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RESUME. Ce papier présente un panorama de logiques temporelles mpsdinéaire avec
contraintes de Presburger dont les modeles sont des séggidrduples d’entiers. De tels lan-
gages formels permettent de spécifier et vérifier certaimgzrigtés des systemes a compteurs.
Le papier rappelle le cadre général de LTL avec domainesretsiet présente les principaux
résultats de décidabilité et complexité des fragments dedviec contraintes de Presburger.
Une comparaison avec des formalismes alternatifs ou v@iss aussi ébauchée.

ABSTRACT.We present an overview of linear-time temporal logics witbsBurger constraints
whose models are sequences of tuples of integers. Such &petification languages are well-
designed to specify and verify systems that can be modeilecdaunter systems. The paper
recalls the general framework of LTL over concrete domaims aresents the main decidability
and complexity results related to fragments of Presburger. Related formalisms are also
briefly presented.
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1. Introduction

Temporal logics. Temporal logics are standard formal specification langsiage
verify and specify complex systems/programs, see e.g.€lPniO77; Bérardet
al., 2001). Such languages allow the user to specify by mearengdral formulae
the properties which a program must satisfy and to verify tha specifications are
met. Temporal logics are well-studied formalisms to spettié behavior of finite-state
systems and the computational complexity of the modelkihggroblems is nowa-
days well-known, see e.g. a survey in (Schnoebelen, 20@R®yekfr, it is known that
many systems such as communication protocols have infimtany configurations
and usually the techniques for the finite case cannot beapgirectly. Unfortuna-
tely, for numerous classes of infinite-state systems, théetachecking problem for
the linear-time temporal logic LTL can be easily shown to bdecidable (counter au-
tomata, hybrid automata and more general constraint as#ofRavesz, 2002, Chapter
6)). Actually, simpler problems such as reachability aready undecidable. Never-
theless, remarkable classes of infinite-state systemst aldcidable model-checking
problems, such as timed automata (Adtial., 1994a) and subclasses of counter auto-
mata (Ibarra, 1978; Boigelot, 1998; Boigekital., 2002; Lerouxet al,, 2005). More
specifically, fragments of LTL with Presburger constratmse been shown decidable
over appropriate counter automata {Deans, 1994; Comoret al, 2000; Demriet
al., 2003). We recall that Presburger arithmetic (Presbudf#9) is the first-order
theory of integers with addition (but without multiplicati) and, it can be shown to
be decidable by quantifiers elimination.

Content of the paper. The paper presents an overview of linear-time temporatkgi
over constraint systems and more precisely of fragmentsregiiarger arithmetic.
Such logical formalisms allow to express effects of basgtrirctions in programs.
For instance, a formula of the forf(x = Xy) states that eventually the value of the
variablex is going to be equal to the next value ¢f Decidability and complexity
issues for satisfiability and model-checking about coivsih automata (viewed as
models for systems/programs) are discussed along the pagewe provide a ge-
nerous amount of examples. Hence, we present the main frarkdar linear-time
temporal logics over constraints systems, extending @iredsird logic LTL (Sistlaet
al., 1985). We explain why symbolic representation of conamatelels of the logics is
needed and how symbolic models can be recognized by aut@oedatingo-words
languages. Most of our decidability results are based oadb@mata-based approach
from (Vardiet al,, 1994) but we cannot apply this method directly since theetsoof
the logics arev-sequences of valuations (providing an infinite alphabetimpatible
with standard Buichi automata). Decidability and compiesaisults for fragments and
for extensions of Presburger LTL are thoroughly presenteereas some undecidable
logics are precisely placed in the arithmetical and anzdyfthierarchies. Finally, we
illustrate the main concepts on simple examples and thdtsgzesented herein in
details are compared to alternative formalisms.



Most of the results stated in the paper are presented inslataither papers. We
have taken a special care to make uniform the notations gmetide a great amount
of relevant bibliographical references.

Plan of the paper. The structure of the paper is the following. Section 2 introes
the framework of linear-time temporal logics over constraystems and presents
fragments of Presburger arithmetic useful in the rest ofpiger. In Section 3, we
present various fragments of LTL over constraint systeromésof them based on
fragments of Presburger arithmetic) whose satisfiabiligbfem is undecidable. In
most cases, runs of Minsky machines can be simulated. The pnaof technique to
show decidability is presented in Section 4 where the @iatiips between satisfia-
bility and symbolic models are clearly stated. This unifisewn decidability proofs.
As explained in Section 4, it still remains to check progertassumed in the main
theorem. Decidability results are stated in Section 5 uiclg those for which the
constraint system has integer periodicity constraint®owhich the class of symbo-
lic models for a given formula is not necessatilyregular. A quite remarkable result
is that model-checking one-counter automata with LTL ovendifier-free Presburger
arithmetic ispsPACEcomplete. Decidability and complexity results in preseatthe
freeze operator are presented in Section 6. In particuéapttesence of this powerful
binding mechanism with the poor constraint systéfn=) already produces highly
undecidable problems. On the decidability side, effeghrexedures can be designed
with one rigid variable and finite models, or with integeripdicity constraints, to
quote a few examples. Related formalisms are compared hétlones presented in
the paper in Section 7. The main goal of this section is to igmthe reader useful
bibliographical references to other works related to (teraf) logics and Presburger
constraints.

2. LTL over constraint systems

Linear-time temporal logic LTL equipped with “next-time’peratorX, “until”
operatorU and their past-time counterparts is known to be equivalefirst-order
theory of successors (Kamp, 1968). Satisfiability and matiektking problems for
LTL (even with past-time operators) are also known toPts®ACEcomplete (Sistla
et al, 1985). In spite of these nice features, it is worth recgllimat a propositional
variablep only represents a property of the current state of the sygteminstance,
p may hold true whenever the value of the variablis greater than the value of the
variabley after running the current instruction. A more satisfyinfugon is to include
in the logical language the possibility to express directigstraints between variables
of the program, whence giving up the standard abstractiothermath propositional
variables. When the variables are typed, they may be irggrgrin some specific
domain like integers, real numbers, strings and so on. Henpeoposition like  is
greater than the next value gf can be encoded in such extended temporal logics by
x < Xy but this time the models are made of structured states. Te@mthat each
state comes with a valuation for variables. Hence, the ids&behind the design of



temporal logics over constraint systems is to refine thedagg of atomic formulae
and to allow the possibility to compare values of variablesugcessive positions of
the execution of programs, see e.g., in (Corabal, 2000) a representative example
of such logics.

2.1. How to refine LTL with the help of constraint systems

Let VAR = {xz¢,z1,...} be a countably infinite set of variables. A constraint
system is a paiD = (D, (R,)acr) WhereD is a specific domain of interpretation
for variables andR.,) .1 is a countable family of relations on the element£ofSo,

a constraint system is simply a relational structure. Amad¢dD-constraint is a term
of the formR(x1, ..., z,) whereR is interpreted as a relation of the domain ani$
the arity of this relation. AD-valuation is a functiony : VAR — D that assigns to
every variable a value ib. A constraint is satisfied by B-valuationv, denoted by
v Ep R(z1, ... zp), if (v(z1),...,v(x,)) € R, R being the relation irD associated
to the symboR.

The consistency problem consists in checking whether tisesievaluation satis-
fying every atomicD-constraint from a finite set. Similarly, the maximal comesigy
problem checks for maximal consistency with respect to &efget of variables and a
finite set of relations. For instance, the maximal consistgmoblem for the constraint
system(R, <, =) is NLOGSPACEcomplete since it amounts to detect cycles in a finite
graph. The implication problem consists in checking whethesry valuation satis-
fying a finite setX of atomicD-constraints satisfies an atonficconstraintA (written
X [=p A). Forinstance, wittD = (R, <), we have{z < y,y < z} Fp {2 < z}.

The logic CLTL(D) is defined as an extension of LTL where the propositional
variables are refined by atomie-constraints over terms (called atomic tempdPpal
constraints). A term is defined as a variableprefixed by a certain numbérof X
“next” symbolX and is denoted by(‘z; (its encoding require® (i + log j) bits). The
termX‘z; is interpreted as the value of at theith next state. The “next” symb{
is overloaded in this paper singeis also used below as a logical temporal operator.
The CLTL(D) formulae are defined as follows :

¢ =RX"zj, ..., X" ) [ ¢ Ad| =9 | Xp | pUs.

The symbolsX andU are respectively the classical operators next-time anidl unt

from LTL. We use the notationS¢ andG¢ as the abbreviations foarU¢ and—F-¢.

A one-step constraint is an atomic formula of the foRiX'z;,,..., X"z ) such
thatly,...,l, < 1. Given aCLTL(D) formula ¢ we define itsX-length|¢|x as the
maximal numbet such that a term of the forrd’2z occurs ing. Intuitively, the X-
length defines the size of a frame of consecutive states #rabe compared. The
models of CLTL(D) are sequences dp-valuationss : N — (VAR — D) and the
satisfaction relation is defined as for LTL except at the atdevel :
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Figure 1. A 1-variable(N, +1, = 2)-automatonA,

—o,i = RXbay,, ... X, Viff (o(i+11)(z5,),...,00+1,)(2;,))) € R,

—o,i=oANQ iff 0,i E¢dando,i E ¢,

—o,i|E—-¢iff 0,1}~ ¢,

—o,i =Xe¢iff 0,1+ 1 ¢,

—o,i E ¢U¢' iff there isj > i such that, j = ¢’ and for everyi <1 < j, we
haveos,! = ¢.

