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Numerous properties of vector addition systems with statesamount to checking the (un)boundedness
of some selective feature (e.g., number of reversals, run length). Some of these features can be
checked in exponential space by using Rackoff’s proof or itsvariants, combined with Savitch’s theo-
rem. However, the question is still open for many others, e.g., reversal-boundedness. In the paper, we
introduce the class of generalized unboundedness properties that can be verified in exponential space
by extending Rackoff’s technique, sometimes in an unorthodox way. We obtain new optimal upper
bounds, for example for place boundedness problem, reversal-boundedness detection (several vari-
ants exist), strong promptness detection problem and regularity detection. Our analysis is sufficiently
refined so as we also obtain a polynomial-space bound when thedimension is fixed.

1 Introduction

Reversal-boundedness.A standard approach to circumvent the undecidability of thereachability prob-
lem for counter automata [19] consists in designing subclasses with simpler decision problems. For
instance, the reachability problem is decidable for vectoraddition systems with states (VASS) [15] or
for lossy counter automata [1]. Among the other interestingsubclasses of counter automata, reversal-
bounded counter automata verify that any counter has a bounded number of reversals, alternations be-
tween a nonincreasing mode and a nondecreasing mode, and vice versa. Reversal-boundedness remains
a standard concept that was initially introduced in [3] for multistack automata. A major property of
such operational models is that reachability sets are effectively definable in Presburger arithmetic [13],
which allows decision procedures for LTL existential model-checking and other related problems, see
e.g. [5]. However, many natural problems related to verification remain undecidable for reversal-bounded
counter automata, see e.g. [5, 6], and the class of reversal-bounded counter automata is not recursive [13].
A significant breakthrough was achieved in [8] by designing aprocedure to determine when a VASS is
reversal-bounded (or weakly reversal-bounded as defined later), even though the decision procedure can
be nonprimitive recursive in the worst-case. This means that reversal-bounded VASS can benefit from
the known techniques for Presburger arithmetic in order to solve their verification problems.
Selective unboundedness.In order to characterize the complexity of detecting reversal-boundedness
on VASS (the initial motivation for this work), we make a detour to selective unboundedness, as ex-
plained below. Numerous properties of vector addition systems with states amounts to checking the
(un)boundedness of some selective feature. Some of these features can be verified in exponential space
by using Rackoff’s proof or its variants, whereas the question is still open for many of them. In the paper,
we advocate that many properties can be decided as soon as we are able to decide selective unbounded-
ness, which is a generalization of place unboundedness for Petri nets (known to be equivalent to VASS).
The boundedness problem was first considered in [15] and shown decidable by simply inspecting Karp
and Miller trees: the presence of the infinity value∞ (also denoted byω) is equivalent to unboundedness.
So, unboundedness is equivalent to the existence of a witness run of the form~x0

∗
−→ ~x1

π
−→ ~x2 such that

~x1≺ ~x2 (≺ is the standard strict ordering on tuples of natural numbers). In [21], it is shown that if there is
such a run, there is one of length at most doubly exponential.This leads to the EXPSPACE-completeness
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of the boundedness problem for VASS using the lower bound from [17] and Savitch’s theorem. A vari-
ant problem consists in checking whether theith component is bounded, i.e., is there a boundB such
that for every configuration reachable from~x0, its ith component is bounded byB? Again, inspecting
Karp and Miller trees reveals the answer: the presence of theinfinity value∞ at theith position of some
extended configuration is equivalent toi-unboundedness. Surprisingly, the literature often mentions this
alternative problem, see e.g. [22], but never specifies its complexity: EXPSPACE-hardness can be ob-
tained from [17] but as far as we know, no elementary complexity upper bound has been shown. It might
be explained by the fact that, if a VASS is unbounded, then there is a witness infinite run with an infinite
number of distinct configurations. By contrast, it may happen that a VASS isi-unbounded but no infinite
run has an infinite amount of distinct values at theith position of the configurations of the run. In the
paper, we present a generalization of place unboundedness by checking whether a set of components is
simultaneously unbounded, possibly with some ordering (see Section 3.2). This amounts to specifying
in the Karp and Miller trees, the ordering with which the value ∞ appears in the different components.
Our contribution. In the paper we show the following results.

1. Detecting whether a VASS is reversal-boundedness in the sense of [13] or [8] is EXPSPACE-
complete by refining the decidability results from [8] (see Theorem 5.2).

2. We introduce the generalized unboundedness problem in which many problems can be captured
such as the reversal-boundedness detection problems, the place boundedness problem, termination,
strong promptness detection problem, regularity detection and many other decision problems on
VASS. We show that this problem can be solved in exponential space by adapting [21] even though
it does not fall into the class of increasing path formulae introduced in [2] (see Theorem 4.5).

3. Consequently, we show that regularity and strong promptness detection problems for VASS are
in EXPSPACE. The EXPSPACE upper bound has been left open in [2]. Even though most of our
results essentially rest on the fact that place boundednesscan be solved in EXPSPACE, our slight
generalization is introduced to obtain new complexity upper bound for other related problems.

4. As a by-product of our analysis and following a parameterized analysis initiated in [24, 12], for all
the above-mentionned problems, we show that fixing the dimension of the VASS allows to get a
PSPACE upper bound.

The paper has also original contributions as far as proof techniques are concerned. First, simultaneous
unboundedness has a simple characterization in terms of Karp and Miller trees, but we provide in the
paper a witness run characterization, which allows us to provide a complexity analysis along the lines
of [21]. We also provide a witness pseudo-run characterization in which we sometimes admit negative
component values. This happens to be the right approach whena characterization from coverability
graphs [15, 28] already exists. Apart from this unorthodox adaptation of [21], in the counterpart of
Rackoff’s proof about the induction on the dimension, we provide an induction on the dimension and on
the length of the properties to be verified (see Lemma 4.3). This is a genuine breakthrough compared
to [21, 24, 10, 2]. We believe this approach is still subject to extensions.

2 Preliminaries

In this section, we recall the main definitions for vector addition systems with states (VASS), without
states (VAS) as well as the notions of reversal-boundednessintroduced in [13, 8]. We also present the
simultaneous unboundedness problem, which slightly generalizes place unboundedness problem for Petri
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nets. First, we writeN [resp.Z] for the set of natural numbers [resp. integers] and[m,m′] with m,m′ ∈ Z

to denote the set{ j ∈ Z : m≤ j ≤ m′}. For~x ∈ Z
n, we write~x(1), . . . ,~x(n) for the entries of~x. For

~x,~y∈ Z
n,~x�~y

def
⇔ for i ∈ [1,n], we have~x(i)≤~y(i). We also write~x≺~y when~x�~y and~x 6=~y.

2.1 Simultaneous unboundedness problem for VASS

VASS.A vector addition system with states[11] (VASS for short) is a finite-state automaton with transi-
tions labelled by tuples of integers viewed as update functions. AVASSis a structureV = (Q,n,δ ) such
thatQ is a nonempty finite set ofcontrol states, n≥ 1 is thedimension, andδ is thetransition relation
defined as a finite set of triples inQ×Z

n×Q. Elementst = (q,~b,q′) ∈ δ are calledtransitionsand are

often represented byq
~b
−→ q′. VASS with a unique control state are calledvector addition systems(VAS

for short) [15]. In the sequel, a VAST is represented by a finite nonempty subset ofZ
n, encoding natu-

rally the transitions. VASS and VAS are equivalent to Petri nets, see e.g. [23]. In this paper, the decision
problems are defined with the VASS model and the decision procedures are designed for VAS, assuming
that we know how the problems can be reduced, see e.g. [11]. Indeed, we prefer to define problems
with the help of the VASS model since when infinite-state transition systems arise in the modeling of
computational processes, there is often a natural factoring of each system state into a control component
and a memory component, where the set of control states is typically finite.
Runs. A configurationof V is defined as a pair(q,~x) ∈ Q×N

n (for VAS, we simply omit the con-
trol state). Aninitialized VASSis a pair of a VASS and a configuration. Given two configurations

(q,~x), (q′,~x′) and a transitiont = q
~b
−→ q′, we write(q,~x)

t
−→ (q′,~x′) whenever~x′ =~x+~b. We also write

(q,~x) −→ (q′,~x′) when there is no need to specify the transitiont. The operational semantics of VASS
updates configurations, runs of such systems are essentially sequences of configurations. Every VASS
induces a (possibly infinite) directed graph of configurations. Indeed, all the interesting problems on
VASS can be formulated on itstransition system(Q×N

n,−→). Given a VASSV = (Q,n,δ ), arun ρ is a
nonempty (possibly infinite) sequenceρ = (q0,~x0), . . . ,(qk,~xk), . . . of configurations such that(qi ,~xi)−→

(qi+1, ~xi+1) for all i. We setReach(V ,(q0,~x0))
def
= {(qk,~xk) : there is a finite run(q0,~x0), . . . ,(qk,~xk)}. A

path π is a finite sequence of transitions whose successive controlstates respectδ (actually this notion
is mainly used for VAS without control states). Apseudo-configurationis defined as an element of
Q×Z

n. Whenπ = t1 . . . tk is a path, thepseudo-runρ = (π,(q,~x)) is defined as the sequence of pseudo-

configurations(q0,~x0) · · · (qk,~xk) such that(q0,~x0) = (q,~x), and fori ∈ [1,k], there ist = qi
~b
−→ qi+1 such

that~xi =~xi−1 +~b. So, we deliberately distinguish the notion of path (sequence of transitions) from the
notion of pseudo-run (sequence of elements inQ×Z

n respecting the transition fromV ). We also use
the notation(q,~x)

t
−→ (q′,~x′) with pseudo-configurations. Given a VASSV [resp. a pseudo-configuration

(q,~x), etc.] of dimensionn, we writeV (I) [resp. (q,~x)(I), etc.] to denote the restriction ofV [resp.
(q,~x), etc.] to the components inI ⊆ [1,n].
Sizes. Given~x ∈ Z

n, we write maxneg(~x) to denote the value max({max(0,−~x(i)) : i ∈ [1,n]}). By

extension, we write maxneg(V ) to denote max{maxneg(~b) : q
~b
−→ q′ ∈ δ}. Furthermore, we write

scale(V ) to denote the value max({|~b(i)| : q
~b
−→ q′ ∈ δ , i ∈ [1,n]}). For instance maxneg((−2,3)) = 2

and scale({(−2,3)}) = 3. Given a VASSV = (Q,n,δ ), we write |V | to denote its size defined by
card(Q)+n×card(δ )× (2×card(Q)+ (2+ ⌈log2(1+scale(V ))⌉)). Observe that 2+ ⌈log2(1+a)⌉ is
a sufficient number of bits to encode integers in[−a,a] for a > 0. Moreover scale(V ) ≥maxneg(V ),
scale(V )≤ 2|V | and|V | ≥ 2.
Simultaneous unboundedness problem.Let (V ,(q0,~x0)) be an initialized VASS of dimensionn and
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X ⊆ [1,n]. We say that(V ,(q0,~x0)) is simultaneously X-unboundedif for any B ≥ 0, there is a run
from (q0, ~x0) to (q,~y) such that fori ∈ X, we have~y(i) ≥ B. WhenX = { j}, we say that(V ,(q0,~x0))
is j-unbounded. It is clear that(V ,(q0,~x0)) is bounded (i.e.,Reach(V ,(q0,~x0)) is finite) iff for all j,
(V ,(q0,~x0)) is not j-unbounded. Thesimultaneous unboundedness problemis defined as follows: given
an initialized VASS(V ,(q0,~x0)) of dimensionn andX ⊆ [1,n], is (V ,(q0,~x0)) simultaneouslyX-un-
bounded?

Theorem 2.1. [15] Simultaneous unboundedness problem is decidable.

This follows from [15, 28]: (V ,(q0,~x0)) is simultaneouslyX-unbounded iff the coverability graph
CG(V ,(q0,~x0)) (see e.g., [15, 28]) contains an extended configuration(q,~y) such that~y(X) = ~∞ (for
α ∈ Z∪{∞}, we write~α to denote any vector of dimensionn≥ 1 whose component values areα).

