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Abstract

The indistinguishability of two pieces of data (or two lists of pieces of data) can be represented
formally in terms of a relation called static equivalence. Static equivalence depends on an underlying
equational theory. The choice of an inappropriate equational theory can lead to overly pessimistic or
overly optimistic notions of indistinguishability, and in turn to security criteria that require protection
against impossible attacks or—worse yet—that ignore feasible ones. In this paper, we define and justify
an equational theory for standard, fundamental cryptographic operations. This equational theory yields
a notion of static equivalence that implies computational indistinguishability. Static equivalence remains
liberal enough for use in applications. In particular, we develop and analyze a principled formal account
of guessing attacks in terms of static equivalence.

1 Introduction

In the study of security, it is frequent to reason about whether two pieces of data can be distinguished by an
observer. For example, the pieces of data might be two encrypted messages, and the observer an attacker
that attempts to learn something about the underlying cleartexts by analyzing the encrypted messages. The
two encrypted messages are indistinguishable if, no matter how the attacker operates on them, it cannot
discern any meaningful difference. The encrypted messages may however be different—for instance, they
may look like different random numbers.

Formally, indistinguishability can be represented in terms of a relation called static equivalence [3].
Roughly, two terms (and, more generally, two lists of terms) are statically equivalent when they satisfy all
the same equations. This relation is essentially a special case of the observational equivalence relation of
process calculi. It is simpler than observational equivalence in that it does not allow for continued interaction
between a system and an observer: the observer gets data once and then conducts experiments on its own.
Nevertheless, observational equivalence can be reduced to a combination of static equivalence and usual
bisimulation requirements [3, 4, 18].

Static equivalence depends on an underlying equational theory. The choice of an inappropriate equational
theory can lead to overly pessimistic or optimistic notions of indistinguishability, and in turn to security
criteria that require protection against impossible attacks or—worse yet—that ignore feasible ones.

In this paper, we define an equational theory for standard, fundamental cryptographic operations, and
we justify and apply the resulting concept of static equivalence. These operations include various flavors of
encryption and decryption. Static equivalence in this theory implies computational indistinguishability. In
other words, if the formal notion of static equivalence indicates that two pieces of data are indistinguishable,
then no computationally feasible experiment can tell those two pieces of data apart. (This property is a

?This work has been presented in preliminary form at a conference [1].
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soundness theorem. Although it is less important, we have also explored completeness; we discuss it only
briefly in this paper.) Our notion of computational feasibility is based on the sorts of assumptions typically
employed in complexity-theoretic cryptography. It includes certain assumptions on the security properties
of the cryptographic operations; those assumptions appear reasonable and fairly standard, but so do others,
and picking satisfactory ones is somewhat delicate.

While static equivalence is conservative enough to exclude feasible attacks, it also remains liberal enough
for use in applications. In particular, we develop a formal account of guessing attacks (e.g., [26, 27, 15, 35, 34])
in terms of static equivalence. Since guessing attacks constitute a significant threat against protocols that rely
on passwords and other weak secrets, the recent literature contains several studies of guessing attacks, with
both formal and computational approaches (e.g., [30, 22, 21, 20, 8, 12, 19, 25, 28, 24]). Formal approaches
are attractive because of their relative simplicity, which often enables automation. On the other hand, formal
approaches are rather varied and sometimes ad hoc. Fortunately, it has been suggested that a formulation
of guessing attacks could be based on static equivalence [20, 23]. We believe that this idea has a number of
virtues. It leads to a crisp definition, it is fairly independent of specific choices of cryptographic operations,
and it extends nicely to general process calculi. To date, however, this idea has not been worked out fully,
in the setting of an appropriate equational theory. We aim to address this gap.

A related, frequent shortcoming of formal analyses is the lack of computational justifications. This
lack allows the possibility that a protocol is safe against attacks formally, but that a feasible attack exists
nonetheless. An active line of recent research aims to address such shortcomings, by defining and proving
computational soundness results for formal methods (e.g., [5, 7, 32, 29]). The results of this paper belong in
this line of research. We prove a computational soundness theorem for our choice of equational theory with
respect to an implementation based on standard cryptographic primitives. This theorem not only enables
symbolic verification that yields computational guarantees, but also offers further justification for our choice
of equational theory.

Related work. More specifically, our results build on some of our previous work and expand it [6, 9]. Next
we discuss in more detail the relation with this previous work. Other less-closely related work is discussed
above and throughout the paper.

Our previous work includes a study of static equivalence [9]. The theories considered there do not include
the one that we define in this paper (in part because those theories do not model probabilistic encryption
functions, nor encryption under weak keys) and have not provided a satisfactory account of guessing attacks.
They are nonetheless an important piece of the context of the present paper.

Our previous work also presents an approach towards computationally sound security analysis of pass-
word-based protocols [6]. That approach relies on an ad hoc extension of the concept of patterns [5], rather
than on static equivalence. Patterns are symbolic representations of the information gleaned from expressions
by passive adversaries; secure use of passwords in expressions is identified via a careful analysis of their
corresponding patterns. Informally, this analysis ensures that the expressions do not contain redundancy
that would help an adversary in verifying a password guess. Unfortunately, the analysis is highly dependent
on the syntax of the language and on a specific choice of cryptographic primitives. Any extension of the
syntax requires adjustment of the pattern-based security notion (and of the corresponding soundness proofs).
For example, although extending the previous work to the case of multiple passwords seems possible, such a
step requires new definitions and analysis.

The approach presented in this paper is more uniform. In particular, the concept of static equivalence is
independent from the syntax of the language. Thus, the theory that we develop applies to both expressions
that use a single password and to those that use multiple passwords. Accordingly, we require somewhat
stronger assumptions on password-based encryption. Our previous work shows that weaker assumptions
suffice in special cases. Interestingly, it may also indicate how to prove completeness results. Specifically,
existing techniques for achieving completeness of formalisms based on patterns [31] appear to extend to
password-based encryption. It should thereby be possible to obtain completeness results at least for a
fragment of the language defined in this paper.
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Structure of the paper. The next section, Section 2, presents a formal model: it defines sorted terms,
an equational theory for them, and the corresponding notion of static equivalence. Section 3 interprets the
syntax of the formal model in a computational universe; it includes cryptographic assumptions. Section 4
establishes the computational soundness of static equivalence for the equational theory. Section 5 applies
our results to the study of guessing attacks. Section 6 concludes. An appendix contains additional details.

2 Abstract Model

We represent cryptographic messages in an abstract way, by terms over a many-sorted signature, equipped
with an equational theory. The equational theory that we use extends well-established ones for encryption
with carefully chosen equations for password-based encryption. Importantly, our choices enable a soundness
theorem with respect to an implementation based on standard cryptographic primitives. We comment on
some specific choices of equations later in the paper.

2.1 Sorts and Terms

The set of sorts (or types) that we consider is defined by the following grammar:

τ ::=
| SKey symmetric keys
| EKey (public) encryption keys
| DKey (private) decryption keys
| Data passwords and other data
| Coins coins for encryption
| Pair [τ1, τ2] pairs of messages
| SCipher [τ ] symmetric encryptions of messages of type τ
| ACipher [τ ] asymmetric encryptions of messages of type τ

The set of (well-sorted) terms, written S, T , U , V , . . . , is built from an infinite number of variables x, y,
. . . and names a, b, n, r, k, sk, pk, . . . for each sort, with the following function symbols:

encτ : τ ×Data → τ encryption under data
decτ : τ ×Data → τ decryption with data

pencτ : τ × EKey × Coins → ACipher [τ ] public-key encryption
pdecτ : ACipher [τ ]×DKey → τ private-key decryption

pub : DKey → EKey public-key extraction
pdec successτ : ACipher [τ ]×DKey → Data domain predicate for

private-key decryption
sencτ : τ × SKey × Coins → SCipher [τ ] symmetric encryption
sdecτ : SCipher [τ ]× SKey → τ symmetric decryption

sdec successτ : SCipher [τ ]× SKey → Data domain predicate for
symmetric decryption

pairτ1,τ2 : τ1 × τ2 → Pair [τ1, τ2] pairing
fstτ1,τ2 : Pair [τ1, τ2]→ τ1 first projection

sndτ1,τ2 : Pair [τ1, τ2]→ τ2 second projection
0, 1 : Data boolean constants

w, c0, c1 . . . : Data additional data constants

Encryption and decryption symbols may not be available for all sorts τ . We let Tpenc be the set of types τ
for which the symbols pencτ , pdecτ , and pdec successτ are available, and define Tsenc and Tenc analogously.
We assume that pairs are not encrypted under data values, that is, Tenc ∩{Pair [τ1, τ2]}τ1,τ2 = ∅. This choice
is motivated by typical implementations of the pairing operation that use special delimiters to make the
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operation general and easily invertible. Encryptions of such pairs under data values immediately lead to
off-line attacks.

Our function symbols represent encryption and decryption functions and auxiliary operations. The first
two functions (encτ and decτ ) are to be used with data values as keys; the data values may be the constant
symbols of the grammar, which may represent the passwords in a dictionary. (In contrast, fresh names may
represent strong keys; the scoping rules justify the respective uses of constant symbols and names.) The fact
that encτ does not take a parameter of type Coins relates to the difficulties with probabilistic password-based
encryption [6]. Moreover, the language provides no direct way for the attacker to check that a value results
from applying encτ with a particular key. Such properties are essential for thwarting guessing attacks in
practice (for example, in the EKE protocol [15]). The remaining functions are fairly standard; they include
functions for public-key and symmetric encryption (pencτ and sencτ ), which are probabilistic in the sense
that they take a parameter of type Coins.

We often omit type annotations on function symbols. For instance, provided that S, T , and U have type
Data, we may write pair(enc(S, T ), U) instead of pairData,Data(encData(S, T ), U). In addition, we sometimes
use the abbreviations {S}T for enc(S, T ), {S}rpub(sk) for penc(S, pub(sk), r), and {S}rk for senc(S, k, r).

We write var(T ) and names(T ) for the sets of variables and names that occur in a term T . We extend
the notation to tuples and sets of terms. A term T is ground or closed when var(T ) = ∅. We write
σ = {x1 7→ T1, . . . , xn 7→ Tn} for a substitution, and let dom(σ) = {x1, . . . , xn}, var(σ) = var(T1, . . . , Tn),
and names(σ) = names(T1, . . . , Tn). A substitution σ is ground or closed when var(σ) = ∅. We consider
only well-sorted substitutions (that is, for each i, Ti = xiσ has the same sort as xi).

2.2 Equational Theory

We model the semantics of the cryptographic primitives by equipping terms with an equational theory, that
is, a reflexive, symmetric, transitive relation, stable by (well-sorted) substitutions of terms for variables and
(in this case) for names, and stable by application of contexts. Specifically, we consider the equational theory
=E generated by the following equations:

decτ (encτ (x, y), y) = x encτ (decτ (x, y), y) = x
pdecτ (pencτ (x, pub(y), z), y) = x pdec successτ (pencτ (x, pub(y), z), y) = 1

sdecτ (sencτ (x, y, z), y) = x sdec successτ (sencτ (x, y, z), y) = 1
fstτ1,τ2(pairτ1,τ2(x, y)) = x sndτ1,τ2(pairτ1,τ2(x, y)) = y

pairτ1,τ2(fstτ1,τ2(x), sndτ1,τ2(x)) = x

where the symbols x, y, and z represent variables of the appropriate sorts. Most of the equations are
fairly standard. The symbols pdec successτ and sdec successτ , and the corresponding equations, are used
for checking the success of symmetric and asymmetric decryptions. Indeed, such cryptographic operations
may visibly fail when executed with the wrong decryption key. The only surprise may be the inclusion of
encτ (decτ (x, y), y) = x, without which an attacker that sees x and guesses y might confirm whether x is a
ciphertext encrypted under y by decrypting x with y, reencrypting with y, and comparing the result to x;
the equation implies that the comparison always succeeds, whether the guess was correct or not. So, for
instance, encτ (n, c0) and encτ (n, c1) are shown to be indistinguishable when n is a fresh name of sort τ . Such
consequences of the equation are important for the security of protocols that rely on weak secrets. Moreover,
the equation holds in many reasonable implementations, in particular those based on keyed permutations.

When oriented from left to right, the equations above form a convergent rewriting system that we call
R. Note that in our case R is infinite, because each of the equations is parameterized by one or more types.

2.3 Frames

Frames represent sets of messages available to an observer (for example, because they were sent over a public
network) [3]. More precisely, a frame is an expression ϕ = νñ.{x1 = T1, . . . , xn = Tn} where ñ is a set of
restricted names, and each Ti is a closed term of the same sort as xi. For simplicity, we require (without loss
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of generality) that every name in use be restricted, that is, ñ = names(T1, . . . , Tn). A name k may still be
disclosed explicitly, for instance by a dedicated mapping xi = k. Therefore, we tend to omit the binders νñ,
and identify a frame ϕ with its underlying substitution {x1 7→ T1, . . . , xn 7→ Tn}.

As an example, we give the frame associated to an execution of the Encrypted Key Exchange (EKE)
protocol [15]. We revisit this example in Sections 4.2 and 5. The flows of the protocol between parties A
and B that share a given password wAB are as follows.

1. A generates an asymmetric key (pk, sk) and sends {pk}wAB to B.

2. B decrypts this message using wAB . Then B generates a symmetric key k1 and sends {{k1}r1pk}wAB to
A.

3. At this point the parties share the key k1, and check if the protocol was executed as expected. For this
purpose, A generates a random nonce nA and sends {nA}r2k1 to B.

4. Upon receiving this message, B obtains nA, generates a new nonce nB , and sends {pair(nA, nB)}r3k1 to
A.

5. A decrypts this message and checks that the first component of the resulting pair is nA. If so, it obtains
nB , sends {nB}r4k1 to B, and terminates successfully.

6. Finally, B decrypts this last message, verifies that it contains the nonce nB it previously sent to A,
and if so, it terminates successfully.

The frame associated with one instance of these flows is:

ϕ = νpk, k1, nA, nB , r1, r2, r3, r4.

{x1 = {pk}wAB , x2 = {{k1}r1pk}wAB , x3 = {nA}r2k1 ,
x4 = {pair(nA, nB)}r3k1 , x5 = {nB}r4k1 }

where pk is a name of sort EKey , k1 is a name of sort SKey , nA and nB are names of sort Data, and r1, r2,
r3, and r4 are names of sort Coins.

2.4 Static Equivalence of Frames

Two frames ϕ1 and ϕ2 such that dom(ϕ1) = dom(ϕ2) are statically equivalent (written ϕ1 ≈E ϕ2) if, for every
pair of terms (M,N) such that var(M,N) ⊆ dom(ϕ1) and names(M,N) ∩ names(ϕ1, ϕ2) = ∅, it holds that
Mϕ1 =E Nϕ1 if and only if Mϕ2 =E Nϕ2. Proving static equivalence may not be easy. Fortunately, efficient
methods exist in many cases (e.g., [2, 17]). In particular, static equivalence is decidable in polynomial time
for unsorted convergent subterm theories [2]; we expect that this result carries over to sorted convergent
subterm theories such as =E . The proof of our main result (Section 4) provides an alternative decision
procedure for the class of frames and the equational theory under consideration.

We close this section with a few examples of equivalences and inequivalences under the theory E:

{x = {0}rk} ≈E {x = {1}rk} (1)

{x = {0}rk, y = {0}r
′

k } ≈E {x = {1}rk, y = {0}r
′

k′} (2)
{x = {n}w, y = {m}w} ≈E {x = a1, y = a2} (3)

{x = {{n}w}w, y = {m}w} ≈E {x = a1, y = a2} (4)
{x = {{0}r1pub(sk)}w, y = {0}r2pub(sk)} ≈E {x = a1, y = a2} (5)

{x = {{0}r1pub(sk)}w, y = {0}r1pub(sk)} ≈E {x = {a1}w, y = a1} (6)

{x = {{n}r1k }w, y = k} 6≈E {x = a1, y = k} (7)
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Examples (1) and (2) are simple examples about symmetric encryptions under strong keys, illustrating that
those encryptions hide plaintexts and also equalities of plaintexts or keys across encryptions. Examples (3)
and (4) illustrate that encryptions of fresh names under a constant w (intuitively, under a weak secret)
can look like fresh names. The values of x and y are two such encryptions—and the former is in fact a
double encryption in example (4)—with unrelated underlying names. Example (5) resembles example (4);
it illustrates that an encryption of a public-key ciphertext {0}r1pub(sk) under w can look like a fresh name.
In examples (3)–(5), the plaintexts being encrypted are not otherwise available to the observer, though
somewhat related plaintexts may be (as the values of the variable y). Example (6) treats a case in which
the observer also obtains the plaintext being encrypted, through y; in that case, the observer can see a
relation between the value of x and the value of y, namely that the former is an encryption of the latter
under w. Example (7) indicates that the observer that is given k can distinguish {{n}r1k }w from a fresh
name; intuitively, after decrypting with w, the adversary can tell if what it sees is a ciphertext under k or
not, since the success of shared-key decryption is detectable. Formally, this distinction corresponds to the
discriminating test sdec success(dec(x,w), y) =? 1 which is valid on the left-hand frame (modulo E) but not
on the right-hand one. A decision procedure to justify the other equivalences is detailed in Subsection 4.2
or may be found in previous work [2].

3 Implementation

In this section we interpret the syntax of the formal model in a computational universe. We also discuss
cryptographic assumptions on which the implementation relies.

