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Abstract  

We show that T(F)/=E can be completely axiomatized when =E is a quasi-free theory. 
Quasi-free theories are a wider class of theories than permu~alive theories of [Mal71] for 
which Mal'cev gave decision results. As an example of application, we show that the first 
order theory of T(F)/=E is decidable when E is a set of ground equations. Besides, we 
prove that the ~l-fr'agment of the theory of T(F) /=z  is decidable when E is a compact set 
of axioms. In particular, the existential fragment of the theory of associative-commutative 
function symbols is decidable. 

I n t r o d u c t i o n  

Mal'cev studied in the early sixties classes of locally free algebras that can be completely ax- 
iomatized [Mal71]. He proved in particular that  what is today known as Clark's equality theory 
is decidable. He also studied some classes of permutative algebras in which, roughly, the axiom 

/ ( s l , . . . ,  s~) =/(~l , . . . , t~)  ~ Sl = tl ^ . . .  ^ s~ = t, 

is replaced with 

f ( s l , . . . ,  s~) = / ( t l ,  . . . .  t~) ~ ~ / 8 1  = t~(l~ ^ . . .  ^ 8 .  = t~(,1 

where II is a subgroup of the symmetric group Sn. 
Such studies were motivated by mathematical logic problems, but computer scientists are 

now concerned with these works because the decidability of such theories a~ows the use of  
the corresponding formulas as constraints in a constrained programming language. Therefore, 
much work has recently been devoted to considering (fragment of) first order theories of some 
structures built on Herbrand domains. Finite trees over a finite alphabet are studied in [Mah88, 
CL89]; it turns out that  T(F),  the tterbraud Universe, is completely axiomatizable. Finite trees 
over an infinite alphabet are also completely axiomatizable, as well as rational trees [Mah88]. 
Extensions to other structures have been considered: extension by adding an inequality symbol 
[Ven87, Comg0c, Tre90, Tul90], extension with membership constraints [Com90b]. 

What  we consider here is a simple structure: the Herbra~d Universe without any predicate 
symbol other than equality. However, we do not assume that the model is freely generated: 
equality is assumed to be generated by a finite set of equations E. In other words, we are 

*This work was partly supported by the Greco de Programmation du CNRS and partly by the Esprit Basic 
Research Action COMPASS 
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interested in the quotient T(F)/=s where =E is a finitely generated congruence. This is related 
to [Biir88], but we consider here the full first order theory (not only a fragment) and we assume 
a finite alphabet F (the alphabet is assumed to be infinite in [Bfir88], which is simpler in some 
respects). 

For an arbitrary E, the first order theory of T(F)/=~ is of course undecidable. At least the 
word problem (a subset of the Ill fragment) and unification problem (a subset of the ~i fragment) 
should be decidable for the congruence =E. Unfortunately, this is not sufficient: the first order 
theory of T(F)/= E has been shown undeddable when E is a set of associative-commutative 
axioms [Tre90]. Therefore, we have to impose strong restrictions on the set of axioms E in order 
to derive decidability results. Actually, we show in this paper the decidability of the first order 
theory of T(F)/=~ when =E is quasi-free. =~ is quasi-free if E is resolvent [Kir85, Jou90] and if 
the equations in E have a depth 0 or 1. Typically, commutativity axioms are quasi-free (and more 
generally, permutative axioms of Mai'cev). We also show that, if E is a set of ground axioms (i.e. 
equations without variables), there is a conservative extension T(F')/=s, of T(F)/= s where E '  
is quasi-free. This shows that the first order theory of T (P) /=  E is decidable in this case. This 
should not be confused with results on the theory of ground systems [DT90]. In the latter case, 
the structure considered is indeed richer in one sense (there are predicate symbols other than 
equality), but poorer in some other respects (no function symbols, no equality predicate). 

Our decidability results are proved by rewriting the formulas in equivalent formulas (quan- 
tifier elimination) until a solved form (which is either L or satisfiable) is reached. Our proof 
also constructs an axiomatization of the model: the set of rules, viewed as logical equivalences 
are valid formulas. On the other hand, they generate a theory which coincides with the theory 
of our model because rewriting a closed formula (i.e. a formula without free variable) leads 
either to T or  ±. Therefore, the set of rules itself is a complete axiomatization of T (E) /=  E. 
(This differs from other decidability techniques from which it may be more difficult to extract 
an axiomatization because of model-theoretic arguments in the proof.) 

