−→ q′ ∈ δ such that

~x′([1, n]) = ~x([1, n]) + ~b, and for everyi ∈ [1, n], one of the conditions below is satisfied:

• ~b(i) < 0, ~mode(i) = ~mode
′
(i) = DEC and~x′(n+ i) − ~x(n+ i) = 0

• ~b(i) < 0, ~mode(i) = INC, ~mode
′
(i) = DEC,~x(i) ≤ B and~x′(n+ i) − ~x(n+ i) = 0,

• ~b(i) < 0, ~mode(i) = INC, ~mode
′
(i) = DEC,~x(i) > B and~x′(n+ i) − ~x(n+ i) = 1,

• ~b(i) > 0, ~mode(i) = ~mode
′
(i) = INC and~x′(n+ i) − ~x(n+ i) = 0,

• ~b(i) > 0, ~mode(i) = DEC, ~mode
′
(i) = INC, ~x(i) > B and~x′(n+ i) − ~x(n+ i) = 1,

• ~b(i) > 0, ~mode(i) = DEC, ~mode
′
(i) = INC, ~x(i) ≤ B and~x′(n+ i) − ~x(n+ i) = 0,

• ~b(i) = 0, ~mode(i) = ~mode
′
(i) and~x′(n+ i) − ~x(n+ i) = 0.

Given B ≥ 0 andr ≥ 0, the initialized VASS (V, (q, ~x)) is r-reversal-B-bounded
def

⇔ for every

i ∈ [n + 1, 2n], {~y(i) : (qrb, ~xrb)
∗
−→B (q′, ~y) in TSB} is finite andr ≥ max({~y(i) : (qrb, ~xrb)

∗
−→B

(q′, ~y) in TSB} : i ∈ [n + 1, 2n]). Initialized VASS (V, (q, ~x)) is weakly reversal-bounded[20]
def

⇔ there is someB ≥ 0 such that for everyi ∈ [n+ 1, 2n], {~y(i) : (qrb, ~xrb)
∗
−→B (q′, ~y) in TSB}

is finite. Observe that whenever (V, (q, ~x)) is r-reversal-bounded, (V, (q, ~x)) is r-reversal-0-
bounded. Reversal-boundedness for counter automata, anda fortiori for VASS, is again very
appealing because reachability sets are semilinear as stated below.

Theorem 2.4. [28, 20] Let (V, (q, ~x)) be an initialized VASS that is (weakly)r-reversal-B-

bounded for somer, B ≥ 0. For each control stateq′, the set{~y ∈ N
n : run (q, ~x)

∗
−→ (q′, ~y)}

is effectively semilinear.

This means that one can compute effectively a Presburger formula that characterizes precisely the
reachable configurations whose control state isq′. The original proof for reversal-boundedness
can be found in [28] and its extension for weak reversal-boundedness is presented in [20]; when-
ever a counter value is belowB, this information is encoded in the control state which provides a
reduction to (standard) reversal-boundedness.

Reversal-boundedness detection problem

Input: Initialized VASS (V, (q, ~x)) of dimensionn andi ∈ [1, n].

Question: Is (V, (q, ~x)) reversal-bounded with respect to the componenti?

We also consider the variant with weak reversal-boundedness.
Let us conclude this section by Lemma 2.5 below. The proof is essentially based on [26,

Lemma 2.1] and on the definition of the initialized VASS (Vrb, (qrb, ~xrb)). The key properties are
that the dimension increases only linearly and the scale “only” exponentially in the dimension.

Lemma 2.5. Given a VASSV = (Q, n, δ) and a configuration (q, ~x), one can effectively build
in polynomial space an initialized VAS (T , ~x′) of dimension 2n + 3 such that (V, (q, ~x)) is
reversal-bounded with respect toi iff (T , ~x′) is not (n + i)-unbounded. Moreover, scale(T ) =
max((card(Q) × 2n + 1)2, scale(V)).
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Proof. (Lemma 2.5) LetV = (Q, n, δ) be a VASS and (q, ~x) ∈ Q×Nn. Suppose thatQ hasm≥ 1
control states withQ = {q1, . . . , qm}. Let us recall the construction of an equivalent initialized
VAS of dimensionn + 3 from [26, Lemma 2.1], that we write (((Q, n, δ), (q, ~x)))HP = (T , ~x′).
We poseai

def
= i andbi

def
= (m+ 1)(m+ 1− i) for everyi ∈ [1,m]. A configuration (qi , ~y) of V is

encoded by the configuration~y′ in T such that~y′([1, n]) = ~y and~y′([n+ 1, n+ 3]) = (ai, bi , 0).
The initial configuration~x′ is computed from (q, ~x) by using this encoding. It remains to define
the transitions inT .

• For eacht = qi

~b
−→ q j ∈ δ, we consider the transitiont′ ∈ T such thatt′([1, n]) = ~b and

t′([n+ 1, n+ 3]) = (a j − bi , b j,−ai).

• For technical reasons, for everyi ∈ [1,m], we add two dummy transitionsti andt′i in T
such that

– ti([1, n]) = t′i ([1, n]) = ~0,
– ti([n+ 1, n+ 3]) = (−ai , am+1−i − bi , bm+1−i),

– t′i ([n+ 1, n+ 3]) = (bi,−am+1−i ,−bm+1−i + ai).

Observe that fort = qi

~b
−→ q j ∈ δ, (t′ + ti + t′i )([1, n]) = ~b and (t′ + ti + t′i )([n + 1, n + 3]) =

(a j − ai , b j − bi, 0). The proof of [26, Lemma 2.1] establishes that every run (q′0, ~y0) · · · (q′k, ~yk) in
V leads to a runρ′ = ~z0 · · ·~z3k in T such that

• for everyi ∈ [0, k], ~z3i([1, n]) = ~yi and~z3i is the standard encoding of (q′i , ~yi). Moreover,

each step (q′i , ~yi)
t
−→ (q′i+1, ~yi+1) corresponds to the three steps~z3i

tI t′I t
−→ ~z3i+3 in ρ′ whereq′i is

the I th control state ofQ.

An analogous property holds true in the converse direction (and this is the place where the
dummy transitions play a crucial role). This implies that for every i ∈ [1, n], (V, (q, ~x)) is i-
unbounded iff ((V, (q, ~x)))HP is i-unbounded.

Let us come back to our reduction. LetV = (Q, n, δ), (q, ~x) and i be an instance of the
reversal-boundedness detection problem. Using Lemma 2.3 and the properties of the construc-
tion in [26, Lemma 2.1], it is easy to show that

• (V, (q, ~x)) is reversal-boundedwith respect toi iff ((Vrb, (qrb, ~xrb)))HP is not (n+i)-unbounded.

• The scale of the VAS ((Vrb, (qrb, ~xrb)))HP is bounded by max((card(Q)×2n+1)2, scale(V))
(as well as the scale of the target initial configuration).

• ((Vrb, (qrb, ~xrb)))HP can be built in polynomial space.

It is worth noting that the cardinal of the set of control states ofVrb is card(Q)×2n whereQ is the
set of control states ofV. Hence, this excludes the possibility to construct ((Vrb, (qrb, ~xrb)))HP in
logarithmic space.

Note that by using the simple reduction from VASS to VAS that increases the dimension
by the number of control states, we would increase exponentially the dimension, which would
disallow us to obtain forthcoming optimal complexity bounds. Indeed, the number of control
states inVrb is exponential in the number of control states inV.

In Lemma 3.6, we explain how to reduce weak reversal-boundedness detection to a general-
ization of (n+ i)-unboundedness.
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3. Generalized Unboundedness Properties

In this section, we essentially introduce the generalized unboundedness problem and we show
how several detection problems can be naturally reduced to it.

3.1. Witness runs for simultaneous unboundedness

By [31, 52], we know that (V, (q0, ~x0)) is i-unbounded iff the coverability graphCG(V, (q0, ~x0))
contains an extended configuration with∞ on theith component. This is a simple characteri-
zation whose main disadvantage is to induce a nonprimitive recursive decision procedure in the
worst case. By contrast, unboundedness of (V, (q0, ~x0)) (i.e. i-unboundedness for somei ∈ [1, n])

is equivalent to the existence of witness run of the form (q0, ~x0)
∗
−→ (q1, ~x1)

+
−→ (q2, ~x2) such that

~x1 ≺ ~x2 andq1 = q2. In [45], it is shown that if there is such a run, there is one oflength at most
doubly exponential. Given a componenti ∈ [1, n], a natural adaptation toi-unboundedness is to

check the existence of a run of the form (q0, ~x0)
∗
−→ (q1, ~x1)

π
−→ (q2, ~x2) such that~x1 ≺ ~x2, q1 = q2

and~x1(i) < ~x2(i). By inspecting the proof in [45], one can show that if there is such a run, then
there is one of length at most doubly exponential. However, although existence of such a run is
a sufficient condition fori-unboundedness (simply iterateπ infinitely), this is not necessary as
shown on the VASS below:

q0 q1
(

1
0

)

(
0
0

)

(
−1
1

)

The second component is unbounded from (q0, ~0) but no run (q0, ~0)
∗
−→ (q, ~x1)

π
−→ (q, ~x2) with ~x1 ≺

~x2, ~x1(2) < ~x2(2) andq ∈ {q0, q1} exists. Indeed, in order to increment the second component,
the first component needs first to be incremented. Below, we present the coverability graph for
this VASS with initial configuration (q0, (0, 0))

q0, (0, 0)

q0, (∞, 0) q1, (0, 0)

q1, (∞, 0)

q1, (∞,∞)

(
1
0

) (
0
0

)

(
0
0

)

(
−1
1

)

(
1
0

)

(
−1
1

)

Note that the only way to introduce∞ in the second component is to introduce first∞ on the first
component. In general for VASS of dimensionn, i-boundedness amounts to the existence of a
run of the form

(q0, ~x0)
π′0
−→ (q1, ~x1)

π1
−→ (q1, ~x2)

π′1
−→ · · ·

π′K−1
−−→ (qK , ~x2K−1)

πK
−→ (qK , ~x2K)

where~x2K(i) > ~x2K−1(i). Moreover, for alll ∈ [1,K] and for all j ∈ [1, n], whenever~x2l( j) <
~x2l−1( j), there isl′ < l such that~x2l′ ( j) > ~x2l′−1( j) (this will be proved soon formally). This
illustrates the idea that to be able to increment unboundedly the ith component, we may be
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able to increment earlier other components. Similarly, theultimate condition for simultaneous
unboundedness needs to specify the different ways to introduce the value∞ along a given branch
of the Karp and Miller coverability graphs. This is done thanks to the condition PBσ defined
below and further generalized in Section 3.2. Adisjointness sequenceis a nonempty sequence
σ = X1 · · · · · XK of nonempty subsets of [1, n] such that fori , i′, Xi ∩ Xi′ = ∅ (consequently
K ≤ n). A run of the form

(q0, ~x0)
π′0
−→ (q1, ~x1)

π1
−→ (q2, ~x2)

π′1
−→ · · ·

π′K−1
−−→ (q2K−1, ~x2K−1)

πK
−→ (q2K , ~x2K)

satisfies thepropertyPBσ (Place Boundedness with respect to a disjointness sequenceσ) iff the
conditions below hold true:

(P0) For everyl ∈ [1,K], q2l−1 = q2l .