As usual, a formulap € CLTL(D) is satisfiable whenever there exists a model
o such thaw, 0 |= ¢. We write CLTL! (D) to denote the restriction €fLTL(D) to
formulae with at mosk variables anc-length less or equal th Standard LTL (Sistla
etal, 1985) can be viewed &SLTL({T, L}, True) whereTrue = {T}.

Lemma 2.1. Let D be a constraint system with equality predicate. There iga-lo
rithmic space reduction frol@LTL(D) satisfiability intoCLTL., (D) satisfiability.

The proof of Lemma 2.1 is done by renaming terms and requitasaounded
amount of variables iICLTL. (D).

We define the model-checking problem for the clasPedutomata that are Biichi
automata with transitions labeled with one-step condisafk-variableD-automaton
A is a structurg@, ¢, I, F') such that( is a finite set of stated, C @ is the set of
initial states,F” C (@ is the set of final states arddis a subset of) x X x @ where
Y is a finite subset of SC}, the set of Boolean combinations of one-step constraints
built over the set of variablegry, ..., z;}. We use the notatiop = ¢’ as an ab-
breviation for(q, ¢, ¢') € §. When the constraint system is a fragment of Presburger
arithmetic,D-automata form a special class of counter automata. Figamnthins a
graphical representation of a 1-varialflé, +1, = 2)-automaton where= 2" is the
unary predicate interpreted §®} which corresponds to a test-for-two.

The language accepted bypaautomaton is denoted fy(.A). A CLTL(D) model
o is said to realize aw-sequence o€ LTL(D) formulaegg¢, . . . iff for everyi > 0,
we haveo,i = ¢;. We write LP(A) to denote the class ¢fLTL(D) models that
realize somes-word inL(A).



The model-checking problefnfor CLTL(D) is defined as follows :

input : aD-automatond and aCLTL(D) formula®,
output : 1 iff there is a modet in LP(A) such thatr, 0 = ¢ (denoted byA =5 ¢).

As expected, this amounts to check that there is a computafigl that satisfies the
property/formulap. A universal version of the problem (more used in verificaYican
be also defined analogously (we then uké=y ¢). For the restriction of the model-
checking taCLTLL (D), ¢ belongs taCLTL. (D) and A is ak-variableD-automaton.

For all non-trivial constraint systems presented in theepagatisfiability can be
shown equivalent to the existential version of the modeleking problem and validity
can be shown equivalent to its universal version. For itgady 3 (x = 0) A
GF(z = 0) with A4, defined in Figure 1. Indeed(Xz =z +1) - Xz =2 — 1))* €
L(Ap) and(0 - 1)~ realizes thisu-word.

2.2. Fragments of Presburger LTL

2.2.1. Presburger arithmetic

Presburger arithmetic (PA) is the first-order theorysf+) of integers with ad-
dition (Presburger, 1929). This theory is decidable inergxponential-time (Fischer
et al, 1974) and many fragments can be decided even with a lowepleaity, see
below. In (Ginsburget al., 1966), it is shown that PA defines precisely semilinear. sets

Given a Presburger formulad(zi,...,z,) with free variables inZ¥ =
(x1,...,2n), andd = (a1,...,a,) € Z", the truth ofA(z4,...,z,) with respect
to the interpretatiori is denoted byi = A(Z). We write sol(A(Z)) to denote the
elementsi € Z™ satisfying the formulaA(Z). In the sequel, any (possibly infinite)
fragment FPA of PA (understood as a subset of PA) defines ditgdlf a constraint
system

Dypa = (Z, (s0l(A(%)) a(z)erpa)-

Hence, the constraint systeBypa may contain an infinite set of relations. We shall
write CLTL(FPA) instead ofCLTL(Drpa ). For instance the constraints of the form
x > cwith ¢ € Z induces the constraint system

(Z,({n €Z :n > c})cez),

with a countably infinite set of relations.

In the next subsection, we present fragments of Presburigi@matic useful in the
rest of the paper.

1. Unlike what is done in the journal paper, we consider thstexitial version for th&1 results.



2.2.2. Integer periodicity constraints

We define below languages of the first-order theory of integeriodicity
constraints. Theonstraint language IP@ defined by the grammar below :

Av=zxz=py+c| xz=pc| ANA | A

wherek,c € N, z,y € VAR. GivenX C {3,[], <,Eq}, we define an extension of
IPC, namelyIPC™~, by adding clauses to the definition of IPC :

—if 3 € X, then the clausé = A is added (existential quantification),
—if [] € X, then the clause =, y + [c1, c2] With ¢1, c2 € N is added,
—if Eq € X, then the clause = y with x,y € VAR is added,

—if <€ X, thentheclauses<d | + >d | x =dwithz € VAR andd € Z
are added.

Observe that the presence &f” in X allows to express equality constraints between
two variables whereas the presence af ‘allows to express equality constraints bet-
ween a variable and a constant. By way of example, we prolielsemantics for the
formulaz = y+ [c1,¢2) 1 v E o =% y + [c1, 2] & there are € [c1,co] andl € Z
such thafv(z) —v(y)) =1l x k+c.

Below,IPC* denotedPC1# <} whereadPC*+ denote§P {3l <Ea} 1pCt+
is the extension of the language of the first-order theorynbéger periodicity
constraints introduced in (Tomaet al., 1998) but with the inclusion of negation as
considered in (Bertinet al,, 1996). Observe that what is called “IPC” in (Tomen
al., 1998) is precisely defined by ::= c =, y+c | a=pc | ANA | Tz A

As Presburger arithmetitPC™* " enjoys a quantifier elimination property but the
complexity of the consistency problem is lower.

Theorem 2.2. (Demri, 2006)
() IPC** consistency i®SPACEcOomplete.

() Given a constraint in IPC*, one can compute an equivalent quantifier-free
A’ in polynomial space inA| and|A’| is in O(214]).

2.2.3. Difference logic

Let DL be the following fragment of Presburger arithmeticdaaof difference
constraints :
Av=x~y+dlz~d|ANA|-A

wherez,y € VAR, ~€ {<,=} andd € Z. We use the notations < y, z > y and
x > y as the respective abbreviationswok y VvV z = y, -(z < y) and—(z < y).
Given a valuationv : VAR — Z, the satisfaction relation = c is defined in the
obvious way. DL is a proper fragment of quantifier-free Puegbr arithmetic. Indeed,
periodicity constraints of the form =, ¢ or comparisons of the form+y + z < 5
are not part of DL.



The satisfiability problem fo€LTL(DL) can be placed in the analytical hierarchy
in X1

2.2.4. Quantifier free Presburger arithmetic

The last fragment of Presburger arithmetic we considerighghaper is quantifier-
free Presburger arithmetic QFP that is mainly used in Sedié. It is defined as
follows :

A:::Zaixi:cﬂ Zaixi<d| Zaixizkc\—'A\A/\A

i€l icl iel

wherea;,d € Z, k,c € N and[ is a finite subset oN. Observe that QFP is as
expressive as Presburger arithmetic but it is less concigesistency is inNP).

3. Quantitative constraints and undecidability

In this section, we present undecidable fragments of PrgeblTL even though
some drastic syntactic restrictions are sometimes corezide

3.1. Minsky machines

Undecidability of LTL with Presburger constraints shallrbainly established by
reducing the halting problem or the recurrence problem émdeterministic Minsky
machines. That is why, we recall below what are these prablénmondeterministic
Minsky machineM consists of two counter§’; and Cs, and a sequence of >
1 instructions, each of which may increment or decrement dntée counters, or
jump conditionally upon of the counters being zero. After éxecution of a non-jump
instruction,M proceeds nondeterministically to one of two specified irdions. The
I*M instruction has one of the following forms :

l: C;:=C;+1;gotol’ or gotol”
[ if C; = 0then gotd’ elseC; := C; — 1; gotol’ or gotol”

The configurations of\f are triples(l, ¢y, co), wherel < [ < n,¢; > 0, and
co > 0 are the current values of the location counter and the twateosiC; and
C5, respectively. The consecution relation on configuratiertefined in the obvious
way. A computation of\/ is anw-sequence of related configurations, starting with
the initial configuration/1, 0, 0). The computation is recurring if it contains infinitely
many configurations with the value of the location counténgpé. The recurrence
problem is to decide, given a nondeterministic Minsky maeli/, whetherM has
a recurring computation. This problem¥g-hard (Alur et al, 1994b, Section 4.1).
Similarly, the problem of checking whether frafh 0, 0) a configuration with location
counterl can be reached in at least one step is undecidable (MinsBy,)) thalting
problem.