Actually, we use two sets of transformation rules: the first set of rules reduces every formula 
to a purely existential one. It is correct in T(_P)/=~ when E is quasi-free. The second set of rules 
transforms any purely existential formula into a solved form. It is correct in T(P)/=~ when 
E is compact. (Roughly, compact equational theories are those for which the independence 
of disequations lemma holds [LMM86].) Splitting the reduction in this way allows to derive 
the decidability of the existential fragment of the theory of associative-commutative function 
symbols, since the corresponding equational theory is indeed compact. 

Our results show that it is possible to use arbitrary first order formulas, interpreted in a 
quotient T(E) /=s ,  as a constraint language, provided that =E is quasi-free. Other applica- 
tions are described in [Com90a]. For example, complement problems which express instances of 
finitely many terms which are not instances of another finite set of terms, are useful in many 
computational problems such as compiling pattern matching, automatic inductive proofs, logic 
program synthesis ... 

We start in section 1 by some dassical definitions, including those of equational formulas. In 
section 2 we introduce syntactic theories, quasi-strict theories and quasi-free theories. In section 
3 we give a set of rules for quantifier elimination in T(F)/= s when E is quasi-free. This set 
of rules is proved terminating. In section 4, we introduce compact theories and show that the 
existential fragment of the first order theory of T(F)/= s is decidable in this case. Quasi-free and 
Associative-Commutative theories are examples of compact theories. Finally, we bring together 
in section 5 some results established in previous sections: we give a complete axiomatization of 
T(F)/=~ when E is quasi-free and we show that the first order theory of T(F)/= s is decidable 
when E is a finite set of ground equations. 

Due to space limitations, all proofs are omitted in this paper. 
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1 Bas ic  De f in i t i ons  

Most of our notations and definitions will be consistent with [DJ90]. T(F, X )  is the set of finite 
terms constructed on the finite alphabet  of function symbols F (together with their ari ty)  and 
a set of variable symbols X.  We consider only one-sorted terms and F is assumed to be finite. 
tip is the subterm of t at position p and t[u]p is the term obtained by replacing tip with u at  
posit ion p. By t[u] we mean that  u is a subterm of t. A is the root position. Similar notat ions 
are also used for formulas. 

A substitution is a mapping a from a finite subset Dora(or) C X into T(F, X) .  Every 
substi tut ion a can be extended in a unique way into an endomorphism of T(F, X )  which is the 
identi ty on X - Dom(a). As usual, we confuse the substitution and its extension. A ground 
substitution is a subst i tut ion,#  such tha t ,  for every variable x E Dom(a), xa E T(F). The set 
of all substi tutions is wri t ten ~ .  An equation is a pair  of terms in T(F, X) ,  denoted s = t. = 
is symmetric:  we make no difference between s = t and t = s. Given a set of equations E ,  
=E  is the  smallest congruence on T(F, X )  which contains all equations t a  = s a  for s = ~ E E 

pro" 

and a E ~. =E is confused with the equational theory of E .  The relation c ~ is defined on 
E 

T ( F , X )  (as in [DJ90]) by: 

s ( ~ t i f f  q I = r E E ,  slv=laandt=-s[ra]p 
E h 

Sometimes, we drop irrelevant indices. For example, s ~ * t means that  s =- la and t - ra. 
I :  ^ ) ,  

CA p (resp. ~ ) ) is the reflexive s ~ ~ t s t a n d s f o r s  ~ ) t f o r s o m e p o s i t i o n p # A a n d  [# A= 

transit ive (resp. reflexive) closure of .CA . Similar definitions are obtained,  replacing E with 
$ * 

a set of rules, in which case we use the notations ~ or ~ in order to precise in which 
l--w l-*r 

way we used the rule. 
An equational formula is a first order formula whose atoms are equations. For simplicity, we 

assume that  every variable is bound at most once and that  free variables do not have hound 
occurrences. The set of free variables of an equational formula ¢ is denoted Vat (C)  (we use a 
similar notat ion for sets of formulas). Moreover, negations are assumed to be propagated  using 
classical rules. Then, introducing a new symbol ~ (for -, = ) ,  we may assume tha t  equational 
formulas do not contain any occurrence of -~. Actually, we need not consider general equational 
formulas in the following because we are going to use quantifier elimination techniques: we need 
only to consider the fragment 3*V*. 1 More precisely, an equational problem is either ± ,  T or a 
formula 

iEI 

where Pi is quantifier-free. Moreover, we assume in the following that  the Pi 's  are in conjunctive 
normal form 2 (this choice is arbi t rary) .  Finally, every equational problem is given together with 
a finite set of unlmowns/4 which contains i ts free variables. 