3.1 Interpreting the Syntax

Next we detail the mapping from terms to distribution ensembles over bit-strings. We write η for a (global)
security parameter, typically related to the sizes of keys in cryptographic schemes.

3.1.1 Encryption schemes

The mapping uses a public-key encryption scheme Πp = (Kp, Ep,Dp) and a symmetric encryption scheme
Πs = (Ks, Es,Ds). It also uses a symmetric, deterministic, type-preserving encryption scheme Π = (K, E ,D).
(The definition of type preserving is given below.) In each of these triples, the first component is a key-
generation algorithm, the second an encryption algorithm, and the third a decryption algorithm. Each of
these algorithms must be probabilistic polynomial time (PPTIME). In the case of public-key encryption Πp,
we assume that there exists a PPTIME algorithm Kpub for mapping private keys to corresponding public
keys.

For each value η of the security parameter, we write k R←− Kη (respectively k R←− Ksη) to indicate that k is

the output of the key generation algorithmK (respectivelyKs) on input 1η. Similarly, we write (pk, sk) R←− Kpη
to indicate that (pk, sk) are encryption/decryption keys produced by the key generation algorithm of Πp on
input 1η.

As usual, the encryption functions Ep and Es are randomized; we write Ep(m, k, r) and Es(m, k, r) for
public-key and symmetric encryptions, respectively, of message m under encryption key k with random coins
r. We write c R←− Ep(m, k) and c R←− Es(m, k) for the corresponding encryption processes, using fresh random
coins.

We assume that the set of keys for Π is of the form {0, 1}α1(η), and that the set of coins for Πs and Πp is
{0, 1}α2(η), where the functions α1(η) and α2(η) are polynomially bounded and at least linearly increasing.
We say that Π is type-preserving when, for every τ ∈ Tenc, encryption and decryption by Π map [[τ ]]η—the
set of bit-strings that corresponding to the type τ—to itself.
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3.1.2 Sorts, functions, and random drawings

For each value of the security parameter η, the concrete meaning of sorts and terms is characterized (much
as in [9]) by:

• for each sort τ , a carrier set [[τ ]]η;

• for each function symbol f : τ1 × . . .× τn → τ , a function [[f ]]η : [[τ1]]η × . . .× [[τn]]η → [[τ ]]η;

• for each sort τ , a procedure written e R←− [[τ ]]η for drawing a random element e from [[τ ]]η, according to

a distribution written ( R←− [[τ ]]η).

Specifically, the carrier set [[τ ]]η of a type τ is defined inductively:

[[SKey ]]η = “SKey” ‖ {symmetric keys for Πs(η)}
[[EKey ]]η = “EKey” ‖ {public keys for Πp(η)}
[[DKey ]]η = “DKey” ‖ {private keys for Πp(η)}
[[Data]]η = “Data” ‖ {0, 1}α1(η)

[[Coins]]η = “Coins” ‖ {0, 1}α2(η)

[[Pair [τ1, τ2]]]η = “Pair” ‖ [[τ1]]η ‖ [[τ2]]η
[[SCipher [τ ]]]η = “SCipher” ‖ τ ‖ {images of [[τ ]]η by Πs(η)}
[[ACipher [τ ]]]η = “ACipher” ‖ τ ‖ {images of [[τ ]]η by Πp(η)}

where ‖ denotes the concatenation of bit-strings (applied by extension on sets of bit-strings), and we assume
an encoding of identifiers for types τ into bit-strings.

The meaning of function symbols is as follows:

• Symbols pairτ1,τ2 , fstτ1,τ2 , and sndτ1,τ2 are implemented on bit-strings by tagged concatenation and
projections, as one might expect.

• Constants w, c0, c1, . . . are mapped to arbitrary PPTIME-computable sequences of bit-strings of
length α1(η), prefixed with the tag “Data”; 0 and 1 are mapped respectively to “Data” ‖ 0α1(η) and
“Data” ‖ 1α1(η).

• For every τ ∈ Tpenc, the implementations of pencτ , pdecτ , and pdec successτ are defined by:

[[pencτ ]]η(m, “EKey”||pk, “Coins”||r) = “ACipher”‖τ‖Epτ (m, pk, r)

[[pdecτ ]]η(m, “DKey”||sk) =


Dp(c, sk) if m = “ACipher”‖τ‖c and the

decryption Dp(c, sk) succeeds
cη,τ otherwise

[[pdec successτ ]]η(m, “DKey”||sk) = “Data” ‖{
1α1(η) if m = “ACipher”‖τ‖c and the decryption Dp(c, sk) succeeds
0α1(η) otherwise

where cη,τ denotes some arbitrarily fixed constant in [[τ ]]η. The implementations of sencτ , sdecτ , and
sdec successτ , for τ ∈ Tsenc, are defined similarly.

• For every τ ∈ Tenc, the implementations of encτ and decτ are defined by:

[[encτ ]]η(m, “Data”‖k) = E(m, k)
[[decτ ]]η(c, “Data”‖k) = D(c, k)

We assume that E(·, k) and D(·, k) are inverse bijections from [[τ ]]η to itself. In particular, tags are left
unchanged by these functions.
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• Finally, the symbol pub is mapped to the function Kpub for extracting public keys from private keys.

The distribution ( R←− [[τ ]]η) is defined inductively on τ as follows. (This description omits the obvious
tags.)

• If τ is one of SKey , EKey , and DKey , then ( R←− [[τ ]]η) is the output distribution of, respectively, the
algorithms Ks, fst(Kp), and snd(Kp), on input η.

• If τ is Data or Coins, then ( R←− [[τ ]]η) is the uniform distribution over [[τ ]]η.

• If τ = Pair [τ1, τ2], then ( R←− [[τ ]]η) is the output distribution of the algorithm that samples two random

elements according to ( R←− [[τ1]]η) and ( R←− [[τ2]]η), then outputs their concatenation.

• If τ is SCipher [τ ] or ACipher [τ ], then ( R←− [[τ ]]η) is the output distribution of an algorithm that

outputs an encryption of a plaintext sampled according to ( R←− [[τ ]]η) under a fresh encryption key of
the appropriate kind.

3.1.3 Interpreting terms and frames

Given η, we associate with each frame ϕ = νñ.{x1 = T1, . . . , xn = Tn} a distribution [[ϕ]]η defined by the

following procedure for computing a sample φ R←− [[ϕ]]η:

1. for each name of sort τ that occurs in ϕ, draw a value â R←− [[τ ]]η;

2. compute the value T̂i of each closed term Ti, recursively:

for every function symbol f, ̂f(S1, . . . , Sn) = [[f ]]η(Ŝ1, . . . , Ŝ1)

3. let the resulting concrete frame be φ = {x1 = T̂1, . . . , xn = T̂n}.

We define the notation [[ ]]η for closed terms and tuples of closed terms similarly. We write [[ϕ]]η, a1 7→e1, ..., an 7→en
so as to specify the values for names, and [[ϕ]]η, c1 7→e1, ..., cn 7→en so as to specify the values of the constants c1,
. . . , cn. We write [[ϕ]] for the ensemble (family of distributions) ([[ϕ]]η)η. We identify a single-valued (Dirac)
distribution with its unique value.

Note that, by construction, the sampling of values for any (fixed) term or frame according to [[ ]]η is
computable in PPTIME.

3.1.4 Indistinguishability

Two ensembles D1 = (D1
η)η and D2 = (D2

η)η are indistinguishable (written D1 ≈ D2) when, for every
PPTIME adversary A, the function

AdvA(η) = Pr
[
e

R←− D1
η : A(e) = 1

]
− Pr

[
e

R←− D2
η : A(e) = 1

]
is negligible (that is, asymptotically smaller than any inverse polynomial).

3.2 Cryptographic Assumptions

We use symmetric and asymmetric encryption schemes that satisfy a notion of security related to type-0
and type-1 security [5]. Essentially, we require that for each type τ , the encryption function restricted to
elements of [[τ ]] reveal no information about the key used for encryption and hide all partial information
about underlying plaintexts—except for their belonging to the carrier set [[τ ]].
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Definition 1. Let Πs = (Ks, Es,Ds) be a symmetric encryption scheme. For each η and type τ ∈ Tsenc, we
consider the following experiment, with a two-stage PPTIME adversary A = (A1, A2):

• a key k is generated via k R←− Ks(η);

• A1 is provided access to an oracle Es(·, k), that is, A1 may submit messages m to the oracle and receives
in return corresponding encryptions Es(m, k);

• then A1 outputs a challenge message m∗ ∈ [[τ ]]η together with some state information st;

• a bit b R←− {0, 1} is selected at random; if b = 0, we let c be a (tagged) encryption of m∗ under k, that
is, c R←− “SCipher”‖τ‖Es(m∗, k); otherwise, we let c be a (tagged) encryption of a random element of
τ under a random key, that is, c R←− [[SCipher [τ ]]]η;

• A2 is given c and st, and outputs a bit b′.

The adversary A is successful if b′ = b. The advantage of A is defined by AdvτΠs,A(η) = Pr[A is successful]− 1
2 .

We say that Πs is Tsenc-secure if for all PPTIME adversaries A and all τ ∈ Tsenc, the function AdvτΠs,A(·) is
negligible.

Definition 2. Let Πp = (Kp, Ep,Dp) be an asymmetric encryption scheme. For each η and type τ ∈ Tpenc,
we consider the following experiment, with a two-stage PPTIME adversary A = (A1, A2):

• a pair of encryption/decryption keys (pk, sk) is generated via (pk, sk) R←− Kp(η), and A1 is given pk;

• A1 outputs a challenge message m∗ ∈ [[τ ]]η together with some state information st;

• a bit b R←− {0, 1} is selected at random; if b = 0, we let c be a (tagged) encryption of m∗ under pk, that
is, c R←− “ACipher”‖τ‖Ep(m∗, pk); otherwise, we let c be a (tagged) encryption of a random element of
τ under a random public key, that is, c R←− [[ACipher [τ ]]]η;

• A2 is given c and st, and outputs a bit b′.

The adversary A = (A1, A2) is successful if b′ = b. The advantage of A is defined by AdvτΠp,A(η) =
Pr[A is successful]− 1

2 . We say that Πp is Tpenc-secure if for all PPTIME adversaries A and all τ ∈ Tpenc, the
function AdvτΠp,A(·) is negligible.

Our notion of security for encryption schemes that use data values (such as passwords) as keys is less
standard—and there is not yet a standard notion in the area:

Definition 3. Let Π = (K, E ,D) be a symmetric, deterministic, type-preserving encryption scheme such
that the set of keys is {0, 1}α1(η) for each η.

1. Real-or-Random security (Tenc-RoR): For each η and type τ ∈ Tenc, we consider the following
experiment, with a two-stage PPTIME adversary A = (A1, A2):

• a key k is generated via k R←− K(η);

• A1 is provided access to an oracle E(·, k), that is, A1 may submit (tagged) messages m to the
oracle and receives in return corresponding (tagged) encryptions E(m, k);

• then A1 submits a challenge message m∗ ∈ [[τ ]]η and some state information st;

• a bit b R←− {0, 1} is selected at random; if b = 0, we let c be the (tagged) encryption of m∗ under
k, that is, c = E(m∗, k); otherwise, we let c R←− [[τ ]]η be a random element from [[τ ]]η;

• A2 is given c and st, and outputs a bit b′.
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The adversary A is successful if b′ = b and the challenge message m∗ is different from all the messages m
submitted by A to the encryption oracle. The advantage of A is AdvτRoR,Π,A(η) = Pr[A is successful]− 1

2 .
We say that Π is Tenc-RoR secure if for all PPTIME adversaries A and all τ ∈ Tenc, the function
AdvτRoR,Π,A(·) is negligible.

2. Encryption under passwords or other data values (Tenc-Pwd): For each η and type τ ∈ Tenc,
we consider the following experiment, with a two-stage PPTIME adversary A = (A1, A2):

• A1 outputs a key k ∈ {0, 1}α1(η) and some state information st;

• a bit b R←− {0, 1} is selected at random; if b = 0, we let c be the (tagged) encryption of some
random element under k, that is, m R←− [[τ ]]η and c = E(m, k); otherwise, we let c R←− [[τ ]]η be a
random element from [[τ ]]η;

• A2 is given c and st, and outputs a bit b′.

The adversary A is successful if b′ = b. The advantage of A is defined by AdvτPwd,Π,A(η) = Pr[A is
successful]− 1

2 . We say that Π is a Tenc-Pwd secure if for all PPTIME adversaries A and all τ ∈ Tenc,
the function AdvτPwd,Π,A(·) is negligible.

Finally, Π is Tenc-secure if it is both Tenc-RoR and Tenc-Pwd secure.

Condition 1 (Tenc-RoR security) is a variant of IND-P1-C0 security [33, 9]. We require it because we
allow enc to be used as a first-class encryption algorithm, that is, with strong keys (not just passwords).
Without this condition, our main result remains true on frames which use only constants as keys for enc
(much as in [6]). Condition 2 (Tenc-Pwd security) addresses the security of passwords (or other data) when
used as keys. Intuitively, it states that the encryption of a random value must be distributed like the value.
A related previous condition [6] allows a possibly different distribution for the encryptions of random values
and the values themselves. This difference is mostly due to the fact that we authorize multiple layers of
encryptions with passwords (see example (4)).

Finally, an implementation with (Πs,Πp,Π) is (Tsenc, Tpenc, Tenc)-secure (or simply secure) if the three
schemes Πs, Πp, and Π are, respectively, Tsenc-secure, Tpenc-secure, and Tenc-secure.

3.3 Example Implementation

In this section we outline a (Tsenc, Tpenc, Tenc)-secure implementation, based on standard cryptographic tools.
Importantly, all encryption functions that we define map equal-length plaintexts to equal-length ciphertexts.
It follows that, for each type τ , the set [[τ ]] contains bit-strings of equal length. We set α1(η) = 6η. We leave
α2 unspecified since it is determined by the specifics of our encryption functions.

3.3.1 Symmetric encryption

An important component of our construction is a symmetric encryption scheme that hides all information
on the encryption key, all information about the plaintext (except possibly its length), and for which the
ciphertexts of any message look uniformly random. We use a formalization of this requirement that appears
in prior work [11]. For a symmetric encryption scheme Πs = (Ks, Es,Ds) and an adversary A, we consider
the function:

Advrand
A,Πs(η) = Pr[k R←− Ks(η) : AE

s(·,k)(η) = 1]−

Pr[k R←− Ks(η) : A$|E(·,k)|(η) = 1]

where by $|E(·,k)| we denote an oracle that on input m computes an encryption c
R←− Es(m, k) and returns

a random string of length |c|. A scheme is deemed secure if the function Advrand
A,Πs(η) is negligible for all
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PPTIME adversaries A. Bellare et al. prove that the CBC encryption mode of secure block ciphers achieves
this notion of security [11].

Using that for all τ ∈ Tsenc the set [[τ ]] contains only bit-strings of equal length, it is easy to show that a
scheme secure according to Advrand

Πs,A is also Tsenc-secure.

3.3.2 Asymmetric encryption

In the construction of our asymmetric encryption scheme we use a sequence of groups G = (Gη)η for which the
Decisional Diffie-Hellman assumption holds. Moreover, we make the standard assumptions that each group
comes with a generator. We omit the security parameter, and write generically g for each of the generators.
Finally, we assume that deciding group membership is easy and that for each security parameter η, group
elements in Gη have bit representations of equal length. The asymmetric encryption scheme that we construct
is a hybrid encryption scheme between the El-Gamal encryption scheme based on G and the symmetric
encryption scheme Πs described above. Our construction assumes that the keys of Πs for security parameter
η are elements of the group Gη. We define the asymmetric encryption scheme Πp = (Kp, Ep,Dp) as follows.

• For security parameter η, the key generation algorithm selects a random element x of {0, 1, . . . , |Gη|−1};
the public key is set to gx and its corresponding private key is set to x.

• An encryption of message m under public key X = gx is computed as follows. First, a key for the
symmetric encryption scheme Πs is generated via k

R←− Ks(η) and the key is used for obtaining an
encryption c of m, that is, c R←− Es(m, k). The final ciphertext is obtained by concatenating an
El-Gamal encryption of k with c (formally, Ep(m,X) = (gr, Xr · k, c) where r R←− {0, 1, . . . , |Gη| − 1}).

The choice of the El-Gamal encryption for the asymmetric part of our hybrid construction is not arbitrary.
It is known that El-Gamal ciphertexts hide all information on the encryption key [10], and the property
immediately extends to the hybrid construction. Also, it is a well-known result that the resulting hybrid
encryption scheme is semantically secure [13] and for each τ ∈ Tpenc the set of plaintexts have equal length,
it immediately follows that the resulting hybrid encryption scheme is Tpenc-secure.

3.3.3 Encryption under a data value

We assume the existence of two families of pseudorandom functions F and G.
Family F = (Fη)η is such that, for each security parameter, Fη is a keyed permutation on Gη, that is,

Fη : {0, 1}η × Gη → Gη, where G = (Gη)η is the sequence of groups used in the construction of Πp. Recall
that the pseudorandomness assumption on the function ensemble F essentially requires that an adversary
with access to a function cannot tell if the function is Fk(·) for a randomly chosen key k ∈ Keys or it is a
truly random permutation on the domain of F . Formally, for any PPTIME adversary A with oracle access
to a function, the quantity

Advprp
A,F (η) = Pr[k R←− Keys : AFη(k,·)(η) = 1]−

Pr[f R←− Perm(Gη) : Af(·)(η) = 1]

is negligible, where Perm(Gη) is the set of all permutations on Gη.
Family G = (Gη)η is such that, for each η, Gη : {0, 1}η × {0, 1}∗ → {0, 1}∗ is a keyed length-preserving

permutation on {0, 1}∗. Black and Rogaway [16] and Bellare and Rogaway[14] study the existence of families
of function as above.