2.2 Standard reversal-boundedness and its new variant

A reversalfor a counter occurs in a run when there is an alternation fromnonincreasing mode to non-
decreasing mode and vice-versa. A VASS isreversal-boundedwhenever there isr ≥ 0 such that for
any run, every counter makes no more thanr reversals. This class of VASS has been introduced and
studied in [13], partly inspired by similar restrictions onmultistack automata [3]. In spite of the fact
that the problem of deciding whether a counter automaton (VASS with zero-tests) is reversal-bounded
is undecidable [13], we shall see that reversal-bounded counter automata have numerous fundamental
properties. Moreover, a breakthrough has been achieved in [8] by establishing that checking whether
a VASS is reversal-bounded is decidable. The decidability proof in [8] provides a decision proce-
dure that requires nonprimitive recursive time in the worst-case since Karp and Miller trees need to
be built [15, 28]. LetV = (Q,n,δ ) be a VASS. Let us define the auxiliary VASSVrb = (Q′,2n,δ ′) such
that essentially, then new components inVrb count the number of reversals for each component fromV .
We setQ′ = Q×{DEC, INC}n and, for each~v∈ {DEC, INC}n andi ∈ [1,n],~v(i) encodes whether com-

ponenti is in a decreasing mode or in an increasing mode. Moreover,(q, ~mode)
~b′
−→ (q′, ~mode

′
)∈ δ ′ (with

~b′ ∈ Z
2n)

def
⇔ there isq

~b
−→ q′ ∈ δ such that~b′([1,n]) =~b and for everyi ∈ [1,n], one of the conditions

below is satisfied:

• ~b(i) < 0, ~mode(i) = ~mode
′
(i) = DEC and~b′(n+ i) = 0,

• ~b(i) < 0, ~mode(i) = INC, ~mode
′
(i) = DEC and~b′(n+ i) = 1,

• ~b(i) > 0, ~mode(i) = ~mode
′
(i) = INC and~b′(n+ i) = 0,

• ~b(i) > 0, ~mode(i) = DEC, ~mode
′
(i) = INC and~b′(n+ i) = 1,

• ~b(i) = 0, ~mode(i) = ~mode
′
(i) and~b′(n+ i) = 0.

Initialized VASS(V ,(q,~x)) is reversal-bounded[13]
def
⇔ for i ∈ [n+ 1,2n], {~y(i) : ∃ run (qrb,~xrb)

∗
−→

(q′,~y) in Vrb} is finite with qrb = (q, ~INC), ~xrb restricted to then first components is~x and~xrb re-
stricted to then last components is~0. Whenr ≥ max({~y(i) : ∃ run (qrb,~xrb)

∗
−→ (q′,~y) in Vrb} : i ∈

[n+1,2n]) (V ,(q,~x)) is said to ber-reversal-bounded. For i ∈ [1,n], when{~y(n+ i) : ∃ run (qrb,~xrb)
∗
−→

(q′,~y) in Vrb} is finite, we say that(V ,(q,~x)) is reversal-bounded with respect to i. A VASS V is
globally reversal-boundediff there is r ≥ 0 such that for every configuration(q,~x), (V ,(q,~x)) is r-
reversal-bounded. Global reversal-boundedness detection can be easily reduced to reversal-boundedness
detection. Indeed, it is sufficient to introduce a new control stateqnew that contains as many self-loops as
the dimensionn and each self-loopi increments theith component. Then, nondeterministically we jump

4



to the rest of the VASS. In this way,(V ′,(qnew,~0)) is reversal-bounded (V ′ is the new VASS obtained as
a variant ofV ) iff V is globally reversal-bounded (forthcoming upper bounds will apply to this problem
too).

Reversal-boundedness for counter automata, anda fortiori for VASS, is very appealing because
reachability sets are semilinear as recalled below.

Theorem 2.2. [13] Let (V ,(q,~x)) be anr-reversal-bounded VASS. For each control stateq′, the set
{~y∈ N

n : ∃ run (q,~x)
∗
−→ (q′,~y)} is effectively semilinear.

This means that one can compute effectively a Presburger formula that characterizes precisely the
reachable configurations whose control state isq′. So, detecting reversal-boundedness for VASS, which
can be easily reformulated as an unboundedness problem, is worth the effort since semilinearity follows
and then decision procedures for Presburger arithmetic canbe used.

Lemma 2.3. (V ,(q,~x)) is reversal-bounded with respect toi iff (Vrb,(qrb,~xrb)) is not(n+ i)-unbounded.

An interesting extension of reversal-boundedness is introduced in [8, 25] for which we only count the
number of reversals when they occur for a counter value abovea given boundB. For instance, finiteness
of the reachability set implies reversal-boundedness in the sense of [8, 25], which we shall callweak
reversal-boundedness. Let V = (Q,n,δ ) be a VASS and a boundB∈ N. Instead of defining a counter
automatonVrb as done to characterize (standard) reversal-boundedness,we define directly an infinite
directed graph that corresponds to a variant of the transition system ofVrb: still, there aren new counters
that record the number of reversals but only if they occur above a boundB. That is why, the infinite di-
rected graphTSB = (Q×{DEC, INC}n×N

2n,−→B) is defined as follows:(q, ~mode,~x)−→B (q′, ~mode
′
,~x′)

def
⇔ there is a transitionq

~b
−→ q′ ∈ δ such that~x′([1,n]) =~x([1,n])+~b, and for everyi ∈ [1,n], one of the

conditions below is satisfied:

• ~b(i) < 0, ~mode(i) = ~mode
′
(i) = DEC and~b′(n+ i) = 0,

• ~b(i) < 0, ~mode(i) = INC, ~mode
′
(i) = DEC,~x(i)≤ B and~b′(n+ i) = 0,

• ~b(i) < 0, ~mode(i) = INC, ~mode
′
(i) = DEC,~x(i) > B and~b′(n+ i) = 1,

• ~b(i) > 0, ~mode(i) = ~mode
′
(i) = INC and~b′(n+ i) = 0,

• ~b(i) > 0, ~mode(i) = DEC, ~mode
′
(i) = INC,~x(i) > B and~b′(n+ i) = 1,

• ~b(i) > 0, ~mode(i) = DEC, ~mode
′
(i) = INC,~x(i)≤ B and~b′(n+ i) = 0,

• ~b(i) = 0, ~mode(i) = ~mode
′
(i) and~b′(n+ i) = 0.

Initialized VASS(V ,(q,~x)) is weakly reversal-bounded[8]
def
⇔ there is someB≥ 0 such that fori ∈ [n+

1,2n], {~y(i) : (qrb,~xrb)
∗
−→B (q′,~y) in TSB} is finite. Whenr ≥max({~y(i) : (qrb,~xrb)

∗
−→B (q′,~y) in TSB} :

i ∈ [n+ 1,2n]) (V ,(q,~x)) is said to ber-reversal-B-bounded. Observe that whenever(V ,(q,~x)) is r-
reversal-bounded,(V ,(q,~x)) is r-reversal-0-bounded. As shown in [8],r-reversal-B-boundedness for
some knownr and B also leads to effective semilinearity of reachability setsand therefore detecting
weak reversal-boundedness is also worth the effort. Thereversal-boundedness detection problemis
defined as follows: given an initialized VASS(V ,(q,~x)) of dimensionn and i ∈ [1,n], is (V ,(q,~x))
reversal-bounded with respect to the componenti? We also consider the variant with weak reversal-
boundedness.

Let us conclude this section by Lemma 2.4 below. The proof is essentially based on [11, Lemma 2.1]
and on the definition of the initialized VASS(Vrb,(qrb,~xrb)). The key properties are that the dimension
increases only linearly and the scale “only” exponentiallyin the dimension.
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Lemma 2.4. GivenV = (Q,n,δ ) and a configuration(q,~x), one can effectively build in polynomial
space an initialized VAS(T ,~x′) of dimension 2n+ 3 such that(V ,(q,~x)) is reversal-bounded with re-
spect toi iff (T ,~x′) is not(n+ i)-unbounded. Moreover, scale(T )= max((card(Q)×2n+1)2,scale(V )).

Note also that by using the simple reduction from VASS to VAS that increases the dimension by the
number of control states, we would increase exponentially the dimension, which would disallow us to
obtain forthcoming optimal complexity bounds. In Lemma 3.5, we shall explain how to reduce weak
reversal-boundedness detection to a generalization of(n+ i)-unboundedness.

3 Generalized Unboundedness Properties

In this section, we essentially introduce the generalized unboundedness problem and we show how sev-
eral detection problems can be naturally reduced to it.

3.1 Witness runs for simultaneous unboundedness

We know that(V ,(q0,~x0)) is i-unbounded iff the coverability graphCG(V ,(q0, ~x0)) (see e.g., [15, 28])
contains an extended configuration with∞ on the ith component. This is a simple characterization
whose main disadvantage is to induce a nonprimitive recursive decision procedure in the worst-case.
By contrast, unboundedness of(V ,(q0,~x0)) (i.e. i-unboundedness for somei ∈ [1,n]) is equivalent to

the existence of witness run of the form(q0,~x0)
∗
−→ (q1,~x1)

+
−→ (q2,~x2) such that~x1 ≺~x2 andq1 = q2.

In [21], it is shown that if there is such a run, there is one of length at most doubly exponential. Given
a componenti ∈ [1,n], a natural adaptation toi-unboundedness is to check the existence of a run of the
form (q0,~x0)

∗
−→ (q1,~x1)

π
−→ (q2,~x2) such that~x1≺~x2, q1 = q2 and~x1(i) <~x2(i). By inspecting the proof

in [21], one can show that if there is such a run, then there is one of length at most doubly exponential.
However, although existence of such a run is a sufficient condition for i-unboundedness (simply iterate
π infinitely), this is not necessary as shown on the VASS below:

A B
(

1
0

)

(
0
0

)

(
−1
1

)

The second component is unbounded from(A,~0) but no run(A,~0)
∗
−→ (q, ~x1)

π
−→ (q, ~x2) with ~x1 ≺ ~x2,

~x1(2) < ~x2(2) and q ∈ {A,B} exists. Indeed, in order to increment the second component,the first
component needs first to be incremented. The ultimate condition for simultaneous unboundedness needs
to specify the different ways to introduce the value∞ along a given branch of the Karp and Miller trees.
This is done thanks to the condition PBσ defined below and generalized in Section 3.2. Adisjointness
sequenceis a nonempty sequenceσ = X1 · · · · ·XK of nonempty subsets of[1,n] such that fori 6= i′,
Xi ∩Xi′ = /0 (consequentlyK ≤ n). A run of the form

(q0,~x0)
π ′0−→ (q1,~x1)

π1−→ (q2,~x2)
π ′1−→ ·· ·

π ′K−1
−−→ (q2K−1,~x2K−1)

πK−→ (q2K ,~x2K)

satisfies thepropertyPBσ (Place Boundedness with respect to a disjointness sequenceσ ) iff the condi-
tions below hold true:

(P0) For l ∈ [1,K], q2l−1 = q2l .

(STRICT) for l ∈ [1,K] and j ∈ Xl , ~x2l−1( j) < ~x2l ( j).

(NONSTRICT) For l ∈ [1,K] and j ∈ ([1,n]\Xl ), ~x2l ( j) < ~x2l−1( j) implies j ∈
⋃

l ′∈[1,l−1]
Xl ′ .
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Observe that when (STRICT) holds, the condition (NONSTRICT) is equivalent to: for alll ∈ [1,K] and
all j 6∈

⋃

l ′∈[1,l−1]
Xl ′ , we have~x2l−1( j) ≤~x2l ( j). Consequently, for alll ∈ [1,K] and all paths of the form

(πl )
k for somek ≥ 1, the effect on thejth component may be negative only ifj ∈

⋃

l ′∈[1,l−1]
Xl ′ . It is

now time to provide a witness run characterization for simultaneousX-unboundedness that is a direct
consequence of the properties of the coverability graphs [28].

Lemma 3.1. Let (V ,(q0,~x0)) be an initialized VASS of dimensionn andX ⊆ [1,n]. Then,(V ,(q0,~x0))
is simultaneouslyX-unbounded iff there is a runρ starting at(q0,~x0) satisfying PBσ for some disjointness
sequenceσ = X1 · · · · ·XK such thatX ⊆ (X1∪ ·· ·∪XK) andX∩XK 6= /0.

