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Numerous properties of vector addition systems with s@tesunt to checking the (un)boundedness
of some selective feature (e.g., number of reversals, mgttg. Some of these features can be
checked in exponential space by using Rackoff’s proof oratgants, combined with Savitch’s theo-
rem. However, the question is still open for many others, eegersal-boundedness. In the paper, we
introduce the class of generalized unboundedness prepé#rtt can be verified in exponential space
by extending Rackoff’s technique, sometimes in an unomixaday. We obtain new optimal upper
bounds, for example for place boundedness problem, rdveosadedness detection (several vari-
ants exist), strong promptness detection problem andaetudletection. Our analysis is sufficiently
refined so as we also obtain a polynomial-space bound whetirtirension is fixed.

1 Introduction

Reversal-boundednessA standard approach to circumvent the undecidability ofréeehability prob-
lem for counter automatd [IL9] consists in designing subekwwith simpler decision problems. For
instance, the reachability problem is decidable for veattgition systems with states (VAS$)[15] or
for lossy counter automat&l[1]. Among the other interestingclasses of counter automata, reversal-
bounded counter automata verify that any counter has a ledundmber of reversals, alternations be-
tween a nonincreasing mode and a nondecreasing mode, andevéa. Reversal-boundedness remains
a standard concept that was initially introduced[ih [3] faultistack automata. A major property of
such operational models is that reachability sets aretefédg definable in Presburger arithmetic [13],
which allows decision procedures for LTL existential medeécking and other related problems, see
e.g. [B]. However, many natural problems related to vetificeremain undecidable for reversal-bounded
counter automata, see elg.[[b, 6], and the class of revieossleled counter automata is not recursivé [13].
A significant breakthrough was achieved i [8] by designimg@cedure to determine when a VASS is
reversal-bounded (or weakly reversal-bounded as defied,laven though the decision procedure can
be nonprimitive recursive in the worst-case. This meansriharsal-bounded VASS can benefit from
the known techniques for Presburger arithmetic in ordeokeestheir verification problems.

Selective unboundednessln order to characterize the complexity of detecting resleb®undedness
on VASS (the initial motivation for this work), we make a detdo selective unboundedness, as ex-
plained below. Numerous properties of vector addition esyst with states amounts to checking the
(un)boundedness of some selective feature. Some of thasgde can be verified in exponential space
by using Rackoff’s proof or its variants, whereas the qoess still open for many of them. In the paper,
we advocate that many properties can be decided as soon ae afl@to decide selective unbounded-
ness, which is a generalization of place unboundednessfdrriets (known to be equivalent to VASS).
The boundedness problem was first consideref in [15] andrskeeidable by simply inspecting Karp
and Miller trees: the presence of the infinity vatagalso denoted bw) is equivalent to unboundedness.
So, unboundedness is equivalent to the existence of a witnesof the fornmxy — X; I X> such that

X1 < X, (< is the standard strict ordering on tuples of natural numbé&ng21], it is shown that if there is
such arun, there is one of length at most doubly exponefitfat leads to the EPSPACE-completeness
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of the boundedness problem for VASS using the lower bouna ffbd] and Savitch's theorem. A vari-
ant problem consists in checking whether ttlecomponent is bounded, i.e., is there a bo@nslch
that for every configuration reachable frofy its ith component is bounded B? Again, inspecting
Karp and Miller trees reveals the answer: the presence ahfimity value o at theith position of some
extended configuration is equivalentitanboundedness. Surprisingly, the literature often roastihis
alternative problem, see e.@.[22], but never specifiesatsptexity: ExPSPACE-hardness can be ob-
tained from [1¥] but as far as we know, no elementary compjexper bound has been shown. It might
be explained by the fact that, if a VASS is unbounded, theretlsea witness infinite run with an infinite
number of distinct configurations. By contrast, it may hapfteit a VASS is-unbounded but no infinite
run has an infinite amount of distinct values at ttieposition of the configurations of the run. In the
paper, we present a generalization of place unboundedyedsebking whether a set of components is
simultaneously unbounded, possibly with some ordering &ectio-312). This amounts to specifying
in the Karp and Miller trees, the ordering with which the \edeappears in the different components.
Our contribution. In the paper we show the following results.

1. Detecting whether a VASS is reversal-boundedness ine¢heesof [18] or[[B] is EPSPACE
complete by refining the decidability results from [8] (sde®renlLR).

2. We introduce the generalized unboundedness problem ichwahany problems can be captured
such as the reversal-boundedness detection problemdatiedqmundedness problem, termination,
strong promptness detection problem, regularity detediod many other decision problems on
VASS. We show that this problem can be solved in exponerigtes by adaptind[21] even though
it does not fall into the class of increasing path formuldeomiuced in[[2] (see Theorelm#.5).

3. Consequently, we show that regularity and strong proegstrietection problems for VASS are
in EXPSPACE. The EXPSPACE upper bound has been left openlih [2]. Even though most of our
results essentially rest on the fact that place boundedrasbe solved in EPSPACE, our slight
generalization is introduced to obtain new complexity ugdpmind for other related problems.

4. As a by-product of our analysis and following a parameégtianalysis initiated i [24,1.2], for all
the above-mentionned problems, we show that fixing the déioarof the VASS allows to get a
P SpACE upper bound.

The paper has also original contributions as far as prodinigoes are concerned. First, simultaneous
unboundedness has a simple characterization in terms @f &ad Miller trees, but we provide in the
paper a witness run characterization, which allows us twigeoa complexity analysis along the lines
of [21]]. We also provide a witness pseudo-run charactéoizah which we sometimes admit negative
component values. This happens to be the right approach alwmaracterization from coverability
graphs [15[728] already exists. Apart from this unorthoddamation of [ZL], in the counterpart of
Rackoff’s proof about the induction on the dimension, wevpate an induction on the dimension and on
the length of the properties to be verified (see Lerimh 4.3)s iBha genuine breakthrough compared
to [21,[24 [ I0[2]. We believe this approach is still subjeatttensions.

2 Preliminaries
In this section, we recall the main definitions for vector iidd systems with states (VASS), without

states (VAS) as well as the notions of reversal-boundediméssiuced in[[IB[1B]. We also present the
simultaneous unboundedness problem, which slightly géimes place unboundedness problem for Petri
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nets. First, we writéN [resp.Z] for the set of natural numbers [resp. integers] &ndn'| with m,m’ € Z
to denote the sefj € Z: m< j <m'}. Forx e Z", we writeX(1), ..., X(n) for the entries oX. For

def

X,yeZ", X<y & fori e [1,n], we haveX(i) < y(i). We also writeX < y whenX <y andX # V.

2.1 Simultaneous unboundedness problem for VASS

VASS. A vector addition system with statfisl]] (VASS for short) is a finite-state automaton with transi
tions labelled by tuples of integers viewed as update fonsti AVASSs a structure/” = (Q,n,d) such
thatQ is a nonempty finite set afontrol statesn > 1 is thedimension and¢ is thetransition relation
defined as a finite set of triples @ x Z" x Q. Elements = (g,b,q) €  are calledransitionsand are

often represented byg d. VASS with a unique control state are callegctor addition system&AS

for short) [15]. In the sequel, a VA is represented by a finite nonempty subset'gfencoding natu-
rally the transitions. VASS and VAS are equivalent to Pettsnsee e.gl ]23]. In this paper, the decision
problems are defined with the VASS model and the decisionepires are designed for VAS, assuming
that we know how the problems can be reduced, seelely. [1dlketh we prefer to define problems
with the help of the VASS model since when infinite-state sidon systems arise in the modeling of
computational processes, there is often a natural fagtofieach system state into a control component
and a memory component, where the set of control statesigatypfinite.

Runs. A configurationof ¥ is defined as a paifg,X) € Q x N" (for VAS, we simply omit the con-
trol state). Aninitialized VASSs a pair of a VASS and a configuration. Given two configuration

(a,%), (¢,X) and a transition = q 2 ¢, we write (q,X) = (¢,X) wheneverX' = %-+b. We also write
(0,X) — (q’,i’) when there is no need to specify the transitionThe operational semantics of VASS
updates configurations, runs of such systems are essgmsgjlences of configurations. Every VASS
induces a (possibly infinite) directed graph of configuradio Indeed, all the interesting problems on
VASS can be formulated on iteansition systeniQ x N", —). Given a VASSY = (Q,n,d), arunpis a
nonempty (possibly infinite) sequenpe= (go, %), - - -, (0k, %), - - - Of configurations such that;, %) —
(0i41,%71) for all i. We setReacli?’, (0o, %)) < {(qk, %) : there is a finite rurigo, ), ..., (G %) }. A
path rTis a finite sequence of transitions whose successive catatds respeal (actually this notion

is mainly used for VAS without control states). pseudo-configurations defined as an element of
QX Z". Whenm=t; ...t is a path, thegseudo-rurp = (1, (q,X)) is defined as the sequence of pseudo-

configurationg do,Xo) - - - (G, X) such that(qo,Xo) = (g, X), and fori € [1,k], there ist = g b, gi+1 such
that% = %_1+b. So, we deliberately distinguish the notion of path (seqeenf transitions) from the
notion of pseudo-run (sequence of elementQir Z" respecting the transition frorr). We also use
the notation(q, X) AR (q’,f’) with pseudo-configurations. Given a VASS[resp. a pseudo-configuration
(g,X), etc.] of dimensiom, we write ¥ (I) [resp. (g,X)(l), etc.] to denote the restriction of [resp.
(g,X), etc.] to the components inC [1,n].

Sizes. GivenX € Z", we write maxne¢X) to denote the value mékmax(0,—X(i)) : i € [1,n]}). By

extension, we write maxnég’) to denote magmaxnegb) : g LA q € d0}. Furthermore, we write

scald ') to denote the value mékb(i)| : q LN q € 9, i € [1,n]}). Forinstance maxné¢g-2,3)) = 2
and scalg{(—2,3)}) = 3. Given a VASSY = (Q,n,d), we write |¥| to denote its size defined by
cardQ) +nx cardd) x (2x cardQ) + (2+ [logz(1+scal€?'))])). Observe that 2 [log2(1+a)]| is

a sufficient number of bits to encode integerg-a, a] for a > 0. Moreover scalg/’) > maxned?’),
scald?) < 2"l and|7| > 2.