In this paper ,  we only consider interpretat ions in quotient term algebras: let E be a set of 
equations. An E-solution of an equational problem ¢ is a ground substitution a whose domain is 
/4, the set of unknowns of ¢ and such that  T(F)/= s ~ Ca. (_L and T have their usual meaning: 

alndeed, we are going to prove that any formula in the fragment 3*Y* is equivalent to a formula in the fragment 
3*, which shows, by induction on the number of nested quantifiers and using V*3* = "~3*V*'~, that every formula 
is equivalent to a purely existential formula. Then, we only have to study purely existential formulas. 

2We use actually a set of normalization rules (such as in [CL89, Comg0a, Comg0b]) and assume that the 
formulas are kept in normal form with respect to these rules. 
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respectively no and every ground substitution is a solution of them.) Two formulas that have 
the same set of solutions are equivalent and we write ¢ ~-E ¢. 

In the whole paper, we always assume that T ( F ) / =  E is infinite. (If not, everything 
collapses and results are straightforward). 

The (first order) theory Th(7") of a set of formulas 7" is the set of sentences ¢ such that 
7" ~ ¢. A theory 7" (i.e. a set of first order formulas) is complete if, for every sentence ¢, either 
7" ~ ¢ or 7" ~ -~¢. Let us recall that a complete and recursively enumerable set of formulas 
has a decidable theory (see e.g. [Sho67] for more details). Finally, if ,4 is an algebra, the (first 
order) theory Th(J4) of A is the set of sentences which are true in ,4. • is an axiomatization of 
A if T h ( ~ )  = Th(A) .  

We are going to use transformation rules on formulas. Such rules actually represent infinite 
sets of rewrite rules in the algebra of equational formulas. A transformation rule R is called 
correct (w.r.t. E) if 

If a set of correct transformation rules is terminating and transforms every equational problem 
in a purely existential formula, then the first order theory of T ( F ) / =  E is generated by these rules 
(viewed as logical equivalences) and the purely existential fragment of the theory of T ( F ) / = s .  
We are gbing to construct complete (recursive) axiomatizations of T ( F ) / =  s in this way. 

2 Quasi-free theories 

In order to design finite terniinating and complete sets of transformation rules for equational 
theories, a natural idea is to restrict our attention to those theories where it is possible to use 
a top-down strategy of paramodulation. More precisely, C. Kirchner introduced in his thesis 
[Kir85] syntactic (equational) theories. In such equational theories, every equality proof can be 
done with at most one inference step at the root of the tree. For such theories it is possible to 
design simple unification rules [Kir85, KK90, JKg0, Jou90]. It is very easy to give the negative 
counterpart of these rules and therefore to design a set of transformation rules for equational 
formulas. However, unfortunately, the rules are not always terminating (this is already the case 
for unification). We therefore need some more restrictions on the presentation. In general, 
as we show in following sections, the transformation rules for solving equations may introduce 
"new" (i.e. existentially quantified) variables and the corresponding rules for disequations may 
introduce universa~y quantified variables. This is a problem since we aim at eliminating the 
quantifiers. This is why we consider quasi-free theories. In these theories, it is possible to design 
transformation rules which do not introduce any extra variable. 

2.1 S y n t a c t i c  T h e o r i e s  

Defini t ion 1 A set of equation E is resolvent if it does not contain any equation z = s where 
x is a variable 3 and if 

, .  (¢^)* A = (CA)* 
s ~ t iff s ~ ~ ~ ~ ~ ....... ~ ~ 

E E E E 

An equational theory which can be generated by a resolvent presentation is called syntactic. 

