
Inductive proofs by specification transformations

Hubert COMON*

Abstract

We show how to transform equational specifications with relations between constructors {or
without constructors) into order-sorted equational specifications where every function symbol is
either a free constructor or a completely defined function.

This method allows to reduce the problem of inductive proofs in equational theories to Huet
and Hullot's proofs by consistency IIIH82]. In particular, it is no longer necessary to use the so-
called ~inductive reducibility test ~ which is the most expensive part of the Joua~nand and Kounalis
algorithm [JK86].

In troduct ion

Let F be a set of function symbols together with their profile (for example, F -- (0 :-+
int2; s u c c : in t2 --~ in t2}) and E be a finite set of equational axioms (for example E =
(succ(succ(O)) = 0}). The problem of inductive proofs in equational theories is to de-
cide whether an equation (whose variables are implicitly universally quantified) is valid in
T (F) / = E , the quotient algebra of the terms constructed on F by the congruence generated
by E. (For example, suec (succ (x)) = x is an inductive theorem in the specification (F, E)
but is not an equational consequence of E).

The "proof by consistency" method [KM87] consists in adding to E the theorem to be
proved and trying to deduce a contradiction (inconsistency) using equational reasoning. This
method has been widely studied. Let us cite among others [MusS0,GogS0,LanS1,HH82,KM87],
[Kuc87,JK86,Fri86,KNZ86,Bac88].

All these works use the Knuth-Bendix completion procedure as a basis for equational
deduction: E is assumed to be oriented into a ground convergent term rewriting system ~. If
the completion procedure constructs for)~ tA (s -- t} (where s = t is the theorem to be proved)
a (ground) convergent term rewriting system without deriving an inconsistency, then s -- t
is an inductive theorem 1. If an inconsistency is derived, s = t is not an inductive theorem.

The papers cited above essentially differ in the assumptions they make on F, E and in the
way they detect inconsistencies. For example, in Musser's paper [MusS0] E is assumed to
contain a complete axiomatization of an equality predicate and an inconsistency is derived
simply when the completion procedure generates the equation t rue = f a l s e .

In Huet and Hullot 's method [HH82], F is assumed to be split into two disjoint sets C
(constructors) and D (defined operators) with the following conditions :

"Laboratoire d'Informatique fondamentale et d'Intelllgence Artificielle, Institut IMAG, 46 Ave. F~lix Viallet, 38031
Grenoble cedex, France. E-mall : eomon@lifia.imag.fr

lIn [Ba~88] the requirement for the resulting term rewriting system to be convergent has been weakened.

77

• every term constructed on C only is irreducible by)~

• every term in T(F) - T (C) is reducible by

Then, an inconsistency is detected when the completion procedure generates an equation
s = t between two ~constructor terms" (i.e built without any symbol of D).

This method was generalized in the so-called "inductive completion procedure" by Jouan-
naud and Kounalis [JK86] where the requirement on F to be split into constructors and
defined operators is dropped. They show that the key concept for detecting inconsisten-
cies is the "inductive reducibility test". A term is said to be inductively reducible when all
its ground instances are reducible. For example, succ(suce(x)) is inductively reducible by
suec(suce(O)) --~ 0 (but it is not reducible). Then, an inconsistency is detected when the
completion procedure generates an equation s = t where s > t (for a given simplification
ordering containing --+~) and s is not inductively reducible.

Recently Bachmair [Bac88], refining the equational consequences to be added during the
completion procedure, proved that it is not necessary to orient the equations computed by
the inductive completion procedure. In this case, an inconsistency is detected when a non
inductively reducible equation is derived.

Although inductive reducibility has been shown to be decidable [Pla85,Com88a], Plaisted's
algorithm as well as others ([KNZ85,KNZ86,JK86] for example) are very complex. Actually,
they are at least twice exponential and (except for [Com88a]) cannot be used in practice.

The aim of this paper is to show that it is possible to reduce the general case handled in
[JK86,Bac88] to Huet and Hullot's method by transforming the specification. This allows to
avoid the inductive reducibility test since such a test is trivial in Huet and Hullot's algorithm.

Given a Term Rewriting System (TRS for short) ~, it is shown in [CRST,Com88b,Com88a]
how to compute a conditional grammar for the set N F of the ground terms which are ir-
reducible by)~. This construction is performed using equational problems simplification
[CL88].

In [Com88b,Com88a] a cleaning algorithm for conditional grammars is given. This pro-
vides a method for deciding inductive reducibility in the general case but can also be used
for computing an order-sorted specification which is equivalent (in some suitable sense) to
the original specification and where F is split into constructors and defined operators. Such
a construction can be extended in order to handle order-sorted specifications as well.

Another specification transformation was already proposed in [Tha851 in a very specific
case. This paper shows that, whenever there are no overlap between left hand sides of the
rules, when the set of function symbols is split into constructors and defined functions, and
when the TRS is left linear, then the signature can be enriched with new constructor symbols
in order to have the additional property that no rule contains "inner" occurrences of a defined
symbol. Such a transformation is similar to ours since we actually add some new constructors.
However we don't make the above mentioned assumptions and give very different (stronger)
results.