Simultaneous unboundedness problemLet (¥, (go,X0)) be an initialized VASS of dimension and
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X C[1,n]. We say that ¥, (go,%o)) is simultaneously X-unboundefifor any B > 0O, there is a run
from (0o, %o) to (,y) such that fori € X, we havey(i) > B. WhenX = {j}, we say tha(?’, (0o, %o))
is j-unbounded It is clear that(¥", (go,%o)) is bounded (i.e.Reacli?’, (qo,Xo)) is finite) iff for all j,
(7, (0o, %)) is not j-unbounded. Theimultaneous unboundedness problerdefined as follows: given
an initialized VASS(7, (go,Xo)) of dimensionn andX C [1,n], is (7, (0o, %)) simultaneouslyX-un-
bounded?

Theorem 2.1. [15] Simultaneous unboundedness problem is decidable.

This follows from [15,[28]: (¥, (qo,%o)) is simultaneouslyX-unbounded iff the coverability graph
CG(7,(qo,%)) (see e.g.,[115,28]) contains an extended configurafipy) such thaty(X) = & (for
a € ZU{x}, we writed to denote any vector of dimension> 1 whose component values arg.

2.2 Standard reversal-boundedness and its new variant

A reversalfor a counter occurs in a run when there is an alternation fnonmincreasing mode to non-
decreasing mode and vice-versa. A VASSdsersal-boundedvhenever there is > 0 such that for
any run, every counter makes no more thmameversals. This class of VASS has been introduced and
studied in [1B], partly inspired by similar restrictions omultistack automatd[3]. In spite of the fact
that the problem of deciding whether a counter automatonSvAvith zero-tests) is reversal-bounded
is undecidable[T13], we shall see that reversal-boundedteo@utomata have numerous fundamental
properties. Moreover, a breakthrough has been achievef] ioy[ establishing that checking whether
a VASS is reversal-bounded is decidable. The decidabiliyofpin [8] provides a decision proce-
dure that requires nonprimitive recursive time in the waeste since Karp and Miller trees need to
be built [I5/28]. Lety = (Q,n,d) be a VASS. Let us define the auxiliary VASS, = (Q,2n,d’) such
that essentially, the new components iy, count the number of reversals for each component from
We setQ’ = Q x {DEC,INC}" and, for eaclW € {DEC,INC}" andi € [1,n], V(i) encodes whether com-

ponent is in a decreasing mode or in an increasing mode. Moreéggnode 2 (¢, mode) € & (with

B €72 & there isq2 ¢ € & such thatt/([1,n]) = b and for everyi € [1,n], one of the conditions
below is satisfied:

o B(i) < 0, modéi) = mode(i) = DEC andd/ (n+i) =0,
e B(i) < 0, modéi) = INC, mode(i) = DEC andd/(n+i) = 1,
o B(i) >0, modéi) = mode(i) = INC andb/(n+i) =0,
e B(i) > 0,modéi) = DEC,mode(i) = INC andb/(n+i) = 1,

B(i) = 0, modéi) = mode(i) andd/ (n+i) = 0.

def

Initialized VASS (7, (q,X)) is reversal-bounded3] £ fori e [n+1,2n], {y(i) : 3 run (G, %b) —
(d,y) in Y} is finite with g, = (q,II\TC), Xrp restricted to then first components i and X, re-
stricted to then last components i§. Whenr > max({y(i) : 3 run (g, %b) = (¢,y) in %p} :i €
[n+1,2n]) (¥,(q,X)) is said to be-reversal-boundedFori € [1,n], when{y(n+i) : 3 run (rp,%p) —
(d,y) in ¥p} is finite, we say tha{?",(q,X)) is reversal-bounded with respect to A VASS ¥ is
globally reversal-boundedff there isr > 0 such that for every configuratiofg,X), (¥, (q,X)) is r-
reversal-bounded. Global reversal-boundedness detexmdiobe easily reduced to reversal-boundedness
detection. Indeed, it is sufficient to introduce a new cdrdtateq,e, that contains as many self-loops as
the dimensiom and each self-loopincrements thé&h component. Then, nondeterministically we jump
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to the rest of the VASS. In this way¥”, (gnew 0)) is reversal-bounded/(’ is the new VASS obtained as
a variant ofY) iff ¥ is globally reversal-bounded (forthcoming upper boundbsagiply to this problem
too).

Reversal-boundedness for counter automata, affwttiori for VASS, is very appealing because
reachability sets are semilinear as recalled below.

Theorem 2.2. [A3] Let (¥/,(q,X)) be anr-reversal-bounded VASS. For each control st@itethe set
{yeN": Jrun(q,X) = (¢,y)} is effectively semilinear.

This means that one can compute effectively a Presburgerufarthat characterizes precisely the
reachable configurations whose control staig.iSo, detecting reversal-boundedness for VASS, which
can be easily reformulated as an unboundedness problerortis the effort since semilinearity follows
and then decision procedures for Presburger arithmetibearsed.

Lemma 2.3. (7,(q,X)) is reversal-bounded with respect if (#;p, (Qrb, %)) iS NOt(n+i)-unbounded.

An interesting extension of reversal-boundedness isdotred in [825] for which we only count the
number of reversals when they occur for a counter value aagieen bound. For instance, finiteness
of the reachability set implies reversal-boundedness énstimse of(8,25], which we shall calleak
reversal-boundednesdet ¥ = (Q,n,d) be a VASS and a boun € N. Instead of defining a counter
automaton’;, as done to characterize (standard) reversal-boundedwesdefine directly an infinite
directed graph that corresponds to a variant of the trams#ystem of/;y,: still, there aren new counters
that record the number of reversals but only if they occuwvalmboundB. That is why, the infinite di-
rected grapiT § = (Q x {DEC,INC}" x N2", —z) is defined as follows{g, modex) —g (¢, mode, X))

. there is a transitiog 2 ¢ € & such tha® ([1,n]) = X([1,n]) + b, and for eveny € [1,n], one of the

conditions below is satisfied:

B(i) < 0, mod€i) = mode(i) = DEC andd/(n+i) = 0,

i) < 0, modéi) = INC, mode(i) = DEC, (i) < B andb/(n+i) = 0,
i) < 0, modéi) = INC, mode(i) = DEC, (i) > B andb/(n+i) = 1
i) > 0, modéi) = mode(i) = INC andb/ (n+i) = 0,
i) i) = DEC, modé(i) = INC, X(i) > Bandb/ (n+i) =
) )
)

[ ]
ol ol ol ol ol ol

= = = = =

> 0, modéi 1

i) > 0, modéi) = DEC, mode(i) = INC, X(i) < B andb/(n+i) = 0,
(i) = 0, modéi) = mode(i) andl (n+i) = 0.
Initialized VASS(¥, (q,X)) is weakly reversal-boundeflf] & there is som@® > 0 such that foi € [n+
1,2n], {¥(i) : (b, %b) —B (d,Y) in TSs} is finite. Whenr > max({¥(i) : (g, %) —8 (¢,¥) in TS} :
ien+1,2n) (7,(g,X)) is said to ber-reversal-B-bounded Observe that whenevér, (g,X)) is r-
reversal-bounded(?, (q,X)) is r-reversal-0-bounded. As shown i [8}reversalB-boundedness for
some knowrr and B also leads to effective semilinearity of reachability satsl therefore detecting
weak reversal-boundedness is also worth the effort. rEwersal-boundedness detection problem
defined as follows: given an initialized VAS®,(q,X)) of dimensionn andi € [1,n], is (¥, (q,X))
reversal-bounded with respect to the compon&ntWe also consider the variant with weak reversal-
boundedness.
Let us conclude this section by Lemimal2.4 below. The proassemtially based o [l1, Lemma 2.1]

and on the definition of the initialized VAS&/p, (arb, %b)). The key properties are that the dimension
increases only linearly and the scale “only” exponentiailyhe dimension.
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Lemma 2.4. Given ¥ = (Q,n,d) and a configuratiorig,X), one can effectively build in polynomial
space an initialized VA$.7,X') of dimension 2+ 3 such tha{*’, (q,X)) is reversal-bounded with re-
spect td iff (.7,%) is not(n-+i)-unbounded. Moreover, scél&) = max((card Q) x 2"+1)?,scalé?)).

Note also that by using the simple reduction from VASS to VA& tincreases the dimension by the
number of control states, we would increase exponentiakydimension, which would disallow us to
obtain forthcoming optimal complexity bounds. In Lemma, 3u& shall explain how to reduce weak
reversal-boundedness detection to a generalizatign-pf )-unboundedness.

3 Generalized Unboundedness Properties

In this section, we essentially introduce the generaliza@sbundedness problem and we show how sev-
eral detection problems can be naturally reduced to it.

3.1 Witness runs for simultaneous unboundedness

We know that(¥, (qo,Xo)) is i-unbounded iff the coverability gragbG(¥, (do,%0)) (see e.g.[[149,28])
contains an extended configuration withon theith component. This is a simple characterization
whose main disadvantage is to induce a nonprimitive regeirdecision procedure in the worst-case.
By contrast, unboundedness (of , (o, %)) (i.e. i-unboundedness for some [1,n]) is equivalent to
the existence of witness run of the forfg, Xo) 5 (01,%) A (02, %X2) such that¥; < X, and gy = Q.

In [21]], it is shown that if there is such a run, there is oneenigth at most doubly exponential. Given
a component € [1,n], a natural adaptation teunboundedness is to check the existence of a run of the
form (0o, %) — (G, %1) — (02, %2) such thak; < %o, g1 = gp andy (i) < %(i). By inspecting the proof
in [21]], one can show that if there is such a run, then ther@ésaf length at most doubly exponential.
However, although existence of such a run is a sufficient itiondfor i-unboundedness (simply iterate
rrinfinitely), this is not necessary as shown on the VASS below:

DIGOEO DR

The second component is unbounded from0) but no run(A,0) = (q,%1) = (g,%) With X3 < %,
X1(2) < %2(2) andq € {A,B} exists. Indeed, in order to increment the second compottleatfirst
component needs first to be incremented. The ultimate donddr simultaneous unboundedness needs
to specify the different ways to introduce the vata@long a given branch of the Karp and Miller trees.
This is done thanks to the condition PBefined below and generalized in Sectiod 3.2digjointness
sequences a nonempty sequenae = X; - --- - X of nonempty subsets di, n| such that fori # ',
XiN Xy = 0 (consequentlK < n). A run of the form

(o, %o) %, (A1, %) ™ (0, %2) 5. e (Gok—1,%2k—1) = (G, %ok )
satisfies theroperty PB, (Place Boundedness with respect to a disjointness sequeritfehe condi-
tions below hold true:

(PO) Forl € [1,K], g21-1 = Q2.
(STRICT) forl € [1, K] andj € X, Xgrfl(j) < X_é|(j)

(NONSTRICT) Forl € [1,K] andj € ([1,n]\ X)), %1 (]) < Xa—1(]) impliesje U X.
I'e[Ll-1]



Observe that when (STRICT) holds, the condition (NONSTRJISequivalent to: for all € [1,K] and

alj¢g U X, wehaveXy_1(]) < Xa(j). Consequently, for all € [1,K] and all paths of the form
I"e[1,1-1]

(r5)k for somek > 1, the effect on thgth component may be negative onlyjitc  (J X. Itis
Ie11—1]

now time to provide a witness run characterization for stangousX-unboundedness that is a direct

consequence of the properties of the coverability grap8f [2

Lemma 3.1. Let(¥,(go,X0)) be an initialized VASS of dimensiomandX C [1,n]. Then,(?,(qo,%o))
is simultaneousl)-unbounded iff there is a rymstarting atqo, Xo) satisfying PB; for some disjointness
sequencer = Xy ----- Xk such thatiX C (XpU---UXg) andX N Xk # 0.