Our construction combines five encryption algorithms, one for each of the sets S1 = [[SKey ]], S2 =
[[EKey ]], S3 = [[Data]], S4 =

⋃
τ [[SCipher [τ ]]], and S5 =

⋃
τ [[ACipher [τ ]]]. We define encryption schemes

Πi = (Ki, Ei,Di) for i = 1..5. For each i ∈ {1, 2, 3, 4}, the key generation algorithm Ki selects a random
string in {0, 1}η. Algorithm E5 selects two such random strings. We define the encryption functions as
follows:
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• E1 : [[Data]] × {0, 1}η → [[Data]] is defined by

E1(“Data”||s, k) = “Data”||Gη(k, s)

• E2 : [[SKey ]] × {0, 1}η → [[SKey ]] is defined by

E2(“SKey”||s, k) = “SKey”||Gη(k, s)

• E3 : [[EKey ]] × {0, 1}η → [[EKey ]] is defined by

E3(“EKey”||X, k) = “EKey”||Fη(k,X)

• E4 : [[SCipher [τ ]]] × {0, 1}η → [[SCipher [τ ]]] is defined by

E4(“SCipher”||τ ||c, k) = “SCipher”||τ ||Gη(k, c)

• E5 : [[ACipher [τ ]]] × ({0, 1}η × {0, 1}η)→ [[ACipher [τ ]]] is defined by

E5(“ACipher”||τ ||(R, Y, c), (k, k′)) =
“ACipher”||τ ||(Fη(k,R), Fη(k, Y ), Gη(k′, c))

The corresponding decryption functions are obvious.
Finally we combine the functions above into a symmetric, deterministic, type-preserving encryption

scheme Π = (K, E ,D):

• The key generation algorithm selects one random key for each of the encryption functions defined
above: K(η) = “Data”||(k1, k2, k3, k4, k5) with ki

R←− Ki(η). Here we write (k1, k2, . . . , k5) for the
string of length 5 · η obtained by concatenating the strings k1,k2 . . . , k5.

• The encryption algorithm essentially encrypts elements of Si using encryption function Ei. Formally,
E(m, “Data”||(k1, k2, k3, k4, k5, k6)) outputs Ei(m, ki) if m ∈ Si.

• The decryption function examines the tag of a ciphertext, then proceeds accordingly in the obvious
way.

A basic observation about our construction is that the encryption functions Ei are pseudorandom bijective
functions on their respective domains and their domains are disjoint. A standard hybrid argument shows
that each encryption function Ei satisfies Tenc-RoR where the queries to the oracle of A are mandated to be
elements of Si. Since in the construction of E we use independent keys for each of the five algorithms that
define it, it follows by a simulation argument that E is Tenc-RoR secure.

To argue that E is also Tenc-Pwd secure, we show that each encryption function Ei satisfies this condition.
Tenc-Pwd security follows straightforwardly.

Function E1 clearly satisfies this property: for any valid k the function E(·, k) is a permutation on [[Data]]
and therefore distributions E1( R←− [[Data]], k) and ( R←− [[Data]]) are identical. The same argument applies for
functions E2 and E3. Concerning E4, we use the fact that the distribution ( R←− SCipher [τ ]), once the tags
are removed, is indistinguishable from the uniform distribution on bit-strings of appropriate length [11];
therefore, for an arbitrary k, the distributions E4( R←− [[Data]], k) and ( R←− [[Data]]) are indistinguishable. The
case of E5 follows from a similar argument: using the definition of the El-Gamal encryption and the property
of symmetric ciphers mentioned above, it follows that the distribution ( R←− ACipher [τ ]) (omitting the tags)
is indistinguishable from the uniform distribution over Gη × Gη × {0, 1}β where β is the size of elements in
[[τ ]]η.
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4 Soundness of Static Equivalence

In this section we present our main soundness result. We first identify some important conditions under
which our main result holds, state the theorem, and then give its proof.

4.1 Main Theorem

As usual (following [5]), our soundness result requires a hypothesis that excludes encryption cycles, and also
some other well-formedness conditions. A key position in an expression is a position that corresponds to
the argument U of a subterm of the form pub(U), or to the second argument V of a subterm encτ (U, V ),
pencτ (U, V,W ), or sencτ (U, V,W ). An encryption cycle of a frame ϕ is a sequence of names k0, k1, . . . , kn
of sort Data, DKey , and SKey such that kn = k0 and

for each 0 ≤ i ≤ n − 1, there exists a subterm of ϕ of the form encτ (U, V ), pencτ (U, V,W ), or
sencτ (U, V,W ) such that ki is a subterm of U not in key position and ki+1 is a subterm of V .

For instance, the frame ϕ1 = {x = {sk1}r1k2 , y = {k2}r2pub(sk1)} has an encryption cycle, while ϕ2 = {x =
{pub(sk1)}r1k2 , y = {k2}r2pub(sk1)} does not. (Note that sk1 occurs in ϕ2 only in key positions.)

A frame ϕ is well-formed if it satisfies the following conditions:

(i) ϕ is R-reduced, that is, in normal form with respect to the rewriting system R;

(ii) ϕ does not contain the symbols dec, pdec, sdec, pdec success, sdec success, fst, and snd;

(iii) terms in key position in ϕ are of the following forms, depending on their sort:

• sorts DKey and SKey : names,
• sort EKey : names and terms of the form pub(a),
• sort Data: names and constants;

(iv) terms of type Coins may only be names, and appear as the third argument of an encryption; moreover,
if such a name appears twice in ϕ then the encryption terms in which it appears are identical;

(v) ϕ has no encryption cycles;

(vi) for every subterm of ϕ of the form enc(T, k) where k is a name, T contains none of the constants w,
c0, c1, . . . , and T has no subterm of the form enc(S, 0) or enc(S, 1).

Condition (ii) indicates that we focus on the indistinguishability of expressions built from constructors; it does
not preclude using other functions in the observations that may distinguish frames. Condition (iii) says that
keys are atomic terms for symmetric encryptions, and terms of the form pub(a) for public-key encryptions.
Similarly, condition (iv) says that coins are names and are used only for encryptions, with different coins in
each encryption. Condition (v) is the acyclicity requirement. Finally, condition (vi) restricts the occurrences
of constants within plaintexts for deterministic encryption under strong keys (represented by names). For
instance, this condition excludes the frame νk.{x1 = enc(c1, k), x2 = enc(c2, k)}, which is equivalent to
νa1, a2.{x1 = a1, x2 = a2} formally but not computationally if c1 and c2 happen to have the same bit-string
implementations. More generally, when T1 and T2 are two terms such that T1 6=E T2, the encryptions
enc(T1, k) and enc(T2, k) may behave like distinct fresh names formally but not computationally, unless the
bit-string values of T1 and T2 collide with negligible probability.

We obtain:

Theorem 1 (≈E-soundness). Let ϕ1 and ϕ2 be two well-formed frames such that ϕ1 ≈E ϕ2. In any secure
implementation, [[ϕ1]] ≈ [[ϕ2]].

An obvious question is whether the converse completeness result holds, in other words whether compu-
tational indistinguishability of well-formed frames implies their static equivalence. Although we do not have
a definitive answer to this question, we believe that existing techniques for achieving completeness should
apply in our setting (see the introduction).
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4.2 Proof of the Main Theorem

The remainder of this section is devoted to the proof of Theorem 1. The proof is based on a set of trans-
formation rules on equations between frames. The rules preserve both the symbolic and the computational
meaning of equations (in a sense made precise below). Interestingly, the rules provide a decision procedure
for static equivalence between well-formed frames.

4.2.1 Overview of the proof

Let us call an equation any expression ε of the form ⊥, >, or ϕ1 ≈? ϕ2 where ϕ1 and ϕ2 are two frames.
In the sequel, we consider an algorithm defined by a set of transformation rules over equations. Let =⇒

be the corresponding transformation relation. Starting from an initial equation ε = (ϕ1 ≈? ϕ2) between
well-formed frames, we expect:

• Each run of the algorithm should yield a finite derivation ε =⇒ ε1 =⇒ . . . =⇒ ⊥ in case of a negative
answer, or a finite derivation ε =⇒ ε1 =⇒ . . . =⇒ > for a positive answer. This property is called
progress and termination.

• The rules should be effective, that is, applicable by a Turing machine.

• The rules should be formally sound and complete: the answer is positive iff the two frames are statically
equivalent, that is, ϕ1 ≈E ϕ2.

• The rules should be computationally sound : if the answer is positive then the two frames are indistin-
guishable, that is, [[ϕ1]] ≈ [[ϕ2]].

These properties clearly entail Theorem 1: if ϕ1 ≈E ϕ2 and the two frames ϕ1 and ϕ2 are well-formed,
then by progress, termination, and formal completeness, the algorithm must return a positive answer; thus,
by computational soundness, we have [[ϕ1]] ≈ [[ϕ2]].

Furthermore, since the transformation rules are also effective and formally sound, we obtain a decision
procedure for static equivalence between well-formed frames.

In the remainder of this section we describe the transformation rules, and show how to apply them in
several illustrative examples. In Appendix A we establish that =⇒ satisfies the properties listed above.

4.2.2 Notations and definitions

We introduce some useful notations and auxiliary definitions.
A closed term T is deducible [2] from a frame ϕ (written ϕ `E T ) if there exists a term M with

var(M) ⊆ dom(ϕ) and names(M) ∩ names(ϕ, T ) = ∅ such that Mϕ =E T . Note that the names of T , just
as those of ϕ, are not allowed to occur in M . (In this respect, the definition is slightly different from that of
our original presentation [1].)

Given a term U , n signs `1 . . . `n ∈ {+1,−1} (n ≥ 0), and n terms V1 . . . Vn of sort Data, we define the
expression {U}

V
`1
1 ·...·V

`n
n

recursively by

{U}Λ = U

{U} ~W ·V +1 = enc({U} ~W , V )
{U} ~W ·V −1 = dec({U} ~W , V )

where Λ represents the empty word, and · is an associative symbol. Below, we identify V and V +1. If ~V is
the expression ~V = V `11 · . . . ·V `nn , we write ~V −1 = V −`nn · . . . ·V −`11 for the inverse of ~V . We extend notations
from terms to such elements as expected, so for instance ~V σ = (V1σ)`1 · . . . ·(Vnσ)`n and var(~V ) =

⋃
i var(Vi).

Let W =
⋃
τ{wτ1 , wτ2 . . .} be a dedicated set of variables, called parameters, where each wτi has sort τ .

A plain n-ary context is a term C such that names(C) = ∅ and var(C) is included in {wτ11 , . . . , w
τn
n } for
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some τ1, . . . , τn. If T1, . . . , Tn are terms of sorts τ1 . . . τn, respectively, we write C[T1, . . . , Tn] for C{wτ11 7→
T1, . . . , w

τn
n 7→ Tn}. We extend the vectorial notation above to contexts:

~C[T1 . . . Tm] = (C`11 · . . . · C`nn )[T1 . . . Tm]
= (C1[T1 . . . Tm])`1 · . . . · (Cn[T1 . . . Tm])`n

We write σ1σ2 for the usual composition of substitutions: for all x, xσ1σ2 = (xσ1)σ2. The application
of a substitution σ to a frame ϕ = {x1 = T1, . . . , xn = Tn} is defined by ϕσ = {x1 = T1σ, . . . , xn = Tnσ}.
(Note that ϕ is not identified to a substitution in this respect.)

We write ϕ|D for the restriction of a frame to a domain D, and ϕ1]ϕ2 for the union of two frames ϕ1, ϕ2

with disjoint domains. The image of a frame ϕ = {x1 = T1, . . . , xn = Tn} is defined as im(ϕ) = {T1, . . . , Tn}.
A term is maximal in a set of terms S if it is the subterm of no other term in S.
We also write {T 7→ T ′} for the (syntactic, breadth-first) replacement of T by T ′. Namely, if U =

f(U1, . . . , Un) is a term (and similarly for frames), the expression U{T 7→ T ′} equals T ′ if U = T , and
f(U1{T 7→ T ′}, . . . , Un{T 7→ T ′}) otherwise.

Finally, we write T ↓R for the R-normal form of a term T . (Recall that R is the rewriting system obtained
by orienting the equations under consideration.)

4.2.3 Decision procedure

We describe the transformation rules used to simplify equations step by step. Those are presented in Tables 1
and 2. For the purpose of defining the procedure, we see ≈? as a commutative symbol.

In every rule, the word “fresh” refers to a variable or a name of the appropriate sort, not occurring in the
(same side of the) source equation. Below, we make precise the notion of standard frames and the relation
≈std
E mentioned in the last rule of Table 2.

The procedure itself consists in applying the rules in the following order:

1. a maximal sequence of rule Undecipherable Encryption;

2. a maximal sequence of rule Split Names;

3. a maximal sequence of Analysis rules, that is either Pair Analysis, Redundancy Analysis- 1,2,
or Encryption Analysis-1,2;

4. a maximal sequence of rule Standardize; and finally

5. a maximal sequence of rule Solve.

Rule Undecipherable Encryption substitutes a fresh name successively for each encryption term T in
which a non-deducible key is used. Note that all the occurrences of T are replaced at once. (Since the frames
are well-formed, and in particular R-reduced, a syntactic replacement is sufficient in this respect.) Rule
Split Names is a technical transformation that suppresses names of sort Pair [τ1, τ2]. (The same remark
applies.) Rule Pair Analysis splits pairs of terms into separate components in each frame. The two rules
Redundancy Analysis-1,2 detect when a component of a frame is deducible from the other components.
If the corresponding component is deducible in the same way in the other frame, then both components
are removed (rule 1), otherwise this gives a counter-example to static equivalence (rule 2). The two rules
Encryption Analysis-1,2 are meant to detect the success of a symmetric or asymmetric decryption over
a deducible subcomponent, possibly under several layers of deterministic encryption. Intuitively, if the same
relation holds on both frames, then the components of interest are replaced on both sides by the underlying
plaintexts; otherwise, we deduce non-equivalence between the two frames. In Redundancy Analysis-1,2
and Encryption Analysis-1,2, the phrase “as ε” in the hypothesis simply gives the name ε to the equation
in the hypothesis so that it can be used in side conditions. The last two rules Standardize and Solve
conclude the procedure by relying on the notion of standard frames, defined as follows:
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ϕ1 ≈? ϕ2

ϕ1{T 7→ n} ≈? ϕ2

Undecipherable Encryption
where ϕ1 is well-formed; T is a
maximal subterm of ϕ1 of the
form penc(U, k′, r) for a given
name k′ (respectively pub(k),
senc(U, k, r), or enc(U, k), for a
given name k whose every occur-
rence in ϕ1 is in key position);
and n is a fresh name.

ϕ1 ≈? ϕ2

ϕ1{n 7→ pair(n1, n2)} ≈? ϕ2

Split Names
where the sort of the name n is
Pair [τ1, τ2]; and n1, n2 are fresh
names.

ϕ1 ] {x = pair(U1, V1)} ≈? ϕ2 ] {x = pair(U2, V2)}
ϕ1 ] {y = U1, z = V1}
≈? ϕ2 ] {y = U2, z = V2)}

Pair Analysis
where y, z are fresh variables.

ϕ1 ] {x = U} ≈? ϕ2 ] {x = W} as ε
ϕ1 ≈? ϕ2

Redundancy Analysis-1
if there exist M such that

var(M) ⊆ dom(ϕ1)
names(M) ∩ names(ε) = ∅
Mϕ1 =E U

W =E Mϕ2

ϕ1 ] {x = U} ≈? ϕ2 ] {x = W} as ε
⊥

Redundancy Analysis-2
if there exist M such that

var(M) ⊆ dom(ϕ1)
names(M) ∩ names(ε) = ∅
Mϕ1 =E U

W 6=E Mϕ2

Table 1: Transformation rules
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ϕ1 ] {x = {U}~V } ≈
? ϕ2 ] {x = W} as ε

ϕ1 ] {y = S1} ≈? ϕ2 ] {y = S2}

Encryption Analysis-1
U = penc(S1, pub(T1), r1) (or re-
spectively U = senc(S1, T1, r1));
r1 does not appear elsewhere in
the same side of ε;
there exist ~M and N such that

var( ~M,N) ⊆ dom(ϕ1)
names( ~M,N) ∩ names(ε) = ∅
~Mϕ1 =E

~V

Nϕ1 =E T1

{W} ~M−1ϕ2
↓R

= penc(S2, pub(Nϕ2)↓R, r2)
(respectively

= senc(S2, Nϕ2 ↓R, r2) )
r2 does not appear elsewhere in
the same side of ε; y is a fresh
variable.

ϕ1 ] {x = {U}~V } ≈
? ϕ2 ] {x = W} as ε
⊥

Encryption Analysis-2
U = penc(S1, pub(T1), r1) (or re-
spectively U = senc(S1, T1, r1));
there exist ~M and N such that

var( ~M,N) ⊆ dom(ϕ1)
names( ~M,N) ∩ names(ε) = ∅
~Mϕ1 =E

~V

Nϕ1 =E T1

pdec success({W} ~M−1 , N)ϕ2 ↓R
6= 1

(respectively
sdec success({W} ~M−1 , N)ϕ2 ↓R
6= 1 )

ϕ1 ] {x = {a}~C[a1,...,an]} ≈
? ϕ2

ϕ1{a 7→ {a′}~C[a1,...,an]−1}↓R ]{x = a′} ≈? ϕ2

Standardize
where a1, . . . , an ∈ im(ϕ1); ~C 6=
Λ; a 6∈ im(ϕ1); a′ is a fresh name.

