
COMPLEXITY HIERARCHIES BEYOND ELEMENTARY

SYLVAIN SCHMITZ

Abstract. We introduce a hierarchy of fast-growing complexity classes
and show its suitability for completeness statements of many non ele-
mentary problems. This hierarchy allows the classification of many deci-
sion problems with a non-elementary complexity, which occur naturally
in logic, combinatorics, formal languages, verification, etc., with com-
plexities ranging from simple towers of exponentials to Ackermannian
and beyond.

1. Introduction

Complexity classes, along with the associated notions of reductions and com-
pleteness, provide our best theoretical tools to classify and compare compu-
tational problems. The richness and liveness of this field can be experienced
by taking a guided tour of the Complexity Zoo,1 which presents succinctly
most of the know specimen. The visitor will find there a wealth of classes
at the frontier between tractability and intractability, starring the classes
P and NP, as they help in understanding what can be solved efficiently by
algorithmic means.

From this tractability point of view, it is not so surprising to find much
less space devoted to the “truly intractable” classes, in the exponential hier-
archy and beyond. Such classes are nevertheless quite useful for classifying
problems, and employed routinely in logic, combinatorics, formal languages,
verification, etc. since the 70’s and the exponential lower bounds proven by
Meyer and Stockmeyer [60, 79].

Non Elementary Problems. Actually, these two seminal articles go quite
further than mere exponential lower bounds: they show respectively that
satisfiability of the weak monadic theory of one successor (WS1S) and equiv-
alence of star-free expressions (SFEq) are both non-elementary, as they re-
quire space bounded above and below by towers of exponentials of height
depending (elementarily) on the size of the input. Those are just two ex-
amples among many others of problems with non-elementary complexities
[see e.g. 61, 36, 84], but they are actually good representatives of problems
with a tower of exponentials as complexity, i.e. one would expect them to
be complete for some suitable complexity class.

Work supported in part by the ReacHard project (ANR 11 BS02 001 01).
1https://complexityzoo.uwaterloo.ca

1

ar
X

iv
:1

31
2.

56
86

v2
 [

cs
.C

C
]

 2
0

D
ec

 2
01

3

https://complexityzoo.uwaterloo.ca

2 S. SCHMITZ

What might then come as a surprise is the fact that the Zoo does not
provide any intermediate stops where classical problems like WS1S and SFEq
would fit adequately: they are not in Elementary (henceforth Elem),
but the next class is Primitive-Recursive (aka PR), which is way too
big: WS1S and SFEq are not hard for PR under any reasonable notion of
reduction. In other words, we seem to be missing a “Tower” complexity
class, which ought to sit somewhere between Elem and PR. Going higher,
we find a similar uncharted area between PR and Recursive (aka R); these
absences are not specific to the Complexity Zoo: they seem on the contrary
universal in textbooks on complexity theory—which seldom even mention
Elem or PR. Somewhat oddly, the complexities above R are better explored
and can rely on the arithmetical and analytical hierarchies.

Drawing distinctions based on complexity characterizations can guide the
search for practically relevant restrictions to the problems. In addition, non-
elementary problems are much more pervasive now than in the 70’s, and they
are also considered for practical applications, motivating the implementation
of tools, e.g. MONA for WS1S [25]. It is therefore high time for the definition
of hierarchies suited for their classification.

Our Contribution. In this paper, we propose an ordinal-indexed hierarchy
(Fα)α of fast growing complexity classes for non-elementary complexities.

Besides the already mentioned Tower
def
= F3, for which WS1S and SFEq

are examples of complete problems, this hierarchy includes non primitive-
recursive classes, for which quite a few complete problems have arisen in the
recent years, e.g. Fω in [58, 43, 83, 75, 29, 14], Fωω in [18, 66, 51, 8, 16, 9],
Fωωω in [40], and Fε0 in [38].

The classes Fα are related to the Grzegorczyk (E k)k [37] and extended
Grzegorczyk (Fα)α [56] hierarchies, which have been used in complexity
statements for non-elementary bounds. The (Fα)α classes are extremely
well-suited for characterizing various classes of functions, for instance com-
puted by forms of for programs [62] or terminating while programs [26],
or provably total in fragments of Peano arithmetic [27, 77], and they char-
acterize some important milestones like Elem or PR. They are however
too large to classify our decision problems and do not lead to completeness
statements—in fact, one can show that there are no “Elem-complete” nor
“PR-complete” problems—; see Section 2. Our Fα share however several
nice properties with the Fα classes: for instance, they form a strict hierar-
chy (Section 5) and are robust to slight changes in their generative functions
and to changes in the underlying model of computation (Section 4).

In order to argue for the suitability of the classes Fα for the classification
of high-complexity problems, we sketch two completeness proofs in Section 3,
and present an already long list of complete problems for Fω and beyond in
Section 6. A general rule of thumb seems to be that statements of the form
“L is in Fα but not in Fβ for any β < α” found in the literature can often
be replaced by the much more precise “L is Fα-complete.”

COMPLEXITY HIERARCHIES BEYOND ELEMENTARY 3

There are of course essential limitations to our approach: there is no hope
of defining such ordinal-indexed hierarchies that would exhaust R using
sensible ordinal notations [28]; this is called the “subrecursive stumbling
block” in [77, Section 5.1]. Our aim here is more modestly to provide suitable
definitions “from below” for naturally-occurring complexity classes above
Elem.

In an attempt not to drown the reader in the details of subrecursive
functions and their properties, most of the technical contents appears in
Appendix A at the end of the paper.

2. Fast-Growing Complexity Classes

We define in this section the complexity classes Fα. The hierarchies of
functions, function classes, and complexity classes we employ in order to
deal with non-elementary complexities are all indexed using ordinals, and
we reuse the very rich literature on subrecursion [e.g. 70, 64, 77]. We strive
to employ notations compatible with those of Schwichtenberg and Wainer
[77, Chapter 4], and refer the interested reader to their monograph for proofs
and additional material.

2.1. Cantor Normal Forms and Fundamental Sequences. In this pa-
per, we only deal with ordinals below ε0, i.e. ordinals that can be denoted
as terms in Cantor Normal Form:

α = ωα1 · c1 + · · ·+ ωαn · cn where α > α1 > · · · > αn and ω > c1, . . . , cn > 0 .
(CNF)

In this representation, α = 0 if and only if n = 0. An ordinal α with CNF
of form α′+ 1 is called a successor ordinal—it has n > 0 and αn = 0—, and
otherwise if α > 0 it is called a limit ordinal, and can be written as γ + ωβ

by setting γ = ωα1 · c1 + · · ·+ωαn · (cn− 1) and β = αn. We usually employ
‘λ’ to denote limit ordinals.

A fundamental sequence for a limit ordinal λ is a sequence (λ(x))x<ω of
ordinals with supremum λ. We consider a standard assignment of funda-
mental sequences for limit ordinals, defined inductively by

(γ + ωβ+1)(x)
def
= γ + ωβ · (x+ 1) , (γ + ωλ)(x)

def
= γ + ωλ(x) . (2.1)

This is one particular choice of a fundamental sequence, which verifies e.g.
0 < λ(x) < λ(y) for all x < y and limit ordinals λ. For instance, ω(x) = x+1,

(ωω
4

+ ωω
3+ω2

)(x) = ωω
4

+ ωω
3+ω·(x+1). We also consider ε0, which is

the supremum of all the ordinals writable in CNF, as a limit ordinal with

fundamental sequence defined by ε0(0)
def
= ω and ε0(x + 1)

def
= ωε0(x), i.e. a

tower of ω’s of height x+ 1.

2.2. The Extended Grzegorczyk Hierarchy (Fα)α<ε0 is an ordinal-
indexed infinite hierarchy of classes of functions f with argument(s) and
images in N [56]. The extended Grzegorczyk hierarchy has multiple natural

4 S. SCHMITZ

characterizations: for instance as loop programs for α < ω [62], as ordinal-
recursive functions with bounded growth [85], as functions computable with
restricted resources as we will see in (2.5), as functions that can be proven
total in fragments of Peano arithmetic [27], etc.

2.2.1. Fast-Growing Functions. At the heart of each Fα lies the αth fast-
growing function Fα:N→ N, which is defined inductively on the ordinal
index: as the successor function at index 0

F0(x)
def
= x+ 1 , (2.2)

by iteration at successor indices α+ 1

Fα+1(x)
def
= Fω(x)α (x) =

ω(x) times︷ ︸︸ ︷
Fα(· · · (Fα(x)) · · ·) , (2.3)

and by diagonalization on the fundamental sequence at limit indices λ

Fλ(x)
def
= Fλ(x)(x) . (2.4)

For instance, F1(x) = 2x + 1, F2(x) = 2x+1(x + 1) − 1, F3 is a non ele-

mentary function that grows faster than tower(x)
def
= 2.

. .2}
x times, Fω a non

primitive-recursive “Ackermannian” function, Fωω a non multiply-recursive
“hyper-Ackermannian” function, and Fε0(x) cannot be proven total in Peano
arithmetic. For every α, the Fα function is strictly monotone in its argu-
ment, i.e. x < y implies Fα(x) < Fα(y). As Fα(0) = 1, it is therefore also
strictly expansive, i.e. Fα(x) > x for all x.

2.2.2. Computational Characterization. The extended Grzegorczyk hierar-
chy itself is defined by means of recursion schemes with the (Fα)α as gen-
erators (see § 5.3.1). Nevertheless, for α ≥ 2, each of its levels Fα is also
characterized as a class of functions computable with bounded resources [85].
More precisely, for α ≥ 2, it is the class of functions computable by deter-
ministic Turing machines in time bounded by O(F cα(n)) for some constant
c, when given an input of size n:

Fα =
⋃
c<ω

FDTime (F cα(n)) . (2.5)

Note that the choice between deterministic and nondeterministic, or be-
tween time-bounded and space-bounded computations in (2.5) is irrelevant,
because α ≥ 2 and F2 is already a function of exponential growth.

2.2.3. Main Properties. Each class Fα is closed under (finite) composition.
Every function f in Fα is honest, i.e. can be computed in time bounded
by some function also in Fα [85, 27]—this is a relaxation of the time con-
structible condition, which asks instead for computability in time O(f(n)).
Since each f in Fα is also bounded by F cα for some c [56, Theorem 2.10],
this means that

Fα =
⋃
f∈Fα

FDTime (f(n)) . (2.6)

COMPLEXITY HIERARCHIES BEYOND ELEMENTARY 5

In particular, the function Fα belongs to Fα for every α, and therefore F cα
also belongs to Fα.

Every f in Fβ is also eventually bounded by Fα if β < α [56], i.e.
there exists a rank x0 such that, for all x1, . . . , xn, if maxi xi ≥ x0, then
f(x1, . . . , xn) ≤ Fα(maxi xi)—a fact that we will use copiously. However,
for all α > β > 0, Fα 6∈ Fβ, and the hierarchy (Fα)α<ε0 is therefore strict
for α > 0.

2.2.4. Milestones. At the lower levels, F0 = F1 contains (among others) all
the linear functions (see § 5.3.2). We focus however in this paper on the
non-elementary classes by restricting ourselves to α ≥ 2. Writing

F<α
def
=
⋃
β<α

Fβ , (2.7)

we find for instance F2 = F<3 = FElem the set of Kalmar-elementary
functions, F<ω = FPR the set of primitive-recursive functions, F<ωω =
FMR the set of multiply-recursive functions, and F<ε0 = FOR the set of
ordinal-recursive functions (up to ε0). We are dealing here with classes of
functions, but writing F ∗α for the restriction of Fα to {0, 1}-valued functions,
i.e.

F ∗α =
⋃
c<ω

DTime (F cα(n)) , F ∗<α
def
=
⋃
β<α

F ∗β , (2.8)

we obtain the corresponding classes for decision problems F ∗<3 = Elem,
F ∗<ω = PR, F ∗<ωω = MR, and F ∗<ε0 = OR.

2.3. Fast-Growing Complexity Classes. Unfortunately, the classes in
the extended Grzegorczyk hierarchy are not quite satisfying for some inter-
esting problems, which are non elementary (or non primitive-recursive, or
non multiply-recursive, . . .), but only barely so. The issue is that complex-
ity classes like e.g. F ∗3 , which is the first class that contains non-elementary
problems, are very large: F ∗3 contains for instance problems that require
space F 100

3 (n), more than a hundred-fold compositions of towers of expo-
nentials. As a result, hardness for F ∗3 cannot be obtained for the classical
examples of non-elementary problems.

We therefore introduce smaller classes of problems:

Fα
def
=

⋃
p∈F<α

DTime (Fα(p(n))) . (2.9)

In contrast with F ∗α in (2.8), only a single application of Fα is possible,
composed with some “lower” reduction function p from F<α. As previously,
the choice of DTime rather than NTime or Space is irrelevant for α ≥ 3
(see Lemma 4.5).

This definition yields for instance the desired class Tower
def
= F3, closed

under elementary reductions (i.e., reductions in F2), but also a class Ack
def
=

Fω of Ackermannian problems closed under primitive-recursive reductions, a

6 S. SCHMITZ

F ∗
<3 = Elem

F3 = Tower

F ∗
<ω = PR Fω = Ack

F ∗
<ωω = MR

Fωω = HAck

· · ·

Figure 1. Some complexity classes beyond Elem.

class HAck
def
= Fωω of hyper-Ackermannian problems closed under multiply-

recursive reductions, etc. In each case, we can think of Fα as the class of
problems not solvable with resources in F<α, but barely so: non-elementary
problems for F3, non primitive-recursive ones for Fω, non multiply-recursive
ones for Fωω , and so on. See Figure 1 for the first main stops of the hierarchy.