Consequently(¥", (qo,Xo)) is i-unbounded iff there is a rup starting at(qo,Xp) satisfying PB; for
some disjointness sequenge= Xj - - - - Xk with i € Xk. This can be expressed in the logical formalisms
from [29,[2] but this requires a formula of exponential simethie dimension because an exponential
number of disjointness sequences needs to be taken intargcdBy contrast, each disjunct has only
polynomial-size im. The path formula looks like that:

K

V3%, %k ACA Ra-a(i) <Xa()DAC AXa-a(i) <%a(j)

X X HEXK =1 jeX JE (X U--UX 1)

It is worth noting that the satisfaction of BRloes not implyx; < Xok. This prevents us from defining
this condition with an increasing path formula [2] and ttiere the ExPSPACE upper bound established
in [2] does not apply directly tounboundedness.

3.2 A helpful generalization

We introduce below a slight generalization of the above ertigs PB; in order to underline their essen-
tial features and to provide a uniform treatment. Moreotras, will allow us to express new properties,
for instance for regularity detection. The conditions (3TR) and (NONSTRICT) specify inequality
constraints between component values. We introduce alteiw place of such constraints. Amterval

is an expression of one of the forms co, +oo], [a, +oo], | — o0, b] or [a, b] for somea, b € Z (with the obvi-
ous interpretation). Ayeneralized unboundedness propetd/= (.71,...,.%) is a nonempty sequence
of n-tuples of intervals. Théengthof &7 is K and itsscaleis equal to the maximum between 1 and
the maximal absolute value of integers occurring in theririeexpressions of” (if any). A run of the
form (do,Xo) = (A, %) ™ (62 %2) ™ (da %) -+ X (Gac_1,%a—1) ™ (0, %ex ) satisfies the property

2 & (P0O) and the conditions below hold true:

(P1) Forl € [1,K] andj € [1,n], we haveXy (j) —Xa—1(]) € A()).
(P2) Forl € [1,K] andj € [1,n], if X3 (j) —X2a—1(j) <O, then there i’ < | s.t. X (j) —Xar—1(j) > 0.

Given a runp, we say that isatisfies? if it admits a decomposition satisfying the adequate caorukt
By extension,(?,(qo,Xo)) satisfiesZ & there is a finite run starting dt,Xp) satisfying Z. Itis
easy to see that condition (P1) [resp. (P2)] is a quantgatwunterpart for condition (STRICT) [resp.
(NONSTRICT)]. Thegeneralized unboundedness problardefined as follows: given an initialized
VASS (7, (0o, %)) and a generalized unboundedness propéftydoes(?, (qo,%o)) satisfy #? Let us
first forget about control states: we can safely restricteles to VAS without any loss of generality, as
it is already the case for many properties.



Lemma 3.2. There is a logspace many-one reduction from the genedalimboundedness problem for
VASS to the generalized unboundedness problem for VAS. Mare an instancé¢(?,(q,X)), Z) is
reduced to an instand¢.7,X), &?’) such that (1) if is of dimensiom, then.7 is of dimensiom+ 3,
(2) 22 and 2’ have the same length and scale and (3) $cale= max((card Q) + 1), scald ")) where
Q is the set of control states df.

The proof is essentially based dn11, Lemma 2.1]. Genedhlimboundedness properties can be
expressed in even more general formalisms for which deitityais known. However, in Sectiohl4, we
shall establish EPSPACE-completeness.

Theorem 3.3. [2] The generalized unboundedness problem is decidable.

Given (7, (qo,%0)), the existence of a run frortop, Xp) satisfying & can be easily expressed in
Yen'’s path logic[[ZP] and the generalized unboundednedsigmmis therefore decidable bV [2, Theorem
3] and [18]16]. We cannot rely oh[29, Theorem 3.8] for debility since [29, Lemma 3.7] contains
a flaw, as observed ifil[2]][2] precisely establishes thasfability in Yen’s path logic is equivalent to
the reachability problem for VASS. Moreover, it is worth imgf that the reduction from the reachability
problem to satisfiability[[2, Theorem 2] uses path formulza tannot be expressed as generalized un-
boundedness properties. Observe that theFPACE upper bound obtained for increasing path formulae
in [2, Section 6] cannot be used herein since obviously gdized unboundedness properties are not
necessarily increasing. That is why, we need directly terekiRackoff’s proof for boundedne$s]21].

3.3 From regularity to reversal-boundedness detection

In this section, we briefly explain how simultaneous unbagmss problem, regularity detection, strong
promptness detection and weak reversal-boundness oetecin be reduced to generalized unbounded-
ness problem. This will allow us to obtairxESPACE upper bound for all these problems.

Simultaneous unboundedness problem. It is easy to show that every property PBan be encoded
as a generalized unboundedness propérty with lengthK < n and scalé?’;) = 1. Indeed, from
a disjointness sequenae = X;--- Xk, we define?, = (.#1,...,.%) as follows. Forl € [1,K] and
j€Ln],if j X thens(j) = [1,+[. Otherwise, ifj € ([1,n]\ (U1<i<; X)), then#(]) = [0, +oo],
otherwise.# (j) =] — «, +oo|. It is then easy to check thatand PB, define the same set of runs.

Regularity detection. Another example of properties that can be encoded by géregtainbounded-

ness properties comes from the witness run charactemzéiranonregularity, see e.d. 28, 2]. Nonreg-

ularity of an initialized VASS ¥, (qo, %)) is equivalent to the existence of a run of the fofag, Xo) %,

(a1, %) = (G2, %) 5, (g3, %) 2 (qu, %) such thaigy = 0, gz = qa, there isi € [1,n] such thak; < %,
X4(i) < X3(i) and for allj € [1,n] such that(j) < %3(j), we havexi(j) < %(j), see e.g[[28.12]. Conse-
guently, nonregularity condition can be viewed as a digjonof generalized unboundedness properties
of the form(.7], .73) where#] (i) = [1, +oo[, Zi(i) =] — 00, 1], and forj # i, we have#{(j) = [0, +oo|
and 73 (j) =] — oo, +-o|.

Strong promptness detection. We show below how the strong promptness detection problenbea
reduced to the simultaneous unboundedness problem, ¢etmdam ExPSPACE upper bound. Thetrong
promptness detection problesdefined as followd [27]: give((Q,n,d),(q,X)) and a partition J, o)
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of &, is thereB € N such that for every rung,X) = (¢/,%), there is no rur{q/, %) LN (g’,X") using only
transitions fromd, and of length more thaB (rm € §") ? The transitions i are calledinternal and
strong promptness guarantees that sequences of inteanaltiions cannot be arbitrarily long. Let us
consider below the VAS®  of dimension 1 withd, made of the two transitions in bold.

-1
#2(_{a)2(e =
(7, (A,0)) is not strongly prompt and there is 118,0) — (q;X) = (q,) for someq € {A,B,C} such
thatX <y, rris nonempty and contains only transitionsjjn
Lemma 3.4. There is a logspace reduction from strong promptness titetgaroblem to the comple-

ment of simultaneous unboundedness problem.

Weak reversal-boundedness detection. Complement of weak reversal-boundedness involves two uni-
versal quantifications (oB andr) that can be understood as simultaneous unboundednessrtfEsp
Lemmd3b below is a key intermediate result in our invesitiga

Lemma 3.5. Given a VASSY = (Q,n,d) and a configuratiorig,X), (*, (9,X)) is not weakly reversal-
bounded with respect toiff (¥, (ar,Xb)) has a run satisfying PBfor some disjointness sequence
O =Xq--- Xk with n+i € Xk andi € (X]_U"'UXK,]_).

As a corollary, we are in a position to present a witness ruaragterization for weak reversal-boun-
dedness detection(¥’, (qo,Xo)) is not weakly reversal-bounded with respect i€ there exist a dis-

71
jointness sequenae = X; - -- Xk and a run(do,%o) E (01,%1) LN (G, %) = -+ K (O2K +1, %2k +1) LLSEN

(Gok1-2, %2k +2) such that (1)1 contains a reversal for thiéh component, (2) the subru, %) —
(Ok, Xk ) satisfies PB, (3) i€ (XgU---UXk) and (4) forj € [1,n], Xok+2(]) < Xok+1(]) implies

j € (XgU---UXk). Based on Lemmds2.3 aid13.1, a characterization for révsvsadedness can
be also defined.

3.4 A first relaxation

Below, we relax the satisfaction of the propery by allowing negative component values in a con-

trolled way. A pseudo-run of the forip, Xo) %, (01, %) = (G, %) 5, (03, %a) - - - LS (Ook—1,%ok_1) %
(k. %ok ) Weakly satisfies”? & it satisfies (P0), (P1), (P2) and (P3) defined as follows:jfer[1,n],
every pseudo-configuratiohsuch tha®(j) < 0 occurs after somey for which Xy (j) — Xz -1(j) > 0. If
the runp satisfies#?, then viewed as a pseudo-run, it also weakly satisfied emmd3b below states
that the existence of pseudo-runs weakly satisfyirigs equivalent to the existence of runs satisfying
& and their length can be compared. Later, we shall use thesgtpseudo-run characterization.