3.2. Constraint systems with counting mechanism

High undecidability of CLTL., (N, =, 41) satisfiability can be easily shown by
reducing the recurrence problem for nondeterministic Mynsiachines. More ge-
nerally, we define below three abstract conditions for a raim system to admit
implicitly a counting mechanism which leads to undecidabil

Definition 3.1. A constraint systen® is said to admit an implicit counting mecha-
nism if the following conditions are met :
1) D contains the equality predicate,
2) D contains a binary predicafe such that
a) R = {{a,b) € D?: f(a) = b} for some injective mayf : D — D,
b) (D, R) is a DAG.

\Y

So, wheneverD has an implicit counting mechanism, for anye D, a Ly
Fa) & fita) & ... is isomorphic to(N, <). For instance, for evenp e
{N,Z,Q,R} and for everyi € D\ {0}, the constraint systeriD, =,=_,) has an
implicit counting mechanism, where=_; n’ iff n = n’ 44. Similarly, the constraint
system(D \ {0}, =, =,) admits an implicit counting mechanism where=,; n’ iff
n=mn'xiwithi# —1.

Theorem 3.1. (Demriet al, 2003) The satisfiability problem f&tLTL. (D) is ©}-
hard for every constraint systefwith an implicit counting mechanism.

The proof is by reducing the recurrence problem for nondatestic Minsky ma-
chines (see Section 3.1) as done in the proof of (Costal, 2000, Theorem 3). In-
deed, computations of such machines can be encoded as robdetaeCLTL., (D)
formula. It is then easy to express that a location counteears infinitely often. This
is the wayCLTLé(DL) satisfiability can be shown undecidable, see e.g. (Coeton
al., 2000). For instance the instruction

—1:C1:=C1 + 1; gotol’ or gotol”
can be encoded by a temporal formula of the form
G(.Tl =y = (XZl =z1+1A X(.Tl/ =y Vo = yl”)))7
wherez; is a variable dedicated to the counter.

Recall thatX:1-hardness implies that no recursively enumerable axiaation
exists. As corollaries we obtain :

Corollary 3.2. ForeveryD € {N,Z,Q,Q;R,R, },



(I) foreveryi € D\ {0}, satisfiability forCLTL., (D, =, =1;) is ¥{-hard.
(1) foreveryi € D\ {0,1,—1}, satisfiabilityCLTL. (D, =, =) is X}-hard.

3.3. Restricting syntactic resources

In Section 3.2, we have seen tigtTL. (N, =, +1) and variants are highly unde-
cidable. The obvious way to encode Minsky machines reqainambounded amount
of variables in order to encode their control states. Inghigtion, we provide evidence
that restricting further the syntactic ressources presemdecidability. For instance,
Lemma 3.3 states how to reduce tidength of formulae and Lemma 3.4 how to
reduce the number of variables.

Lemma 3.3. (Demriet al, 2006b) For alk, [, %’,!’ € N\ {0} and constraint systems

D, there is an exponential time reduction fréTL, (D) into CLTLY, (D) whenever
kxl=Fk x1 andk’ = k x m for somem > 2.

The idea of the proof is to encode states from &L TL, (D) model into a single

state in aCLTLY, (D) model. For instance, i’ = 2k, then theCLTLL (D) model
below

1 k+1 2k +1
2 k+2 2k +2
k 2k 3k

is encoded as theLTL., (D) model below

1 2k +1
2 2k +2
2k 4k

Lemma 3.4 below states how to reduce the number of variablesmulae.

Lemma 3.4. (Demriet al, 2006b) For allk,,k’,!’ € N\ {0} and constraint sys-
temsD with equality and at least three elements, there is a logspaduction from

CLTL! (D) into CLTL., (D) whenevenk x | < k' x I’ andk = k' x m for some

m > 2.

The idea of the proof is to encode one state froiIaI'L, (D) model into3m

states in &CLTL,, (D) model. Only one state over three encodes values. Interieedia
states are used to know when a sequen@obtates inCLTL,, (D) corresponds to

10



a state in &LTL. (D) model. For instance, i’ = 1 andk = 2, then theCLTL, (D)

model below
1 3
9 4 )

is encoded as theLTL., (D) model

position 0 position 1
1=b#Ab£24bAbA3=bAbALAdAb#D..

whereb denotes arbitrary values satisfying the mentioned reiatioith its neighbors
(each occurrence éfcorresponds to a possibly distinct value). In order to enthat
such values exist, we assume that the domain has at leastdistanct elements. The
beginning of the encoding of some state from (l‘IeTLﬁ€ (D) model is such that two
consecutive values of the variable are identical.

The flat fragment o€ LTL, (DL) is shown decidable in (Comagt al, 2000) with
a decision procedure of complexity at least the one of Prgsbarithmetic. The flat
fragment is defined by restricting the use of the until operathe left arguments do
not contain temporal operators. Undecidability@ETL3 (DL) is shown in (Comon
et al,, 2000) by reducing the halting problem for Minsky machirt&isilarly, undeci-
dability of CLTL% (DL) is shown in (Demret al., 2003) with constraints of the form
x =yandz =y + 1. Itis possible to refine these results.

Theorem 3.5. (Demriet al., 2006b) Satisfiability foCLTL}(DL) is ©}-complete.

As a consequence of Theorem 3.5 and Lemma 3.3, we can imphevEit
hardness o€LTLj(DL) established in (Comoet al,, 2000).

Corollary 3.6. The satisfiability problem fo€ LTL3(DL) is ©1-complete.

Consequently, the logi€,, from (Comoret al., 2000) restricted to two variables is
also highly undecidable. Moreover, the satisfiability peoib can easily be reduced to
the model-checking problem singec CLTL(DL) is satisfiable iftA+ = ¢ where

A~ is the one-stat®-automaton{q}, d, {¢}, {¢}) with unique transitiory 5 q (i.e.
every model is accepted b¥r). So we get the following corollary.

Corollary 3.7. (Demriet al, 2006b) The model-checking problems @ETLS (DL)
andCLTL?(DL) areX}-complete.

By close inspection of the proofs of Theorem 3.5 and Corpl86, one can show
that satisfiability and model-checking f6.TL} (DL) andCLTL? (DL) but restricted
to the sometime operatér (instead of until) are als&{-hard.

11



3.4. CLTL;(QFP) satisfiability

ExtendingCLTL(DL) with constraints of the formaz + by = 0 wherea,b € Z
results to an undecidable logic even restricted to one ariandX-length one.

Theorem 3.8. (Demriet al., 2006b)CLTL] (QFP) satisfiability is undecidable.

Indeed, the values of two countefs, c2) in the configuration of a Minsky ma-
chine can be encoded by the valfe3<2 for the variable. Zero tests, increments and
decrements can be encoded with constraints of the formy 0, x =3 0, Xz = 22
(incrementation of the first counter) etc. The value of ttdrirction counter is enco-
ded for instance by repeating the same configuration. As setprence, the model-
checking problem is undecidable even for the fragmentioéstt to one variable and
X-length one.

4. General schema with symbolic models

In this section, we explain the main approach to establisiddeility of model-
checking and satisfiability problems fefLTL(D). Unless otherwise state® is a
constraint syster® = (D, (R, )acr) With I possibly infinite.

4.1. w-regularity via abstraction

Given an LTL formula¢ built over the propositional variables ip1,...,ps},
the LTL models of¢ can be viewed as-sequences : N — X with ¥ =
P{p1,...,ps}). The automata-based approach advocated in (\&rdi, 1994) es-
tablishes that one can effectively and efficiently build aBiautomatond, such that
the language accepted by, contains precisely the models of whence providing a
method to solve the satisfiability and model-checking peotd for LTL. Indeed, the
non-emptiness problem for Blichi automatanisoGspACEcomplete. We recall that
a Buchi automaton is a structuse = (%, S, S, p, F') such that® is a finite set of
symbols (the alphabet} is a finite set of statesy; C S is the set of initial states,
p: S x3 — P(S)is the transition function and; C S is a set of final (or accepting)
states. A run is an infinite sequensg %> s; > s, ... such that for every > 0,
siv1 € p(s4,a;) andsg € Sp. Given a rune, we writein f(c) to denote the set of
states that occur infinitely often im An accepting rure verifiesinf(c) N F # 0.
The words € ¢ is accepted by the accepting rar= s =% 51 = s, ... whenever
o = apayas . ... The wordo is also said to be accepted by the automatoand we
write L(.A) to denote the language of infinite words accepted by the Biigioimaton
A.

Given anCLTL(D) formula¢ built over the variables, . .., zj, the CLTL(D)
models of¢ are sequenced — D*. The productD* is not necessarily finite and
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thereforeCLTL(D) modelscannotbe viewed asv-sequences over fnite alpha-

bet. In order to reuse results for Blichi automata, one gfyatensists in abstracting
CLTL(D) models of¢ as sequences — {0, 1} for somem > 1 depending orb

and on the constraint systefh Each element of0, 1} can be viewed as a finite set
of local properties (for instance “the next valuewofs equal to the current value of
z"). Given a formulag and a modet : N — D*, we can define an abstract/symbolic
modelabs(¢, o) : N — {0,1}™. In order to solveCLTL(D) as it is done for LTL, the
best situation we can hope for, is that the set of abstracetaaterived from a given
CLTL(D) formula isw-regular and the corresponding Biichi automaton can be built
effectively and efficiently.