2.3.1. Reduction Classes. Of course, we could replace in (2.9) the class of
reductions F<α by a more traditional one, like logarithmic space (FL) or
polynomial time (FP) functions. We feel however that our definition in
(2.9) better captures the intuition we have of a problem being “complete
for Fα.” Moreover, using at least F2 as our class of reductions allows to
effectively compute the Fα function in the functional version FFα of Fα (see
Section 5.1), leading to interesting combinatorial algorithms (see §3.2.3 for
an example).

Unless stated differently, we always assume many-one F<α reductions
when discussing hardness for Fα in the remainder of this paper, but we
could just as easily consider Turing reductions (see §4.2.3).

2.3.2. Basic Fα-Complete Problems. By (2.9), Fα-hardness proofs can re-
duce from the acceptance problem of some input string x by some deter-
ministic Turing machine M working in time Fα(p(n)) for some p in F<α.
This can be simplified to a machine working in time Fα(n). Because p in
F<α is honest, p(n) can be computed in F<α. Thus the acceptance of x by
M can be reduced to the acceptance problem of a #-padded input string

x′
def
= x#p(|x|)−|x| of length p(|x|) by a machine M ′ that simulates M , and

treats # as a blank symbol—now M ′ works in time Fα(n). Another sim-
ilarly basic Fα-hard problem is the halting problem for Minsky machines
with the sum of counters bounded by Fα(n) [see 35]

To sum up, we have by definition of the (Fα)α classes the following two Fα-
complete problems—which incidentally have been used in most of the master

COMPLEXITY HIERARCHIES BEYOND ELEMENTARY 7

reductions in the literature in order to prove non primitive-recursiveness, non
multiple-recursiveness, and other hardness results [43, 83, 75, 18, 40, 38]:

Fα-Bounded Turing Machine Acceptance (Fα-TM)
instance: A deterministic Turing machine M working in time Fα and an

input x.
question: Does M accept x?

Fα-Bounded Minsky Machine Halting (Fα-MM)
instance: A deterministic Minsky machine M with sum of counters bounded

by Fα(|M |).
question: Does M halt?

See Section 6 for a catalog of natural complete problems, which should be
easier to employ in reductions.

3. Fast-Growing Complexities in Action

We present now two short tutorials for the use of fast-growing complexi-
ties, namely for SFEq (Section 3.1) and reachability in lossy counter systems
(Section 3.2), pointing to the relevant technical results from later sections.
We also briefly discuss in each case the palliatives employed this far in the
literature for expressing such complexities.

3.1. A Tower-Complete Example can be found in the seminal paper
of Stockmeyer and Meyer [79], and is quite likely already known by many
readers. Define a star-free expression over some alphabet Σ as a term e with
abstract syntax

e ::= a | ε | ∅ | e+ e | ee | ¬e
where ‘a’ ranges over Σ and ‘ε’ denotes the empty string. Such expressions
are inductively interpreted as languages included in Σ∗ by:

JaK def
= {a} JεK def

= {ε} J∅K def
= ∅

Je1 + e2K
def
= Je1K ∪ Je2K Je1e2K

def
= Je1K · Je2K J¬eK def

= Σ∗ \ JeK .

The decision problem SFEq asks, given two such expressions e1, e2, whether
they are equivalent, i.e. whether Je1K = Je2K. Stockmeyer and Meyer [79]
show that this problem is hard for tower(log n) space under FL reductions
if |Σ| ≥ 2. The problem WS1S can be shown similarly hard thanks to a
reduction from SFEq.

3.1.1. Completeness. Recall that Tower is defined as F3, i.e. by the instan-
tiation of (2.9) for α = 3, as the problems decidable by a Turing machine
working in time F3 of some elementary function of the input size:

Tower
def
= F3 =

⋃
p∈FElem

DTime (F3(p(n))) . (3.1)

8 S. SCHMITZ

Once hardness for tower(log n) is established, hardness for Tower under
elementary reductions is immediate; a detailed proof can apply Theorem 4.1
and (4.7) to show that

Tower =
⋃

p∈FElem
Space(tower(p(n)) (3.2)

and use a padding argument as in §2.3.2 to conclude.
That SFEq is in Tower can be checked using an automaton-based al-

gorithm: construct automata recognizing Je1K and Je2K respectively, using
determinization to handle each complement operator at the expense of an
exponential blowup, and check equivalence of the obtained automata in
PSpace—the overall procedure is in space polynomial in tower(n), thus in
F3. A similar automata-based procedure yields the upper bound for WS1S.

3.1.2. Discussion. Regarding upper bounds, there was a natural candidate
in the literature for the missing class Tower: Grzegorczyk [37] defines an
infinite hierarchy of function classes (E k)k∈N inside FPR with E k+1 = Fk

for k ≥ 2. This yields FElem = E 3, and the tower function is in E 4 \ E 3.
Thus WS1S and SFEq are in “time E 4,” and such a notation has occasionally
been employed, for instance for β-Eq the β equivalence of simply typed λ-
terms [78, 76, 10]. Again, we face the issue that E 4 is much too large
a resource bound, as it contains for instance all the finite iterates of the
tower function, and there is therefore no hope of proving the hardness for
E 4 of WS1S, SFEq, or indeed β-Eq, at least if using a meaningful class of
reductions.

Regarding non-elementary lower bounds, recent papers typically establish
hardness for k-ExpTime (or k-ExpSpace) for infinitely many k (possibly
through a suitable parametrization of the problem at hand), for instance by

reducing from the acceptance of an input of size n by a 2.
. .2︸︷︷︸

k times

n

time-bounded

Turing machine. Provided that such a lower bound argument is uniform for
those infinitely many k, it immediately yields a Tower-hardness proof, by
choosing k ≥ n. On a related topic, note that, in contrast with e.g. the
relationship between PH and PSpace, because the exponential hierarchy is
known to be strict, we know for certain that

• for all k, k-ExpTime (Elem =
⋃
k k-ExpTime,

• there are no “Elem-complete problems,” and
• Elem (Tower.

3.2. An Ack-Complete Example. Possibly the most popular Ack-complete
problem in use in reductions, LCM Reachability asks whether a given config-
uration is reachable in a lossy counter machine (LCM) [75]. Such counter
machines are syntactically defined like Minsky machines 〈Q, C, δ, q0〉, where
transitions δ ⊆ Q × C × {=0?, ++, --} × Q operate on a set C of counters

COMPLEXITY HIERARCHIES BEYOND ELEMENTARY 9

through zero-tests c=0?, increments c++ and decrements c--. The seman-
tics of an LCM differ however from the usual, “reliable” semantics of a
counter machine in that the counter values can decrease in an uncontrolled
manner at any point of the execution. These unreliable behaviors make
several problems decidable on LCMs, contrasting with the situation with
Minsky machines.

Formally, a configuration σ = (q,~v) associates a control location q in Q
with a counter valuation ~v in NC, i.e. counter values can never go negative.
Let the initial configuration be (q0,~0). For two counter valuations ~v and ~v′,
write ~v ≤× ~v′ if ~v(c) ≤× ~v′(c) for all c in C, i.e. for the product ordering
over NC. Then a zero-test (q, c=0?, q′) updates (q,~v) into (q′, ~v′), written
(q,~v) → (q′, ~v′), if ~v′ ≤× ~v and ~v′(c) = 0; an increment (q, c++, q′) if ~v′ ≤×−−−→
v + c where

−−−→
v + c(c) = ~v(c) + 1 and

−−−→
v + c(c′) = ~v(c′) for all c′ 6= c; finally,

a decrement (q, c--, q′) if ~v′ ≤×
−−−→
v − c where

−−−→
v − c(c) = ~v(c) − 1 (thus

~v(c) > 0) and
−−−→
v − c(c′) = ~v(c′) for all c′ 6= c.

The reachability problem for such a system asks whether a given config-
uration τ can be reached, i.e. whether (q0,~0) →∗ τ . The hardness proof
of Schnoebelen [75] immediately yields that this problem is Ack-hard [see
also 83, 74], where Ack is defined as an instance of (2.9): it is the class of
problems decidable with Fω resources of some primitive-recursive function
of the input size:

Ack
def
= Fω =

⋃
p∈FPR

DTime
(
Fω(p(n))

)
. (3.3)

3.2.1. Decidability of LCM. Lossy counter machines define well-structured
transition systems over the set of configurations Q × NC, for which generic
algorithms have been designed [4, 34], which rely on the existence of a well-
quasi-ordering [wqo, see 49] over the set of configurations. The particular
variant of the algorithm we present here is well-suited for a complexity anal-
ysis, and is taken from [73].

Call a sequence of configurations σ0, σ1, . . . , σn a witness if σ0 = τ is the
target configuration, σn = (q0,~0) is the initial configuration, and σi+1 → σi
for all 0 ≤ i < n. An instance of LCM is positive if and only if there exists a
witness, which we will search for backwards, starting from τ and attempting
to reach the initial configuration (q0,~0).

Consider the ordering over configurations defined by (q,~v) ≤ (q′, ~v′) if and
only if q = q′ and ~v ≤× ~v′, and observe that, if σ → σ′ and σ ≤ τ , then
τ → σ′. This means that, if there is a witness, then there is a minimal one,

i.e. one where for all 0 < i < n, σi+1 ∈ MinPre(σi) where MinPre(σ)
def
=

min≤{σ′ | σ′ → σ}. Observe furthermore that, if σ0, σ1, . . . , σn is a shortest
minimal witness, then for all i < j, σi 6≤ σj , i.e. is a bad sequence for
≤, or we could have picked σj at step i and obtained a shorter minimal
witness. Hence, if there is a minimal witness, then there is one which is a
bad sequence.

10 S. SCHMITZ

Now, because (≤, Q× NC) is a well-quasi-order by Dickson’s Lemma,

(1) for all i, the set MinPre(σi) is finite, and
(2) any bad sequence, i.e. any sequence σ0, σ1, . . . where σi 6≤ σj for all

i < j, is finite.

Therefore, an algorithm for LCM can proceed by exploring a tree of prefixes
of potential minimal witnesses, which has finite degree by (1) and finite
height by (2), hence by Kőnig’s Lemma is finite.

3.2.2. Length Function Theorems. A nondeterministic version of this search
for a witness for LCM will see its complexity depend essentially on the height
of the tree, i.e. on the length of bad sequences. Define the size of a con-
figuration as its infinite norm |(q,~v)| = maxc∈C ~v(c), and note that any σ
in MinPre(σi) is of size |σ| ≤ |σi| + 1. This means that in any sequence
τ = σ0, σ1, . . . where σi+1 ∈ MinPre(σi) for all i, |σi| ≤ |τ |+ i = gi(|τ |) the
ith iterate of the successor function g(x) = x + 1. We call such a sequence
controlled by g.

What a length function theorem provides is an upper bound on the length
of controlled bad sequences over a wqo, depending on the control function
g—here the successor function—and the maximal order type of the wqo—
here ω|C| · |Q|. In our case, the theorems in [71, 72] provide an

F
|Q|
h,|C|(|τ |) ≤ Fh,ω(max{|C|, |Q|, |τ |}) def

= ` (3.4)

upper bound on both this length and the maximal size of any configuration
in the sequence, where

• h:N→ N is an increasing polynomial function (which depends on g)
and
• for any increasing h:N→ N, (Fh,α)α is a relativized fast-growing hi-

erarchy that uses h instead of the successor function as base function
with index 0:

Fh,0(x)
def
= h(x) , Fh,α+1(x)

def
= F

ω(x)
h,α (x) , Fh,λ(x)

def
= Fh,λx(x) . (3.5)

3.2.3. A Combinatorial Algorithm. We have now established an upper bound
on the length of a shortest minimal witness, entailing that if a witness ex-
ists, then it is of length bounded by ` defined in (3.4). This bound can be
exploited by a nondeterministic forward algorithm, which

(1) computes ` in a first phase: by Theorem 5.1, this can be performed
in time Fh,ω(e(n))) for some elementary function e,

(2) then nondeterministically explores the reachable configurations, start-

ing from the initial configuration (q0,~0) and attempting to reach the
target configuration τ—but aborts if the upper bound on the length
is reached. This second phase uses at most ` steps, and each step can
be performed in time polynomial in the size of the current configu-
ration, itself bounded by `. The whole phase can thus be performed

COMPLEXITY HIERARCHIES BEYOND ELEMENTARY 11

in time polynomial in `, which is bounded by Fh,ω(f(n)) for some
primitive-recursive f by Lemma 4.5.

Thus the overall complexity of this algorithm can be bounded by Fh,ω(p(n))
where h and p are primitive-recursive. Because by Corollary 4.3 and (4.7),
for any primitive-recursive strictly increasing h,

Ack =
⋃

p∈FPR
NTime

(
Fh,ω(p(n))

)
, (3.6)

this means that LCM is in Ack.

3.2.4. Discussion. The oldest statement of Ack-completeness (under poly-
nomial time Turing reductions) we are aware of is due to Clote [20] for FCP,
the finite containment problem for Petri nets; see § 6.1.1. As observed by
Clote, his definition of Ack as DTime

(
Fω(n)

)
is somewhat problematic,

since the class is not robust under changes in the model of computation, for
instance RAM vs. multitape Turing machines. A similar issue arises with
the definition

⋃
c<ωDTime

(
Fω(n+ c)

)
employed in [40]: though robust un-

der changes in the model of computation, it is not closed under reductions.
Those classes are too tight to be convenient.

Conversely, stating that a problem is “in F ∗ω but not in F ∗k for any k” [e.g.
31] is much less informative than stating that it is Fω-complete: F ∗ω \F ∗<ω
is too large to allow for completeness statements, see Section 5.