ϕ1 ≈? ϕ2

ε′

Solve
where ϕ1 and ϕ2 are standard; if
ϕ1 ≈std

E ϕ2 then ε′ = >, other-
wise ε′ = ⊥.

Table 2: Transformation rules (cont’d)
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Definition 4. A frame ϕ is standard if names(ϕ) ⊆ im(ϕ), that is, ϕ is of the form

ϕ = {x1 = a1, . . . , xm = am, y1 = C1[a1 . . . am], . . . , yn = Cn[a1 . . . am]}

where the names a1, . . . am are pairwise distinct.
Given two standard frames

ϕi = {xi1 = ai1, . . . , x
i
mi = aimi , y

i
1 = Ci1[ai1 . . . a

i
mi ], . . . , y

i
ni = Cini [a

i
1 . . . a

i
mi ]},

(i ∈ {1, 2}), we write ϕ1 ≈std
E ϕ2 when

for all j ∈ {1 . . . n1}, y1
j ϕ2 =E C1

j [x1
1 . . . x

1
m1

]ϕ2,

and for all k ∈ {1 . . . n2}, y2
k ϕ1 =E C2

k [x2
1 . . . x

2
m2

]ϕ1.

Notably, the following proposition due to Baudet et al. [9] implies that the relations ≈std and ≈E coincide
on standard frames. We use =? as a commutative symbol to build (formal) equations between terms.

Proposition 2. Let ϕ be a frame of the form

ϕ = {x1 = C1[a1, . . . , am], . . . , xn = Cn[a1, . . . , am]}

where a1, . . . , am are pairwise distinct names deducible from ϕ. For each 1 ≤ i ≤ m, let Mi be a term such
that var(Mi) ⊆ dom(ϕ), names(Mi) ∩ names(ϕ), and Miϕ =E ai.

Then every equation M =? N which holds in ϕ, that is, satisfying

var(M,N) ⊆ dom(ϕ), names(M,N) ∩ names(ϕ) = ∅ and Mϕ =E Nϕ,

is a logical consequence of E augmented with the equations xj =? Cj [M1 . . .Mm] for 1 ≤ j ≤ n.

Here “logical consequence” refers to the usual first-order equational logics where the variables in dom(ϕ)
are seen as (free) constants. The proof of this proposition relies on the stability of E under substitutions of
names.

4.2.4 Examples

We illustrate the workings of the above procedure via a few examples.

Example 1. Recall the frame that corresponds to the EKE protocol (Section 2.3):

ϕ = νpk, k1, nA, nB , r1, r2, r3, r4.

{x1 = {pk}wAB , x2 = {{k1}r1pk}wAB , x3 = {nA}r2k1 ,
x4 = {pair(nA, nB)}r3k1 , x5 = {nB}r4k1 }

For i ∈ {0, 1}, let ϕi = ϕ{wAB 7→ ci}. We check that ϕ0 ≈E ϕ1.
Starting from the equation ε1 = (ϕ0 ≈? ϕ1), we apply Undecipherable Encryption on T = {k1}r1pk on

both sides and obtain (omitting the binders):

{x1 = {pk}c0 , x2 = {n0}c0 , x3 = {nA}r2k1 ,
x4 = {pair(nA, nB)}r3k1 , x5 = {nB}r4k1 }

≈? {x1 = {pk}c1 , x2 = {n′0}c1 , x3 = {nA}r2k1 ,
x4 = {pair(nA, nB)}r3k1 , x5 = {nB}r4k1 }
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Then, by applying the same rule repeatedly on ciphertexts under k1, we obtain:

{x1 = {pk}c0 , x2 = {n0}c0 , x3 = n1, x4 = n2, x5 = n3 }
≈? {x1 = {pk}c1 , x2 = {n′0}c1 , x3 = n′1, x4 = n′2, x5 = n′3 }

As none of the Analysis rules applies in this case, rule Standardize on pk, n0, and n′0 yields:

{x1 = pk′, x2 = n′′0 , x3 = n1, x4 = n2, x5 = n3 }
≈? {x1 = pk′′, x2 = n′′′0 , x3 = n′1, x4 = n′2, x5 = n′3 }

Rule Solve then concludes with a positive answer. In this simple example, the two final frames turn out to
be equal modulo renaming. This equality might not always hold, as shown by the example below.

Example 2. This example concerns a variant of the EKE protocol where symmetric encryption is used instead
of public-key encryption. Accordingly, the first message that A sends to B is {k0}wAB , and the message that
B sends to A next is {{k1}r1k0}wAB . The reminder of the protocol remains unchanged. The frame associated
to one session of the protocol is:

ϕ = νk0, k1, nA, nB , r1, r2, r3, r4.

{x1 = {k0}wAB , x2 = {{k1}r1k0}wAB , x3 = {nA}r2k1 ,
x4 = {pair(nA, nB)}r3k1 , x5 = {nB}r4k1 }

For i ∈ {0, 1}, let ϕi = ϕ{wAB 7→ ci}. Our decision procedure concludes that ϕ0 6≈E ϕ1.
The frame is already simplified with respect to Undecipherable Encryption and Split Names. We

apply Encryption Analysis-2 on x2 to obtain the answer ⊥: indeed x2ϕ0 = {senc(S1, T1, r1)}c0 where
T1 =E dec(x1, c0)ϕ0, but

sdec success(dec(x2, c0), dec(x1, c0))ϕ1 6=E 1

Example 3. Let ε3 be the following equation:

{x1 = {{n}k}k, x2 = {n}k, x3 = {k}c0 , x4 = {k}c1 }
≈? {x1 = {n}k, x2 = n, x3 = {k}c0 , x4 = {k}c1 }

The first applicable rule is Standardize. Applying this rule on x2 = {n}k in the left-hand side and then on
x3 = {k}c0 on both sides leads to two frames equal modulo renaming:

{x1 = {n′}dec(k′,c0), x2 = n′, x3 = k′, x4 = {dec(k′, c0)}c1
≈? {x1 = {n}dec(k′,c0), x2 = n, x3 = k′, x4 = {dec(k′, c0)}c1 }

that is (in vector notation):

{x1 = {n′}{k′}
c
−1
0

, x2 = n′, x3 = k′, x4 = {k′}c−1
0 ·c1

}

≈? {x1 = {n}{k′}
c
−1
0

, x2 = n, x3 = k′, x4 = {k′}c−1
0 ·c1

}

But, choosing different applications of the rule, we may obtain as well:

{x1 = n′, x2 = {n′}({k′}
c
−1
0

)−1 , x3 = k′, x4 = {k′}c−1
0 ·c1

}

≈? {x1 = {n}{k′′}
c
−1
1

, x2 = n, x3 = {k′′}c−1
1 ·c0

, x4 = k′′ }

Here, rule Solve still applies whereas the two frames are not equal modulo renaming.
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Example 4. This example illustrates the role of the analysis rules. Let ε4 be the following equation:

{x1 = {k1}c0 , x2 = {pair(k2, k3)}r0k1 , x3 = {{k3}c1}
r1
k2
}

≈? {x1 = {k1}c0 , x2 = {pair(k2, k3)}r0k1 , x3 = {{k4}c1}
r1
k2
}

Let N = sdec(x2, dec(x1, c0)). Since the decryption of x3 by fst(N) succeeds, and r1 occurs nowhere else in
each side, rule Encryption Analysis-1 applies twice:

{x1 = {k1}c0 , x2 = {pair(k2, k3)}r0k1 , y1 = {k3}c1 }
≈? {x1 = {k1}c0 , x2 = {pair(k2, k3)}r0k1 , y1 = {k4}c1 }

Then, we apply successively rules Encryption Analysis-1 and Pair Analysis on x2:

{x1 = {k1}c0 , y1 = {k3}c1 , y2 = k2, y3 = k3}
≈? {x1 = {k1}c0 , x3 = {k4}c1 , y2 = k2, y3 = k3 }

followed by Standardize on x1, and on k4 for the right-hand side:

{x1 = k′1, y1 = {k3}c1 , y2 = k2, y3 = k3}
≈? {x1 = k′1, y1 = k′4, y2 = k2, y3 = k3 }

Finally, rule Solve concludes ⊥.

Example 5. Our last example illustrates the use of the rules Redundancy Analysis-1,2. Let ε5 be the
following equation:

{x1 = k1, x2 = k2, x3 = {k3}r0k1 , x4 = {{k3}r0k1}k2 }
≈? {x1 = k1, x2 = k2, x3 = {k3}r0k1 , x4 = {{k3}r1k1}k2 }

Replacing x3 = {k3}r0k1 on both sides with y1 = k3 would make the procedure conclude > incorrectly. This
shows that we cannot relax the condition of rule Encryption Analysis-1 concerning the occurrences of
coins.

Instead, we notice that the equation x3 = pdec(x4, x2) holds on the left-hand side but not on the right-
hand side. Thus, rule Redundancy Analysis-2 applies to conclude ⊥.

5 Application to Security against Guessing Attacks

Weak secrets such as PINs and passwords sometimes serve as encryption keys. Their safe use is challenging
because of the possibility of guessing attacks, in which data that depends on a weak secret allows an attacker
to check guesses of the values of the weak secret. For example, if a message contains a fixed cleartext
Hello, and it is encrypted under a password pwd drawn from a small dictionary, then an attacker that sees
the message can try to decrypt it with all values in the dictionary until one yields the cleartext Hello,
thus discovering a probable value for the password. The attacker may mount this attack off-line, avoiding
detection. The attack is made possible by the fact that, given the data available to the attacker, pwd can be
distinguished from another value pwd’: encstring(Hello, pwd)6≈Eencstring(Hello, pwd’). Conversely, immunity to
such guessing attacks can be formulated as a static equivalence between two frames, one that corresponds to
what is actually available to the attacker and the other to a variant in which the weak secrets are replaced
with fresh keys or with arbitrary other keys [20, 23].

We believe that, as suggested in the introduction, the treatment of guessing attacks in terms of static
equivalence is attractive in several respects. This section shows that this treatment can be computationally
sound. In comparison with the only previous computational justification for a formal criterion against
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guessing attacks [6], the present results have several strengths. First, they apply to a criterion formulated in
terms of standard notions, rather than an ad hoc criterion. Consequently, they fit into a standard analysis
method which can also deal with other properties and other kinds of attacks. In addition, they are more
general, in that they immediately apply to scenarios with multiple weak secrets. Finally, it is satisfying that
these results follow from theorems of somewhat broader interest.

In our formalism, modeling a password as a constant w of sort Data, we say that the password is not
revealed by a frame ϕ if ϕ{w 7→ c0} ≈E ϕ{w 7→ c1}. The substitutions {w 7→ c0} and {w 7→ c1} correspond
to instantiations of the password with distinct values; each of the frames represents what an attacker may
obtain in the course of a protocol execution and then analyze off-line. Similarly, for n passwords represented
by a sequence w1, . . . , wn of constants of sort Data, we say that they are not revealed by a frame ϕ if ϕ{w1 7→
c1, . . . ,wn 7→ cn} ≈E ϕ{w1 7→ c0, . . . ,wn 7→ c0}, where c0, c1, . . . , cn are n + 1 fresh, distinct constants of
sort Data. By transitivity, it follows that ϕ{w1 7→ c1, . . . ,wn 7→ cn} ≈E ϕ{w1 7→ c′1, . . . ,wn 7→ c′n}, where
c1, c′1, . . . , cn, c′n are 2n constants of sort Data.

On the other hand, computationally, a password is hidden if it is protected from PPTIME adversaries.
Such an adversary should not be able to distinguish two interpretations of the frame with different values
for the password. More precisely, the following definition gives a criterion for computational hiding of a
sequence of passwords:

Definition 5. Let ϕ be a well-formed frame, let w1, . . . , wn be n constants of sort Data. We say that w1,
. . . , wn are computationally hidden in ϕ if for all (not necessarily pairwise distinct) PPTIME-computable
sequences of bit-strings κ1 . . . κn, κ′1 . . . κ

′
n with κi(η), κ′i(η) ∈ {0, 1}α1(η),

[[ϕ]]η,w1 7→κ1(η),...,wn 7→κn(η) ≈ [[ϕ]]η,w1 7→κ′1(η),...,wn 7→κ′n(η)

We obtain:

Corollary 3 (Single password). Assume a secure implementation. Let ϕ be a well-formed frame, let w be a
constant of sort Data, and let c0, c1 be two fresh, distinct constants of sort Data. If ϕ{w 7→ c0} ≈E ϕ{w 7→
c1} then w is computationally hidden in ϕ.

Corollary 4 (Multiple passwords). Assume a secure implementation. Let ϕ be a well-formed frame, let w1,
. . . , wn be n constants of sort Data, and let c0, c1, . . . , cn be n+ 1 fresh, distinct constants of sort Data. If
ϕ{w1 7→ c1, . . . ,wn 7→ cn} ≈E ϕ{w1 7→ c0, . . . ,wn 7→ c0} then w1, . . . , wn are computationally hidden in ϕ.

For example, for the frame ϕ associated to the EKE protocol we show in Section 4.2 that it does not
reveal the password wAB : ϕ{wAB 7→ c0} ≈E ϕ{wAB 7→ c1}. Corollary 3 implies that the frame also hides
the password computationally.

6 Conclusion

In this paper we investigate the computational foundations of a formal notion of data indistinguishability,
static equivalence. We define a particular equational theory for which we can obtain a computational
soundness result. Although they are largely based on ideas common in previous work, neither the equational
theory nor our computational assumptions are straightforward. The main difficulties that we address relate
to encryption under data values. Correspondingly, we obtain a soundness result for a formal criterion of
protection against guessing attacks on those data values.

A direction for further work is the generalization of our results to other cryptographic primitives. For
instance, certain password-based protocols make a sophisticated use of exponentiation, which we do not
include in our equational theory. Yet other primitives, such as digital signatures, are important for trace
properties and for process equivalences (more so than for static equivalences). We hope that, perhaps with
these extensions, the present work may serve as a component of an eventual computational justification of
process equivalences.
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Appendix

The appendix contains additional details of the proofs.

A Properties of the Transformation Rules

In this section we prove the properties of the transformation relation =⇒ defined and used in Section 4.
We say that an equation ε is formally true if either ε = > or ε = (ϕ1 ≈? ϕ2) and the two frames are

statically equivalent in E, that is, ϕ1 ≈E ϕ2. It is computationally true if either ε = > or ε = (ϕ1 ≈? ϕ2)
and the two frames are indistinguishable, that is, [[ϕ1]] ≈ [[ϕ2]]. Finally, an equation ε is reachable iff there
exists a finite derivation ε0 =⇒ . . . =⇒ ε that originates from an equation ε0 = ϕ1 ≈E ϕ2 between two
well-formed frames.

The expected properties of the transformation relation can be accounted for, in a local way, as follows.

• Termination. If ε is reachable, then there exists no infinite sequence of transformations ε = ε0 =⇒
ε1 =⇒ . . . =⇒ εn . . .

• Progress. If ε is reachable and ε 6∈ {>,⊥}, then there exists ε′ such that ε =⇒ ε′.

• Effectiveness. The above equation ε′ is effectively computable from ε.

• Formal soundness and completeness. If ε =⇒ ε′, then ε is formally true iff ε′ is.

• Computational soundness. Assume a secure implementation. If ε =⇒ ε′ and ε′ is computationally
true, then so is ε.

A.1 Termination and Progress

Recall that the procedure consists of the following sequences of rule applications:

1. a maximal sequence of applications of rule Undecipherable Encryption;

2. a maximal sequence of applications of rule Split Names;

3. a maximal sequence of applications of Analysis rules, that is either Pair Analysis, Redundancy
Analysis- 1,2, or Encryption Analysis-1,2;

4. a maximal sequence of applications of rule Standardize; and finally

5. a maximal sequence of applications of rule Solve.

First, we check that

• every rule except the last two (Standardize and Solve) preserves the well-formedness of frames;

• each of the sequences of rules above terminates on well-formed frames (respectively, on every frame for
the last two rules).

These properties are clear for most of the rules. In the case of Encryption Analysis, assume that the
two sides of the equation ε are well-formed. Then, given that W is R-reduced, the relation {W} ~M−1ϕ2

↓R=
penc(S2, pub(Nϕ2) ↓R, r2) is equivalent to W = {penc(S2, pub(Nϕ2) ↓R, r2)} ~Mϕ2↓R

(and similarly for sym-
metric encryption). Hence, S2 is a subterm of the right-hand side. Concerning the termination of Stan-
dardize, notice that one application of this rule decreases the size of names(ϕ)− im(ϕ), where ϕ is the side
of the equation under consideration.

Concerning progress, we successively prove the following facts:
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(1) for every equation ϕ1 ≈? ϕ2 reached after sequence 1 (rule Undecipherable Encryption), every
subterm T of ϕi of sort τ 6= Coins is deducible from ϕi, and ϕi contains no subterm of the form
penc(U, k′, r);

(2) for every equation ϕ1 ≈? ϕ2 reached after sequence 2 (rule Split Names), ϕ1 and ϕ2 contain no name
of sort Pair [τ1, τ2];

(3) for every equation ϕ1 ≈? ϕ2 reached after sequence 3 (rules Pair, Redundancy and Encryption
Analysis), ϕ1 and ϕ2 contain no symbol pair, penc, or senc;

(4) for every equation ϕ1 ≈? ϕ2 reached after sequence 4 (rule Standardize), each ϕi is standard.