The rest of this section is dedicated to the presentatioheofrtain steps to switch
from the concrete models to the symbolic ones.

4.2. Syntactic measure

In order to check the satisfiability status of a givehTL(D) formula¢, we only
need to take into account relevant syntactic resources for instance, for LTL for-
mulae, the number of propositional variables occurringhim formula is the appro-
priate criterion. Since we are dealing with constraint eys, we need to extend this
notion.

Definition 4.1. A (syntactic) measurg is a triple (k, [, X) such thatt € N\ {0}
(the number of variables froAR), [ € N (the X-length) andX is a finite subset of
relation symbols related tD. v

For instance, given a@LTL(N, <, =) formula ¢, a measurék, [, X') for ¢ can
be defined such thatis the number of distinct variables occurringgrn(assumed to
bexy,...,xx), | = |d|x, andX = {<,=}. More generally, whed is finite, we can
assume without any loss of generality that the relationsnireasure are exactly those
appearing irD.

4.3. Symbolic state

The set of atomic tempord-constraints defined from a measwre= (k, [, X) is
denoted byCONS* and is defined as the set

{R(t1, ... tp) : R€ X}

where each term; is of the formX! z;» with 0 < I/ < [ and1 < k' < k. Cardinality
of CONS* is at most exponential ik + I + | X|. In the case the arity of constraint
relations inD is bounded (as for instance {fR, <, =)), the cardinality of CONS*
is polynomial ink + I + | X|. We write FOR” to denote the subset ¢LTL(D)
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formulae restricted to atomic formulae GONS*. We define below a symbolic state
as a finite set of (local) properties satisfied at a given jwrsdf a model. It abstracts
a D-valuation whose range can have values arbitrarily large.

Definition 4.2. A symbolic state with respect to the measuie a subset 0€ONS*.
\%

Observe that not every symbolic state is [resp. maximallylsistent. The set of
symbolic states is denoted By MB*. A symbolic modelp for CLTL(D) with res-
pect tou is a sequencg : N — SYMB* (it is of the formN — {0,1}™ for some
m > 1, see Section 4.1). We are now in position to define the symbatisfaction re-
lation |=,, with respect to the measupe Formulae are iffOR* and symbolic models
arew-words over the alphab&YMB*. Boolean and temporal operators are defined
homomorphically as fof=. Only the atomic case requires a special treatment that is

def

indeed similar to what happens for LTL : for apye CONS*, we havep,i = ¢ <
¢ € p(i).

4.4. Abstraction

Given a concrete model of CLTL(D) and a measurg, we write p# (it corres-
ponds toabs(¢, o) in Section 4.1) to denote the symbolic model wrsuch that for
every: > 0,

ph(i) £ {¢ € CONS* : 0,i |= ¢}.

Lemma 4.1. Letu be a measure; be a modelg be a formula ilfFOR* andi € N.
If 0,7 = ¢, thenpt,i =, ¢.

Definition 4.3. An abstraction folCLTL(D) is a computable functioyi from the set
of formulae to the set of measures. \Y

An abstraction is complete whenever for every formagleor all modelse and
ieN,o,ifoiff pl'9 i Epe 6.

Theorem 4.2. Let f be a complete abstraction. Thens CLTL(D) satisfiable iff
there is a symbolic model such that

D p,0 =@ o

(I) there is a concrete modelsuch thap = p£(¢).

In the proof, ifo, 0 = ¢, then by Lemma 4.]g§(¢), 0 Ffp) ¢ Obviously,p§(¢)
has a concrete model. Converselypigatisfies (I) and (ll), then by completeness of
the abstractiong, 0 = ¢.

In order to establish th&lLTL (D) satisfiability is inPSPACE we often show that
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— CLTL(D) admits a complete abstractiofi where consistent elements of
SYMB/(®) can be encoded in polynomial space and checking wheferC
CONS?() is consistent can be done in polynomial space,

— the symbolic models satisfying Condition (I) in Theorer2 dan be defined with
a Buchi automaton computable in polynomial space (as for, IsEe Section 4.5),

— the symbolic models satisfying Condition (ll) in Theoren2 4an be defined
with a Buchi automaton computable in polynomial space.

In order to preserve thesPACEupper bound, Blichi automata can be replaced by any
class of operational models whose non-emptiness problenbeacheck inNLOG-
SPACE see e.g. (Demet al, 2006b). Examples agfsPACEupper bounds established
with such an approach can be found in (Degtral, 2003; Demriet al., 2005a; Gas-
con, 2005; Demri, 2006; Demet al,, 2006b). However, the class of symbolic models
satisfying Condition (1) is usually-regular, unlike the class of symbolic models sa-
tisfying Condition (l1), see e.g. (Demet al., 2003).

4.5, Buchi automaton for symbolic satisfaction

We define below a Blichi automaton accepting the symbolic fsad f($) sym-
bolically satisfyinge (Condition () in Theorem 4.2). This slightly extends tharst
dard translation from LTL formulae into Blichi automata @aat al., 1994).

We definecl(¢) the closure ofy with a slight modification to consider atomic
constraints and an atom @f is a maximally consistent subset of(¢). As usual
iUty € cl(¢) implies X(11Us) € cl(¢) andyr Uy belongs to an atonX iff
eithergs € X or ¢1, X(1)1Uehs) € X. LetAq{(‘z’) be the generalized Blichi automaton

defined by the tupléQ, 6, I, F') over the alphabetYMB/ () such that :
—Qisthesetofatomsafandl = {X € Q: ¢ € X},
-x Zvif
- for every atomic temporal formuld in X, Z =p A (instance of the impli-
cation problem),

- for everyXy € cl(¢), Xy € X iff v €Y,
—Let{¥1U¢1,...,¢¥,Ud,} be the set of until formulae inl(¢). We poseF =
{F1,...,F,} whereF;, = {X € Q : v;U¢; ¢ X or ¢, € X} for everyi €
{1,...,n}.

Itis then easy to show the following result.

Lemma 4.3. L(Af‘”) ={p:N—=SYMB/®) | p,0 =) ¢}.
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5. Decidability results

In this section, we provide various examples of decidalagrfrents of Presburger
LTL and more generally of decidable LTL over constraint eyss.

5.1. Completion property

A general problem about the class of logic&TL(D) is to identify sufficient
conditions on the constraint systefn for which model-checking and satisfiability
for CLTL(D) admit effective decision procedures, ideally in polyndrefgace as for
plain LTL. Very often this amount to check whethBrhas a complete abstraction and
whether for every measure the set{p* : ¢ CLTL(D)—model} of symbolic models
wrt p is w-regular or not. In this section, we present a class of caimtsystems such
that the above set is indeedregular and there is an easy way to characterize it with
a Buchi automaton.

A symbolic modelp wrt 1 is one-step consistent iff for every> 0,

— p(4) is maximally consistent wit,
— for every atomic formul®&(X" z;, , ..., X!z; ) € CONS* with [, ...
R(XM 2, ..., X ) € p(i) iff ROXE Ly, XInT ey ) € p(i + 1).

For the constraint systefiR, <, =) and the measurg, 2, { <, =}), the symbolic mo-
del wrt 1 below is one-step consistent :

ln>1,

)

po = {x > Xz, Xz > XXz, 7 > XXz, = 7, X = Xz, XXz = XXI}*.

One-step consistency is a necessary condition for a symbudel to belong to
{p~ : 0 CLTL(D)—model}. We define below a class of constraint systems for which
this condition is also sufficient.

A constraint systenD has the completion property (Den®t al, 2003) iff for
every measurg = (k, 0, X), for every maximally consistent st C CONS* (made
of atomicD-constraints) and < k' < k, if

—Y' ={¢ €Y : ¢ e CONSH¥:0X)} (restriction ofY to atomicD-constraints
with {:Cl, R ,xk/}) and,

—v:{ay,..., 2} — Dsuchthat”’ = {¢ € CONS*'0%) .y = 41,
then there isD-valuationv’ : {z1,...,z,} — D such that’ is an extension of
andY = {¢ € CONS* : v/ = ¢}. Similar properties have been also introduced

in (Dechter, 1992; Balbiaret al, 2002; Lutzet al., 2005a) known as global consis-
tency.

WhenD is a constraint system satisfying the completion propényset of sym-
bolic models obtained by abstraction can be easily charaetk
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Lemma 5.1. Let D be a constraint system with the completion property ark a
measure. A symbolic modelwrt 1 has a concrete model iffis one-step consistent.

Forinstance(R, <,=), (R+, <, =), (Q, <,=), (Q4, <,=) as well asD, =) for
any non-empty seb satisfy the completion property. The above-mentioned sjimb
modelp, has therefore a concrete model. By constrashas no concrete model with
the constraint systerN, <, =) because of well-foundedness.