4. Robustness

In the applications of fast-growing classes we discussed in sections 3.1
and 3.2, we relied on both counts on their “robustness” to minor changes
in their definition. More precisely, we employed space or time hierarchies
indifferently, and alternative generating functions: first for the lower bound
of SFEq and WS1S, when we used the tower function instead of F3 in the
reduction, and later for the upper bound of LCM, where we relied on a
relativized version of Fω. In this section, we prove these and other small
changes to be innocuous.

4.1. Generating Functions. There are many variants for the definition
of the fast-growing functions (Fα)α, but they are all known to generate es-
sentially the same hierarchy (Fα)α.2 Nevertheless, because the fast-growing
complexity classes Fα we defined are smaller, there is no guarantee for these
classical results to hold for them.

2See [69] and [56, pp. 48–51] for such results—and the works of Weiermann et al. on
phase transitions for investigations of when changes do have an impact [e.g. 65].

12 S. SCHMITZ

4.1.1. Ackermann Hierarchy. We start here with one particular variant,
which is rather common in the literature: define Aα:N → N for α > 0
by:

A1(x)
def
= 2x , Aα+1(x)

def
= Axα(1) , Aλ(x)

def
= Aλ(x)(x) . (4.1)

The hierarchy differs in the treatment of successor indices, where the argu-
ment is reset to 1 instead of keeping x as in (2.3). This definition results for
instance in A2(x) = 2x and A3(x) = tower(x), and is typically used in lower
bound proofs.

We can define a hierarchy of decision problems generated from the (Aα)α
by analogy with (2.9):

Aα
def
=

⋃
p∈F<α

DTime (Aα(p(n)) . (4.2)

For two functions g:N→ N and h:N→ N, let us write g ≤ h if g(x) ≤ h(x)
for all x in N. Because Aα ≤ Fα for all α > 0, it follows that Aα ⊆ Fα.
The converse inclusion also holds: in order to prove it, it suffices to exhibit
for all α > 0 a function pα in F<α such that Fα ≤ Aα ◦ pα. It turns out

that a uniform choice pα(x)
def
= 6x+ 5 fits those requirements—it is a linear

function in F0 and Fα ≤ Aα ◦ pα as shown in Lemma A.3—, thus:

Theorem 4.1. For all α > 0, Aα = Fα.

4.1.2. Relativized Hierarchies. Another means for defining a variant of the
fast-growing functions is to pick a different definition for F0: recall the
relativized fast-growing functions employed in (3.5). The corresponding rel-
ativized complexity classes are then defined by

Fh,α
def
=

⋃
p∈F<α

DTime (Fh,α(p(n))) . (4.3)

It is easy to check that, if g ≤ h, then Fg,α ≤ Fh,α for all α. Because we
assumed h to be strictly increasing, this entails Fα ≤ Fh,α, and we have the
inclusion Fα ⊆ Fh,α for all strictly increasing h.

The converse inclusion does not hold, since for instance Fh,1 is non-
elementary for h(x) = 2x. Observe however that, in this instance, h ≤ F2,
and we can see that FF2,k = F2+k for all k in N. This entails that Fh,1 ⊆ F3

for h(x) = 2x. Thus, when working with relativized classes, one should
somehow “offset” the ordinal index by an appropriate amount.

There is nevertheless a difficulty with relativized functions: it is rather
straightforward to show that Fh,α ≤ Fβ+α if h ≤ Fβ, assuming that the
direct sum β + α does not “discard” any summand from the CNF of β;
e.g. FF1,k = Fk+1 and FFω ,ω = Fω·2. Observe however that FF1,ω(x) =
FF1,x+1(x) = Fx+2(x) > Fx+1(x) = Fω(x). Thanks to the closure of Fα
under reductions in F<α, this issue can be solved by composing with an
appropriate function, e.g. FF1,ω(x) ≤ Fω(x + 1). This idea is formalized in
Section A.4, and allows to show:

COMPLEXITY HIERARCHIES BEYOND ELEMENTARY 13

Theorem 4.2. Let h:N → N be a strictly increasing function and α, β be
two ordinals.

(i) If h ∈ Fβ, then Fh,α ⊆ Fβ+1+α.
(ii) If h ≤ Fβ, then Fh,α ⊆ Fβ+α.

Proof. For (i), if h is in Fβ, then there exists xh in N such that, for all
x ≥ xh, h(x) ≤ Fβ+1(x) [56, Lemma 2.7]. By Lemma A.4, this entails that
for all x ≥ xh, Fh,α(x) ≤ Fβ+1+α(Fγ(x)) for some γ < β + 1 + α. Define

the function fh by fh(x)
def
= x + xh; then for all x, Fh,α(x) ≤ Fh,α(fh(x)) ≤

Fβ+1+α(Fγ(fh(x))). Observe that Fγ◦fh is in F<β+1+α, thus Fh,α ⊆ Fβ+1+α.
For (ii), if β + α = 0, then β = α = 0, thus h(x) = x + 1 since it has

to be strictly increasing, and Fh,0 = F0. Otherwise, Lemma A.4 shows that
Fh,α ≤ Fβ+α ◦ Fγ for some γ < β + α. Observe that Fγ is in F<β+α, thus
Fh,α ⊆ Fβ+α. �

The statement of Theorem 4.2 is somewhat technical, but easy to apply
to concrete situations; for instance:

Corollary 4.3. Let h:N → N be a strictly increasing primitive recursive
function and α ≥ ω. Then Fh,α = Fα.

Proof. The function h is in Fk for some k < ω, thus Fh,α ⊆ Fk+1+α = Fα by
Theorem 4.2. Conversely, since h is strictly increasing, Fα ⊆ Fh,α. �

4.1.3. Fundamental Sequences. Our last example of minor variation is to
change the assignment of fundamental sequences. Instead of the standard
assignment of (2.1), we posit a monotone function s:N → N and consider
the assignment

(γ + ωβ+1)(x)s
def
= γ + ωβ · s(x) , (γ + ωλ)(x)s

def
= γ + ωλ(x)s . (4.4)

Thus the standard assignment in (2.1) is obtained as the particular case
s(x) = x+ 1. As previously, this gives rise to new fast-growing functions

F0,s(x)
def
= x+ 1 , Fα+1,s(x)

def
= F s(x)α,s (x) , Fλ,s(x)

def
= Fλ(x)s,s(x) (4.5)

and complexity classes

Fα,s
def
=

⋃
p∈F<α

DTime (Fα,s(p(n))) . (4.6)

We obtain similar results with non-standard fundamental sequences as
with relativized hierarchies (thus also yielding a statement similar to that
of Corollary 4.3):

Theorem 4.4. Let s:N → N be a strictly increasing function and α, β be
two ordinals.

(i) If s ∈ Fβ, then Fα,s ⊆ Fβ+1+α.
(ii) If s ≤ Fβ, then Fα,s ⊆ Fβ+α.

Proof. By applying Theorem 4.2 alongside Lemma A.5. �

14 S. SCHMITZ

4.2. Computational Models and Reductions. In order to be used to-
gether with reductions in F<α, the classes Fα need to be closed under such
functions. The main technical lemma to this end states:

Lemma 4.5. Let f and f ′ be two functions in F<α. Then there exists p in
F<α such that f ◦ Fα ◦ f ′ ≤ Fα ◦ p.

Proof. By Corollary A.7, we know that there exists g in F<α such that

f ◦ Fα ≤ Fα ◦ g. We can thus define p
def
= g ◦ f ′, which is also in F<α since

the latter is closed under composition, to obtain the statement. �

4.2.1. Computational Models. Note that because we assume α ≥ 3, F<α

contains all the elementary functions, thus Lemma 4.5 also entails the ro-
bustness of the Fα classes under changes in the model of computation—e.g.
RAM vs. Turing machines vs. Minsky machines, deterministic or nondeter-
ministic or alternating—or the type of resources under consideration—time
or space; e.g.

Fα =
⋃

p∈F<α

NTime
(
Fα(p(n))

)
=

⋃
p∈F<α

Space
(
Fα(p(n))

)
. (4.7)

4.2.2. Many-One Reductions. For a function f :N→ N and two languages A

and B, we say that A many-one reduces to B in time f(n), written A ≤fm B,
if there exists a Turing transducer T working in deterministic time f(n) such
that, for all x, x is in A if and only if T (x) is in B. For a class of functions

C, we write A ≤Cm B if there exists f in C such that A ≤fm B. As could be
expected given the definitions, each class Fα is closed under many-one F<α

reductions:

Theorem 4.6. Let A and B be two languages. If A ≤F<α
m B and B ∈ Fα,

then A ∈ Fα.

Proof. By definition, A ≤F<α
m B means that there exists a Turing trans-

ducer T working in deterministic time f(n) for some f in F<α; note that
this implies that the function implemented by T is also in F<α by (2.6).
Furthermore, B ∈ Fα entails the existence of a Turing machine M that ac-
cepts x if and only if x is in B and works in deterministic time Fα(p(n)) for
some p in F<α. We construct T (M) a Turing machine which, given an input
x, first computes T (x) by simulating T , and then simulates M on T (x) to
decide acceptance; T (M) works in deterministic time f(n) + Fα(p(T (n))),
which shows that A is in Fα by Lemma 4.5. �

4.2.3. Turing Reductions. We write similarly that A ≤fT B if there exists a
Turing machine for A working in deterministic time f(n) with oracle calls

to B, and A ≤CT B if there exists f in C such that A ≤fT B. It turns out
that Turing reductions in F<α can be used instead of many-one reductions:

COMPLEXITY HIERARCHIES BEYOND ELEMENTARY 15

Theorem 4.7. Let α ≥ 3 and A and B be two languages. If A ≤F<α
T B and

B ∈ Fα, then A ∈ Fα.

Proof. It is a folklore result on queries in recursion theory that, if A ≤fT B,

then A ≤2f
m Btt where 2f (n)

def
= 2f(n) and Btt is the truth table version of

the language B, which evaluates a Boolean combination of queries “x ∈ B.”
Indeed, we can easily simulate the oracle machine for A using a nondeter-
ministic Turing transducer also in time f(n) that guesses the answers of the
B oracle and writes a conjunction of checks “x ∈ B” or “x 6∈ B” on the
output, to be evaluated by a Btt machine. This transducer can be deter-
minized by exploring both outcomes of the oracle calls, and handling them
through disjunctions in the output; it now works in time 2f (n).

Since α ≥ 3 and f is in F<α, 2f is also in F<α. Furthermore, since B is
in Fα, Btt is also in Fα. The statement then holds by Theorem 4.6. �

5. Strictness

The purpose of this section is to establish the strictness of the (Fα)α
hierarchy (Section 5.2). As a first step, we prove that the Fα functions are
“elementarily” constructible (Section 5.1), which is of independent interest
for combinatorial algorithms in the line of that of §3.2.3. We end this section
with a remark on the case α = 2 (Section 5.3).

5.1. Elementary Constructivity. The functions Fα are known to be hon-
est, i.e. to be computable in time Fα [85, 27]. This is however not tight
enough for their use in length function theorems, as in § 3.2.3, where we
want to compute their value in time elementary in Fα itself. We present
the statement in the more general case of relativized fast-growing functions,
defined in (3.5) and discussed in §4.1.2.

Theorem 5.1. Let h:N → N be a time constructible strictly increasing
function and α be an ordinal, then

Fh,α ∈
⋃

e∈FElem
FDTime

(
Fh,α(e(n))

)
.

Proof. Proposition A.10 shows that Fh,α can be computed in timeO(f(Fh,α(n)))

for the function f(x)
def
= x · (Gωα(x) + x), where Gωα is an elementary func-

tion that takes the cost of manipulating (an encoding of) the ordinal indices
into account. Lemma 4.5 then yields the result. �

5.2. Strictness. Let us introduce yet another generalization of the (Fα)α
classes, which will allow for a characterization of the (F ∗α)α and (F ∗<α)α
classes. For an ordinal α and a finite c > 0, define

Fc
α

def
=

⋃
p∈F<α

DTime
(
F cα(p(n))

)
. (5.1)

Thus Fα as defined in (2.9) corresponds to the case c = 1.

16 S. SCHMITZ

Proposition 5.2. For all α ≥ 2,

F ∗α =
⋃
c

Fc
α .

Proof. The left-to-right inclusion is immediate by definition of F ∗α in (2.8).
The converse inclusion stems from the fact that if p is in Fβ for some β < α,

then there exists d such that p ≤ F dα [56, Theorem 2.10], hence F cα◦p ≤ F c+dα

by monotonicity of Fα. �

Let us prove the strictness of the (Fc
α)c,α hierarchy. By Proposition 5.2

it will also prove that of (F ∗α)α along the way (note that it is not implied
by the strictness of (Fα)α, since it would be conceivable that none of the
separating examples would be {0, 1}-valued):

Theorem 5.3 (Strictness). For all c > 0 and 2 ≤ β < α,

Fc
β (Fc+1

β (Fα .

Proof of Fc+1
β (Fα. Consider first a language L in Fc+1

β , accepted by a Tur-

ing machine working in time F c+1
β ◦ p for some p in F<β. Since β < α and

F c+1
β ◦ p is in Fβ, there exists n0 such that, for all n ≥ n0, F

c+1
β (p(n)) ≤

Fα(n), hence for all n, F c+1
β (p(n)) ≤ F c+1

β (p(n + n0)) ≤ Fα(n + n0) by

monotonicity and expansivity of Fβ. Observe that the function n 7→ n0 + n
is in F0 ⊆ F<α, thus L also belongs to Fα.