Lemma 3.6. Letp be a pseudo-run of lengthweakly satisfying? (of lengthK). Then, there is a run
p satisfying 2 of length at most (L x maxned?))K x (1+K? x L x maxned?)) + L.

The principle of the proof of LemniaZ3.6 (and part of the probftemmal31) is identical to the idea of
the proof of the following property of the coverability gra@G(¥, (qo, %)) (see e.g., details in23]).
For every extended configuratigg,y') € Q x (NU{e})"in CG(¥, (qo, %)) and boundB € N, there is
a run(qo,%) — (q,y) in # such that fori € [1,n], if y/(i) = o theny(i) > B otherwisey(i) = y'(i). In
the proof of Lemma&-316, the path®s are repeated hierarchically in order to eliminate negaialues.
Additionally, if p is a pseudo-run of length weakly satisfying%? andL is at most doubly exponential
inN = |7+ |(qo,%)| + K+ scalé .&?), then there is a run satisfying’ and starting irXy that is also of
length at most doubly exponential s



4 EXPSPACE Upper Bound

In this section, we deal with VAS only and we consider a cun&s .7 of dimensiom (see LemmBa3]2).
W.l.o.g., we can assume that> 1, otherwise it is easy to show that the generalized unbalnetss
problem restricted to VAS of dimension 1 can be solved in poiyial space. Moreover, we assume that
maxned.7) > 1.

4.1 Approximating generalized unboundedness properties

Generalized unboundedness properties apply on runs buindlé he shown below, it would be more
convenient to relax the conditions to pseudo-runs. A firgp $tas been done in Sectibnl3.4; we shall

push further the idea in order to adapt Rackoff’'s proof. het Xy E X1 LN X+ Xok_1 &, Yok be a
pseudo-run weakly satisfying? = (#1,...,.%«). We suppose thap is induced by the pathy ...t
with p = Up--- Ux and f : [0, 2K] — [0, k] is the map such that = Tz ;) (f(0) =0, f(2K) = k). For each
position j € [0, f(2K — 2)] alongp, there is a maximd} € [1,K] (with respect to standard ordering bi
and INCR C [1,n] such thatf (2I; —2) < jand INCR = {i € [1,n] : 31" € [1,]; — 1] such that_1(i) <
Xz/(1)}. In the induction proof of Lemmi34.3, we will need to checkpeuies on suffixes of pseudo-
runs and it will be useful to approximat& with respect to some suffigs, ..., %) and to some set
of components INCR Indeed, the suffixi, - - - Ux weakly satisfieg.7;, ..., %k ) assuming that we know
how to increment strictly the components from INCRMoreover, like the notion oi-B-boundedness
from [21]], we would like to enforce that for each compongfitom a given set and for each pseudo-
configurationy along the pseudo-run satisfying the approximation prgpeithery(j) belongs tdo,B —

1] or the prefix pseudo-run terminating §rhas the ability to increase arbitrarily the valyg) (this
will correspond to condition (PRbelow). So, we are now in position to define the approxinmatio
property </ [#2,1,INCR,I,B]. Given a generalized unboundedness propéftyf lengthK, | € [1,K],
INCRC [1,n],]1 C[1,n] andB > 0, a pseudo-run of the form below

7?'71 ) 7"+/<71 T
Vo2 — Vo1 —= Yo -+ — Yok—1 — Yok
def

satisfies the approximation property[#2,1,INCR,I,B] (also abbreviated by7) < the conditions
below are verified:
(PY) Forl’ € [I,K] andj € [1,n], we haveyy (j) — Var—1(j) € HA(j)-
(P2) Forl’ e [I,K]andj € [1,n], if Yo (j) —Var—1(j) <O, then (there i$ <1” < I" such tha®y.(j) —
YZI”fl(j) >0orjeINCR).
(P3) For every pseudo-configuratiohin p occurring betweer,: and strictly beforej,, , with I’ >
| —1,%3) € [0,B— 1 withJ =1\ (INCRU{j: 31 <" <", Xoin(j) — Xar_1(j) > O}).
Condition (P3) reflects the intuition that only the values from componént3 require to be controlled.
We also writeeZ[Z7,1,INCR, |, +0] to denote the property obtained fromi[Z,[,INCR, 1, B] by replac-
ing [0,B— 1]’ by N7 in (P3). Observe that a pseudo-run satisfigsZ, 1,0, [1, n], +oo] iff it weakly sat-
isfiesZ. The property[Z,],INCR, |, +] is exactly the condition we need in the proof of Lenima 4.3
below thanks to the property stated below.

Lemma 4.1. If the pseudo-ruryy - E Vo1 LR Vo - - X, Yok satisfies the approximation property
o/ [P,1,INCR, |, 4o0], then(rg_,(15)" 1 (15,.1)"+* - (T )™, Y2 _») also satisfies it, fon,...,ng > 1.

A similar statement does not hold for pseudo-runs satigfyin (values for components id might
become out 0f0, B— 1]) and for runs satisfying”Z (component values might become negative). Property
[2,1,INCR,I,B] can be viewed as a collection lacal path increasing formulae in the senselof [2].
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4.2 Bounding the length of pseudo-runs

Let us briefly recall the structure of Rackoff’s proof to shihat the boundedness problem for VAS is in

ExPSPACE. A witness run for unboundedness is of the fqom:= Xy — ¥ nl Y with y <. In [271], it is
shown thato can be of length at most doubly exponential. In order to getgkPSPACE upper bound,
Savitch’s theorem is used. Rackoff’s proof to establishgimall run property goes as follows. First,
a technical lemma shows that if there is sori2bounded pseudo-run (instance of the approximation
property.e/), then there is one of length at md&?’“ for some constar€. The proof essentially shows
that existence of such a pseudo-run amounts to solving aaten system and by usingd [4], small so-
lutions exist, whence the obtention of a sheB-bounded pseudo-run. The idea of using small solutions
of inequation system to solve problems on counter systemas dack from[I21[]9] and nowadays, this is
a standard proof technique. This proof can be extended t@raus properties on pseudo-runs for which
intermediate counter value differences can be expresgeaburger arithmetic as donelin][Z9, 2]. Then,
a proof by induction on the dimension is performed by using tery technical lemma and the ability
to repeat sequences of transitions; the proof can be exdemten the first intermediate configuration
is less or equal to the last configuration of the sequenceifigao the concept of increasing path for-
mula in [2]). This condition allows to perform the induction the dimension with a unique increasing
formula. Unfortunately, generalized unboundedness ptiggeare not increasing in the senselof [2] and
therefore Rackoff’'s proof requires to be extended (but thérmgredients remain). The generalization
of the technical lemma is presented below; it is not sunpgisince generalized unboundedness prop-
erties are Presburger-definable properties. However, mgtvee need to refine the expressiBr’” in
terms of various parameters (length @f, scalé. #?), n, scalé.7)) in order to get the final EPSPACE
upper bound (or the RBCE upper bound with fixed dimension), but also we have to cheeak ttie
new ingredients in the definition o do not prevent us from extending]21, Lemma 4.4]. Finallys it
important to specify the length of small pseudo-runs wigpeet to parameters frows.

Lemma 4.2. Let.7 be a VAS of dimension > 2, &7 be a generalized unboundedness property of length
K,1€[1,K],B>2,1,INCRC [1,n] andp be a pseudo-run satisfying[Z,|,INCR,1,B]. Then, there
exists a pseudo-run starting by the same pseudo-configuragatisfying./[#2,1,INCR,I,B] and of
length at mosf1+K) x (scalé.7 ) x scalé #?) x B)"™* for some constartt; independent o, scalé 2),
scalé.7), B andn.

The length expression in Lemriial4.2 can be certainly refingerins of cardNCR), card ) andl
but these values are anyhow boundedlandK respectively, which is used in Lemmald.2. Fer[0,n|,

i & (2u)"™* with p = (14K) x scalé.7) x scald #) if i =0,

~ | (2u(maxned.7) x g(i — 1)) +g(i — 1) if i > 0.
LemmdZ3B below is an extension bf]21, Lemmas 4.6 & 4.7], &e[d, Lemma 7].
Lemma 4.3. Let|,INCR C [1,n], | € [1,K] and p be a pseudo-run satisfying’[Z,|,INCR, I, +oo].
Then, there exists a pseudo-rphstarting from the same pseudo-configuration, satisfyirgpttoperty
o [2,1,INCR,|,+0] and of length at mogi(card])).

In the induction step, we need to take advantage simultahead the pigeonhole principle, the
induction hypothesis and Lemrhal4.2.

Proof. Let p = Xy 2 h Xol_1 a, Xof - E Yok —1 LS Yok be a pseudo-run satisfying the property
2,1, INCR,I,+o]. We suppose thgp is induced by the patlty ...ty with p = Up---Ux and f :
[2l —2,2K] — [0,k] is the map such thad = Tz (f(2 —2) =0, f(2K) =K).
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The proof is by induction om = card]l). If i =0, then we apply Lemma4.2 with = 2 and we
obtain a pseudo-run satisfying 22,1, INCR, |, +] leading to the boun¢u x 2)".