(STRICT) For all l ∈ [1,K] and all j ∈ Xl , ~x2l−1( j) < ~x2l( j).

(NONSTRICT) For all l ∈ [1,K] and all j ∈ ([1, n] \Xl), ~x2l( j) < ~x2l−1( j) implies j ∈
⋃

l′∈[1,l−1]
Xl′ .

Observe that when (STRICT) holds, the condition (NONSTRICT) is equivalent to: for alll ∈
[1,K] and all j <

⋃

l′∈[1,l−1]
Xl′ , we have~x2l−1( j) ≤ ~x2l( j). Consequently, for alll ∈ [1,K] and

for all paths of the form (πl)k for somek ≥ 1, the effect on thejth component may be negative
only if j ∈

⋃

l′∈[1,l−1]
Xl′ . Finally, note that the conditions onX1 · · ·XK are reminiscent of chains in

automata, see e.g. [41, Chapter 5].

It is now time to provide a witness run characterization for simultaneousX-unboundedness that
is a direct consequence of the properties of the coverability graphs [52].

Lemma 3.1. Let (V, (q0, ~x0)) be an initialized VASS of dimensionn and X ⊆ [1, n]. Then,
(V, (q0, ~x0)) is simultaneouslyX-unbounded iff there is a runρ starting at (q0, ~x0) satisfying PBσ
for some disjointness sequenceσ = X1 · · · · · XK such thatX ⊆ (X1 ∪ · · · ∪ XK) andX ∩ XK , ∅.

Consequently, (V, (q0, ~x0)) is i-unbounded iff there is a runρ starting at (q0, ~x0) satisfying
PBσ for some disjointness sequenceσ = X1 · · · · · XK with i ∈ XK .

Proof. As a consequence of the properties on the coverability graphs presented in Section 2.1,
givenX ⊆ [1, n], (V, (q0, ~x0)) is simultaneouslyX-unbounded iff CG(V, (q0, ~x0)) contains some
(q, ~y) with ~y(X) = ~∞ [31].
It is now time to show the statement.
(←) Let us consider the runρ

(q0, ~x0)
π′0
−→ (q1, ~x1)

π1
−→ (q2, ~x2)

π′1
−→ (q3, ~x3)

π2
−→ · · · (q2K−1, ~x2K−1)

πK
−→ (q2K , ~x2K)

of lengthL satisfying the property PBσ. Let B ≥ 0. We construct a runρ′ satisfying PBσ of the
form (π′0(π1)β1π′1(π2)β2 · · · (πK)βK , (q0, ~x0)) for someβ1, . . . , βK ≥ 1 such that (B, . . . , B) � ~xf (X)
where (qf , ~xf ) is the final configuration ofρ′. Now let us defineβK , . . . , β1 (in this very ordering):

• βK = B.
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• Now suppose thatβi+1, . . . ,βK are already defined andi < K. Let us defineβi by

βi
def
= B+ (K − i)(L − 1)maxneg(V) + Σ

i′∈[i+1,K]
((L − 1)maxneg(V))βi′

For every j ∈ [i + 1,K], the pathπ j has at most (L − 1) transitions and each transition may
decrease a component by at most maxneg(V). The term Σ

i′∈[i+1,K]
((L−1)maxneg(V))βi′ guarantees

that each component inXi is large enough to fireπ j without reaching negative values. Similarly,
each pathπ′j with j ∈ [i,K − 1], has at most (L − 1) transitions and each transition may decrease
a component by at most maxneg(V). The term (K − i)(L − 1)maxneg(V) guarantees that each
component inXi is large enough to fireπ′j without reaching negative values. Finally the term
B in βi guarantees that the final value of the componenti is greater thanB. Consequently, the
expression (K − i)(L − 1)maxneg(T ) is related to the pathsπ′i , . . . ,π′K−1 whereas the expression
Σi′∈[i+1,K]((L− 1)maxneg(V))βi′ is related to the pathsπi+1, . . . ,πK . It is not difficult to show that
(π′0(π1)β1π′1(π2)β2 · · · (πK)βK , (q0, ~x0)) defines a run, it satisfies PBσ and (B, . . . , B) � ~xf (X) where
~xf is the final configuration ofρ′. Since the above construction can be performed for anyB, we
conclude that (V, (q0, ~x0)) is simultaneouslyX-unbounded.
(→) Now suppose that (V, (q0, ~x0)) is simultaneouslyX-unbounded. This means thatCG(V, (q0, ~x0))
has an extended configuration (q, ~y) ∈ Q× (N ∪ {∞})n such that~y(X) = (∞, . . . ,∞). We can as-
sume that~y is the first extended configuration on that branch with~y(X) = (∞, . . . ,∞). Let us
consider the sequence below

(q0, ~x0)
π′0
−→ (q1, ~y1)

π1
−→ (q2, ~y2)

π′1
−→ (q3, ~y3)

π2
−→ · · ·

π′K−1
−−→ (q2K−1, ~y2K−1)

πK
−→ (q2K , ~y2K)

obtained fromCG(V, (q0, ~x0)) such that

• For everyl ∈ [1,K], q2l−1 = q2l , and~y2K = ~y.

• For everyl ∈ [1,K], Xl , ∅ with Xl
def
= { j ∈ [1, n] : ~y2l( j) = ∞, ~y2l−1( j) , ∞} and

~y2l−1 ≺ ~y2l .

Let us suppose that the above sequence inCG(V, (q0, ~x0)) has L (extended) configurations
and let us poseσ = X1 · · ·XK . It is easy to show thatσ is a disjointness sequence with
X ⊆

⋃

l∈[1,K]
Xl and X ∩ XK , ∅. Again, we shall design a runρ satisfying PBσ of the form

(π′0(π1)β1π′1(π2)β2 · · · (πK)βK , (q0, ~x0)) for someβ1, . . . , βK ≥ 1. Now let us defineβK , . . . , β1 (in
this very ordering):

• βK = 1.

• Now suppose thatβi+1, . . . , βK are already defined fori < K. Let us defineβi by βi
def
=

1+ (K − i)(L − 1)maxneg(V) + Σ
i′∈[i+1,K]

((L − 1)maxneg(V))βi′ .

Now, it is not difficult to show thatρ = (π′0(π1)β1π′1(π2)β2 · · · (πK)βK , (q0, ~x0)) defines a run and it
satisfies PBσ.

Existence of a run satisfying PBσ can be expressed in the logical formalisms from [54, 3] but
this requires a formula of exponential size in the dimensionbecause an exponential number of
disjointness sequences needs to be taken into account. By contrast, each disjunct has a size only
polynomial inn. The path formula looks like that (in order to fit exactly the syntax from [54, 3]
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we would need a bit more work since existential quantification cannot occur in the scope of
disjunction):

∨

X1···XK ,i∈XK

∃ ~x1, . . . , ~x2K

K∧

l=1

(
∧

j∈Xl

~x2l−1( j) < ~x2l( j)) ∧ (
∧

j<(X1∪···∪Xl−1)

~x2l−1( j) ≤ ~x2l( j))

It is worth noting that the satisfaction of PBσ does not imply~x1 � ~x2K . This prevents us from
defining this condition with an increasing path formula [3] and therefore the ExpSpace upper
bound established in [3] does not apply straightforwardly to i-unboundedness.

3.2. A helpful generalization

We introduce below a slight generalization of the properties PBσ in order to underline their
essential features and to provide a future uniform treatment. Moreover, this allows us to ex-
press new properties, for instance those helpful to characterize nonregularity. The conditions
(STRICT) and (NONSTRICT) specify inequality constraints between component values. We
introduce intervals in place of such constraints. Aninterval is an expression of one of the forms
] − ∞,+∞[, [a,+∞[, ] − ∞, b] or [a, b] for somea, b ∈ Z interpreted as a subset ofZ (with the
obvious interpretation).

Definition 3.1. A generalized unboundedness propertyP = (I1, . . . ,IK) is a nonempty se-
quence ofn-tuples of intervals. ∇

The lengthof P is K and itsscaleis equal to the maximum between 1 and the maximal absolute
value of integers occurring in the interval expressions ofP (if any). A run of the form

(q0, ~x0)
π′0
−→ (q1, ~x1)

π1
−→ (q2, ~x2)

π′1
−→ (q3, ~x3) · · ·

π′K−1
−−→ (q2K−1, ~x2K−1)

πK
−→ (q2K , ~x2K)

satisfies the propertyP
def

⇔ the conditions below hold true:

(P0) For everyl ∈ [1,K], q2l−1 = q2l .

(P1) For everyl ∈ [1,K] and j ∈ [1, n], we have~x2l( j) − ~x2l−1( j) ∈ Il( j).

(P2) For everyl ∈ [1,K] and j ∈ [1, n], if ~x2l( j) − ~x2l−1( j) < 0, then there isl′ < l such that
~x2l′ ( j) − ~x2l′−1( j) > 0.

Given a runρ, we say thatρ, satisfiesP if ρ admits a decomposition satisfying the conditions

(P0)–(P2). By extension, (V, (q0, ~x0)) satisfiesP
def

⇔ there is a finite run starting at (q0, ~x0)
satisfyingP. It is easy to see that condition (P1) [resp. (P2)] is a quantitative counterpart for
condition (STRICT) [resp. (NONSTRICT)] defined in Section 3.1.

Let us now introduce below our most general problem, especially tailored to capture selective
unboundedness.

Generalized Unboundedness Problem

Input: Initialized VASS (V, (q0, ~x0)) and generalized unboundedness propertyP.

Question: Does (V, (q0, ~x0)) satisfyP?

Let us first forget about control states: we can safely restrict ourselves to VAS without any loss
of generality, as it is already the case for many properties.
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Lemma 3.2. There is a logarithmic-space many-one reduction from the generalized unbound-
edness problem for VASS to the generalized unboundedness problem for VAS. Moreover, an
instance of the form ((V, (q, ~x)),P) is reduced to an instance of the form ((T , ~x′),P′) such that

1. if V is of dimensionn, thenT is of dimensionn+ 3,
2. P andP′ have the same length and scale,
3. scale(T ) = max((card(Q) + 1)2, scale(V)) whereQ is the set of control states ofV.

The proof is essentially based on [26, Lemma 2.1].

Proof. LetV = (Q, n, δ), (q, ~x) ∈ Q×Nn andP = (I1, . . . ,IK) be an instance of the generalized
unboundedness problem for VASS. First, (T , ~x′) = ((V, (q, ~x)))HP following the construction
from [26, Lemma 2.1] (see also the proof of Lemma 2.5). Let us now constructP′.

• P′ = (I′1, . . . ,I
′
K) with for everyl ∈ [1,K], I′l ([1, n]) = Il andI′l ([n+ 1, n+ 3]) = ~[0, 0].

We recall that every run (q′0, ~y0) · · · (q′k, ~yk) in V leads to a runρ′ = ~z0 · · ·~z3k in the target VAS
such that

• for everyi ∈ [0, k], ~z3i([1, n]) = ~yi and~z3i is the standard encoding of (q′i , ~yi). Moreover,

each step (q′i , ~yi)
t
−→ (q′i+1, ~yi+1) corresponds to the steps~z3i

tI t′I t
−→ ~z3i+3 in ρ′ whereq′i is theI th

control state ofQ.