Also, Kapur and Musser [KM86] proposed some specification transformations related to
proofs by consistency. However, they do not address the same problem. Roughly, they as-
sume some information about "what should be" the initial algebra (i.e. what should be the

78

constructors) and then complete the set of axioms (in some consistent way) in order to in-
deed get this init ial algebra. At the opposi te , we want to preserve the initial a lgebra (up to
isomorphism) and we allow some relat ions between constructors (or, more generally, we do
not assume tha t a set of constructors has been defined at all). Then we show in this paper
how to compute free generators of the initial algebra.

We present the t ransformat ion in section 2 and s ta te the basic proper t ies of the result ing
specification. Theorem 4 is the main (new) result of the paper . Then we show in section 3
how to per form inductive proofs in the result ing order-sor ted algebra.

1 M a n y - s o r t e d a n d O r d e r - s o r t e d A l g e b r a s

We recall in this section most of the basic definitions on many-sor ted and order-sor ted alge-
bras. The reader is referred to [GM87,SNGM87] for more details . We also introduce a not ion
of equivalent specifications.

1 .1 M a n y - s o r t e d a n d O r d e r - S o r t e d S i g n a t u r e s

A Many-Sor ted Signature (MSS for short) is a pair (S, F) where S is a set ofsorts names
(which will be denoted s ,_s l , . . .) and F is a set of function symbols together with a typing
funct ion ~- which associates to each f E F a s tr ing in S +. When v(f) = _Sl_S2..._s,_s we write
f : _s 1 × . . . × s__,, --+ _s and say tha t f has profile s 1 × . . . x s , --* s_.

An Order-Sor ted Signature (OSS for short) is a t r iple (S, > , F) where S is a set of sort
symbols, > is an ordering on S and F is a set of function symbols together with a typing
function r which associates to each f E F a finite non empty subset of S +. All words in T(F)
have the same length n + i and If] = n is the arity of f . A s in the many-sor ted case, we say
tha t f has profile _s 1 × . . . x _s,, ~ _s when S _ l . . . s , s E r (f) .

In bo th cases (many-sor ted and order-sorted) X is a set of variable symbols. A sort is
assigned to each variable and we write x : _s r(x) = _s. We assume tha t there are infinitely
many variables of each sort.

In bo th cases, if S I G is a signature, T(S IG , X) (sometimes wr i t ten T(F, X) when there is
no ambigui ty) is the set of "well formed" terms const ructed on S I G and X in the usual way
(cf [GM87] for example) . When X is empty we wri te T(SIG) (or T(F)) instead of T(SIG, 9).

In the following, we always assume tha t , for every s_ C S, there is at least one t E T(SIG)
such tha t t has sort _s.

A s ignature is finite when bo th S and F are finite. An OSS is regular when each te rm
t E T (S I G , X) has a least sort LS(t) . This p roper ty can be syntact ical ly character ized for
finite s ignatures ([GM87] for example): (S, > , F) is regular iff, for every w0, wi, w~ e S* such
tha t w0 < Wx 2 and w0 < w2 and every f E F such tha t f : wl ~ _Sl and f : w2 ~ _s2, there
exists w3 E S* and ~ E S such tha t Wo < w3 <<_ wl,w2, ~ <_ sl,s__2 and w3 ~ s_3 E r(f) .

If, in addi t ion, each connected component of (S, >) has a top element, then the regular
s ignature is called coherent ([GM87]). All signatures considered here are assumed to be co-
herent and finite (except when the cont ra ry is explici t ly s ta ted) .

2the ordering on S is extended ¢o S* by comparing the sorts componentwise

79

1 . 2 O r d e r - S o r t e d A l g e b r a s

Let SIG = (S,>_,F) be an OSS. A (SIG-)Order-Sorted Algebra (OSA for short) ~ is (as
defined in [SNGM87])

• a family (J / ~ c s of non empty sets such that , when s < _s t, then ~_, _C_ ~ , . Let C~ =

U,es 4_,.

* for each function symbol f , a mapping f~ from D~ C C/fl into Ca such that , if f has
the profile w --* s, then , ~ C D~ s. and f (~) C _s~.

Given a MSS (S, F) , an (S, F)-Many-Sorted Algebra is simply an (S, > , F) OSA where > is
the trivial ordering on S (s. > s r iff s = _s~). In this way, OSAs strictly generalizes MSAs 4.
Therefore, when we speak about substitutions, rewrite rules, ... without any more specific
mention, one should unders tand ~order-sorted substitutions", "order-sorted rewrite rules",...

Homomorphisms are defined in the usual way. Then, for any OSS SIG, T(SIG) is an
initial OSA.

Let ~ be a SIG-OSA. An ,4-assignment a is a morphism from T(SIG, X) into ~ which
associates with each x : s_ an element t E ~ .

A substitution a is a T(SIG, Z)-assignment such that Dora(a) = {x E X, xa ~ x} (called
the domain of a) is finite. The set of SIG-substitutions is denoted by ~sxc (or simply E
when there is no ambiguity). If Xo is a finite subset of X, a X0-grounding substitution a is a
substi tution whose domain includes X0 and such that Vx E Xo, xa E T(SIG). Often, we will
omit the X0 prefix, assuming that X0 contains the variables occurring in the terms to which
a is applied. The set of all grounding substitutions w.r.t, some understood X0 is denoted by
~Sla,o (or simply ~a when there is no ambiguity).