Given the definition of rule Solve, the last point implies that if sequences 1–5 are completed, then the
resulting equation is either ⊥ or >.

We now prove the four points. Throughout the proof, the source equation of a rule is denoted ε = ϕ0
1 ≈?

ϕ0
2 whereas the resulting equation is written ε′ = ϕ1

1 ≈? ϕ1
2.

(1) First, we verify that the rules of sequences 2–5 do not create non-deducible subterms. (Clearly, they
create no terms of the form penc(U, k′, r).) Concerning Redundancy Analysis-1, since the suppressed
components U and W remain deducible in their respective frames, so do the remaining subterms. Con-
cerning Encryption Analysis-1, let T be a subterm of the resulting frame ϕ1

i . Thanks to the condition
on the coins ri in ϕ0

i , ri does not occur in T . Since ~V and T are deducible from ϕ, by Lemmas 12 and 13
of Appendix B, we obtain that T is deducible ϕ1

i = ϕi ] {y = Si}. The cases of the other rules are
straightforward.

Second, we prove the progress property for rule Undecipherable Encryption. Assume an equation
ϕ0

1 ≈? ϕ0
2 reached just after sequence 1. By contradiction, assume for instance a subterm penc(T, k′, r)

or a non-deducible subterm T of sort τ 6= Coins in ϕ1. In the latter case, by Lemma 15 (Appendix B),
T appears either in a key position or encrypted under a non-deducible key.

This implies that ϕ0
1 contains either a subterm penc(T, k′, r), or a name k (of sort τ 6= EKey) in key

position, and not deducible from ϕ1. In the former case, rule Undecipherable Encryption applies.
In the latter case, using the acyclicity condition, let k0 be a non-deducible name (of sort τ 6= EKey)
in key position, maximal for the key-cycle ordering, that is, such that k0 does not appear encrypted
(unless in key position) under any key. Since k0 is not deducible, by Lemma 15, it must appear only in
key position. Rule Undecipherable Encryption then applies on a maximal subterm T of the form
pub(k0), senc(U, k0, r), enc(U, k0) .

(2) It is clear from the definitions that the rules of sequences 3–5 do not create names of sort Pair [τ1, τ2],
and that rule Split Names terminates when no such names remain.

(3) Sequences 3–5 do not create symbols pair, penc, and senc. Assume an equation ϕ0
1 ≈? ϕ0

2 reached just
after sequence 3. By contradiction, assume a maximal subterm U of ϕ0

1 (for instance) such that the head
symbol of U is pair, penc, or senc. Given the sorting system, since, by well-formedness and (2), the other
available symbols are only enc, pub, constants and names, there exists x in dom(ϕ0

1) such that xϕ0
1 is of

the form {U}~V (possibly ~V = Λ). Let ϕ0
1 = ϕ1 ] {x = {U}~V }.

If U is a pair, then since Tenc ∩ {Pair [τ1, τ2]}τ1,τ2 = ∅, we have ~V = Λ. For the same reason, and
using (2), the head symbol of xϕ0

2 is pair, hence rule Pair Analysis applies.

Otherwise, by (1) and (2) we may assume for instance that U is of the form penc(S1, pub(T1), r1). (The
case of symmetric encryption is similar.) By (1), T1 and ~V must be deducible from ϕ0

1. By Lemmas 12
and 13 of Appendix B, this implies that T1 and ~V are deducible from ϕ1 itself. Let ~M and M be such
that var( ~M,N) ⊆ dom(ϕ), names( ~M,N) ∩ names(ε) = ∅, ~Mϕ1 =E

~V , and Nϕ =E T1. (By stability of
E under renaming we may exclude a finitely larger set of names in ~M and N .)

We distinguish three cases.
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• If U is deducible from ϕ1, that is, there exists P such that var(P ) ⊆ dom(ϕ), names(P )∩names(ε) =
∅, and Pϕ1 =E U , then one of the two rules Redundancy Analysis-1,2 applies, depending on
whether the equation x =E {P} ~M holds in ϕ0

2. We obtain a contradiction.

• If the disequality pdec success({x} ~M−1 , N)ϕ0
2 6=E 1 holds, then rule Encryption Analysis-2 ap-

plies.

• If the two previous cases do not apply, then the term U is not deducible from the frame ϕ1 and we
have pdec success({x} ~M−1 , N)ϕ2 =E 1. First, we show that r1 does not occur elsewhere in ϕ0

1.
Indeed, by contradiction, suppose that r1 occurs elsewhere in ϕ0

1. By well-formedness, this means
that U is a subterm of ϕ1. As U is not deducible from ϕ1, by Lemma 15 and property (1), U
occurs in ϕ1 under an encryption by a key k1 of sort different from EKey , not deducible from ϕ1.
Besides, by (1), k1 is deducible from ϕ0

1. By Lemma 15, this implies that k1 occurs in ϕ0
1 not in

key position. Since k1 encrypts U , by well-formedness, this occurrence must be in ϕ1. (It cannot
be in U nor in ~V .) Applying the same reasoning to k1 and so forth, we obtain the existence of an
infinite sequence of name k1, k2, . . . , ki, . . . of sort different from EKey , such that for all i ≥ 1, ki
encrypts ki−1, occurs in ϕ1 not in key position and is not deducible from ϕ1. Since names(ϕ1) is
finite, this contradicts the acyclicity condition.
Hence, r1 does not occur elsewhere in ϕ0

1. Let U2 = {W} ~M−1ϕ2
↓R. From the equation

pdec success({x} ~M−1 , N)ϕ2 =E 1

and by well-formedness, we deduce that U2 is of the form penc(S2, pub(T2), r2). Similarly as for
U1, we show that either U2 is deducible from ϕ0

2 (thus rule Redundancy Analysis applies), or
r2 occurs once in ϕ0

2. In the latter case, rule Undecipherable Encryption applies. We obtain a
contradiction.

(4) Let ϕ0
1 ≈? ϕ0

2 be an equation reached just after sequence 4. By contradiction, assume that, for instance,
ϕ0

1 is not standard. This means that the set names(ϕ0
1)− im(ϕ0

1) is not empty.

By (3), ϕ0
1 contains only constants, names and symbols enc, dec and pub. Given the sorting system, this

entails that for all x in dom(ϕ0
1), xϕ0

1 is of the form

xϕ0
1 =


{c}~C[a1...an]

or {a}~C[a1...an]

or {pub(k)}~C[a1...an]

where c denotes an arbitrary constant, a is a name, ~C is a (possibly empty) vectorial context made of
symbols enc, dec only, and the ai are names of sort Data.

Because of the form of the frame, the saturation procedure described in Corollary 10 (Appendix B) boils
down to the following rules:

(i) for every x ∈ dom(ϕ0
1), xϕ ∈ sat(ϕ0

1); in other words, im(ϕ0
1) ⊆ sat(ϕ0

1);

(ii) for every t ∈ st(ϕ0
1), if t = f(t1, . . . , tn) and t1, . . . , tn ∈ sat(ϕ0

1), then t ∈ sat(ϕ0
1);

(iii) if xϕ0
1 = {a}~C[a1...an], and a1, . . . , an ∈ sat(ϕ0

1) then for every (possibly empty) subcontext ~C ′ of ~C
we have {a}~C′[a1...an] ∈ sat(ϕ0

1).

Note that regarding deducibility of names,

• rule (i) may be restricted to names in im(ϕ0
1);

• rule (ii) is useless; and
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• rule (iii) may be restricted to ~C ′ = Λ, that is, to the conclusion a ∈ sat(ϕ0
1).

Since, by (1), every name in ϕ0
1 is deducible, names(ϕ0

1) is the smallest set saturated by rule (i) and
rule (iii) both restricted to names. In particular, since names(ϕ0

1) − im(ϕ0
1) 6= ∅, there exists a name

a ∈ names(ϕ0
1) − im(ϕ0

1) such that the corresponding derivation using (i) and (iii) is minimal. As
a 6∈ im(ϕ0

1), this derivation ends with (iii). Thus there exists a variable x such that xϕ0
1 = {a}~C[a1...an]

and a1 . . . an ∈ im(ϕ0
1). Hence, rule Standardize applies.

A.2 Effectiveness

Our main proof does not strictly require the transformation rules to be effective. Yet, we briefly justify this
property in order to obtain a decision procedure for the class of equivalences between well-formed frames.

The effectiveness of rules Undecipherable Encryption, Split Names, Pair Analysis, Standardize
and Solve is clear. Concerning rules Encryption Analysis-1,2, our proof of progress (above) shows that
during the procedure, one of these two rules applies whenever

• U = penc(S1, pub(T1), r1) where r1 does not occur elsewhere in the same side of ε; and

• we have found ~M , N such that var( ~M,N) ⊆ dom(ϕ1), names( ~M,N)∩ names(ε) = ∅, Mϕ1 =E U and
Nϕ1 = T1.

Finding such terms ~M and N is done using the classical decision procedure for deducibility (recalled in
Corollary 10 of Appendix B). Rules Redundancy Analysis-1,2 are effective for a similar reason.

A.3 Formal Soundness and Completeness

As above, the source equation of a rule is denoted ε = ϕ0
1 ≈? ϕ0

2 whereas the resulting equation is written
ε′ = ϕ1

1 ≈? ϕ1
2.

We check that for each rule ε is formally true iff ε′ is. In the definition of static equivalence:

ϕ1 ≈E ϕ2 iff for all M,N such that var(M,N) ⊆ dom(ϕ1) = dom(ϕ2) and names(M,N) ∩
names(ϕ1, ϕ2), we have

Mϕ1 =E Nϕ1 ⇔Mϕ2 =E Nϕ2,

note that we may forbid any additional finite set of names from M and N without loss of generality, by the
stability of E by renaming of names.

• Undecipherable Encryption. We prove that ϕ1 ≈E ϕ1
1 = ϕ1{T 7→ n}.

As k appears only in key positions, by Lemma 15, we have ϕ1 6`E k.

Since R is subterm and convergent, and both T and ϕ1 are R-reduced, we obtain ϕ1 ≈E cutET,n(ϕ1) =
ϕ1

1 by Proposition 17 of appendix B, with R0 successively equal to the remaining equations in R.
Indeed, for the case T = penc(U, pub(k), r), r is not deducible (Lemma 14 of Appendix B), and
pub(k) =E pub(V ) is equivalent to k =E V as R is convergent and no left-hand side of rules in R has
head symbol pub. Similarly, for all V , k′ 6=E pub(V ).

• Split Names. We prove that ϕ1 ≈E ϕ1
1 = ϕ1{n 7→ pair(n1, n2)↓R}.

Let M,N be two terms with names(M,N) ∩ names(ϕ1, ϕ
1
1) = ∅. Assume Mϕ1 =E Nϕ1. Then

Mϕ1
1 =E (Mϕ1){n 7→ pair(n1, n2)}

=E (Nϕ1){n 7→ pair(n1, n2)} =E Nϕ1
1
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Conversely, assume Mϕ1
1 =E Nϕ1

1. Then

Mϕ1 =E (Mϕ1){n1 7→ fst(n), n2 7→ snd(n)}
=E (Nϕ1

1){n1 7→ fst(n), n2 7→ snd(n)}
=E Nϕ1

1

• Pair Analysis. Assume ϕ0
1 ≈E ϕ0

2. Let P,Q be two terms such that var(P,Q) ⊆ dom(ϕ1
1) = dom(ϕ1

2),
and names(P,Q) ∩ names(ϕ1

1, ϕ
1
2) = ∅. Given that

Pϕ1
i =E P{y 7→ fst(x), z 7→ snd(x)}ϕ0

1

names(P{y 7→ fst(x), z 7→ snd(x)}) ∩ names(ϕ0
1, ϕ

0
2) = ∅

and similarly for Q, we have

Pϕ1
1 =E Qϕ1

1

⇔ P{y 7→ fst(x), z 7→ snd(x)}ϕ0
1 =E Q{y 7→ fst(x), z 7→ snd(x)}ϕ0

1

⇔ P{y 7→ fst(x), z 7→ snd(x)}ϕ0
2 =E Q{y 7→ fst(x), z 7→ snd(x)}ϕ0

2

⇔ Pϕ1
2 =E Qϕ1

2

Assume ϕ1
1 ≈E ϕ1

2. Let P,Q be two terms such that var(P,Q) ⊆ dom(ϕ0
1) = dom(ϕ0

2), and names(P,Q)∩
names(ϕ0

1, ϕ
0
2) = ∅. Given that

Pϕ0
i =E P{x 7→ pair(y, z)}ϕ1

i

names(P{x 7→ pair(y, z)}) ∩ names(ϕ1
1, ϕ

1
2) = ∅

and similarly for Q, we have

Pϕ0
1 =E Qϕ0

1

⇔ P{x 7→ pair(y, z)}ϕ1
1 =E Q{x 7→ pair(y, z)}ϕ1

1

⇔ P{x 7→ pair(y, z)}ϕ1
2 =E Q{x 7→ pair(y, z)}ϕ1

2

⇔ Pϕ0
2 =E Qϕ0

2

• Redundancy Analysis-2. Since the test x =? M holds in ϕ0
1 but does not in ϕ0

2, we have indeed
ϕ0

1 6≈E ϕ0
2.

• Redundancy Analysis-1. Assume ϕ0
1 ≈E ϕ0

2. Let Q1, Q2 be two terms such that var(Q1, Q2) ⊆
dom(ϕ1) = dom(ϕ2), and names(Q1, Q2) ∩ names(ϕ0

1, ϕ
0
2) = ∅. We have that

Q1ϕ1 =E Q2ϕ1

⇔ Q1ϕ
0
1 =E Q2ϕ

0
1

⇔ Q1ϕ
0
2 =E Q2ϕ

0
2

⇔ Q1ϕ2 =E Q2ϕ2

Conversely, assume ϕ1 ≈E ϕ2. Let Q1, Q2 be two terms such that we have var(Q1, Q2) ⊆ dom(ϕ1) =
dom(ϕ2), and names(Q1, Q2) ∩ names(ϕ0

1, ϕ
0
2) = ∅. Given that for i, j ∈ {1, 2},

Qjϕ
0
i =E Qj{x 7→M}ϕi

names(Qj{x 7→M}) ∩ names(ϕ1, ϕ2) = ∅
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we have

Q1ϕ
0
1 =E Q2ϕ

0
1

⇔ Q1{x 7→M}ϕ1 =E Q2{x 7→M}ϕ1

⇔ Q1{x 7→M}ϕ2 =E Q2{x 7→M}ϕ2

Q1ϕ
0
2 =E Q2ϕ

0
2

• Encryption Analysis-2. Since the test pdec success({x} ~M−1 , N) =? 1 (and respectively the test
sdec success({x} ~M−1 , N) =? 1) holds in ϕ0

1, but does not in ϕ0
2, we have indeed ϕ0

1 6≈E ϕ0
2.

• Encryption Analysis-1. We consider only the case of public-key encryption penc since the other
case is similar.

Assume ϕ0
1 ≈E ϕ0

2. Let Q1, Q2 be two terms such that var(Q1, Q2) ⊆ dom(ϕ1
1) = dom(ϕ1

2), and
names(Q1, Q2) ∩ names(ϕ0

1, ϕ
0
2) = ∅. Given that for i, j ∈ {1, 2}

Qjϕ
1
i =E Qj{y 7→ pdec({x} ~M−1 , N)}ϕ0

i

names(Qj{y 7→ pdec({x} ~M−1 , N)) ∩ names(ϕ0
1, ϕ

0
2) = ∅

we have

Q1ϕ
1
1 =E Q2ϕ

1
1

⇔ Q1{y 7→ pdec({x} ~M−1 , N)}ϕ0
1 =E Q2{y 7→ pdec({x} ~M−1 , N)}ϕ0

1

⇔ Q1{y 7→ pdec({x} ~M−1 , N)}ϕ2 =E Q2{y 7→ pdec({x} ~M−1 , N)}ϕ2

⇔ Q1ϕ
1
2 =E Q2ϕ

1
2

Conversely, assume ϕ1
1 ≈E ϕ1

2. Let Q1, Q2 be two terms such that var(Q1, Q2) ⊆ dom(ϕ0
1) = dom(ϕ0

2),
and names(Q1, Q2) ∩ names(ϕ0

1, ϕ
0
2) = ∅.

Let r0 be a fresh name, and ρi be the renaming ρi = {ri 7→ r0}. Provided that ri occurs nowhere else
in ϕ0

i , we have that for every i, j ∈ {1, 2},

Qjϕ
0
i ρi =E Qj{x 7→ {penc(y, pub(N), r0)} ~M}ϕ

1
i

names(Qj{x 7→ {penc(y, pub(N), r0)} ~M}) ∩ names(ϕ0
1, ϕ

0
2) = ∅

Hence

Q1ϕ
0
1 =E Q2ϕ

0
1

⇔
Q1ϕ

0
1ρ1 =E Q2ϕ

0
1ρ1

⇔
Q1{x 7→ {penc(y, pub(N), r0)} ~M}ϕ

1
1 =E Q2{x 7→ {penc(y, pub(N), r0)} ~M}ϕ

1
1

⇔
Q1{x 7→ {penc(y, pub(N), r0)} ~M}ϕ

1
2 =E Q2{x 7→ {penc(y, pub(N), r0)} ~M}ϕ

1
2

⇔
Q1ϕ2ρ2 =E Q2ϕ2ρ2

⇔
Q1ϕ2 =E Q2ϕ2
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• Standardize. We prove ϕ0
1 ≈E ϕ1

1.