An analogous property holds true in the converse direction,which guarantees the correctness of
the reduction. Observe that when~x2l−1([n+ 1, n+ 3]) = ~x2l([n+ 1, n+ 3]) for somel ∈ [1,K]
with ~x2l−1([n+ 1, n+ 3]) not of the form (ai, bi , 0), we can always come back to such a situation
since the dummy transitions are fired in a very controlled way.

Generalized unboundedness properties can be expressed in more general formalisms for
which decidability is known. However, in Section 4, we establish ExpSpace-completeness.

Theorem 3.3. [3, 2] The generalized unboundedness problem is decidable.

Given (V, (q0, ~x0)), the existence of a run from (q0, ~x0) satisfyingP can be easily expressed
in Yen’s path logic [54] and the generalized unboundedness problem is therefore decidable by [3,
Theorem 3] and [38, 33]. We cannot rely on [54, Theorem 3.8] for decidability since [54, Lemma
3.7] contains a flaw, as observed in [3]. [3] precisely establishes that satisfiability in Yen’s path
logic is equivalent to the reachability problem for VASS. Moreover, it is worth noting that the
reduction from the reachability problem to satisfiability [3, Theorem 2] uses path formulae that
cannot be expressed as generalized unboundedness properties. Observe that the ExpSpace upper
bound obtained for increasing path formulae in [3, Section 6] cannot be used herein since obvi-
ously generalized unboundedness properties are not necessarily increasing. That is why, we need
directly to extend Rackoff’s proof for boundedness [45].

3.3. From regularity to reversal-boundedness detection

In this section, we explain how simultaneous unboundednessproblem, regularity detection,
strong promptness detection and weak reversal-boundedness detection can be reduced to gener-
alized unboundedness problem. This will allow us to obtain ExpSpace upper bound for all these
problems.
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Lemma 3.4. Every property PBσ can be encoded as a generalized unboundedness propertyPσ
with lengthK ≤ n and scale(Pσ) = 1.

Proof. From a disjointness sequenceσ = X1 · · ·XK , we define the generalized unboundedness
propertyPσ = (I1, . . . ,IK) as follows. For everyl ∈ [1,K] and j ∈ [1, n], if j ∈ Xl then
Il( j) = [1,+∞[. Otherwise, if j ∈ ([1, n] \ (

⋃

1≤l′≤l Xl′ )), thenIl( j) = [0,+∞[, otherwise
Il( j) =] − ∞,+∞[. It is easy to check thatPσ and PBσ define the same set of runs.

Regularity detection.Another example of properties that can be encoded by generalized un-
boundedness properties comes from the witness run characterization for nonregularity, see e.g. [52,
3]. Nonregularity of an initialized VASS (V, (q0, ~x0)) is equivalent to the existence of a run of
the form

(q0, ~x0)
π′0
−→ (q1, ~x1)

π1
−→ (q2, ~x2)

π′1
−→ (q3, ~x3)

π2
−→ (q4, ~x4)

such that

1. q1 = q2,
2. q3 = q4,
3. ~x1 ≺ ~x2,
4. there isi ∈ [1, n] such that~x4(i) < ~x3(i),
5. for all j ∈ [1, n] such that~x4( j) < ~x3( j), we have~x1( j) < ~x2( j),

see e.g. [52, 3] and [47, Chapter 6]. Here, the language recognized by the initialized VASS is
the set of finite sequences of transitions firable from the initial configuration (no final condition).
Consequently, nonregularity condition can be viewed as a disjunction of generalized unbound-
edness properties of the form (Ii

1,I
i
2) whereIi

1(i) = [1,+∞[, Ii
2(i) =] − ∞,−1], and for j , i,

we haveIi
1( j) = [0,+∞[ andIi

2( j) =] − ∞,+∞[. Condition (5.) above will be satisfied thanks
to Condition (P1) in the definition of a generalized unboundedness property.

Strong promptness detection.We show below how the strong promptness detection problem can
be reduced to the simultaneous unboundedness problem, leading to an ExpSpace upper bound.
Thestrong promptness detection problemis defined as follows [51].

Strong promptness detection problem

Input: An initialized VASS ((Q, n, δ), (q, ~x)) and a partition (δI , δE) of δ.

Question: Is therek ∈ N such that for every run (q, ~x)
∗
−→ (q′, ~x′), there is no run (q′, ~x′)

π
−→

(q′′, ~x′′) using only transitions fromδI and of length more thank (π ∈ δ∗I )?

Let us consider below the VASSV of dimension 1 withδI made of the two transitions in bold.

q0 q1 q2+1
0 −1

−1

(V, (q0, 0)) is not strongly prompt and there is no run (q0, 0)
∗
−→ (q, ~x)

π
−→ (q, ~y) for someq ∈

{q0, q1, q2} such that~x � ~y, π is nonempty and contains only transitions inδI .

Lemma 3.5. There is a logarithmic-space reduction from strong promptness detection problem
to the complement of simultaneous unboundedness problem.
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Proof. Let (V, (q, ~x)) be an initialized VASS withV = (Q, n, δ) and equipped with the partition
(δI , δE). We construct the VASSV[δI ] = (Q × {0, 1}, n+ 1, δ′) made of two copies ofV. The
0-copy behaves exactly asV whereas the 1-copy contains only the transitions fromδI and has
an extra counter that is incremented for each transition. The transitions from the 0-copy to the
1-copy determines nondeterministically when the length ofsequences of transitions inδI starts

to be computed.V[δI ] is defined as follows: (q, i)
~b
−→ (q′, i′) ∈ δ′ iff one of the conditions below

holds true:

• i = i′ = 0, q
~b([1,n])
−−−−→ q′ ∈ δ, ~b(n+ 1) = 0,

• i = 0, i′ = 1,~b = ~0 andq = q′,

• i = i = 1, q
~b([1,n])
−−−−→ q′ ∈ δI , ~b(n+ 1) = +1.

It is easy to show that (V, (q, ~x)) is strongly prompt with respect to the partition (δI , δE) iff
(V[δI ], (q, ~x′)) is not (n+ 1)-unbounded for some~x′ with restriction to [1, n] equal to~x.

Weak reversal-boundedness detection.Complement of weak reversal-boundedness involves two
universal quantifications (onB and r) that can be understood as simultaneous unboundedness
properties. Lemma 3.6 below is a key intermediate result in our investigation.

Lemma 3.6. Given a VASSV = (Q, n, δ) and a configuration (q, ~x), (V, (q, ~x)) is not weakly
reversal-bounded with respect toi iff (Vrb, (qrb, ~xrb)) has a run satisfying PBσ for some disjoint-
ness sequenceσ = X1 · · ·XK with n+ i ∈ XK andi ∈ (X1 ∪ · · · ∪ XK−1).

Proof. (←) Letσ = X1 · · ·XK be a disjointness sequence such thatn+i ∈ XK , i ∈ (X1∪· · ·∪XK−1)
and (Vrb, (qrb, ~xrb)) has a runρ satisfying PBσ. Suppose thatρ is of the form below

(q0, ~x0)
π′0
−→ (q1, ~x1)

π1
−→ (q2, ~x2)

π′1
−→ · · ·

π′K−1
−−→ (q2K−1, ~x2K−1)

πK
−→ (q2K , ~x2K)

and of lengthL. By construction of (Vrb, (qrb, ~xrb)), a reversal fori is operated on the path
πK , and the projection ofρ on then first components and toQ (for the control states from
Q× {INC,DEC}n) corresponds to a run ofV. For all B, B′ ≥ 1, we define a runρ′ that performs
at leastB′ reversals aboveB for the componenti, which guarantees that (V, (q, ~x)) is not weakly
reversal-bounded with respect toi. The runρ′ is of the form (π′0(π1)β1π′1(π2)β2 · · · (πK)βK , (q, ~x)).

Let us defineβK , . . . , β1 ≥ 1 as follows: firstβK
def
= B′, then suppose thatβ j+1, . . . , βK are

already defined andj < K. If i < X j , thenβ j
def
= Σ

j′∈[ j+1,K]
((L − 1)maxneg(V))β j′ , otherwise

β j
def
= (B+ B′ × L ×maxneg(V)) + (K − j)(L − 1)maxneg(V) + Σ

j′∈[ j+1,K]
((L − 1)maxneg(V))β j′ .

It is not difficult to show that (π′0(π1)β1π′1(π2)β2 · · · (πK)βK , (q, ~x)) defines a run and in the part of
the run corresponding to the path (πK)βK , at leastB′ reversals aboveB are observed for theith
component. Indeed, after firingπ′0(π1)β1 · · ·π′K−1, the value for the componenti is greater than
B+ B′ × L ×maxneg(V). Moreover, after firingπ′0(π1)β1 · · · π′K−1(πK) j with j ∈ [1, B′], the value
for componenti is greater thanB+ (B′ − j) × L ×maxneg(V).
(→) Suppose that (V, (q, ~x)) is not weakly reversal-bounded. We use [20, Lemma 13] thatchar-
acterizes weak reversal-boundedness on the coverability graphCG(V, (q, ~x)). First, let us re-
call [20, Lemma 13] formulated on the coverability graphCG(V, (q, ~x)): (V, (q, ~x)) is r-reversal-
B-bounded with respect toi for somer and B iff for every elementary loop inCG(V, (q, ~x))
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that performs a reversal on theith component, theith component of every extended configura-
tion on the loop is less thanB. An elementary loop is a sequence of extended configurations
respecting the edge relationE of CG(V, (q, ~x)) such that the two extremity (extended) config-
urations are identical and these are the only ones identicalon the loop. Since (V, (q, ~x)) is not
weakly reversal-bounded andCG(V, (q, ~x)) is a finite structure (with a finite amount of elemen-
tary loops), there is an elementary loop that performs a reversal on theith component and such
that one of its extended configuration has∞ on theith component (otherwise we would find aB
by finiteness). So, there is a sequence inCG(V, (q, ~x)) of the form below

(q0, ~x0)
t1
−→ (q1, ~x1)

t2
−→ · · · (qk′ , ~xk′)

tk′+1
−−→ · · ·

tk
−→ (qk, ~xk)

with (q0, ~x0) = (q, ~x), k′ < k and (qk′ , ~xk′)
tk′+1
−−→ · · ·

tk
−→ (qk, ~xk) is an elementary loop. Remem-

ber that the~xi ’s are extended configurations. Since (qk′ , ~xk′ )
tk′+1
−−→ · · ·

tk
−→ (qk, ~xk) has an extended

configuration with∞ on theith component, this entails that~xk′ (i) is already equal to∞. With a

similar reasoning, all the extended configurations in (qk′ , ~xk′)
tk′+1
−−→ · · ·

tk
−→ (qk, ~xk) have the same

amount of components equal to∞. Let i1, . . . , iK ≤ k′ be positions on which at least one com-
ponent has been newly given the value∞ andσ = X1 · · ·XK be the disjointness sequence such
that eachXl is the set of components that have been newly given the value∞ at the positioni l . It
is then easy to see that (t1 · · · tk, (qrb, ~xrb)) is a pseudo-run weakly satisfyingPσ·{n+i} with Pσ·{n+i}

defined fromσ · {n+ i} as done in the beginning of Section 3.3 for dealing with simultaneous un-
boundedness. Weak satisfaction is introduced in Section 3.4. From Lemma 3.7, (Vrb, (qrb, ~xrb))
has a runρ′ satisfyingPσ·{n+i}, which is equivalent toρ′ satisfying PBσ·{n+i}. Observe thatσ·{n+i}
is also of the appropriate form.