1.3 E q u a t i o n s a n d R e w r i t e R u l e s

An equation is a pair of terms s,t C T(SIG, X) where LS(s) and LS(t) are in the same
connected component of (S, >). A model of a finite set of equations (axioms) E is defined
as usual. The class of models of E is referred to as the equational theory E. In [GM87]
(for example) a complete set of inference rules for equational deduction is given. This means
tha t every equation which is valid in the equational theory can be derived using these rules.
This allows to construct the congruence relation =6 over T(SIG, X) defined by a finite set
of equations E. Then we have the following result:

T h e o r e m 1 [G M 8 7] If S IG is a coherent signature and E a set of equations, then T(S I G) / =E
is initial in the category of models of E.

nIf_sl ...s~ = w E S +, ~ is the cartesian product "~-~x × "'" × "~-'~"
4Because, here, MSS do not allow ~overloaded ~ declarations.

80

An Order-Sor ted Specification (OSSpec) is a pair (SIG, E) where SIG is an OSS and E a
finite set of equat ions s = t where s, t C T(SIG, X). A Many-Sor ted Specification (MSSpec)
is defined in the same way.

A rewrite rule is a couple of terms s, t E T(SIG, X) such tha t Vat(t) C_ Vat(s). It is
w r i t t e n , --* t. A Term Rewri t ing System (TRS) is a finite set of rewri te rules. A TRS ,~ is sort
decreasing [KKM88] if, for every rule s -* t in ~ and every subs t i tu t ion a, LS(sa) > LS(to) 5.
In such a case, the reduct ion relat ion - * l associated with a TRS ~ is defined as in the many-
sor ted case. - - ~ is the reflexive t ransi t ive closure of --*l. For every re la t ion -% +-~ is the
symmetr ic closure of -~.

A TRS is noetherian if there are no infinite chain t l --*l . . . tn - + l I t is confluent (resp.
ground confluent) if, for all s, tl, t2 E T(SIG, X) (resp. T(SIG)), , -**~ tl and s --+~ t2 implies
the existence of a t e rm u such tha t t l ---+~ u and t2 ~ u. A TRS ~ is convergent (resp.
ground convergent) if it is noether ian and confluent (resp. ground confluent). When a TRS
is convergent (resp. ground convergent), for every te rm t E T(SIG, X) (resp. t E T(SIG))
there is a unique t e rm t J~ such tha t t --*~ t +£ and t +~ is irreducible by ~ .

A TRS R is canonical if it is convergent and if for every rule I -~ r in ~ , l and r are
irreducible by ~ - (l - ~ r } .

=~ is the congruence on T(SIG, X) generated by the set of axioms obta ined by considering
the rules in J~ as equations. Then I (~) (or I (E)) is another no ta t ion for the initial algebra
T(SIG)/=~z- =z(~) is the congruence relat ion defined on T(SIG, X) by :

S = I (~) t ¢* V a E E g , s a - - - -~ t a

1 .4 E q u i v a l e n t S p e c i f i c a t i o n s

Let SIG = (S, >_, F) and SIC' = (S', >', F') be two coherent OSS such tha t S c S', >_C_>',
F C F ' and. for each f E F , r (f) C r'(f). Then T(SIG', X) is (canonically) a SIG-algebra.
Let ¢ be the unique (injective) SIG-homomorphism from T(SIG, X) into T(SIC', X u X')
which is the ident i ty on X. Then, the OSSpec (SIG', E') is said to be equivalent 6 to (SIG, E)
if

Vs,t E T(SIG, X), (s =z(~) t ¢~ ¢(s) =Z(E') ¢(t))

This means tha t , when we only consider the terms built on SIC, the specifications have the
same class of inductive theorems.

Finally, an OSSpec ((S, >,F),E) is said to be decomposed if F can be spli t into two sets
C and D such tha t :

• v s , t • T(C),s ¢~ t

• Vs C T (F) - T(C), 3t C T (C) , s = E t

• Note that Rewriting Systems are always sort decreasing in MSA.

~This ~equivalence ~ is not symmetric. This is an abbreviation for (SIG, E) is (SIG, E)-equivMent to (SIG', E'), the
(SIG, E)-equivalence being indeed symmetric.

81

2 T r a n s f o r m a t i o n o f S p e c i f i c a t i o n s

In this section we show how to transform a MSSpec, the source specification into an equivalent
decomposed OSSpec: the target specification. However, as the simplification of equational
problems can be generalized to finite coherent order-sorted signatures [Com88b], the method
given in this section also applies to (finite coherent) OSSpec.

The source specification will be denoted by (SIGo, R0) where SIGo --- (So, Fo) and the
target specification by (SIGT,)~T) where SIGT = (ST, >_T, FT). We assume in the following
that R0 is ground convergent. N F will denote the set of ground terms in T(Fo) that are
irreducible by R0.

2.1 G r o u n d N o r m a l F o r m G r a m m a r s

We don't give here the full algorithm that produces a conditional grammar for N F . Let us
only sketch on an example the way it is computed.