Let M,N be two terms such that var(M,N) ⊆ dom(ϕji ) and names(M,N) ∩ names(ϕ0
1, ϕ

1
1) = ∅. If

Mϕ0
1 =E Nϕ0

1, then

Mϕ1
1 =E (Mϕ0

1){a 7→ {a′}~C[a1,...,an]−1}

=E (Nϕ0
1){a 7→ {a′}~C[a1,...,an]−1}

=E Nϕ1
1

Conversely, if Mϕ1
1 =E Nϕ1

1, then

Mϕ0
1 =E (Mϕ1

1){a′ 7→ {a}~C[a1,...,an]}

=E (Nϕ1
1){a′ 7→ {a}~C[a1,...,an]}

=E Nϕ0
1

• Solve. The result follows from Proposition 2.

A.4 Computational Soundness

We first prove several simple lemmas. Intuitively, the first one states that a true formal equation is always
true concretely.

Lemma 5 (Unconditional soundness of =E). Let T1 and T2 be two closed terms such that T1 =E T2 . We
have that

Pr [e1, e2 ← [[T1, T2]]η : e1 = e2] = 1

Proof. Let ∼= be the relation on terms defined by T1
∼= T2 iff for every η, for every well-sorted concrete

mapping ψ with dom(ψ) = var(T1, T2),

Pr [e1, e2 ← [[T1, T2]]η,ψ : e1 = e2] = 1

For every generating equation l = r of E, our implementation satisfies l ∼= r. From its definition, it is also
straightforward to check that ∼= is a congruence stable by substitution. Therefore, ∼= contains the equational
theory E.

As a corollary, we have that ϕ1 =E ϕ2 implies that the two family of distributions [[ϕ1]] and [[ϕ2]] are
identical.

The definition of an implementation (Section 3) ensures that no element in a set [[τ ]]η has probability 0

according to the distribution ( R←− [[τ ]]η). Hence, Lemma 5 can be stated equivalently as follows:

for every closed terms T1 and T2 such that T1 =E T2, for every η, for every well-sorted concrete
mapping ψ with dom(ψ) = names(T1, T2), [[T1]]η,ψ = [[T2]]η,ψ.

In the next lemma, we justify that the random distributions ( R←− [[τ ]]η) built in Section 3 are collision-free.

Lemma 6. Assume a secure implementation. Then, for every type τ , the probability of collision for the
distribution ( R←− [[τ ]]η) is a negligible function of η.

Proof. We prove the property by induction on τ .
The cases of τ = Data and τ = Coins are clear since α1(η) and α2(η) are at least linearly increasing.

The case of τ = Pair [τ1, τ2] is clear as well, using the induction hypothesis on τ1 and τ2.
For τ ∈ {SKey ,DKey ,EKey}, if the distribution ( R←− [[τ ]]) has non-negligible probability of collision,

then an adversary might obtain the secret key of the corresponding experiment using the key generation
algorithm, with non-negligible probability.
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Finally, assume that τ = SCipher [τ1] (the case of τ = ACipher [τ1] is similar), and that, by contradiction,
( R←− [[τ ]]η) is not collision-free, that is:

Pr
[
e1, e2

R←− [[τ1]]η; k1, k2
R←− [[SKey ]]η; r1, r2

R←− [[Coins]]η :

Es(e1, k1, r1) = Es(e2, k2, r2)
]

is not negligible. Using the equational property of decryption, this implies that the following probability is
not negligible either:

Pr
[
e1, e2

R←− [[τ1]]η; k1, k2
R←− [[SKey ]]η; r2

R←− [[Coins]]η :

e1 = Ds(Es(e2, k2, r2), k1)
]

As the right-hand side of the equality test does not depend on e1, we deduce in particular that ( R←− [[τ1]]η) is
not collision-free; this contradicts the induction hypothesis.

Our last lemma is a reinforcement of the Tenc-Pwd criterion of Definition 3.

Lemma 7. Assume that Π = (K, E ,D) is Tenc-Pwd secure.
Given a parameter η, some elements k1 . . . kn ∈ {0, 1}α1(η), and `1 . . . `n ∈ {−1, 1}, we call vectorial key

of size n any expression ~k = k`11 · . . . · k`nn . We write Gη for the set of all vectorial keys.
Given a bit-string e (e ∈ [[τ ]]η for some τ ∈ Tenc), the expression E(e,~k) stands for the result of the

expected sequence of encryptions/decryptions over e using keys k1, . . . , kn:

E(e,Λ) = e

E(e,~k · k+1) = E(E(e,~k), k)

E(e,~k · k−1) = D(E(e,~k), k)

For every security parameter η, type τ ∈ Tenc, and positive integer M , consider the following experiment,
with a two-stage PPTIME adversary A = (A1, A2):

• A1 outputs a vectorial key ~k ∈ Gη of size M and some state information st;

• a bit b R←− {0, 1} is selected at random; if b = 0, we let m R←− [[τ ]]η and c = E(m,~k); otherwise, c R←− [[τ ]]η
is a random element from [[τ ]]η;

• A2 is given c and st, and outputs a bit b′.

The adversary A is successful if b′ = b.
Then the advantage of A, defined by Advτ,MPwd,Π,A(η) = Pr[A is successful]− 1

2 , is negligible.

Proof. In the case M = 0, for any adversary A, we have Advτ,0Pwd,Π,A(η) = 0.
Next we prove that for any (efficient) adversary A = (A1, A2) in the game above for parameter M + 1,

there exist an (efficient) adversary A′ = (A′1, A
′
2) for parameter M , and an (efficient) adversary B = (B1, B2)

in the game of the Tenc-Pwd criterion (Definition 3) such that

|Advτ,M+1
Pwd,Π,A(η)−Advτ,MPwd,Π,A′(η)| ≤ AdvτPwd,Π,B(η)

(The result follows immediately by induction and the assumption of Tenc-Pwd security.)
We obtain A′ and B by modifying A as follows. When A1, the first stage of A, returns ~k = k`11 · . . . ·k

`M+1
M+1 ,

we let A′1 return ~k′ = k`22 · . . . · k
`M+1
M+1 , and B1 return k1. In addition, we let A′2 equal A2, and define B2 as

follows:
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• on input c and st, let c′ = E(c,~k′) if `1 = +1, and c′ = E(c,~k) otherwise;

• let s ∈ {−1,+1} be the sign of `1(Advτ,M+1
Pwd,Π,A(η)−Advτ,MPwd,Π,A′(η));

• if s ≥ 0, B2 returns the same value as A2 on input c′ and st; otherwise, it returns the opposite value.

Using the definitions of the different games, the advantage of B is then written:

AdvτPwd,Π,B(η) = Pr[B returns b′ = b]− 1
2

=
1
2

(Pr[B returns b′ = 0 / b = 0]− Pr[B returns b′ = 0 / b = 1])

=
s`1
2

(Pr[A is successful / b = 0]− Pr[A′ is successful / b = 0])

= s`1(Pr[A is successful & b = 0]− Pr[A′ is successful & b = 0])
= s`1(Pr[A is successful]− Pr[A′ is successful])

= |Advτ,M+1
Pwd,Π,A(η)−Advτ,MPwd,Π,A′(η)|

where the sign / introduces conditional probabilities and the variables b and b′ in each probability of success
refer to the same variables in the corresponding game.

We now prove the computational soundness of each transformation rule. As before, we write ε = ϕ0
1 ≈? ϕ0

2

for the source equation of a rule and ε′ = ϕ1
1 ≈? ϕ1

2 for the resulting equation.

• Undecipherable Encryption. For any term T , let |T |e be the number of distinct subterms of T of
the form pub(U), enc(U, V ) , penc(U, V,W ), senc(U, V,W ). The notation is extended to tuples of terms
and frames.

Given a type τ , we write PPos(τ) for the set of positions p in τ such that for every proper prefix q of
p, the symbol in position q in τ is a symbol τ(q) = Pair . For every term of type τ and p ∈ PPos(τ),
we write πp(T ) for the term of sort τ |p defined by

πΛ(T ) = T

π1·q(T ) = fst(πq(T ))
π2·q(T ) = snd(πq(T ))

We prove the two following properties by mutual induction on a parameter N ≥ 0:

– P (N)—Within the conditions of rule Undecipherable Encryption, that is:

∗ ϕ1 is a well-formed frame;
∗ k is a name whose every occurrence in ϕ (if any) is in key position;
∗ T is a maximal subterm of ϕ1 of the form pub(k), penc(U, k′, r), senc(U, k, r), enc(U, k) or

dec(U, k);
∗ n is a fresh name;

and if additionally |ϕ1|e ≤ N , then [[ϕ1]] ≈ [[ϕ1{T 7→ n}]];
– Q(N)—For every well-formed frame ϕ = {x1 = T1, x2 = T2} with |ϕ|e ≤ N , if T1 and T2 have

the same type τ , contain none of the constants w, c0, c1 . . ., and have no subterms of the form
enc(S, 0) or enc(S, 1), then for every p ∈ PPos(τ), πp(T1) 6=E πp(T2) implies that the quantity

Pr
[
e1, e2

R←− [[πp(T1), πp(T2)]]η : e1 = e2

]
is a negligible function of η.
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More precisely, we prove the four statements:

(1) P (0),

(2) P (N + 1)⇐ Q(N),

(3) Q(0),

(4) Q(N + 1)⇐ (P (N + 1) and Q(N)).

(1) P (0) is vacuously true.

(2) P (N + 1) ⇐ Q(N). Let ϕ1 = {x1 = T1, . . . , xm = Tm}, and ϕ′1 = ϕ1{T 7→ n}. We distinguish
several cases depending on the different forms of T .

– If T = pub(k), we have [[ϕ1]] = [[ϕ′1]] since by assumption k appears only in key position, that is,
given the sort system, under the symbol pub.

– If T = enc(U, k), let τ0 be the sort of U . Provided an adversary A able to distinguish between
[[ϕ1]] and [[ϕ′1]], we build an adversary B against the Tenc-security as follows:

1. for each name a 6= k of sort τ appearing in ϕ1, draw a value â R←− [[s]]η;

2. for each xi (1 ≤ i ≤ m) of sort τi, compute T̂i ∈ [[τi]]η recursively as follows:

̂encτ (T, k) = E(T̂ ) if T 6= U

̂encτ0(U, k) = E∗(Û)
̂f(T1, . . . , Tn) = [[f ]]η(T̂1, . . . , T̂n)

if f(T1, . . . , Tn) 6∈ {enc(T ′, k), dec(T ′, k)}

where we have written E(.) for the encryption oracle of the Tenc-security game, and E∗(Û) for
the answer to the challenge query Û .

3. submit the concrete frame {x1 = T̂1, . . . , xn = T̂n} to A and return the same answer.

Note that by maximality T is not a subterm of an encryption with k, thus we may assume that
B correctly sends the challenge query last. We also use the fact that k (whose concrete value is
not known by B during the experiment) appears only as an encryption key in ϕ1.
The distribution computed by B and submitted to A equals either [[ϕ1]]η or [[ϕ′1]]η depending
on whichever E∗(Û) is, respectively, the encryption of Û or a random value in [[τ ]]η. Thus the
probability that B guesses the right answer is the same as A. Nevertheless, B may not meet the
extra condition for winning the Tenc-security game, that is: not to submit a plaintext previously
submitted to the encryption oracle as the challenge plaintext. This happens if there exists a
subterm encn0(U ′, k) such that U and U ′ have the same type, U ′ 6= U and Û ′ = Û .
Suppose that this is the case. Let ϕ = {x = U, y = U ′}. As U ′ and T = encn0(U, k) are two
subterms of ϕ1, and T is not a subterm of U ′ (by maximality), we have |ϕ|e < |ϕ1|e = N + 1.
Besides, since ϕ1 is well-formed, so is ϕ, and ϕ contains no subterm enc(T ′, c). Therefore, the
induction hypothesis Q(N) implies that the probability for Û ′ = Û is negligible.

– If T = penc(U, k′, r), or T = senc(U, k, r), provided an adversary A able to distinguish between
[[ϕ1]] and [[ϕ′1]], we build an adversary B against the Tpenc-security (or respectively, the Tsenc-
security) in a similar way as above. We use here the fact that formal coins r appears in at most
one encryption term. Note that there is no extra condition to check in these cases (in contrast
with the arguments for deterministic encryption).
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Before proving (3) and (4), note that Q(N) is unchanged if we restrict the positions p to be the lowest
positions in PPos(τ), that is, those for which τ(p) 6= Pair . Indeed, if T1 and T2 have a type Pair [τ1, τ2],
we have that, in the formal world,

T1 =E T2 iff fst(T1) =E fst(T2) and snd(T1) =E snd(T2)

whereas computationally, Pr [e1, e2 ← [[T1, T2]]η : e1 = e2] is negligible iff

Pr [e1, e2 ← [[fst(T1), fst(T2)]]η : e1 = e2]
and Pr [e1, e2 ← [[snd(T1), snd(T2)]]η : e1 = e2]

are negligible. Our claim follows by induction.

We now prove (4). (Property (3) is a subcase.) Let ϕ = {x1 = T1, x2 = T2} be a well-formed frame
such that |ϕ|e ≤ N + 1, T1, T2 have a common type τ0, contain none of the constants w, c0, c1 . . ., and
have no subterms of the form enc(S, 0) or enc(S, 1). Let p0 ∈ PPos(τ0) and assume πp0(T1) 6=E πp0(T2).

Let T ′1 = πp0(T1)↓R, T ′2 = πp0(T2)↓R and τ be the sort of T ′1 and T ′2. By the previous discussion, we
may assume that p0 is maximal in PPos(τ0), that is, τ is not a type Pairτ1,τ2 . Therefore τ is one of
the following: SKey , EKey , DKey , Data, Coins, SCipher [τ ′], or ACipher [τ ′].

Given that T ′1 and T ′2 are R-reduced, ϕ is well-formed, T ′1 and T ′2 (which are subterms of T1 and T2

respectively) contain none of the constants w, c0, c1 . . . and have no subterms of the form enc(S, 0) or
enc(S, 1), and we have Tenc ∩ {Pair [τ1, τ2]}τ1,τ2 = ∅, this entails that T ′1 and T ′2 are each one of the
following form:

(i) projection of name πp(a), (possibly p = Λ)

(ii) constant 0 or 1,

(iii) public-key pub(k),

(iv) deterministic ciphertext enc(U, k),

(v) probabilistic ciphertext, penc(U, k′, r), penc(U, pub(k), r), senc(U, k, r).

We distinguish several cases depending on the form of T ′1 and T ′2.

– If T ′1 and T ′2 are both of the form (i)–(iii), the result is clear by Lemma 6.

– If exactly one of these two terms matches (i)–(iii), say T ′1, then we distinguish again two cases:

∗ If T ′2 is a ciphertext of the form enc(U, k), penc(U, pub(k), r), or senc(U, k, r), and T ′1 = k,
then the probability

Pr
[
e1, e2

R←− [[T ′1, T
′
2]]η : e1 = e2

]
must be negligible, otherwise the security of the encryption scheme is easily broken since the
key k can be recovered during the experiment. (We compute the concrete value of T ′2 similarly
as before, using the fact that k appears only in key position in U .)

∗ Otherwise, either
(i) T ′2 = penc(U, k′, r), or

(ii) T ′2 is of the form enc(U, k), penc(U, pub(k), r), or senc(U, k, r), and either T ′1 = pub(k) or
k does not occur in T ′1 at all.

If the probability of collision above is not negligible, then computing T ′1 gives a way to
predict the value of the ciphertext T ′2 during the experiment. Again, this breaks the security
of encryption.
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– Finally, if both T ′1 and T ′2 are of the form (iv) or (v), then since ϕ is well-formed, we may assume
for instance that T ′1 is of the form enc(U, k), penc(U, pub(k), r), or senc(U, k, r) (depending on the
sort of k), where the key k appears only in key position in T ′2 and U . Let T be a maximal subterm
of T ′1 and T ′2 of the form enc(U ′, k), penc(U ′, pub(k), r′), or senc(U ′, k, r′).
Let n be a fresh name, and y1, y2 two variables all of the same sort as T ′1. Let ϕ′ = {y1 = T ′1, y2 =
T ′2}. As ϕ is well-formed, and given the form of T ′1 and T ′2, ϕ′ and T satisfy the conditions of
P (N + 1). We deduce that the probability of collision between T ′1 and T ′2 is close to that between
T ′′1 = T ′1{T 7→ n} and T ′′2 = T ′2{T 7→ n} except for a negligible difference. We conclude by
applying Q(N) on the resulting frame ϕ′′ = {y1 = T ′′1 , y2 = T ′′2 }.

• Split Names. We have [[ϕ0
1]] = [[ϕ1

1]] by definition of random values of type Pair [τ1, τ2].

• Pair Analysis. Given the semantics of pairs and Lemma 5, it is straightforward to build an (efficient)
adversary against [[ϕ1

1]] ≈ [[ϕ1
2]] provided an (efficient) adversary against [[ϕ0

1]] ≈ [[ϕ0
2]] (and conversely).

• Redundancy Analysis-2. Soundness of this rule is vacuously true.