Consequently,(V ,(q0,~x0)) is i-unbounded iff there is a runρ starting at(q0,~x0) satisfying PBσ for
some disjointness sequenceσ = X1 · · · · ·XK with i ∈ XK . This can be expressed in the logical formalisms
from [29, 2] but this requires a formula of exponential size in the dimension because an exponential
number of disjointness sequences needs to be taken into account. By contrast, each disjunct has only
polynomial-size inn. The path formula looks like that:

∨

X1···XK ,i∈XK

∃~x1, . . . ,~x2K

K∧

l=1

(
∧

j∈Xl

~x2l−1( j) <~x2l ( j))∧ (
∧

j 6∈(X1∪···∪Xl−1)

~x2l−1( j)≤~x2l ( j))

It is worth noting that the satisfaction of PBσ does not imply~x1 �~x2K . This prevents us from defining
this condition with an increasing path formula [2] and therefore the EXPSPACE upper bound established
in [2] does not apply directly toi-unboundedness.

3.2 A helpful generalization

We introduce below a slight generalization of the above properties PBσ in order to underline their essen-
tial features and to provide a uniform treatment. Moreover,this will allow us to express new properties,
for instance for regularity detection. The conditions (STRICT) and (NONSTRICT) specify inequality
constraints between component values. We introduce intervals in place of such constraints. Aninterval
is an expression of one of the forms]−∞,+∞[, [a,+∞[, ]−∞,b] or [a,b] for somea,b∈Z (with the obvi-
ous interpretation). Ageneralized unboundedness propertyP = (I1, . . . ,IK) is a nonempty sequence
of n-tuples of intervals. Thelengthof P is K and itsscale is equal to the maximum between 1 and
the maximal absolute value of integers occurring in the interval expressions ofP (if any). A run of the

form (q0, ~x0)
π ′0−→ (q1,~x1)

π1−→ (q2,~x2)
π ′1−→ (q3,~x3) · · ·

π ′K−1
−−→ (q2K−1,~x2K−1)

πK−→ (q2K ,~x2K) satisfies the property
P

def
⇔ (P0) and the conditions below hold true:

(P1) For l ∈ [1,K] and j ∈ [1,n], we have~x2l ( j)−~x2l−1( j) ∈Il ( j).

(P2) For l ∈ [1,K] and j ∈ [1,n], if ~x2l ( j)− ~x2l−1( j) < 0, then there isl ′ < l s.t.~x2l ′( j)−~x2l ′−1( j) > 0.

Given a runρ , we say that itsatisfiesP if it admits a decomposition satisfying the adequate conditions.
By extension,(V ,(q0,~x0)) satisfiesP

def
⇔ there is a finite run starting at(q0,~x0) satisfyingP. It is

easy to see that condition (P1) [resp. (P2)] is a quantitative counterpart for condition (STRICT) [resp.
(NONSTRICT)]. Thegeneralized unboundedness problemis defined as follows: given an initialized
VASS (V ,(q0,~x0)) and a generalized unboundedness propertyP, does(V ,(q0,~x0)) satisfyP? Let us
first forget about control states: we can safely restrict ourselves to VAS without any loss of generality, as
it is already the case for many properties.
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Lemma 3.2. There is a logspace many-one reduction from the generalized unboundedness problem for
VASS to the generalized unboundedness problem for VAS. Moreover, an instance((V ,(q,~x)),P) is
reduced to an instance((T ,~x′),P ′) such that (1) ifV is of dimensionn, thenT is of dimensionn+3,
(2) P andP ′ have the same length and scale and (3) scale(T ) = max((card(Q)+1)2,scale(V )) where
Q is the set of control states ofV .

The proof is essentially based on [11, Lemma 2.1]. Generalized unboundedness properties can be
expressed in even more general formalisms for which decidability is known. However, in Section 4, we
shall establish EXPSPACE-completeness.

Theorem 3.3. [2] The generalized unboundedness problem is decidable.

Given (V ,(q0,~x0)), the existence of a run from(q0,~x0) satisfyingP can be easily expressed in
Yen’s path logic [29] and the generalized unboundedness problem is therefore decidable by [2, Theorem
3] and [18, 16]. We cannot rely on [29, Theorem 3.8] for decidability since [29, Lemma 3.7] contains
a flaw, as observed in [2]. [2] precisely establishes that satisfiability in Yen’s path logic is equivalent to
the reachability problem for VASS. Moreover, it is worth noting that the reduction from the reachability
problem to satisfiability [2, Theorem 2] uses path formulae that cannot be expressed as generalized un-
boundedness properties. Observe that the EXPSPACE upper bound obtained for increasing path formulae
in [2, Section 6] cannot be used herein since obviously generalized unboundedness properties are not
necessarily increasing. That is why, we need directly to extend Rackoff’s proof for boundedness [21].

3.3 From regularity to reversal-boundedness detection

In this section, we briefly explain how simultaneous unboundedness problem, regularity detection, strong
promptness detection and weak reversal-boundness detection can be reduced to generalized unbounded-
ness problem. This will allow us to obtain EXPSPACE upper bound for all these problems.

Simultaneous unboundedness problem. It is easy to show that every property PBσ can be encoded
as a generalized unboundedness propertyPσ with length K ≤ n and scale(Pσ ) = 1. Indeed, from
a disjointness sequenceσ = X1 · · ·XK , we definePσ = (I1, . . . ,IK) as follows. Forl ∈ [1,K] and
j ∈ [1,n], if j ∈ Xl thenIl( j) = [1,+∞[. Otherwise, if j ∈ ([1,n]\ (

⋃

1≤l ′≤l Xl ′)), thenIl ( j) = [0,+∞[,
otherwiseIl ( j) =]−∞,+∞[. It is then easy to check thatσ and PBσ define the same set of runs.

Regularity detection. Another example of properties that can be encoded by generalized unbounded-
ness properties comes from the witness run characterization for nonregularity, see e.g. [28, 2]. Nonreg-

ularity of an initialized VASS(V ,(q0,~x0)) is equivalent to the existence of a run of the form(q0,~x0)
π ′0−→

(q1, ~x1)
π1−→ (q2, ~x2)

π ′1−→ (q3, ~x3)
π2−→ (q4,~x4) such thatq1 = q2, q3 = q4, there isi ∈ [1,n] such that~x1 ≺ ~x2,

~x4(i) < ~x3(i) and for all j ∈ [1,n] such that~x4( j) < ~x3( j), we have~x1( j) < ~x2( j), see e.g. [28, 2]. Conse-
quently, nonregularity condition can be viewed as a disjunction of generalized unboundedness properties
of the form(I i

1,I
i
2) whereI i

1(i) = [1,+∞[, I i
2(i) =]−∞,−1], and for j 6= i, we haveI i

1( j) = [0,+∞[
andI i

2( j) =]−∞,+∞[.

Strong promptness detection. We show below how the strong promptness detection problem can be
reduced to the simultaneous unboundedness problem, leading to an EXPSPACE upper bound. Thestrong
promptness detection problemis defined as follows [27]: given((Q,n,δ ),(q,~x)) and a partition(δI ,δE)
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of δ , is thereB∈ N such that for every run(q,~x)
∗
−→ (q′,~x′), there is no run(q′,~x′)

π
−→ (q′′,~x′′) using only

transitions fromδI and of length more thanB (π ∈ δ ∗I ) ? The transitions inδI are calledinternal and
strong promptness guarantees that sequences of internal transitions cannot be arbitrarily long. Let us
consider below the VASSV of dimension 1 withδI made of the two transitions in bold.

A B C+1
0 −1

−1
(V ,(A,0)) is not strongly prompt and there is no(A,0)

∗
−→ (q,~x)

π
−→ (q,~y) for someq ∈ {A,B,C} such

that~x�~y, π is nonempty and contains only transitions inδI .
Lemma 3.4. There is a logspace reduction from strong promptness detection problem to the comple-
ment of simultaneous unboundedness problem.

Weak reversal-boundedness detection. Complement of weak reversal-boundedness involves two uni-
versal quantifications (onB and r) that can be understood as simultaneous unboundedness properties.
Lemma 3.5 below is a key intermediate result in our investigation.

Lemma 3.5. Given a VASSV = (Q,n,δ ) and a configuration(q,~x), (V ,(q,~x)) is not weakly reversal-
bounded with respect toi iff (Vrb,(qrb,~xrb)) has a run satisfying PBσ for some disjointness sequence
σ = X1 · · ·XK with n+ i ∈ XK andi ∈ (X1∪ ·· ·∪XK−1).

As a corollary, we are in a position to present a witness run characterization for weak reversal-boun-
dedness detection.(V ,(q0,~x0)) is not weakly reversal-bounded with respect toi iff there exist a dis-

jointness sequenceσ = X1 · · ·XK and a run(q0,~x0)
π ′0−→ (q1,~x1)

π1−→ (q2,~x2)
π ′1−→ ·· ·

π ′K−→ (q2K+1,~x2K+1)
πK+1
−−→

(q2K+2,~x2K+2) such that (1)πK+1 contains a reversal for theith component, (2) the subrun(q0,~x0)
∗
−→

(q2K ,~x2K) satisfies PBσ , (3) i ∈ (X1∪ ·· · ∪ XK) and (4) for j ∈ [1,n], ~x2K+2( j) < ~x2K+1( j) implies
j ∈ (X1∪ ·· · ∪XK). Based on Lemmas 2.3 and 3.1, a characterization for reversal-boundedness can
be also defined.

3.4 A first relaxation

Below, we relax the satisfaction of the propertyP by allowing negative component values in a con-

trolled way. A pseudo-run of the form(q0,~x0)
π ′0−→ (q1,~x1)

π1−→ (q2,~x2)
π ′1−→ (q3,~x3) · · ·

π ′K−1
−−→ (q2K−1,~x2K−1)

πK−→

(q2K ,~x2K) weakly satisfiesP
def
⇔ it satisfies (P0), (P1), (P2) and (P3) defined as follows: forj ∈ [1,n],

every pseudo-configuration~x such that~x( j) < 0 occurs after some~x2l for which~x2l ( j)−~x2l−1( j) > 0. If
the runρ satisfiesP, then viewed as a pseudo-run, it also weakly satisfiesP. Lemma 3.6 below states
that the existence of pseudo-runs weakly satisfyingP is equivalent to the existence of runs satisfying
P and their length can be compared. Later, we shall use the witness pseudo-run characterization.

Lemma 3.6. Let ρ be a pseudo-run of lengthL weakly satisfyingP (of lengthK). Then, there is a run
ρ satisfyingP of length at most((L×maxneg(V ))K× (1+K2×L×maxneg(V ))+L.

The principle of the proof of Lemma 3.6 (and part of the proof of Lemma 3.1) is identical to the idea of
the proof of the following property of the coverability graph CG(V ,(q0,~x0)) (see e.g., details in [23]).
For every extended configuration(q,~y′) ∈Q× (N∪{∞})n in CG(V ,(q0,~x0)) and boundB∈ N, there is
a run(q0, ~x0)

∗
−→ (q,~y) in V such that fori ∈ [1,n], if ~y′(i) = ∞ then~y(i) ≥ B otherwise~y(i) = ~y′(i). In

the proof of Lemma 3.6, the pathsπi ’s are repeated hierarchically in order to eliminate negative values.
Additionally, if ρ is a pseudo-run of lengthL weakly satisfyingP andL is at most doubly exponential
in N = |V |+ |(q0,~x0)|+K +scale(P), then there is a run satisfyingP and starting in~x0 that is also of
length at most doubly exponential inN.

9



4 EXPSPACE Upper Bound

In this section, we deal with VAS only and we consider a current VAS T of dimensionn (see Lemma 3.2).
W.l.o.g., we can assume thatn > 1, otherwise it is easy to show that the generalized unboundedness
problem restricted to VAS of dimension 1 can be solved in polynomial space. Moreover, we assume that
maxneg(T )≥ 1.