Now suppose cafll) =i+ 1 andJ = (I \ INCR). We poseB = maxned.7) x g(i). We recall that
7 is the current VAS witm > 2. We perform a case analysis depending wherg mvalue from a
component inl is strictly greater thaB — 1 (if any).
Case 1:Every configuratiorz in p satisfies(J) € [0,B—1]Y, i.e., p satisfieseZ[22,1,INCR, |, B].
Obviously, the casé = 0 is captured here. By Lemria}.2, there is a pseudgfstarting aiy _» satis-
fying «7[2,1,INCR, |,B] of length at most1+K) x (scalé.7) x scald %) x B)"™, which is bounded
by (1 x (maxned.7) x g(i)))”cl.
Case 2: A value for some component i is strictly greater thaml — 1 for the first time within the
path 7z, for someD € [| —1,K — 1]. Leta be the minimal position such thag1(J) € [0,B— 1] and
a+1e[f(2D)+1,f(2D+1)], saylqy+1(ip) > B for someig € J. The pseudo-rup can be decomposed
as follows withrg, = 15ty 178 (INCR' is defined few lines below):

satisfiese”[22,D+1,INCR’,(1\{io}),+]

o 7TE1> ta+1 TiK
Xo_p —= Xoj_1-+-¥op = Xop — Ug — Ug+1 — Xop41---Xok—1 — Xk

P P2 P3

We shall construct a pseudo-run of the fopgp;p3 such that eaclp; is obtained by shortening; and
the length ofp; [resp.p5, p5] is bounded by(u x B)" + 1 [resp.Bt1+1,g(i) + 1].

e If D>1—1, then we introduce?* = (.#/,...,.#5) with for I” € [I,D] and j € [1,n], if Xy~ (]) —
Xar—1(j) > 0thens,(j) = A« (j)N[1,+oo[, otherwises],(j) = A (j). The construction of”*
allows us to preserve the set of componentdl jB] whose values can be arbitrarily increased.
By LemmalZP, there is a pseudo-rph= (t%---tél,iz,z) satisfying.«/[#?*,1,INCR, I, B] such
thatBy < (u x B)"™. Indeed, scalg?*) < scalé.#) and the length of#* is obviously bounded
by K. Sayp] =22 — Va1 — Y2 -~ — Yop-1 — Yon. Suppose thap] = Ucly'-ﬁél and fy :
[20—2,2D] — [0, By] is the map such thgt = i} ;) (f1(2 —2) =0, f1(2D) = By). If D=1-1, then
p1 = (t1---tg,Xa_2) with an analogous decomposition in termsygé. We have{ | : yor_1(j) <
Yor (i), " € [1,D]} = {j : Xar—1(j) < Xar(j), I" € [I,D]} (' Z) —partly by construction of?*.

e Now, by the piegonhole principle, there is a pseudoiin- (tf---tf;z,VZD) such thatll, = Vop +
-+ 415, Uy (3) = Ug(J) andB, < B < B We posell, 1 = Uy +ta+1-

e Finally, observe thatty - --t, U, ;) satisfieseZ[2,D + 1,INCR/, (I \ {io}), +-00] with INCR’ =
INCRUZ. By the induction hypothesis, there is a pseudo-pjn= (tf---tﬁs,ﬂgﬂ) satisfying
A [P,D+LINCR, (I'\ {io}),+o] and such thaBz < g(i). Becausel, ,(io) > maxneq.7) x
g(i), pj also satisfies?[7?,D+ 1,INCR/, |, +co].

Glueing the previous transitions, the pseudotjn- -téltf i -tgztaﬂtf- : -tgg,iz,z) satisfies the approx-

imation propertye/[2,1,INCR, 1, 4)]. and its length is bounded Ky x B)"™ + B*1 4 g(i).

Case 3:A value for some component ihis strictly greater thal — 1 for the first time within the path
o for someD € [I,K].

The pseudo-rup can be written as follows with, = 7§75 and 7§ # €

1
X2 SN Ro1_1-+Xop_1 2 Ug+1 , Sop - Ko 1 = Xo
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By Lemma[ZlL, the pseudo-ryi(m ;75 --- 1 4(7H)?11, - - T, X1 —2) also satisfies the approximation
property «7[Z2,1,INCR,1,+c]| and can be written a%y_» E Xo_1+-Xop_2 HE”—lnD> ¥op = Zop_1 ™

70 Tou - Zo_1 % 2. We are therefore back to Case 2. O

Now, we are seeking to bourgdn).

Lemma 4.4. If p is a pseudo-run weakly satisfyingf, then there is @’ starting from the same pseudo-
configuration, weakly satisfying” and of length at mostu x 2 x maxne@ﬂ))”gnﬂ)C for someC > 1
with 4 = (14 K) x scalé.7) x scalé Z).

Proof. Let us boundy(n). By Lemmd4.B, for some constaty > C; (for instanceC; = C; + 1), we have
2u)"? ifi=0
i) < {2 e Mo
(2u(maxned.7) x g(i — 1)) if i >0.

(2i+1)Cy

By induction oni, we can show thag(i) < (vi*1)"
obvious . Otherwise

(i +1) < (2u x maxned.7) x g(i))”cz < (w(uITLnE ey

with v = 2 x maxned.7). Fori = 0 this is

2i+1)02)n02 S (Vi+2)n(2i+2)02 < (Vi+2)n(2i+3)02

Henceg(n) < (v™*+1)"*? As soon as > 2, there is a constants.t. g(n) < (2u x maxned.7))"" ",
U

< ((vi+2)n<

Let us conclude the section by the main result of the paper.

Theorem 4.5. (I) The generalized unboundedness problem for VASSxisIPACE-complete. (1) For
eachn > 1, the generalized unboundedness problem restricted t&S\WSlimension at most is in
PSPACE

5 Other Applications

In this section, we draw conclusions from Theollem 4.5. Fasia by-product of Theorem #.5 and using
the reductions from Sectidn-B.3, we can easily regain themxptial-space bound mentioned below.

Corollary 5.1. The regularity detection problem and the strong promgstrietection problem are in
ExPSPACE. The simultaneous unboundedness problemxs¥ACE-complete. For each fixed > 1,
their restriction to VASS of dimension at masare in P$ACE

The complexity upper bound for regularity detection prableas been left open ifl[2]. Decidabil-
ity of the strong promptness detection problem is estadtish [27]. The XPSPACE upper bound has
been already stated ih’]29, 2]. We cannot rely [ori [29] becafisiee flaw in [29, Lemma 7.7]. Con-
dition 4. in [2, page 13] does not characterize strong proegs (but only promptness) as shown in
SectiorZ3.B. Finally, increasing path formulae frdr [2] maincharacterize strong promptness detection
unlike generalized unboundedness properties. Theref@a)so believe that the upper bound for strong
promptness detection is new. Below, we state how the previesults allow us to characterize the com-
putational complexity of reversal-boundedness deteqtimblem for VASS and its variant with weak
reversal-boundedness.
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Theorem 5.2. () Reversal-boundedness detection problem for VASScisIAce-complete. (Il) For
each fixech > 1, its restriction to VASS of dimension at masis in PSPACE. (l1l) Properties (1) and (I1)
also hold true for weak reversal-boundedness detectidnigaro

By TheorenT&R(I), once an initialized VASS is shown to beersal-bounded, one can compute
effectively semilinear sets corresponding to reachatilits, see recent developmentdid [26]. The size
of the representation of such sets is at least polynomidiemtaximal number of reversals. However,
we know that an initialized VASS can be bounded but still taedinality of its reachability set may be
nonprimitive recursive, see e.§.]28]. A similar phenomeanocurs with reversal-boundedness, as briefly
explained below. In case of reversal-boundedness, themahxreversal can be nonprimitive recursive in
the size of the initialized VASS in the worst-case. Indeégergn > 0, one can compute in time polyno-
mial in nan initialized VASS( 1, (0o, X)) that generates a finite reachability set of cardifiéh(n)) for
some nonprimitive recursive mag-) similar to Ackermann function, see e.g., the constructiofil4].
Moreover, (¥, (Qo,%n)) can be shown to admit only finite runs, see detail<_ii [14]s ithen easy to
compute a variant VASS// by adding a component and such that each transitiort,a$ replaced by
itself followed by incrementating the new component anatthecrementing it (creating a reversal). Still
¥ has no infinite computatior;/y/, (qo,X;,)) is reversal-bounded{ restricted to the components ©f
is equal taX,) and its maximal reversal is it (A(n)).

6 Concluding Remarks

We have proved the B> SPACE-easiness of the generalized unboundedness problem (imithtialized
VASS and the generalized unboundedness property are pne @fputs). For example, this allows us
to provide the optimal complexity upper bound for the reskl®undedness detection problems, place
boundedness problem, strong promptness detection prodtehregularity detection problem. Even
though our proof technique is clearly tailored along thedirof [21], we had to provide a series of
adaptations in order to get the finakESPACE upper bound (and the PS&CE upper bound for fixed
dimension). In particular, we advocate the use of witnessighs-run characterizations (instead of using
runs) when there exist decision procedures using covésapibphs.

Let us conclude by possible continuations. OwPEPACE proof can be obviously extended by
replacing intervals in properties by more complex sets t&gars or by adding new constraints between
intermediate configurations. The robustness of our pradifrigue still deserves to be determined. A
challenging question is to determine the complexity of &g when a reachability set obtained by an
initialized VASS is semilinear. Besides, various subaassf VASS exist for which decision problems
are of lower complexity. For instance, in]20], the boundesinproblem is shown to be in P&E for
a class of VASS with so-called boundbédnefit depth It is unclear for which subclasses of VASS, the
generalized unboundedness problem can be solved in poighspace too.

Acknowledgmentst would like to thank Thomas Wahl (U. of Oxford) and anonymoeferees for
their suggestions and remarks about a preliminary verditiwork.
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A Proof of LemmalZ4

Proof. Let ¥ = (Q,n,d) be a VASS andg,X) € Q x N". Suppose tha@ hasm > 1 control states
with Q = {qs,...,qm}. Let us recall the construction of an equivalent initialiZ¢AS of dimension
n+ 3 from [11, Lemma 2.1], that we shall writg(Q,n, d),X))"" = (.7,%). We posea; =i andb; =
(m+1)(m+1—i) fori € [1,m|. A configuration(q;,y) of ¥ is encoded by the configuratighin .7
such thaty ([1,n]) =y andy' ([n+1,n+3]) = (&, b;,0). The initial configuratiorX’ is computed from
(0,X) by using this encoding. It remains to define the transitions’i

e For eacht = g LN gj € 5, we consider the transitiod € .7 such that’([1,n]) = b andt/([n+
1,n+3]) = (aj —bi,bj,—a).

e For technical reasons, fore [1,m|, we add two dummy transitions andt/ in .7 such that
t([L,n) =t([L,n) =0, t(n+1,n+3)) = (—a&,ami1 i — bi,bmi1 i) andt/(n+1,n+3)) =
(b, —ami1-i, —bmra-i +a).

Observe that fot = g 5, gj €9, (t'+ti+t)([Ln]) = band(t' +t +t/)([n+1,n+3)) = (aj —a,b; —
bi,0). The proof of [11, Lemma 2.1] establishes that every (@i Vo) (0k, Y«k) in ¥ leads to a run
p' =7y Z3 in 7 such that

e for i € [0,K], Z5([1,n]) = Vi and Z is the standard encoding ¢f,yi). Moreover, each step

(ai, %) AR (gi+1,Yi+1) corresponds to the three ste@sﬁ Z3i 3 in p’ whereq is thelth con-
trol state ofQ.

An analogous property holds true in the converse directmal ¢his is the place where the dummy tran-
sitions play a crucial role) . This implies that foe [1,n], (¥, (q,X)) is i-unbounded iff (¥, (g,X)))""
is i-unbounded.