Let u be a measure anglbe a formula ilFFOR*. We writeL*(¢) to denote the set
of symbolic modelg wrt 1 such thap, 0 |=,, ¢ andp has a concrete model. Observe
that¢ is satisfiable iffL*(¢) is non-empty.

Lemma 5.2. Let D be a constraint system admitting a complete abstragtiand
satisfying the completion property. Then, for evéflyTL(D) formulag, L (?)(¢) is
w-regular.

The Biichi automaton accepting the languagdé” (¢) can be defined as the in-
tersection of the Biichi automaton accepting one-step stmisymbolic models wrt

£(6) and, A5,

Based on these properties, we can establish the followingbxity result.

Theorem 5.3. (Balbianiet al,, 2002; Demriet al, 2002) LetD be a constraint sys-
tem with a finite amount of relations. Whene@rsatisfies the completion property
and, the implication and the maximally consistency prolsleare inPSPACE then
CLTL(D) satisfiability and model-checking aresPACE

The proof in (Balbianiet al., 2002) uses arguments analogous to the ones used
in (Sistlaet al, 1985) to show that LTL is irSPACEWhereas the proof in (Demeit
al., 2002) takes advantage of the automata-based approachfdvardi et al., 1994).

Corollary 5.4. Model-checking and satisfiability falLTL(R, <, =), CLTL(Q, <
,=)andCLTL(D, =) for any setD with at least two elements, arsPACEcomplete.

Adding to CLTL(Q, <, =) comparisons with constants @ (encoded with a bi-
nary representation) of the form ~ ¢ with ~¢ {<,=} andc € Q preserves the
PSPACEuUpper bound. Indeed, constants in a formula can be encodeariaples that
remain equal along the model and we need only to specify hewdhstants compare
between each other.

5.2. Finite model case

For another class of constraint systems, we can provide lexitypupper bounds
for CLTL(D) problems, namely whe® is finite. Finiteness means thatis of the
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form (D, Ry, ..., Ry) whereD is a finite sef{dy, ..., das}. It should not come as a
surprise that for such a restricted caS&TL (D) satisfiability is inPSPACESince one
can design a simple logspace reduction frOlil'L(D) satisfiability to LTL satisfia-
bility.

Theorem 5.5. Let D be a finite constraint system. The satisfiability problem for
CLTL(D) is decidable irrsPACE

A proof consists in introducing an auxiliary constraintteys
D' =(D,P,...,Py)

such thatP;, = {d;} for eachi. A logspace reduction frol@LTL(D) to CLTL(D’)
can be designed atdLTL(D’) satisfiability can be shown insPACEsinceD’ admits
an easy complete abstraction and satisfies the completipepy, see also (Demri,
2004, Theorem 4). The reduction is indeed homomorphic fayl&m and temporal
operators an®(t4, . .., t,) is translated into

\V  Put) A AP ().
R(diy 5eeesdiy, )

This atomic step still guarantees that the reduction isgspace since the arities of the
relationsR;’s and the cardinal oD are parameters of the logiesPACEhardness can
be also easily shown by reducing LTL satisfiability [resp.d@echecking] whenever
D is non-trivial. This means that there is a relatiBrin D of arity n > 1 such that
eitherR # ) or R # D".

5.3. Integer periodicity constraints

The languagdPC™ " is a quite expressive fragment of Presburger arithmetic.
This is witnessed by thespAaceEcompleteness of its consistency problem whereas
(N, <, =) is only NLOGSPACEcomplete. For instance, formulae 6LTL(IPCT)
can encode calendars and slices from (Nieztttd.,, 1992). A calenda€’ can be vie-
wed as an ordered partitiok; , X, . .. of N such that (the partition can be finite but
we omit this case here)

(ordering) for all i, x andy, z € X; andy € X, imply z < y,
(consecution) for everyi, there arer € X; andy € X, such thay = = + 1.

A calendarC = X1, X,,... can be represented @LTL(IPC*") by the interpre-
tation of a variabler in an CLTL(IPC*") models : N x VAR — Z such that
consecutive positions it having the same value farbelongs to the same class :

0(0,z) =0(l,z)=...=0(i1,z) #o(i1+ 1,z) = ... =o(izg, ) # ...
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In most cases{o(i,z) : i € N} is naturally finite (minuts, hours, days in a week,
months). This means that a class of such calendars can leatiltely encoded as
consecutive positions having the same value modulo soregent

Theorem 5.6. (Demri, 2004) Satisfiability and model-checking foETL(TPC™ )
is PSPACECOMplete.

A key argument for such a proof is thERC " admits a complete abstraction and
it is possible to encode in polynomial-space the maximailysistent symbolic states.
As an application of Theorem 5.6, we can characterize theptmdity of the equi-
valence problem for extended single-string automata defin€Lagoet al, 2001,
Sect.5), see other related automata in (Bresetiral, 2004) and (Puppis, 2006).
This problem is central to check whether two time granu&sitire equivalent (see
also (Wijsen, 2000)) when granularities are encoded by sutbmata that can be
viewed as Buchi automata recognizing exactly aneord. Guards on transitions
expressed by integer periodicity constraints and updaesioa transitions provide
conciseness of such constraint automata. Similarly, im(@et al., 2002), the authors
advocate the need to design an extension of LTL that expegsmtitative temporal
requirements, such as periodicity constraiGsTL(IPC™) with past-time opera-
tors (that is als®@sPACEcomplete) provides such an extension.

Let IPC’ be the fragment ofpCi?! containing Boolean combinations of atomic
constraints of the form either=, cor3z (z =, z A y =, z). An update mayp for

the variablex; is defined as an expression of the form eithgt= x;, + corx; := ¢

with ¢ € Z. We write UB,, .. to denote the set of update maps that uses variables
from{z,...,z,}. An extended single-string automatdn(ESSA) over the finite set

of variables{z, ..., z, } (Lagoet al, 2001) is a structure of the forfd, qo, 7g, X, 9)
where

— @ is afinite set of states ang € @ (initial state),

— 49 € Z"™ (initial value of the variables, ..., z,),

— > is afinite alphabet,

-6 CQRxExQx({THUIPC') x P(UP,, . .. )andforevery € Q, there are
exactly twou such that(q, u) € 4, sayu; andus, and in that case; is of the form
(a1,q1, A, X1), us is of the form{as, g2, A, X>) where A is a constraint ifPC*
built over variables inz1, ..., z,} and in bothX; and X, exactly one update map
for x; is present.

The elements of are also denoted bzy‘LA—’X> q' (A is the guard and is the global

update map).

A configuration is a membefy, ) € Q x Z™. We define the one-step relation

a

2 for a € ¥ as follows : (¢, 7) % (¢,v) iff there isq LA X ¢ € 6 such that
[T1 ¢ V1, ..., Ty < v, = A(INTPCT) and for every € X,

—ifgisz; := z; + cthenv, = v; + ¢;
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—if gisz; := cthenv] = c.

It is easy to check that there is exactly one sequence ajas... € X such
that (o, 76) > (q1,v1) 2 .... The uniquev-sequence generated from the ESSA
is denoted byw 4. The equivalence problem for ESSA consists in checking ndret
w4 = wy, given two ESSA4 andA’. This problem introduced in (Laget al., 2001)
is central to check the equivalence of time granularitiesmdranularities are encoded
by such automata.

For instance, the-word associated with the ESSA belowd$’ - v~ with initial
valueO :

a, = 2" —l,x:=x+1 b, T,x:=0

a,x =on 2" —1,2:=0

Theorem 5.7. (Demri, 2004) The equivalence problem for ESSARASPACE
complete.

In order to establish thespACEupper bound, given two ESSA and.A’, one
can build aniPC*3})-automatons in logspace such that equivalentfol=5 T iff
wa = wa . Actually [(B) will contain at most onev-word. B is indeed a product
betweend and.A’. ThepspPACElower bound is obtained by adequately reducing QBF.
The proof entails that checking whethey = w 4 can be done in time

.2
0(22><ma:vszze X oo |Q| % ‘Ql‘%

wheren is the number of variables used.fy A’ andmaxsize is the size of the grea-
test integerk in =,-guards occurring in4, A’. Hence, the greatest integer occuring
in A, A’ has value inO(2mazsize)  Actually, the proof also entails that the problem
remainsPsPACEhard when the only integér in =;,-guards occurring i4, A’ is 2

or when the integers are encoded with a unary represent&ianilarly, the problem
remainsPsPACEhard when only two distinct variables are used.

Another simpler problem which arises when dealing with tgnanularities, is to
find thenth occurrence of a given symbol in a string (Lagtal., 2003, Sect. 4). Here
is the definition of the occurrence problem for ESSA :

input : An ESSAA, a € ¥ andn, m € N (with a binary representation).
question Is thenth occurrence of; in w 4 in position less tham ?

The proof of Theorem 5.7 can be easily adapted to prove thut teedow.