The strictness of the inclusion can be shown by a straightforward diago-
nalization argument. Define for this the language

Lα
def
= {〈M〉#x |M accepts x in Fα(|x|) steps} (5.2)

where 〈M〉 denotes a description of the Turing machine M and # is a
separator. Then, by Theorem 5.1, Lα belongs to Fα, thanks to a Turing
machine that first computes Fα in time Fα ◦ e for some elementary function
e, and then simulates M in time elementary in Fα ◦ e. Assume now for the
sake of contradiction that Lα belongs to Fc+1

β , i.e. that there exists some

c and some Turing machine K that accepts Lα in time F c+1
β . Again, since

β < α and F c+1
β ◦ F1 is in Fβ, there exists n0 such that, for all n ≥ n0,

F c+1
β (2n+ 1) ≤ Fα(n). We exhibit a new Turing machine N

(1) that takes as input the description 〈M〉 of a Turing machine and
simulates K on 〈M〉#〈M〉 but accepts if and only if K rejects, and

(2) we ensure that a description 〈N〉 of N has size n ≥ n0.
Feeding this description 〈N〉 to N , it runs in time F c+1

β (2n + 1) ≤ Fα(n),

and we obtain a contradiction whether it accepts or not:

• if N accepts, then K rejects 〈N〉#〈N〉 which is therefore not in Lα,
thus N does not accept 〈N〉 in at most Fα(n) steps, which is absurd;
• if N rejects, then K accepts 〈N〉#〈N〉 which is therefore in Lα, thus
N accepts 〈N〉 in at most Fα(n) steps, which is absurd. �

COMPLEXITY HIERARCHIES BEYOND ELEMENTARY 17

Proof of Fc
β (Fc+1

β . Similar to the previous proof; picking F c+1
β as the time

bound instead of Fα in (5.2) suffices to establish strictness. �

By Proposition 5.2, a first consequence of Theorem 5.3 is that

F ∗β (Fα (5.3)

for all 2 ≤ β < α. Another consequence is that (Fα)α “catches up” with
(F ∗α)α at every limit ordinal:

Corollary 5.4. Let λ be a limit ordinal, then

F ∗<λ =
⋃
β<λ

Fβ (Fλ .

Proof. The equality F ∗<λ =
⋃
β<λ Fβ and the inclusion F<λ ⊆ Fλ can be

checked by considering a problem in some F ∗β for β < λ: it is in Fc
β for some

c > 0 by Proposition 5.2, hence in Fβ+1 with β + 1 < λ by Theorem 5.3,
and therefore in Fλ again by Theorem 5.3. Regarding the strictness of the
inclusion, assume for the sake of contradiction Fλ ⊆ F ∗<λ: this would entail
Fλ ⊆ Fβ for some β < λ, violating Theorem 5.3. �

Corollary 5.4 yields yet another characterization of the primitive-recursive
and multiply-recursive problems as

PR =
⋃
k

Fk , MR =
⋃
k

Fωk . (5.4)

Note that strictness implies that there are no “F ∗α -complete” problems
under F<α reductions, since by Proposition 5.2 such a problem would nec-
essarily belong to some Fc

α level, which would in turn entail the collapse of
the (Fc

α)c hierarchy at the Fc
α level and contradict Theorem 5.3.

Similarly, fix a limit ordinal λ and some reduction class Fα for some
α < λ: there cannot be any meaningful “F ∗<λ-complete” problem under Fα

reductions, since such a problem would be in F ∗β for some α < β < λ, hence

contradicting the strictness of the (F ∗β)β<α hierarchy; in particular, there
are no “PR-complete” nor “MR-complete” problems.

5.3. The Case α = 2 is a bit particular. We did not consider it in the rest
of the paper (nor the other cases for α < 2) because it does not share the
usual characteristics of the (Fα)α: for instance, the model of computation
and the kind of resources become important, as

F2
def
=
⋃
p∈F1

DTime
(
F2(p(n))

)
(5.5)

would a priori be different if we were to define it through NTime or DSpace
computations; the following results are artifacts of one particular definition
choice.

18 S. SCHMITZ

5.3.1. Recursion Schemes. In order to define F2 fully we need the original
definition of the extended Grzegorczyk hierarchy (Fα)α by Löb and Wainer
[56]—the characterization in (2.5) is only correct for α ≥ 2. This definition
is based on the closure of a set of initial functions under the operations of
substitution and limited primitive recursion. More precisely, the set of initial
functions at level α comprises the constant zero function 0, the sum function
+:x1, x2 7→ x1 + x2, the projections πni :x1, . . . , xn 7→ xi for all 0 < i ≤ n,
and the fast-growing function Fα. New functions are added to form the class
Fα through two operations:

substitution: if h0, h1, . . . , hp belong to the class, then so does f if

f(x1, . . . , xn) = h0(h1(x1, . . . , xn), . . . , hp(x1, . . . , xn)) ,

limited primitive recursion: if h0, h1, and g belong to the class, then so
does f if

f(0, x1, . . . , xn) = h0(x1, . . . , xn) ,

f(y + 1, x1, . . . , xn) = h1(y, x1, . . . , xn, f(y, x1, . . . , xn)) ,

f(y, x1, . . . , xn) ≤ g(max{y, x1, . . . , xn}) .
Observe that primitive recursion is defined by ignoring the last limitedness
condition in the previous definition. See Clote [21] for an survey of the rela-
tionships between machine-defined and recursion-defined complexity classes.

5.3.2. Linear Exponential Time. Let us focus for now on F1, which is the
class of reductions used in F2. Call a function f linear if there exists a
constant c such that f(x1, . . . , xn) ≤ c ·maxi xi for all x1, . . . , xn. Observe

that, for all c, the function fc(x)
def
= c ·x is in F1 since fc(0) = 0, fc(x+ 1) =

sc(0) + fc(x), and fc(x) ≤ F c1 (x); thus any linear function is bounded above
by a function in F1. Conversely, if f is in F1, then it is linear: this is true
of the initial functions, and preserved by the two operations of substitution
and limited primitive recursion.3

This entails that F2 matches a well-known complexity class, since fur-
thermore F2(n) = 2n+1+log(n+1) − 1 is in 2O(n): F2 is the weak (aka linear)
exponential-time complexity class:

F2 = E
def
= DTime(2O(n)) . (5.6)

6. A Short Catalog

Our introduction of the fast-growing complexity classes is motivated by
already known decidability problems, arising for instance in logic, verifica-
tion, or database theory, for which no precise classification could be provided
in the existing hierarchies. By listing some of these problems, we hope to
initiate the exploration of this mostly uncharted area of complexity, and to
foster the use of reductions from known problems, rather than proofs from

3Thus F1 (E 2: the latter additionally contains the function x, y 7→ (x+ 1) · (y+ 1) as
an initial function, and is equal to FLinSpace [68, 21, Theorem 3.36].

COMPLEXITY HIERARCHIES BEYOND ELEMENTARY 19

Turing machines. The following catalog of complete problems does not at-
tempt to be exhaustive; Friedman [36] for instance presents many problems
“of enormous complexity.”

Because examples for Tower are well-known and abound in the liter-
ature, starting with a 1975 survey by Meyer [61],4 we rather focus on the
non primitive-recursive levels, i.e. the Fα for α ≥ ω. Interestingly, all these
examples rely for their upper bound on the existence of some well-quasi-
ordering (of maximal order type ωα, see [22]), and on a matching length
function theorem.

6.1. Fω-Complete Problems. We gather here some decision problems
that can be proven decidable in Fω thanks to Dickson’s Lemma over Nd
for some d and to the combinatorial analyses of McAloon [59], Clote [20],
Figueira et al. [31], Abriola et al. [6]. We therefore focus on the references
for lower bounds.

6.1.1. Vector Addition Systems (VAS, and equivalently Petri nets), provided
the first known Ackermannian decision problem: FCP.

A d-dimensional VAS is a pair 〈~x0, ~A〉 where ~x0 is an initial configuration

in Nd and ~A is a finite set of transitions in Zd. A transition ~a in ~A can
be applied to a configuration ~x in Nd if ~x′ = ~x + ~a is in Nd; the resulting
configuration is then ~x′. The complexity of decision problems for VAS usu-
ally varies from ExpSpace-complete [55, 67, 11] to Fω-complete [58, 43] to
undecidable [39, 42], via a key problem, which is decidable but of unknown
complexity: VAS Reachability [57, 47, 50, 54].

Finite Containment Problem (FCP)
instance: Two VAS V1 and V2 known to have finite sets Reach(V1) and

Reach(V2) of reachable configurations.
question: Is Reach(V1) included in Reach(V2)?
reference: Mayr and Meyer [58], from an Fω-bounded version of Hilbert’s

Tenth Problem. A simpler reduction is given by Jančar [43] from the
halting problem of Fω-bounded Minsky machines.

comment: Testing whether the set of reachable configurations of a VAS is
finite is ExpSpace-complete [55, 67]. FCP provided the initial mo-
tivation for the work of McAloon [59] and Clote [20]. FCP has been
generalized by Jančar [43] to a large range of behavioral relations be-
tween two VASs. Without the finiteness condition, these questions
are undecidable [39, 42, 43].

6.1.2. Unreliable Counter Machines. A lossy counter machine (LCM) is syn-
tactically a Minsky machine, but its operational semantics are different: its
counter values can decrease nondeterministically at any moment during ex-
ecution.

4Of course Meyer does not explicitly state Tower-completeness, but it follows imme-
diately from the lower and upper bounds he provides.

20 S. SCHMITZ

Lossy Counter Machines Reachability (LCM)
instance: A lossy counter machine M and a configuration σ.
question: Is σ reachable in M with lossy semantics?
reference: Schnoebelen [75], by a direct reduction from Fω-bounded Minsky

machines. The first proofs were given independently by Urquhart
[83] and Schnoebelen [74].

comment: Hardness also holds for terminating LCMs, for coverability in
Reset or Transfer Petri nets, and for reachability in counter machines
with incrementing errors.

6.1.3. Relevance Logics provide different semantics of implication, where a
fact B is said to follow from A, written “A → B”, only if A is actually
relevant in the deduction of B. This excludes for instance A → (B → A),
(A ∧ ¬A)→ B, etc.—see Dunn and Restall [24] for more details. Although
the full logic R is undecidable [82], its conjunctive-implicative fragment
R→,∧ is decidable, and Ackermannian:

Conjunctive Relevant Implication (CRI)
instance: A formula A of R→,∧.
question: Is A a theorem of R→,∧?
reference: Urquhart [83], from a variant of LCM: the emptiness problem

of alternating expansive counter systems, for which he proved Fω-
hardness directly from the halting problem in Fω-bounded Minsky
machines.

comment: Hardness also holds for LR+ and any intermediate logic between
R→,∧ and T→,∧—which might include some undecidable fragments.

6.1.4. Data Logics & Register Automata are concerned with structures like
words or trees with an additional equivalence relation over the positions.
The motivation for this stems in particular from XML processing, where
the equivalence stands for elements sharing the same datum from some in-
finite data domain D. Enormous complexities often arise in this context,
both for automata models (register automata and their variants, when ex-
tended with alternation or histories) and for logics (which include logics
with freeze operators and XPath fragments)—the two views being tightly
interconnected.

Emptiness of Alternating 1-Register Automata (ARA)
instance: An ARA A.
question: Is L(A) empty?
reference: Demri and Lazić [23], from reachability in incrementing counter

machines LCM.
comment: There exist many variants of the ARA model, and hardness also

holds for the corresponding data logics [e.g. 44, 23, 30, 80, 29, 81].
See ATA for the case of linearly ordered data.

COMPLEXITY HIERARCHIES BEYOND ELEMENTARY 21

6.1.5. Interval Temporal Logics provide a formal framework for reasoning
about temporal intervals. Halpern and Shoham [41] define a logic with
modalities expressing the basic relationships that can hold between two
temporal intervals, 〈B〉 for “begun by”, 〈E〉 for “ended by”, and their in-
verses 〈B̄〉 and 〈Ē〉. This logic, and even small fragments of it, has an
undecidable satisfiability problem, thus prompting the search for decidable
restrictions and variants. Montanari et al. [63] show that the logic with rela-
tions AĀBB̄—where 〈A〉 expresses that the two intervals “meet”, i.e. share
an endpoint—, has an Fω-complete satisfiability problem over finite linear
orders:

Finite Linear Satisfiability of AĀBB̄ Interval Temporal Logic (ITL)
instance: An AĀBB̄ formula ϕ.
question: Does there exist an interval structure S over some finite linear

order and an interval I of S s.t. S, I |= ϕ?
reference: Montanari et al. [63], from LCM.
comment: Hardness already holds for the fragments ĀB and ĀB̄ [14].

6.2. Fωω-Complete Problems. The following problems have been proven
decidable thanks to Higman’s Lemma over some finite alphabet. All the
complexity upper bounds in Fωω stem from the constructive proofs of Weier-
mann [86], Cichoń and Tahhan Bittar [19], Schmitz and Schnoebelen [71].
Again, we point to the relevant references for lower bounds.

6.2.1. Lossy Channel Systems (LCS) are finite labeled transition systems
〈Q,M, δ, q0〉 where transitions in δ ⊆ Q × {?, !} ×M × Q read and write
on an unbounded channel. This would lead to a Turing-complete model of
computation, but the operational semantics of LCS are “lossy”: the channel
loses symbols in an uncontrolled manner. Formally, the configurations of
an LCS are pairs (q, x), where q in Q holds the current state and x in M∗

holds the current contents of the channel. A read (q, ?m, q′) in δ updates this
configuration into (q, x′) if there exists some x′′ s.t. x′ ≤∗ x′′ and mx′′ ≤∗ x—
where ≤∗ denotes subword embedding—, while a write transition (q, !m, q′)
updates it into (q′, x′) with x′ ≤∗ xm; the initial configuration is (q0, ε), with
empty initial channel contents.