4.1 Approximating generalized unboundedness properties

Generalized unboundedness properties apply on runs but as it will be shown below, it would be more
convenient to relax the conditions to pseudo-runs. A first step has been done in Section 3.4; we shall

push further the idea in order to adapt Rackoff’s proof. Letρ = ~x0
π ′0−→ ~x1

π1−→ ~x2 · · ·~x2K−1
πK−→ ~x2K be a

pseudo-run weakly satisfyingP = (I1, . . . ,IK). We suppose thatρ is induced by the patht1 . . . tk
with ρ =~u0 · · ·~uk and f : [0,2K]→ [0,k] is the map such that~xi =~uf (i) ( f (0) = 0, f (2K) = k). For each
position j ∈ [0, f (2K−2)] alongρ , there is a maximall j ∈ [1,K] (with respect to standard ordering onN)
and INCRj ⊆ [1,n] such thatf (2l j−2)≤ j and INCRj = {i ∈ [1,n] : ∃ l ′ ∈ [1, l j−1] such that ~x2l ′−1(i) <

~x2l ′(i)}. In the induction proof of Lemma 4.3, we will need to check properties on suffixes of pseudo-
runs and it will be useful to approximateP with respect to some suffix(Il j , . . . ,IK) and to some set
of components INCRj . Indeed, the suffix~ul j · · ·~uk weakly satisfies(Il j , . . . ,IK) assuming that we know
how to increment strictly the components from INCRj . Moreover, like the notion ofi-B-boundedness
from [21], we would like to enforce that for each componentj from a given setI and for each pseudo-
configuration~y along the pseudo-run satisfying the approximation property, either~y( j) belongs to[0,B−
1] or the prefix pseudo-run terminating on~y has the ability to increase arbitrarily the value~y( j) (this
will correspond to condition (P2′) below). So, we are now in position to define the approximation
propertyA [P, l , INCR, I ,B]. Given a generalized unboundedness propertyP of lengthK, l ∈ [1,K],
INCR⊆ [1,n], I ⊆ [1,n] andB≥ 0, a pseudo-run of the form below

~y2l−2
π ′l−1
−−→~y2l−1

πl−→~y2l · · ·
π ′K−1
−−→~y2K−1

πK−→~y2K

satisfies the approximation propertyA [P, l , INCR, I ,B] (also abbreviated byA )
def
⇔ the conditions

below are verified:
(P1′) For l ′ ∈ [l ,K] and j ∈ [1,n], we have~y2l ′( j)−~y2l ′−1( j) ∈Il ′( j).

(P2′) For l ′ ∈ [l ,K] and j ∈ [1,n], if ~y2l ′( j)−~y2l ′−1( j) < 0, then (there isl ≤ l ′′ < l ′ such that~x2l ′′( j)−
~x2l ′′−1( j) > 0 or j ∈ INCR).

(P3′) For every pseudo-configuration~x in ρ occurring between~y2l ′ and strictly before~y2l ′+2 with l ′ ≥
l −1,~x(J) ∈ [0,B−1]J with J = I \ (INCR∪{ j : ∃ l ≤ l ′′ ≤ l ′, ~x2l ′′( j)−~x2l ′′−1( j) > 0}).

Condition (P3′) reflects the intuition that only the values from componentsin J require to be controlled.
We also writeA [P, l , INCR, I ,+∞] to denote the property obtained fromA [P, l , INCR, I ,B] by replac-
ing [0,B−1]J by N

J in (P3′). Observe that a pseudo-run satisfiesA [P,1, /0, [1,n],+∞] iff it weakly sat-
isfiesP. The propertyA [P, l , INCR, I ,+∞] is exactly the condition we need in the proof of Lemma 4.3
below thanks to the property stated below.

Lemma 4.1. If the pseudo-run~y2l−2
π ′l−1
−−→ ~y2l−1

πl−→ ~y2l · · ·
πK−→ ~y2K satisfies the approximation property

A [P, l , INCR, I ,+∞], then(π ′l−1(πl )
nl π ′l (πl+1)

nl+1 · · · (πK)nK ,~y2l−2) also satisfies it, fornl , . . . ,nK ≥ 1.
A similar statement does not hold for pseudo-runs satisfying A (values for components inJ might
become out of[0,B−1]) and for runs satisfyingP (component values might become negative). Property
A [P, l , INCR, I ,B] can be viewed as a collection oflocal path increasing formulae in the sense of [2].
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4.2 Bounding the length of pseudo-runs

Let us briefly recall the structure of Rackoff’s proof to showthat the boundedness problem for VAS is in

EXPSPACE. A witness run for unboundedness is of the formρ =~x0
∗
−→~y

+
−→~y′ with~y≺~y′. In [21], it is

shown thatρ can be of length at most doubly exponential. In order to get the EXPSPACE upper bound,
Savitch’s theorem is used. Rackoff’s proof to establish thesmall run property goes as follows. First,
a technical lemma shows that if there is somei-B-bounded pseudo-run (instance of the approximation
propertyA ), then there is one of length at mostB|T |

C
for some constantC. The proof essentially shows

that existence of such a pseudo-run amounts to solving an inequation system and by using [4], small so-
lutions exist, whence the obtention of a shorti-B-bounded pseudo-run. The idea of using small solutions
of inequation system to solve problems on counter systems dates back from [21, 9] and nowadays, this is
a standard proof technique. This proof can be extended to numerous properties on pseudo-runs for which
intermediate counter value differences can be expressed inPresburger arithmetic as done in [29, 2]. Then,
a proof by induction on the dimension is performed by using this very technical lemma and the ability
to repeat sequences of transitions; the proof can be extended when the first intermediate configuration
is less or equal to the last configuration of the sequence (leading to the concept of increasing path for-
mula in [2]). This condition allows to perform the inductionon the dimension with a unique increasing
formula. Unfortunately, generalized unboundedness properties are not increasing in the sense of [2] and
therefore Rackoff’s proof requires to be extended (but the main ingredients remain). The generalization
of the technical lemma is presented below; it is not surprising since generalized unboundedness prop-
erties are Presburger-definable properties. However, not only we need to refine the expressionB|T |

C
in

terms of various parameters (length ofP, scale(P), n, scale(T )) in order to get the final EXPSPACE

upper bound (or the PSPACE upper bound with fixed dimension), but also we have to check that the
new ingredients in the definition ofA do not prevent us from extending [21, Lemma 4.4]. Finally, itis
important to specify the length of small pseudo-runs with respect to parameters fromP.

Lemma 4.2. LetT be a VAS of dimensionn≥ 2,P be a generalized unboundedness property of length
K, l ∈ [1,K], B≥ 2, I , INCR⊆ [1,n] andρ be a pseudo-run satisfyingA [P, l , INCR, I ,B]. Then, there
exists a pseudo-run starting by the same pseudo-configuration, satisfyingA [P, l , INCR, I ,B] and of
length at most(1+K)×(scale(T )×scale(P)×B)nC1 for some constantC1 independent ofK, scale(P),
scale(T ), B andn.

The length expression in Lemma 4.2 can be certainly refined interms of card(INCR), card(I) andl
but these values are anyhow bounded byn andK respectively, which is used in Lemma 4.2. Fori ∈ [0,n],

g(i)
def
=

{

(2µ)nC1 with µ = (1+K)×scale(T )×scale(P) if i = 0,
(
2µ(maxneg(T )×g(i−1))

)nC1
+g(i−1) if i > 0.

Lemma 4.3 below is an extension of [21, Lemmas 4.6 & 4.7], see also [2, Lemma 7].

Lemma 4.3. Let I , INCR⊆ [1,n], l ∈ [1,K] and ρ be a pseudo-run satisfyingA [P, l , INCR, I ,+∞].
Then, there exists a pseudo-runρ ′ starting from the same pseudo-configuration, satisfying the property
A [P, l , INCR, I ,+∞] and of length at mostg(card(I)).

In the induction step, we need to take advantage simultaneously of the pigeonhole principle, the
induction hypothesis and Lemma 4.2.

Proof. Let ρ = ~x2l−2
π ′l−1
−−→ ~x2l−1

πl−→ ~x2l · · ·
π ′K−1
−−→ ~x2K−1

πK−→ ~x2K be a pseudo-run satisfying the property
A [P, l , INCR, I ,+∞]. We suppose thatρ is induced by the patht1 . . . tk with ρ = ~u0 · · ·~uk and f :
[2l −2,2K]→ [0,k] is the map such that~xi =~uf (i) ( f (2l −2) = 0, f (2K) = k).
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The proof is by induction oni = card(I). If i = 0, then we apply Lemma 4.2 withB = 2 and we
obtain a pseudo-run satisfyingA [P, l , INCR, I ,+∞] leading to the bound(µ×2)nC1 .

Now suppose card(I) = i + 1 andJ = (I \ INCR). We poseB = maxneg(T )×g(i). We recall that
T is the current VAS withn≥ 2. We perform a case analysis depending where inρ a value from a
component inJ is strictly greater thanB−1 (if any).
Case 1:Every configuration~z in ρ satisfies~z(J) ∈ [0,B−1]J, i.e.,ρ satisfiesA [P, l , INCR, I ,B].
Obviously, the caseJ = /0 is captured here. By Lemma 4.2, there is a pseudo-runρ ′ starting at~x2l−2 satis-
fying A [P, l , INCR, I ,B] of length at most(1+K)× (scale(T )×scale(P)×B)nC1 , which is bounded

by
(
µ× (maxneg(T )×g(i))

)nC1
.

Case 2: A value for some component inJ is strictly greater thanB− 1 for the first time within the
pathπ ′D for someD ∈ [l −1,K−1]. Let α be the minimal position such that~uα+1(J) 6∈ [0,B−1]J and
α +1∈ [ f (2D)+1, f (2D+1)], say~uα+1(i0)≥ B for somei0 ∈ J. The pseudo-runρ can be decomposed
as follows withπ ′D = π1

Dtα+1π2
D (INCR′ is defined few lines below):

~x2l−2
π ′l−1
−−→~x2l−1 · · ·~x2D

︸ ︷︷ ︸

ρ1

=~x2D
π1

D−→~uα
︸ ︷︷ ︸

ρ2

tα+1
−−→

satisfiesA [P,D+1,INCR′,(I\{i0}),+∞]
︷ ︸︸ ︷

~uα+1
π2

D−→~x2D+1 · · ·~x2K−1
πK−→~x2K

︸ ︷︷ ︸

ρ3

We shall construct a pseudo-run of the formρ ′1ρ ′2ρ ′3 such that eachρ ′j is obtained by shorteningρ j and

the length ofρ ′1 [resp.ρ ′2, ρ ′3] is bounded by(µ×B)nC1 +1 [resp.Bi+1+1, g(i)+1].

• If D > l −1, then we introduceP⋆ = (I ′
l , . . . ,I

′
D) with for l ′′ ∈ [l ,D] and j ∈ [1,n], if ~x2l ′′( j)−

~x2l ′′−1( j) > 0 thenI ′
l ′′( j) = Il ′′( j)∩ [1,+∞[, otherwiseI ′

l ′′( j) = Il ′′( j). The construction ofP⋆

allows us to preserve the set of components in[l ,D] whose values can be arbitrarily increased.
By Lemma 4.2, there is a pseudo-runρ ′1 = (t1

1 · · · t
1
β1

,~x2l−2) satisfyingA [P⋆,1, INCR, I ,B] such

thatβ1≤ (µ ×B)nC1 . Indeed, scale(P⋆)≤ scale(P) and the length ofP⋆ is obviously bounded
by K. Sayρ ′1 =~y2l−2

∗
−→~y2l−1

∗
−→ ~y2l · · ·

∗
−→ ~y2D−1

∗
−→~y2D. Suppose thatρ ′1 = ~u1

0 · · ·~u
1
β1

and f1 :

[2l−2,2D]→ [0,β1] is the map such that~yi =~u1
f1(i)

( f1(2l−2) = 0, f1(2D) = β1). If D = l−1, then
ρ1 = (t1 · · · tα ,~x2l−2) with an analogous decomposition in terms of~yi ’s. We have{ j :~y2l ′−1( j) <

~y2l ′( j), l ′ ∈ [l ,D]}= { j :~x2l ′−1( j) <~x2l ′( j), l ′ ∈ [l ,D]} (
def
= Z) –partly by construction ofP⋆.