Theorem 5.8. (Demri, 2006) The occurrence problem for ESSA RSPACE
complete.
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5.4. Decidability of CLTL(Z, <, =)

Even though the consistency problems §@ <, =) and (R, <, =) are identical,
and bothCLTL(Z, <, =) andCLTL(R, <, =) admit complete abstractions, respecti-
vely, the satisfiability problem fo€LTL(Z, <, =) requires more sophisticated tech-
niques to be shown irspacethan forCLTL(R, <, =). Indeed, not onlyZ, <, =)
does not satisfy the completion property, but alsegularity is not guaranteed which
may invalidate the use of Buchi automata.

Lemma 5.9. (Demriet al, 2003) There are a measyreand a formulap in FOR*
such thafl.*(¢) is notw-regular.

The very problem comes from the fact that for some meagutie class of one-
step consistent symbolic models wrthat admit a concrete model is not necessarily
w-regular. In order to circumvent this difficult, we introdectin (Demriet al., 2003)
an over-approximation of this class thatisregular and we show that any ultimately
periodic one-step consistent symbolic model wvsiatisfying this new condition admit
a concrete model. This allows us to show the result below.

Theorem 5.10. Satisfiability and model-checking forCLTL(N,<,=) and
CLTL(Z, <,=) arePSPACECOMplete.

The above result has been extended in (Deshral, 2005a). The set ofPC*
constraintsA is defined as follows :

A=Az <y|ANA|-A

A =z =g e, el lz=ky+ e, |lz=ylz<d|z=d]
ANA | -A | T A
wherexz,y € VAR, k € N\ {0}, ¢1,¢2 € Nandd € Z. IPC* extends botHZ, <, =)
andIPC**. Observe that the constraint language is defined in two $aiyeorder

to avoid an occurrence of < y in the scope off which would make possible the
encoding of incrementation.

So far,IPC* is the optimal known class of qualitative constraintszbsuch that
CLTL(IPC*) is decidable in polynomial-space. By a qualitative coristrave mean
for instance a constraint that is interpreted as a non-ahénéstic binary relation, like
xr < yandx =5 y + 5 (the relationship between andy is not sharp). Constraint
automata with qualitative constraints @are quite attractive operational models
since they can be viewed as abstractions of counter automfegee incrementations
and decrementations are abstracted by operations module gower of two. Com-
mon programming languages perform arithmetic operatarinfeger types modulo
2F (Miiller-Olm et al,, 2005), typicallyk is either 32 or 64. For example,= y + 1
can be abstracted by=5+ y +1 A y < x which is expressible ifiPC*.
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By extending adequately proof techniques from (Deshél., 2003; Demri, 2004),
we can characteriz€ LTL(IPC*) complexity. Observe that even thoudRC*
contains botl{Z, <, =) andIPC™, the successor relation cannot be definedPia*.

Theorem 5.11. (Demri et al, 2005a) Satisfiability and model-checking for
CLTL(IPC*) arePSPACEcOmplete.

Surprisingly this allows to characterize the complexityrafdel-checking integral
relational automata.

Corollary 5.12. The model-checking problem for integral relational auatenres-
tricted to the LTL fragment of CCTLintroduced in Cefans, 1994) is irPSPACE

5.5. CLTL;(DL)

We have shown previously that bo@i.TL}(DL) and CLTL?(DL) are indeci-
dable. When the number of variables and Xafength are both restricted to one, we
regain theespACEupper bound.

Theorem 5.13. (Demri et al, 2006b) Model-checking and satisfiability for
CLTL; (DL) arePSPACECOmplete.

The proof is based on the fact that DL admits a complete atigireand the class
of symbolic models wrt to some measure of the fgriml, X) that admit a concrete
model can be recognized by one-counter automata where

— the counter is interpreted i,

— there are zero tests and sign tests,

— accepted words ate-sequences (Blchi acceptance condition),

— updates of the counter are among 0,-1,1.

Standard Bichi automata form a specific subclass of suclcometer automata.
Additionally, in order to get thepsPACE upper bound one needs to show that

non-emptiness problem for this class of one-counter auN®NLOGSPACE
complete (Demrét al., 2006b).

5.6. Model-checkingCLTL; (QFP)
We have seen in Section 3.4 thHaL.TL] (QFP) satisfiability is highly undeci-

dable. Consequently, so @LTL}(QFP) model-checking. However, there is a re-
levant restriction of theCLTL{ (QFP) model-checking problem that is decidable.
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Indeed, consider as operational models one-counter atdomteere the counter is in-
terpreted irZ, there are zero tests and sign tests, accepted wordssgquences and
updates of the counter areh

Theorem 5.14. (Demri et al, 2006b) The model-checking problem for
CLTLY (QFP) over one-counter automata with update&iis PSPACECOmMplete.

5.7. Other decidable extensions

One of the nice features of Theorem 4.2 rests on the distieatrhents between
symbolic satisfaction and existence of concrete modelsyorbolic models. Hence,
let D be a constraint system such tRdtTL(D) has been stated FsPACEpPreviously
and LTL" be an extension of LTL for which formulae can be translated Biichi
automata in polynomial space. This includes for instanteresions

— with past-time operators previous and since, see e.ghtgnsteiret al., 2000),

—more generally, with a finite amount of MSO-definable terapawpera-
tors (Gastiret al,, 2003),

— with automata-based operators (Wolper, 1983),
— with fixpoint operator, see e.g. (Vardi, 1988).

A quite remarkable feature of our proof technique is theofgihg.
Theorem 5.15. CLTL™ (D) model-checking and satisfiability are alsoigPACE

Extensions ofCLTL(D) by addition of MSO-definable temporal operators (not
necessarily a finite amount) are decidabl€IfTL(D) can be proved decidable with
the above-mentioned proof techniques. It suffices to atieléfinition ofAi(“{’) from
plain LTL to LTL™.

6. Ubiquous freeze operator

Atomic temporalD-constraints allow us to compare values of variables at dedn
distance as i < X2y. The languages presented previously have not the possibili
to state a property of the form : “theredis> 0 such that: < X'y holds true” which
can be written {/, 2 < X'y” with a generalized disjunction. Similarly, a property
like “all the future values of: are different from the current value of, which may
be written A, , ~(z = X’z), cannot be expressed in the previous languages. In this
section, we investigate extensions@ETL(D) that can express such properties by
adding the so-called freeze operator that allows to storal@evirom D (typically
the value of a variable) and to test it later but possibly amesanbounded distance
from the position it has been stored. This is a very weak forexistential first-order
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quantification. However, it is worth recalling that firstder LTL is known to be highly
undecidable (Abadi, 1989; Krdger, 1990) even in the casetlirerpreted domains
are finite (Trahtenbrot, 1963). The extensiorC#TL(D) with addition of the freeze
quantifier| is denoted byCLTL! (D).

6.1. Definition

In order to defineCLTL! (D) formally, we divide the seVAR into the (counta-
bly infinite) set of rigid variablesYAR,.) and the (countably infinite) set of flexible
variables VARy). The clausel,_xi, ¢ with y € VAR, andz € VAR; is added
to the definition of CLTL (D). Atomic formulae are of the forrR(¢4, .. ., t,) where
eacht; is either a rigid variable or a term of the foriz with z € VAR;. A model
o for CLTLY(D) is an infinite sequence of valuations: N x VAR; — D over
the set of flexible variables and the satisfaction relatoimidexed by an environment
e : VAR, — D. The definition ofi=. is extended as follows :

0,1 Fely=xiz ¢ & 4,i =o ¢ wheree' is obtained frome by only modifying the
value fory : ¢/ (y) = o (i + j)(x).

Satisfaction of atomic formulae uses betlande depending whether variables are in
VAR or VAR,. Without any loss of generality, we can also assume thatlféthel
formulaeg in CLTL! (D), the free variables ip are necessarily flexible.

A similar binding mechanism can be found in other logicahfatisms :

—in real-time logics (Henzinger, 1990; Alet al., 1994b),

—in modal logics with\-abstraction (Fitting, 2002; Lisitsat al,, 2005),

— in first-order logic over data words (David, 2004; Bujayket al., 2006),
— in quantified propositional temporal logic with repeat{fgench, 2003).

A more detailed comparison can be found in (Deetral, 2006d).

The formula below fronCLTL! (N, =) states that in the model all the values of
the variabler are distinct :

Yo = G iy:w XG(.’IT 7& y)

We can indeed show that the freeze quantifier is really pawsirice every satisfiable
formula ¢ in CLTL(N, =) has a model which contains only finitely many distinct
values (Demriet al,, 2006d). By contrast, all the models @f, contain an infinite
amount of distinct values.
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6.2. Undecidable fragments

Surprisingly, adding the freeze operator leads to undediteeven for the poor
constraint systeniN, =). Hence, the effects of adding the freeze operator in full ge-
nerality are quite devastating. Recall tlisit =) satisfies the completion property and
CLTL(D) admits a complete abstraction.

Theorem 6.1. (Demriet al, 2005b) Satisfiability foC LTL! (N, =) restricted to two
rigid variables and one flexible variabledg-complete.