Due to the unboundedness of the channel, there might be infinitely many
configurations reachable through transitions. Nonetheless, many problems
are decidable [2, 15] using Higman’s Lemma and what would later become
known as the theory of well-structured transition systems (WSTS) [33, 4, 34].
LCS are also the primary source of problems hard for Fωω :

LCS Reachability (LCS)
instance: A LCS and a configuration (q, x) in Q×M∗.
question: Is (q, x) reachable from the initial configuration?
reference: Chambart and Schnoebelen [18], by a direct reduction from Fωω -

bounded Minsky machines.

22 S. SCHMITZ

comment: Hardness already holds for terminating systems, and for reacha-
bility in faulty channel systems, where symbols are nondeterministi-
cally inserted in the channel at arbitrary positions instead of being
lost. The bounds are refined and parametrized in function of the
size of the alphabet M in [45].

There are many interesting applications of this question; let us mention
one in particular: Atig et al. [8] show how concurrent finite programs com-
municating through weak shared memory—i.e. prone to reorderings of read
or writes, modeling the actual behavior of microprocessors, their instruction
pipelines and cache levels—have an Fωω -complete control-state reachability
problem, through reductions to and from LCS.

LCS Termination (LCST)
instance: A LCS.
question: Is every sequence of transitions from the initial configuration fi-

nite?
reference: Chambart and Schnoebelen [18], by an easy reduction from ter-

minating instances of LCS.
comment: Unlike Reachability, Termination is sensible to switching from lossy

semantics to faulty semantics: it becomes NL-complete in general [15],
Tower-complete when the channel system is equipped with channel
tests [13], and Ack-complete when one asks for fair non-termination,
where the channel contents are read infinitely often [53].

6.2.2. Embedding Problems have been introduced by Chambart and Schnoe-
belen [16], motivated by decidability problems in various classes of channel
systems mixing lossy and reliable channels. These problems are centered on
the subword embedding relation ≤∗ and called Post Embedding Problems.
There is a wealth of variants and applications, see e.g. [17, 46, 45].

We give here a slightly different viewpoint, taken from [9, 45], that uses
regular relations (i.e. definable by synchronous finite transducers) and ra-
tional relations (i.e. definable by finite transducers):

Rational Embedding Problem (RatEP)
instance: A rational relation R included in (Σ∗)2.
question: Is R ∩ ≤∗ non empty?
reference: Chambart and Schnoebelen [16], from LCS.
comment: Chambart and Schnoebelen [16] call this problem the Regular Post

Embedding Problem, but the name is misleading due to GEP. An
equivalent presentation uses a rational language L included in Σ∗ and
two homomorphisms u, v: Σ∗ → Σ∗, and asks whether there exists w
in L s.t. u(w) ≤∗ v(w). The bounds are refined and parametrized in
function of the size of the alphabet Σ in [45].

Generalized Embedding Problem (GEP)
instance: A regular relationR included in (Σ∗)m and a subset I of {1, ...,m}2.
question: Does there exist (w1, . . . , wm) in R s.t. for all (i, j) in I, wi ≤∗ wj?

COMPLEXITY HIERARCHIES BEYOND ELEMENTARY 23

reference: Barceló et al. [9], from RatEP.
comment: The Regular Embedding Problem (RegEP) corresponds to the case

where m = 2 and I = {(1, 2)}, and is already Fωω -hard; see [45]
for refined bounds. Barceló et al. [9] use GEP to show the Fωω -
completeness of querying graph databases using particular extended
conjunctive regular path queries.

6.2.3. Metric Temporal Logic & Timed Automata allow to reason on timed
words over Σ × R, where Σ is a finite alphabet and the real values are
non-decreasing timestamps on events. A timed automaton [NTA, 7] is a
finite automaton extended with clocks that evolve synchronously through
time, and can be reset and compared against some time interval by the
transitions of the automaton. The model can be extended with alternation,
and is then called an ATA.

Metric temporal logic [MTL, 48] is an extension of linear temporal logic
where temporal modalities are decorated with real intervals constraining
satisfaction; for instance, a timed word w satisfies the formula F[3,∞)ϕ at
position i, written w, i |= F[3,∞)ϕ, only if ϕ holds at some position j > i of
w with timestamp τj − τi ≥ 3. Satisfiability problems for MTL reduce to
emptiness problems for timed automata.

Ouaknine and Worrell [66] and Lasota and Walukiewicz [51] prove using
WSTS techniques that, in the case of a single clock, emptiness of ATAs is
decidable.

Emptiness of Alternating 1-Clock Timed Automata (ATA)
instance: An ATA A.
question: Is L(A) empty?
reference: Lasota and Walukiewicz [51], from faulty channel systems LCS.
comment: Hardness already holds for universality of nondeterministic 1-

clock timed automata.

Finite Satisfiability of Metric Temporal Logic (fMTL)
instance: An MTL formula ϕ.
question: Does there exist a finite timed word w s.t. w, 0 |= ϕ?
reference: Ouaknine and Worrell [66], from faulty channel systems LCS.
comment: The related problem of satisfiability for the safety fragment of

MTL is Ack-complete [53].

Note that recent work on data automata over linearly ordered domains
has uncovered some strong ties with timed automata [32, 29].

6.3. Fωωω -Complete Problems. Currently, the known Fωωω -complete prob-
lems are all related to extensions of Petri nets called enriched nets, which
include timed-arc Petri nets [3], data nets and Petri data nets [52], and con-
strained multiset rewriting systems [1]. Reductions between the different
classes of enriched nets can be found in [5, 12]. Defining these families of
nets here would take too much space; see the references for details. These

24 S. SCHMITZ

models share one characteristic: they define well-structured transition sys-
tems over finite sequences of multisets of natural numbers, which have an

ωω
ωω

maximal order type.

Enriched Net Coverability (ENC)
instance: An enriched net N and a place p of the net.
question: Is there a reachable marking with a least one token in p?
reference: Haddad et al. [40], by a direct reduction from the halting problem

in Fωωω -bounded Minsky machines.
comment: Hardness already holds for bounded, terminating nets.

6.4. Fε0-Complete Problems have only recently been investigated in [38],
with the definition of priority channel systems (PCS). Those are defined
similarly to lossy channel systems (c.f. §6.2.1), but the message alphabetM is
linearly ordered to represent message priorities. Rather than message losses,
the unreliable behaviors are now message supersedings, i.e. applications of
the rewrite rules ab→ b for b ≥ a in M on the channel contents.

PCS Reachability (PCS)
instance: A PCS and a configuration (q, x) in Q×M∗.
question: Is (q, x) reachable from the initial configuration?
reference: Haase et al. [38], by a direct reduction from the halting problem

in Fε0-bounded Turing machines.
comment: Hardness already holds for terminating PCSs.

7. Concluding Remarks

The classical complexity hierarchies are limited to elementary problems,
in spite of a growing number of natural problems that require much larger
computational resources. We propose in this paper a definition for fast-
growing complexity classes (Fα)α, which provide accurate enough notations
for many non-elementary decision problems: they allow to express some
important landmarks, like Tower = F3, Ack = Fω, or HAck = Fωω , and
are close enough to the extended Grzegorczyck hierarchy so that complexity
statements in terms of Fα can often be refined as statements in terms of
Fα. These definitions allow to employ the familiar vocabulary of complexity
theory, reductions and completeness, instead of the more ad-hoc notions
used this far. This will hopefully foster the reuse of “canonical problems” in
establishing high complexity results, rather than proofs from first principles,
i.e. resource-bounded Turing machines.

A pattern emerges in the list of known Fα-complete problems, allowing
to answer a natural concern already expressed by Clote [20]: “what do
complexity classes for such rapidly growing functions really mean?” Indeed,
beyond the intellectual satisfaction one might find in establishing a problem
as complete for some class, being Fα-complete brings additional information
on the problem itself: that it relies in some essential way on the ordinal ωα

being well-ordered. All the problems in Section 6 match this pattern, as

COMPLEXITY HIERARCHIES BEYOND ELEMENTARY 25

their decision algorithms rely on well-quasi-orders with maximal order type
ωα for their termination, for which length function theorems then allow to
derive Fα bounds.

Finally, we remark that there are currently no known natural problem of
“intermediate” complexity, for instance between Elem and Ack, or between
the latter and HAck. Parametric versions of LCM or LCS seem like good
candidates for this, but so far the best lower and upper bounds do not quite
match [see e.g. 45]. It would be interesting to find examples that exercise
the intermediate levels of the (Fα)α hierarchy.

Appendix A. Subrecursive Hierarchies

This section presents the technical background and proofs missing from
the main text.

A.1. Hardy Functions. Let h:N → N be a strictly increasing function.
The Hardy functions (hα)α∈ε0 controlled by h are defined inductively by

h0(x)
def
= x , hα+1(x)

def
= hα (h(x)) , hλ(x)

def
= hλ(x)(x) . (A.1)

A definition related to fundamental sequences is that of the predecessor at
x of an ordinal greater than 0, which recursively considers the xth element
in the fundamental sequence of limit ordinals, until a successor ordinal is
found:

Px(α+ 1)
def
= α , Px(λ)

def
= Px(λ(x)) . (A.2)

Using predecessors, the definition of the Hardy functions becomes even sim-
pler: for α > 0,

hα(x)
def
= hPx(α) (h(x)) . (A.3)

Observe for instance that hk(x) for some finite k is the kth iterate of h.
This intuition carries over: hα is a transfinite iteration of the function h,
using diagonalization to handle limit ordinals. The usual Hardy functions

Hα from are then obtained by fixing H(x)
def
= x+ 1.

The Hardy functions enjoy a number of properties; see [26, 19]. They are
expansive, and monotonic with respect to both the base function h and to
the argument x: for all g ≤ h, x ≤ y, and α,

x ≤ hα(x) , gα(x) ≤ hα(x) , hα(x) ≤ hα(y) . (A.4)

As often with subrecursive functions, what the Hardy functions lack is mono-
tonicity in the ordinal index, see Section A.2.

By transfinite induction on ordinals, we also find several identities:

hω
α·c = F ch,α , (A.5)

hα+β = hα ◦ hβ . (A.6)

Note that (A.5) entails the expansiveness and monotonicity of the fast-
growing functions.

26 S. SCHMITZ

Equation (A.6) is extremely valuable: it shows that—up to some extent—
the composition of Hardy functions can be internalized in the ordinal index.
Here we run however into a limitation of considering “set-theoretic” ordinal
indices: informally, (A.6) is implicitly restricted to ordinals α+β “in CNF”.
Formally, it requires α + β = α ⊕ β, where ‘⊕’ denotes the natural sum
operation. For instance, it fails in H1(Hω(x)) = H1(Hx(x+ 1)) = 2x+ 2 >
2x + 1 = Hω(x), although 1 + ω = ω. We will discuss this point further in
Section A.6.

A.2. Monotonicity. One of the issues of most subrecursive hierarchies of
functions is that they are not monotone in the ordinal index: β < α does
not necessarily imply Hβ ≤ Hα; for instance, Hx+2(x) = 2x+ 2 > 2x+ 1 =
Hω(x). What is however true is that they are eventually monotone: if β < α,
then there exists n0 such that, for all x ≥ n0, H

β(x) ≤ Hα(x). This result
(and others) can be proven using a pointwise ordering : for all x, define the
≺x relation as the transitive closure of

α ≺x α+ 1 , λ(x) ≺x λ . (A.7)

The relation “β ≺x α” is also noted “β ∈ α[x]” in [77, pp. 158–163], where
the results of this section are proven.

The ≺x relations form a strict hierarchy of refinements of the ordinal
ordering <:

≺0 (≺1 (· · · (≺x (· · · (< . (A.8)

We are going to use two main properties of the pointwise ordering:

x < y implies λ(x) ≺y λ(y) , (A.9)

β ≺x α implies Hβ(x) ≤ Hα(x) . (A.10)

For a first application, define the norm of an ordinal term as the maximal
coefficient that appears in its normal form: if α = ωα1 ·c1+· · ·+ωαm ·cm with

α1 > · · · > αm and c1, . . . , cm > 0, thenNα
def
= max{c1, . . . , cm, Nα1, . . . , Nαm}.

Then β < α implies β ≺Nβ α [77, p. 158]. Together with (A.10), this entails

that, for all x ≥ Nβ, Hβ(x) ≤ Hα(x).

A.3. Ackermann Functions. We prove in this section some basic prop-
erties of the Ackermann hierarchy of functions (Aα)α defined in §4.1.1. Its
definition is less uniform than the fast-growing and Hardy functions, leading
to slightly more involved proofs.

Lemma A.1. For all α > 0, Aα(0) ≤ 1.

Proof. By transfinite induction over α. For α = 1, A1(0) = 0 ≤ 1. For
a successor ordinal α + 1, Aα+1(0) = 1. For a limit ordinal λ, Aλ(0) =
Aλ(0)(0) ≤ 1 by ind. hyp. �

As usual with subrecursive hierarchies, the main issue with the Acker-
mann functions is to prove various monotonicity properties in the argument
and in the index.

COMPLEXITY HIERARCHIES BEYOND ELEMENTARY 27

Lemma A.2. For all α, β > 0 and x, y:

(i) if α > 1, Aα is strictly expansive: Aα(x) > x,
(ii) Aα is strictly monotone in its argument: if y > x, Aα(y) > Aα(x),

(iii) (Aα)α is pointwise monotone in its index: if α �x β, Aα(x) ≥ Aβ(x).

Proof. Let us first consider the case α = 1: A1 is strictly monotone, proving
(ii). Regarding (i) for α = 2, A2(x) = 2x > x for all x.

We prove now the three statements by simultaneous transfinite induction
over α. Assume they hold for all β < α (and thus for all β ≺x α for all x).