E x a m p l e 1
Fo = {s : int2 --* int2; 0 : --+ int2; + : int2 × int2 --* int2}

The first set of derivation rules only states that a term in N F has a root symbol in Fo:

NFi,,2 -~ YFo I YF~(z) t NF~,+~

where NFt denotes both a non terminal and the language it generates: NF, = N F N {ta, a E

Now we compute the derivation rules, say, for NF,(,): ~

t E N F , (,) iff t = s (u) , t ¢ s (s (0)) and u E g F

Solving s(u) ~ s(s(O)) in T(Fo), using the algorithm described in [CL88], leads to the four
disjoint solutions:

1. 3 X l , x2 , u ---- Xl + x2

2. u = 0

3. ~ Z l , I g 2 , U = S (Z 1 + if:2)

4 . u =

This can be expressed by the four rules:

NF,(.) -* s(NF,.+,2) I s(NFo) t s(NFs(~+~)) I s(NFo(,)))

Using again the same method, we compute the derivation rules for the non terminals we
introduced. There would here remain to compute the derivation rules for NFo, NF~+~ 2,
NFo(,)) , NFs(,~+,2).

7Informally, t is an irreducible ground instance of s(z) iff

1. its root symbol i a s

2. it does not match at the root any left hand side of a rule

3. its proper 8ubterms are irreducible

This characterization of NF,(,) can be generalized to any NF, (see [CR87,Com88a]),

82

T h e o r e m 2 This procedure fully described in [Com88a] does always terminate.

In our example, we get the additional grammar rules:

NFo -~ 0
N F z , + ~ -* NFo(~,) + NFo(~2) IF Xl ~ x2 NF~,+~2 + NF~(~)

I NF~I+~ 2 + NF~3+~ , IF xl # x3 NF,(~) + NF~+~ 2
I NF~,+~ 2 +NF~3+~ , IF x2 :~ x4

N F o (.)) --* sCNF, c,c~))) s (N F , cz,+z2))
NF.(~,+~2) -* s(NF~+~2)

Then the grammar is "cleaned up" using an algorithm described in [Com88b,Com88a].
This algorithm is similar to the usual cleaning algorithm for context free word grammars; the
non terminals from which there is no derivation chain reaching a terminal tree (called useless
non terminals) are removed.

T h e o r e m 3 [C o m 8 8 b , C o m 8 8 a] There is an algorithm producing a conditional grammar
of N F which does not contain any useless non-terminal.

The grammar produced in this way will be called the reduced grammar of N F . In our
example, we get the following reduced grammar:

NF~m2 ~ NFo I NF,(~)
NF~(~) --* s(NFo)
NFo -* 0

And, indeed, there axe only two terms in N F : 0 and s(0).
Of course, this step (cleaning the grammar) is equivalent to an inductive reducibility test

since we proved simultaneously that Xl + x2, six1 + x2) and s is (x)) are inductively reducible
(the corresponding set of irreducible ground instances are empty). However, this computa-
tion has to be done only once, whatever inductive completion is performed afterwards.

We give another simple example which illustrates the transformation. This is a specifica-
tion of the integers.

E x a m p l e 2
F = { s ,p : in t --~ int; O : --~ int + : int x in t -~ int

= { s ip (x))

0 + x -+ x
s(x)+y -~ s i x + Y)
P(~) + Y -~ p(~ + Y) }

We get the following reduced grammar for N F :

N F --. N Fo
NFo --+ 0

s(NFo)
NF,(~) ~ p(NFo)

N F.cz)

s(NF.(~))
p(N Fp(~))

NFp(=)

83

In bo th examples , the reduced g rammar of N F is a regular t ree g rammar . We will assume
this property in the following. Note tha t such a p rope r ty is ensured by the left l inear i ty of the
original TRS (see e.g. [GB85]). However this condi t ion is not necessary as shown by example
1.

More precisely, we call N F - g r a m m a r any pair ~ = (NT , P) satisfying

• N T = {NF~[8_ 6 S } U {NFtl t 6 To} where T0 is a finite subset of l inear terms in
T(Fo, X) s.

• P is a set of der ivat ion rules N --* f (N 1 , . . . ,Nk) or N --~ N ' such tha t :

1. N , N ' , N 1 , . . . , N k 6 N T

2. y 6 F o

3. V N 6 N T , N = UN-~N'eP N'

4. VNF, , NFt, E N T , t is not a variable and t and t ~ are not equal up to the renaming
of thei r variables.

5. For each g ---* f (N l , . . . , N k) E P , N = N F t for some t such tha t root(t) = f .

6. For each N --~ N t C P , N = N F , for some _s 6 So

7. For e a c h N E N T , N ¢ 0

The reduced g rammar of N F is an N F - g r a m m a r .

2.2 C o n s t r u c t i n g (ST, >_r)

Let ~ = (N T , P) be an N F - g r a m m a r . ST is the set of non terminals N T . For sake of clarity,
we rename the terms in N T : in example 2, NF,(z) is usual ly denoted by pos (for s t r ic t ly
posit ive integers) and NFp(z) is usually denoted by neg.

The ordering -->T on ST is defined by:

• I f t , t' E T (F o , X) , NFt >_r NF~, i f f 3 a E ~,,t' = ta.