• Now, by the piegonhole principle, there is a pseudo-runρ ′2 = (t2
1 · · · t

2
β2

,~y2D) such that~u′α =~y2D +

t2
1 + · · ·+ t2

β2
,~u′α(J) =~uα(J) andβ2 < Bcard(J) ≤ Bi+1. We pose~u′α+1 =~u′α + tα+1.

• Finally, observe that(tα+2 · · · tk,~u′α+1) satisfiesA [P,D+1, INCR′,(I \{i0}),+∞] with INCR′
def
=

INCR∪Z. By the induction hypothesis, there is a pseudo-runρ ′3 = (t3
1 · · · t

3
β3

,~u′α+1) satisfying
A [P,D + 1, INCR′,(I \{i0}),+∞] and such thatβ3 ≤ g(i). Because~u′α+1(i0) ≥ maxneg(T )×
g(i), ρ ′3 also satisfiesA [P,D+1, INCR′, I ,+∞].

Glueing the previous transitions, the pseudo-run(t1
1 · · · t

1
β1

t2
1 · · · t

2
β2

tα+1t3
1 · · · t

3
β3

,~x2l−2) satisfies the approx-

imation propertyA [P, l , INCR, I ,+∞]. and its length is bounded by(µ×B)nC1 +Bi+1+g(i).
Case 3:A value for some component inJ is strictly greater thanB−1 for the first time within the path
πD for someD ∈ [l ,K].
The pseudo-runρ can be written as follows withπD = π1

Dπ2
D andπ1

D 6= ε

~x2l−2
π ′l−1
−−→~x2l−1 · · ·~x2D−1

π1
D−→~uα+1

π2
D−→~x2D · · ·~x2K−1

πK−→~x2K
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By Lemma 4.1, the pseudo-runρ ′(π ′l−1πl · · ·π ′D−1(πD)2π ′D · · ·πK ,~x2l−2) also satisfies the approximation

propertyA [P, l , INCR, I ,+∞] and can be written as~x2l−2
π ′l−1
−−→ ~x2l−1 · · ·~x2D−2

π ′D−1πD
−−−→ ~x2D =~z2D−1

πD−→

~z2D
π ′D+1
−−→ ·· ·~z2K−1

πK−→~z2K . We are therefore back to Case 2.

Now, we are seeking to boundg(n).

Lemma 4.4. If ρ is a pseudo-run weakly satisfyingP, then there is aρ ′ starting from the same pseudo-
configuration, weakly satisfyingP and of length at most(µ ×2×maxneg(T ))n(2n+1)C

for someC > 1
with µ = (1+K)×scale(T )×scale(P).

Proof. Let us boundg(n). By Lemma 4.3, for some constantC2 > C1 (for instanceC2 = C1+1), we have

g(i) ≤

{

(2µ)nC2 if i = 0,
(
2µ(maxneg(T )×g(i−1))

)nC2
if i > 0.

By induction oni, we can show thatg(i) ≤ (ν i+1)n(2i+1)C2 with ν = 2µ ×maxneg(T ). For i = 0 this is
obvious . Otherwise

g(i +1)≤
(
2µ×maxneg(T )×g(i)

)nC2
≤ (ν(ν i+1)n(2i+1)C2 )nC2 ≤ . . .

≤ ((ν i+2)n(2i+1)C2
)nC2
≤ (ν i+2)n(2i+2)C2

< (ν i+2)n(2i+3)C2

Hence,g(n)≤ (νn+1)n(2n+1)C2 . As soon asn≥ 2, there is a constantC s.t.g(n)≤ (2µ×maxneg(T ))n(2n+1)C
.

Let us conclude the section by the main result of the paper.

Theorem 4.5. (I) The generalized unboundedness problem for VASS is EXPSPACE-complete. (II) For
eachn≥ 1, the generalized unboundedness problem restricted to VASS of dimension at mostn is in
PSPACE.

5 Other Applications

In this section, we draw conclusions from Theorem 4.5. First, as a by-product of Theorem 4.5 and using
the reductions from Section 3.3, we can easily regain the exponential-space bound mentioned below.

Corollary 5.1. The regularity detection problem and the strong promptness detection problem are in
EXPSPACE. The simultaneous unboundedness problem is EXPSPACE-complete. For each fixedn≥ 1,
their restriction to VASS of dimension at mostn are in PSPACE.

The complexity upper bound for regularity detection problem has been left open in [2]. Decidabil-
ity of the strong promptness detection problem is established in [27]. The EXPSPACE upper bound has
been already stated in [29, 2]. We cannot rely on [29] becauseof the flaw in [29, Lemma 7.7]. Con-
dition 4. in [2, page 13] does not characterize strong promptness (but only promptness) as shown in
Section 3.3. Finally, increasing path formulae from [2] cannot characterize strong promptness detection
unlike generalized unboundedness properties. Therefore,we also believe that the upper bound for strong
promptness detection is new. Below, we state how the previous results allow us to characterize the com-
putational complexity of reversal-boundedness detectionproblem for VASS and its variant with weak
reversal-boundedness.
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Theorem 5.2. (I) Reversal-boundedness detection problem for VASS is EXPSPACE-complete. (II) For
each fixedn≥ 1, its restriction to VASS of dimension at mostn is in PSPACE. (III) Properties (I) and (II)
also hold true for weak reversal-boundedness detection problem.

By Theorem 5.2(I), once an initialized VASS is shown to be reversal-bounded, one can compute
effectively semilinear sets corresponding to reachability sets, see recent developments in [26]. The size
of the representation of such sets is at least polynomial in the maximal number of reversals. However,
we know that an initialized VASS can be bounded but still the cardinality of its reachability set may be
nonprimitive recursive, see e.g. [28]. A similar phenomenon occurs with reversal-boundedness, as briefly
explained below. In case of reversal-boundedness, the maximal reversal can be nonprimitive recursive in
the size of the initialized VASS in the worst-case. Indeed, given n≥ 0, one can compute in time polyno-
mial in n an initialized VASS(Vn,(q0,~xn)) that generates a finite reachability set of cardinalO(A(n)) for
some nonprimitive recursive mapA(·) similar to Ackermann function, see e.g., the construction in [14].
Moreover,(Vn,(q0,~xn)) can be shown to admit only finite runs, see details in [14]. It is then easy to
compute a variant VASSV ′n by adding a component and such that each transition ofVn is replaced by
itself followed by incrementating the new component and then decrementing it (creating a reversal). Still
V ′n has no infinite computation,(V ′n ,(q0,~x′n)) is reversal-bounded (~x′n restricted to the components ofVn

is equal to~xn) and its maximal reversal is inO(A(n)).

6 Concluding Remarks

We have proved the EXPSPACE-easiness of the generalized unboundedness problem (both the initialized
VASS and the generalized unboundedness property are part ofthe inputs). For example, this allows us
to provide the optimal complexity upper bound for the reversal-boundedness detection problems, place
boundedness problem, strong promptness detection problemand regularity detection problem. Even
though our proof technique is clearly tailored along the lines of [21], we had to provide a series of
adaptations in order to get the final EXPSPACE upper bound (and the PSPACE upper bound for fixed
dimension). In particular, we advocate the use of witness pseudo-run characterizations (instead of using
runs) when there exist decision procedures using coverability graphs.

Let us conclude by possible continuations. Our EXPSPACE proof can be obviously extended by
replacing intervals in properties by more complex sets of integers or by adding new constraints between
intermediate configurations. The robustness of our proof technique still deserves to be determined. A
challenging question is to determine the complexity of checking when a reachability set obtained by an
initialized VASS is semilinear. Besides, various subclasses of VASS exist for which decision problems
are of lower complexity. For instance, in [20], the boundedness problem is shown to be in PSPACE for
a class of VASS with so-called boundedbenefit depth. It is unclear for which subclasses of VASS, the
generalized unboundedness problem can be solved in polynomial space too.

Acknowledgments:I would like to thank Thomas Wahl (U. of Oxford) and anonymousreferees for
their suggestions and remarks about a preliminary version of this work.
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A Proof of Lemma 2.4

Proof. Let V = (Q,n,δ ) be a VASS and(q,~x) ∈ Q×N
n. Suppose thatQ hasm≥ 1 control states

with Q = {q1, . . . ,qm}. Let us recall the construction of an equivalent initialized VAS of dimension
n+ 3 from [11, Lemma 2.1], that we shall write(((Q,n,δ ),~x))HP = (T ,~x′). We poseai = i andbi =
(m+ 1)(m+ 1− i) for i ∈ [1,m]. A configuration(qi ,~y) of V is encoded by the configuration~y′ in T

such that~y′([1,n]) =~y and~y′([n+ 1,n+ 3]) = (ai ,bi ,0). The initial configuration~x′ is computed from
(q,~x) by using this encoding. It remains to define the transitions in T .

• For eacht = qi
~b
−→ q j ∈ δ , we consider the transitiont ′ ∈ T such thatt ′([1,n]) =~b and t ′([n+

1,n+3]) = (a j −bi,b j ,−ai).

• For technical reasons, fori ∈ [1,m], we add two dummy transitionsti and t ′i in T such that
ti([1,n]) = t ′i ([1,n]) =~0, ti([n+ 1,n+ 3]) = (−ai ,am+1−i − bi ,bm+1−i) and t ′i ([n+ 1,n + 3]) =
(bi ,−am+1−i,−bm+1−i +ai).

Observe that fort = qi
~b
−→ q j ∈ δ , (t ′+ ti + t ′i )([1,n]) =~b and(t ′+ ti + t ′i )([n+1,n+3]) = (a j −ai ,b j −

bi ,0). The proof of [11, Lemma 2.1] establishes that every run(q0,~y0) · · · (qk,~yk) in V leads to a run
ρ ′ =~z0 · · ·~z3k in T such that

• for i ∈ [0,k], ~z3i([1,n]) = ~yi and~z3i is the standard encoding of(qi ,~yi). Moreover, each step

(qi ,~yi)
t
−→ (qi+1,~yi+1) corresponds to the three steps~z3i

tI t ′I t−→~z3i+3 in ρ ′ whereqi is the I th con-
trol state ofQ.

An analogous property holds true in the converse direction (and this is the place where the dummy tran-
sitions play a crucial role) . This implies that fori ∈ [1,n], (V ,(q,~x)) is i-unbounded iff((V ,(q,~x)))HP

is i-unbounded.
Let us come back to our reduction. LetV = (Q,n,δ ), (q,~x) and i be an instance of the reversal-

boundedness detection problem. Using Lemma 2.3 and the properties of the contruction in [11, Lemma
2.1], it is easy to show that

• (V ,(q,~x)) is reversal-bounded with respect toi iff ((Vrb,(qrb,~xrb)))
HP is not(n+ i)-unbounded.

• The scale of the VAS((Vrb,(qrb,~xrb)))
HP is bounded by max((card(Q)×2n + 1)2,scale(V )) (as

well as the scale of the target initial configuration).

• ((Vrb,(qrb,~xrb)))
HP can be built in polynomial space.

It is worth noting that the cardinal of the set of control states ofVrb is card(Q)×2n whereQ is the set of
control states ofV . Hence, this excludes the possibility to construct((Vrb,(qrb,~xrb)))

HP in logspace.

B Proof of Lemma 3.1

Before presenting the proof, let us recall some properties about coverability graphs [15, 28], see complete
definitions in [23]. A coverability graph approximates the set of reachable configurations from a given
configuration and it is a finite structure that can be effectively computed. Let us start by preliminary
definitions. Let us consider the structure(N∪{∞},≤) such that fork,k′ ∈ N∪{∞}, k≤ k′

def
⇔ either

k,k′ ∈ N andk ≤ k′ or k′ = ∞. We write k < k′ wheneverk≤ k′ andk 6= k′. The ordering≤ can be
naturally extended to tuples in(N∪{∞})n by defining it component-wise: for~x,~x′ ∈ (N∪{∞})n,~x� ~x′

def
⇔ for i ∈ [1,n], either~x(i),~x′(i) ∈N and~x(i)≤~x′(i) or~x′(i) = ∞. We also write~x≺~x′ when~x�~x′ and

~x 6=~x′. For~x∈ (N∪{∞})n andt ∈ Z
n,~x+ t is defined as an element of(Z∪{∞})n such that fori ∈ [1,n],
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if ~x(i) ∈ N then (~x+ t)(i)
def
=~x(i) + t(i), otherwise(~x+ t)(i)

def
= ∞. Given a VASSV = (Q,n,δ ) and a

configuration(q0, ~x0), we recall that the coverability graphCG(V ,(q0,~x0)) is a structure(V,E) such that
V ⊆Q× (N∪{∞})n andE ⊆V×δ ×V, see e.g. [15]. Here are essential properties ofCG(V ,(q0, ~x0)):
(CG1) CG(V ,(q0,~x0)) is a finite structure (consequence of König’s Lemma and Dickson’s Lemma).