3Actually, this condition can be removed, see [Com91]. 
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This definition is the classical one ([Kir85, Nip90]). Given a resolvent presentation, it is easy 
to derive correct transformation rules such as: 
( M u t a t e )  f ( t l , . . . , t n )  = f ( u l , . . . , u n )  ~ 3 V a t ( E ) :  

( h  = ul ^ . . . ^  ~ = u , )  

v V ( A ( t ,  = ,,, ^ u, = 
](-1 ....... )=](~,~ ....... )e~ ~=:t 

where 3Var(E)  stands for 3xl,. . .3x~ and ah,. . . ,$k are the variables introduced by the rule. We 
assume moreover that there is no capture (some bound variables are renamed if necessary). Finally, 
empty conjunctions are identified with T and empty disjunctions are identified with I .  

The above rule is parametrlzed by the function symbol f .  It is also easy to design rules for 
solving equations between terms whose top symbols are distinct. (Actually, we use the same 
rule, except that  there must be one step at the root: the first conjunction is erased.) 

2 .2 O c c u r  C h e c k  

We need some more rules for solving equations of the form x = t[z]. The most simple way for 
handling these equations is to assume that they do not have any solutions. Equational theories 
in which a rule t[x] = ~ ~ A  is correct (assuming that t is a non trivial context) are called 
str ict  theories in [Kir85]. We do not really need such a strong condition as strictness. What  we 
actually need is a set of rules for handling positive occur checks. 

Def in i t ion  2 A rule f ( s l , . . . ,  sn) --+ t is called i-collapsing if, for  every substi tution a, Is~al _> 
Iwl. 

Isl is the size of the term s, i.e. the number of positions in s. Note that t is not necessary a 
variable (which differs from the dassical definition). For convenience, we may now view a set of 
equations E as a the set of rules Ut=rel~{l ~ r, r -* I}. 

Def in i t ion  3 A f ini te  set  o f  equations E is quasi-strict i f ,  for  every terms t,  u, f o r  every  posi t ion 
* 

i . p o f  t such that t[u]i.p ~ u, there is an i-collapsing rule I --~ r E E such that 
E 

t[u]i.p ,(CA)* A 
) ..... ~ ~"' ~ > U 

E l-*r  E 

A n  equational theory is quasi-strict i f  it can be generated by a quasi-strict set  o f  equations. 

As expected, given a quasi-strict set of equations, it is easy to derive a rule for solving cyclic 
equations: 

(Cycle)  f ( t l , . . . , t n ) [x ]  = x ~-+ 3 V a t ( E )  : V (tl  = ul  A . . .  A tn = Un A x = w)  
f(ul,...,u,)-*weE,,i 

where Ee,i is the set of i-collapsing rules in E and x is a variable occurring in ti. 

P r o p o s i t i o n  1 I f  E is a quasi-strict set  o f  equations, then the rule (Cycle)  is correct. 
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2.3 Quasi-free theories themselves 

Definit ion 4 A quasi-free set of equations E is a resolvent and quasi-strict set of equations 
such that, for every s = t E E ,  s and t have a depth smaller or equal to 1. An  equational theory 
is quasi-free if  it can be generated by a quasi-free set of equations. 

For example, permutative axioms of Mal'cev define quasi-free theories (this includes com- 
mutativity axioms). Also, we wilt see in section 5 that every set of ground equations defines an 
equational theory for which some conservative extension is quasi-free. 

3 Quant i f ier  E l i m i n a t i o n  

When E is quasi-free, the quantifiers that are introduced by the rules (Muta t e )  and (Cycle) 
can eliminated eagerly. The rules of figure 1 are precisely those obtained after eliminating the 
variables introduced by (Muta te )  and (Cycle) and their negation. Such rules are combined 
with some of the rules used for quantifier elimination in finite trees (see [CL89]) which are recalled 
in figure 2. In order to avoid distinguishing between f = g and f ~ g in the rules QF1,QF2, we 
assume that E contains the additional reflexive functional axioms f ( x l , . . . ,  ~n) = f ( x l  . . . .  , ~n) 
for every f E F. The'explosion rule is an expression of the domain closure aziom4: 

(DCA)  Vx V 3 ~ :  x =  f ( ~ ) .  
yeF 

The quantifier elimination rules can be easily proved to be correct, except for the rule (QEa): 
its correctness w.r.t. E relies on an independence of disequations lemma. The following definition 
is inspired by [LMM86]: disequations are independent if their conjunction is solvable whenever 
each of them is solvable. 