As a corollary, we are in a position to present a witness run characterization for weak reversal-
boundedness detection. (V, (q0, ~x0)) is not weakly reversal-bounded with respect toi iff there

exist a disjointness sequenceσ = X1 · · ·XK and a run (q0, ~x0)
π′0
−→ (q1, ~x1)

π1
−→ (q2, ~x2)

π′1
−→ · · ·

π′K
−→

(q2K+1, ~x2K+1)
πK+1
−−→ (q2K+2, ~x2K+2) such that

1. πK+1 contains a reversal for theith component,

2. the subrun (q0, ~x0)
∗
−→ (q2K , ~x2K) satisfies PBσ,

3. i ∈ (X1 ∪ · · · ∪ XK), and
4. for every j ∈ [1, n], ~x2K+2( j) < ~x2K+1( j) implies j ∈ (X1 ∪ · · · ∪ XK).

Based on Lemmas 2.3 and 3.1, a characterization for reversal-boundedness can be also defined.

3.4. A first relaxation

Below, we relax the satisfaction of the propertyP by allowing negative component values in
a controlled way. A pseudo-run of the form

(q0, ~x0)
π′0
−→ (q1, ~x1)

π1
−→ (q2, ~x2)

π′1
−→ (q3, ~x3) · · ·

π′K−1
−−→ (q2K−1, ~x2K−1)

πK
−→ (q2K , ~x2K)

weakly satisfiesP
def

⇔ it satisfies (P0), (P1), (P2) (see Section 3.2) and (P3) defined below:

(P3) for every j ∈ [1, n], every pseudo-configuration~x such that~x( j) < 0 occurs after some~x2l

for which~x2l( j) − ~x2l−1( j) > 0.
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If the run ρ satisfiesP, then viewed as a pseudo-run, it also weakly satisfiesP. Lemma 3.7
below states that the existence of pseudo-runs weakly satisfying P is equivalent to the existence
of runs satisfyingP and their length can be compared. Later, we use the witness pseudo-run
characterization.

Lemma 3.7. Letρ be a pseudo-run of lengthL weakly satisfyingP (of lengthK). Then, there is
a runρ satisfyingP of length at most ((L ×maxneg(V))K × (1+ K2 × L ×maxneg(V)) + L.

Proof. Letρ be a pseudo-run of the form below weakly satisfying the propertyP = (I1, . . . ,IK):

(q0, ~x0)
π′0
−→ (q1, ~x1)

π1
−→ (q2, ~x2)

π′1
−→ (q3, ~x3)

π2
−→ · · ·

π′K−1
−−→ (q2K−1, ~x2K−1)

πK
−→ (q2K , ~x2K )

We design a runρ satisfyingP of the form

(π′0(π1)β1π′1(π2)β2 · · · (πK)βK , (q0, ~x0))

and of the appropriate length for someβ1, . . . , βK ≥ 1. We use the same type of construction as in
the proof of Lemma 3.1. First, let us defineX1, . . . ,XK ⊆ [1, n] that records when components are
strictly increasing: for everyl ∈ [1,K], Xl = { j ∈ [1, n] : ~x2l−1( j) < ~x2l( j)} \ (

⋃

l′<l Xl′ ). Observe
that forl , l′, we haveXl ∩ Xl′ = ∅. Now let us defineβK , . . . , β1 (again, in this ordering):

• βK
def
= 1.

• Now suppose thatβi+1, . . . ,βK are already defined andi < K. Let us defineβi . If Xi = ∅,
thenβi

def
= 1. Otherwiseβi

def
= (K − i)(L − 1)maxneg(V) + Σ

i′∈[i+1,K]
((L − 1)maxneg(V))βi′ .

The term (K−i)(L−1)maxneg(V) is related to the pathsπ′i , . . . ,π′K−1 whereas the term Σ
i′∈[i+1,K]

((L−

1)maxneg(V))βi′ is related to the pathsπi+1, . . . ,πK . Again, it is worth noting thatL − 1 transi-
tions cannot decrease a component by more than (L − 1)maxneg(V). Now, it is not difficult to
show that

(π′0(π1)β1π′1(π2)β2 · · · (πK)βK , (q0, ~x0))

defines a run (and not only a pseudo-run) and moreover it satisfiesP which is witnessed by the
decomposition below:

(q0, ~x0)
π′0
−→ (q1, ~y1)

π1
−→ (q2, ~y2)

(π1)β1−1π′1
−−−−−−→ (q3, ~y3)

π2
−→ · · ·

· · ·
(πK−1)βK−1−1π′K−1
−−−−−−−−−−−→ (q2K−1, ~y2K−1)

πK
−→ (q2K , ~y2K)

It remains to verify that this run is not too long. Let us definethe sequenceγ0, . . . , γK−1 with
γi = Σi′∈[K−i,K]βi′ . So,γ0 = βK = 1 andγi+1 = βK−i−1 + γi with

βK−i−1 ≤ (i + 1)(L − 1)maxneg(V) + ((L − 1)maxneg(V))γi

Soγi+1 ≤ (K×L×maxneg(V))+(L×maxneg(V))γi for everyi ∈ [1,K−1]. If L×maxneg(V) = 1,
thenγK−1 ≤ K(K × L × maxneg(V)). OtherwiseγK−1 ≤ (L × maxneg(V))K−1 × (1+ K × L ×
maxneg(V)). Finally, by using that the sum of the pathsπ′i is bounded byL, we get the desired
bound.
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The principle of the proof of Lemma 3.7 (and part of the proof of Lemma 3.1) is identical to the
idea of the proof of the following property of the coverability graphCG(V, (q0, ~x0)) (see e.g.,
details in [47]). For every extended configuration (q, ~y′) ∈ Q× (N∪ {∞})n in CG(V, (q0, ~x0)) and

boundB ∈ N, there is a run (q0, ~x0)
∗
−→ (q, ~y) inV such that fori ∈ [1, n], if ~y′(i) = ∞ then~y(i) ≥ B

otherwise~y(i) = ~y′(i). In the proof of Lemma 3.7, the pathsπi ’s are repeated hierarchically in
order to eliminate negative values.

Additionally, if ρ is a pseudo-run of lengthL weakly satisfyingP andL is at most doubly
exponential inN = |V| + |(q0, ~x0)| + K + scale(P), then there is a run satisfyingP and starting in
~x0 that is also of length at most doubly exponential inN.

So, standard unboundedness admits also a witness pseudo-run characterization with a dis-
junction ofn generalized unboundedness properties of length 1. But, if apseudo-runρ weakly
satisfiesP of length 1, thenρ is a run satisfyingP, explaining why only the witness run charac-
terization is relevant for standard unboundedness.

4. ExpSpace Upper Bound

In this section, we deal with VAS only and we consider a current VAS T of dimensionn
(see Lemma 3.2). Without any loss of generality, we can assume thatn > 1, otherwise it is easy
to show that the generalized unboundedness problem restricted to VAS of dimension 1 can be
solved in polynomial space. Moreover, we assume that maxneg(T ) ≥ 1.

4.1. Motivations for approximating properties

Generalized unboundedness properties apply on runs but as it will be shown below, it would
be more convenient to relax the conditions to pseudo-runs. Afirst step has been done in Sec-
tion 3.4; we push further the idea in order to adapt Rackoff’s proof. In forthcoming Section 4.2,
we introduce approximations of generalized unboundednessproperties and in Section 4.3, we ex-
plain how to shrink pseudo-runs satisfying such properties. To do so, we extend Rackoff’s proof
technique to obtain a small run property for runs witnessing(standard) unboundedness. In the
rest of this section, first we recall main ingredients of Rackoff’s proof (with references to forth-
coming results about generalized unboundedness) and then,we motivate the main ingredients of
our approximation properties.

Ingredients in Rackoff ’s proof. Let us briefly recall the structure of Rackoff’s proof to show that
the boundedness problem for VAS is in ExpSpace. Let (T , ~x0) be an initialized VAS of dimension

n. A witness run for unboundedness is of the formρ = ~x0
∗
−→ ~y

+
−→ ~y′ with ~y ≺ ~y′. In [45], it

is shown thatρ can be of length at most doubly exponential. In order to get the ExpSpace upper
bound, Savitch’s Theorem is used. Let us be a bit more precise. A nondeterministic algorithm
guessing such a run of length less thanL is defined as follows. Here is the algorithm with inputs
T , ~x andL:

1. guessL′ andL′′ such thatL′ < L′′ ≤ L;
2. i := 0; ~xc := ~x (current configuration);
3. While i < L′ do

(a) Guess a transitiont ∈ T ; If ~xc + t < Nn then abort;
(b) i := i + 1; ~xc := ~xc + t.

4. ~y := ~xc;
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5. While i < L′′ do
(a) Guess a transitiont ∈ T ; If ~xc + t < Nn then abort;
(b) i := i + 1; ~xc := ~xc + t.

6. Return~y ≺ ~xc.

If the maximal absolute value inT and~x is 2N for someN ≥ 0 andL is doubly exponential
in N, then the maximal absolute value appearing in the algorithmis doubly exponential inN too.
The decision procedure above guesses the small run and only requires exponential space thanks
to the following additional arguments:

1. A counter with an exponential amount of bits can count until a double-exponential value.
2. Only two configurations need to be stored thanks to nondeterminism.
3. Comparing or adding two natural numbers requires logarithmic space only (if their values

is doubly exponential inN, then their comparisons require only exponential space inN).
4. By Savitch’s Theorem [50], a nondeterministic procedurefor a given problem using space

f (N) ≥ log(N) can be turned into a deterministic procedure usingf (N) × f (N) space.
5. Exponential functions are closed under multiplication.

Rackoff’s proof to establish the small run property goes as follows.First, a technical lemma
shows that if there is somei-B-bounded pseudo-run (instance of the approximation propertyA
introduced in forthcoming Section 4.2), then there is one oflength at mostB|T |

C
for some constant

C. i-B-boundedness refers to the fact that theith first components have values in [0, B− 1]. The
proof essentially shows that existence of such a pseudo-runamounts to solving an inequation
system and by using [8], small solutions exist, whence the existence of a shorti-B-bounded
pseudo-run (the same technique is used in forthcoming Lemma4.2). The idea of using small
solutions of inequation system to solve problems on countersystems dates back from [45, 23]
and nowadays, this is a standard proof technique, see e.g. [15]. This proof can be extended
to numerous properties on pseudo-runs for which intermediate counter value differences can
be expressed in Presburger arithmetic as done in [54, 3]. Then, a proof by induction on the
dimension is performed by using this very technical lemma and the ability to repeat sequences
of transitions; the proof can be extended when the first intermediate configuration is less or
equal to the last configuration of the sequence (leading to the concept of increasing path formula
in [3]). This condition allows to perform the induction on the dimension with a unique increasing
formula. Unfortunately, generalized unboundedness properties are not increasing in the sense
of [3]. Therefore, Rackoff’s proof requires to be extended even though the essential ingredients
remain, see the proof of Lemma 4.4. The generalization of thetechnical lemma corresponds
to forthcoming Lemma 4.2; it is not surprising since generalized unboundedness properties are
Presburger-definable properties. However, not only we needto refine the expressionB|T |

C
in

terms of various parameters (length ofP, scale(P), n, scale(T )) in order to get the final ExpSpace
upper bound (or the PSpace upper bound with fixed dimension), but also we have to check that the
new ingredients in the definition of the forthcoming approximation propertiesA do not prevent
us from extending [45, Lemma 4.4]. Finally, it is important to specify the length of small pseudo-
runs with respect to parameters fromP.