For (i),

• if α is a successor ordinal β + 1, then Aβ+1(x) ≥ Aβ(x) > x by ind.
hyp. (iii) and (i) on β ≺x α.
• If α is a limit ordinal λ, then Aλ(x) = Aλ(x)(x) > x by ind. hyp. (i)

on λ(x) ≺x α.

For (ii), it suffices to prove the result for y = x+ 1.

• If α is a successor ordinal β+1, then Aα(x+1) = Aβ
(
Aα(x)

)
> Aα(x)

by ind. hyp. (i) on β ≺x α.
• If α is a limit ordinal λ, then Aλ(x+1) = Aλ(x+1)(x+1) ≥ Aλ(x)(x+

1) by ind. hyp. (iii) on λ(x) ≺x+1 λ(x + 1) (recall Equation A.9),
hence the result by ind. hyp. (ii) on λx ≺x α.

For (iii), it suffices to prove the result for α = β + 1 and β = α(x) and
rely on transitivity.

• If α = β + 1, then we show (iii) by induction over x: the base case
x = 0 stems from Aα(0) = A0

β(1) = 1 ≥ Aβ(0) by Lemma A.1; the

induction step x+1 stems from Aα(x+1) = Aβ
(
Aα(x)

)
≥ Aβ(x+1)

using the ind. hyp. on x and (ii) on β ≺Aα(x) α.
• If β = α(x), then Aα(x) = Aβ(x) by definition. �

Our main interest in the Ackermann functions is their relation with the
fast-growing ones:

Lemma A.3. For all α > 0 and all x, Aα(x) ≤ Fα(x) ≤ Aα(6x+ 5).

Proof. We only prove the second inequality, as the first one can be deduced
from the various monotonicity properties of Fα and Aα. The case x = 0 is
settled for all α > 0 by checking that Fα(0) = 1 ≤ 10 = A1(5) ≤ Aα(5),
since 1 �x α for all α > 0 and we can therefore apply Lemma A.2.(iii).
Assume now x > 0; we prove the statement by transfinite induction over
α > 0.

• For the base case α = 1, F1(x) = 2x+ 1 ≤ 12x+ 10 = A1(6x+ 5).

• For the successor case α + 1, Aα+1(6x + 5) = A
5(x+1)
α

(
Axα(1)

)
≥

A
5(x+1)
α (x) by Lemma A.2.

We show by induction over j that A5j
α (x) ≥ F jα(x). This holds

for the base case j = 0, and for the induction step, A5
α

(
A5j
α (x)

)
≥

A5
α

(
F jα(x)

)
by ind. hyp. on j and Lemma A.2.(ii). Furthermore, for

28 S. SCHMITZ

all y > 0, Aα
(
A4
α(y)

)
≥ Aα

(
A4

1(y)
)

= Aα(16y) ≥ Aα(6y+5) ≥ Fα(y)

by ind. hyp. on α, which shows that A5
α

(
F jα(x)

)
≥ F j+1

α (x) when

choosing y = F jα(x) > 0. Then A
5(x+1)
α (x) ≥ F x+1

α (x) = Fα+1(x),
thus completing the proof in the successor case.
• For the limit case λ, Aλ(6x+5) = Aλ(6x+5)(6x+5) ≥ Aλ(x)(6x+5) ≥
Fλ(x)(x) = Fλ(x), using successively Lemma A.2.(iii) on λ(x) ≺6x+5

λ(6x+ 5) and the ind. hyp. on λ(x) < λ. �

A.4. Relativized Functions. We prove here the missing lemma from the
proof of Theorem 4.2:

Lemma A.4. Let h:N→ N be a function α, β be two ordinals, and x0 be a
natural number. If for all x ≥ x0, h(x) ≤ Fβ(x), then there exists an ordinal
γ such that

(i) for all x ≥ x0, Fh,α(x) ≤ Fβ+α(Fγ(x)), and
(ii) γ < β + α whenever β + α > 0.

Proof. Let us first fix some notations: write α = ωα1 + · · · + ωαm with
α1 ≥ · · · ≥ αm and β = ωβ1 + · · · + ωβn with β1 ≥ · · · ≥ βn, and let i be
the maximal index in {1, . . . , n} such that βi ≥ α1, or set i = 0 if this does

not occur. Define β′
def
= ωβ1 + · · · + ωβi and γ

def
= ωβi+1 + · · · + ωβn (thus

β′ = 0 if i = 0); then β = β′ + γ and β + α = β′ + α. Note that this implies
γ < ωα1 ≤ α ≤ β + α, unless α = 0 and then γ = 0, thus fulfilling (ii).

We first prove by transfinite induction over α that

Fβ′+α ◦ Fγ ≥ Fγ ◦ FFβ ,α . (A.11)

Proof of (A.11). For the base case α = 0, then γ = 0 and β′ = β, and
indeed

Fβ(F0(x)) = Fβ(x+ 1)

≥ Fβ(x) + 1 by monotonicity of Fβ

= F0(Fβ(x))

= F0(FFβ ,0(x)) .

For the successor case α + 1 and assuming it holds for α, let us first show
by induction over j that, for all y,

F jβ′+α(Fγ(y)) ≥ Fγ(F jFβ ,α(y)) . (A.12)

This immediately holds for the base case j = 0, and for the induction step,

Fβ′+α
(
F jβ′+α(Fγ(y))

)
≥ Fβ′+α

(
Fγ(F jFβ ,α(y))

)
by ind. hyp. (A.12) on j

≥ Fγ
(
FFβ ,α(F jFβ ,α(y))

)
by ind. hyp. (A.11) on α < α+ 1.

COMPLEXITY HIERARCHIES BEYOND ELEMENTARY 29

This yields the desired inequality:

Fβ′+α+1(Fγ(x)) = F
Fγ(x)+1
β′+α (Fγ(x))

≥ F x+1
β′+α(Fγ(x))

≥ Fγ(F x+1
Fβ ,α

(x))

= Fγ(FFβ ,α+1(x))

using (A.12) with j = x+ 1 and y = x.
For the limit case λ,

Fβ′+λ(Fγ(x)) = Fβ′+λ(Fγ(x))(Fγ(x))

≤ Fβ′+λ(x)(Fγ(x)) since λ(x) ≺Fγ(x) λ(Fγ(x))

≤ Fγ(FFβ ,λ(x)(x)) by ind. hyp. (A.11) on λ(x) < λ

= Fγ(FFβ ,λ(x)) . �

Returning to the main proof, a simple induction over α shows that, for
all x ≥ x0,

Fh,α(x) ≤ FFβ ,α(x) . (A.13)

We then conclude for (i) that, for all x ≥ x0,

Fh,α(x) ≤ FFβ ,α(x) by (A.13)

≤ Fγ(FFβ ,α(x)) by expansivity of Fγ

≤ Fβ′+α(Fγ(x)) by (A.11). �

A.5. Non-standard Assignment of Fundamental Sequences. We show
here the omitted details of the proof of Theorem 4.4:

Lemma A.5. Let s:N→ N be a monotone function and α be an ordinal.

• If s is strictly expansive, then Fα,s ≤ Fs,α ◦ s, and
• otherwise Fα,s ≤ Fα.

Proof. For the first point, let us show that

s(Fα,s(x)) ≤ Fs,α(s(x)) (A.14)

for all monotone s with s(x) > x, all α and all x, which entails the lemma
since s is expansive. We proceed by transfinite induction over α. For the base
case, Fs,0(s(x)) = s(s(x)) ≥ s(x + 1) = s(F0,s(x)) since s is monotone and

strictly expansive. For the successor case, Fs,α+1(s(x)) = F
s(x)+1
s,α (s(x)) ≥

s(F
s(x)
α,s (x)) = s(Fα+1,s(x)), where the middle inequality stems from the

fact that F js,α(s(x)) ≥ s(F jα,s(x)), as can be seen by induction on j using
the induction hypothesis on α < α + 1. For the limit case, observe that
λ(x)s ≺s(x) λ(s(x)), thus Fs,λ(s(x)) = Fs,λ(s(x))(s(x)) ≥ Fs,λ(x)s(s(x)) ≥
s(Fλ(x)s,s(x)) = s(Fλ,s(x)) using the induction hypothesis on λ(x)s < λ.

The second point is straightforward by induction over α. �

30 S. SCHMITZ

A.6. Composing Hardy Functions. The purpose of this section is to
provide the technical details for the proof of Lemma 4.5.

The natural sum α ⊕ β of two ordinals written as α = ωα1 + · · · + ωαm

with α1 ≥ · · · ≥ αm and β = ωβ1 + · · ·ωβn with β1 ≥ · · · ≥ βn can be defined
as the ordinal ωγ1 + · · · + ωγm+n where the γi’s range over {αj | 1 ≤ j ≤
m} ∪ {βk | 1 ≤ k ≤ n} in non-increasing order. For instance, ω2 + ωω = ωω

but ω2 ⊕ ωω = ωω + ω2.

Lemma A.6. For all ordinals α and β, and all functions h,

hα ◦ hβ ≤ hα⊕β .

Proof. Write α = ωα1+· · ·+ωαm with α1 ≥ · · · ≥ αm and β = ωβ1+· · ·+ωβn
with β1 ≥ · · · ≥ βn, then α ⊕ β = ωγ1 + · · · + ωγm+n . We prove the lemma
by transfinite induction over β: it holds immediately for the base case since
α ⊕ 0 = α and for the successor case since α ⊕ (β + 1) = (α ⊕ β) + 1. For
the limit case, let i be the last index of βn among the γj in the CNF of
α⊕ β. If i = m+ n, then α⊕ (β(x)) = (α⊕ β)(x) and the statement holds.

Otherwise, define γ
def
= ωγ1 + · · ·+ ωγi and γ′

def
= ωγi+1 + · · ·+ ωγm+n . For all

x,

hα⊕β = hγ(hγ
′
(x)) by (A.6)

= hγ(h
γ′ (x))(hγ

′
(x)) since γ is a limit ordinal

≥ hγ(x)(hγ′(x)) since γ(x) ≺[hγ′(x)] γ(hγ
′
(x))

= hα⊕(β(x))(x) by (A.6)

≥ hα(hβ(x)(x)) by ind. hyp. on β(x) < β

= hα(hβ(x)) . �

Corollary A.7. Let α be an ordinal and f a function in F<α. Then there
exists g in F<α such that f ◦ Fα ≤ Fα ◦ g.

Proof. As f is in some Fβ for β < α, f ≤ F cβ for some finite c by [56,

Theorem 2.10], thus f ≤ Hωβ ·c by (A.5), and we let g
def
= Hωβ ·c, which indeed

belongs to Fβ ⊆ F<α. Still by (A.5), Fα = Hωα . Observe that ωβ · c < ωα,

hence (ωβ ·c)⊕ωα = ωα+ωβ ·c. By (A.6), Hωα+ωβ ·c = Hωα◦Hωβ ·c. Applying
(A.5) and Lemma A.6, we obtain that f ◦ Fα ≤ g ◦ Fα ≤ Fα ◦ g. �

A.7. Computing Hardy Functions. We explain in this section how to
compute Hardy functions, thus providing the background material for the
proof of Theorem 5.1. This type of results is pretty standard—see for in-
stance [85], [27], or [77, pp. 159–160]—, but the particular way we employ
is closer in spirit to the viewpoint employed in [40, 45, 38].

A.7.1. Hardy Computations. Using (A.3), let us call a Hardy computation
for hα(n) a sequence of pairs 〈α0, n0〉, 〈α1, n1〉, . . . , 〈α`, n`〉 where α0 = α,
n0 = n, α` = 0, and at each step 0 < i ≤ `, αi = Pni−1(αi−1) and ni =

COMPLEXITY HIERARCHIES BEYOND ELEMENTARY 31

h(ni−1). An invariant of this computation is that hαi(ni) = hα(n) at all
steps 0 ≤ i ≤ `, hence n` = hα(n). Since h is increasing, the ni values
increase throughout this computation, while the αi values decrease, and
termination is guaranteed.

Our plan is to implement the Hardy computation of hα(n) using a Tur-
ing machine, which essentially needs to implement the ` steps 〈αi, ni〉 →
〈Pni−1(αi−1), h(ni−1)〉. Assuming h to be a time constructible expansive

function, the complexity of a single step will depend on h(ni−1) ≤ h`(n) and
on the complexity of updating αi.

A.7.2. Cichoń Functions. In order to measure the length ` of a Hardy com-
putation for hα(n), we define a family (hα)α of functions N→ N by induction
on the ordinal index:

h0(x)
def
= 0 , hα+1(x)

def
= 1 + hα(h(x)) , hλ(x)

def
= hλ(x)(x) . (A.15)

This family is also known as the length hierarchy and was defined by Cichoń
and Tahhan Bittar [19]. It satisfies several interesting identities:

hα(x) = hhα(x)(x) , hα(x) ≥ hα(x) + x . (A.16)

Its main interest here is that it measures the length of Hardy computations:
` = hα(n) ≤ hα(n) by the above equations, which in turn implies h`(n) =
hα(n).

A.7.3. Encoding Ordinal Terms. It remains to bound the complexity of com-
puting αi = Pni−1(αi−1). Assuming some reasonable string encoding of the
terms denoting the αi [e.g. 38], we will consider that each αi can be computed
in time |αi| the size of its term representation, and will rather concentrate
on bounding this size. We define it by induction on the term denoting αi:

|0| def= 0 , |ωα| def= 1 + |α| , |α+ α′| def= |α|+ |α′| . (A.17)

Let us also recall the definition of the slow-growing hierarchy (Gα)α:

G0(x)
def
= 0 , Gα+1(x)

def
= 1 +Gα(x) , Gλ(x)

def
= Gλ(x)(x) . (A.18)

The slow-growing function satisfy several natural identities

Gα(x) = 1 +GPx(α)(x) , (A.19)

Gα(x+ 1) > Gα(x) , (A.20)

if β ≺x α then Gβ(x) ≤ Gα(x) . (A.21)

Furthermore,

Gα+α′(x) = Gα(x) +Gα′(x) , Gωα(x) = (x+ 1)Gα(x) . (A.22)

Hence, Gα(x) is the elementary function which results from substituting
x+ 1 for every occurrence of ω in the Cantor normal form of α [77, p. 159].