• NF~ >_T N F , when LS(t) <_o s_

F0 is spli t into the sets Co and Do in the following way:

• Co is the set of function symbols f such tha t there is a rule NF~ --* NFI(zl ) in P

•Do=F-Co

Equivalently, D0 is the set of symbols f 6 F such tha t f (x l , x ,) is induct ively reducible.
(This is so because of the proper t ies of 8) .

Now, let CT be the set Co where every symbol has been pr imed. For each product ion rule
N --+ f (N 1 , . . . , N ~) we associate with f ' E CT the profile f ' : N1 x . . . x Nk ~ N . We get
now an OSS (ST, _>r, Cr) 9 Let us show how it works on our two examples:

SWhen NFt i~ computed by the algorithm, then t is always a linear term. Thus this is not an additional assumption.
(See [Com88b,ComSSa]).

9Note that condition 7 in the definition of an NF-grammar ensures that, for ever./8 6 gT, T(CT)_,, the set of ground
terms of sort 8 is not empty (~ we required in the definition of an OSS)

84

E x a m p l e 1
We associate wi th each non te rmina l a sort in the ta rge t specification. In this example, int2
is associa ted wi th NF/m2 , pos with NFs(,) and zero with NFo. Then, each rule of the reduced
g r a m m a r corresponds ei ther to a subsort declarat ion or a profile declarat ion. The rules

N F - - * NFo I NF,(,)

give the inclusions int2 > pos and int2 > zero.
The rule NF,(,) --~ s(NFo) gives s W : zero --~ pos and the rule NFo --+ 0 gives ff :--+ zero.

E x a m p l e 2
This leads to the sort s t ruc ture ST = {int ,pos, neg, zero} with the relat ions int > ned,
int > pos and int > zero corresponding to the rules

W E ~ g F o I NF~(,) I NFp(,)

The o ther rules correspond to the profile declarat ions:

s ~: zero- -*pos p~ : zero- -~neg
0 ~ :--~ zero

pos --~ pos ned ~ neg

P r o p o s i t i o n 1 Assume that ~o is ground convergent, then N F is an (ST, >--T, CT)-algebra

In general (ST, >--T, CT) is not coherent. In order to guarantee its coherence, we have to
construct (ST, >--T, Cr) using a sui table N F - g r a m m a r :

P r o p o s i t i o n 2 Assume that)~o is ground convergent and that there exists an NF-grammar .
Then there exists an N F - g r a m m a r ~ such that (ST, >_T,CT) is a coherent OSS.

Sketch of the proof: the N F - g r a r n m a r is cons t ruc ted s ta r t ing from any N F - g r a r n m a r ~0
and adding some sorts and some profiles in the following way : for every pair of rules

NFf(t,,...,t.) -+ f (N F m , . . . , N F ~ .)
NFf(e....,e,,) -.* f (g F u , , . . . , N f , ;)

such t ha t

• for all i , ul and u~ are unifiable wi th a most general common instance u~ A u~

• N F ~ ^ ~ E NTo

• 3i s.t . u~ is not an instance of u[and 33" s.t. u~ is not an instance of u i

add the g r ammar rule

NFf(t,^t,~,...,t.^t,~)--* I (NFm^~,~ , . . . , g F , . ^ u ,)

and the non te rminal f (t x A t~ , tn A tin) (if not a l ready in NTo).
It is not difficult to see tha t the result ing set of non terminals and product ion rules const i tute
an N F - g r a m m a r . (Al though some non-terminals may not be reachable) . Wi th such an N F -
grammar , (ST, >--r , CT) is coherent.

85

2.3 C o m p u t i n g t h e t a r g e t s p e c i f i c a t i o n

We take DT = F and FT = DT tA C T together with the profile declarations f : N F ~ × . . . ×
NF~ --* NF~ if f E F has the profile 8_ 1 × . . . × _s, --* _s.

Then, each term in T(Fo, Xo) can be viewed as a te rm in T(FT, XT). In other words:

L e m m a 1 T(Fr, XT) is a (free) (So, Fo)-algebra.

Indeed, let H denote the function defined on T(Fo, Xo) by:

• ~ x : s _ ~ = x : N F ~

• ~ f (t l , . . . , t ,) ~ = f (~ t l] , . . . , ~ t n ~)

I.] is an injective (So, F0)-morphism.

Let £1 be the set of rules

f (x l : _ S l , . . . , x , , : _s,) --+ f ' (x l : _ s l , . . . , x , :_s,)

for every f E Co and every profile f ' : s_ 1 × . . . x _s n --* _s. Such a construct ion is "well formed"
since, if f : _s~ × . . . x _s" --* s' in SIGo, then, for every index i, s~ >_T NFs,.

L e m m a 2 £1 is canonical and sort decreasing.

This is indeed a consequence of proposition 2.

Let £2 be the set of rewrite rules ~tl .[~1 -* lu] ~ , for every rule t --* u in £0-
A decreasing renaming of a term t is a subst i tu t ion 0 which associates to each variable a

variable with a lower sort in such a way that there is at least one variable x in t such that
sort(xO) < sort(x).