What needs to be approximated.Lemma 3.7 states that the existence of a run satisfying the
generalized unboundedness propertyP is equivalent to the existence of apseudo-run weakly
satisfyingP = (I1, . . . ,IK). Therefore, in the sequel, without any loss of generality,we can

focus on weak satisfaction. Suppose that the pseudo-runρ = ~x0
π′0
−→ ~x1

π1
−→ ~x2 · · · ~x2K−1

πK
−→ ~x2K

weakly satisfiesP. Note that
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1. every element of (I1, . . . ,IK) constraintsρ, as far as each pathπ j is concerned,
2. each pseudo-configuration~x takes its values inZn,
3. whenever a component value is negative, there is some earlier pathπ j that strictly increases

that component (see Condition (P3)).

An approximation propertyA (parameterized by elements made explicit below) relaxes weak
satisfaction in the following way (compare each conditionC above withC′).

1′. Only a suffix (Il , . . . ,IK) of P is considered and a pseudo-runρ′ satisfyingA will be

therefore of the form~y2l−2
π′l−1
−→ ~y2l−1

πl
−→ ~y2l · · ·

π′K−1
−−→ ~y2K−1

πK
−→ ~y2K . Hencel ∈ [1,K] is a

parameter ofA. Such a relaxation is useful when gluing pseudo-runs weaklysatisfying
distinct parts ofP.

2′. For each configuration~y and for each componenti ∈ I , ~y(i) ∈ [0, B− 1] for someI ⊆ [1, n]
andB ≥ 0 unless values on theith component can be pumped (see 3′. below). HenceI and
B are parameters ofA too and such a relaxation will allow to provide a proof by induction
on the dimension.

3′. Whenever a component value is negative inρ′, either there is some earlier pathπ j in ρ′

that strictly increases that component or that component belongs to some set INCR of
components whose values can be pumped. Hence, INCR⊆ [1, n] is a parameter ofA and
such a relaxation is useful when gluing pseudo-runs and pumping values can be performed
thanks to paths occurring in other pseudo-runs (materialized by the fact that the component
belongs to INCR).

4.2. Approximating generalized unboundedness properties
We are now in position to define the propertyA[P, l, INCR, I , B]. Given a generalized un-

boundedness propertyP of lengthK, l ∈ [1,K], INCR ⊆ [1, n], I ⊆ [1, n] andB ≥ 0, a pseudo-
run of the form below

~y2l−2
π′l−1
−→ ~y2l−1

πl
−→ ~y2l · · ·

π′K−1
−−→ ~y2K−1

πK
−→ ~y2K

satisfies theapproximation propertyA[P, l, INCR, I , B] (also abbreviated byA)
def

⇔ the condi-
tions below are verified:

(P1′) For everyl′ ∈ [l,K] and for everyj ∈ [1, n], we have~y2l′ ( j) − ~y2l′−1( j) ∈ Il′ ( j) (only the
suffix (Il , . . . ,IK) is considered).

(P2′) For everyl′ ∈ [l,K] and for every j ∈ [1, n], if ~y2l′ ( j) − ~y2l′−1( j) < 0, then one of the
conditions holds true:

• there isl′′ ∈ [l, l′ − 1] such that~y2l′′ ( j) − ~y2l′′−1( j) > 0,

• j ∈ INCR.

(P3′) For every pseudo-configuration~x in ρ occurring between~y2l′ and strictly before~y2l′+2 with
l′ ≥ l − 1, ~x(J) ∈ [0, B− 1]J with J = I \ PUMP(l, l′) where PUMP(l, l′) = (INCR∪ { j :
∃ l′′ ∈ [l, l′], ~y2l′′ ( j) − ~y2l′′−1( j) > 0}).

Condition (P3′) reflects the intuition that only the values from componentsin J need to be con-
trolled. We also writeA[P, l, INCR, I ,+∞] to denote the property obtained fromA[P, l, INCR, I , B]
by replacing [0, B − 1]J by N

J in the condition (P3′). Observe that a pseudo-run satisfies
A[P, 1, ∅, [1, n],+∞] iff it weakly satisfiesP (see Section 3.4). The propertyA[P, l, INCR, I ,+∞]
is exactly the condition we need in the proof of Lemma 4.4 below thanks to the property stated
below.
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Lemma 4.1. If the pseudo-runρ = ~y2l−2
π′l−1
−→ ~y2l−1

πl
−→ ~y2l · · ·

πK
−→ ~y2K satisfies the approximation

propertyA[P, l, INCR, I ,+∞], then

(π′l−1(πl)
nlπ′l (πl+1)

nl+1 · · · (πK)nK , ~y2l−2)

also satisfies it, for allnl , . . . , nK ≥ 1.

A similar statement does not hold for pseudo-runs satisfying A (values for components in
J might become out of [0, B− 1]) and for runs satisfyingP (component values might become
negative).

Proof. (Lemma 4.1) Letρ′ be the pseudo-run

~y2l−2 = ~z2l−2
π′l−1(πl )nl−1

−−−−−−→ ~z2l−1
πl
−→ ~z2l · · ·

π′K−1(πK )nK−1

−−−−−−−−→ ~z2K−1
πK
−→ ~z2K

obtained fromρ by copyingni times the pathπi . For everyl′ ∈ [l,K] and for everyj ∈ [1, n],
~y2l′ ( j)−~y2l′−1( j) = ~z2l′ ( j)−~z2l′−1( j), whenceρ′ satisfies the conditions (P1′) and (P2′). Of course,
we need also to take advantage thatρ satisfies (P2′). Indeed, suppose that~z2l′ ( j)−~z2l′−1( j) < 0. So
~y2l′ ( j)−~y2l′−1( j) < 0 and by satisfaction of (P2′) by ρ, we can also conclude that eitherj ∈ INCR
or there isl′′ ∈ [l, l′ − 1] such that~y2l′′ ( j) − ~y2l′′−1( j) > 0 (equivalent to~z2l′′ ( j) − ~z2l′′−1( j) > 0).

Sinceρ satisfies condition (P3′), for every pseudo-configuration~x in ρ occurring between~y2l′

and strictly before~y2l′+2 with l′ ≥ l − 1, ~x(J) ∈ N
J with J = I \ PUMP(l, l′). Now let ~x in ρ′

occurring between~z2l′ and strictly before~z2l′+2 with l′ ≥ l − 1. LetJ = I \PUMP(l, l′). For every
l′′ ∈ [l, l′] and for everyj ∈ J, the pathπl′′ has a positive effect on the componentj. One can
show that this entails that~x(J) ∈ NJ using the property (P3′) onρ.

PropertyA[P, l, INCR, I , B] can be viewed as a collection oflocal path increasing formulae
in the sense of [3].

4.3. Bounding the length of pseudo-runs

It is important to specify the length of small pseudo-runs with respect to parameters fromP
as done in Lemma 4.2 below.

Lemma 4.2. LetT be a VAS of dimensionn ≥ 2,P be a generalized unboundedness property of
lengthK, l ∈ [1,K], B ≥ 2, I , INCR ⊆ [1, n] andρ be a pseudo-run satisfyingA[P, l, INCR, I , B].
Then, there exists a pseudo-run starting by the same pseudo-configuration, satisfyingA[P, l, INCR, I , B]
and of length at most (1+ K)× (scale(T )× scale(P)× B)nC1 for some constantC1 independent of
K, scale(P), scale(T ), B andn.

The length expression in Lemma 4.2 can be certainly refined interms of card(INCR), card(I )
andl but these values are anyhow bounded byn andK respectively, which is used in Lemma 4.2.
The proof below is essentially a refinement of the proof of [45, Lemma 4.4].

Proof. Let P = (I1, . . . ,IK), l ∈ [1,K], I , INCR ⊆ [1, n] and ρ be the pseudo-run described
below satisfyingA[P, l, INCR, I , B]:

ρ = ~x2l−2
π′l−1
−→ ~x2l−1

πl
−→ ~x2l · · ·

π′K−1
−−→ ~x2K−1

πK
−→ ~x2K
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We posed0 = card(J0) with J0 = I \ INCR. We suppose that the pseudo-runρ is induced by
the patht1 . . . tk with ρ = ~u0 · · ·~uk. Let f : [2l − 2, 2K] → [0, k] be the map such that~xi = ~uf (i);
consequentlyf (2l − 2) = 0 and f (2K) = k. By the satisfaction of the condition (P3′) from
A[P, l, INCR, I , B], for every pseudo-configuration~u j with j ≤ f (2l−1), we have~u j(J0) ∈ [0, B−
1]J0. If the length ofπ′l−1 is at leastBd0, then there are two distinct positionsj < j′ ≤ f (2l−1) such
that ~u j(J0) = ~u j′ (J0) (by the pigeonhole principle) and therefore (t1 . . . t j t j′+1 . . . tk, ~x2l−2) also
satisfiesA[P, l, INCR, I , B]. Observe that the values for components in [1, n] \ J0 are allowed to
be negative. By iterating this contraction process, without any loss of generality, we can assume
that inρ, we havef (2l −1)− f (2l −2)< Bd0 and for everyl′ ∈ [l −1,K−1], f (2l′ +1)− f (2l′) <
Bcard(I ) ≤ Bn.

Now, for eachD ∈ [l,K] we shorten the pseudo-run~x2D−1
πD
−→ ~x2D. This is done by removing

loops, as explained below, and by following the key steps of the proof of [45, Lemma 4.4]. We
posed = card(J) with

J = I \ (INCR∪ { j : ∃ l′ ∈ [l,D − 1], ~x2l′ ( j) − ~x2l′−1( j) > 0}) = I \ PUMP(l,D − 1).

A simple loop with respect to Jis a pairsl = (~s, π) such that~s ∈ [0, B− 1]J andπ = t′1 . . . t
′
γ is a

path satisfying the conditions below:

(SL1) For everyj ∈ [1, γ], ~s+ Σ
i∈[1, j]

t′i (J) ∈ [0, B− 1]J (the boundB is never exceeded).

(SL2) Σ
i∈[1,γ]

t′i (J) = 0 (the total effect on the components inJ is zero),

(SL3) For j < j′ ∈ [1, γ] with ( j, j′) , (1, γ), we have Σ
i∈[ j, j′]

t′i (J) , 0 (minimality of the path).