Defini t ion 5 The disequations tx ~ ul , .  . .tn ~ Un are independent (w.r.t. E )  if  

• either there is an index i such that ti =E ul 

• or else tl ~ ul h . . .  h t~ ~ u,~ has at least one solution in T ( F ) / =  E. 

P r o p o s i t i o n  2 I f  any n disequations are independent w.r.t. E and if =E is decidable s, then 
(QE3) is correct w.r.t. E.  

This shows by proposition 4 (which is stated in the next section) that all rules are correct 
when E is quasi-free. 

The next result is the most difficult of the paper: it states termination of quantifier elimi- 
nation. 

T h e o r e m  1 The system of transformation rules defined in figures 1 and 2 terminates. Every 
irreducible equational problem is purely existential (i.e. does not contain any universally bound 
variable.) 

We use a proof similar to the termination proof of [CL89]; we first prove the termination 
of 7~ - {(Ex)}, using an interpretation ~ of the formulas in a well-founded domain D. Then, 
we show that,  in any reduction sequence, @ is strictly decreasing on the subproblems on which 
explosion is applied. 

~We use here, and only here, that F is finite. 
5This condition essentially ensures the decidability of applicability of the rule. 
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M u t a t i o n s  

(QF1)  f ( h , . . . , t . )  = g ( u l  . . . .  ,urn) 

V ( ( A ~ =ts)^( A ~=~s) 
J(Vl,...,v.)=z(~ol,...,,~,,,)~l~ vi - ~,j and ~"i - v~ ana 

vl var iab le  v$ va r iab le  

^ (  A t ,=~)^(  A ~,=~,) 
v i cons t an t  wi constant  

^ ( A ~ = ~J))  
ml -- w j  and  w j  var iable  

(QF2)  f ( t l , . . . , i n )  # g ( u l , . . . , u r n )  

A ( (  V t~-C:tslv( V "~¢:~J) 
$ ( ~ l , . . . , ~ , ) = 9 ( w l , . . . , , o , , ) ~ E  vi = v~ and  ~ i  = v~ and 

vl var iab le  v./ var iab le  

V ( V tl # ~,i) V ( V ~'i # ~'i) 
vi cons t an t  wl cons tan t  

v ( V '~ # "s)) 
~ i  = ~ j  and ~ j  variable 

These two rules assume that the left hand side contains at least one occurrence of a universally bound 

variable. 

O c c u r - C h e c k  

(QF3)  x = f ( h , . . . , t n )  

n 

V ( ( A  ",",,,,...,,,,, = t~) A ,,,~,,, ....... = :~ 
f ( v l , . . . , v n ) " ~ w E E e , j  i---1 

. n  

(QF,,) x # Z(ta,...,t,,) ,--, A ( ( V  v~,,,,,,...,,,. # t~) v ,.,,,,,,,,...,,,,, # = 
. f (vl , . . . ,vn) '-+wEEc,~ i = 1  

If ~ is universally bound and occurs in t j ,  E e j  is the set of j-collapsing rules in E and e%~,...,~, is 

the substitution {vi~ ~-* tQ; . . . ; v i k  ~-+ ti~} where {vi~ . . . . .  vik} = Vat(v1 . . . .  ,vn)  is a set of distinct 

variables. 

Figure  1: Quantif ier  El iminat ion in Quasi-free theories.  Pa r t  I 
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Q u a n t i f i e r  E l i m i n a t i o n  R u l e s  ( Q E )  

(QE1) Vff, y : P  ~ Vff: P I fyCYar(P)  

(QE2) Vff: P A ( y ~ t V H )  ~ Vff: P A d { y ~ t )  
If d is a disjunction of equations and disequations, y E ff and y ¢ Var(t). 

(QEa) Vg:PA(y t  =tl  V . . . V y ~ = t ~  Vd) ~ V g : P A d  

If 1. Yl, . . . ,YnEff  
2. d is a disjunction of equations and disequations without any universally quantified variable 
3. For all i, Yi CE ti 

E x p l o s i o n  (E) 

(Exl)  Vff: P ~-~ V/eF3~ ,V~7:  P { x ~  f ( ~ ) } A x = f ( ~ )  

This rule is applied only if 
1. x is not universally bound and v7 f3 (Vat(P) U flU 11) = $ 
2. There is an equation z = u (or a disequation z ¢ u) in P such that u is not a variable and 

contains at least one occurrence of a universally bound variable. 
3. No other rule can be applied. 