Let us come back to our reduction. L¥t= (Q,n,d), (g,X) andi be an instance of the reversal-
boundedness detection problem. Using Lerimh 2.3 and theiepof the contruction in[11, Lemma
2.1], itis easy to show that

e (7,(q,X)) is reversal-bounded with respectitd ((#p, (G, %b)))"F is not(n-+i)-unbounded.

e The scale of the VAS (%, (0, %)) is bounded by maxcard Q) x 2"+ 1) scalé?)) (as
well as the scale of the target initial configuration).

o ((#b, (G, %b)))™" can be built in polynomial space.

It is worth noting that the cardinal of the set of control etabf7;y, is card Q) x 2" whereQ is the set of
control states of. Hence, this excludes the possibility to constri{cty, (b, % )))"F in logspace. O

B Proof of Lemmal3.1

Before presenting the proof, let us recall some properbesitecoverability graph$ 115, 28], see complete
definitions in [2B]. A coverability graph approximates thet of reachable configurations from a given
configuration and it is a finite structure that can be effetyicomputed. Let us start by preliminary
definitions. Let us consider the structuii U {eo},<) such that fork,k' € NU {0}, k <k & either
k,K € Nandk <K or k' = . We writek < k wheneverk < k' andk # k'. The ordering< can be
naturally extended to tuples {iN U {eo})" by defining it component-wise: fotx € (NU {oo})", X < X

& fori e [1,n], either(i),X (i) € N andx(i) < X (i) or X (i) = . We also writex < X whenx < ¥ and

% #X. Forx e (NU{e})" andt € Z", X+t is defined as an element @ U {eo})" such that foii e [1,n],
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if X(i) € N then (X+1)(i) = %(i) +t(i), otherwise(X+1)(i) £ . Given a VASSY = (Q,n,d) and a
configuration(qgp, Xp), we recall that the coverability graf@G(7, (qo, X)) is a structuréV, E) such that
V CQx (NU{ew})"andE CV x d xV, see e.gl]15]. Here are essential propertieS@(7", (0o, X0)):
(CG1) CG(7,(qo,%Xp)) is a finite structure (consequence of Kdnig's Lemma and DicksLemma).

(CG2) For any configuration(q,y) reachable from(q,%) in #, there is(q,y) in CG(¥, (0o, %))
such thaty < y'. Otherwise said, any reachable configuration can be cousrexh element of

CG(¥, (0o, %)). Moreover, if(qo, %) — (9, ¥) is a run of#, then(go, %) — (q,Y') inCG(¥, (0o, %))
(CG3) For every extended configuratic(lqj’) in CG(7,(qo,%)) and boundB € N, there is a run
(00, %) = (0,¥) in ¥ such that foi € [1,n], if y'(i) = o theny(i) > B otherwisey(i) = y(i).
As a consequence of the above properties, given1,n], (¥, (qo,Xo)) is simultaneousl)-unbounded
iff CG(7, (go,%0)) contains soméq,y) with y(X) = & [15].

Proof. (+) Let us consider the rup

(%o, %0) 5, (00 %1) ™ (G2, %) 5, (03, %8) 2 -+ (Gak—1, X2k 1) " (Glak , X5k )

of length L satisfying the property PR Let B> 0. We shall design a rup’ satisfying PB: of the
form (1)(mm )P ()72 - - - (18 )P<, (0o, %0)) for somepy, ..., Bk > 1 such tha(B,...,B) < %;(X) where
(a¢,X¢) is the final configuration ob’. Now let us defingS, ..., B (in this ordering):

e fx=B

e Now suppose thaBi, 1, ..., B« are already defined arick K. Let us defing3 by B £ B

i)(L—1)maxned? )+, .KH((L 1)maxned?))B.

The expressioriK —i)(L — 1)maxneq9) is related to the pathg/, ..., i, _, whereas the expression

Z:,_lKH((L —1)maxned?))B is related to the pathg. 1, ..., k. It is also worth noting that — 1
transitions cannot decrease a component by more(tharl)maxned?). It is not difficult to show that
(m(m)Pr (1R)P2 - - (18 )P<, (0o, %)) defines a run, it satisfies BBand (B, ..., B) < X¢(X) whereX; is
the final configuration op’. Since the above construction can be performed forBnye conclude that
(7,(00,%0)) is simultaneously-unbounded.

(—) Now suppose that?’, (qo,%o)) is simultaneouslyX-unbounded. This means tHaG(¥, (qo,Xo))
has an extended configuratién,y) € Q x (NU {e})" such thag(X) = (e, ..., ). We can assume that
y is the first extended configuration on that branch Witk) = (o, ..., ). Let us consider the sequence

below

(K-

(@05) % (@90 ™ (@92 % 0,99 2 - 52 (Gac 1,92 1) ™ (Ga.V)

obtained fronCG(7, (qo, %)) such that

e Forl € [LK], 021 = 0, andyx = V.

e Forl € [1K], X # 0O withX; = {j e [1,n] : Yo (j) = o, ¥o_1(]j) # o} and¥a 1 < Ya.
Let us suppose that the above sequen€G(1/, (do, %)) hasL (extended) configurations and let us pose
0 = X;---Xk. Itis easy to show that is a disjointness sequence WXhC (J1<|<x Xj andX N Xg # 0.
Again, we shall design a rup satisfying PB, of the form (1)(1a)P 15 (1%)P2 - - - (1% )<, (G0, %o)) for
somefy,..., Bk > 1. Now let us defings,. .., 31 (in this ordering):

e fk=1

e Now suppose tha{B.+1 ..... Bk are already defineid< K. Let us defing3; by f3; L4 (K—i)(L—
I)maxneg? ) + ==X (L — )maxneg?))By.
Now, it is not difficult to show thap = (1 (rm )Pr 17, (1&)P2 - - - (15 )P, (0o, %)) defines a run and it satisfies
PBg. ]
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C Proof of Lemmal32

Proof. Let ¥ = (Q,n,d), (9,X) € Qx N"and & = (.1,...,.%) be an instance of the generalized
unboundedness problem for VASS. Firs,X) = ((#,(q,X)))HF following the construction from[[11,
Lemma 2.1] (see also the proof of Lemmal2.4). Let us now cocist?’.

o P =(4,...,.7) withfor | € [LK], .#/([1,n]) = 4 and.#/([n+1,n+3]) = [0,0).
We recall that every rufigp, o) - - - (Ok, k) in ¥ leads to a rup’ = Zy- - - Zs in the target VAS such that
e for i € [0,K], Z5([1,n]) = Vi and Z is the standard encoding ¢f,yi). Moreover, each step
(a,%) AR (Oi+1,Yi+1) corresponds to the steps t'it> Z3, 3 in p’ whereg; is thelth control state of
Q.
An analogous property holds true in the converse directidnch guarantees the correction of the reduc-
tion. Observe that whexy _1([n+1,n+3]) = X ([n+1,n+ 3]) for somel € [1,K] with Xy _1([n+1,n+

3]) not of the form(a;, b;,0), we can always come back to such a situation since the dunamgitions
are fired in a very controlled way. O

D Proof of Lemmal34

Proof. Let(7,(q,X)) be an initialized VASS with¥" = (Q, n, &) and equipped with the partitigid, , g ).
We construct the VASY'[9] = (Q x {0,1},n+ 1,d") made of two copies of#". The 0-copy behaves
exactly as? whereas the 1-copy contains only the transitions f@rand has an extra counter that is
incremented for each transition. The transitions from tlo®y to the 1-copy determines nondetermin-
istically when the length of sequences of transitionirstarts to be computed?’[§] is defined as

follows: (q,i) b, (d,i") € &' iff one of the conditions below holds true:

.

ei=i"=0,g" ™ ¢ c 5 Bn+1)=0,

ei=0,'=1b=0andg=(,

o i:i:l,qu’ec‘i,B(n+l):+l.
It is easy to show thdt/’, (g, X)) is strongly prompt with respect to the partitiody, o ) iff (#[d],(q,X))
is not(n+ 1)-unbounded for somg with restriction to[1,n|] equal toX. O

E Proof of Lemmal35

Proof. (—) Let o = X;--- Xk be a disjointness sequence such thati € X, i € (X3U---UXk_1) and
(Yo, (Arb, Xrb)) has a rurp satisfying PB;. Suppose thap is of the form below

(0o, %) i (qu, %) = (02, %) L ALE (Gok 1, %ok 1) = (Gok, oK)

and of lengthL. By construction of %1, (0, %)), @ reversal foi is operated on the pattk, and the
projection ofp on then first components and @ (for the control-states fror® x {INC,DEC}") corre-
sponds to arun of’. For allB,B’ > 1, we shall define a rup’ that performs at lea®’ reversals abovB

for the component, which will guarantee that?, (g,X)) is not weakly reversal-bounded with respect to
i. The runp’ is of the form(rg)(mm )P (18)P2 - - (15 )P<, (9, X)). Let us defingB, ..., B > 1 as follows:
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first Bk 'R, then suppose thfif 1, ..., Bk are already defined anjd< K. If i £ X, then3; £'1, other-

def

wisefj = (B+B' x L)+ (K—j)(L—1)maxned?) +zw—,+1(('- —1)maxned?’))B;. Itis not difficult

to show that( 7g)(ma )P 1 ()% - - - (15 )P<, (g, X)) defines a run and in part of the run corresponding to the
path (71 )P<, at leasB’ reversals abovB are observed for thith component.