The lengthof sl is defined as the length of its pathπ and itseffect is the value Σ
i∈[1,γ]

t′i (remember

that not all the components are inJ). Consequently, let~y0 · · ·~yγ be a pseudo-run induced by the
simple loop (~y0(J), t′1 . . . t

′
γ). Then,

1. ~y0(J) = ~yγ(J) (by (SL2)).
2. For j < j′ ∈ [1, γ] such that (j, j′) , (1, γ), we have~y j(J) , ~y j′(J) (by (SL3)).

It is easy to show that the length of a simple loop with respectto J is strictly belowBd with
Bd ≤ Bd0 ≤ Bcard(I ). Its effect is therefore in [−scale(T )Bd, scale(T )Bd]n. Let~z1, . . . ,~zα be the

effects of simple loops occurring in~x2D−1
t2D−1
−−→ . . .

t2D
−→ ~x2D as factors. Because the effects of simple

loops are bounded (see above), we have

α ≤ (1+ 2× scale(T )Bd)n ≤ (1+ 2× scale(T ))nBn2
.

From the pseudo-run~x2D−1
πD
−→ ~x2D, we define a finite sequence of pairs made of a pseudo-run

~yi
0 · · ·~y

i
Ki

and a tuple~vi ∈ N
α such that

• ~v0 = ~0 and~y0
0 · · ·~y

0
K0
= ~x2D−1 · · · ~x2D.

• ~yi+1
0 · · ·~y

i+1
Ki+1

and~vi+1 are computed from~yi
0 · · ·~y

i
Ki

and~vi by removing a simple loop from
~yi

0 · · ·~y
i
Ki

with effect~zβ and by computing~vi+1 from ~vi by only incrementing~vi(β), i.e. a
simple loop is removed but we remember its effect by incrementing~vi(β).

• The length of the final pseudo-run~yN
0 · · ·~y

N
KN

(on which no simple loop can be removed) is
less than (1+ Bd)2. Explanations about this bound are provided below.
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• {~x2D−1(J), . . . , ~x2D(J)} = {~yi
0(J), . . . , ~yi

Ki
(J)} for everyi ∈ [0,N]. In words, the set of tuples

restricted to components inJ remains even all over this process of removing simple loops.
This will be useful to bring back simple loops.

Consequently, whenever~vi( j) > 0, there is a simple loop (~s, π) with effect some~zj such that
~s ∈ {~yi

0(J), . . . , ~yi
Ki

(J)}.
Let us explain how to compute~yi+1

0 · · ·~y
i+1
Ki+1

and~vi+1 from~yi
0 · · ·~y

i
Ki

,~vi . Suppose that~yi
0 · · ·~y

i
Ki

is induced by the pathπi = t1 · · · tKi . If πi has no simple loopt j · · · t j′ as a factor such that

{~x2D−1(J), . . . , ~x2D(J)} = {~yi
0(J), . . . , ~yi

j−1(J), ~yi
j′(J) . . . , ~yi

Ki
(J)},

thenN = i (we stop the process). Otherwise, let (~yi
j−1(J), t j · · · t j′ ) be a simple loop with respect

to J such that

{~x2D−1(J), . . . , ~x2D(J)} = {~yi
0(J), . . . , ~yi

j−1(J), ~yi
j′(J) . . . , ~yi

Ki
(J)}.

Then~yi+1
0 · · ·~y

i+1
Ki+1

is the pseudo-run (t1 · · · t j−1, t j′+1 · · · tKi , ~y
i
0) and~vi+1 is equal to~vi except that

~vi+1(β) = ~vi(β) + 1 with t j , . . . , t j′ having the effect~zβ. Since~x2D−1
πD
−→ ~x2D is finite, it is clear that

this process eventually stops and the above-mentioned conditions are clearly satisfied (except for
the bound on the length of~yN

0 · · ·~y
N
KN

).
Before going any further, let us briefly explain why eventually the length of~yN

0 · · ·~y
N
KN

is less
than (1+ Bd)2. Suppose that the pseudo-run~yi

0 · · ·~y
i
Ki

has at least (1+ Bd)2 pseudo-run config-
urations. First, observe that each block ofBd + 1 consecutive pseudo-configurations contains
at least one simple loop. Moreover, we wish to preserve the set {~x2D−1(J), . . . , ~x2D(J)}, so we
cannot remove any simple loop. The set{~x2D−1(J), . . . , ~x2D(J)} has cardinal at mostBd. Conse-
quently, there is a block ofBd + 1 successive pseudo-configurations so that all the restrictions to
the components inJ have already appeared earlier.

Let ~yN
0 · · ·~y

N
KN

be the final sequence induced by the patht1 · · · tKN with final loop vector
~vN ∈ N

α.
Since the pseudo-runρ satisfiesA[P, l, INCR, I , B], we have the following properties.

1. For everyj ∈ [1, n], we have (( Σ
i∈[1,α]
~vN(i)~zi)+ Σ

i∈[1,KN ]
ti)( j) ∈ ID( j). Depending on the value

of ID( j), this can encoded by at most 2 inequality constraints of theform Σ
i∈[1,α]

ai~vN(i)( j) ≥

b j.
2. For everyj ∈ J, (( Σ

i∈[1,α]
~vN(i)~zi) + Σ

i∈[1,KN ]
ti)( j) ≥ 0.

There is a bit of redundancy here for the components inJ since removing simple loops does not
change the projection overJ of the first and last pseudo-configurations. Hence, we only need to
bother about the components in ([1, n] \ J). The vector~vN is a solution to the following inequality
system:

(
∧

j∈([1,n]\J)

(( Σ
i∈[1,α]
~vN(i)~zi) + Σ

i∈[1,KN ]
ti)( j) ∈ ID( j))

The number of inequalities can be bounded by 2n, the number of variables is bounded by (1+
2 × scale(T ))nBn2

and all the absolute values of the components are bounded by (1 + Bn)2 ×

scale(T ) + scale(P). It is time to apply [8] in order to obtain a small solution:
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Theorem 4.3. [8] Let A ∈ [−M,M]U×V and~b ∈ [−M,M]U , whereU,V,M ∈ N. If there is
~x ∈ N

V such thatA~x ≥ ~b, then there is~y ∈ [0, (max{V,M})CU ]V such thatA~y ≥ ~b, whereC is
some constant.

By application of Theorem 4.3 on the above system with the values below

1. V = (1+ 2× scale(T ))nBn2
.

2. M = (1+ Bn)2 × scale(T ) + scale(P).
3. U = 2n.

It has a solutionX ∈ NV such that each value is indeed within the interval

[0, ((1+ 2× scale(T ) × scale(P))nB2n2
)C2n]

Indeed, we have max(V,M) ≤ ((1+ 2 × scale(T )scale(P))nB2n2
). Now, it is time to re-inject in

~yN
0 · · ·~y

N
KN

the simple loops encoded byX.
From~yN

0 · · ·~y
N
KN

and~vN, we define a finite sequence of pseudo-runs~ui
0 · · ·~u

i
Li
= (ti1 · · · t

i
Li
, ~ui

0)
such that

• ~u0
0 · · ·~u

0
L0
= ~yN

0 · · ·~y
N
KN

.

• The length of the sequence is exactlyα + 1 (α is the number of distinct effects).

• ~u j+1
0 · · ·~u j+1

L j+1
= (t j+1

1 · · · t j+1
L j+1
, ~u j+1

0 ) is computed from (t j
1 · · · t

j
L j
, ~u j

0) as follows. Let (~sj+1, π j+1)

be a simple loop with effect~zj+1. There existsβ such that~u j
β(J) = ~sj+1. Then,

t j+1
1 · · · t j+1

L j+1

def
= t j

1 · · · t
j
β · (π j+1)X( j+1) · t j

β+1 · · · t
j
L j

and~u j+1
0 · · ·~u j+1

L j+1
= (t j+1

1 · · · t j+1
L j+1
, ~u j

0).

It is easy to check that~x2D−1 = ~uα0. By replacing~x2D−1
πD
−→ ~x2D by~uα0 · · ·~u

α
Lα

for eachD ∈ [l,K], we
obtain a pseudo-run satisfyingA[P, l, INCR, I , B] whose length is bounded by the value below:

(K + 1)Bn + K[(Bn + 1)2+

number of effects
︷                       ︸︸                       ︷

(1+ 2× scale(T ))nBn2
×

maximal number of copies per effect
︷                                              ︸︸                                              ︷

[(1 + 2× scale(T ) × scale(P))nB2n2
]C2n×

bound on the length of simple loop
︷   ︸︸   ︷

(Bn + 1) ]

This value is bounded by

(K + 1)× C′ × scale(T )p1(n)scale(P)p2(n) × Bp3(n)

whereC′ is a constant andp1(·), p2(·) and p3(·) are polynomials. Sincen, B ≥ 2, this value
is bounded by (K + 1)(scale(T ) × scale(P) × B)p(n) for some polynomialp(·). Suppose that
p(n) = Σ f

i=0aini (without any loss of generality, we can assume that theai ’s are non-negative and

af , 0). Let f ′ ≥ 0 be such thatΣ f
i=0ai ≤ 2f ′ . Sincen ≥ 2, (scale(T ) × scale(P) × B)p(n) is

bounded by (scale(T ) × scale(P) × B)nf+ f ′

. Hence, the length of the final pseudo-run satisfying
A[P, l, INCR, I , B] and starting at~x0 is bounded by (K + 1)× (scale(T ) × scale(P) × B)nC1 for
some constantC1.
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For everyi ∈ [0, n], let us define the valueg(i) that serves to bound the length of pseudo-runs
satisfyingA, not only the approximation:

g(i)
def
=






(2µ)nC1 with µ = (1+ K) × scale(T ) × scale(P) if i = 0,
(

2µ(maxneg(T ) × g(i − 1))
)nC1
+ g(i − 1) if i > 0.

Lemma 4.4 below is an extension of [45, Lemmas 4.6 & 4.7], see also [3, Lemma 7].

Lemma 4.4. Let I , INCR ⊆ [1, n], l ∈ [1,K] andρ be a pseudo-run satisfyingA[P, l, INCR, I ,+∞].
Then, there exists a pseudo-runρ′ starting from the same pseudo-configuration, satisfying the
propertyA[P, l, INCR, I ,+∞] and of length at mostg(card(I )).

Proof. Let ρ = ~x2l−2
π′l−1
−→ ~x2l−1

πl
−→ ~x2l · · ·

π′K−1
−−→ ~x2K−1

πK
−→ ~x2K be a pseudo-run satisfying the property

A[P, l, INCR, I ,+∞]. We suppose thatρ is induced by the patht1 · · · tk with ρ = ~u0 · · ·~uk and
f : [2l − 2, 2K] → [0, k] is the map such that~xi = ~uf (i). So f (2l − 2) = 0 and f (2K) = k.