£T = £1 U £2 t.J £~ where £~ is the set of rules 10 ~ ---r r0 ~ , for each rule l --+ r E £2
and each decreasing renaming of I. (Such a set of rules is finite as S is finite). Of course,
rules in £T which are instances of some other rule in £T can be removed.

E x a m p l e 1 lo

~ 1 = { 5(2; : zero) ~ s t (x : z e r o)

o ~ o ' }
~ = { ~(, ' (o ')) ~ o'

O ' + x ~ x
z + O' --* x
z + z - - , O' }

and £T = £1 U £2 (every rule in £~ is an instance of a rule in £2).

1°When the sort of a variable is not mentioned, it must be understood that it has the greatest sort of its connected
component.

86

E x a m p l e 2

~ = { s (x : zero) --+ s'Cx : zero)
p(~: zero) -* P'Cx: zero)

0 4 0 '

~2 = { sCpCx)) - , x
0' + x - - . x

p(x) + y -~ p(x + y)

) ~ = { s (p ' (x : zero)) --+ x : zero
p(s'(x : zero)) --~ x : zero

s'Cx: zero) + y -~ sCx + y)
p'Cx : zero) + y - , PCx + y)

sCx: pos) -~ ,~(~: pos)
p(~: ,~eg) --, p ' (~: neg)

p(s(x)) --+ x
s(x) + ~ -~ s(x + y)

}

s(p'(x : ~eg)) -* x : ~eg
p(~'(~ : pos)) -~ ~ : pos

s ' (x: pos) + y -~ s(x + y)
p' (x: ~eg) + y -~ p(~ + y)

2.4 P r o p e r t i e s o f t h e t a r g e t s p e c i f i c a t i o n

There are basical ly two mappings linking the source and the t a rge t specification. H has
a l ready been ment ioned. Now, for t E T (S I G T , X) let t" be the t e rm in T (S I G o , Xo) obta ined
by replacing each variable x by a variable x' whose sort is the greatest sort in the connected
component of sort(x) and replacing each pr imed function symbol by the unpr imed one. (Then
~tl = t).

Our const ruct ion using N F - g r a m m a r s has the following main p roper ty :

L e m m a 3 u - - ~ r v iff u ~ v or ~ ~ e ~"

C o r o l l a r y 1 For every t E T (S I G T) , ~ is irreducible by]~o iff t is irreducible by]~2 u]~.

C o r o l l a r y 2 For every t , u C T (S I G T) , "t ~ge = "~ ~ o iff t ~ga.= s ~ r

By construct ion, the ta rge t OSSpec is coherent n . The rewri te sys tem R r has also the
desired proper t ies :

L e m m a 4 I f 1~o is ground convergent, then so is]~r.

Sketch of the proof
When t --*~r u, e i ther t" - -~o ~ or t" = ~. In the la t te r case t -'*~1 u. This proves tha t ~T does
te rmina te . The ground confluence proof is more involved; assuming tha t s, tl, t~ E T (S I G T)
and s --*~r Q and s ---~r t2, there are three cases to investigate:

1. ~ = t~ = ~ . Then we use lemma 2

2. ~ = t~ ¢ ~ . Then we use the construct ion of)~T

3. Q ¢ ~ ¢ ~ . Then we use the ground confluence of)~0.

L e m m a 5 ~ r is sort-decreasing.

llThls is easy to deduce from proposition 2. Note that this proves the existence of the initial algebra, as recalled in
section 1.

87

This can be easily verified. As shown in [KKM88], when a term rewriting system is convergent
and sort decreasing, for every equational order-sorted deduction of s = t, there is a rewrite
proof of s = t. This result easily extends to ground convergent TRS:

L e m m a 6 If g is ground convergent and sort decreasing, then s =1(~) t iff, for every ground-
ing substitution a sa ~ = ta ~ .

Now what we expect for inductive proofs is the equivalence between the two specifications:

T h e o r e m 4 If go is ground convergent, then (SIGr, dr) is equivalent to (SIGo, go).

In other words
s =Zero) t ¢~ lsl = z (~) Ill

Sketch of the proof
When a E Estao, lal is the substitution whose domain is Dorn(a) and such that, for every
x E Dora(a), x la] = lxa]. In the same way, when a 6 Es,ar, ff is defined by Dom(~) =
{~,x E Dom(a)} and, for every x E Dom(a), ~ : ~'6. Now the theorem follows from the
equivalences:

• s =~l~olt .~ v o e r,S,~o,,, l s l [ol ~ . : It]Io] ~ .

Let us show the second equivalence, s =z(_~o) t i f f for every grounding substitution a, sa ~ 0 =

ta $~o" On the other hand, sa j.jz0= [sa~ $~o and, by corollary 2, lsa'-~'~ $~o: l~al J.go iff
lsal ~gr = ltal $~v. Now, the equivalence follows from the identity lsal = fs]lal.

For the first equivalence, by lemmas 4 and 6, ls~ : z (g r) It] iff for every grounding substi-
tution a, ls~a ~ r : Ill a ~zr- Now, following the identity ls la ~ g r : l sa l .[gr, we have the
equivalences

<* ls~l ~ 0 = lt~l ~ o
¢~ s~ J,~o t~ ~ o

[]

It is thus possible to perform inductive proofs in the target algebra instead of the source
algebra. As announced, we have also the following property which states that the target
algebra is "simpler" than the source one:

P r o p o s i t i o n 3 (S IGr , gT) is a decomposed OSSpec.