(<) Suppose that?, (g,X)) is not weakly reversal-bounded. We shall use [8, Lemma E]dharacter-
izes weak reversal-boundedness on the coverability gE&i(Y’, (g,X)). First, let us recall[8, Lemma
13] formulated on the coverability graf@G(7, (g,X)): (¥, (q,X)) is r-reversalB-bounded with respect
to i for somer andB iff for every elementary loop I€G(7,(q,X)) that performs a reversal on thi
component, thé&h component of every extended configuration on the loosstlearB. An elementary
loop is a sequence of extended configurations respectingdipe relatiorE of CG(7,(q,X)) such that
the two extremity configurations are identical and thesettazeonly ones identical on the loop. Since
(7,(0,X)) is not weakly reversal-bounded a@d5(7,(q,X)) is a finite structure (with a finite amount
of elementary loops), there is an elementary loop that pmasoa reversal on thgh component and
such that one of its extended configuration &asn theith component (otherwise we would findBeby
finiteness). So, there is a sequenc€®( 7, (q,X)) of the form below

t’+ .
(G0, %) 5 (0, %0) 2 -+ (G, Xie) <22 -+ 5 (g, %)

with (go, %) = (9,X), K’ < k and (g, X ) —> LETUINLR - (0k, %) is an elementary loop. Remember that the

X’s are extended configurations. Sin@g ,Xx) — LEE (ak, %) has an extended configuration with

o on theith component, this entails th& (i) is already equal tee. With a similar reasoning, all the

tk/+1

extended configurations iy, X ) — - L, (0k, %) have the same amount of components equed.to
Letiq,...,ik <K be positions on which at least one component has been nevén thie valueo and
o= Xl,...,XK be the disjointness sequence such that eqdk the set of components that have been
newly given the valueo at the position;. It is then easy to see thét - - -tx, (b, X)) iS @ pseudo-run
weakly satisfying?;.(n(iy With Z.¢,.i, defined fromo - {n+i} as done in Section 3.3 for dealing
with simultaneous unboundedness. Weak satisfaction risduted in Sectioh3.4. From Lemmal3.6,
(b, (Oro, %)) has a rurp’ satisfying #,.(ni}, Which is equivalent t@’ satisfying PB,.;,.i;. Observe
thato - {n—+i} is also of the appropriate form. O

F Proof of Lemmal3.8

Proof. Let p be a pseudo-run of the form below weakly satisfying the priype” = (.71,...,.%):

(Qo,%0) — i (1, %) 2 (g, %) = L AL.E ~4 (Gok 1, %ok 1) 25 (Gok, Kok )

We design a rup satisfying# of the form(7g)(m )P 1 (12)% - - (1 )P<, (g0, %)) and of the appropriate
length for someB;,..., B« > 1. We use the same type of construction as in the proof of LeRfha
First, let us definey, ..., Xk C [1,n] that records when components are strictly increasingk: €0, K],
Xi={je[ln:Xy_1(] ) <X (})}\ (U< Xr). Observe that fok # I’, we haveX; N X, = 0. Now let us
definef, ..., B1 (in this ordering):

def

e fk=1
e Now suppose thgB 1, ..., Bk are already defined arid< K. Let us defing3,. If X; =0, then

B £'1. Otherwise £ (K —|)(L 1)maxned?) + == . (L — 1)maxned¥))By.

|+l
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The term(K —i)(L — 1)maxned?’) is related to the pathg, ..., i, whereas the terrﬁ{ﬁjiﬁl((L -
1)maxned?’))B: is related to the pathg_, ..., 7. Again, it is worth noting that. — 1 transitions
cannot decrease a component by more tfhan 1)maxned?’). Now, it is not difficult to show that

(m(mw)Prm (mR)P2 - (78)P, (0o, %))

defines a run (and not only a pseudo-run) and moreover ifisati® which is withessed by the decom-

position below:
- ()P 'm
(0o, %0) % (0, ¥1) ™ (62, 92) "% (0, ¥3) % - -

(m-1)P-1tmg
T (o1, Yk 1) 2 (Gk, oK)
It remains to verify that this run is not too long. Let us defthe sequenceyp,...,k_1 with y =

Tk _iBr- S0¥ = Pk =1 andys1 = PBc-i-1+ % with
Bk—i—1 < (i+1)(L—1)maxned?’) + ((L — 1)maxned?))y

Soy1 < (KxLxmaxned?))+ (L x maxne@?))y fori e [1,K —1]. If L x maxned?') = 1, then
¥_1 < K(K x L x maxneg?)). Otherwiseyk_1 < (L x maxned?))X~1 x (14K x L x maxnegd?)).
Finally, by using that the sum of the patfisis bounded by, we get the desired bound. O

G Proof of Lemmal4]
Proof. Letyy » h Vo1 n, Yor - - E Yok -1 LS Yok be a pseudo-run satisfying [Z7,],INCR, |, +].

n-1 ng -1
Letus showthap’: Yo _2 =7 _> ML» Zo-1 LN Zo -+ M Zok-1 T, 7ok satisfies the property

2,1, INCR,|,+e0] too. Conditions (P} and (P2) hold true since fot’ € [I,K], Zoy — Zoy 1 = Yo —
Yor_1. LetX be a pseudo-configuration occurringphbetweer?zy, and strictly beforezy, , with I’ >
l—landjel\(INCRU{j:3I<I"<V, Zy:(j)—Zy»-1(j) > 0}). Again, since for all” € [I,K],
Zoyn — 21 = Yo — Vo1, the effect of the paths,, ..., 17 on the jth component is nonnegative. So
X(j) € N, which guarantees the satisfaction of the conditiorf)(P3 O

H Proof of Lemmald2

The proof below is essentially a refinement of the proofof [Zdmma 4.4].

Proof. Let & = (..., %), | € [LK], I,INCR C [1,n] and p be the pseudo-run described below
satisfying.</[#2,1,INCR,I,B]:

p=Xi_2 h ol 15 Ry - E ok 1 = Rox

We posedy = card Jp) with Jp =1 \ INCR. We suppose that the pseudo-noiiis induced by the path
t1...tc with p = Up---Uk. Let f:[2 —2,2K] — [0,k] be the map such tha = Us;) (f(21 —2) =0
and f(2K) = k). By the satisfaction of the condition (§3rom «7[Z,|,INCR,1,B], for every pseudo-
configurationd; with j < f (2| — 1), we havedj(J) € [0,B— 1]*. If the length ofr_, is at leasB®, then
there are two distinct positions< j* < f(2l —1) such thatij(Jo) = Uj (Jo) (by the pigeonhole principle)
and thereforgty...tjtj 1. .1, X _2) also satisfies7[27,|,INCR,1,B]. By iterating this contraction
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process, without any loss of generality, we can assume hatwe havef (2l — 1) — (2| —2) < B%
and forl’ € | —1,K — 1], f(2I' +1) — f(2’) < Bead),

Now, for eachD € [I,K] we shall shorten the pseudo-riigh_1 AN Xop. This is done by removing
loops as explained below, and following the key steps of tlwefpof [21, Lemma 4.4]. We posé =
cardJ) with 3 =1\ (INCRU{j: 31 <I" <D, xg/(j) —%27-1(j) > 0}). A simple loop with respect to J
is a pairsl = (8, 1) such thage€ [0,B— 1]’ andr=tj .. .ty is a path verifying the conditions below:

e Forje[ly],s+ Zijzlti’(J) € [0,B—1]Y (the boundB is never exceeded).
° Ziyzlti’(J) = 0 (no total effect on the componentsd)
o Forj<j elly with (j,j") # (1,y), we have):ij,:jti’(\]) # 0 (minimality of the path).

Thelengthof sl is defined as the length of its pathand itseffectis the valueZiV:lti’. Consequently, let
Yo -y be a pseudo-run induced by the simple I¢gg(J),t; .. .t)). Then,

1. Yo(3) =¥y(J).
2. Forj < j’ e [1,y] suchthat(j,j’) # (1,y), we havey;(J) # ¥ (J).

It is easy to show that the length of a simple loop with respectis strictly belowB? (< B% <
Beadl)) and its effect is therefore i-scalé.7)BY, scald.7)BY)". Letzy,...,Z, be the effects of simple
loops occurring ikap_1 25 ... 22 %, as factors. Because the effects of simple loops are bourséed (
above), we have

a < (1+2x scalé.7)BY)" < (1+2x scald.7))"B™ .

~ From the pseudo-rurp-1 ™, %p, we shall define a finite sequence of pairs made of a pseudo-run
Yo--- Yk, and a tupley; € N* such that

o Vo=0andy -y} =% 1 %ep.

o Vo't andvi; are computed fromy,- - -yl andv; by removing a simple loop fror, --- i
with effectZz and by computing’i,; from V; by only incrementingy;(3), i.e. a simple loop is

removed but we remember its effect.
e The length of the final pseudo-rlyﬁ . -VEN (on which no simple loop can be removed) is less than
(14B%)2,
o Zop-1(3),.. Kep(3)} = {55(3),.... Tk ()} fori € [O,N].
Consequently, whenevei(j) > 0, there is a simple loogs, i) with effect somez; such thats €
{Yo(9),--- % (I)}-
Let us explain how to computg™---§% andvi,1 from ¥---¥i , Vi. Suppose thagh ¥ is

Ki+1
induced by the path =t4,... t. If 7 has na simple loop;, ... ,t; as a factor such that

{%ep-1(3),... . Xep ()} = {%o(), -, ¥j-1(3). ¥, (3).... ¥ (I)}-

thenN =i (we stop the process). Otherwise, a?}_l(\]),tj,...,tj/) be a simple loop with respect tb
such that

{%p-1(3),... . %ep ()} = {%o(); -, ¥j-1(3). ¥, (3).... ¥ (I)}-

Then g™ ---%i% is the pseudo-rurty,... tji_1,tj41,...,t,¥h) and Vi1 is equal tov; except that
Vir1(B) = Vi(B) + 1 with tj,... ,t; having the effecz. SinceXzp-_1 ™, %0 is finite, it is clear that
this process eventually stops and the above-mentioneditimorsdare clearly satisfied (except for the

bound on the length ofy - -- 7 ).
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Before going any further, let us briefly explain the lengthy®f--yi is less than(1+ B%)2. Sup-
pose that the pseudo—r@i'g-uy"Ki has at least1+ BY)? pseudo-run configurations. First, observe that
each block ofBY + 1 successive pseudo-configurations contains at least ongesioop. Moreover,
we wish to preserve the s¢kxp_1(J),...,Xop(J)}, SO we cannot remove any simple loop. The set
{%op-1(J),...,%p(J)} has cardinal at mo®Y. Consequently, there is a block Bf + 1 successive
pseudo-configurations so that all the restrictions to tlepmnents i) have already appeared earlier.

Letyy --- ¥k, be the final sequence induced by the gath .t wih final loop vectory € N°.

Since the pseudo-ryn satisfieseZ [ 22,1, INCR; |, B|, we have the following properties.