Undecidability with three rigid variables has been indefearily shown in (Lisitsa
et al, 2005). Thex! upper bound is easily obtained. In order to get the hardreess r
sult, first one can show that satisfiability f@LTLl(N, =) can be reduced in logspace
into its restriction to a unique flexible variable. Then, theurrence problem for non-
deterministic 2-counter machines can be reduced to sailitfisfor CLTL! (N, =)
restricted to two rigid variables and one flexible variatdadecidability is a conse-
quence of the fact that the freeze operator can expresd tharé aren consecutive
distinct values (of the flexible variable) between two spkgiarkers (encoding that a
counter has value) then there are + 1 consecutive distinct values between the next
occurrences of the two special markers and the subsequénclast distinct values
is equal to the first sequencetistinct values. This requires exactly the use of two
rigid variables.

The above problem is also undecidable with finite models. Whaingle rigid
variable is considered undecidability still holds but watfower degree.

Theorem 6.2. (Demriet al., 2006c) Satisfiability foCLTLl(N , =) restricted to one
rigid variable and one flexible variableIE)-complete.

The proof is by reduction from infinitary nonemptiness pesblfor incrementing
counter automata. This new class of automata are the cpantef lossy counter
automata (a special class of lossy channel systems (Schieoet2002)) in which
counters can increment without notice.

6.3. Decidability but not PR
The undecidability results presented in Section 6.2 doéseave many hopes to
use the freeze operator while being on the decidability. ditieed, these results are

obtained with quite poor constraint systems. By contrasitefimodels and one rigid
variable lead to decidability with very high complexity.

Theorem 6.3. (Demriet al,, 2006c) Satisfiability foCLTLl(N, =) restricted to one
rigid variable over finite models is decidable but not prinvgétrecursive.
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The decidability proof is done in three steps :

1) There is a logspace reduction fraffLTL! (N, =) restricted to one rigid va-
riable toCLTL! (N, =) restricted to one rigid variable, one flexible variapland the
freeze operator is only used in subformulae of the foym, ¢ (Demriet al,, 2005b).

2) Every formula in this fragment can be reduced to an eqemntadlternating 1-
register automaton (Demet al., 2006c).

3) Non-emptiness for alternating 1-register automaton lwameduced to deci-
dable finitary non-emptiness problem for incrementing ¢euautomata (Demrét
al., 2006c¢).

Non primitive recursiveness is proved in two steps :

1) Finitary nonemptiness for incrementing counter autenan be shown non
primitive recursive by adapting the proof in (SchnoebeR992).

2) This latter problem can be reduced in logspace to satifjgh CLTL! (N, =)
restricted to one rigid variable.

6.4. Finiteness, flathess and periodicity constraints

Theorem 5.5 has a counterpart in presence of the freezetoppssibly at the
cost of one more exponential in space. Debe a constraint systet®D, Ry, ..., Ry)
whereD is a finite set.

Theorem 6.4. (Demriet al, 2005b) LetD be a finite constraint system. The satisfia-
bility problem for CLTL' (D) is decidable irexPSPACE

The proof is by designing an exponential-time reductiomfi@LTL! (D) satis-
fiability into CLTL(D’) for some other finite constraint systefi and then to take
advantage of Theorem 5.5. Itis natural to wonder whethegxpenential space upper
bound is optimal. After allCLTL(D) satisfiability is only in polynomial space. For
most domain®D, the answer is positive as stated below.

Theorem 6.5. (Demriet al,, 2005b) LetD be a constraint system with equality such
that the underlying domaif contains at least two elemen@&LTL' (D) satisfiability
is EXPSPACEhard.

CLTL!(D) satisfiability can be also shown to be decidable when résttio so-
called flat formulae. For the rest of this secti@hjs not necessarily finite. Flat frag-
ments of plain LTL versions have been studied in (Dams, 1@@#nonet al,, 2000)
(see also in (Ibarrat al,, 2001, Section 5) the design of a flat logical temporal lan-
guage for model-checking pushdown machines) and the defirif flatness takes
advantage of the polarity of ‘until’ subformulae occurriimga formula.
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We say that the occurrence of a subformula in a formula istigesf it occurs
under an even number of negations, otherwise it is negafie.flat fragment of
CLTL!(D) is the restriction o ELTL! (D) where, for any subformula; Ue,, if it is
positive then| does not occur i, and if it is negative ther) does not occur ;.

This concept of flatness restricts the interplay betweemrédtime operators and
the freeze quantifier as done in (Bouajjatial, 1996; Comoret al, 2000; ten Cate
et al, 2005) to limit the interaction between modalities and Zeeéike quantifiers. In
order to understand why flat formulae are more manageatddomula like| ,—, F¢
that is flat, only the current value efneeds to be stored. By contrast, in a formula like
G |,=» ¢ thatis not flat, one needs to store as many values as there are future
positions.

We assume that the flexible variables@fTL! (D) are {z, z1,...} and the ri-
gid variables of CLTL!(D) are {yo,y1,...}. For ease of presentation, we assume
that the flexible variables afLTL(D) are composed of the following two disjoint
sets {zg,z1,...} and{y{®", y1¢%, ...}. We define a map from the flat fragment
CLTL!(D) into CLTL(D) as follows :t replaces each; by y;°" in atomic formu-
lae, itis homomorphic for Boolean and temporal operatord, a

t(ly=xna ¥) = Y™ =X"z A Gy = Xy"™") A (1)
It is easy to show that(¢) can be computed in logspace in the sizeof

Lemma 6.6. LetD be a constraint system with equality. For any formpilaf the flat
fragment of CLTL! (D), ¢ is CLTL! (D) satisfiable ifft(¢) is CLTL(D) satisfiable.

As a corollary, we obtain the following result.

Theorem 6.7. (Demri et al, 2005b) Flat fragments ofCLTL!(Z,<,=),
CLTLY(N, <,=), CLTL}(R, <,=), and CLTL!(D) with D finite are PSPACE
complete.

Even though fIatCLTLl(N,:) satisfiability can be reduced in logspace to
CLTL(N, =) satisfiability, CLTL*(N, =) is more expressive thafiLTL(N, =), see
details in (Demriet al,, 2006d).

Finally, using ideas and techniques useful to prove aboestioned results, we
can show that the following result.

Theorem 6.8. (Demri, 2006) Satisfiability forCLTLl(IPC+) iS EXPSPACE
complete.

By contrast,CLTL!(IPC™*) is undecidable as a consequence of Theorem 6.1
andCLTL(IPC™) is “only” PSPACEcOomplete.

27



An alternative binding mechanism is the existential qaatiion. In order to de-
fine CLTL?(D) formally, we consider the same syntactic categories aSFaL! (D)
except that we add the clausey ¢ with y € VAR, to define formulaeCLTL? (D)
andCLTL!(D) have the same models and the satisfaction relation is inidexen
environmenk : VAR, — D. The relation=, is defined as follows :

o,ifEe Jy o & there isa € D such thaw, i E. ¢ wheree’ is obtained frome

only modifying the value of; : ¢/(y) = a.

WhenD contains equality¢LTL! (D) can be viewed as a fragment@LTL? (D)
but it is not always the case asliRC™. Indeed,| ,—, ¢ is then equivalenttd y = =

y A o.

Theorem 6.9. (Demri, 2006) Satisfiability forCLTLH(IPCJF) iS EXPSPACE
complete.

The simple fragment oCLTLl(N,:) with past-time operators is restricted to
formulae with one flexible variable and one rigid variablg such that

— the only temporal operators aXeX 1, XXF andX!X1F~ !,
— every occurrence of such temporal operators is immeglipteceded by ,—,,
— the only terms occurring in atomic formulae arandy.

X~ is the “previous” operator anl~* is the “sometimes in the past” operator. This
simple fragment is known to be equivalent to a first-orderd@gth two variables, see
e.g. (Demriet al, 2006c¢) and consequently we can establish the followingltréy
using the decidability for this first-order language showBojahczyket al., 2006).

Theorem 6.10. (Demri et al, 2006c) Satisfiability for the simple fragment of
CLTL!(N, =) with past-time operators is decidable.

7. Related work

In this section, we provide useful pointers to works dealiith temporal logics
and Presburger constraints in order to facilitate the coisma between the present
framework and existing logical formalisms. Section 7.1lsl@ath first-order temporal
logics whereas Section 7.2 presents LTL variants with gtadive aspects. Section 7.3
refers to quantitative branching-time temporal logics kelas Section 7.4 is dedicated
to specification languages for expressing properties aboumter systems. Logics
with Presburger constraints on the number of children ertilke models are described
in Section 7.5 (see also the automata-based counter@ets)ons 7.6 and 7.7 present
alternative temporal logics over concrete domains suclpatsostemporal logics and
description logics over concrete domains.
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7.1. First-order temporal logics

The different variants of LTL over constraint systems prése in this paper can be
viewed as fragments of first-order LTL where the domain adiiptetation of variables
is fixed as well as the interpretation of predicate symbolstédver, flexible variables
in CLTL(D) correspond to unary predicate symbols interpreted asetong (the
values of variables). Howevef;LTL(D) has no quantification over elements of the
domain and in that sense it corresponds to a very weak figgr@xtension of plain
LTL. Itis worth recalling that first-order LTL is highly und@able (Abadi, 1989; Kro-
ger, 1990) even in the case the uninterpreted domains ate (ifrahtenbrot, 1963).
Similarly, first-order LTL over finite time structures is lhily undecidable (Cerritet
al., 1999). In particular, th&i-hardness implies that no axiomatization with a coun-
table set of axioms exists for this logic.