Lemma A.8. Let x > 0. Then |α| ≤ Gα(x).

32 S. SCHMITZ

Proof. By induction over the term denoting α: |0| = 0 = G0(x), |ωα| =

1 + |α| ≤ (x + 1)|α| ≤ (x + 1)Gα(x) = Gωα(x), and |α + α′| = |α| + |α′| ≤
Gα(x) +Gα′(x) = Gα+α′(x). �

Lemma A.9. If 〈α0, n0〉, . . . , 〈α`, n`〉 is a Hardy computation for hα(n) with
n > 0, then for all 0 ≤ i ≤ `, |αi| ≤ Gα(n`).

Proof. We distinguish two cases. If i = 0, then |α0| = |α| ≤ Gα(n) by
Lemma A.8 since n > 0, hence |α0| ≤ Gα(n`) since n` ≥ n by (A.20). If
i > 0, then

|αi| = |Pni−1(αi−1)|
≤ GPni−1 (αi−1)(ni−1) by Lemma A.8 since ni−1 ≥ n > 0

< Gαi−1(ni−1) by (A.19)

≤ Gα(ni−1) since αi−1 ≺ni−1 α by (A.21)

≤ Gα(n`) since ni−1 ≤ n` by (A.20) �

The restriction to n > 0 in Lemma A.9 is not a big issue: either h(0) = 0

and then hα(0) = 0, or h(0) > 0 and then hγ+ω
β
(0) = hγ(h(0)) and we can

proceed from γ instead of γ + ωβ as initial ordinal of our computation.

A.7.4. Wrapping up. To conclude, each of the ` ≤ hα(n) steps of a Hardy
computation for hα(n) needs to compute

• αi, in time |αi| ≤ Gα(hα(n)), and
• ni, in time h(ni−1) ≤ hα(n).

This yields the following statement:

Proposition A.10. The Hardy function hα can be computed in time O
(
hα(n)·

(Gα(hα(n)) + hα(n))
)
.

References

[1] P. A. Abdulla and G. Delzanno. On the coverability problem for constrained multiset
rewriting. In AVIS 2006, 2006.

[2] P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. Inform.
and Comput., 127(2):91–101, 1996. doi:10.1006/inco.1996.0053.

[3] P. A. Abdulla and A. Nylén. Timed Petri nets and BQOs. In Petri Nets 2001, volume
2075 of LNCS, pages 53–70. Springer, 2001. doi:10.1007/3-540-45740-2 5.

[4] P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay. Algorithmic analysis of
programs with well quasi-ordered domains. Inform. and Comput., 160(1–2):109–127,
2000. doi:10.1006/inco.1999.2843.

[5] P. A. Abdulla, G. Delzanno, and L. Van Begin. A classification of the expressive
power of well-structured transition systems. Inform. and Comput., 209(3):248–279,
2011. doi:10.1016/j.ic.2010.11.003.

[6] S. Abriola, S. Figueira, and G. Senno. Linearizing bad sequences: upper bounds for
the product and majoring well quasi-orders. In WoLLIC 2012, volume 7456 of LNCS,
pages 110–126. Springer, 2012. doi:10.1007/978-3-642-32621-9 9.

[7] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):
183–235, 1994. doi:10.1016/0304-3975(94)90010-8.

http://dx.doi.org/10.1006/inco.1996.0053
http://dx.doi.org/10.1007/3-540-45740-2_5
http://dx.doi.org/10.1006/inco.1999.2843
http://dx.doi.org/10.1016/j.ic.2010.11.003
http://dx.doi.org/10.1007/978-3-642-32621-9_9
http://dx.doi.org/10.1016/0304-3975(94)90010-8

COMPLEXITY HIERARCHIES BEYOND ELEMENTARY 33

[8] M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the verification
problem for weak memory models. In POPL 2010, pages 7–18. ACM, 2010. doi:
10.1145/1706299.1706303.

[9] P. Barceló, D. Figueira, and L. Libkin. Graph logics with rational relations and
the generalized intersection problem. In LICS 2012, pages 115–124. IEEE, 2012.
doi:10.1109/LICS.2012.23.

[10] A. Beckmann. Exact bounds for lengths of reductions in typed λ-calculus. J. Symb.
Log., 66(3):1277–1285, 2001. doi:10.2307/2695106.

[11] M. Blockelet and S. Schmitz. Model-checking coverability graphs of vector addition
systems. In MFCS 2011, volume 6907 of LNCS, pages 108–119. Springer, 2011.
doi:10.1007/978-3-642-22993-0 13.

[12] R. Bonnet, A. Finkel, S. Haddad, and F. Rosa-Velardo. Comparing Petri Data Nets
and Timed Petri Nets. Research Report LSV-10-23, LSV, ENS Cachan, Dec. 2010.
URL http://tinyurl.com/82vwcxf.

[13] P. Bouyer, N. Markey, J. Ouaknine, Ph. Schnoebelen, and J. Worrell. On termination
and invariance for faulty channel machines. Form. Asp. Comput., 24(4–6):595–607,
2012. doi:10.1007/s00165-012-0234-7.

[14] D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco. Interval
temporal logics over finite linear orders: The complete picture. In ECAI 2012, volume
242 of Frontiers in Artificial Intelligence and Applications, pages 199–204. IOS, 2012.
doi:10.3233/978-1-61499-098-7-199.

[15] G. Cécé, A. Finkel, and S. Purushothaman Iyer. Unreliable channels are easier to
verify than perfect channels. Inform. and Comput., 124(1):20–31, 1996. doi:10.1006/
inco.1996.0003.

[16] P. Chambart and Ph. Schnoebelen. Post embedding problem is not primitive recur-
sive, with applications to channel systems. In FSTTCS 2007, volume 4855 of LNCS,
pages 265–276. Springer, 2007. doi:10.1007/978-3-540-77050-3 22.

[17] P. Chambart and Ph. Schnoebelen. The ω-regular Post embedding problem. In
FoSSaCS 2008, volume 4962 of LNCS, pages 97–111. Springer, 2008. doi:10.1007/
978-3-540-78499-9 8.

[18] P. Chambart and Ph. Schnoebelen. The ordinal recursive complexity of lossy channel
systems. In LICS 2008, pages 205–216. IEEE, 2008. doi:10.1109/LICS.2008.47.

[19] E. A. Cichoń and E. Tahhan Bittar. Ordinal recursive bounds for Higman’s Theorem.
Theor. Comput. Sci., 201(1–2):63–84, 1998. doi:10.1016/S0304-3975(97)00009-1.

[20] P. Clote. On the finite containment problem for Petri nets. Theor. Comput. Sci., 43:
99–105, 1986. doi:10.1016/0304-3975(86)90169-6.

[21] P. Clote. Computation models and function algebras. In Handbook of Computability
Theory, volume 140 of Studies in Logic and the Foundations of Mathematics, chap-
ter 17, pages 589–681. Elsevier, 1999. doi:10.1016/S0049-237X(99)80033-0.

[22] D. H. J. de Jongh and R. Parikh. Well-partial orderings and hierarchies. Indag.
Math., 39(3):195–207, 1977. doi:10.1016/1385-7258(77)90067-1.

[23] S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Logic, 10(3), 2009. doi:10.1145/1507244.1507246.

[24] J. M. Dunn and G. Restall. Relevance logic. In Handbook of Philosophical Logic,
volume 6, pages 1–128. Kluwer, 2002. doi:10.1007/978-94-017-0460-1 1.

[25] J. Elgaard, N. Klarlund, and A. Møller. MONA 1.x: new techniques for WS1S
and WS2S. In CAV ’98, volume 1427 of LNCS, pages 516–520. Springer, 1998.
doi:10.1007/BFb0028773.

[26] M. Fairtlough and S. S. Wainer. Ordinal complexity of recursive definitions. Inform.
and Comput., 99(2):123–153, 1992. doi:10.1016/0890-5401(92)90027-D.

[27] M. Fairtlough and S. S. Wainer. Hierarchies of provably recursive functions.
In Handbook of Proof Theory, volume 137 of Studies in Logic and the Founda-
tions of Mathematics, chapter III, pages 149–207. Elsevier, 1998. doi:10.1016/

http://dx.doi.org/10.1145/1706299.1706303
http://dx.doi.org/10.1145/1706299.1706303
http://dx.doi.org/10.1109/LICS.2012.23
http://dx.doi.org/10.2307/2695106
http://dx.doi.org/10.1007/978-3-642-22993-0_13
http://tinyurl.com/82vwcxf
http://dx.doi.org/10.1007/s00165-012-0234-7
http://dx.doi.org/10.3233/978-1-61499-098-7-199
http://dx.doi.org/10.1006/inco.1996.0003
http://dx.doi.org/10.1006/inco.1996.0003
http://dx.doi.org/10.1007/978-3-540-77050-3_22
http://dx.doi.org/10.1007/978-3-540-78499-9_8
http://dx.doi.org/10.1007/978-3-540-78499-9_8
http://dx.doi.org/10.1109/LICS.2008.47
http://dx.doi.org/10.1016/S0304-3975(97)00009-1
http://dx.doi.org/10.1016/0304-3975(86)90169-6
http://dx.doi.org/10.1016/S0049-237X(99)80033-0
http://dx.doi.org/10.1016/1385-7258(77)90067-1
http://dx.doi.org/10.1145/1507244.1507246
http://dx.doi.org/10.1007/978-94-017-0460-1_1
http://dx.doi.org/10.1007/BFb0028773
http://dx.doi.org/10.1016/0890-5401(92)90027-D
http://dx.doi.org/10.1016/S0049-237X(98)80018-9

34 S. SCHMITZ

S0049-237X(98)80018-9.
[28] S. Feferman. Classification of recursive functions by means of hierarchies. Trans.

Amer. Math. Soc., 104:101–122, 1962. doi:10.1090/S0002-9947-1962-0142453-3.
[29] D. Figueira. Alternating register automata on finite words and trees. Logic. Meth.

in Comput. Sci., 8(1):22, 2012. doi:10.2168/LMCS-8(1:22)2012.
[30] D. Figueira and L. Segoufin. Future-looking logics on data words and trees. In

MFCS 2009, volume 5734 of LNCS, pages 331–343. Springer, 2009. doi:10.1007/
978-3-642-03816-7 29.

[31] D. Figueira, S. Figueira, S. Schmitz, and Ph. Schnoebelen. Ackermannian and
primitive-recursive bounds with Dickson’s Lemma. In LICS 2011, pages 269–278.
IEEE, 2011. doi:10.1109/LICS.2011.39.

[32] D. Figueira, P. Hofman, and S. Lasota. Relating timed and register automata. Math.
Struct. Comput. Sci., 2013. URL http://arxiv.org/abs/1011.6432. To appear.

[33] A. Finkel. A generalization of the procedure of Karp and Miller to well structured
transition systems. In ICALP’87, volume 267 of LNCS, pages 499–508. Springer,
1987. doi:10.1007/3-540-18088-5 43.

[34] A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
Theor. Comput. Sci., 256(1–2):63–92, 2001. doi:10.1016/S0304-3975(00)00102-X.

[35] P. C. Fischer, A. R. Meyer, and A. L. Rosenberg. Counter machines and counter
languages. 2(3):265–283, 1968. doi:10.1007/BF01694011.

[36] H. M. Friedman. Some decision problems of enormous complexity. In LICS ’99, pages
2–13. IEEE, 1999. doi:10.1109/LICS.1999.782577.

[37] A. Grzegorczyk. Some classes of recursive functions. Rozprawy Matematyczne, 4,
1953. URL http://matwbn.icm.edu.pl/ksiazki/rm/rm04/rm0401.pdf.

[38] C. Haase, S. Schmitz, and Ph. Schnoebelen. The power of priority channel systems.
In Concur 2013, volume 8052 of LNCS, pages 319–333. Springer, 2013. doi:10.1007/
978-3-642-40184-8 23.

[39] M. Hack. The equality problem for vector addition systems is undecidable. Theor.
Comput. Sci., 2(1):77–95, 1976. doi:10.1016/0304-3975(76)90008-6.

[40] S. Haddad, S. Schmitz, and Ph. Schnoebelen. The ordinal-recursive complexity of
timed-arc Petri nets, data nets, and other enriched nets. In LICS 2012, pages 355–
364. IEEE, 2012. doi:10.1109/LICS.2012.46.

[41] J. Y. Halpern and Y. Shoham. A propositional modal logic of time intervals. J. ACM,
38(4):935–962, 1991. doi:10.1145/115234.115351.

[42] P. Jančar. Undecidability of bisimilarity for Petri nets and some related problems.
Theor. Comput. Sci., 148(2):281–301, 1995. doi:10.1016/0304-3975(95)00037-W.

[43] P. Jančar. Nonprimitive recursive complexity and undecidability for Petri
net equivalences. Theor. Comput. Sci., 256(1–2):23–30, 2001. doi:10.1016/
S0304-3975(00)00100-6.

[44] M. Jurdziński and R. Lazić. Alternation-free modal mu-calculus for data trees. In
LICS 2007, pages 131–140. IEEE, 2007. doi:10.1109/LICS.2007.11.