This indeed is a consequence of lemma 3.

3 I n d u c t i v e P r o o f s in O r d e r - S o r t e d A l g e b r a s

Now, it remains to show how to perform inductive proofs in decomposed order-sorted algebras.
The aim of this paper is not to give results in this field. Therefore, we only show how to
perform inductive proofs in our target algebra and sketch a general method.

88

The only difficulty wi th OSA is tha t equat ional reasoning m a y lead to ill formed terms (see
for example {SNGM87]). Such a problem does not occur when dealing with sort decreasing
t e rm rewri t ing systems. And, by lemma 5, our system is sort-decreasing.

However, if we use the order-sor ted complet ion (as in [KKM88]), an equat ional conse-
quence u = v where nei ther LS(u) < LS(v) nor LS(v) <_ LS(u) may be derived. In such a
case, it is not possible to orient the equation and keep the sor t -decreasing proper ty .

Let us assume tha t the source a lgebra is a MSSpec. In this case, the ta rge t specification
has some addi t ional proper t ies which ensure tha t such a sort p rob lem cannot occur:

L e m m a 7 Assume that the source specification is a MSSpcc. Let s = t be an equation in the
source specification. Then every equational consequence u = v of]~T U {~S] : ~t~) derived
by a completion procedure satisfies either LS(ua) >_ LS(va) or LS(va) > LS(ua) for every
substitution a or u,v E T(CT, X) .

This indeed can easily be proved using the fact tha t a t e rm whose root symbol is in DT
has necessari ly a sort which is maximal in its connected component 12.

Now three s i tuat ions can occur when an equat ion u = v is derived by the (inductive)
complet ion procedure :

1. u,v C T(CT,X) and it is possible to derive a contradic t ion

2. for every subs t i tu t ion a, LS(ua) > LS(va) (or LS(va) > LS(ua)) in which case the
equat ion can be oriented, provided tha t constructor te rms are smaller than non con-
s t ruc tor ones for the reduct ion ordering.

3. for every subs t i tu t ion a, LS(ua) = LS(va)

Therefore, it is possible to use complet ion procedures (as in [KKM88]) in this case, without
modifying the sort s t ructure .

When the source specification is an OSSpec there are some more difficulties since an
equat ion between two non const ructor terms with uncomparable sorts can be derived by a
complet ion procedure.

However, in order to solve complement problems in OSA, it is necessary to t ransform
the sort s t ruc ture ([Com88b]). In the result of this t ransformat ion (which is mainly a tree
au toma ton determinizat ion) , two dis t inct sorts have disjoint carr iers in T(F) . (But functions
symbols remain "overloaded") . If we assume this addi t ional p rope r ty of the source specifi-
cat ion, then lemma 7 holds for order sor ted specifications. Therefore, no sort problem can
occur during a complet ion procedure.

E x a m p l e s 1 a n d 2
In examples 1 and 2 (previously defined) it is not possible to use direct ly the results of

[HH82,LanSl] since there are some relat ions between constructors . However, using the target
specification (see above), it is possible to use these methods.

12Our target signature may be compared with the compatible signature~ of [SNGM87].

89

For example, in example 1, the commuta t iv i ty x + y -- y + x is an inductive theorem since
there is no (proper) cri t ical overlap between x + y and a rule in RT- This is sufficient for
ensuring x + y = I (~ r) Y + x as shown in [Bac88].

Let us show how it is proved tha t s(x) + y = y + 0 is not an inductive theorem:

= o'

: z e r o) = O'

D I S P R O O F

overlap wi th the rule x + O' ~ x

overlap wi th the rule 8 (x : zero) --~ 8 ' (x : zero)

since s'(x : zero),O' 6 T(CT,X)

4 Conc luding remarks

For any te rm rewri t ing sys tem it is possible to compute a condi t ional g r a mma r for N F
without useless non-terminals . However, the me thod presented in this paper requires some
more hypothesis . F i rs t , it requires the t e rm rewrit ing sys tem to be ground convergent (may
be this hypothesis could be weakened to ground confluence). Secondly, it requires the clean
g rammar of N F to be a regular one. This means tha t the language of reducible ground terms
is regular. There is no hope to weaken this hypothesis since the set of well formed ground
terms in a finite OSS is a regular tree language: profile declarat ions provide a (bo t tom-up)
finite t ree au toma ton for recognizing it. Therefore, our t ransformat ion into a decomposed
OSSpec seems to be op t imal in some sense: whenever such a t ransformat ion exists, then it
is computed 13.

A drawback of the method is tha t there does not exist any simple check for the regular i ty of
the language of reducible ground terms. I t is known tha t left l inear i ty is a sufficient condit ion
(see e.g. [GB85]). However, many examples can be buil t showing tha t this condi t ion is not
necessary 14. Of course, it is possible to s imply compute the cleaned up g r a m m a r and see if it
is regular. But , as shown in this paper , this is not an easy computa t ion . An open question is
to broaden the left l inear i ty condit ion in order to have some more general (syntact ic) sufficient
condit ion for regulari ty.