• Redundancy Analysis-1. Given an adversary A against [[ϕ0
1]] ≈ [[ϕ0

2]], we build an adversary B
against [[ϕ1]] ≈ [[ϕ2]]. Indeed, the relation xϕ0

i =E Mϕi holds also concretely by Lemma 5. Given a
drawing φ of the frame ϕi, B feeds A with φ0 = φ ∪ {x = [[{P} ~M ]]η,φ}, and returns the same result as
A.

• Encryption Analysis-2. Soundness of this rule is vacuously true.

• Encryption Analysis-1. We consider only the case of public encryption as the other one is similar.

Given an adversary A against [[ϕ0
1]] ≈ [[ϕ0

2]], we build an adversary B against [[ϕ1
1]] ≈ [[ϕ1

2]] as follows.
Let r0 be a fresh name of sort Coins and ρi be the renaming ρi = {ri 7→ r0} as before. By Lemma 5,
the relation

xϕ0
i ρi =E {penc(y, pub(N), r0)} ~Mϕ

1
i

(which relies the condition on the coins ri) holds for the concrete terms as well. Besides, ϕ0
i and ϕ0

i ρi
clearly have the same semantics. Given a drawing φ1 of the frame ϕ1

i , B feeds A with

φ0 = φ1 ] {x = [[{penc(y, pub(N), r0)} ~M ]]η,φ1}|dom(ϕ0),

and return the same result as A.

• Standardize. We prove that [[ϕ0
1]] ≈ [[ϕ1

1]]. Indeed, we have ϕ1
1 =E ϕ0

1{a 7→ {a′}~C[a1...an]−1} where a′

is fresh. Let τi be the sort of ai. By Lemma 5, this implies

[[ϕ1
1]]η = [[ϕ0

1{a 7→ {a′}~C[a1...an]−1 ]]η

= [[ϕ0
1]]
η , ei

R←−[[τi]] ; ai 7→ei,a7→[[{a′}~C[a1...an]−1 ]]η,ai 7→ei

From Lemma 7, we deduce that [[ϕ0
1]] ≈ [[ϕ1

1]].

• Solve. We use a notion of ideal semantics inspired by [9]. For each frame ϕi = {xi1 = ai1, . . . x
i
mi =

aimi , y
i
1 = Ci1[ai1 . . . a

i
mi ], . . . y

i
ni = Cin1

[ai1 . . . a
i
mi ]}, consider the alternative concrete semantics [[ϕi]]η

′

defined as follows:
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– let τj be the sort of xi and τ ′k the sort of yi;

– for every concrete frame φ = {xij = ej , y
i
k = fk}1≤j≤mi,1≤k≤ni , the probability of sampling φ

from [[ϕi]]η
′ is the probability that for all j, k, ej

R←− [[τi]]η and fk
R←− [[τ ′k]]η, conditioned to the

fact that (a) for all k, the equation yik =? Cik[xi1 . . . x
i
mi ] is satisfied concretely, that is, fk =

[[Cik[xi1 . . . x
i
mi ]]η,xij 7→ej . (If it is not the case, the probability of φ is zero).

By a simple reasoning on conditional probabilities, we have [[ϕi]]η
′ = [[ϕi]]η.

Assume that ε 6= ⊥, that is: for all j ∈ {1 . . . n1}, y1
jϕ2 =E C1

j [x1
1 . . . x

1
m1

]ϕ2, and for all k ∈ {1 . . . n2},
y2
kϕ1 =E C2

k [x2
1 . . . x

2
m2

]ϕ1.

Given the form of ϕ1 and ϕ2, we know by Proposition 2 that the set of equations {y1
j =? C1

j [x1
1 . . . x

1
m1

]}
and {y2

k =E C2
k [x2

1 . . . x
2
m2

]} yield equivalent equational theories (up to E, where the yij are seen as
free constants). By Lemma 5, we deduce that conditions (a) in the definitions of [[ϕ1]]η

′ and [[ϕ2]]η
′ are

logically equivalent. Thus, [[ϕ1]]η
′ = [[ϕ2]]η

′.

B Formal Results on Deducibility and Static Equivalence

This section is devoted to proving the formal properties of deducibility and static equivalence used in Ap-
pendix A. We first recall the characterization of deducibility due to Abadi and Cortier [2] on convergent
subterm systems (see below), and apply it to our specific theory to deduce a number of useful lemmas.
Then, we establish several local properties of static equivalence which allow step-by-step reasonings as used
in Appendix A. We found that these properties hold for a much broader class of theories than convergent
subterm ones. We state them in their full generality with possible future applications in mind. We expect
that the techniques that we use could also be helpful in manual proofs of static equivalence, for theories that
have not been automated yet or simply cannot be.

Definition and notations. A rewriting system R is subterm if for every rule l → r in R, either r is a
proper subterm of l or r is a R-reduced ground term.

In the sequel, we always assume that names(R) = ∅, so that the resulting equational theory E is stable
by substitution of names.

Given a position p in a term T , the expression T |p denotes the subterm at position p in T ; T [p := T ′]
stands for the term obtained by replacing this subterm with T ′ in T . We write st(T ) for the set of subterms
of a term T .

Fact 8. Let R be a subterm rewriting system. Then R is terminating.

Proof. Let µ(T ) denote the number of positions p in T such that T |p is not in R-normal-form. We show
that T →R T ′ implies µ(T ) > µ(T ′).

Indeed, let p be a position of T , l→ r a rule ofR and σ a substitution such that T |p = lσ and T ′ = T [rσ]p.
If rσ = r is ground and R-reduced, then µ(T ′) ≤ µ(T )− 1. Otherwise, rσ being a proper subterm of lσ we
have µ(T ′) ≤ µ(T )− 1 as well.

B.1 Inductive Characterization of Deducibility

We now characterize our equation-based notion of deducibility in terms of deduction rules (as the one used
in many Dolev-Yao models). Most properties are classical so we keep most proofs informal for the sake of
brevity.

Proposition 9. Let E be an equational theory generated by a subterm convergent rewriting system R. Let
ϕ be a frame in R-normal form. Let sat(ϕ) be the smallest set such that

(i) for every x ∈ dom(ϕ), xϕ ∈ sat(ϕ);
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(ii) for every t ∈ st(ϕ), if t = f(t1, . . . , tn) and t1, . . . , tn ∈ sat(ϕ), then t ∈ sat(ϕ);

(iii) for every rule l→ r in R, if there exist a plain context C, some terms t1, . . . , tn ∈ sat(ϕ), a substitution
σ, and some names a1 . . . am 6∈ names(ϕ) such that

• l is of the form l = C[l1, . . . , ln, z1, . . . , zm] where the variables z1, . . . , zm do not occur in
l1, . . . , lm,

• lσ = C[t1, . . . , tn, a1 . . . am] (that is, for every i, j, liσ = ti and zjσ = aj), and finally
• rσ ∈ st(ϕ),

then rσ ∈ sat(ϕ).

A R-reduced term T is deducible from ϕ iff there exists a plain context C, some terms t1, . . . , tn ∈ sat(ϕ)such
that T = C[t1, . . . , tn].

A very similar result is stated in the work of Abadi and Cortier [2] concerning static equivalence. Below,
we adapt the original proof to make more precise the set of contexts C to be considered. (We also use a
slighty more general notion of subterm theory, and allow an infinite, sorted rewriting system.)

Proof of Proposition 9. Terms in sat(ϕ) are shown deducible by induction on the rules (i)–(iii); this implies
the right-to-left implication.

As for the converse, by extending ϕ with components from sat(ϕ), we may assume without loss of
generality that ϕ is saturated, that is, for every T ∈ sat(ϕ), there exists x ∈ dom(ϕ) such that xϕ = T .

As T is R-reduced and R is convergent, ϕ `E T means that there exists M such that var(M) ⊆ ϕ,
names(M) ∩ names(ϕ, T ) = ∅ and Mϕ→∗R T .

We prove the existence of a term M0 that moreover satisfies M0ϕ = T , by induction on Mϕ with respect
to the terminating quasi-ordering →R.

Indeed, assume that Mϕ→∗R T and Mϕ is reducible: there exists a position p, a rule l→ r in R, and a
substitution σ such that Mϕ|p = lσ. By confluence of R, we have Mϕ→R Mϕ[rσ]p →∗R T .

Next, we build a M ′ such that Mϕ[rσ]p = M ′ϕ and conclude the proof by induction. Indeed, as ϕ is
R-reduced and Mϕ|p = lσ, p must be the position of a function symbol in M , notably, M |pϕ = lσ.

Considering the greatest common term between M |p and l, and since names(l) = ∅, we find that there
exists a plain context C such that

• M |p = C[x1, . . . , xp,M1, . . . ,Mq, N1, . . . , Nm],

• l = C[l1, . . . , lp, y1, . . . , yq, z1, . . . , zm],

where y1, . . . yq ∈ var(l1, . . . , lp), and z1, . . . zm 6∈ var(l1, . . . , lp).
The equation M |pϕ = lσ then implies that

• liσ = xiϕ is in sat(ϕ) by rule (i) in the definition of sat(ϕ);

• yiσ = Miϕ ∈ st(liσ) (since yi ∈ var(l1, . . . , lp)) is in sat(ϕ) by rule (ii).

By definition, as R is a subterm rewriting system, r is a proper subterm of l or is ground and R-reduced.
Hence rσ is either a (proper) subterm of some liσ, or can be written rσ = C ′[l1, . . . , lp, y1, . . . , yq, z1, . . . , zm]σ
for some context C ′ (take C ′ = r if r is ground and R-reduced).

In the first case, since z1, . . . zm 6∈ var(l1, . . . , lp), letting a1, . . . , am be fresh names of the appropriate
sorts, we have

C[l1σ, . . . , lpσ, y1σ, . . . , yqσ, a1, . . . , am] = lσ′ →R rσ′ = rσ ∈ st(sat(ϕ))

therefore rσ ∈ sat(ϕ) by rule (iii). By assumption, there exists x such that xϕ = rσ; we let M ′ = M [x]p.
In the second case, we let

M ′ = C[p := C ′[x1, . . . , xp,M1, . . . ,Mq, N1, . . . , Nm]]

In both cases, we obtain Mϕ→R M ′ϕ which concludes our proof by induction.
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Note that, when R is a convergent subterm system but is infinite, the above characterization does not
entail immediately that deducibility is decidable in polynomial time (cf. [2]). Indeed, during the inductive
computation of sat(ϕ), condition (iii) involves a possibly unbounded number of rules l→ r.

We focus on the equational theory E defined in the main part of the paper:

decτ (encτ (x, y), y) = x encτ (decτ (x, y), y) = x
pdecτ (pencτ (x, pub(y), z), y) = x pdec successτ (pencτ (x, pub(y), z), y) = 1

sdecτ (sencτ (x, y, z), y) = x sdec successτ (sencτ (x, y, z), y) = 1
fstτ1,τ2(pairτ1,τ2(x, y)) = x sndτ1,τ2(pairτ1,τ2(x, y)) = y

pairτ1,τ2(fstτ1,τ2(x), sndτ1,τ2(x)) = x

Applied to this theory, Proposition 9 entails the following characterization.

Corollary 10. Let ϕ be a frame in R-normal form. Let sat(ϕ) be the smallest set such that

(i) for every x ∈ dom(ϕ), xϕ ∈ sat(ϕ);

(ii) for every t ∈ st(ϕ), if t = f(t1, . . . , tn) and t1, . . . , tn ∈ sat(ϕ), then t ∈ sat(ϕ);

(iii) the following rules are satisfied: (omitting type annotations)

pair(t1, t2) ∈ sat(ϕ) ⇒ t1 ∈ sat(ϕ)
pair(t1, t2) ∈ sat(ϕ) ⇒ t2 ∈ sat(ϕ)

fst(t) ∈ sat(ϕ), snd(t) ∈ sat(ϕ) and t ∈ st(ϕ) ⇒ t ∈ sat(ϕ)
enc(t1, t2) ∈ sat(ϕ) and t2 ∈ sat(ϕ) ⇒ t1 ∈ sat(ϕ)
dec(t1, t2) ∈ sat(ϕ) and t2 ∈ sat(ϕ) ⇒ t1 ∈ sat(ϕ)

penc(t1, pub(t2), t3) ∈ sat(ϕ) and t2 ∈ sat(ϕ) ⇒ t1 ∈ sat(ϕ)
senc(t1, t2, t3) ∈ sat(ϕ) and t2 ∈ sat(ϕ) ⇒ t1 ∈ sat(ϕ)

A R-reduced term T is deducible from ϕ iff there exists a plain context C, some terms t1, . . . , tn ∈ sat(ϕ)such
that T = C[t1, . . . , tn].

Here we make precise the instantiations of point (iii) of Proposition 9, by case analysis on the rules of
R. This essentially yields the classical Dolev-Yao rules for deduction. We have omitted the cases that leave
sat(ϕ) trivially unchanged, such as:

t1, t2 ∈ sat(ϕ) implies t1 ∈ sat(ϕ) by dec(enc(t1, t2), t1)→R t1

as well as those redundant with point (ii), for instance:

penc(t1, pub(t2), t3) ∈ sat(ϕ) and t2 ∈ sat(ϕ) implies 1 ∈ sat(ϕ)

Note that sat(ϕ) is still included in st(ϕ). As Corollary 10 describes sat(ϕ) by a fixed number of inference
rules and the size of sat(ϕ) is bounded by the DAG-size of the problem, this provides a polynomial-time
algorithm to decide deducibility in E (as in [2]). Besides, the algorithm can easily produce a recipe in case
of a positive answer for ϕ `?

E T , that is, a term M such that var(M) ⊆ ϕ, names(M) ∩ names(ϕ) = ∅
and Mϕ =E T . Indeed, the procedure need simply maintain a table associating a recipe to each deducible
subterm already found. When a new deducible subterm is discovered, its recipe is deduced from the applied
inference rule in the obvious way.

As the main proof of Appendix A concerns mostly well-formed frames, we finally introduce another
variant of Proposition 9, specialized to well-formed frames.

Corollary 11. Let ϕ be a well-formed frame. Let sat′(ϕ) be the smallest set such that
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(i) for every x ∈ dom(ϕ), xϕ ∈ sat′(ϕ);

(ii) the following rules are satisfied: (omitting type annotations)

pair(t1, t2) ∈ sat′(ϕ) ⇒ t1 ∈ sat′(ϕ)
pair(t1, t2) ∈ sat′(ϕ) ⇒ t2 ∈ sat′(ϕ)

enc(t1, t2) ∈ sat′(ϕ) and t2 ∈ sat′(ϕ) ⇒ t1 ∈ sat′(ϕ)
penc(t1, pub(t2), t3) ∈ sat′(ϕ) and t2 ∈ sat′(ϕ) ⇒ t1 ∈ sat′(ϕ)

senc(t1, t2, t3) ∈ sat′(ϕ) and t2 ∈ sat′(ϕ) ⇒ t1 ∈ sat′(ϕ)

A R-reduced term T is deducible from ϕ iff there exists a plain context C, some terms t1, . . . , tn ∈ sat′(ϕ)such
that T = C[t1, . . . , tn].

Indeed, since decryption keys of well-formed frames are always names, the inference rule (ii) of Corol-
lary 10 is never applied to find such keys, so we may postpone this operation to the end. Besides, well-formed
frames do not contain dec, fst, and snd symbols, so the corresponding inference rules (third and sixth of pre-
vious point (iii)) are useless here. In the end, we obtain a set of inference rules very similar to the ones of [5]
and [6].

Some useful lemmas. Using this characterization of deducibility, we now state several technical lemmas
used in the main proof of Appendix A.

Given a frame ϕ and an expression ~V = V `11 · . . . · V `nn , we write ϕ `E ~V iff for every i, ϕ `E Vi.

Lemma 12. Let ϕ0 = ϕ ] {x = {U}~V } be a well-formed frame.

(1) We have ϕ0 `E ~V iff ϕ `E ~V .

(2) Assume ϕ `E ~V . For any term T , ϕ0 `E T iff ϕ ] {x = U} `E T .

Proof. (1) Suppose ϕ `E ~V , that is, there exists ~M such that var( ~M) ⊆ dom(ϕ), names(M)∩names(ϕ, T ) =
∅, and ~Mϕ =E T . By renaming names in names( ~M) − names(ϕ, T ), we may assume without loss of
generality that names( ~M) ∩ names(ϕ0) = ∅. Thus, ~M shows that ϕ0 ` ~V .

Conversely, assume that ϕ 6`E ~V . Let ~V = a`11 · · · a`mm (by well-formedness). There exists a maximal
i ≥ 1 such that ϕ 6`E ai. Using Corollary 11, we have that

sat′(ϕ0) = sat′(ϕ) ∪
{
{U}~V ′ | ~V

′ = a`11 · · · a
`j
j , j ≥ i

}
In particular, since ai 6∈ sat′(ϕ), we have ϕ0 6`E ~V .

(2) Let ~Nϕ =E
~V with var( ~N) ⊆ dom(ϕ) and names(N) ∩ names(ϕ0, T ) = ∅.

Suppose Mϕ0 =E T with var(M) ⊆ dom(ϕ0) and names(M) ∩ names(ϕ0, T ) = ∅. Then we have
M{x 7→ {x} ~N}ϕ =E T , thus ϕ ] {x = U} `E T .

Conversely, suppose M(ϕ∪{x = U}) =E T with var(M) ⊆ dom(ϕ0) and names(M)∩names(ϕ0, T ) = ∅.
Then we have M{x 7→ {x} ~N−1}ϕ =E T , thus ϕ0 `E T .