(CG2) For any configuration(q,~y) reachable from(q0,~x0) in V , there is(q,~y′) in CG(V ,(q0, ~x0))
such that~y� ~y′. Otherwise said, any reachable configuration can be coveredby an element of
CG(V ,(q0,~x0)). Moreover, if(q0, ~x0)

π
−→ (q,~y) is a run ofV , then(q0,~x0)

π
−→ (q,~y′) inCG(V ,(q0,~x0)).

(CG3) For every extended configuration(q,~y′) in CG(V ,(q0, ~x0)) and boundB ∈ N, there is a run
(q0,~x0)

∗
−→ (q,~y) in V such that fori ∈ [1,n], if ~y′(i) = ∞ then~y(i)≥ B otherwise~y(i) =~y′(i).

As a consequence of the above properties, givenX⊆ [1,n], (V ,(q0, ~x0)) is simultaneouslyX-unbounded
iff CG(V ,(q0, ~x0)) contains some(q,~y) with~y(X) = ~∞ [15].

Proof. (←) Let us consider the runρ

(q0, ~x0)
π ′0−→ (q1,~x1)

π1−→ (q2,~x2)
π ′1−→ (q3, ~x3)

π2−→ ·· ·(q2K−1, ~x2K−1)
πK−→ (q2K , ~x2K)

of length L satisfying the property PBσ . Let B≥ 0. We shall design a runρ ′ satisfying PBσ of the
form (π ′0(π1)

β1π ′1(π2)
β2 · · · (πK)βK ,(q0,~x0)) for someβ1, . . . ,βK ≥ 1 such that(B, . . . ,B)�~xf (X) where

(qf ,~xf ) is the final configuration ofρ ′. Now let us defineβK , . . . ,β1 (in this ordering):
• βK = B.

• Now suppose thatβi+1, . . . ,βK are already defined andi < K. Let us defineβi by βi
def
= B+(K−

i)(L−1)maxneg(V )+ Σi′=K
i′=i+1((L−1)maxneg(V ))βi′ .

The expression(K− i)(L− 1)maxneg(T ) is related to the pathsπ ′i , . . . , π ′K−1 whereas the expression
Σi′=K

i′=i+1((L− 1)maxneg(V ))βi′ is related to the pathsπi+1, . . . , πK . It is also worth noting thatL− 1
transitions cannot decrease a component by more than(L−1)maxneg(V ). It is not difficult to show that
(π ′0(π1)

β1π ′1(π2)
β2 · · · (πK)βK ,(q0,~x0)) defines a run, it satisfies PBσ and(B, . . . ,B) �~xf (X) where~xf is

the final configuration ofρ ′. Since the above construction can be performed for anyB, we conclude that
(V ,(q0, ~x0)) is simultaneouslyX-unbounded.
(→) Now suppose that(V ,(q0,~x0)) is simultaneouslyX-unbounded. This means thatCG(V ,(q0,~x0))
has an extended configuration(q,~y) ∈Q× (N∪{∞})n such that~y(X) = (∞, . . . ,∞). We can assume that
~y is the first extended configuration on that branch with~y(X) = (∞, . . . ,∞). Let us consider the sequence
below

(q0,~x0)
π ′0−→ (q1,~y1)

π1−→ (q2,~y2)
π ′1−→ (q3,~y3)

π2−→ ·· ·
π ′K−1
−−→ (q2K−1,~y2K−1)

πK−→ (q2K ,~y2K)

obtained fromCG(V ,(q0,~x0)) such that
• For l ∈ [1,K], q2l−1 = q2l , and~y2K =~y.

• For l ∈ [1,K], Xl 6= /0 with Xl
def
= { j ∈ [1,n] :~y2l ( j) = ∞, ~y2l−1( j) 6= ∞} and~y2l−1 ≺~y2l .

Let us suppose that the above sequence inCG(V ,(q0,~x0)) hasL (extended) configurations and let us pose
σ = X1 · · ·XK. It is easy to show thatσ is a disjointness sequence withX ⊆

⋃

1≤l≤K Xl andX∩XK 6= /0.
Again, we shall design a runρ satisfying PBσ of the form (π ′0(π1)

β1π ′1(π2)
β2 · · · (πK)βK ,(q0,~x0)) for

someβ1, . . . ,βK ≥ 1. Now let us defineβK , . . . ,β1 (in this ordering):
• βK = 1.

• Now suppose thatβi+1, . . . ,βK are already definedi < K. Let us defineβi by βi
def
= 1+(K− i)(L−

1)maxneg(V )+ Σi′=K
i′=i+1((L−1)maxneg(V ))βi′ .

Now, it is not difficult to show thatρ = (π ′0(π1)
β1π ′1(π2)

β2 · · ·(πK)βK ,(q0,~x0)) defines a run and it satisfies
PBσ .
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C Proof of Lemma 3.2

Proof. Let V = (Q,n,δ ), (q,~x) ∈ Q×N
n and P = (I1, . . . ,IK) be an instance of the generalized

unboundedness problem for VASS. First,(T ,~x′) = ((V ,(q,~x)))HP following the construction from [11,
Lemma 2.1] (see also the proof of Lemma 2.4). Let us now construct P ′.

• P ′ = (I ′
1, . . . ,I

′
K) with for l ∈ [1,K], I ′

l ([1,n]) = Il andI ′
l ([n+1,n+3]) = ~[0,0].

We recall that every run(q0,~y0) · · · (qk,~yk) in V leads to a runρ ′ =~z0 · · ·~z3k in the target VAS such that

• for i ∈ [0,k], ~z3i([1,n]) = ~yi and~z3i is the standard encoding of(qi ,~yi). Moreover, each step

(qi ,~yi)
t
−→ (qi+1,~yi+1) corresponds to the steps~z3i

tI t ′I t−→~z3i+3 in ρ ′ whereqi is theI th control state of
Q.

An analogous property holds true in the converse direction,which guarantees the correction of the reduc-
tion. Observe that when~x2l−1([n+1,n+3]) =~x2l ([n+1,n+3]) for somel ∈ [1,K] with~x2l−1([n+1,n+
3]) not of the form(ai ,bi ,0), we can always come back to such a situation since the dummy transitions
are fired in a very controlled way.

D Proof of Lemma 3.4

Proof. Let (V ,(q,~x)) be an initialized VASS withV = (Q,n,δ ) and equipped with the partition(δI ,δE).
We construct the VASSV [δI ] = (Q×{0,1},n+ 1,δ ′) made of two copies ofV . The 0-copy behaves
exactly asV whereas the 1-copy contains only the transitions fromδI and has an extra counter that is
incremented for each transition. The transitions from the 0-copy to the 1-copy determines nondetermin-
istically when the length of sequences of transitions inδI starts to be computed.V [δI ] is defined as

follows: (q, i)
~b
−→ (q′, i′) ∈ δ ′ iff one of the conditions below holds true:

• i = i′ = 0, q
~b([1,n])
−−−→ q′ ∈ δ ,~b(n+1) = 0,

• i = 0, i′ = 1,~b =~0 andq = q′,

• i = i = 1, q
~b([1,n])
−−−→ q′ ∈ δI ,~b(n+1) = +1.

It is easy to show that(V ,(q,~x)) is strongly prompt with respect to the partition(δI ,δE) iff (V [δI ],(q,~x′))
is not(n+1)-unbounded for some~x′ with restriction to[1,n] equal to~x.

E Proof of Lemma 3.5

Proof. (→) Let σ = X1 · · ·XK be a disjointness sequence such thatn+ i ∈ XK, i ∈ (X1∪ ·· · ∪XK−1) and
(Vrb,(qrb,~xrb)) has a runρ satisfying PBσ . Suppose thatρ is of the form below

(q0,~x0)
π ′0−→ (q1,~x1)

π1−→ (q2,~x2)
π ′1−→ ·· ·

π ′K−1
−−→ (q2K−1,~x2K−1)

πK−→ (q2K ,~x2K)

and of lengthL. By construction of(Vrb,(qrb,~xrb)), a reversal fori is operated on the pathπK , and the
projection ofρ on then first components and toQ (for the control-states fromQ×{INC,DEC}n) corre-
sponds to a run ofV . For allB,B′ ≥ 1, we shall define a runρ ′ that performs at leastB′ reversals aboveB
for the componenti, which will guarantee that(V ,(q,~x)) is not weakly reversal-bounded with respect to
i. The runρ ′ is of the form(π ′0(π1)

β1π ′1(π2)
β2 · · · (πK)βK ,(q,~x)). Let us defineβK , . . . ,β1≥ 1 as follows:
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first βK
def
= B′, then suppose thatβ j+1, . . . ,βK are already defined andj < K. If i 6∈ Xj , thenβ j

def
= 1, other-

wiseβ j
def
= (B+B′×L)+ (K− j)(L−1)maxneg(V )+ Σi′=K

i′= j+1((L−1)maxneg(V ))βi′ . It is not difficult

to show that(π ′0(π1)
β1π ′1(π2)

β2 · · ·(πK)βK ,(q,~x)) defines a run and in part of the run corresponding to the
path(πK)βK , at leastB′ reversals aboveB are observed for theith component.
(←) Suppose that(V ,(q,~x)) is not weakly reversal-bounded. We shall use [8, Lemma 13] that character-
izes weak reversal-boundedness on the coverability graphCG(V ,(q,~x)). First, let us recall [8, Lemma
13] formulated on the coverability graphCG(V ,(q,~x)): (V ,(q,~x)) is r-reversal-B-bounded with respect
to i for somer andB iff for every elementary loop inCG(V ,(q,~x)) that performs a reversal on theith
component, theith component of every extended configuration on the loop is less thanB. An elementary
loop is a sequence of extended configurations respecting theedge relationE of CG(V ,(q,~x)) such that
the two extremity configurations are identical and these arethe only ones identical on the loop. Since
(V ,(q,~x)) is not weakly reversal-bounded andCG(V ,(q,~x)) is a finite structure (with a finite amount
of elementary loops), there is an elementary loop that performs a reversal on theith component and
such that one of its extended configuration has∞ on theith component (otherwise we would find aB by
finiteness). So, there is a sequence inCG(V ,(q,~x)) of the form below

(q0, ~x0)
t1−→ (q1,~x1)

t2−→ ·· · (qk′ , ~xk′)
tk′+1
−−→ ·· ·

tk−→ (qk,~xk)

with (q0,~x0) = (q,~x), k′ < k and(qk′ , ~xk′)
tk′+1
−−→ ·· ·

tk−→ (qk,~xk) is an elementary loop. Remember that the

~xi ’s are extended configurations. Since(qk′ , ~xk′)
tk′+1
−−→ ·· ·

tk−→ (qk,~xk) has an extended configuration with
∞ on theith component, this entails that~xk′(i) is already equal to∞. With a similar reasoning, all the

extended configurations in(qk′ , ~xk′)
tk′+1
−−→ ·· ·

tk−→ (qk,~xk) have the same amount of components equal to∞.
Let i1, . . . , iK ≤ k′ be positions on which at least one component has been newly given the value∞ and
σ = X1, . . . ,XK be the disjointness sequence such that eachXl is the set of components that have been
newly given the value∞ at the positioni l . It is then easy to see that(t1 · · · tk,(qrb,~xrb)) is a pseudo-run
weakly satisfyingPσ ·{n+i} with Pσ ·{n+i} defined fromσ · {n+ i} as done in Section 3.3 for dealing
with simultaneous unboundedness. Weak satisfaction is introduced in Section 3.4. From Lemma 3.6,
(Vrb,(qrb,~xrb)) has a runρ ′ satisfyingPσ ·{n+i}, which is equivalent toρ ′ satisfying PBσ ·{n+i}. Observe
thatσ · {n+ i} is also of the appropriate form.