E l i m i n a t i n g  t r i v i a l  e q u a t i o n s  a n d  t r i v i a l  d i s e q u a t i o n s  ( T )  

(T1) s = s  ~ T 
(T~) ~ # s  ~ ± 

Figure 2: Quantifier  El iminat ion in quasi-free theories. Pa r t  I I  

4 Decidabil i ty of the Existential  Fragment of the Theory of 
T(F)/=~ when E is Compact  

Theorem I shows tha t  every equat ional  formula is equivalent (w.r.t .  ~ E )  to a purely existential  
one when E is a quasi-free set of  equat ions s. In order to show the  decidabili ty of the  first order 
theory of T(F)/=~, it only remains to  solve purely existential  formulas. But ,  for this l a t te r  
problem, we do not  need the  theory to be quasl-free: we relax this condit ion to the  weaker 
assumpt ion  tha t  E is compact. 7 

4 .1  D e f i n i t i o n  o f  c o m p a c t  t h e o r i e s  

Compact  theories are par t icular  cases offinitary equational theories (as defined in e.g. [BItSS87]). 
Let us first recall what  are f initary theories. A Unification problem is a purely existential  
equat ional  problem which does not  involve negat ion (i.e. no disequation).  A unification problem 

hAs already explained, if we are able to transform any 3*V* formula into a 3* formula, then we are able to 
transform an:," equational formula in an 3* formula. 

rActuaUy, the main result of this section is very similar to [Bfir88]. The only difference is the domain of 
interpretation: we consider T(F)/=~ whereas H.-J. Bfirckert considers T(F,X)/ffi~. In other words, we assume 
a finite alphabet, whereas he considered an infinite one. However, as shown for finite trees [Mab88], the cases F 
finite and F infinite are very different (T(F) is not axiomatized in the same way). 
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(ET1) t = s  ~ T I f s = E t  
(ET2) t # s  ~ ± I f s = . t  

(Solve) tl = u l A . . . A t n = u n  ~-* £ 
I f£  is a completely solved form ofQ = nl A.. .  Atn ---- Un. 

(DL) 3 z ~ : P A ( Q 1 V 0 2 )  ~-~ (3v7: PAQ1)  V(quT: PAQ2)  

(VE)  3v7: x = t A P  ~ 3~:  x = t A P { x ~ - + t }  

If x ~ Var(t), x E Var(P) and, when t is a variable, t E Vat(P). 

(EQE)  3 w : P A w = t  ~-~ P I fw tVar (P , t ) .  

Figure 3: Transformation of existential formulas when E is compact 

is completely solved if it is ± or T or else of the form 

3~: x 1 = t l A . . . A X n = t n  

where L / =  {Xl, . . . ,z~} a n d / / N  V a r ( ~ , t l , . . . , t n )  = O. (In other words, a completely solved 
unification problems defines in a unique way an idempotent substitution). 

Defini t ion 6 A finite set of equations is finitaxy if there is a terminating algorithm which 
transforms any unification problem 7 ) into a finite disjunction of completely solved unification 
problems £ such that P ~E C. 

Defini t ion 7 A set of equations E is compact if it is finitary and =E is decidable and any n 
disequations are independent (w.r.t. E).  

We will see in section 4.3 a general sufficient criteria for compactness of a set of equations, 
but note already that an empty set of equations is compact by the independence of disequations 
lemma [LMM86]. 

4.2 T r a n s f o r m a t i o n  ru les ,  so lved  f o r m s  a n d  c o m p l e t e n e s s  

We use here the set of rules given in figure 3 (this set is actually very simple). 

P ropos i t i on  3 The rules of figure 3 define a terminating reduction relation. Moreover, if E is 
compact, then every irreducible formula w.r.t, the rules of figure 3 has at least one solution in 
T(F)/=E. 

Coro l la ry  1 If E is compact, then the ~x-fragment of the theory of T(F)/= E is decidable. 