1. Forj € [1,n], we have((Z% ,Wn()Z) + =N 1t)(j) € #b(j). Depending on the value ofp(j), this
can encoded by at most 2 inequality constraints of the ®fma;Vn(i)(j) > b;.
2. Forjed, (¢, w(iz)+=Nt)(j) >0.
There is a bit of redundancy here for the componentsdimce removing simple loops does not change

the projection oved of the first and last pseudo-configurations. Hence, we orgygl ne bother about the
components irf[1,n] \ J). The vectowy is a solution to the following inequality system:

(A (ELW0Z) +2L46)(5) € (i)
je((Ln\J)

The number of inequalities can be bounded Iy the number of variables is bounded [+ 2 x
scale{ﬂ))”B”2 and all the absolue values of the components are boundéd byB")? x scald.7) +
scald #?). Itis time to apply[4] in order to obtain a small solution:

Theorem H.1. [@] Let Ac [-M,M]Y*V andb € [-M,M]Y, whereU,V,M € N. If there existst € NV
such thatAx > b, then there existg € [0, (max{V,M})*V]V such thatAy > b, whereC is some constant.

By application of TheoreiHl1 on the above system with theesbelow
1.V = (1+2x scald.7))"B".

2. M= (1+B")? x scald.7) + scald ).

3. U=2n

It has a solutionZ” € NV such that each value is indeed within the interval
[0,((1+ 2 x scalé.7) x scald.2))"B2") 2N

Indeed, we have maNX, M) < ((1+ 2 x scalé.7 )scale #))"B2"). _ _ -
Fromy} --- ¥k, andVy, we define a finite sequence of pseudo-riips - T, = (t; ---t{,Ty) such that
° Ug...UEO :VBI"'VEN-
e The length of the sequence is exaaliy+ 1.
. ug,“.--u{j*jl = (t{“mtﬂﬂ,ﬂéﬂ) is computed fromt; -t/ , ty) as follows. Let(Sj-1,7+1) be

a simple loop with effec; ;. There exist$3 such thaﬁg (J) =Sj41. Then,

1 pildetef i o NZ(jHD) ¢ j
t) "'tLjH_tl”'tB'(nHl) (J+)'tﬁ+1.'.t|_j

j+1 j+1 i+l J+L i
andUO M ULH,]_ — (tl i .tLH,]_’ l_jo).
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It is easy to check thabp_1 = Ug. By replacingXop_1 o, Xop by Tf - - Uﬁ'p for eachD € [I,K], we obtain
a pseudo-run satisfying/[ 27,1, INCR, |, B] whose length is bounded by the value below:
(K4 1)B"+K[(B"+1)%+
number of effects maximal number of copies per effect
(1+2 x scald.7))"B™ x [(1+ 2 x scald.7) x scald 2))"B¥" 2" x

bound on the length of simple loop

—N—
(B"+1) ]

This value is bounded by
(K4 1) x ¢’ x scalg.7 )P Wscalg 22)P(" » P

whereC’ is a constant ang (-), p2(-) andps(-) are polynomials. Since, B > 2, this value is bounded by
(K 4 1)(scalé.7) x scald.2) x B)P(" for some polynonp(-). Suppose thap(n) = Zifzoai n' (without
any loss of generality, we can assume thatafgeare non-negative arak # 0). Letd’ > 0 be such that
5! & <2 Sincen > 2, (scald.7) x scald 2) x B)P(" is bounded byscald.7) x scald 22) x B)" """,
Hence, the length of the final pseudo-run satisfyir§2?,1,INCR, |, B] and starting aX, is bounded by
(K +1) x (scald.7) x scalé 2) x B)™ for some constant;. O

| Proof of Theorem 4.8

Proof. (I, upper bound) Let?,(qg,X)) be an initialized VASS of dimension and & be a generalized
unboundedness property. By Lemma 3.2, one can computespaog an initialized VA$(.7,X), &)
such that(¥, (q,X)) satisfiesZ? iff (7,X) satisfies?”’, .7 has dimensiom+ 3, & and &’ have the
same length and sc#l&) = max((card Q) + 1)2,scalé?)). Then, we guess a witness pseudo-run
weakly satisfying??’ whose length is bounded by

(n+3)+1)C

((14+K) x 2x scalé.7) x scalé #) x maxned.7 ))"+3)"

This can be done in exponential space in the combined sig¢ 4, X)) and #2. By Savitch’s theorem,
we get the KPSPACE upper bound.
(I, lower bound) A first temptation is to statexBSPACE-hardness from EPSPACE-hardness of the
unboundedness problem for VAS. However, we are looking flmgapace many-one reduction and an
instance of unboundedness can be naturally reducedristances of the generalized unboundedness
problem with property of length 1 and scale 1. We shall diyestlapt [17[¥] to obtain the lower bound.
By [19], given a deterministic Turing maching of sizen exponentially bounded, one can build
a counter automat& of size &'(n) that is Z"-bounded and# halts on the empty tape iff’ halts.
Indeed,% has a halting control state with no transition going out ofnit[I7,[7], it is shown that given
a deterministic counter automaten of sizen with a halting control state, one can builchat program
(equivalent to a Petri net) of siz&(n?) simulating®’. In particular, its dimension is also #i(n?). This
net program can be easily shown equivalent to a VASSf dimensionr’ (in ¢(n?)), with nt control
states (also i’ (n?)) and with two distinguished control statgs g, satisfying the following conditions:

—

e ¢ halts iff there is a run frontqp, 0) reaching a configuration with control staje
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e Whenever the simulation & in arun in? is not faithful to%’, then the run eventually terminates.

e ¢ does not halt iff there is an infinite run frofimp, 0) that never reaches a configuration with
control stategp,.

Consequently, whe# halts, all the runs fronﬁqo,ﬁ) are finite and there is a finite number of runs from
(00,0). We define the VASY’ of dimensionn’ + 1 that behaves a$ except that we add a self-loop
transition togy whose effect is to add one to tf + 1)th component. Then, we ha# halts iff there is
aruniny” of the form(gp, 0) = (q,X) = (g, %) such thag([1,n']) = X ([1,n]) andX(n’ + 1) < X ("' +1).
This can be turned into an instance of the generalized urdemliness problem.

(1) Easy consequence of the proof of (I, upper bound). O

J Proof of Corollary &1

Proof. The EXPSPACE upper bound for regularity detection problem and strongnmimess detection
problem is a consequence of remarks from Se¢figh 3.3.

Let us establish the lower bound for the simultaneous untiedmess problem. Lét be the VASS
from the lower bound proof for Theordm#.5(1). We define theS&¥” of dimensiom’ + 1 that behaves
as¥ except that we add a self-loop transitiorgtovhose effect is to add one to the& + 1)th component.
Then, we havés halts iff (¥, (go,0)) is not(r’ + 1)-unbounded. Simultaneous unboundedness problem
is therefore cokPSPACE-hard but since coEPSPACE= EXPSPACE, the simultaneous unboundedness
problem is ExPSPACE-hard. Now, let us establish the upper bound for the simattas unboundedness
problem. Let(7,(q,X)) be an initialized VASS of dimension and X be a subset ofL,n]. We first
guess a disjointness sequerne= X; - --- - Xk such thatX C [J;««x X and X N Xk # 0 (this requires
only polynomial space). Let us now consider the generaliz@tbundedness property, as defined
in Sectior 3B for dealing with simultaneous unboundedn@secking whethef?, (q,X)) satisfies?
can be reduced in logspace to an instance of the generaliwedindedness problem, that can be solved
in exponential space in the size ©f, (q,X)): indeed the length of?; is bounded by and its scale is
equal to one. O

K Proof of Theorem

Proof. (1) Let us start by showing EPSPACE-hardness. Let” be the VASS from the lower bound proof
for TheorenTZb(l) obtained froni[lLIZ} 7]. We define the VABSof dimensionn’ + 1 that behaves as

¥ except that we add two transitiomg S, gh and g LAY 0n» whereg denotes théth unit vector

andqy, is the halting control state of. Then, we havé halts iff (¥, (qo,0)) is not reversal-bounded
with respect tav + 1. Reversal-boundedness detection problem is theref@erSPACE-hard but since
COEXPSPACE= EXPSPACE, the problem is EPSPACE-hard.

Now, let us show EPSPACE-easiness. Let’ = (Q,n,d) be a VASS andq,X) be a configuration. By
LemmalZ},(7,(q,X)) is not reversal-bounded iff7, %) = (%o, (Grb, %)) is (n+i)-unbounded.
The operatox-)HP refers to the reduction from VASS to VAS in[11] (see also theop of LemmdZ}).
scalé.7) is bounded by maXcard Q) x 2"+ 1)2,scalé?)) and ((#b, (Grb,%b)))"" can be built in
polynomial space. Dimension of is 2n+ 3. First, we guesg” of length at most 2+ 3 for character-
izing (n+i)-unboundedness (this requires only polynomial spacelcise is equal to one. A witness
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pseudo-run weakly satisfying? (in .77) does not need to be longer than
((1+2n+3) x 2 x max(card Q) x 2"+ 1)2, scalg ¥ ))2) (@3 #nere.

which is doubly exponential in the size ¢f and (g,X) (our initial instance). This comes from the
expression before TheordmM.5. A nondeterministic algoriguessing such a pseudo-run requires only
exponential space.

(1) Whenniis fixed, the above expression is only exponential in theaiz& and(q,X).

(1) This part is similar to (1) and (I). By combining Lemnsi8.3 and312, we build in polynomial space
an initialized VAS(.7,X) such that(7", (q,X)) is not weakly reversal-bounded iff7,X) satisfies??,,

for some disjointness sequenge= X3 --- Xx with n+1i € X, i € (XyU---UXk_1) and such that

o 7/ is defined fromZ, as done in the proof of LemnfiaB.2 (length boundedlayd scale equal
to 1),

e the dimension of7 is 2n+ 3,
e scalg.7) < max((card Q) x 2"+ 1)?,scalé?)).
Again, a witness pseudo-run weakly satisfyiagj; (in (.7,X)) does not need to be longer than

(2(2n+3)+1)C

((1+2n+3) x 2 x max(card Q) x 2"+ 1), scalg¥))?)(2"*3)

which is doubly exponential in the size @f and(qg,X) (our initial instance). A nondeterministic algo-
rithm guessing such a pseudo-run requires only exponesmigde.
Let us establish the B SPACE-hardness. Le¥ be the VASS from the lower bound proof for The-

orem[Z5(1). We define the VAS%®” of dimensionn’ + 1 that behaves a¥ except that we add two

transitionsan —% f, %% g, Then,# halts iff (#", (co,0)) is not weakly reversal-bounded with re-

spect ton’ + 1. Weak reversal-boundedness detection problem is theretiexPSPACE-hard, whence
ExPSPACE-hard. O
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