F Proof of Lemma 3.6

Proof. Let ρ be a pseudo-run of the form below weakly satisfying the property P = (I1, . . . ,IK):

(q0,~x0)
π ′0−→ (q1,~x1)

π1−→ (q2,~x2)
π ′1−→ ·· ·

π ′K−1
−−→ (q2K−1,~x2K−1)

πK−→ (q2K ,~x2K)

We design a runρ satisfyingP of the form(π ′0(π1)
β1π ′1(π2)

β2 · · · (πK)βK ,(q0,~x0)) and of the appropriate
length for someβ1, . . . ,βK ≥ 1. We use the same type of construction as in the proof of Lemma3.1.
First, let us defineX1, . . . ,XK ⊆ [1,n] that records when components are strictly increasing: forl ∈ [1,K],
Xl = { j ∈ [1,n] :~x2l−1( j) <~x2l ( j)}\ (

⋃

l ′<l Xl ′). Observe that forl 6= l ′, we haveXl ∩Xl ′ = /0. Now let us
defineβK , . . . ,β1 (in this ordering):

• βK
def
= 1.

• Now suppose thatβi+1, . . . , βK are already defined andi < K. Let us defineβi. If Xi = /0, then
βi

def
= 1. Otherwiseβi

def
= (K− i)(L−1)maxneg(V )+ Σi′=K

i′=i+1((L−1)maxneg(V ))βi′ .
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The term(K− i)(L−1)maxneg(V ) is related to the pathsπ ′i , . . . , π ′K−1 whereas the termΣi′=K
i′=i+1((L−

1)maxneg(V ))βi′ is related to the pathsπi+1, . . . , πK . Again, it is worth noting thatL− 1 transitions
cannot decrease a component by more than(L−1)maxneg(V ). Now, it is not difficult to show that

(π ′0(π1)
β1π ′1(π2)

β2 · · · (πK)βK ,(q0,~x0))

defines a run (and not only a pseudo-run) and moreover it satisfiesP which is witnessed by the decom-
position below:

(q0,~x0)
π ′0−→ (q1,~y1)

π1−→ (q2,~y2)
(π1)

β1−1π ′1−−−−−→ (q3,~y3)
π2−→ ·· ·

· · ·
(πK−1)

βK−1−1π ′K−1
−−−−−−−−−−→ (q2K−1,~y2K−1)

πK−→ (q2K ,~y2K)

It remains to verify that this run is not too long. Let us definethe sequenceγ0, . . . ,γK−1 with γi =
ΣK

i′=K−iβi′ . So,γ0 = βK = 1 andγi+1 = βK−i−1 + γi with

βK−i−1≤ (i +1)(L−1)maxneg(V )+ ((L−1)maxneg(V ))γi

So γi+1 ≤ (K× L×maxneg(V ))+ (L×maxneg(V ))γi for i ∈ [1,K − 1]. If L×maxneg(V ) = 1, then
γK−1 ≤ K(K×L×maxneg(V )). OtherwiseγK−1 ≤ (L×maxneg(V ))K−1× (1+K×L×maxneg(V )).
Finally, by using that the sum of the pathsπ ′i is bounded byL, we get the desired bound.

G Proof of Lemma 4.1

Proof. Let~y2l−2
π ′l−1
−−→~y2l−1

πl−→~y2l · · ·
π ′K−1
−−→~y2K−1

πK−→~y2K be a pseudo-run satisfyingA [P, l , INCR, I ,+∞].

Let us show thatρ ′ : ~y2l−2 =~z2l−2
π ′l−1(πl )

nl−1

−−−−−−→~z2l−1
πl−→~z2l · · ·

π ′K−1(πK)nK−1

−−−−−−−→~z2K−1
πK−→~z2K satisfies the property

A [P, l , INCR, I ,+∞] too. Conditions (P1′) and (P2′) hold true since forl ′ ∈ [l ,K],~z2l ′ −~z2l ′−1 =~y2l ′ −
~y2l ′−1. Let~x be a pseudo-configuration occurring inρ ′ between~z2l ′ and strictly before~z2l ′+2 with l ′ ≥
l − 1 and j ∈ I \ (INCR∪{ j : ∃ l ≤ l ′′ ≤ l ′, ~z2l ′′( j)−~z2l ′′−1( j) > 0}). Again, since for alll ′′ ∈ [l ,K],
~z2l ′′ −~z2l ′′−1 =~y2l ′′ −~y2l ′′−1, the effect of the pathsπl , . . . , πl ′ on the jth component is nonnegative. So
~x( j) ∈ N, which guarantees the satisfaction of the condition (P3′).

H Proof of Lemma 4.2

The proof below is essentially a refinement of the proof of [21, Lemma 4.4].

Proof. Let P = (I1, . . . ,IK), l ∈ [1,K], I , INCR ⊆ [1,n] and ρ be the pseudo-run described below
satisfyingA [P, l , INCR, I ,B]:

ρ =~x2l−2
π ′l−1
−−→~x2l−1

πl−→~x2l · · ·
π ′K−1
−−→~x2K−1

πK−→~x2K

We posed0 = card(J0) with J0 = I \ INCR. We suppose that the pseudo-runρ is induced by the path
t1 . . . tk with ρ = ~u0 · · ·~uk. Let f : [2l − 2,2K]→ [0,k] be the map such that~xi = ~uf (i) ( f (2l − 2) = 0
and f (2K) = k). By the satisfaction of the condition (P3′) from A [P, l , INCR, I ,B], for every pseudo-
configuration~u j with j ≤ f (2l−1), we have~u j(J0)∈ [0,B−1]J0. If the length ofπ ′l−1 is at leastBd0, then
there are two distinct positionsj < j ′ ≤ f (2l−1) such that~u j(J0) =~u j ′(J0) (by the pigeonhole principle)
and therefore(t1 . . . t jt j ′+1 . . . tk,~x2l−2) also satisfiesA [P, l , INCR, I ,B]. By iterating this contraction
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process, without any loss of generality, we can assume that in ρ , we havef (2l −1)− f (2l −2) < Bd0

and forl ′ ∈ [l −1,K−1], f (2l ′+1)− f (2l ′) < Bcard(I).
Now, for eachD ∈ [l ,K] we shall shorten the pseudo-run~x2D−1

πD−→~x2D. This is done by removing
loops as explained below, and following the key steps of the proof of [21, Lemma 4.4]. We posed =
card(J) with J = I \ (INCR∪{ j : ∃ l ≤ l ′ < D, ~x2l ′( j)− ~x2l ′−1( j) > 0}). A simple loop with respect to J
is a pairsl = (~s,π) such that~s∈ [0,B−1]J andπ = t ′1 . . . t ′γ is a path verifying the conditions below:

• For j ∈ [1,γ ],~s+ Σ j
i=1t

′
i (J) ∈ [0,B−1]J (the boundB is never exceeded).

• Σγ
i=1t

′
i (J) = 0 (no total effect on the components inJ),

• For j < j ′ ∈ [1,γ ] with ( j, j ′) 6= (1,γ), we haveΣ j ′

i= jt
′
i (J) 6= 0 (minimality of the path).

The lengthof sl is defined as the length of its pathπ and itseffectis the valueΣγ
i=1t

′
i . Consequently, let

~y0 · · ·~yγ be a pseudo-run induced by the simple loop(~y0(J), t ′1 . . . t ′γ). Then,

1. ~y0(J) =~yγ (J).

2. For j < j ′ ∈ [1,γ ] such that( j, j ′) 6= (1,γ), we have~y j(J) 6=~y j ′(J).

It is easy to show that the length of a simple loop with respectto J is strictly belowBd (≤ Bd0 ≤
Bcard(I)) and its effect is therefore in[−scale(T )Bd,scale(T )Bd]n. Let~z1, . . . ,~zα be the effects of simple

loops occurring in~x2D−1
t2D−1
−−→ . . .

t2D−→~x2D as factors. Because the effects of simple loops are bounded (see
above), we have

α ≤ (1+2×scale(T )Bd)n≤ (1+2×scale(T ))nBn2
.

From the pseudo-run~x2D−1
πD−→~x2D, we shall define a finite sequence of pairs made of a pseudo-run

~yi
0 · · ·~y

i
Ki

and a tuple~vi ∈N
α such that

• ~v0 =~0 and~y0
0 · · ·~y

0
K0

=~x2D−1 · · ·~x2D.

• ~yi+1
0 · · ·~y

i+1
Ki+1

and~vi+1 are computed from~yi
0 · · ·~y

i
Ki

and~vi by removing a simple loop from~yi
0 · · ·~y

i
Ki

with effect~zβ and by computing~vi+1 from ~vi by only incrementing~vi(β ), i.e. a simple loop is
removed but we remember its effect.

• The length of the final pseudo-run~yN
0 · · ·~y

N
KN

(on which no simple loop can be removed) is less than
(1+Bd)2.

• {~x2D−1(J), . . . ,~x2D(J)}= {~yi
0(J), . . . ,~yi

Ki
(J)} for i ∈ [0,N].

Consequently, whenever~vi( j) > 0, there is a simple loop(~s,π) with effect some~zj such that~s ∈
{~yi

0(J), . . . ,~yi
Ki

(J)}.
Let us explain how to compute~yi+1

0 · · ·~y
i+1
Ki+1

and~vi+1 from ~yi
0 · · ·~y

i
Ki

, ~vi . Suppose that~yi
0 · · ·~y

i
Ki

is
induced by the pathπi = t1, . . . , tKi . If πi has no simple loopt j , . . . , t j ′ as a factor such that

{~x2D−1(J), . . . ,~x2D(J)}= {~yi
0(J), . . . ,~yi

j−1(J),~yi
j ′(J) . . . ,~yi

Ki
(J)}.

thenN = i (we stop the process). Otherwise, let(~yi
j−1(J), t j , . . . , t j ′) be a simple loop with respect toJ

such that
{~x2D−1(J), . . . ,~x2D(J)}= {~yi

0(J), . . . ,~yi
j−1(J),~yi

j ′(J) . . . ,~yi
Ki

(J)}.

Then~yi+1
0 · · ·~y

i+1
Ki+1

is the pseudo-run(t1, . . . , t j−1, t j ′+1, . . . , tKi ,~y
i
0) and~vi+1 is equal to~vi except that

~vi+1(β ) = ~vi(β ) + 1 with t j , . . . , t j ′ having the effect~zβ . Since~x2D−1
πD−→ ~x2D is finite, it is clear that

this process eventually stops and the above-mentioned conditions are clearly satisfied (except for the
bound on the length of~yN

0 · · ·~y
N
KN

).
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Before going any further, let us briefly explain the length of~yN
0 · · ·~y

N
KN

is less than(1+ Bd)2. Sup-
pose that the pseudo-run~yi

0 · · ·~y
i
Ki

has at least(1+ Bd)2 pseudo-run configurations. First, observe that
each block ofBd + 1 successive pseudo-configurations contains at least one simple loop. Moreover,
we wish to preserve the set{~x2D−1(J), . . . ,~x2D(J)}, so we cannot remove any simple loop. The set
{~x2D−1(J), . . . ,~x2D(J)} has cardinal at mostBd. Consequently, there is a block ofBd + 1 successive
pseudo-configurations so that all the restrictions to the components inJ have already appeared earlier.

Let~yN
0 · · ·~y

N
KN

be the final sequence induced by the patht1, . . . , tKN wih final loop vector~vN ∈ N
α .

Since the pseudo-runρ satisfiesA [P, l , INCR, I ,B], we have the following properties.

1. For j ∈ [1,n], we have((Σα
i=1~vN(i)~zi)+ΣN

i=1ti)( j) ∈ID( j). Depending on the value ofID( j), this
can encoded by at most 2 inequality constraints of the formΣα

i=1ai~vN(i)( j)≥ b j .

2. For j ∈ J, ((Σα
i=1~vN(i)~zi)+ ΣN

i=1ti)( j)≥ 0.