The proof is by induction oni = card(I ). If i = 0, then we apply Lemma 4.2 withB = 2
and we obtain a pseudo-run satisfying the approximation propertyA[P, l, INCR, I ,+∞] leading
to the bound (µ × 2)n

C1 .
Now suppose card(I ) = i + 1 andJ = (I \ INCR). We poseB = maxneg(T ) × g(i). We recall

thatT is the current VAS withn ≥ 2. We perform a case analysis depending where inρ a value
from a component inJ is strictly greater thanB− 1 (if any).
Case 1:Every configuration~z in ρ satisfies~z(J) ∈ [0, B− 1]J, i.e.,ρ satisfiesA[P, l, INCR, I , B].
Obviously, the caseJ = ∅ is captured here. By Lemma 4.2, there is a pseudo-runρ′ starting at
~x2l−2 satisfyingA[P, l, INCR, I , B] of length at most (1+K)× (scale(T )×scale(P)×B)nC1 , which
is bounded by

(
µ × (maxneg(T ) × g(i))

)nC1 .
Case 2:A value for some component inJ is strictly greater thanB−1 for the first time within the
pathπ′D for someD ∈ [l −1,K−1]. Letα be the minimal position such that~uα+1(J) < [0, B−1]J

andα + 1 ∈ [ f (2D) + 1, f (2D + 1)], say~uα+1(i0) ≥ B for somei0 ∈ J. The pseudo-runρ can be
decomposed as follows withπ′D = π

1
Dtα+1π

2
D (INCR′ is defined few lines below):

~x2l−2
π′l−1
−→ ~x2l−1 · · · ~x2D

︸                     ︷︷                     ︸

ρ1

= ~x2D

π1
D
−→ ~uα

︸     ︷︷     ︸

ρ2

tα+1
−→

satisfiesA[P,D+1,INCR′ ,(I\{i0}),+∞]
︷                                 ︸︸                                 ︷

~uα+1
π2

D
−→ ~x2D+1 · · · ~x2K−1

πK
−→ ~x2K

︸                                 ︷︷                                 ︸

ρ3

We construct a pseudo-run of the formρ′1ρ
′
2ρ
′
3 such that eachρ′j is obtained by shorteningρ j and

the length ofρ′1 [resp.ρ′2, ρ′3] is bounded by (µ × B)nC1 + 1 [resp.Bi+1 + 1, g(i) + 1].

• If D > l − 1, then we introduceP⋆ = (I′l , . . . ,I
′
D) with for everyl′′ ∈ [l,D] and for every

j ∈ [1, n],

– if ~x2l′′ ( j) − ~x2l′′−1( j) > 0 thenI′l′′ ( j) = Il′′ ( j) ∩ [1,+∞[,

– otherwiseI′l′′ ( j) = Il′′ ( j).

The construction ofP⋆ allows us to preserve the set of elements in [l,D] whose values can
be arbitrarily increased. Moreover, above, by taking the intersection with [1,+∞[, in ρ′1,
we preserve the set of components in which proper pumping is possible. By Lemma 4.2,
there is a pseudo-runρ′1 = (t11 · · · t

1
β1
, ~x2l−2) satisfyingA[P⋆, 1, INCR, I , B] such thatβ1 ≤
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(µ × B)nC1 . Indeed, scale(P⋆) ≤ scale(P) and the length ofP⋆ is obviously bounded by

K. Sayρ′1 = ~y2l−2
∗
−→ ~y2l−1

∗
−→ ~y2l · · ·

∗
−→ ~y2D−1

∗
−→ ~y2D. Suppose thatρ′1 = ~u

1
0 · · ·~u

1
β1

and f1 : [2l − 2, 2D] → [0, β1] is the map such that~yi = ~u1
f1(i) with f1(2l − 2) = 0 and

f1(2D) = β1. If D = l − 1, thenρ1 = (t1 · · · tα, ~x2l−2) with an analogous decomposition in
terms of~yi ’s.

So, wheneverD ≥ l − 1, we have{ j : ~y2l′−1( j) < ~y2l′ ( j), l′ ∈ [l,D]} = { j : ~x2l′−1( j) <
~x2l′ ( j), l′ ∈ [l,D]} – partly by construction ofP⋆. We write Z to denote the set{ j :
~y2l′−1( j) < ~y2l′ ( j), l′ ∈ [l,D]}.

• Now, by the pigeonhole principle, there is a pseudo-run

ρ′2 = (t21 · · · t
2
β2
, ~y2D)

such that~u′α = ~y2D + t21 + · · · + t2β2
, ~u′α(J) = ~uα(J) andβ2 < Bcard(J) ≤ Bi+1. We pose

~u′α+1 = ~u
′
α + tα+1.

• Finally, observe that (tα+2 · · · tk, ~u′α+1) satisfiesA[P,D + 1, INCR′, (I \ {i0}),+∞] with

INCR′
def
= INCR∪Z. By the induction hypothesis, there is a pseudo-runρ′3 = (t31 · · · t

3
β3
, ~u′
α+1)

satisfyingA[P,D + 1, INCR′, (I \ {i0}),+∞] and such thatβ3 ≤ g(i). Because~u′α+1(i0) ≥
maxneg(T ) × g(i), ρ′3 also satisfiesA[P,D + 1, INCR′, I ,+∞].

Gluing the previous transitions, the pseudo-run

(t11 · · · t
1
β1

t21 · · · t
2
β2

tα+1t31 · · · t
3
β3
, ~x2l−2)

satisfies the approximation propertyA[P, l, INCR, I ,+∞] and its length is bounded by (µ×B)nC1+

Bi+1 + g(i).
Case 3:A value for some component inJ is strictly greater thanB− 1 for the first time within
the pathπD for someD ∈ [l,K].
The pseudo-runρ can be written as follows withπD = π

1
Dπ

2
D andπ1

D , ε

~x2l−2
π′l−1
−→ ~x2l−1 · · · ~x2D−1

π1
D
−→ ~uα+1

π2
D
−→ ~x2D · · · ~x2K−1

πK
−→ ~x2K

By Lemma 4.1, the pseudo-runρ′ = (π′l−1πl · · · π
′
D−1(πD)2π′D · · ·πK , ~x2l−2) also satisfies the ap-

proximation propertyA[P, l, INCR, I ,+∞] and can be written as~x2l−2
π′l−1
−→ ~x2l−1 · · · ~x2D−2

π′D−1πD

−−−−→

~x2D = ~z2D−1
πD
−→ ~z2D

π′D+1
−−→ · · ·~z2K−1

πK
−→ ~z2K . We are therefore back to Case 2.

We are now in position to bound the length of pseudo-runs weakly satisfying the generalized
unboundedness propertyP.

Lemma 4.5. If ρ is a pseudo-run weakly satisfyingP, then there is aρ′ starting from the same
pseudo-configuration, weakly satisfyingP and of length at most (µ × 2×maxneg(T ))n(2n+1)C

for
someC > 1 with µ = (1+ K) × scale(T ) × scale(P).

Proof. SinceT has a pseudo-run weakly satisfyingP iffT has a pseudo-run satisfyingA[P, 1, ∅, [1, n],+∞],
by Lemma 4.4, it is sufficient to boundg(n). By Lemma 4.4, for some constantC2 > C1 (for in-
stanceC2 = C1 + 1), we have

g(i) ≤






(2µ)nC2 if i = 0,
(

2µ(maxneg(T ) × g(i − 1))
)nC2 if i > 0.
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By induction oni, we can show thatg(i) ≤ (νi+1)n(2i+1)C2 with ν = 2µ ×maxneg(T ). For i = 0 this
is obvious. Otherwise,

g(i + 1) ≤
(

2µ ×maxneg(T ) × g(i)
)nC2
≤ (ν(νi+1)n(2i+1)C2 )nC2 ≤ . . .

≤ ((νi+2)n(2i+1)C2 )nC2 ≤ (νi+2)n(2i+2)C2
< (νi+2)n(2i+3)C2

Hence,g(n) ≤ (νn+1)n(2n+1)C2 . As soon asn ≥ 2, there is a constantC such thatg(n) ≤ (2µ ×
maxneg(T ))n(2n+1)C

.

Let us conclude the section by the main result of the paper.

Theorem 4.6. (I) The generalized unboundedness problem for VASS is ExpSpace-complete. (II)
For eachn ≥ 1, the generalized unboundedness problem restricted to VASS of dimension at most
n is in PSpace.

Proof. (I, upper bound) Let (V, (q, ~x)) be an initialized VASS of dimensionn andP be a gen-
eralized unboundedness property. By Lemma 3.2, one can compute in logarithmic space an
initialized VAS ((T , ~x′),P′) such that (V, (q, ~x)) satisfiesP iff (T , ~x′) satisfiesP′, T has dimen-
sionn + 3,P andP′ have the same length and scale(T ) = max((card(Q) + 1)2, scale(V)). The
propositions below are equivalent:

1. T has a run satisfyingP′.
2. T has a pseudo-run weakly satisfyingP′ (see Lemma 3.7).
3. T has a pseudo-run satisfyingA[P′, 1, ∅, [1, n+ 3],+∞] (by definition ofA).
4. T has a pseudo-run weakly satisfyingP′ whose length is bounded by

((1+ K) × 2× scale(T ) × scale(P) ×maxneg(T ))(n+3)(2(n+3)+1)C

(by Lemma 4.5).

Then, we guess a witness pseudo-run weakly satisfyingP′ whose length is bounded by

((1+ K) × 2× scale(T ) × scale(P) ×maxneg(T ))(n+3)(2(n+3)+1)C

This can be done in exponential space in the combined size of (V, (q, ~x)) andP. By Savitch’s
Theorem [50], we get the ExpSpace upper bound. It is indeed sufficient to adapt the nonde-
terministic algorithm designed at the beginning of Section4.3 in order to consider the above-
mentionned length. Actually, one needs to considerK + 1 intermediate pseudo-configurations
and a current set of components among [1, n+ 3] in order to record which components can be
strictly increased in preceeding loops.

(II) Easy consequence of the proof of (I, upper bound).

(I, lower bound) A first temptation is to state ExpSpace-hardness from ExpSpace-hardness of
the unboundedness problem for VAS. However, we are looking for a logarithmic-space many-
one reduction and an instance of unboundedness can be naturally reduced ton instances of the
generalized unboundedness problem with property of length1 and scale 1. We shall directly
adapt [37, 18] to obtain the lower bound.
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By [39] (see also [53]), a deterministic Turing machineM of sizen running in spaceK2nK

can be simulated by a deterministic counter automatonC of sizeO(n) with 4 counters and that

is 22nK′

-bounded (counter values are bounded by 22nK′

when the initial configuration has zero
counter values). Moreover,M can reach a halting state on the empty tape iff C can reach a halting
control state with a run starting with zero counter values. Adeterministic counter automaton is
understood as a simple machine with a finite set of control states equipped with counters and the
only instructions on counters are increments, decrements and zero-tests. In [37, 18], it is shown
that given a deterministic counter automatonC of sizen with a halting control state, one can build
a net program(equivalent to a Petri net) of sizeO(n2) simulatingC. In particular, its dimension
is also inO(n2). This net program can be easily shown equivalent to a VASSV of dimensionn′

(in O(n2)), with m′ control states (also inO(n2)) and with two distinguished control statesq0, qh

satisfying the following conditions:

• C halts iff there is a run from (q0, ~0) reaching a configuration with control stateqh.

• Whenever the simulation ofC in a run inV is not faithful toC, then the run eventually
terminates.

• C does not halt iff there is an infinite run from (q0, ~0) that never reaches a configuration
with control stateqh.

Consequently, whenC halts, all the runs from (q0, ~0) are finite and there is a finite number
of runs from (q0, ~0). We define the VASSV′ of dimensionn′ + 1 that behaves asV except
that we add a self-loop transition toqh whose effect is to add one to the (n′ + 1)st component.