Indeed, we defined the compactness in order to insure this result. More interestingly, we now 
show how to prove compactness. 
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M u t a t i o n s  

VXl,. • . ,xn, yl, .  • .~Ym 

[f(Xl, . . . ,Xn) = g ( y l , . . . , y ~ )  *=~ V A ' ,  = ", A y, = ",] 
](~,...,v,)=g(~,...,,,,,)EE i=I j=1 

where f E F, E is assumed to contain the reflexive functional axioms and 27 = 
v a , . ( f ( v ,  . . . . .  ,,,,), g(w~ . . . . .  ~, , , )) .  

Occur  checks 
n 

w [f(t~ . . . .  t ~ N , . . . , t , , )  = ~: ~ 3~  V A t j  = ~'~ ^ • = u,] 
f(vl,...,v,)~weE~,i j=1 

For each function symbol f E F, each i < a(f) and ff E¢,i is the subset of E containing all/-collapsing 
rules. 

Figure 4: Axioms for "quasi-free" quotients 

4.3 E x a m p l e s  o f  c o m p a c t  t h e o r i e s  

The following lemma gives a sufficient criteria for compactness: 

L e m m a  1 If  E is finitary, =E is decidable and if every equation s = t such that Var(s, t) = (x )  
and s #E t has finitely many solutions in T( FU FO/=E, where F ~ is an infinite set of constants, 
then E is compact. 

It is possible to use this criteria in order to find a number of compact sets of axioms: 

P ropos i t ion  4 Quasi-free sets of axioms are compact. 

To prove this property, we use the lemma 1, showing that the rules (QF1), (QFa),(T1) 
(without the condition on occurrences of universally bound variables), together with the variable 
elimination rule (VE)  indeed defines a unification algorithm in quasi-free theories (it is also a 
decision procedure for =E). 

Propos i t ion  5 The sets of equations consisting of associativity and commutativity of function 
symbols are compact. 

Here, we use again lemma 1: we prove that every non-triviai equation involving only one 
variable has finitely many ground solutions in the AC case. 

5 Decidabil ity of the First Order Theory of T(F)/=~ 
5.1 E is a q u a s i - f r e e  se t  o f  e q u a t i o n s  

Combining theorem 1 with propositions 1 and 4, we get the decidability of the first order 
theory of T(F)/= E. Looking more closely at the rules which are used in the transformations, 
we extract the equality axioms Eeq (reflexivity, symmetry ,transitivity and compatibility), the 
domain closure axiom (DCA) and the axioms for quasi-free quotients EQF of figure 4. 

T h e o r e m  2 EeqUEQFU{DCA} is a complete axiomatization of T(F)/=~ when E is quasi-free. 

This theorem is actually a generalization of some Mal'cev results [Ma171]. It implies, of 
course, the decidability of the first order theory of T(F)/= s. 
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5.2 E is a f in i te  s e t  o f  g r o u n d  e q u a t i o n s  

Let F0 be a set of function symbols and E0 be a set of ground equations. A conservative extension 
of E0 is a set of equations E, built on a set F _D F0 of function symbols and such that 

Vs, t ~ T(F0),  s =E0 t ~,  s =E  t 
Vs • T(F), 3t • T(Fo), s =E t 

In such a case, Th(T(Fo)/=~o) is the subset of formulas in Th(T(F)/=a) which only involve 
symbols in Fo (see e.g. [Sho67]) 

T h e o r e m  3 Let No be a set of ground equations. There is a (computable) conservative extension 
( F, E)  of ( Fo, Eo ) which is quasi-free. 

Roughly, the construction of E consist of the following steps: 

1. Label the nodes of the congruence closure graph (see [NO80]) with new constant symbols: 
tiffs amounts to add some new ground equations. 

2. Use the Knuth-Bendix completion procedure (see [D J90]) with a lexicographic path order- 
ing extending a total precedence in which constants are smaller than other symbols. The 
result is a finite set of ground equations whose depth is at most 1. 

3. For every pair u = t, v = t where u > t and v > t, add the equation u = v. 

The result is a quasi-free set of equations. 

As a consequence of theorem 1 and theorem 3, we get: 

T h e o r e m  4 The first order theory of T(F)/=~ is decidable when E is a finite set of ground 
equations. 
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