Since the freeze binding mechanism is a first-order quaatiific over a singleton
set, the freeze quantifier can be expressed in first-ordgrdeahlogics (Degtyareet
al., 2002; Wolteret al., 2002; Hodkinsoret al., 2003; Gabbat al., 2003). Indeed,
CLTL!(N, =) satisfiability can be reduced to first-order temporal Idfif satisfia-
bility over the linear structuréN, <) (the latter logic was introduced in (Gabbay
al., 2003, Chapter 11)). To each flexible variakl®ne associates a unary predicate
symbol P, in such a way that®, is interpreted as the singleton set containing the
value ofz.

A variant of first-order LTL has been introduced in (Deutstlal, 2004) to verify
data-driven web applications. The interplay between tealpperators and first-order
quantifiers is restricted since no quantification can ocouthe scope of temporal
operators, which guarantees better computational priepert

7.2. Quantitative versions of LTL

The logics presented in this paper belong to the long tiadibf quantitative ver-
sions of LTL. LTL-like logics having models non isomorphiz & can be found in
(Alur et al,, 1996; Reynolds, 2003; Hirshfelt al,, 2003; Hirshfeldet al,, 2004; Lutz
et al, 2005b; Demriet al, 2005c). Temporal operators in the real-time logics
from (Alur et al,, 1996; Hirshfelcet al, 2004; Lutzet al,, 2005b) are indexed by inter-
vals. By contrast, Constrained LTL defined in (Bouajjahil., 1995) have standard
LTL models but the logical language is enriched with Pregbuconstraints about the
number of occurrences of events. This extension of LTL issgidhble and decidable
fragments are introduced in (Bouajjaatial.,, 1995).

7.3. Branching-time temporal Logics

Integral relational automata defined i@efans, 1994) form a subclass 8PC*-
automata and we have seen that the model-checking probled@If6L(IPC*) is
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PSPACEcomplete. By contrast, it is shown i€ €fns, 1994) that model-checking in-
tegral relational automata with a CTL version@ETL(IPC*) is undecidable roughly
because quantification over natural numbers can be sindubgta quantification over
paths. However, model-checking for the existential fraghwd the CTL* version of
CLTL(TPC") is shown decidable in (Bozzelit al, 2006) extending a weaker result
from (Cemns, 1994). The decidability proof is based on techniquew@kstructured
systems.

Very few classes of counter systems are decidable for CTé# é&sg. (Finkeét al,
1997) for one-counter systems). Another logical formalidose to the ones presented
in this paper is studied in (Bultagt al, 1997) where an undecidable temporal logic
with CTL-like operators and atomic formulae in Presburgéheetic is introduced
and the models are counter systems.

7.4. Verification of counter systems

Analyzing the reachability problem for counter systemsigjuitous for the veri-
fication of infinite-state systems, see e.g. (Ibatal., 2000) (reversal-bounded sys-
tems), (Comoret al., 1998) (flat systems), (Finket al., 2002) (flat Presburger transi-
tion systems), (Dangt al.,, 2003) (discrete timed automata), see also the decidabilit
of reachability for classes of 2-counter systems (Firgtedl., 2000). It is worth no-
ting that, even though decidability can be obtained onhhatdost of making drastic
restrictions on counter systems, there is a remarkable ofaunter systems that are
sufficiently expressive for modelling different case sasdiFor instance, the flattable
systems (Lerout al,, 2005) admit a flat finite unfolding of the control graph witiet
same reachability set (see also (Deetral, 2006a) for properties other than acces-
sibility). On the logical side, temporal logics with Presper constraints have been
developed in Cemns, 1994; Bouajjanét al, 1995; Bultanet al, 1997; Comoret
al., 2000; Bruyeéreet al, 2003), some of which have quite expressive decidable frag-
ments. However, undecidability of the reachability problean be proved for quite
restricted counter systems, see e.g. (Cortier, 2002; Bat2p04).

The subclass of one-counter automata is obviously equivédepushdown sys-
tems with a singleton stack alphabet and many results onsyistéms can be therefore
applied to one-counter automata. For instance, modelkaigone-counter automata
with the modalu-calculus has been shown ExpPTIME in (Walukiewicz, 2001) and
this result has been refined in (Serre, 2004, Section 7.8}(se (Serre, 2006)) where
it is proved that the problem is iIPSPACE It is worth mentioning that in these logics
the atomic formulae can only speak about the control statgésat about the content
of the counter, a major difference with formalisms involhiedrheorem 5.14. Simi-
larly, in (Bouajjaniet al,, 1997) model-checking pushdown automata over the linear
p-calculus is proved IrEXPTIME. Surprisingly, one-counter automata have applica-
tions in various parts of theoretical computer science :

— for verification of cryptographic protocols (Lafourcagkeal.,, 2005),
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— for validating XML streams (string representations of Xiacuments) by en-
coding recursive DTDs as one-counter automata (Chtitad., 2004),

— to solve the identification problem (Wakatsiekial., 2004).

7.5. Constraints on the number of children

In order to query XML documents with Presburger and/or ragabnstraints on
the children of nodes, logical and automata-based formalikave been recently
introduced (Seidlet al, 2004; Ohsakiet al, 2005; Zilio et al., 2006; Boneveaet
al., 2005; Demriet al,, 2006e) leading to various expressiveness and complesity r
sults about logics and specialized tree automata. As Uil documents are viewed
as finite labeled, unranked ordered trees. For instancegatimputational complexity
of a logic with fixed-point operators, Presburger and regiyl@onstraints is studied
in (Seidl et al, 2004), improving results for description logics with gtiatl num-
ber restrictions (Hollundeet al, 1991; Calvaneset al, 2005). Graded modal logics
from (Fine, 1972; Barnabet al,, 1985; van der Hoekt al,, 1995) have very elemen-
tary Presburger constraints compared to modal logic exbmdth all quantifier-free
Presburger constraints that is shown to besmAcEein (Demriet al,, 2006e), see also
related logics in (Pacudt al., 2004; Schroédeet al., 2006). In those logics, Presburger
formulae express constraints on the number of children.

7.6. Spatio-temporal logics

Spatio-temporal logics, see e.g. (Wolgtral., 2000; Gabbat al,, 2003; Hodkin-
sonetal,, 2003; Gabelaiat al., 2003) are examples of versions of LTL with constraint
systems for which the constraint system has indeed a sgatimiture. Examples of
such spatial systems verifying the completion property examples of systems not
verifying this property can be found in (Balbiagi al., 2002). Complexity and deci-
dability results for such logics can be found in (Gabkagl., 2003).

7.7. Description logics over concrete domains

The introduction of concrete domains in description log&cslue to (Baadeet
al., 1991) and since then, such logic-based formalisms for kedye representation
have been intensively studied, see e.g. (Lutz, 2003; LO@4P As expected, concept
satisfiability with respect to general TBoxes with an ari¢tim concrete domain is
undecidable which is comparable to the undecidabilit’bfT'L(N, =, +1) satisfia-
bility. Hence, LTL over concrete domains can be technicaiiyved as a subclass of
description logics over concrete domain in which the modedslinear. Among the
differences, it is worth observing that in LTL it is possiliteaccess to any succes-
sor position with the always operat@ whose counterpart in description logics is
the presence of a transitive closure operator. Motivatamesalso quite different. In-
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deed, the introduction of LTL over Presburger constraistmotivated by the need
to model-check counter systems whereas concrete domaitesamniption logics have
been introduced to integrate concrete qualities into detsmn logic concepts.

8. Concluding remarks

In this paper, we have presented an overview of linear-tenepbral logics with
Presburger constraints and we have compared them witmatiez formalisms. Be-
cause of lack of space, we have not provided the full techdiggails and they can be
found in the original papers. It is worth observing that aajgmount of work remains
to be done to push the decidability border further in ordegdbeffective procedures
to verify programs with variables interpreted in fixed dongai

Among the open problems, let us mention a few of them. Thetfask is certainly
to have more decidability results for richer classes of tan# systems. For instance,
what is the decidability status 6fLTL({0, 1}*, C,=) whereC is the subword [resp.
prefix, factor] relation ? Obvioush;LTL({0}*, C,=) behaves a&LTL(N, <, =).
Developing model-checking techniques for such a logic triigip to verify programs
manipulating strings. Another line of research consiseditending known decidabi-
lity proofs to heterogeneous constraint systems, for meganixing strings and natural
numbers. Finally, let us quote other interesting problems :

— How to refine the classification of constraint systefnsuch thatCLTL(D) is
decidable ? irPSPACE?

— What makes decidable branching-time extensions of deledd.TL(D) ?

— How to restrict further the use of the freeze binding qugantin order to regain
decidability ?
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