Let us also note tha t we could not use any regular tree g r a mma r for our t ransformat ion
since we actual ly use addi t ional propert ies of the g rammars produced by our a lgor i thm for
proving a s t ronger p roper ty of the target specification: the equivalence with the source one.
Indeed, the i somorphism T (F) / = E ~ T(F ') / =E' does not provide in itself a way for deduc-
ing inductive theorems in T(F, X) from inductive theorems in T(F' , X) .

Anyway, at least in the left linear case (and others, see above), our method proves tha t it
is possible to use Huet and Hullot 's a lgor i thm and avoid induct ive reducibi l i ty checks. This
is very useful since the test set of Pla is ted ' s inductive reducibi l i ty test is always huge. That
is the reason why we think our approach is well sui ted to the implementa t ion of inductive
proofs in equat ional theories wi thout constructors .

lSThis optimality result will be detailed in a forthcoming paper.

1'For example f = {a,f,h} and the left hand sides are {h(f(z,x)),f(f(z,,z2),za),f(h(x,),z2)}. The language of
reducible ground terms is regular.

90

Also, it must be noted that inductive proofs in order-sorted decomposed specifications is
not harder than in the unsorted case. Indeed~ this is the meaning of lemma 7. Therefore, our
method is a real improvement over classical ones.

Refe rences

[Bac88] L. Bachmair. Proof by consistency in equational theories. In Proc. 3rd IEEE Syrup. Logic
in Computer Science, Edinburgh, July 1988.

[CL88] H. Comon and P. Lescanne. Equational Problems and Disunification. Research Report Li-
fia 82 Imag 727, Univ. Grenoble, May 1988. To appear in J. Symbolic Computation.

[Com88a] H. Comon. An effective method for handling initial algebras. In Proc. 1st Workshop on
Algebraic and Logic Programming, Gaussig, 1988.

[Com88b] H. Comon. Unification et Disunification: Thdorie et Applications. Th~se de Doctorat,
I.N.P. de Grenoble, France, 1988.

[CR87] H. Comon and J.-L. Remy. How to Characterize the Language of Ground Normal Forms.
Research Report 676, INRIA, June 1987.

[Fri86] L. Fribourg. A strong restriction of the inductive completion procedure. In Proc. 13th
ICALP, Rennes, LNCS 226, pages 105-115, Springer-Verlag, 1986.

[GB85] J .H. Gallier and R. V. Book. Reductions in tree replacement systems. Theoretical Com-
puter Science, 37:123-150, 1985.

[GM87] J. Goguen and J. Meseguer. Order-Sorted Algebra I: Partial and Overloaded Operators,
Errors and Inheritance. Draft, Computer Science Lab., SRI International, 1987.

[Gog80] J .A . Goguen. How to prove inductive hypothesis without induction. In Proc. 5th Conf.
on Automated Deduction, LNCS 87, 1980.

[HH82] G. Huet and J.-M. Hullot. Proofs by induction in equational theories with constructors.
Journal of Computer and System Sciences, 25(2), 1982.

[JK86] J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in equational theories
without constructors. In Proc. 1st IEEE Syrup. Logic in Computer Science, Cambridge,
Mass., June 1986.

[KKM88] C. Kirchner, H. Kirchner, and J. Meseguer. Operational semantics of obj-3. In Proe. 15th
Int. Conf on Automata, Languages and Programming, LNCS 317~ Springer-Verlag, July
1988.

[KM86] D. Kapur and R. D. Musser. Inductive reasoning with incomplete specifications. In Proc.
1st IEEE Syrup. Logic in Computer Science, Cambridge, Mass., June 1986.

[KM87] D. Kapur and D. Musser. Proof by consistency. Artificial Intelligence, 31(2), February
1987.

[KNZ85] D. 'Kapur, P. Narendran, and H. Zhang. On Sufficient Completeness and Related Properties
of Term Rewriting Systems. Research Report, General Electric Company, October 1985.
Preprint.

91

[KNZ86]

[Kue87]

leanS1]

[Mu~8O]

[pins5]

[SNGM87]

[Wha851

D. Kapur, P. Narendran, and H. Zhang. Proof by induction using test sets. In Proc. 8th
Conf. on Automated Deduction, Oxford, LNCS 230, Springer-Verlag, July 1986.

W. Kuchlin. Inductive Completion by Ground Proofs Transformation. Research Report,
University of Delaware, February 1987.

D. Lankford. A simple explanation of inductionlcss induction. Technical Report MTP-14,
Mathematics Department, Louisiana Tech. Univ., 1981.

D. Musser. Proving inductive properties of abstract data types. In Proc. 7th A CM Syrup.
Principles of Programming Languages, Las Vegas, 1980.

D. Plaisted. Semantic confluence tests and completion methods. Information and Control,
65:182-215, 1985.

G. Smolka, W. Nutt, J. Goguen, and J. Meseguer. Order-Sorted Equational Computation.
SEKI Report SR-87-14, Univ. Kaiserslantern, December 1987.

S. R. Thatte. On the correspondance between two classes of reductions systems. Infor-
mation Processing Letters, 20:83-85, February 1985.