There is a bit of redundancy here for the components inJ since removing simple loops does not change
the projection overJ of the first and last pseudo-configurations. Hence, we only need to bother about the
components in([1,n]\J). The vector~vN is a solution to the following inequality system:

(
∧

j∈([1,n]\J)

((Σα
i=1~vN(i)~zi)+ ΣN

i=1ti)( j) ∈ID( j))

The number of inequalities can be bounded by 2n, the number of variables is bounded by(1+ 2×
scale(T ))nBn2

and all the absolue values of the components are bounded by(1+ Bn)2× scale(T ) +
scale(P). It is time to apply [4] in order to obtain a small solution:

Theorem H.1. [4] Let A∈ [−M,M]U×V and~b∈ [−M,M]U , whereU,V,M ∈ N. If there exists~x∈ N
V

such thatA~x≥~b, then there exists~y∈ [0,(max{V,M})CU ]V such thatA~y≥~b, whereC is some constant.

By application of Theorem H.1 on the above system with the values below

1. V = (1+2×scale(T ))nBn2
.

2. M = (1+Bn)2×scale(T )+scale(P).

3. U = 2n.

It has a solutionX ∈ N
V such that each value is indeed within the interval

[0,((1+2×scale(T )×scale(P))nB2n2
)C2n]

Indeed, we have max(N,M)≤ ((1+2×scale(T )scale(P))nB2n2
).

From~yN
0 · · ·~y

N
KN

and~vN, we define a finite sequence of pseudo-runs~ui
0 · · ·~u

i
Li

= (t i
1 · · · t

i
Li
,~ui

0) such that

• ~u0
0 · · ·~u

0
L0

=~yN
0 · · ·~y

N
KN

.

• The length of the sequence is exactlyα +1.

• ~u j+1
0 · · ·~u j+1

L j+1
= (t j+1

1 · · · t j+1
L j+1

,~u j+1
0 ) is computed from(t j

1 · · · t
j
L j

,~u j
0) as follows. Let(~sj+1,π j+1) be

a simple loop with effect~zj+1. There existsβ such that~u j
β (J) =~sj+1. Then,

t j+1
1 · · · t j+1

L j+1

def
= t j

1 · · · t
j
β · (π j+1)

X ( j+1) · t j
β+1 · · · t

j
L j

and~u j+1
0 · · ·~u j+1

L j+1
= (t j+1

1 · · · t j+1
L j+1

,~u j
0).
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It is easy to check that~x2D−1 =~uα
0 . By replacing~x2D−1

πD−→~x2D by~uα
0 · · ·~u

α
Lβ

for eachD∈ [l ,K], we obtain

a pseudo-run satisfyingA [P, l , INCR, I ,B] whose length is bounded by the value below:

(K +1)Bn+K[(Bn+1)2+

number of effects
︷ ︸︸ ︷

(1+2×scale(T ))nBn2
×

maximal number of copies per effect
︷ ︸︸ ︷

[(1+2×scale(T )×scale(P))nB2n2
]C2n×

bound on the length of simple loop
︷ ︸︸ ︷

(Bn +1) ]

This value is bounded by

(K +1)×C
′×scale(T )p1(n)scale(P)p2(n)×Bp3(n)

whereC′ is a constant andp1(·), p2(·) andp3(·) are polynomials. Sincen,B≥ 2, this value is bounded by
(K + 1)(scale(T )× scale(P)×B)p(n) for some polynomp(·). Suppose thatp(n) = Σ f

i=0aini (without
any loss of generality, we can assume that theai ’s are non-negative andaf 6= 0). Letd′ ≥ 0 be such that

Σ f
i=0ai ≤ 2f ′ . Sincen≥ 2, (scale(T )×scale(P)×B)p(n) is bounded by(scale(T )×scale(P)×B)nf+ f ′

.
Hence, the length of the final pseudo-run satisfyingA [P, l , INCR, I ,B] and starting at~x0 is bounded by
(K +1)× (scale(T )×scale(P)×B)nC1 for some constantC1.

I Proof of Theorem 4.5

Proof. (I, upper bound) Let(V ,(q,~x)) be an initialized VASS of dimensionn andP be a generalized
unboundedness property. By Lemma 3.2, one can compute in logspace an initialized VAS((T ,~x′),P ′)
such that(V ,(q,~x)) satisfiesP iff (T ,~x′) satisfiesP ′, T has dimensionn+ 3, P andP ′ have the
same length and scale(T ) = max((card(Q) + 1)2,scale(V )). Then, we guess a witness pseudo-run
weakly satisfyingP ′ whose length is bounded by

((1+K)×2×scale(T )×scale(P)×maxneg(T ))(n+3)(2(n+3)+1)C

This can be done in exponential space in the combined size of(V ,(q,~x)) andP. By Savitch’s theorem,
we get the EXPSPACE upper bound.
(I, lower bound) A first temptation is to state EXPSPACE-hardness from EXPSPACE-hardness of the
unboundedness problem for VAS. However, we are looking for alogspace many-one reduction and an
instance of unboundedness can be naturally reduced ton instances of the generalized unboundedness
problem with property of length 1 and scale 1. We shall directly adapt [17, 7] to obtain the lower bound.

By [19], given a deterministic Turing machineM of sizen exponentially bounded, one can build
a counter automataC of size O(n) that is 22

n
-bounded andM halts on the empty tape iffC halts.

Indeed,C has a halting control state with no transition going out of it. In [17, 7], it is shown that given
a deterministic counter automatonC of sizen with a halting control state, one can build anet program
(equivalent to a Petri net) of sizeO(n2) simulatingC . In particular, its dimension is also inO(n2). This
net program can be easily shown equivalent to a VASSV of dimensionn′ (in O(n2)), with m′ control
states (also inO(n2)) and with two distinguished control statesq0, qh satisfying the following conditions:

• C halts iff there is a run from(q0,~0) reaching a configuration with control stateqh.
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• Whenever the simulation ofC in a run inV is not faithful toC , then the run eventually terminates.

• C does not halt iff there is an infinite run from(q0,~0) that never reaches a configuration with
control stateqh.

Consequently, whenC halts, all the runs from(q0,~0) are finite and there is a finite number of runs from
(q0,~0). We define the VASSV ′ of dimensionn′+ 1 that behaves asV except that we add a self-loop
transition toqh whose effect is to add one to the(n′+1)th component. Then, we haveC halts iff there is
a run inV ′ of the form(q0,~0)

∗
−→ (q,~x)

∗
−→ (q,~x′) such that~x([1,n′]) =~x′([1,n′]) and~x(n′+1) <~x′(n′+1).

This can be turned into an instance of the generalized unboundedness problem.

(II) Easy consequence of the proof of (I, upper bound).

J Proof of Corollary 5.1

Proof. The EXPSPACE upper bound for regularity detection problem and strong promptness detection
problem is a consequence of remarks from Section 3.3.

Let us establish the lower bound for the simultaneous unboundedness problem. LetV be the VASS
from the lower bound proof for Theorem 4.5(I). We define the VASSV ′ of dimensionn′+1 that behaves
asV except that we add a self-loop transition toqh whose effect is to add one to the(n′+1)th component.
Then, we haveC halts iff (V ′,(q0,~0)) is not(n′+1)-unbounded. Simultaneous unboundedness problem
is therefore coEXPSPACE-hard but since coEXPSPACE= EXPSPACE, the simultaneous unboundedness
problem is EXPSPACE-hard. Now, let us establish the upper bound for the simultaneous unboundedness
problem. Let(V ,(q,~x)) be an initialized VASS of dimensionn andX be a subset of[1,n]. We first
guess a disjointness sequenceσ = X1 · · · · ·XK such thatX ⊆

⋃

1≤l≤K Xl andX ∩XK 6= /0 (this requires
only polynomial space). Let us now consider the generalizedunboundedness propertyPσ as defined
in Section 3.3 for dealing with simultaneous unboundedness. Checking whether(V ,(q,~x)) satisfiesPσ
can be reduced in logspace to an instance of the generalized unboundedness problem, that can be solved
in exponential space in the size of(V ,(q,~x)): indeed the length ofPσ is bounded byn and its scale is
equal to one.

K Proof of Theorem 5.2

Proof. (I) Let us start by showing EXPSPACE-hardness. LetV be the VASS from the lower bound proof
for Theorem 4.5(I) obtained from [17, 7]. We define the VASSV ′ of dimensionn′+ 1 that behaves as

V except that we add two transitionsqh
en′+1
−−→ qh andqh

−en′+1
−−−→ qh whereei denotes theith unit vector

andqh is the halting control state ofV . Then, we haveC halts iff (V ′,(q0,~0)) is not reversal-bounded
with respect ton′+1. Reversal-boundedness detection problem is therefore coEXPSPACE-hard but since
coEXPSPACE= EXPSPACE, the problem is EXPSPACE-hard.

Now, let us show EXPSPACE-easiness. LetV = (Q,n,δ ) be a VASS and(q,~x) be a configuration. By
Lemma 2.4,(V ,(q,~x)) is not reversal-bounded iff(T ,~x′) = ((Vrb,(qrb,~xrb)))

HP is (n+ i)-unbounded.
The operator(·)HP refers to the reduction from VASS to VAS in [11] (see also the proof of Lemma 2.4).
scale(T ) is bounded by max((card(Q)× 2n + 1)2,scale(V )) and ((Vrb,(qrb,~xrb)))

HP can be built in
polynomial space. Dimension ofT is 2n+3. First, we guessP of length at most 2n+3 for character-
izing (n+ i)-unboundedness (this requires only polynomial space): itsscale is equal to one. A witness
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pseudo-run weakly satisfyingP (in T ) does not need to be longer than

((1+2n+3)×2×max((card(Q)×2n +1)2,scale(V ))2)(2n+3)(2(2n+3)+1)C
,

which is doubly exponential in the size ofV and (q,~x) (our initial instance). This comes from the
expression before Theorem 4.5. A nondeterministic algorithm guessing such a pseudo-run requires only
exponential space.
(II) When n is fixed, the above expression is only exponential in the sizeof V and(q,~x).
(III) This part is similar to (I) and (II). By combining Lemmas 3.5 and 3.2, we build in polynomial space
an initialized VAS(T ,~x′) such that(V ,(q,~x)) is not weakly reversal-bounded iff(T ,~x′) satisfiesP ′

σ
for some disjointness sequenceσ = X1 · · ·XK with n+ i ∈ XK, i ∈ (X1∪ ·· ·∪XK−1) and such that

• P ′
σ is defined fromPσ as done in the proof of Lemma 3.2 (length bounded byn and scale equal

to 1),

• the dimension ofT is 2n+3,

• scale(T )≤max((card(Q)×2n+1)2,scale(V )).

Again, a witness pseudo-run weakly satisfyingP ′
σ (in (T ,~x′)) does not need to be longer than

((1+2n+3)×2×max((card(Q)×2n+1)2,scale(V ))2)(2n+3)(2(2n+3)+1)C

which is doubly exponential in the size ofV and(q,~x) (our initial instance). A nondeterministic algo-
rithm guessing such a pseudo-run requires only exponentialspace.

Let us establish the EXPSPACE-hardness. LetV be the VASS from the lower bound proof for The-
orem 4.5(I). We define the VASSV ′ of dimensionn′+ 1 that behaves asV except that we add two

transitionsqh
2×en′+1
−−−−→ q′h

−en′+1
−−−→ qh Then,C halts iff (V ′,(q0,~0)) is not weakly reversal-bounded with re-

spect ton′+ 1. Weak reversal-boundedness detection problem is therefore coEXPSPACE-hard, whence
EXPSPACE-hard.

25


	Introduction
	Preliminaries
	Simultaneous unboundedness problem for VASS
	Standard reversal-boundedness and its new variant

	Generalized Unboundedness Properties
	Witness runs for simultaneous unboundedness
	A helpful generalization
	From regularity to reversal-boundedness detection
	A first relaxation

	ExpSpace Upper Bound
	Approximating generalized unboundedness properties
	Bounding the length of pseudo-runs

	Other Applications
	Concluding Remarks
	Proof of Lemma 2.4
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Lemma 3.4
	Proof of Lemma 3.5
	Proof of Lemma 3.6
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Proof of Theorem 4.5
	Proof of Corollary 5.1
	Proof of Theorem 5.2