Then, we haveC halts iff there is a run inV′ of the form (q0, ~0)
∗
−→ (q, ~x)

∗
−→ (q, ~x′) such that

~x([1, n′]) = ~x′([1, n′]) and ~x(n′ + 1) < ~x′(n′ + 1). This can be easily turned into an instance
of the generalized unboundedness problem. The ExpSpace-hardness proof is therefore a simple
adaptation of the ExpSpace-hardness result from [37, 18]. Reproducing the arguments would not
add much apart from repeating arguments from [18]. More details about this standard reduction
can be also found in the slides [14].

5. Other Applications

In this section, we draw conclusions from Theorem 4.6. First, as a by-product of Theorem 4.6
and using the reductions from Section 3.3, we can easily regain the ExpSpace upper bound men-
tioned below.

Corollary 5.1. The regularity detection problem and the strong promptness detection problem
are in ExpSpace. The simultaneous unboundedness problem is ExpSpace-complete. For each
fixedn ≥ 1, their restriction to VASS of dimension at mostn are in PSpace.

Proof. The ExpSpace upper bound for regularity detection problem and strong promptness de-
tection problem is a consequence of remarks from Section 3.3. Indeed, for both problems, one
needs to guess a generalized unbounded propertyP of length at mostn (dimension of the input
VASS) and of scale 1 and then check whether there is a run satisfying P. In case of positive
answer to this question, we answer negatively to the original instance of the original problem.

Let us establish the lower bound for the simultaneous unboundedness problem. LetV be the
VASS from the lower bound proof for Theorem 4.6(I). We define the VASSV′ of dimensionn′+1
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that behaves asV except that we add a self-loop transition toqh whose effect is to add one to the
(n′+1)th component. Then, we haveC halts iff (V′, (q0, ~0)) is not (n′+1)-unbounded. Simultane-
ous unboundedness problem is therefore coExpSpace-hard but since coExpSpace= ExpSpace, the
simultaneous unboundedness problem is ExpSpace-hard. Now, let us establish the upper bound
for the simultaneous unboundedness problem. Let (V, (q, ~x)) be an initialized VASS of dimen-
sionn andX be a subset of [1, n]. We first guess a disjointness sequenceσ = X1 · · · · · XK such
thatX ⊆

⋃

l∈[1,K]
Xl andX ∩ XK , ∅ (this requires only polynomial space). Let us now consider the

generalized unboundedness propertyPσ as defined in Section 3.3 for dealing with simultaneous
unboundedness. Checking whether (V, (q, ~x)) satisfiesPσ can be reduced in logspace to an in-
stance of the generalized unboundedness problem, that can be solved in exponential space in the
size of (V, (q, ~x)): indeed the length ofPσ is bounded byn and its scale is equal to one.

The complexity upper bound for regularity detection problem has been left open in [3]. De-
cidability of the strong promptness detection problem is established in [51]. The ExpSpace upper
bound has been already stated in [54, 3]. We cannot rely on [54] because of the flaw in [54,
Lemma 7.7]. Condition 4. in [3, page 13] does not characterize strong promptness (but only
promptness) as shown in Section 3.3. Finally, increasing path formulae from [3] cannot char-
acterize strong promptness detection unlike generalized unboundedness properties. Therefore,
the upper bound for strong promptness detection is also new.Below, we state how the previous
results allow us to characterize the computational complexity of reversal-boundedness detection
problem for VASS and its variant with weak reversal-boundedness.

Theorem 5.2.

(I) Reversal-boundedness detection problem for VASS is ExpSpace-complete.

(II) For each fixedn ≥ 1, its restriction to VASS of dimension at mostn is in PSpace.

(III) (I) and (II) hold true for weak reversal-boundedness.

Proof. (I) Let us start by showing ExpSpace-hardness. LetV be the VASS from the lower bound
proof for Theorem 4.6(I) obtained from [37, 18]. We define theVASSV′ of dimensionn′+1 that

behaves asV except that we add two transitionsqh
en′+1
−−→ qh andqh

−en′+1
−−−→ qh whereei denotes the

ith unit vector andqh is the halting control state ofV. Then, we haveC halts iff (V′, (q0, ~0)) is
not reversal-bounded with respect ton′+1. Reversal-boundedness detection problem is therefore
coExpSpace-hard but since coExpSpace= ExpSpace, the problem is ExpSpace-hard.

Now, let us show ExpSpace upper bound. LetV = (Q, n, δ) be a VASS and (q, ~x) be a
configuration. By Lemma 2.5, (V, (q, ~x)) is not reversal-bounded with respect toi iff (T , ~x′) =
((Vrb, (qrb, ~xrb)))HP is (n+ i)-unbounded. The operator (·)HP refers to the reduction from VASS
to VAS in [26] (see also the proof of Lemma 2.5). scale(T ) is bounded by max((card(Q) ×
2n + 1)2, scale(V)) and ((Vrb, (qrb, ~xrb)))HP can be built in polynomial space. Dimension ofT
is 2n+ 3. First, we guessP of length at most 2n + 3 for characterizing (n + i)-unboundedness
(this requires only polynomial space): its scale is equal toone. A witness pseudo-run weakly
satisfyingP (in T ) does not need to be longer than

((1+ 2n+ 3)× 2×max((card(Q) × 2n + 1)2, scale(V))2)(2n+3)(2(2n+3)+1)C
,

which is doubly exponential in the size ofV and (q, ~x) (our initial instance). This comes from
Lemma 4.5. A nondeterministic algorithm guessing such a pseudo-run requires only exponential
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space.
(II) Whenn is fixed, the above expression is only exponential in the sizeofV and (q, ~x).
(III) This part is similar to (I) and (II). By combining Lemmas 3.6 and 3.2, we build in polynomial
space an initialized VAS (T , ~x′) such that (V, (q, ~x)) is not weakly reversal-bounded iff (T , ~x′)
satisfiesP′σ for some disjointness sequenceσ = X1 · · ·XK with n+ i ∈ XK , i ∈ (X1 ∪ · · · ∪ XK−1)
and such that

• P′σ is defined fromPσ as done in the proof of Lemma 3.2 (length bounded byn and scale
equal to 1),

• the dimension ofT is 2n+ 3,

• scale(T ) ≤ max((card(Q) × 2n + 1)2, scale(V)).

Again, a witness pseudo-run weakly satisfyingP′σ (in (T , ~x′)) does not need to be longer than

((1+ 2n+ 3)× 2×max((card(Q) × 2n + 1)2, scale(V))2)(2n+3)(2(2n+3)+1)C

which is doubly exponential in the size ofV and (q, ~x) (our initial instance). A nondeterministic
algorithm guessing such a pseudo-run requires only exponential space.

Let us establish the ExpSpace-hardness. LetV be the VASS from the lower bound proof for
Theorem 4.6(I). We define the VASSV′ of dimensionn′+1 that behaves asV except that we add

two transitionsqh
2×en′+1
−−−−→ q′h

−en′+1
−−−→ qh Then,C halts iff (V′, (q0, ~0)) is not weakly reversal-bounded

with respect ton′ + 1. Weak reversal-boundedness detection problem is therefore coExpSpace-
hard, whence ExpSpace-hard.

By Theorem 5.2(I), once an initialized VASS is shown to be reversal-bounded, one can com-
pute effectively semilinear sets corresponding to reachability sets, for instance one by control
state, see recent developments in [32]. The size of the representation of such sets is at least
polynomial in the maximal number of reversals. However, we know that an initialized VASS
can be bounded but still the cardinality of its reachabilityset may be nonprimitive recursive,
see e.g. [52]. A similar phenomenon occurs with reversal-boundedness, as briefly explained be-
low. Not only we wonder what is the computational complexityof the problem of determining
whether a VASS is reversal-bounded but also in case of reversal-boundedness, it is important
to evaluate the size of the maximal reversalr in terms of the size of the VASS, see e.g. the
recent work [32] following [27] that uses in an essential waythe valuer. In case of reversal-
boundedness, the maximal reversal can be nonprimitive recursive in the size of the initialized
VASS in the worst case, which, we admit, is not an idyllic situation for analyzing reversal-
bounded VASS. Indeed, givenn ≥ 0, one can compute in polynomial time inn an initialized
VASS (Vn, (q0, ~xn)) that generates a finite reachability set of cardinalO(A(n)) for some nonprim-
itive recursive mapA(·) similar to Ackermann function, see e.g., the constructionin [30]. Let us
precise what this means by recalling a variant of Ackermann function:

• A0(m) = 2m+ 1, An+1(0) = 1.

• An+1(m+ 1) = An(An+1(m)).

• A(n) = An(2).

The functionA(n) majorizes the primitive recursive functions.
Moreover, (Vn, (q0, ~xn)) can be shown to admit only finite runs, see details in [30]. It is then

easy to compute a variant VASSV′n by adding a component and such that each transition ofVn
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is replaced by itself followed by incrementating the new component and then decrementing it
(creating a reversal). StillV′n has no infinite computation, (V′n, (q0, ~x′n)) is reversal-bounded (~x′n
restricted to the components ofVn is equal to~xn) and its maximal reversal is inO(A(n)).

6. Concluding Remarks

We have proved the ExpSpace upper bound for the generalized unboundedness problem (both
the initialized VASS and the generalized unboundedness property are part of the inputs). For
example, this allows us to show, for the first time (apart fromthe preliminary version [13]), that
the following problems on VASS can be solved in exponential space:

• the place boundedness problem,

• the reversal-boundedness detection problem,

• the regularity detection problem,

• the strong promptness detection problem.

We have shown that these problems can be solved in polynomialspace when the dimension is
fixed. Even though our proof technique is clearly tailored along the lines of [45], we had to
provide a series of adaptations in order to get the final ExpSpace upper bound (and the PSpace
upper bound for fixed dimension). In particular, we advocatethe use of witness pseudo-run
characterizations (instead of using runs) when there existdecision procedures using coverability
graphs.

Let us conclude by possible continuations. First, our ExpSpace proof can be obviously ex-
tended for example by admitting covering constraints, to replace intervals in properties by more
complex sets of integers or to combine our proof technique with the one from [3], see also [5].
The robustness of our proof technique still deserves to be determined. A challenging question is
to determine the complexity of checking when a reachabilityset obtained by an initialized VASS
is semilinear. Indeed, it was proved independently by Hauschildt and Lambert that the class of
semilinear VASS is recursive: checking whether a given VASShas a semilinear reachability set
is decidable [see the unpublished works by 25, 35]. Moreover, the reachability set is effectively
computable when it is semilinear. Observe that regularity,boundedness or reversal-boundedness
imply semilinearity.

Another direction consists in considering a richer class ofmodels. It is shown in [21] that
checking whether an initialized VASS with one zero-test is reversal-bounded is decidable, but
with a nonprimitive recursive worst-case complexity, the existence of an ExpSpace upper bound
being open; see also recent results on VASS with one zero-test [6, 7].

Besides, various subclasses of VASS exist for which decision problems are of lower com-
plexity. For instance, in [43], the boundedness problem is shown to be in PSpace for a class
of VASS with so-called boundedbenefit depth. It is unclear for which subclasses of VASS, the
generalized unboundedness problem can be solved in polynomial space too.
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