Lemma 13. Let ϕ0 = ϕ ] {x = penc(U, pub(V ), r)} be a well-formed frame (respectively ϕ0 = ϕ ] {x =
senc(U, V, r)}).

(1) We have ϕ0 `E V iff ϕ `E V .

(2) Assume ϕ `E V and r does not occur in ϕ. For any term T that does not contain r, ϕ0 `E T iff
ϕ ] {y = U} `E T .
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Proof. We consider only the case of public-key encryption as that of symmetric encryption is similar.

(1) Similar to Lemma 12.

(2) Let Nϕ =E V with var(N) ⊆ dom(ϕ) and names(N) ∩ names(ϕ0, V ) = ∅.
Suppose Mϕ0 =E T with var(M) ⊆ dom(ϕ0) and names(M)∩names(ϕ0, T ) = ∅. Let r′ be a fresh name
of sort Coins. Then we have M{x 7→ {y}r′N}(ϕ ] {y = U}) =E T , thus ϕ ] {y = U} `E T .

Conversely, suppose M(ϕ]{y = U}) =E T with var(M) ⊆ dom(ϕ0) and names(M)∩names(ϕ0, T ) = ∅.
Then we have M{x 7→ pdec(x,N)}ϕ =E T , thus ϕ0 `E T .

We say that a position p is under an encryption by a non-deducible key in ϕ if there exists a variable
x ∈ dom(ϕ) and a prefix p′ · 1 of p such that xϕ|p′ is of the form

• enc(U, V ) with ϕ 6`E V ,

• senc(U, V,W ) with ϕ 6`E V , or

• penc(U, V ′,W ) with ∀V, V ′ =E pub(V )⇒ ϕ 6`E V .

By p′ · 1, we mean that p goes into the first argument U of the encryption. Note that “non-deducible key”
refers here to the decryption key.

Lemma 14. Let ϕ be a well-formed frame, and r ∈ names(ϕ) of sort Coins. Then, r is not deducible from
ϕ.

Proof. Since ϕ is well-formed, r appears only as a third argument of an encryption symbol. By inspection
of the rules of Corollary 11, we have that r 6∈ sat′(ϕ), thus r is not deducible.

Lemma 15. Let ϕ be a well-formed frame, and T a subterm of ϕ sort τ 6= Coins. Then, T is deducible from
ϕ iff either (i) there exists a symbol f such that T = f(T1, . . . , Tn) and all the Ti are deducible, or (ii) T
appears in some position p of ϕ that is not a key position and not under an encryption by a non-deducible
key.

Proof. Thanks to Corollary 11, it is sufficient to verify that (ii) holds iff T ∈ sat′(ϕ).
We prove the implication T ∈ sat′(ϕ)⇒ (ii) by induction on the proof tree for T ∈ sat′(ϕ).

• If point (i) of Corollary 11 applies (axiom rule), then T appears in a root position, which satisfies (ii).

• If a rule pair(t1, t2) ∈ sat′(ϕ)⇒ ti ∈ sat′(ϕ) applies, with ti = T , then the induction hypothesis applies
on pair(t1, t2) which entails (ii) on T .

• If rule enc(t1, t2) ∈ sat′(ϕ) and t2 ∈ sat′(ϕ) ⇒ t1 ∈ sat′(ϕ) applies with t1 = T , then the induction
hypothesis applies on enc(t1, t2) which entails (ii) on T since t2 is deducible.

• (The cases of the remaining rules are similar.)

As for the converse implication, we prove it by induction on the position p of T in ϕ that is given by (ii).
Indeed, if p is a root position in ϕ, the axiom rule (i) of Corollary 11 applies. Suppose p = p′ · i. Since ϕ is
well-formed, T has sort τ 6= Coins, and (ii) holds, we have that

• the symbol in position p′ of ϕ is either pair, enc, penc, or senc;

• in the last three case, T is the first argument of the encryption and the second argument has a deducible
decryption key;

• p′ is neither a key position in ϕ nor under an encryption by a non-deducible key.

Applying the induction hypothesis on T ′ and the appropriate inference rule of Corollary 11, we obtain that
T belongs to sat′(ϕ).
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B.2 Stepwise Reasoning for Static Equivalence

Assume an arbitrary equational theory E. For every term T0 of the form T0 = f0(U1 . . . Un0) and every
variable x0 of the same sort, we define a function cutET0,x0

recursively as follows:

cutET0,x0
(x) = x

cutET0,x0
(f(T1 . . . Tn)) =

{
x0 if f = f0 and ∀i, Ti =E Ui,
f(cutET0,x0

(T1), . . . , cutET0,x0
(Tn)) otherwise.

Thus, cutET0,x0
has the effect of replacing some subterms S of its argument by x0. Note that not every

subterm S equal to T0 modulo E is replaced. This is crucial both for the proofs and the applications. If E
is the syntactic equality, cutET0,x0

is simply the replacement that maps T0 to x0.
We now introduce a useful “interpolation” lemma.

Lemma 16. Let Σ1 and Σ2 be two disjoint first-order signatures, and Σ = Σ1 ∪ Σ2. Assume two rewriting
systems R1 and R2 over Σ such that the following conditions hold:

(i) R1 is subterm;

(ii) for every rule l→ r in R1, the head symbol of l is in Σ1;

(iii) rules in R2 are made of symbols in Σ2 only;

(iv) R1 ∪R2 is confluent;

(v) either R1 = ∅, or for every rule l→ r in R2, var(r) ⊆ var(l).

We write E for the equational theory generated by R1 and R2, and let R = R1 ∪R2.
Let T0 = f0(U1 . . . Un0) be a term over Σ such that f0 ∈ Σ1, and, for every rule l → r in R1, if r is not

a proper subterm of l (second type of subterm rule), then f0 does not occur in r.
Let T1 and T2 be two terms such that

(a) T1 =E T2,

(b) for every subterm S = g(S1 . . . Sn) of T1 or T2, for every rule l→ r in R1 with l = g(l1 . . . ln), for every
substitution θ such that ∀j, Sj →∗R ljθ, we have

cutET0,x0
(lθ) = l cutET0,x0

(θ),

that is, intuitively, cutET0,x0
does not operate at the positions inside l in lθ.

Then, for any variable x0 of the appropriate sort, it holds that

cutET0,x0
(T1) =E cutET0,x0

(T2)

Note that in order to establish the equality cutET0,x0
(lθ) = l cutET0,x0

(θ), it is sufficient to prove that for
every subterm t = f0(t1 . . . tn0) of l, there exists i such that Ui 6=E tiθ.

Let us give an example of application before proving Lemma 16.

Example 6. Let E be an arbitrary equational theory over Σ2, and R2 a corresponding confluent rewriting
system (obtained for instance by orienting the equations of E in both directions). Assume Σ1 = {h} and
R1 = ∅, that is, h is a free symbol with respect to E. Let T0 = h(U1 . . . Un). Conditions (i)–(v) are clearly
fulfilled. Since condition (b) is vacuous, it holds that, whenever T1 =E T2, cutET0,x0

(T1) =E cutET0,x0
(T2).

This result is an important (in fact characteristic) property of free symbols. In particular, it implies that
for every U1 . . . Un, U

′
1 . . . U

′
n, h(U1 . . . Un) =E h(U ′1 . . . U

′
n) iff ∀i, Ui =E U ′i .

Proof. Let us write cut for cutE . Let P(T ) be the following property:
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for every subterm S = g(S1 . . . Sn) of T , for every rule l→ r in R1 with l = g(l1 . . . ln), for every
substitution θ such that ∀j, Sj →∗R ljθ, cutT0,x0(lθ) = l cutT0,x0(θ).

Thus, condition (b) is equivalent to P(T1) and P(T2).
Since T1 =E T2 and condition (iv) holds, there exists a chain

T1 = T 0 →∗R2
→R1→∗R2

T 1 . . .←∗R2
←R1←∗R2

Tm = T2

First, we show the propagation of P along the chain of equations between T1 and T2. More formally, we
prove the following facts:

1. P(T ) and T →R1 T
′ imply P(T ′);

2. P(T ) and T →R2 T
′ imply P(T ′).

If R1 = ∅, then P(T ) is vacuously true, so both implications hold. Otherwise, we proceed as follows:

1. Assume P(T ) and T →R1 T
′. There exists a position p, a rule l → r ∈ R1, and a substitution σ such

that T |p = lσ and T ′ = T [rσ]p.

Assume a subterm S = g(S1 . . . Sn) of T ′, a rule l′ = g(l1 . . . ln)→ r′ ∈ R1, and a substitution θ such
that ∀i, Si →∗R liθ.

We distinguish three cases.

(a) If S is a subterm of rσ, then by condition (i), r is a proper subterm of l (otherwise, r is ground
and R-reduced and S = l′θ cannot be a subterm of rσ = r), hence S is a subterm of lσ, and we
conclude directly by P(T ).

(b) If S is a subterm of T ′[ ]p = T [ ]p, then P(T ) applies as well.

(c) Otherwise, S is written S = T |q1 [rσ]q2 with p = q1q2 and q1 6= Λ. Thus, there exists S′1 . . . S
′
n

such that T |q1 = T |q1 [lσ]q2 = g(S′1 . . . S
′
n) and ∀i, S′i →∗R Si →∗R liθ. Thus, we apply P(T ) on

T |q1 = g(S′1 . . . S
′
n), l→ r and θ.

2. Assume P(T ) and T →R2 T
′. There exists a position p, a rule l → r ∈ R2, and a substitution σ such

that T |p = lσ and T ′ = T [rσ]p.

Assume a subterm S = g(S1 . . . Sn) of T ′, a rule l′ = g(l1 . . . ln)→ r′ ∈ R1, and a substitution θ such
that ∀i, Si →∗R liθ.

We distinguish three cases.

(a) If S is a subterm of rσ, then by condition (ii), since g 6∈ Σ2, S is a subterm of var(r)σ. Thus, by
condition (v), it is a subterm of lσ. We conclude by applying P(T ).

(The last two cases are done as above.)

From the two previous facts and the assumptions P(T1) and P(T2), we deduce that P is true on every
intermediate term of the chain. Therefore, in order to finish the proof, it is sufficient to prove the following
facts:

1. P(T ) and T →R1 T
′ imply cutT0,x0(T ) =E cutT0,x0(T ′);

2. T →R2 T
′ imply cutT0,x0(T ) =E cutT0,x0(T ′).

We proceed as follows.
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1. Assume P(T ) and T →R1 T
′. There exists a position p, a rule l → r ∈ R1, and a substitution σ such

that T |p = lσ and T ′ = T [rσ]p.

If p is below the positions of the symbol f0 where cutT0,x0 operates in T , then by definition of cut,
since T

p−→R1 T
′, we have

cutT0,x0(T ) = cutT0,x0(T ′).

Otherwise, we have cutT0,x0(T )|p = cutT0,x0(T |p) = cutT0,x0(lσ). By P(T ), cutT0,x0(lσ) = l cutT0,x0(σ).

Similarly, as r is either a subterm of l or a R-reduced ground term not containing f0,

cutT0,x0(T ′) = cutT0,x0(T )[cutT0,x0(rσ)]p
= cutT0,x0(T )[r cutT0,x0(σ)]p

Hence, cutT0,x0(T ) =E cutT0,x0(T ′).

2. Assume T →R2 T
′. There exists a position p, a rule l → r ∈ R2, and a substitution σ such that

T |p = lσ and T ′ = T [rσ]p.

Again, if p is below the positions of the symbol f0 where cutT0,x0 operates in T , then we have

cutT0,x0(T ) = cutT0,x0(T ′).

Otherwise, cutT0,x0(T )|p = cutT0,x0(T |p) = cutT0,x0(lσ). By condition (iii), and since f0 6∈ Σ2, cutT0,x0

may not operate at a non-variable position of l in S = lσ. Thus, cutT0,x0(lσ) = l cutT0,x0(σ).

Similarly,

cutT0,x0(T ′) = cutT0,x0(T )[cutT0,x0(rσ)]p
= cutT0,x0(T )[r cutT0,x0(σ)]p

Hence, cutT0,x0(T ) =E cutT0,x0(T ′).

Proposition 17. Let Σ be a first-order signature. Consider the following rewriting systems, terms, and
sub-signatures of Σ:

R1 = { dec(enc(x, y), y)→ x, enc(dec(x, y), y)→ x }
T1 = enc(U1, U2)
Σ1 = {enc, dec}

R2 = { sdec(senc(x, y, z), y)→ x, sdec success(senc(x, y, z), y)→ 1 },
T2 = senc(U1, U2, U3)
Σ2 = {senc, sdec, sdec success}

R3 = { pdec(penc(x, pub(y), z), y)→ x, pdec success(penc(x, pub(y), z), y)→ 1 }
T3 = penc(U1, U2, U3)
Σ3 = {penc, pdec, pdec success}

R4 = R3

T4 = pub(U2)
Σ4 = Σ3

Notice that for all i, Ri is subterm and convergent.
Let i ∈ {1, 2, 3, 4}. Let R0 be a rewriting system over Σ0 = Σ− Σi such that
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(iii) rules in R0 are made of symbols in Σ0 only;

(iv) Ri ∪R0 is confluent;

(v) for every rule l→ r in R0, var(r) ⊆ var(l).

Let R = Ri ∪R0 and E be the equational theory associated to R.
We write →Ri/R0 for the relation →∗R0

→Ri→∗R0
.

Let ϕ be a frame in Ri/R0-normal form (that is, there exists no ϕ′ such that ϕ →∗R0
→Ri→∗R0

ϕ′).
Assume that

• if i ∈ {1, 2, 4}, ϕ 6`E U2;

• if i = 3,

– there exists j ∈ {1, 2, 3} such that ϕ 6`E Uj, and

– for all V such that U2 =E pub(V ), ϕ 6`E V .

Let a be a fresh name. Then it holds that

ϕ ≈E cutETi,a(ϕ)

Proof. Let ϕ′ = cutETi,a(ϕ). We write cutTi,a for cutETi,a.
If Mϕ′ =E Nϕ′ with names(M,N) ∩ names(ϕ) = ∅, then by stability of E by substitution over names,

Mϕ =E Nϕ.
Assume that Mϕ =E Nϕ with names(M,N) ∩ names(ϕ) = ∅. We prove successively,

1. cutTi,a(Mϕ) = M cutTi,a(ϕ) and cutTi,a(Nϕ) = N cutTi,a(ϕ),

2. condition (b) of Lemma 16 is fulfilled on Mϕ and Nϕ.

Indeed, using Lemma 16, we then obtain Mϕ′ = cutTi,a(Mϕ) = cutTi,a(Nϕ) = Nϕ′.
We consider only the case of M since the one of N is identical. Let Ti = fi(U1, . . . , Uni).

1. If cutTi,a(Mϕ) 6= M cutTi,a(ϕ), then there exists a position p in M such that M |p is of the form
M |p = fi(M1, . . . ,Mni) and ∀j, Uj =E0 Mjϕ. In particular, ∀j, ϕ `E Uj ; we obtain a contradiction.

2. Assume that S = (Mϕ)|p = g(S1 . . . Sni) is a subterm of Mϕ at position p and there exists a rule
l = g(l1 . . . lni)→ r ∈ Ri and a substitution θ such that ∀j, Sj →∗R ljθ.

Since ϕ is in Ri/R0-normal form and S →∗R lθ →Ri rθ, p is a non-variable position of M . Thus, there
exists a subterm g(M1 . . .Mni) of M such that ∀j,Mjϕ = Sj →∗R ljθ.

We distinguish several cases depending on the values of i and the actual rule l→ r ∈ Ri.

(a) If i = 1,

• If l = dec(enc(x, y), y), the only subterm to be considered is t = enc(x, y). t2 = y = l2 is
such that U2 6=E t2θ. Indeed, otherwise, we deduce U2 =E l2θ ←∗R M2ϕ which contradicts
M2 6`E U2.

• If l = enc(dec(x, y), y), the only subterm to be considered is t = l. Similarly as above,
t2 = y = l2 is such that U2 6=E t2θ.

(b) If i = 2,

• If l = sdec(senc(x, y, z), y), the only subterm to be considered is t = senc(x, y, z). Again,
t2 = y = l2 is such that U2 6=E t2θ.

• The case l = sdec success(senc(x, y, z), y) is similar.

(c) If i = 3,
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• If l = pdec(penc(x, pub(y), z), y), the only subterm to be considered is t = penc(x, pub(y), z).
t2 = pub(y) = pub(l2) is such that U2 6=E t2θ. Otherwise, we deduce U2 =E pub(l2θ) and
l2θ ←∗R M2ϕ, which contradicts the assumption ∀V,U2 =E pub(V )⇒ ϕ 6`E V .

• the case l = pdec success(penc(x, pub(y), z), y) is similar.

(d) If i = 4,

• If l = pdec(penc(x, pub(y), z), y), the only subterm to be considered is t = pub(y). Similarly
as before, t1 = y = l2 is such that U2 6=E t2θ.

• The case l = pdec success(penc(x, pub(y), z), y) is similar.

Example 7. Consider an equational theory E made of the rewriting rules R1 above and any set of rules R0

such that the conditions (iii)–(v) are fulfilled. (For instance, the symbols in R0 and R1 are disjoint, and
R0 ]R1 is convergent.)

Using Proposition 17, for every frame

ϕ = ϕ0 ] {x = enc(U1, U2)}

if ϕ 6`E U2 and enc(U1, U2) is not E-equivalent to a subterm of ϕ0, we obtain that

ϕ ≈E ϕ0 ] {x = n}

for any fresh name n of the appropriate sort.
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