[45] P. Karandikar and S. Schmitz. The parametric ordinal-recursive complexity of Post
embedding problems. In FoSSaCS 2013, volume 7794 of LNCS, pages 273–288.
Springer, 2013. doi:10.1007/978-3-642-37075-5 18.

[46] P. Karandikar and Ph. Schnoebelen. Cutting through regular Post embedding
problems. In CSR 2012, volume 7353 of LNCS, pages 229–240. Springer, 2012.
doi:10.1007/978-3-642-30642-6 22.

[47] S. R. Kosaraju. Decidability of reachability in vector addition systems. In STOC ’82,
pages 267–281. ACM, 1982. doi:10.1145/800070.802201.

[48] R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255–299, 1990. doi:10.1007/BF01995674.

[49] J. B. Kruskal. The theory of well-quasi-ordering: A frequently discovered concept.
J. Comb. Theory A, 13(3):297–305, 1972. doi:10.1016/0097-3165(72)90063-5.

http://dx.doi.org/10.1016/S0049-237X(98)80018-9
http://dx.doi.org/10.1016/S0049-237X(98)80018-9
http://dx.doi.org/10.1090/S0002-9947-1962-0142453-3
http://dx.doi.org/10.2168/LMCS-8(1:22)2012
http://dx.doi.org/10.1007/978-3-642-03816-7_29
http://dx.doi.org/10.1007/978-3-642-03816-7_29
http://dx.doi.org/10.1109/LICS.2011.39
http://arxiv.org/abs/1011.6432
http://dx.doi.org/10.1007/3-540-18088-5_43
http://dx.doi.org/10.1016/S0304-3975(00)00102-X
http://dx.doi.org/10.1007/BF01694011
http://dx.doi.org/10.1109/LICS.1999.782577
http://matwbn.icm.edu.pl/ksiazki/rm/rm04/rm0401.pdf
http://dx.doi.org/10.1007/978-3-642-40184-8_23
http://dx.doi.org/10.1007/978-3-642-40184-8_23
http://dx.doi.org/10.1016/0304-3975(76)90008-6
http://dx.doi.org/10.1109/LICS.2012.46
http://dx.doi.org/10.1145/115234.115351
http://dx.doi.org/10.1016/0304-3975(95)00037-W
http://dx.doi.org/10.1016/S0304-3975(00)00100-6
http://dx.doi.org/10.1016/S0304-3975(00)00100-6
http://dx.doi.org/10.1109/LICS.2007.11
http://dx.doi.org/10.1007/978-3-642-37075-5_18
http://dx.doi.org/10.1007/978-3-642-30642-6_22
http://dx.doi.org/10.1145/800070.802201
http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1016/0097-3165(72)90063-5

COMPLEXITY HIERARCHIES BEYOND ELEMENTARY 35

[50] J.-L. Lambert. A structure to decide reachability in Petri nets. Theor. Comput. Sci.,
99(1):79–104, 1992. ISSN 0304-3975. doi:10.1016/0304-3975(92)90173-D.

[51] S. Lasota and I. Walukiewicz. Alternating timed automata. ACM Trans. Comput.
Logic, 9(2):10, 2008. doi:10.1145/1342991.1342994.

[52] R. Lazić, T. Newcomb, J. Ouaknine, A. Roscoe, and J. Worrell. Nets with tokens
which carry data. Fund. Inform., 88(3):251–274, 2008.

[53] R. Lazić, J. Ouaknine, and J. Worrell. Zeno, Hercules and the Hydra: Downward
rational termination is Ackermannian. In MFCS 2013, volume 8087 of LNCS, pages
643–654. Springer, 2013. doi:10.1007/978-3-642-40313-2 57.

[54] J. Leroux. Vector addition system reachability problem: a short self-contained proof.
In POPL 2011, pages 307–316. ACM, 2011. doi:10.1145/1926385.1926421.

[55] R. J. Lipton. The reachability problem requires exponential space. Technical
Report 62, Department of Computer Science, Yale University, Jan. 1976. URL
http://www.cs.yale.edu/publications/techreports/tr63.pdf.

[56] M. Löb and S. Wainer. Hierarchies of number theoretic functions, I. Arch. Math.
Log., 13:39–51, 1970. doi:10.1007/BF01967649.

[57] E. W. Mayr. An algorithm for the general Petri net reachability problem. In
STOC ’81, pages 238–246. ACM, 1981. doi:10.1145/800076.802477.

[58] E. W. Mayr and A. R. Meyer. The complexity of the finite containment problem for
Petri nets. J. ACM, 28(3):561–576, 1981. doi:10.1145/322261.322271.

[59] K. McAloon. Petri nets and large finite sets. Theor. Comput. Sci., 32(1–2):173–183,
1984. doi:10.1016/0304-3975(84)90029-X.

[60] A. R. Meyer. Weak monadic second order theory of successor is not elementary-
recursive. In Logic Colloquium ’72–73, volume 453 of Lect. Notes Math., pages 132–
154. Springer, 1975. doi:10.1007/BFb0064872.

[61] A. R. Meyer. The inherent computational complexity of theories of ordered sets.
In ICM ’74 Vol. 2, pages 477–482. Canadian Mathematical Congress, 1975. URL
http://www.mathunion.org/ICM/ICM1974.2/Main/icm1974.2.0477.0482.ocr.pdf.

[62] A. R. Meyer and D. M. Ritchie. The complexity of loop programs. In ACM ’67,
pages 465–469, 1967. doi:10.1145/800196.806014.

[63] A. Montanari, G. Puppis, and P. Sala. Maximal decidable fragments of Halpern and
Shohams modal logic of intervals. In ICALP 2010, volume 6199 of LNCS, pages
345–356. Springer, 2010. doi:10.1007/978-3-642-14162-1 29.

[64] P. Odifreddi. Classical Recursion Theory, vol. II, volume 143 of Studies in Logic and
the Foundations of Mathematics. Elsevier, 1999. doi:10.1016/S0049-237X(99)80040-8.

[65] E. Omri and A. Weiermann. Classifying the phase transition threshold for Ack-
ermannian functions. Ann. Pure Appl. Log., 158(3):156–162, 2009. doi:10.1016/
j.apal.2007.02.004.

[66] J. O. Ouaknine and J. B. Worrell. On the decidability and complexity of Metric
Temporal Logic over finite words. Logic. Meth. in Comput. Sci., 3(1):8, 2007. doi:
10.2168/LMCS-3(1:8)2007.

[67] C. Rackoff. The covering and boundedness problems for vector addition systems.
Theor. Comput. Sci., 6(2):223–231, 1978. doi:10.1016/0304-3975(78)90036-1.

[68] R. W. Ritchie. Classes of predictably computable functions. Trans. Amer. Math.
Soc., 106(1):139–173, 1963. doi:10.1090/S0002-9947-1963-0158822-2.

[69] R. W. Ritchie. Classes of recursive functions based on Ackermann’s function. Pac.
J. Math., 15(3):1027–1044, 1965. doi:10.2140/pjm.1965.15.1027.

[70] H. E. Rose. Subrecursion: Functions and Hierarchies, volume 9 of Oxford Logic
Guides. Clarendon Press, 1984.

[71] S. Schmitz and Ph. Schnoebelen. Multiply-recursive upper bounds with Higman’s
Lemma. In ICALP 2011, volume 6756 of LNCS, pages 441–452. Springer, 2011.
doi:10.1007/978-3-642-22012-8 35.

http://dx.doi.org/10.1016/0304-3975(92)90173-D
http://dx.doi.org/10.1145/1342991.1342994
http://dx.doi.org/10.1007/978-3-642-40313-2_57
http://dx.doi.org/10.1145/1926385.1926421
http://www.cs.yale.edu/publications/techreports/tr63.pdf
http://dx.doi.org/10.1007/BF01967649
http://dx.doi.org/10.1145/800076.802477
http://dx.doi.org/10.1145/322261.322271
http://dx.doi.org/10.1016/0304-3975(84)90029-X
http://dx.doi.org/10.1007/BFb0064872
http://www.mathunion.org/ICM/ICM1974.2/Main/icm1974.2.0477.0482.ocr.pdf
http://dx.doi.org/10.1145/800196.806014
http://dx.doi.org/10.1007/978-3-642-14162-1_29
http://dx.doi.org/10.1016/S0049-237X(99)80040-8
http://dx.doi.org/10.1016/j.apal.2007.02.004
http://dx.doi.org/10.1016/j.apal.2007.02.004
http://dx.doi.org/10.2168/LMCS-3(1:8)2007
http://dx.doi.org/10.2168/LMCS-3(1:8)2007
http://dx.doi.org/10.1016/0304-3975(78)90036-1
http://dx.doi.org/10.1090/S0002-9947-1963-0158822-2
http://dx.doi.org/10.2140/pjm.1965.15.1027
http://dx.doi.org/10.1007/978-3-642-22012-8_35

36 S. SCHMITZ

[72] S. Schmitz and Ph. Schnoebelen. Algorithmic aspects of WQO theory. Lecture notes,
2012. URL http://cel.archives-ouvertes.fr/cel-00727025.

[73] S. Schmitz and Ph. Schnoebelen. The power of well-structured systems. In
Concur 2013, volume 8052 of LNCS, pages 5–24. Springer, 2013. doi:10.1007/
978-3-642-40184-8 2.

[74] Ph. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive com-
plexity. Inf. Process. Lett., 83(5):251–261, 2002. doi:10.1016/S0020-0190(01)00337-4.

[75] Ph. Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines and
reset Petri nets. In MFCS 2010, volume 6281 of LNCS, pages 616–628. Springer,
2010. doi:10.1007/978-3-642-15155-2 54.

[76] H. Schwichtenberg. Complexity of normalization in the pure typed lambda-calculus.
In L.E.J. Brouwer Centenary Symposium, volume 110 of Studies in Logic and
the Foundations of Mathematics, pages 453–457. Elsevier, 1982. doi:10.1016/
S0049-237X(09)70143-0.

[77] H. Schwichtenberg and S. S. Wainer. Proofs and Computation. Perspectives in Logic.
Cambridge University Press, 2012.

[78] R. Statman. The typed λ-calculus is not elementary recursive. Theor. Comput. Sci.,
9(1):73–81, 1979. doi:10.1016/0304-3975(79)90007-0.

[79] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time. In
STOC ’73, pages 1–9. ACM, 1973. doi:10.1145/800125.804029.

[80] T. Tan. On pebble automata for data languages with decidable emptiness problem.
J. Comput. Syst. Sci., 76(8):778–791, 2010. doi:10.1016/j.jcss.2010.03.004.

[81] N. Tzevelekos and R. Grigore. History-register automata. In FoSSaCS 2013, volume
7794 of LNCS, pages 273–288, 2013. doi:10.1007/978-3-642-37075-5 2.

[82] A. Urquhart. The undecidability of entailment and relevant implication. J. Symb.
Log., 49(4):1059–1073, 1984. doi:10.2307/2274261.

[83] A. Urquhart. The complexity of decision procedures in relevance logic II. J. Symb.
Log., 64(4):1774–1802, 1999. doi:10.2307/2586811.

[84] S. Vorobyov. The most nonelementary theory. Inform. and Comput., 190(2):196–219,
2004. doi:10.1016/j.ic.2004.02.002.

[85] S. S. Wainer. A classification of the ordinal recursive functions. Arch. Math. Log., 13
(3):136–153, 1970. doi:10.1007/BF01973619.

[86] A. Weiermann. Complexity bounds for some finite forms of Kruskal’s Theorem.
J. Symb. Comput., 18(5):463–488, 1994. doi:10.1006/jsco.1994.1059.

ENS Cachan, INRIA, France
E-mail address: schmitz@lsv.ens-cachan.fr

http://cel.archives-ouvertes.fr/cel-00727025
http://dx.doi.org/10.1007/978-3-642-40184-8_2
http://dx.doi.org/10.1007/978-3-642-40184-8_2
http://dx.doi.org/10.1016/S0020-0190(01)00337-4
http://dx.doi.org/10.1007/978-3-642-15155-2_54
http://dx.doi.org/10.1016/S0049-237X(09)70143-0
http://dx.doi.org/10.1016/S0049-237X(09)70143-0
http://dx.doi.org/10.1016/0304-3975(79)90007-0
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1016/j.jcss.2010.03.004
http://dx.doi.org/10.1007/978-3-642-37075-5_2
http://dx.doi.org/10.2307/2274261
http://dx.doi.org/10.2307/2586811
http://dx.doi.org/10.1016/j.ic.2004.02.002
http://dx.doi.org/10.1007/BF01973619
http://dx.doi.org/10.1006/jsco.1994.1059

	1. Introduction
	2. Fast-Growing Complexity Classes
	2.1. Cantor Normal Forms and Fundamental Sequences
	2.2. The Extended Grzegorczyk Hierarchy1007
	2.3. Fast-Growing Complexity Classes.

	3. Fast-Growing Complexities in Action
	3.1. A Tower-Complete Example1007
	3.2. An Ack-Complete Example

	4. Robustness
	4.1. Generating Functions
	4.2. Computational Models and Reductions

	5. Strictness
	5.1. Elementary Constructivity
	5.2. Strictness
	5.3. The Case =21007

	6. A Short Catalog
	6.1. F-Complete Problems
	6.2. F-Complete Problems
	6.3. F-Complete Problems
	6.4. F0-Complete Problems1007

	7. Concluding Remarks
	Appendix A. Subrecursive Hierarchies
	A.1. Hardy Functions
	A.2. Monotonicity
	A.3. Ackermann Functions
	A.4. Relativized Functions
	A.5. Non-standard Assignment of Fundamental Sequences
	A.6. Composing Hardy Functions
	A.7. Computing Hardy Functions

	References

